General Purpose Linear Devices

Databook

- Continuous Voltage Regulators
- Switching Voltage Regulators
- Operational Amplifiers
- Buffers
- Voltage Comparators
- Instrumentation Amplifiers
- Surface Mount

For information on additional
linear devices, please see the
Data Acquisition Linear Devices and
Special Purpose Linear Devices Databooks

General Purpose Linear Devices Databook 1989 Edition

General Information

Alphanumeric

Available Hybrid Products
Additional Available Linear Devices
Industry Cross Reference Guide by Part Number
Package Cross Reference Guide

Continuous Voltage Regulators

Switching Voltage Regulators

Operational Amplifiers

Buffers

Voltage Comparators

Instrumentation Amplifiers

Surface Mount

Appendices/Physical Dimensions

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

AbuseableTM	FAIRCADTM	MSTTM	SCXTM
AnadigTM	Fairtech ${ }^{\text {TM }}$	Naked-8TM	SERIES/800TM
ANS-R-TRANTM	FAST®	National ${ }^{\text {® }}$	Series 900тм
APPSTM	5-Star Service ${ }^{\text {TM }}$	National Semiconductor ${ }^{\text {® }}$	Series 3000тm
ASPECTTM	GENIXTM	National Semiconductor	Series 32000®
Auto-Chem DeflasherTM	GNXTM	Corp. ${ }^{\text {® }}$	Shelf Chek $^{\text {TM }}$
ВСРтм	HAMRTM	NAX 800 ${ }^{\text {Tm }}$	SofChekTM
BI-FETTM	HandiScantm	Nitride Plus ${ }^{\text {TM }}$	SPIRETM
BI-FET IITM	HEX 3000 ${ }^{\text {TM }}$	Nitride Plus OxideTM	STARTM
BI-LINETM	НРС'м	NML ${ }^{\text {™ }}$	Starlink ${ }^{\text {TM }}$
BIPLANTM	$13 \mathrm{~L}{ }^{\text {® }}$	NOBUSTM	STARPLEXTM
BLCTM	ICMTM	NSC8007m	Super-Block ${ }^{\text {TM }}$
BLXTM	INFOCHEXTM	NSCISETM	SuperChipTM
Brite-LiteTM	Integral ISETM	NSX-16TM	SuperScript ${ }^{\text {TM }}$
BTLTM	Intelisplay ${ }^{\text {TM }}$	NS-XC-16TM	SYS32TM
CheckTrack ${ }^{\text {TM }}$	ISETM	NTERCOMTM	TapePak ${ }^{\text {® }}$
CIMTM	ISE/06TM	NURAM ${ }^{\text {™ }}$	TDSTM
CIMBUSTM	ISE/08TM	OXISSTM	TeleGateTM
CLASICTM	ISE/16TM	P2CMOSTM	The National Anthem ${ }^{\text {® }}$
Clock \sim Chek ${ }^{\text {TM }}$	ISE32TM	PC MasterTM	TimenChekTM
СОМВОтм	ISOPLANARTM	Perfect Watch ${ }^{\text {TM }}$	TINATM
COMBO ITM	ISOPLANAR-ZTM	PharmaصChek ${ }^{\text {TM }}$	TLCTM
COMBO IITM	KeyScantM	PLANTM	TrapezoidalTM
COPSTM microcontrollers	LMCMOSTM	PLANARTM	TRI-CODETM
Datachecker ${ }^{\text {® }}$	M ${ }^{2}$ CMOSTM	Plus-2TM	TRI-POLYTM
DENSPAKTM	Macrobus ${ }^{\text {TM }}$	Polycraft ${ }^{\text {TM }}$	TRI-SAFETM
DIBTM	Macrocomponent ${ }^{\text {TM }}$	POSilink ${ }^{\text {TM }}$	TRI-STATE ${ }^{\text {® }}$
Digitalker® ${ }^{\text {® }}$	MAXI-ROM ${ }^{\text {® }}$	POSitalkerTM	TURBOTRANSCEIVERTM
DISCERNTM	Meat \sim Chek ${ }^{\text {TM }}$	Power + ControlTM	VIPTM
DISTILLTM	MenuMasterTM	POWERplanarTM	VR32TM
DNR ${ }^{\text {® }}$	Microbus ${ }^{\text {TM }}$ data bus	QUAD3000'м	WATCHDOGTM
DPVM ${ }^{\text {™ }}$	MICRO-DACTM	QUIKLOOKTM	XMOSTM
ELSTARTM	μ talkerTM	RATTM	XPUTM
Embedded System	MicrotalkerTM	RTX16TM	Z STARTM
ProcessortM	MICROWIRETM	SABRTM	883B/RETSTM
E-Z-LINKTM	MICROWIRE/PLUSTM	ScriptrChek ${ }^{\text {TM }}$	883S/RETSTM
FACTTM	MOLETM		

AbuseableTM
AnadigTM

APPSTM
ASPECTTM
Auto-Chem DeflasherTM

BI-FETTM
BI-FET IITM
BI-LINETM

BLCTM
BLXTM
Brite-LiteTM
BLL
CIMTM
CIMBUSTM
CLASICTM

СОМВОтм
COMBO ITM
COMBO IITM

Datachecker ${ }^{\text {® }}$
DENSPAKTM

Digitalker®
DISCERNTM
DISTILLTM
DNR ${ }^{\text {® }}$
DRMM
Embedded System
ProcessortM

FACTTM

FAIRCADTM
Fairtech ${ }^{\text {TM }}$
FAST®
5-Star ServiceTM
GENIXTM
GNXTM

HandiScanTM
HEX 3000тм
|3L®
ICMTM
INFOCHEXTM
ntegral ISETM
ISETM
ISE/06TM

ISE32TM
ISOPLANARTM
ISOPLANAR-ZTM
KeyScanTM
LMCMOSTм

MacrobusTM
MacrocomponentTM
Meat \sim ChekTM
MenuMasterTM
Microbus ${ }^{\text {TM }}$ data bus
μ talkerTM
MicrotalkerTM
MICROWIRE/PLUSTM
MOLETM

MSTTM
Naked-8TM

National Semiconductor®
National Semiconductor
Corp.®

Nitride Plus ${ }^{\text {TM }}$
Nitride Plus Oxide™
NMLTM
NOBUSTM
NSCISETM
NSX-16TM
NS-XC-16TM

NURAMTM
OXISSTM

PC MasterTM
Perfect Watch ${ }^{\text {TM }}$
Pharma \sim Chek $^{\text {TM }}$
PLANTM

Plus-2TM
Polycraft ${ }^{T M}$
POSilinkTM

Power + ControlTM
POWERplanarTM
UUAD3000TM

RATTM
RTX16TM

Script $\boldsymbol{\sim}$ Chek $^{\text {TM }}$

SCXTM
SERIES/800TM

Series 3000TM
Series 32000®
ShelfصChekTM
Sornek
STARTM
StarlinkTM
TARPLEXM

SuperChipTM
SuperScript ${ }^{\text {TM }}$
SVS32
TDSTM
TeleGateTM
The National Anthem ${ }^{\circledR}$
ekTM

т
TrapezoidalTm
TRICODEM
TRI-SAFETM
TRI-STATE ®
OTRANSCEIVERTM

VR32TM
WATCHDOGTM
XMOSTM

Z STARTM
883B/RETSTM
883S/RETSTM

Teflon ${ }^{\circledR}$ is a registered trademark of E.I. DuPont Corporation.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000 TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Linear Products Introduction

National Semiconductor Corporation first established itself as the Linear Leader in 1967 with the introduction of the FIRST MONOLITHIC VOLTAGE REGULATOR . . . LM100. In the 20 years since, many of our products were firsts in performance and function. Today, this catalog spans the traditional areas of Op Amps, Voltage Regulators, Voltage References and Temperature Sensors, to Data Acquisition, Communication, Automotive, and Power Plus Control. National Semiconductor intends to remain a leader in the traditional product areas while forging ahead into VLSI solutions for analog problems and analog systems.
You can rely on National LINEAR to develop the most comprehensive product offering for use in the commercial, computer, automotive, telecommunication, industrial or military business segments. More than 1,000 basic LINEAR products (5400 options) allow design engineers to find the optimum Linear IC solution from National Semiconductor.
The Linear product line is presented in 3 Databooks. All sections are referenced and cross-indexed to provide quick and easy access. The technical information and basic product specifications are presented in data sheet format, including maximum ratings, electrical characteristics, performance curves and package information.

Additional application information is available as specific application notes or completely compiled in the LINEAR APPLICATIONS HANDBOOK. A product cross reference to the specific application note has been provided. This handbook and the 3 -volume set of Linear Data Books represent a complete base of information to the National LINEAR product line.

National
Semiconductor

Product Status Definitions

Definition of Terms

Data Sheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary,	First No	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Nontification	This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.	

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Table of Contents

Cross Reference by Part Number . xxviii
Industry Package Cross Reference Guide. xxxiii
Section 1 Continuous Voltage Regulators
Voltage Regulators Definition of Terms . 1-4
Continuous Voltage Regulators Selection Guide . 1 .5
LH0075 Positive Precision Programmable Regulator . 1-8
LH0076 Negative Precision Programmable Regulator . 1 .13

* LH7001 Positive/Negative Adjustable Regulator . 1 .18

LM104/LM204/LM304 Negative Regulators 1 .28
LM105/LM205/LM305/LM305A/LM376 Voltage Regulators. 1-32
LM109/LM309 5-Volt Regulator . 1 1-39
LM117/LM117A/LM317/LM317A 3-Terminal Adjustable Regulators 1-45
LM117HV/LM317HV 3-Terminal Adjustable Regulator 1 -57
LM120/LM320 Series 3-Terminal Negative Regulators . 1-67
LM123A/LM123/LM323A/LM323 3-Amp, 5-Volt Positive Regulators. 1 .76
LM125/LM325/LM325A, LM126/LM326 Voltage Regulators. 1-82
LM133/LM333 3-Amp Adjustable Negative Voltage Regulators . 1-90
LM137/LM337 3-Terminal Adjustable Negative Regulators 1 1-97
LM137HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage) 1-103
LM138/LM138A/LM338/LM338A 5-Amp Adjustable Power Regulators 1 .109
LM140A/LM140/LM340A/LM340 Series 3-Terminal Positive Regulators 1-121
LM140L/LM340L Series 3-Terminal Positive Regulators . 1-129
LM145/LM345 Negative 3-Amp Regulators . 1-133
LM150/LM150A/LM350/LM350A 3-Amp Adjustable Power Regulators 1-137
LM196/LM396 10-Amp Adjustable Voltage Regulators . 1-149
LM317L 3-Terminal Adjustable Regulator . 161
LM320L 3-Terminal Negative Regulator . 1 .172
LM330 3-Terminal Positive Regulator . 1-177
LM337L 3-Terminal Adjustable Regulator . 1-182

* LM341 Series 3-Terminal Positive Regulators . 1-184
* LM342 Series 3-Terminal Positive Regulators . 1-188
* LM431A Adjustable Precision Zener Shunt Regulator . 1-193

LM723/LM723C Voltage Regulators . 1 .200
LM2925 Low Dropout Regulator with Delayed Reset . 1-209
LM2930 3-Terminal Positive Regulator . 1 .215
LM2931 Series Low Drop-Out Regulators . 1 .220
LM2935 Low Dropout Dual Regulator 1 .226

* LM2936 Ultra-Low Quiescent Current 5V Regulator . 1 .234
* LM2940 1A Low Dropout Regulator . 1-239

LM2940C 1A Low Dropout Regulator. 1-244

* LM2941 1A Low Dropout Adjustable Regulator . 1-248
* LM2941C 1A Low Dropout Adjustable Regulator . 1-253

LM2984C Microprocessor Power Supply System . 1-258
LM78XX Series Voltage Regulators . 1 .271

* LM7800 Series Voltage Regulators . 1-274
* LM78G/LM79G 4-Terminal Adjustable Regulators . 1-284

LM78LXX Series 3-Terminal Positive Regulators .294

* LM78L00 Series 3-Terminal Positive Regulators . 1-299
*Devices Not Covered In Last Publication

Table of Contents ${ }_{\text {(Conininues) }}$

Section 1 Continuous Voltage Regulators (Continued)
 * LM78MG/LM79MG 4-Terminal Positive Regulators
 1-307

* LM78MXX Series 3-Terminal Positive Regulators . 1-318

LM79XX Series 3-Terminal Negative Regulators . 1-325

* LM7900 Series 3-Terminal Negative Regulators . 1-332

LM79LXXAC Series 3-Terminal Adjustable Negative Regulators 1 .337

* LM79MXX Series 3-Terminal Negative Regulators . 1-342

LP2950/LP2950AC/LP2950C 5V and LP2951/LP2951AC/LP2951C Adjustable
Micropower Voltage Regulators . 1 . 145
Section 2 Switching Voltage Regulators
Switching Voltage Regulators Selection Guide.. . . 2-3
HS7067/HS7107 7-Amp, Multimode, High Efficiency Switching Regulator. 2-4

* LH1605/LH1605C 5-Amp, High Efficiency Switching Regulator 2-14
* LM494 Pulse Width Modulated Control Circuit . 2-17
* LM1524D/LM2524D/LM3524D Regulating Pulse Width Modulator. 2-24
* LM1525A/LM3525A/LM1527A/LM3527A Pulse Width Modulator 2-41
* LM1575-5.0/LM2575-5.0 Simple Switcher Step-Down Voltage Regulator 2-51

LM1578A/LM2578A/LM3578A Switching Regulators 2-59

* LM2579 Switching Regulator . 2-73
* LM78S40 Universal Switching Regulator Subsystem . 2-86

LMC7660 Switched Capacitor Voltage Converter . 2-93
Section 3 Operational Amplifiers
Operational Amplifiers Definition of Terms 3-5
Operational Amplifiers Selection Guide . 3-6
LF147/LF347/LF347B Wide Bandwidth Quad JFET Input Operational Amplifiers 3-15
LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers 3-24
LF351 Wide Bandwidth JFET Input Operational Amplifier . 3-39
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier . 3-47
LF400A/LF400 Fast Settling JFET Input Operational Amplifier 3-56
LF401A/LF401 Precision Fast Settling JFET Input Operational Amplifier 3-67
LF411A/LF411 Low Offset, Low Drift JFET Input Operational Amplifier 3-76
LF412A/LF412 Low Offset, Low Drift Dual JFET Operational Amplifier 3-83
LF441A/LF441 Low Power JFET Input Operational Amplifier . 3-90
LF442A/LF442 Dual Low Power JFET Input Operational Amplifier 3-97
LF444A/LF444 Quad Low Power JFET Input Operational Amplifier 3-106

* LF451 Wide-Bandwidth JFET Input Operational Amplifier . 3-113
* LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier . 3-119

LF13741 Monolithic JFET Input Operational Amplifier 3-126
LH0003/LH0003C Wide Bandwidth Operational Amplifier . 3-138
LH0004/LH0004C High Voltage Operational Amplifier . 3-141
LH0020/LH0020C High Gain Operational Amplifier . 3-145
LH0021/LH0021C 1.0-Amp Power Operational Amplifier 3-148
LH0041/LH0041C 0.2-Amp Power Operational Amplifier 3-148
LH0022/LH0022C High Performance FET Operational Amplifier . 3-156
LH0042/LH0042C Low Cost FET Operational Amplifier. 3-156
LH0052/LH0052C Precision FET Operational Amplifier . 3-156
LH0024/LH0024C High Slew Rate Operational Amplifier 3-168
LH0032/LH0032A/LH0032C/LH0032AC Ultra Fast FET-Input Operational Amplifier .. 3-172
LH0044 Series Precision Low Noise Operational Amplifiers . 3-179
LH0045/LH0045C Two Wire Transmitter . 3-187
LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier . 3-199

Table of Contents ${ }_{\text {(coninues) }}$

Section 3 Operational Amplifiers (Continued)
LH0062/LH0062C High Speed FET Operational Amplifier 3-202
LH0082 Optical Communication Receiver/Amplifier 3-211
LH0086/LH0086C Digitally-Programmable-Gain Amplifier 3-225
LH0101/LH0101C/LH0101A/LH0101AC Power Operational Amplifier 3-232

* LH2101A/LH2201A/LH2301A Dual High Performance Operational Amplifiers 3-243
* LH2108/LH2108A/LH2308/LH2308A Dual Super Beta Operational Amplifiers 3-246
LH4101/LH4101C Wideband High Current Operational Amplifier 3-249
LH4104/LH4104C Fast Settling High Current Operational Amplifier 3-254
LH4105 Precision Fast Settling High Current Operational Amplifier 3-260
* LH4106/LH4106C ± 5 V High Speed Operational Amplifier 3-266
*LH4117/LH4117C Precision RF Amplifier 3-271
*LH4118/LH4118A/LH4118C Low Gain Wide Band RF Amplifier 3-277
* LH4124C High Slew Rate Operational Amplifier 3-287
* LH4141C 0.2-Amp Power Operational Amplifier 3-291
*LH4161A/LH4161/LH4161C High Speed Operational Amplifier 3-298
*LH4162A/LH4162/LH4162C Dual High Speed Operational Amplifier 3-304
* LH4200 General Purpose GaAs FET Amplifier 3-312
LM10/LM10B(L)/LM10C(L) Operational Amplifier and Voltage Reference 3-319
LM11/LM11C/LM11CL Operational Amplifiers 3-335
LM12(L/C/CL) 150W Operational Amplifier 3-348
LM101A/LM201A/LM301A Operational Amplifiers 3-361
LM107/LM207/LM307 Operational Amplifiers 3-371
LM108/LM208/LM308 Operational Amplifiers 3-377
LM108A/LM208A/LM308A Operational Amplifiers 3-384
LM112/LM212/LM312 Operational Amplifiers 3-390
LM118/LM218/LM318 Operational Amplifiers 3-395
LM124/LM224/LM324/LM124A/LM224A/LM324A/LM2902 Low Power Quad Operational Amplifiers 3-405
LM143/LM343 High Voltage Operational Amplifier 3-418
LM144/LM344 High Voltage, High Slew Rate Operational Amplifiers 3-428
LM146/LM246/LM346 Programmable Quad Operational Amplifiers 3-435
LM148/LM248/LM348 Quad 741 Operational Amplifiers; LM149/LM249/LM349 Wide Band Decompensated $\left(A_{V}(M I N)=5\right)$ $3-447$
LM158/LM258/LM358/LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers 3-460
LM392/LM2924 Low Power Operational Amplifier/Voltage Comparators 3-473
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier 3-477
LM604A/LM604 4-Channel MUX-Amp 3-495
LM607/LM607A/LM607B Precision Operational Amplifier 3-508
LM611 Adjustable Micropower Floating Voltage Reference and Single-Supply Operational Amplifier 3-516
* LM613A/LM613 Dual Operational Amplifiers, Dual Comparators, and AdjustableReference3-528
LM614A/LM614 Quad Operational Amplifier and Adjustable Reference 3-544
* LM627/LM637 Precision Operational Amplifiers 3-557
LM675 Power Operational Amplifier 3-566
* LM725/LM725A/LM725C Operational Amplifiers 3-573
LM741/LM741A/LM741C/LM741E Operational Amplifier 3-581
* LM759 Power Operational Amplifier 3-584
* LM776 Multi-Purpose Programmable Operational Amplifier 3-595
LM833 Dual Audio Operational Amplifier 3-604*Devices Not Covered In Last Publication

Table of Contents ${ }_{\text {(Conitinaes) }}$

Section 3 Operational Amplifiers (Continued)LM837 Low Noise Quad Operational Amplifier3-613
LM1558/LM1458 Dual Operational Amplifier 3-619
LM2900/LM3900/LM3301/LM3401 Quad Amplifiers 3-621
LM3080/LM3080A Operational Transconductance Amplifier 3-639

* LM3303/LM3403/LM3503 Quad Operational Amplifier 3-643
* LM4136 Quad Operational Amplifier 3-651
LM4250/LM4250C Programmable Operational Amplifier 3-659
* LM6118/LM6218A/LM6218 Fast Settling Dual Operational Amplifier 3-666
LM6161/LM6261/LM6361 High Speed Operational Amplifiers 3-675
LM6164/LM6264/LM6364 High Speed Operational Amplifiers 3-682
LM6165/LM6265/LM6365 High Speed Operational Amplifiers 3-689
* LM6313 High Speed, High Power Operational Amplifier 3-696
LM13080 Programmable Power Operational Amplifier 3-705
LM13600/LM13600A Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 3-713
LM13700/LM13700A Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 3-731
LMC660AM/LMC660AI/LMC660C CMOS Quad Operational Amplifiers 3-751
* LMC662AM/LMC662AI/LMC662C CMOS Dual Operational Amplifiers 3-759
LMC669 Auto Zero 3-768
LP124/LP2902/LP324 Micropower Quad Operational Amplifiers 3-782
* LPC660AM/LPC660AI/LPC660I CMOS Quad Operational Amplifier 3-789
* LPC662AM/LPC662AI/LPC662I CMOS Dual Operational Amplifier 3-796
* OP-07 Low Offset, Low Drift Operational Amplifier 3-803
TL081CP Wide Bandwidth JFET Input Operational Amplifier 3-809
TL082CP Wide Bandwidth Dual JFET Input Operational Amplifier 3-816
Section 4 Buffers
Buffers Definition of Terms 4-3
Buffers Selection Guide 4-4
LH0002/LH0002C Current Amplifier 4-5
LH0033/LH0033A/LH0033C/LH0033AC, LH0063/LH0063C Fast Buffer Amplifiers 4-8
* LH2110/LH2210/LH2310 Dual Voltage Followers 4-19
LH4001 Wideband Current Buffer 4-21
LH4002 Wideband Video Buffer 4-25
LH4003/LH4003C Precision RF Closed Loop Buffer 4-30
LH4004/LH4004C Wideband FET Input Buffer/Amplifier 4-36
LH4006 Precision RF Closed Loop Buffer 4-42
* LH4008/LH4008C Fast Buffer 4-48
* LH4009/LH4009C Fast Buffer 4-55
* LH4010/LH4010C Fast FET Buffer 4-62
* LH4011/LH4011C Fast Open Loop Buffer 4-70
* LH4012/LH4012C Wideband Buffer 4-78
* LH4033C/LH4063C Fast and Ultra Fast Buffer Amplifiers 4-86
LM102/LM302 Voltage Followers 4-97
LM110/LM210/LM310 Voltage Followers 4-103
LM6121/LM6221/LM6321 High Speed Buffers 4-116
LM6125/LM6225/LM6325 High Speed Buffers 4-121
Section 5 Voltage Comparators
Voltage Comparators Definition of Terms 5-3
Voltage Comparators Selection Guide 5-4

Table of Contents ${ }_{\text {(coninues) }}$

Section 5 Voltage Comparators (Continued)
LF111/LF211/LF311 Voltage Comparators 5-5

* LH2111/LH2211/LH2311 Dual Voltage Comparators 5-14
LM106/LM206/LM306 Voltage Comparators 5-17
LM111/LM211/LM311 Voltage Comparators 5-21
LM119A/LM119/LM219/LM319A/LM319 High Speed Dual Comparators 5-34
LM139/LM239/LM339/LM139A/LM239A/LM339A, LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators 5-40
LM160/LM260/LM360 High Speed Differential Comparators 5-52
LM161/LM261/LM361 High Speed Differential Comparators 5-56
LM193/LM293/LM393, LM193A/LM293A/LM393A/LM2903 Low Power Low Offset Voltage Dual Comparators 5-61
* LM710/LM710C Voltage Comparator 5-70
* LM1514/LM1414 Dual Differential Voltage Comparators 5-74
LP265/LP365 Micropower Programmable Quad Comparators 5-76
LP311 Voltage Comparator 5-84
LP339 Ultra-Low Power Quad Comparator 5-88
Section 6 Instrumentation AmplifiersInstrumentation Amplifiers Definition of Terms6-3
Instrumentation Amplifiers Selection Guide 6-4
LH0036/LH0036C Instrumentation Amplifier 6-5
LH0038/LH0038C True Instrumentation Amplifier 6-14
LH0084/LH0084C Digitally-Programmable-Gain Instrumentation Amplifier 6-25
LM221/LM321/LM321A Precision Preamplifiers 6-37
LM363 Precision Instrumentation Amplifier 6-46
Section 7 Surface Mount
Surface Mount 7-3
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 7-13
Section 8 Appendices/Physical Dimensions
Appendix A General Product Marking and Code Explanation 8-3
Appendix B Application Note Referenced by Part Number 8-4
Appendix C Summary of Commercial Reliability Programs 8-10
Appendix D Military Aerospace Programs from National Semiconductor 8-11
Appendix E Understanding Integrated Circuit Package Power Capabilities 8-18
Appendix F How to Get the Right Information from a Datasheet 8-23
Appendix G Obsolete Product Replacement Guide 8-27
Physical Dimensions 8-28
Bookshelf
Distributors

Alpha-Numeric Index

HS7067 7-Amp, Multimode, High Efficiency Switching Regulator 2-4
HS7107 7-Amp, Multimode, High Efficiency Switching Regulator 2-4
LF111 Voltage Comparator 5-5
LF147 Wide Bandwidth Quad JFET Input Operational Amplifiers 3-15
LF155 Series Monolithic JFET Input Operational Amplifiers 3-24
LF156 Series Monolithic JFET Input Operational Amplifiers 3-24
LF157 Series Monolithic JFET Input Operational Amplifiers 3-24
LF211 Voltage Comparator 5-5
LF255 Series Monolithic JFET Input Operational Amplifiers 3-24
LF256 Series Monolithic JFET Input Operational Amplifiers 3-24
LF257 Series Monolithic JFET Input Operational Amplifiers 3-24
LF311 Voltage Comparator 5-5
LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers 3-15
LF347B Wide Bandwidth Quad JFET Input Operational Amplifiers 3-15
LF351 Wide Bandwidth JFET Input Operational Amplifier 3-39
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier 3-47
LF355 Series Monolithic JFET Input Operational Amplifiers 3-24
LF356 Series Monolithic JFET Input Operational Amplifiers 3-24
LF357 Series Monolithic JFET. Input Operational Amplifiers 3-24
LF400 Fast Settling JFET Input Operational Amplifier 3-56
LF401 Precision Fast Settling JFET Input Operational Amplifier 3-67
LF411 Low Offset, Low Drift JFET Input Operational Amplifier 3-76
LF412 Low Offset, Low Drift Dual JFET Operational Amplifier 3-83
LF441 Low Power JFET Input Operational Amplifier 3-90
LF442 Dual Low Power JFET Input Operational Amplifier 3-97
LF444 Quad Low Power JFET Input Operational Amplifier 3-106
LF451 Wide-Bandwidth JFET Input Operational Amplifier 3-113
LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier 3-119
LF13741 Monolithic JFET Input Operational Amplifier 3-126
LH0002 Current Amplifier 4-5
LH0003 Wide Bandwidth Operational Amplifier 3-138
LH0004 High Voltage Operational Amplifier 3-141
LH0020 High Gain Operational Amplifier 3-145
LH0021 1.0-Amp Power Operational Amplifier 3-148
LH0022 High Performance FET Operational Amplifier 3-156
LH0024 High Slew Rate Operational Amplifier 3-168
LH0032 Ultra Fast FET-Input Operational Amplifier 3-172
LH0033 Fast Buffer Amplifier 4-8
LH0036 Instrumentation Amplifier 6-5
LH0038 True Instrumentation Amplifier 6-14
LH0041 0.2-Amp Power Operational Amplifier 3-148
LH0042 Low Cost FET Operational Amplifier 3-156
LH0044 Series Precision Low Noise Operational Amplifiers 3-179
LH0045 Two Wire Transmitter 3-187
LH0052 Precision FET Operational Amplifier 3-156
LH0061 0.5 Amp Wide Band Operational Amplifier 3-199
LH0062 High Speed FET Operational Amplifier 3-202
LH0063 Fast Buffer Amplifier 4-8
LH0075 Positive Precision Programmable Regulator 1-8
LH0076 Negative Precision Programmable Regulator 1-13
LH0082 Optical Communication Receiver/Amplifier 3-211

Alpha-Numeric Index ${ }_{\text {(Coniniuede }}$

LH0084 Digitally-Programmable-Gain Instrumentation Amplifier 6-25
LH0086 Digitally-Programmable-Gain Amplifier 3-225
LH0101 Power Operational Amplifier 3-232
LH1605 5-Amp, High Efficiency Switching Regulator 2-14
LH2101A Dual High Performance Operational Amplifier 3-243
LH2108 Dual Super Beta Operational Amplifier 3-246
LH2110 Dual Voltage Follower 4-19
LH2111 Dual Voltage Comparator 5-14
LH2201A Dual High Performance Operational Amplifier 3-243
LH2210 Dual Voltage Follower 4-19
LH2211 Dual Voltage Comparator 5-14
LH2301A Dual High Performance Operational Amplifier 3-243
LH2308 Dual Super Beta Operational Amplifier 3-246
LH2310 Dual Voltage Follower 4-19
LH2311 Dual Voltage Comparator 5-14
LH4001 Wideband Current Buffer 4-21
LH4002 Wideband Video Buffer 4-25
LH4003 Precision RF Closed Loop Buffer 4-30
LH4004 Wideband FET Input Buffer/Amplifier 4-36
LH4006 Precision RF Closed Loop Buffer 4-42
LH4008 Fast Buffer 4-48
LH4009 Fast Buffer 4-55
LH4010 Fast FET Buffer 4-62
LH4011 Fast Open Loop Buffer 4-70
LH4012 Wideband Buffer 4-78
LH4033C Fast and Ultra Fast Buffer Amplifiers 4-86
LH4063C Fast and Ultra Fast Buffer Amplifiers 4-86
LH4101 Wideband High Current Operational Amplifier 3-249
LH4104 Fast Settling High Current Operational Amplifier 3-254
LH4105 Precision Fast Settling High Current Operational Amplifier 3-260
LH4106 $\pm 5 \mathrm{~V}$ High Speed Operational Amplifier 3-266
LH4117 Precision RF Amplifier 3-271
LH4118 Low Gain Wide Band RF Amplifier 3-277
LH4124C High Slew Rate Operational Amplifier 3-287
LH4141C 0.2-Amp Power Operational Amplifier 3-291
LH4161 High Speed Operational Amplifier 3-298
LH4162 Dual High Speed Operational Amplifier 3-304
LH4200 General Purpose GaAs FET Amplifier 3-312
LH7001 Positive/Negative Adjustable Regulator 1-18
LM10 Operational Amplifier and Voltage Reference 3-319
LM11 Operational Amplifier 3-335
LM12(L) 150W Operational Amplifier 3-348
LM78G 4-Terminal Adjustable Regulator 1-284
LM78L00 Series 3-Terminal Positive Regulators 1-299
LM78LXX Series 3-Terminal Positive Regulators 1-294
LM78MG 4-Terminal Positive Regulator 1-307
LM78MXX Series 3-Terminal Positive Regulators 1-318
LM78S40 Universal Switching Regulator Subsystem 2-86
LM78XX Series Voltage Regulators 1-271
LM79G 4-Terminal Adjustable Regulator 1-284
LM79LXXAC Series 3-Terminal Adjustable Negative Regulators 1-337
Alpha-Numeric Index ${ }_{\text {(Continues) }}$
LM79MG 4-Terminal Positive Regulator 1-307
LM79MXX Series 3-Terminal Negative Regulators 1-342
LM79XX Series 3-Terminal Negative Regulators 1-325
LM101A Operational Amplifier 3-361
LM102 Voltage Follower 4-97
LM104 Negative Regulator 1-28
LM105 Voltage Regulator 1-32
LM106 Voltage Comparator 5-17
LM107 Operational Amplifier 3-371
LM108 Operational Amplifier 3-377
LM108A Operational Amplifier 3-384
LM109 5-Volt Regulator 1-39
LM110 Voltage Follower 4-103
LM111 Voltage Comparator 5-21
LM112 Operational Amplifiers 3-390
LM117 3-Terminal Adjustable Regulator 1-45
LM117HV 3-Terminal Adjustable Regulator 1-57
LM118 Operational Amplifiers 3-395
LM119 High Speed Dual Comparator 5-34
LM120 Series 3-Terminal Negative Regulator 1-67
LM123 3-Amp, 5-Volt Positive Regulator 1-76
LM124 Low Power Quad Operational Amplifiers 3-405
LM125 Voltage Regulator 1-82
LM126 Voltage Regulator 1-82
LM133 3-Amp Adjustable Negative Voltage Regulator 1-90
LM137 3-Terminal Adjustable Negative Regulator 1-97
LM137HV 3-Terminal Adjustable Negative Regulator (High Voltage) 1-103
LM138 5-Amp Adjustable Power Regulator 1-109
LM139 Low Power Low Offset Voltage Quad Comparator 5-40
LM140 Series 3-Terminal Positive Regulators 1-121
LM140L Series 3-Terminal Positive Regulators 1-129
LM143 High Voltage Operational Amplifier 3-418
LM144 High Voltage, High Slew Rate Operational Amplifier 3-428
LM145 Negative 3-Amp Regulator 1-133
LM146 Programmable Quad Operational Amplifier 3-435
LM148 Quad 741 Operational Amplifiers. 3-447
LM149 Wide Band Decompensated ($\mathrm{A}_{\mathrm{V}}(\mathrm{MIN})=5$) 3-447
LM150 3-Amp Adjustable Power Regulator 1-137
LM158 Low Power Dual Operational Amplifier 3-460
LM160 High Speed Differential Comparator 5-52
LM161 High Speed Differential Comparator 5-56
LM193 Low Power Low Offset Voltage Dual Comparator 5-61
LM196 10-Amp Adjustable Voltage Regulator 1-149
LM201A Operational Amplifier 3-361
LM204 Negative Regulator 1-28
LM205 Voltage Regulator 1-32
LM206 Voltage Comparator 5-17
LM207 Operational Amplifier 3-371
LM208 Operational Amplifier 3-377
LM208A Operational Amplifier 3-384
LM210 Voltage Follower 4-103

Alpha-Numeric Index ${ }_{\text {(conitiuase) }}$

LM211 Voltage Comparator 5-21
LM212 Operational Amplifiers 3-390
LM218 Operational Amplifiers 3-395
LM219 High Speed Dual Comparator 5-34
LM221 Precision Preamplifier 6-37
LM224 Low Power Quad Operational Amplifiers 3-405
LM239 Low Power Low Offset Voltage Quad Comparator 5-40
LM246 Programmable Quad Operational Amplifier 3-435
LM248 Quad 741 Operational Amplifiers 3-447
LM249 Wide Band Decompensated ($\mathrm{A}_{\mathrm{V}}(\mathrm{MIN})=5$) 3-447
LM258 Low Power Dual Operational Amplifier 3-460
LM260 High Speed Differential Comparator 5-52
LM261 High Speed Differential Comparator 5-56
LM293 Low Power Low Offset Voltage Dual Comparator 5-61
LM301A Operational Amplifier 3-361
LM302 Voltage Follower 4-97
LM304 Negative Regulator 1-28
LM305 Voltage Regulator 1-32
LM306 Voltage Comparator 5-17
LM307 Operational Amplifier 3-371
LM308 Operational Amplifier 3-377
LM308A Operational Amplifier 3-384
LM309 5-Volt Regulator 1-39
LM310 Voltage Follower 4-103
LM311 Voltage Comparator 5-21
LM312 Operational Amplifiers 3-390
LM317 3-Terminal Adjustable Regulator 1-45
LM317HV 3-Terminal Adjustable Regulator 1-57
LM317L 3-Terminal Adjustable Regulator 1-161
LM318 Operational Amplifiers 3-395
LM319 High Speed Dual Comparator 5-34
LM320 Series 3-Terminal Negative Regulator 1-67
LM320L 3-Terminal Negative Regulator 1-172
LM321 Precision Preamplifier 6-37
LM323 3-Amp, 5-Volt Positive Regulator 1-76
LM324 Low Power Quad Operational Amplifiers 3-405
LM325 Voltage Regulator 1-82
LM326 Voltage Regulator 1-82
LM330 3-Terminal Positive Regulator 1-177
LM333 3-Amp Adjustable Negative Voltage Regulator 1-90
LM337 3-Terminal Adjustable Negative Regulator 1-97
LM337HV 3-Terminal Adjustable Negative Regulator (High Voltage) 1-103
LM337L 3-Terminal Adjustable Regulator 1-182
LM338 5-Amp Adjustable Power Regulator 1-109
LM339 Low Power Low Offset Voltage Quad Comparator 5-40
LM340 Series 3-Terminal Positive Regulators 1-121
LM340L Series 3-Terminal Positive Regulators 1-129
LM341 Series 3-Terminal Positive Regulators 1-184
LM342 Series 3-Terminal Positive Regulators 1-188
LM343 High Voltage Operational Amplifier 3-418
LM344 High Voltage, High Slew Rate Operational Amplifier 3-428

Alpha-Numeric Index ${ }_{\text {(Continues) }}$

LM345 Negative 3-Amp Regulator 1-133
LM346 Programmable Quad Operational Amplifier 3-435
LM348 Quad 741 Operational Amplifiers 3-447
LM349 Wide Band Decompensated (Av(MIN) = 5) 3-447
LM350 3-Amp Adjustable Power Regulator 1-137
LM358 Low Power Dual Operational Amplifier 3-460
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier 3-477
LM360 High Speed Differential Comparator 5-52
LM361 High Speed Differential Comparator 5-56
LM363 Precision Instrumentation Amplifier 6-46
LM376 Voltage Regulator 1-32
LM392 Low Power Operational Amplifier/Voltage Comparator 3-473
LM393 Low Power Low Offset Voltage Dual Comparator 5-61
LM396 10-Amp Adjustable Voltage Regulator 1-149
LM431A Adjustable Precision Zener Shunt Regulator 1-193
LM494 Pulse Width Modulated Control Circuit 2-17
LM604 4-Channel MUX-Amp 3-495
LM607 Precision Operational Amplifier 3-508
LM611 Adjustable Micropower Floating Voltage Reference and Single-Supply Operational Amplifier 3-516
LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference 3-528
LM614 Quad Operational Amplifier and Adjustable Reference 3-544
LM627 Precision Operational Amplifiers 3-557
LM637 Precision Operational Amplifiers 3-557
LM675 Power Operational Amplifier 3-566
LM710 Voltage Comparator 5-70
LM723 Voltage Regulator 1-200
LM725 Operational Amplifier 3-573
LM741 Operational Amplifier 3-581
LM759 Power Operational Amplifier 3-584
LM776 Multi-Purpose Programmable Operational Amplifier 3-595
LM833 Dual Audio Operational Amplifier 3-604
LM837 Low Noise Quad Operational Amplifier 3-613
LM1414 Dual Differential Voltage Comparator 5-74
LM1458 Dual Operational Amplifier 3-619
LM1514 Dual Differential Voltage Comparator 5-74
LM1524D Regulating Pulse Width Modulator 2-24
LM1525A Pulse Width Modulator 2-41
LM1527A Pulse Width Modulator 2-41
LM1558 Dual Operational Amplifier 3-619
LM1575-5.0 Simple Switcher Step-Down Voltage Regulator 2-51
LM1578A Switching Regulator 2-59
LM2524D Regulating Pulse Width Modulator 2-24
LM2575-5.0 Simple Switcher Step-Down Voltage Regulator 2-51
LM2578A Switching Regulator 2-59
LM2579 Switching Regulator 2-73
LM2900 Quad Amplifier 3-621
LM2901 Low Power Low Offset Voltage Quad Comparator 5-40
LM2902 Low Power Quad Operational Amplifiers 3-405
LM2903 Low Power Low Offset Voltage Dual Comparator 5-61
LM2904 Low Power Dual Operational Amplifier 3-460

Alpha-Numeric Index ${ }_{\text {(Contivead) }}$

LM2924 Low Power Operational Amplifier/Voltage Comparator 3-473
LM2925 Low Dropout Regulator with Delayed Reset 1-209
LM2930 3-Terminal Positive Regulator 1-215
LM2931 Series Low Drop-Out Regulators 1-220
LM2935 Low Dropout Dual Regulator 1-226
LM2936 Ultra-Low Quiescent Current 5V Regulator 1-234
LM2940 1A Low Dropout Regulator 1-239
LM2940C 1A Low Dropout Regulator 1-244
LM2941 1A Low Dropout Adjustable Regulator 1-248
LM2941C 1A Low Dropout Adjustable Regulator 1-253
LM2984C Microprocessor Power Supply System 1-258
LM3080 Operational Transconductance Amplifier 3-639
LM3301 Quad Amplifier 3-621
LM3302 Low Power Low Offset Voltage Quad Comparator 5-40
LM3303 Quad Operational Amplifier 3-643
LM3401 Quad Amplifier 3-621
LM3403 Quad Operational Amplifier 3-643
LM3503 Quad Operational Amplifier 3-643
LM3524D Regulating Pulse Width Modulator 2-24
LM3525A Pulse Width Modulator 2-41
LM3527A Pulse Width Modulator 2-41
LM3578A Switching Regulator 2-59
LM3900 Quad Amplifier 3-621
LM4136 Quad Operational Amplifier 3-651
LM4250 Programmable Operational Amplifier 3-659
LM6118 Fast Settling Dual Operational Amplifier 3-666
LM6121 High Speed Buffer 4-116
LM6125 High Speed Buffer 4-121
LM6161 High Speed Operational Amplifier 3-675
LM6164 High Speed Operational Amplifier 3-682
LM6165 High Speed Operational Amplifier 3-689
LM6218 Fast Settling Dual Operational Amplifier 3-666
LM6221 High Speed Buffer 4-116
LM6225 High Speed Buffer 4-121
LM6261 High Speed Operational Amplifier 3-675
LM6264 High Speed Operational Amplifier 3-682
LM6265 High Speed Operational Amplifier 3-689
LM6313 High Speed, High Power Operational Amplifier 3-696
LM6321 High Speed Buffer 4-116
LM6325 High Speed Buffer 4-121
LM6361 High Speed Operational Amplifier 3-675
LM6364 High Speed Operational Amplifier 3-682
LM6365 High Speed Operational Amplifier 3-689
LM7800 Series Voltage Regulators 1-274
LM7900 Series 3-Terminal Negative Regulators 1-332
LM13080 Programmable Power Operational Amplifier 3-705
LM13600 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 3-713
LM13700 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 3-731
LMC660 CMOS Quad Operational Amplifier 3-751
LMC662 CMOS Dual Operational Amplifier 3-759
LMC669 Auto Zero 3-768

Alpha-Numeric Index ${ }_{\text {(Continued) }}$

LMC7660 Switched Capacitor Voltage Converter 2-93
LP124 Micropower Quad Operational Amplifier 3-782
LP265 Micropower Programmable Quad Comparator 5-76
LP311 Voltage Comparator 5-84
LP324 Micropower Quad Operational Amplifier 3-782
LP339 Ultra-Low Power Quad Comparator 5-88
LP365 Micropower Programmable Quad Comparator 5-76
LP2902 Micropower Quad Operational Amplifier 3-782
LP2950 5V Adjustable Micropower Voltage Regulator 1-345
LP2951 Adjustable Micropower Voltage Regulator 1-345
LPC660 CMOS Quad Operational Amplifier 3-789
LPC662 CMOS Dual Operational Amplifier 3-796
OP-07 Low Offset, Low Drift Operational Amplifier 3-803
TL081CP Wide Bandwidth JFET Input Operational Amplifier 3-809
TL082CP Wide Bandwidth Dual JFET Input Operational Amplifier 3-816

Available Hybrid Products

Device Number	Databook
ADC1210/ADC1211	Data Acquisition Linear Devices
AF100	Data Acquisition Linear Devices
AF150	Data Acquisition Linear Devices
AF151	Data Acquisition Linear Devices
AH0014/AH0015/AH0019	Data Acquisition Linear Devices
DH0006	Individual Datasheet
DH0008	Individual Datasheet
DH0011	Individual Datasheet
DH0034	Individual Datasheet
DH0035	Individual Datasheet
DH3467	Individual Datasheet
DH3725	Individual Datasheet
LH0002	General Purpose Linear Devices
LH0003	General Purpose Linear Devices
LH0004	General Purpose Linear Devices
LH0020	General Purpose Linear Devices
LH0021/LH0041	General Purpose Linear Devices
LH0022/LH0042/LH0052	General Purpose Linear Devices
LH0023/LH0043	Data Acquisition Linear Devices
LH0024	General Purpose Linear Devices
LH0032	General Purpose Linear Devices
LH0033/LH0063	General Purpose Linear Devices
LH0036	General Purpose Linear Devices
LH0038	General Purpose Linear Devices
LH0044	General Purpose Linear Devices
LH0045	General Purpose Linear Devices
LH0053	Data Acquisition Linear Devices
LH0061	General Purpose Linear Devices
LH0062	General Purpose Linear Devices
LH0070/LH0071	Data Acquisition Linear Devices
LH0075	General Purpose Linear Devices
LH0076	General Purpose Linear Devices
LH0082	General Purpose Linear Devices
LH0084	General Purpose Linear Devices
LH0086	General Purpose Linear Devices
LH0091	Special Purpose Linear Devices
LH0094	Special Purpose Linear Devices
LH0101	General Purpose Linear Devices

Device Number	Databook
LH1605	General Purpose Linear Devices
LH2101	General Purpose Linear Devices
LH2108/LH2308	General Purpose Linear Devices
LH2110/LH2210/LH2310	General Purpose Linear Devices
LH2111/LH2211/LH2311.	General Purpose Linear Devices
LH2422	Special Purpose Linear Devices
LH4001	General Purpose Linear Devices
LH4002	General Purpose Linear Devices
LH4003	General Purpose Linear Devices
LH4004	General Purpose Linear Devices
LH4006	General Purpose Linear Devices
LH4008	General Purpose Linear Devices
LH4009	General Purpose Linear Devices
LH4010	General Purpose Linear Devices
LH4011	General Purpose Linear Devices
LH4012	General Purpose Linear Devices
LH4033/LH4063	General Purpose Linear Devices
LH4101	General Purpose Linear Devices
LH4104	General Purpose Linear Devices
LH4105	General Purpose Linear Devices
LH4106	General Purpose Linear Devices
LH4117	General Purpose Linear Devices
LH4118	General Purpose Linear Devices
LH4124	General Purpose Linear Devices
LH4141	General Purpose Linear Devices
LH4161	General Purpose Linear Devices
LH4162	General Purpose Linear Devices
LH4200	General Purpose Linear Devices
LH4266	Special Purpose Linear Devices
LH4860	Data Acquisition Linear Devices
LH7001	General Purpose Linear Devices
LH7070/LH7071	Data Acquisition Linear Devices
HS7067	General Purpose Linear Devices
HS7107	General Purpose Linear Devices
MH0007	Individual Datasheet

National Semiconductor

Additional Available Linear Devices

Device Databook
ADC0800 8-Bit A/D Converter Data Acquisition Linear Devices
ADC0801 8-Bit μ P Compatible A/D Converter Data Acquisition Linear DevicesADC0802 8-Bit μ P Compatible A/D Converter . Data Acquisition Linear DevicesADC0803 8-Bit μ P Compatible A/D Converter . Data Acquisition Linear DevicesADC0804 8-Bit μ P Compatible A/D Converter . Data Acquisition Linear DevicesADC0805 8-Bit μ P Compatible A/D Converter . Data Acquisition Linear DevicesADC0808 8-Bit μ P Compatible A/D Converter with 8-Channel
Multiplexer Data Acquisition Linear Devices
ADC0809 8-Bit μ P Compatible A/D Converter with 8-Channel
Multiplexer Data Acquisition Linear Devices
ADC0811 8-Bit Serial I/O A/D Converter with 11-Channel Multiplexer Data Acquisition Linear Devices
ADC0816 8-Bit μ P Compatible A/D Converter with 16-Channel
Multiplexer Data Acquisition Linear Devices
ADC0817 8-Bit μ P Compatible A/D Converter with 16-Channel
Multiplexer Data Acquisition Linear Devices
ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer Data Acquisition Linear Devices
ADC0820 8-Bit High Speed μ P Compatible A/D Converter with
Track/Hold Function Data Acquisition Linear Devices
ADC0829 μ P Compatible 8-Bit A/D with 11-Channel MUX/Digital Input . .Data Acquisition Linear Devices
ADC0831 8-Bit Serial I/O A/D Converter with Multiplexer Options Data Acquisition Linear Devices
ADC0832 8-Bit Serial I/O A/D Converter with Multiplexer Options .Data Acquisition Linear Devices
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer .Data Acquisition Linear Devices
ADC0834 8-Bit Serial I/O A/D Converter with Multiplexer Options .Data Acquisition Linear Devices
ADC0838 8-Bit Serial I/O A/D Converter with Multiplexer Options Data Acquisition Linear Devices
ADC0841 8-Bit μ P Compatible A/D Converter Data Acquisition Linear Devices
ADC0844 8-Bit μ P Compatible A/D Converter with Multiplexer Options .Data Acquisition Linear DevicesADC0848 8-Bit μ P Compatible A/D Converter with Multiplexer Options . .Data Acquisition Linear DevicesADC0852 Multiplexed Comparator with 8-Bit Reference Divider Data Acquisition Linear DevicesADC0854 Multiplexed Comparator with 8-Bit Reference Divider Data Acquisition Linear DevicesADC1001 10-Bit μ P Compatible A/D Converter . Data Acquisition Linear Devices
ADC1005 10-Bit $\mu \mathrm{P}$ Compatible A/D Converter Data Acquisition Linear Devices
ADC1021 10-Bit $\mu \mathrm{P}$ Compatible A/D Converter .Data Acquisition Linear Devices
ADC1025 10-Bit $\mu \mathrm{P}$ Compatible A/D Converter Data Acquisition Linear Devices
ADC1205 12-Bit Plus Sign μ P Compatible A/D Converter . Data Acquisition Linear Devices
ADC1210 12-Bit CMOS A/D Converter Data Acquisition Linear Devices
ADC1211 12-Bit CMOS A/D Converter Data Acquisition Linear Devices
ADC1225 12-Bit Plus Sign μ P Compatible A/D Converter Data Acquisition Linear Devices
ADC3511 3½-Digit Microprocessor Compatible A/D Converter Data Acquisition Linear Devices
ADC3711 3 $3 / 4$-Digit Microprocessor Compatible A/D Converter Data Acquisition Linear Devices
ADD3501 3½-Digit DVM with Multiplexed 7-Segment Output Data Acquisition Linear Devices
ADD3701 33/4-Digit DVM with Multiplexed 7-Segment Output Data Acquisition Linear Devices
AF100 Universal Active Filter Data Acquisition Linear Devices
AF150 Universal Wideband Active Filter Data Acquisition Linear Devices
AF151 Dual Universal Active Filter Data Acquisition Linear Devices
AH0014 Dual DPST-TTL/DTL Compatible MOS Analog Switch Data Acquisition Linear Devices

Additional Available Linear Devices (Continued)

Device Databook
AH0015 Quad SPST Dual DPST-TTL/DTL Compatible MOS Analog
Switch Data Acquisition Linear Devices
AH0019 Dual DPST-TTL/DTL Compatible MOS Analog Switch Data Acquisition Linear Devices
AH5009 Monolithic Analog Current Switch Data Acquisition Linear Devices
AH5010 Monolithic Analog Current Switch Data Acquisition Linear Devices
AH5011 Monolithic Analog Current Switch Data Acquisition Linear Devices
AH5012 Monolithic Analog Current Switch Data Acquisition Linear Devices
AH5020C Monolithic Analog Current Switch Data Acquisition Linear Devices
CD4016BM Quad Bilateral Switch Data Acquisition Linear Devices
CD4051BM Single 8-Channel Analog Multiplexer/Demultiplexer Data Acquisition Linear Devices
CD4052BM Dual 4-Channel Analog Multiplexer/Demultiplexer Data Acquisition Linear Devices
CD4053BM Triple 2-Channel Analog Multiplexer/Demultiplexer Data Acquisition Linear Devices
CD4066BM Quad Bilateral Switch Data Acquisition Linear Devices
CD4529BC Dual 4-Channel or 8-Channel Analog Data Selector Data Acquisition Linear Devices
DAC0630 Triple 6-Bit Video DAC with Color Pallette Data Acquisition Linear Devices
DAC0631 Triple 6-Bit Video DAC with Color Pallette Data Acquisition Linear Devices
DAC0800 8-Bit D/A Converter Data Acquisition Linear Devices
DAC0801 8-Bit D/A Converter Data Acquisition Linear Devices
DAC0802 8-Bit D/A Converter Data Acquisition Linear Devices
DAC0806 8-Bit D/A Converter Data Acquisition Linear Devices
DAC0807 8-Bit D/A Converter Data Acquisition Linear Devices
DAC0808 8-Bit D/A Converter Data Acquisition Linear Devices
DAC0830 8-Bit μ P Compatible Double-Buffered D/A Converter Data Acquisition Linear Devices
DAC0831 8-Bit μ P Compatible Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC0832 8-Bit μ P Compatible Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1000 μ P Compatible, Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1001 μ P Compatible, Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1002 μ P Compatible, Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1006 μ P Compatible, Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1007 μ P Compatible, Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1008 μ P Compatible, Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1020 10-Bit Binary Multiplying D/A Converter . Data Acquisition Linear DevicesDAC1021 10-Bit Binary Multiplying D/A Converter . Data Acquisition Linear DevicesDAC1022 10-Bit Binary Multiplying D/A Converter . Data Acquisition Linear DevicesDAC1208 12-Bit μ P Compatible Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1209 12-Bit μ P Compatible Double-Buffered D/A ConverterData Acquisition Linear DevicesDAC1210 12-Bit μ P Compatible Double-Buffered D/A Converter Data Acquisition Linear Devices.Data Acquisition Linear Devices
DAC1219 12-Bit Multiplying D/A Converter Data Acquisition Linear Devices
DAC1220 12-Bit Binary Multiplying D/A Converter Data Acquisition Linear Devices
DAC1221 12-Bit Binary Multiplying D/A Converter Data Acquisition Linear Devices
DAC1222 12-Bit Binary Multiplying D/A Converter Data Acquisition Linear Devices
DAC1230 12-Bit $\mu \mathrm{P}$ Compatible Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1231 12-Bit μ P Compatible Double-Buffered D/A Converter Data Acquisition Linear DevicesDAC1232 12-Bit μ P Compatible Double-Buffered D/A ConverterData Acquisition Linear DevicesDAC1265 Hi-Speed 12-Bit D/A Converter with Reference Data Acquisition Linear DevicesDAC1266 Hi-Speed 12-Bit D/A Converter . Data Acquisition Linear DevicesDM2502 Successive Approximation Register . Data Acquisition Linear DevicesDM2503 Successive Approximation Register . Data Acquisition Linear DevicesDM2504 Successive Approximation Register . Data Acquisition Linear DevicesLF198 Monolithic Sample and Hold Circuit . Data Acquisition Linear DevicesLF298 Monolithic Sample and Hold Circuit . Data Acquisition Linear Devices

Additional Available Linear Devices (Continued)

Device Databook
LF398A Monolithic Sample and Hold Circuit Data Acquisition Linear Devices
LF11201 Quad SPST JFET Analog Switch Data Acquisition Linear DevicesLF11202 Quad SPST JFET Analog Switch . Data Acquisition Linear DevicesLF11331 Quad SPST JFET Analog Switch . Data Acquisition Linear Devices
LF11332 Quad SPST JFET Analog Switch Data Acquisition Linear Devices
LF11333 Quad SPST JFET Analog Switch Data Acquisition Linear Devices
LF13006 Digital Gain Set Data Acquisition Linear Devices
LF13007 Digital Gain Set Data Acquisition Linear Devices
LF13201 Quad SPST JFET Analog Switch Data Acquisition Linear Devices
LF13202 Quad SPST JFET Analog Switch Data Acquisition Linear Devices
LF13331 Quad SPST JFET Analog Switch Data Acquisition Linear Devices
LF13332 Quad SPST JFET Analog Switch Data Acquisition Linear Devices
LF13333 Quad SPST JFET Analog Switch Data Acquisition Linear Devices
LF13508 8-Channel Analog Multiplexer Data Acquisition Linear Devices
LF13509 4-Channel Analog Multiplexer Data Acquisition Linear Devices
LH0023 Sample and Hold Circuit Data Acquisition Linear Devices
LH0043 Sample and Hold Circuit Data Acquisition Linear Devices
LH0053 High Speed Sample and Hold Amplifier Data Acquisition Linear Devices
LH0070 Series BCD Buffered Reference Data Acquisition Linear Devices
LH0071 Series Precision Buffered Reference Data Acquisition Linear Devices
LH0091 True RMS to DC Converter Special Purpose Linear Devices
LH0094 Multifunction Converter Special Purpose Linear Devices
LH2422 CRT Video Driver Amplifier Special Purpose Linear Devices
LH4266 SPDT RF Switch Special Purpose Linear Devices
LH4860 Super Fast 12-Bit Track-Hold Amplifier Data Acquisition Linear Devices
LH7070 Series Precision BCD Buffered Reference Data Acquisition Linear Devices
LH7071 Series Precision Binary Buffered Reference Data Acquisition Linear Devices
LM34 Precision Fahrenheit Temperature Sensor Data Acquisition Linear Devices
LM35 Precision Centigrade Temperature Sensor Data Acquisition Linear Devices
LM113 Reference Diode Data Acquisition Linear Devices
LM122 Precision Timer Special Purpose Linear Devices
LM129 Precision Reference Data Acquisition Linear Devices
LM131 Precision Voltage-to-Frequency Converter Data Acquisition Linear Devices
LM134 3-Terminal Adjustable Current Source Data Acquisition Linear Devices
LM135 Precision Temperature Sensor Data Acquisition Linear Devices
LM136-2.5V Reference Diode Data Acquisition Linear Devices
LM136-5.0V Reference Diode Data Acquisition Linear Devices
LM168 Precision Voltage Reference Data Acquisition Linear Devices
LM169 Precision Voltage Reference Data Acquisition Linear Devices
LM185 Adjustable Micropower Voltage Reference Data Acquisition Linear Devices
LM185-1.2 Micropower Voltage Reference Diode Data Acquisition Linear Devices
LM185-2.5 Micropower Voltage Reference Diode Data Acquisition Linear Devices
LM194 SuperMatch Pair Special Purpose Linear Devices
LM195 Ultra Reliable Power Transistor Special Purpose Linear Devices
LM199 Precision Reference Data Acquisition Linear Devices
LM231 Precision Voltage-to-Frequency Converter Data Acquisition Linear Devices
LM234 3-Terminal Adjustable Current Source Data Acquisition Linear Devices
LM235 Precision Temperature Sensor Data Acquisition Linear Devices
LM236-2.5V Reference Diode Data Acquisition Linear Devices
LM236-5.0V Reference Diode Data Acquisition Linear Devices
LM268 Precision Voltage Reference Data Acquisition Linear Devices
LM285 Adjustable Micropower Voltage Reference Data Acquisition Linear Devices

Additional Available Linear Devices (Continued)

Device DatabookLM285-1.2 Micropower Voltage Reference Diode . Data Acquisition Linear DevicesLM285-2.5 Micropower Voltage Reference Diode . Data Acquisition Linear DevicesLM295 Ultra Reliable Power Transistor . Special Purpose Linear DevicesLM299 Precision Reference . Data Acquisition Linear DevicesLM313 Reference Diode .
LM322 Precision Timer Special Purpose Linear Devices
LM329 Precision Reference Data Acquisition Linear Devices
LM331 Precision Voltage-to-Frequency Converter Data Acquisition Linear Devices
LM334 3-Terminal Adjustable Current Source Data Acquisition Linear Devices
LM335 Precision Temperature Sensor Data Acquisition Linear Devices
LM336-2.5V Reference Diode Data Acquisition Linear Devices
LM336-5.0V Reference Diode Data Acquisition Linear Devices
LM368 Precision Voltage Reference Data Acquisition Linear Devices
LM368-2.5 Precision Voltage Reference Data Acquisition Linear Devices
LM369 Precision Voltage Reference Data Acquisition Linear Devices
LM380 Audio Power Amplifier Special Purpose Linear Devices
LM381 Low Noise Dual Preamplifier Special Purpose Linear Devices
LM382 Low Noise Dual Preamplifier Special Purpose Linear Devices
LM383 7 Watt Audio Power Amplifier Special Purpose Linear Devices
LM3845 Watt Audio Power Amplifier Special Purpose Linear Devices
LM385 Adjustable Micropower Voltage Reference Data Acquisition Linear Devices
LM385-1.2 Micropower Voltage Reference Diode Data Acquisition Linear Devices
LM385-2.5 Micropower Voltage Reference Diode Data Acquisition Linear Devices
LM386 Low Voltage Audio Power Amplifier Special Purpose Linear Devices
LM387 Low Noise Dual Preamplifier Special Purpose Linear Devices
LM388 1.5-Watt Audio Power Amplifier Special Purpose Linear Devices
LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array Special Purpose Linear Devices
LM390 1 Watt Battery Operated Audio Power Amplifier Special Purpose Linear Devices
LM391 Audio Power Driver Special Purpose Linear Devices
LM394 SuperMatch Pair Special Purpose Linear Devices
LM395 Ultra Reliable Power Transistor Special Purpose Linear Devices
LM399 Precision Reference Data Acquisition Linear Devices
LM555 Timer Special Purpose Linear Devices
LM555C Timer Special Purpose Linear Devices
LM556 Dual Timer Special Purpose Linear Devices
LM556C Dual Timer Special Purpose Linear Devices
LM565 Phase Locked Loop Special Purpose Linear Devices
LM565C Phase Locked Loop Special Purpose Linear Devices
LM566C Voltage Controlled Oscillator Special Purpose Linear Devices
LM567 Tone Decoder Special Purpose Linear Devices
LM567C Tone Decoder Special Purpose Linear Devices
LM592 Differential Video Amplifier Special Purpose Linear Devices
LM621 Brushless Motor Commutator Special Purpose Linear Devices
LM628 Precision Motion Controller Special Purpose Linear Devices
LM629 Precision Motion Controller Special Purpose Linear Devices
LM733 Differential Video Amplifier Special Purpose Linear Devices
LM733C Differential Video Amplifier Special Purpose Linear Devices
LM831 Low Voltage Audio Power Amplifier Special Purpose Linear Devices
LM832 Dynamic Noise Reduction System DNR Special Purpose Linear Devices
LM903 Fluid Level Detector Special Purpose Linear Devices
LM1035 Dual DC Operated Tone/Volume/Balance Circuit Special Purpose Linear Devices
LM1036 Dual DC Operated Tone/Volume/Balance Circuit Special Purpose Linear Devices

Additional Available Linear Devices (Continued)

Device	Databook
LM1037 Dual Four-Channel Analog Switch	Special Purpose Linear Devices
LM1038 Dual Four-Channel Analog Switch	Special Purpose Linear Devices
LM1040 Dual DC Operated Tone/Volume/Balance Circuit with Stereo	
Enhancement Facility	Special Purpose Linear Devices
LM1042 Fluid Level Detector	Special Purpose Linear Devices
LM1044 Analog Video Switch	Special Purpose Linear Devices
LM1112A Dolby B-Type Noise Reduction	Special Purpose Linear Devices
LM1112B Dolby B-Type Noise Reduction Processor	Special Purpose Linear Devices
LM1112C Dolby B-Type Noise Reduction Process	Special Purpose Linear Devices
LM1131A Dual Dolby B-Type Noise Reduction Processor	Special Purpose Linear Devices
LM1201 Video Amplifier System	Special Purpose Linear Devices
LM1203 RGB Video Amplifier System	Special Purpose Linear Devices
LM1211 Broadband Demodulator Syst	Special Purpose Linear Devices
LM1391 Phase-Locked Loop	Special Purpose Linear Devices
LM1496 Balanced Modulator-Demodula	Special Purpose Linear Devices
LM1596 Balanced Modulator-Demodulator	Special Purpose Linear Devices
LM1800 Phase-Locked Loop FM Stereo Demodulator	Special Purpose Linear Devices
LM1801 Battery Operated Power Comparator	Special Purpose Linear Devices
LM1812 Ultrasonic Transceiver	Special Purpose Linear Devices
LM1815 Adaptive Sense Amplifi	Special Purpose Linear Devices
LM1818 Electronically Switched Audio Tape System	Special Purpose Linear Devices
LM1819 Air-Core Meter Driver	Special Purpose Linear Devices
LM1823 Video IF Amplifier/PLL Detection System	Special Purpose Linear Devices
LM1830 Fluid Detector	Special Purpose Linear Devices
LM1837 Low Noise Preamplifier for Autoreversing Tape Playback	
System	Special Purpose Linear Devices
LM1851 Ground Fault Interrupter	Special Purpose Linear Devices
LM1863 AM Radio System for Electronically Tuned Radio	Special Purpose Linear Devices
LM1865 Advanced FM IF System	Special Purpose Linear Devices
LM1866 Low Voltage AM/FM Receiver	Special Purpose Linear Devices
LM1868 AM/FM Radio System	Special Purpose Linear Devices
LM1870 Stereo Demodulator with Blend	Special Purpose Linear Devices
LM1871 RC Encoder/Transmit	Special Purpose Linear Devices
LM1872 Radio Control Receiver/Decod	Special Purpose Linear Devices
LM1875 20 Watt Power Audio Amplifier	Special Purpose Linear Devices
LM1877 Dual Power Audio Amplifier	Special Purpose Linear Devices
LM1880 No-Holds Vertical/Horizo	Special Purpose Linear Devices
LM1881 Video Sync Separator	Special Purpose Linear Devices
LM1884 TV Stereo Decoder	Special Purpose Linear Devices
LM1886 TV Video Matrix D to A	Special Purpose Linear Devices
LM1889 TV Video Modulator	Special Purpose Linear Devices
LM1893 Carrier Current Transce	Special Purpose Linear Devices
LM1894 Dynamic Noise Reduction System DNR	Special Purpose Linear Devices
LM1895 Audio Power Amplifier	Special Purpose Linear Devices
LM1896 Dual Power Audio Amplifier	Special Purpose Linear Devices
LM1897 Low Noise Preamplifier for Tape Playback System	Special Purpose Linear Devices
LM1921 1 Amp Industrial Switch	Special Purpose Linear Devices
LM1946 Over/Under Current Limit Diagnostic Circuit	Special Purpose Linear Devices
LM1949 Injector Drive Controller	Special Purpose Linear Devices
LM1951 Solid State 1 Amp Switch	Special Purpose Linear Devices
LM1964 Sensor Interface Amplifier	Special Purpose Linear Devices
LM1965 Advanced FM IF System	Special Purpose Linear Devices

Additional Available Linear Devices (Continued)

Device	Databook
LM2002 8 Watt Audio Power Amplifier	Special Purpose Linear Devices
LM2005 20 Watt Automotive Power Amplifier	Special Purpose Linear Devices
LM2065 Advanced FM IF System	Special Purpose Linear Devices
LM2877 Dual 4 Watt Power Audio Amplifier	Special Purpose Linear Devices
LM2878 Dual 5 Watt Power Audio Amplifier	Special Purpose Linear Devices
LM2879 Dual 8 Watt Audio Amplifier	Special Purpose Linear Devices
LM2889 TV Video Modulator	Special Purpose Linear Devices
LM2893 Carrier Current Transceiver	Special Purpose Linear Devices
LM2896 Dual Power Audio Amplifier	Special Purpose Linear Devices
LM2905 Precision Timer	Special Purpose Linear Devices
LM2907 Frequency to Voltage Converter	Special Purpose Linear Devices
LM2917 Frequency to Voltage Converter	Special Purpose Linear Devices
LM3045 Transistor Array	Special Purpose Linear Devices
LM3046 Transistor Array	Special Purpose Linear Devices
LM3086 Transistor Array	Special Purpose Linear Devices
LM3089 FM Receiver IF System	Special Purpose Linear Devices
LM3146 High Voltage Transistor A	Special Purpose Linear Devices
LM3189 FM IF System	Special Purpose Linear Devices
LM3361A Low Voltage/Power Narrow Band FM IF System	Special Purpose Linear Devices
LM3820 AM Radio System	Special Purpose Linear Devices
LM3905 Precision Timer	Special Purpose Linear Devices
LM3909 LED Flasher/Oscillator	Special Purpose Linear Devices
LM3911 Temperature Controller	. Data Acquisition Linear Devices
LM3914 Dot/Bar Display Driver	Special Purpose Linear Devices
LM3915 Dot/Bar Display Driver	Special Purpose Linear Devices
LM3916 Dot/Bar Display Drive	Special Purpose Linear Devices
LM3999 Precision Refe	Data Acquisition Linear Devices
LM4500A High Fidelity FM Stereo Demodulator with Blend	Special Purpose Linear Devices
LM18293 Four Channel Push Pull Driver	Special Purpose Linear Devices
LMC555 CMOS Tim	Special Purpose Linear Devices
LMC567 Low Power Tone Decoder	. Special Purpose Linear Devices
LMC568 Low Power Phase-Locked Loop	Special Purpose Linear Devices
LMC835 Digital Controlled Graphic Equalizer	. Special Purpose Linear Devices
LMF90 4th-Order LMCMOSTM Programmable Elliptic Notch	Data Acquisition Linear Devices
LMF100 High Performance Dual Switched Capacitor Filter	Data Acquisition Linear Devices
LMF120 Mask Programmable Switched Capacito	. Data Acquisition Linear Devices
LP395 Ultra Reliable Power Transistor	Special Purpose Linear Devices
MF4 4th Order Switched Capacitor Butterworth Lowpass Filter	Data Acquisition Linear Devices
MF5 Universal Monolithic Switched Capacitor Filter	Data Acquisition Linear Devices
MF6 6th Order Switched Capacitor Butterworth Lowpass Filter	Data Acquisition Linear Devices
MF8 4th Order Switched Capacitor Bandpass Filter	Data Acquisition Linear Devices
MF10 Universal Monolithic Dual Switched Capacitor Filter	Data Acquisition Linear Devices
MM54C905 12-Bit Successive Approximation Register	Data Acquisition Linear Devices
MM54HC4016 Quad Analog Switch	Data Acquisition Linear Devices
MM54HC4051 8-Channel Analog Multiplexer	Data Acquisition Linear Devices
MM54HC4052 Dual 4-Channel Analog Multiplexer	Data Acquisition Linear Devices
MM54HC4053 Triple 2-Channel Analog Multiplexer	Data Acquisition Linear Devices
MM54HC4066 Quad Analog Switch	Data Acquisition Linear Devices
MM54HC4316 Quad Analog Switch with Level Translator	Data Acquisition Linear Devices
MM74C905 12-Bit Successive Approximation Register	Data Acquisition Linear Devices
MM74HC4016 Quad Analog Switch	Data Acquisition Linear Devices
MM74HC4051 8-Channel Analog Multiplexer	Data Acquisition Linear Devices

Additional Available Linear Devices (Continued)

Device Databook
MM74HC4052 Dual 4-Channel Analog Multiplexer . Data Acquisition Linear Devices MM74HC4053 Triple 2-Channel Analog Multiplexer . Data Acquisition Linear Devices MM74HC4066 Quad Analog Switch . Data Acquisition Linear Devices MM74HC4316 Quad Analog Switch with Level Translator Data Acquisition Linear Devices μ A9708 6-Channel 8-Bit μ P Compatible A/D Converter Data Acquisition Linear Devices
Cross Reference by Part Number

CROSS REFERENCE BY PART NUMBER

A complete interchangeability list of Linear IC's offered by most Integrated Circuit Manufacturers are listed in this section and reference the nearest National Semiconductor Corp. direct replacement or recommended replacement with either an improved or functional replacement. The following notations are appended to assist you in finding the best option.

No reference note	"DIRECT REPLACEMENT"
Note (1)	"IMPROVED REPLACEMENT" Pin-for-Pin replacement with "SUPERIOR" Electrical Specifications.
Note (2)	"FUNCTIONAL REPLACEMENT" Similar device. Consult datasheet to determine the suitability for specific application.

Note (3) "SIMILAR DEVICE" with superior performance. Consult datasheet to determine suitability of the replacement for specific application.

ANALOG			AD673	ADC0841	(2)	ADDAC-08	DAC0802	
DEVICES	NATIONAL		AD741	LM741		ADDAC80	DAC1280+	(1)
AD0042	LH0042	(2)	AD7502	LF13509	(2)	ADDAC85	DAC2180+	(1)
AD101A	LM101A	(1)	AD7516	CD4066B	(2)	ADLH0032	LH0032	(2)
AD201A	LM210A	(1)	AD7523	DAC0830	(2)	ADLH0033	LH0033	(2)
AD301A	LM301A	(1)	AD7523	DAC0831	(2)	ADOP07	LM607	(1)
AD3542	LH0042	(2)	AD7523	DAC0832	(2)			
AD5035	LH0042	(2)	AD7524	DAC0830	(2)	APEX	NATIONAL	
AD506	LH0022	(2)	AD7524	DAC0831	(2)	PA01	LH0101	(2)
AD509	LH0003	(2)	AD7524	DAC0832	(2)	PA01	LM12	(2)
AD521	LH0036	(2)	AD7533	DAC1020		PA07	LM12	(2)
AD521	LM363	(2)	AD7533	DAC1021		PA010	LH0101	(2)
AD524	LH0038	(2)	AD7533	DAC1022		PA010	LM12	(2)
AD537	LM331	(2)	AD7541	DAC1218	(1)	PA011	LM12	(2)
AD562	DAC1266	(3)	AD7541	DAC1219	(1)	PA51	LM12	(2)
AD563	DAC1265	(3)	AD7541A	DAC1218	(2)	PA73	LM12	(2)
AD565A	DAC1265		AD7541A	DAC1219	(2)			
AD566A	DAC1266		AD7542	DAC1208	(2)	BURR-BROWN	NATIONAL	
AD567	DAC1230	(2)	AD7542	DAC1209	(2)	3507	LM6361	(2)
AD573	ADC1005	(2)	AD7542	DAC1210	(2)	3533	LH0033	(2)
AD581	LH0070	(1)	AD7545	DAC1208	(2)	3542	LH0042	(2)
AD581	LM581		AD7545	DAC1209	(2)	3550	LM6361	(2)
AD582	LF398	(2)	AD7545	DAC1210	(2)	3551	LM6361	(2)
AD583	LF198	(3)	AD7548	DAC1230	(2)	3553	LH0063	(2)
AD588	LM369	(2)	AD7548	DAC1231	(2)	3554	LH0032	(2)
AD589M	LM385	(1)	AD7548	DAC1232	(2)	3571	LM675	(2)
AD589U	LM185	(1)	AD7552	ADC1220	(2)	3572	LH0021	(2)
AD590	LM134	(2)	AD7552	ADC1225	(2)	3573	LM675	(2)
AD590	LM135	(2)	AD7571	ADC1005	(2)	3626	LH0036	(2)
AD590	LM34	(3)	AD7571	ADC1025	(2)	3629	LH0038	(2)
AD590	LM35	(3)	AD7575	ADC0820	(2)	3606A6	LH0084	(2)
AD611J	LF411C	(1)	AD7576	ADC0820	(2)	3606A6	LH0086	(2)
AD611K	LF411AC	(1)	AD7578	ADC1205	(2)	HOS-100	LH0033	(2)
AD614	LH0086	(2)	AD7578	ADC1225	(2)	INA102	LH0038	(2)
AD624	LH0038	(2)	AD7820	ADC0820		SHC298A	LF398A	(1)
AD650	LM331	(2)	ADDAC-08	DAC0800		SHC80	LF398	(2)
AD651	LM331	(2)	ADDAC-08	DAC0801		SHC85	LF398	(2)
AD654	LM331	(2)						

CTS	NATIONAL		CA081A	LF411C	(2)	HA5033	LH0033	(1)	$\xrightarrow{9}$
CTS0002	LH002		CA081B	LF411C	(2)	HA5162	LH0062	(2)	8
CTS0004	LH0004		CA081C	TL081C	(2)	HA5180	LH0052	(1)	7
CTS0021	LH0021		CA082	LF412M	(2)	HF-10	MF10		©
CTS0024	LH0024		CA082A	LF412C	(2)	HI-201	LF13201		$\stackrel{\rightharpoonup}{\text { ® }}$
CTS0032	LH0032		CA082B	LF412C	(2)	H1-300	AH5020	(2)	${ }^{1}$
CTS0033	LH0033		CA082C	TL082C	(2)	ICH8530	LH0101	(2)	$\stackrel{3}{3}$
CTS0041	LH0041		CA084	LF147	(2)	ICL7114	ADC1205	(2)	8
CTS0042	LH0042		CA084B	LF347B	(2)	ICL7114	ADC1225	(2)	\bigcirc
CTS2101A	LH2101A		CA084C	LF347	(2)	ICL7660	LMC7660	(1)	5
CTS2111	LH2111		CA124	LM124	(1)	ICL8069	LM313		0
			CA139	LM139	(1)	ICL8069	LM385-1.2		$\stackrel{1}{7}$
ELANTEC	NATIONAL		CA139A	LM139A	(1)	IH5009	AH5009		2
EHA2500	LM6161	(2)	CA1458	LM1458	(1)	IH5010	AH5010		를
EHA2502	LM6161	(2)	CA1558	LM1558	(1)	IH5011	AH5011		3
EHA2505	LM6361	(2)	CA158	LM158	(1)	IH5012	AH5012		\%
EHA2510	LM6161	(2)	CA158A	LM158A	(1)	IH6108	LF13508		9
EHA2512	LM6161	(2)	CA224	LM224	(1)	IH6208	LF13509		
EHA2515	LM6361	(2)	CA239	LM239	(1)	LM741	LM741		
EHA2520	LM6164	(2)	CA239A	LM239A	(1)	$\mu \mathrm{A} 488$	LM748		
EHA2522	LM6164	(2)	CA258	LM258	(1)				
EHA2525	LM6364	(2)	CA258A	LM258A	(1)	HEWLETT-			
EHA2600	LM6161	(2)	CA301A	LM301A	(1)	PACKARD	NATIONAL		
EHA2602	LM6161	(2)	CA307	LM307	(1)	HCTL-100	LM628	(3)	
EHA2605	LM6361	(2)	CA3105	LM675	(2)				
EHA2620	LM6164	(2)	CA311	LM311	(1)	HITACHI	NATIONAL		
EHA2622	LM6164	(2)	СА324	LM324	(1)	HA13421A	LM18293	(3)	
EHA2625	LM6364	(2)	САЗ290	LM393	(2)	HA17082	LF353	(1)	
EL2006	LM6161	(2)	СА339	LM339	(1)	HA17082A	LF412	(1)	
EL2006C	LM6261	(2)	CA339A	LM339A	(1)	HA17084	LF347	(1)	
ELH0002	LH0002	(1)	CA3401	LM3401	(1)	HA17084A	LF347B	(1)	
ELH0021	LH0021	(1)	СА358	LM358	(1)	HA17094	LM2904	(1)	
ELH0032	LH0032	(1)	CA358A	LM358A	(1)	HA17301	LM3301	(1)	
ELH0033	LH0033	(1)	CA741	LM741	(1)	HA17324	LM324	(1)	
ELH0041	LH0041	(1)	CA747	LM747	(1)	HA17339	LM339	(1)	
ELH0101	LH0101	(1)	CA748	LM748	(1)	HA17358	LM358	(1)	
			DG201	LF11201		HA17393	LM393	(1)	
EXAR	NATIONAL		DG211	LF13201		HA17458	LM1458	(1)	
XR-1001	MF4C-100	(1)	DG212	LF13202		HA17741	LM741	(1)	
XR-1002	MF4C-50	(1)	HA-OP07	LM607	(1)	HA17747	LM747	(1)	
XR084	LF347	(1)	HA2400	LM604AM	(2)	HA17901	LM2901	(1)	
ARO6\%in	LF147	(1)	HA2404	LM604AM	(2)	HA17902	LM2902	(1)	
XR1458	LM1458	(1)	HA2405	LM604C	(2)	HA17903	LM2903	(1)	
XR146	LF146	(1)	HA2406	LM604C	(2)				
XR246	LF246	(1)	HA2500	LM6161	(2)	LINEAR			
XR346	LF346	(1)	HA2502	LM6161	(2)	TECHNOLOGY	NATIONAL		
			HA2505	LM6361	(2)	AD581	LH0070		
HARRIS (Incl.			HA2510	LM6161	(2)	AD581	LM581		
GE/RCA/			HA2512	LM6161	(2)	LM1009M	LM136-2.5		
INTERSIL)	NATIONAL		HA2515	LM6361	(2)	LM129	LM129		
AD7520	DAC1021		HA2520	LH0003	(1)	LM134	LM134		
AD7520	DAC1022		HA2520	LM6164	(2)	LM185	LM185		
AD7521	DAC1220		HA2522	LH0003	(1)	LM199	LM199		
AD7521	DAC1221		HA2522	LM6164	(2)	LM234	LM234		
AD7521	DAC1222		HA2525	LH0003	(1)	LM329	LM329		
AD7530	DAC1020	(3)	HA2525	LH6364	(2)	LM334	LM334		
AD7530	DAC1021	(3)	HA2530	LH0024	(2)	LM385	LM385		
AD7530	DAC1022	(3)	HA2535	LH0024	(2)	LM399	LM399		
AD7531	DAC1220		HA2540	LH0032	(2)	LT1001	LM607A	(1)	
AD7531	DAC1221		HA2541-2	LM6161	(2)	LT1004C	LM385		
AD7531	DAC1222		HA2541-5	LM6361	(2)	LT1004M	LM185		
AD7533	DAC1020		HA2542	LH0032	(2)	LT1009C	LM336-2.5		
AD7533	DAC1021		HA2542-2	LM6164	(2)	LT1019C	LM368	(2)	
AD7533	DAC1022		HA2542-5	LM6164	(2)	LT1019M	LM168	(2)	
AD7541	DAC1218		HA2600	LM6161	(2)	LT1020	LP2951	(3)	
AD7541	DAC1219		HA2602	LM6161	(2)	LT1021C	LM369	(1)	
ADC0801	ADC0801		HA2605	LM6361	(2)	LT1021M	LM169	(1)	
ADC0802	ADC0802		HA2620	LM6164	(2)	LT1029C	LM336-5.0		
ADC0803	ADC0803		HA2622	LM6164	(2)	LT1029M	LM136-5.0		
ADC0804	ADC0804		HA2625	LM6364	(2)	LT1031	LH0070		
CA081	LF411M	(2)	HA2640	LH0004	(1)	LT117A	LM117A		

LT123A	LM123A		LM323K	LM323K STEEL	
LT138A	LM138A		LM337K	LM337K STEEL	
LT150A	LM150A		LM350K	LM350K STEEL	
LT317A	LM317A		MC1408	DAC0806	
LT323A	LM323A		MC1408	DAC0807	
LT338A	LM338A		MC1408	DAC0808	
LT350A	LM350A		MC1414	LM1414	
REF-01	LM168	(1)	LM1436	LM343	(1)
REF-01	LM368	(1)	MC14442	ADC0829	(2)
SG1524	LM1524D	(1)	MC14444	ADC0830	(2)
SG1525A	LM1525A	(2)	MC145040	ADC0811	(2)
SG1527A	LM1527A	(2)	MC145041	ADC0811	
SG3524	LM3524D	(1)	MC1458	LM1458	
SG3525A	LM3525A	(2)	MC1496	LM1496	
SG3527A	LM3527A	(2)	MC1508	DAC0808	
			MC1514	LM1514	
LSI			MC1536	LM143	(1)
COMPUTER	NATIONAL		MC1558	LM1558	
LS7261	LM621	(3)	MC1596	LM1596	
LS7263	LM621	(3)	MC1709	LM709	
			MC1710	LM710	
MICRA	NATIONAL		MC1723	LM723	
MC0002	LH0002		MC1723C	LM723C	
MC0003	LH0003		MC1741	LM741	
MC0004	LH0004		MC1747	LM747	
MC0032	LH0032		MC1748	LM748	
MC0033	LH0033		MC3301	LM3301	
MC0041	LH0041		MC3302	LM3302	
MC0063	LH0063		MC3361	LM3361A	(1)
			MC34001	LF351	(1)
MICRO POWER	NATIONAL		MC34001A	LF411C	(1)
MP108	LM108		MC34001B	LF411C	(1)
MP108A	LM108A		MC34002	LF353	(1)
MP155	LF155		MC34002A	LF412A	(1)
MP155A	LF155A		MC34002B	LF412C	(1)
MP156	LF156		MC34004	LF147	(1)
MP156A	LF156A		MC34004	LF347	(1)
MP157	LF157		MC34004B	LF147	(1)
MP157A	LF157A		MC34004B	LF347B	(1)
MP208	LM208		MC3401	LM3401	(1)
MP208A	LM208A		MC3410	DAC1020	
MP2108A	LH2108A		MC3412	DAC1265	(2)
MP308	LM308		MC35001	LF411M	(1)
MP308A	LM308A		MC35001A	LF411M	(1)
MP355A	LF355A		MC35001B	LF411M	(1)
MP356A	LF356A		MC35002	LF412M	(1)
MP357A	LF357A		MC35002A	LF412AM	(1)
MP5010G	LM185		MC35002B	LF412M	(1)
MP5010G	LM385		MC3510	DAC1020	(2)
MP5010H	LM185		MC4741	LM348	
MP5010H	LM385		MC78LXXACG	LM78LXXACH	
MP5010L	LM185		MC78LXXACP	LM78LXXACZ	
MP5010L	LM385		MC78LXXCG	LM78LXXCH	
MPOP07	LM607	(1)	MC78LXXCP	LM78LXXSACZ	
			MC78MXXCT	LM341P-XX	
MOTOROLA	NATIONAL		MC78MXXCT	LM342P-XX	
AD562A	DAC1266	(2)	MC78MXXCT	LM78MXXCT	
AD563A	DAC1265	(2)	MC78XXACT	LM340AT-XX	
DAC-08	DAC0800		MC78XXCK	LM78XXCK	
DAC-08	DAC0801		MC78XXCT	LM78XXCT	
DAC-08	DAC0802		MC79LXXACG	LM320H-XX	
LM109H	LM109H		MC79LXXACP	LM320LZ-XX	
LM109K	LM109K STEEL		MC79LXXCP	LM79LXXCZ	
LM117K	LM117K STEEL		MC79LXXCP	LM79LXXCZ	
LM123K	LM123K STEEL		MC79MXXAKC	LM320MP-XX	
LM137K	LM137K STEEL		MC79XXACT	LM320T-XX	
LM150K	LM150K STEEL		MC79XXAKC	LM320K-XX	
LM2931	LM2931		MC79XXCK	LM320K-XX	
LM309K	LM309K STEEL		MC79XXCK	LM79XXCK	
LM317K	LM317K STEEL		MC79XXCT	LM79XXCT	

PRECISION MONOLITHIC INC.	NATIONAL	
ADC-910	ADC1005	(2)
ADC-910	ADC1025	(2)
AMP-01	LH0038	(2)
BUF-03	LH0033	(1)
DAC-02	DAC1020	(2)
DAC-02	DAC1021	(2)
DAC-02	DAC1022	(2)
DAC-03	DAC1020	(2)
DAC-03	DAC1021	(2)
DAC-03	DAC1022	(2)
DAC-05	DAC1020	(2)
DAC-05	DAC1021	(2)
DAC-05	DAC1022	(2)
DAC-08	DAC0800	
DAC-08	DAC0801	
DAC-08	DAC0802	
DAC-100	DAC1020	(2)
DAC-100	DAC1021	(2)
DAC-100	DAC1022	(2)
DAC-1408	DAC0806	(2)
DAC-1408	DAC0807	(2)
DAC-1408	DAC0808	(2)
DAC-312	DAC1266	
DAC-8012	DAC1208	(2)
DAC-8012	DAC1209	
DAC-8012	DAC1210	
DAC-888	DAC-0830	(2)
DAC-888	DAC0831	(2)
DAC-888	DAC0832	(2)
MUX-08E	LF13508	
MUX-24E	LF13509	
OP-05	LM607	(2)
OP-07	LM607	(1)
OP-15	LF411	(1)
OP-215	LF412	(1)
OP-77	LM607	(1)
PM-108	LM108	
PM-108A	LM108A	
PM-139	LM139	
PM-139A	LM139A	
PM-155	LF155	
PM-155A	LF155A	
PM-156	LF156	
PM-156A	LF156A	
PM-157	LF157	
PM-157A	LF157A	
PM-208	LM208	
PM-208A	LM208A	
PM-2108A	LH2108A	
PM-308	LM308	
PM-308A	LM308A	
PM-339A	LM339A	
PM-355	LF355	
PM-355A	LF355A	
PM-356	LF356	
PM-357	LF357	
PM-357A	LF357A	
PM-725	LM725	
PM-741	LM741	
PM-747	LM747	
PM-7533	DAC1020	
PM-7533	DAC1021	
PM-7533	DAC1022	
PM-7541	DAC1218	
PM-7541	DAC1219	
PM356A	LF356A	
PM420	LM124	(1)

[^0]**With radically formed leads

Section 1

Continuous Voltage Regulators

Section 1 Contents

Voltage Regulators Definition of Terms 1-4
Continuous Voltage Regulators Selection Guide 1-5
LH0075 Positive Precision Programmable Regulator 1-8
LH0076 Negative Precision Programmable Regulator 1-13
LH7001 Positive/Negative Adjustable Regulator 1-18
LM104/LM204/LM304 Negative Regulators 1-28
LM105/LM205/LM305/LM305A/LM376 Voltage Regulators 1-32
LM109/LM309 5-Volt Regulator 1-39
LM117/LM117A/LM317/LM317A 3-Terminal Adjustable Regulators 1-45
LM117HV/LM317HV 3-Terminal Adjustable Regulator 1-57
LM120/LM320 Series 3-Terminal Negative Regulators 1-67
LM123A/LM123/LM323A/LM323 3-Amp, 5-Volt Positive Regulators 1-76
LM125/LM325/LM325A, LM126/LM326 Voltage Regulators 1-82
LM133/LM333 3-Amp Adjustable Negative Voltage Regulators 1-90
LM137/LM337 3-Terminal Adjustable Negative Regulators 1-97
LM137HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage) 1-103
LM138/LM138A/LM338/LM338A 5-Amp Adjustable Power Regulators 1-109
LM140A/LM140/LM340A/LM340 Series 3-Terminal Positive Regulators 1-121
LM140L/LM340L Series 3-Terminal Positive Regulators 1-129
LM145/LM345 Negative 3-Amp Regulators 1-133
LM150/LM150A/LM350/LM350A 3-Amp Adjustable Power Regulators 1-137
LM196/LM396 10-Amp Adjustable Voltage Regulators 1-149
LM317L 3-Terminal Adjustable Regulator 1-161
LM320L 3-Terminal Negative Regulator 1-172
LM330 3-Terminal Positive Regulator 1-177
LM337L 3-Terminal Adjustable Regulator 1-182
LM341 Series 3-Terminal Positive Regulators 1-184
LM342 Series 3-Terminal Positive Regulators 1-188
LM431A Adjustable Precision Zener Shunt Regulator 1-193
LM723/LM723C Voltage Regulators 1-200
LM2925 Low Dropout Regulator with Delayed Reset 1-209
LM2930 3-Terminal Positive Regulator 1-215
LM2931 Series Low Drop-Out Regulators 1-220
LM2935 Low Dropout Dual Regulator 1-226
LM2936 Ultra-Low Quiescent Current 5V Regulator 1-234
LM2940 1A Low Dropout Regulator 1-239
LM2940C 1A Low Dropout Regulator 1-244
LM2941 1A Low Dropout Adjustable Regulator 1-248
LM2941C 1A Low Dropout Adjustable Regulator 1-253
LM2984C Microprocessor Power Supply System 1-258
LM78XX Series Voltage Regulators 1-271
LM7800 Series Voltage Regulators 1-274
LM78G/LM79G 4-Terminal Adjustable Regulators 1-284
LM78LXX Series 3-Terminal Positive Regulators 1-294
LM78L00 Series 3-Terminal Positive Regulators 1-299
LM78MG/LM79MG 4-Terminal Positive Regulators 1-307
LM78MXX Series 3-Terminal Positive Regulators 1-318
LM79XX Series 3-Terminal Negative Regulators 1-325

Section 1 Contents (Continued)

LM7900 Series 3-Terminal Negative Regulators . 1-332
LM79LXXAC Series 3-Terminal Adjustable Negative Regulators 1-337
LM79MXX Series 3-Terminal Negative Regulators 1-342
LP2950/LP2950AC/LP2950C 5V and LP2951/LP2951AC/LP2951C Adjustable Micropower Voltage Regulators 1-345

Voltage Regulators Definition of Terms

Current-Limit Sense Voltage: The voltage across the current limit terminals required to cause the regulator to cur-rent-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.
Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reductions in input voltage.
Feedback Sense Voltage: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.
Input Voltage Range: The range of dc input voltages over which the regulator will operate within specifications.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation: The change in output voltage for a change in load current at constant chip temperature.
Long Term Stability: Output voltage stability under accelerated life-test conditions at $125^{\circ} \mathrm{C}$ with maximum rated voltages and power dissipation for 1000 hours.
Maximum Power Dissipation: The maximum total device dissipation for which the regulator will operate within specifications.

Output-Input Voltage Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.
Output Noise Voltage: The RMS ac voltage at the output with constant load and no inut ripple, measured over a specified frequency range.
Output Voltage Range: The range of regulated output voltages over which the specifications apply.
Output Voltage Scale Factor: The output voltage obtained for a unit value of resistance between the adjustment terminal and ground.
Quiescent Current: That par of input current to the regulator that is not delivered to the load.

Ripply Rejection: The line regulation for ac inupt signals at or above a given frequency with a specified value of bypass capacitor on the reference bypass terminal.
Standby Current Drain: That part of the operating current of the regulator which does not contribute to the load current. (See Quiescent Current)
Temperature Stability: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Thermal Regulation: Percentage change in output voltage for a given change in power dissipation over a specified time period.

Voltage Regulators (Continued)
Fixed Negative Voltage Regulators

Fixed Negative Voltage Regulators			
Amps	Device	Output Voltage	Package
3.0	+LM145K LM345K	$\begin{aligned} & -5 \mathrm{~V},-5.2 \mathrm{~V} \\ & -5 \mathrm{~V},-5.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { TO-3 } \\ & \text { TO-3 } \end{aligned}$
1.5	†LM120K LM320K, T LM79xxCT, K**	$\begin{gathered} -5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V} \\ -5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V} \\ -5 \mathrm{~V},-8 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { TO-3 } \\ \text { TO-3, TO-220 } \\ \text { TO-220, TO-3 } \end{gathered}$
0.5	LM320MP LM79MxxCT, $\mathrm{H}^{* *}$	$\begin{gathered} -5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V} \\ -5 \mathrm{~V},-8 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { TO-220 } \\ \text { TO-220, TO-39 } \\ \hline \end{gathered}$
0.2	+LM120H LM320H	$\begin{aligned} & -5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V} \\ & -5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { TO-39 } \\ & \text { TO-39 } \end{aligned}$
0.1	LM320LZ LM79LxxACZ, M	$\begin{aligned} & -5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V} \\ & -5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \text { TO-92 } \\ \text { TO-92, SO-8 } \end{gathered}$
Low Dropout Regulators			
Amps	Device	Output Voltage	Package
0.050	LM2936Z	5 V	T0-92
0.100	LM2931T, Z LP2950CZ LP2951N, J, H	$\begin{gathered} \text { 5V, ADJ } \\ 5 \mathrm{~V} \\ \text { ADJ } \end{gathered}$	$\begin{gathered} \text { TO-220, TO-92 } \\ \text { TO-92 } \\ \text { DIP, CERDIP, HEADER } \end{gathered}$
0.150	LM2930T	$5 \mathrm{~V}, 8 \mathrm{~V}$	TO-220
0.500	LM2984CT	TRIPLE 5V + WATCHDOG	TO-220, 11-LEAD
0.750	LM2925T LM2935T	5V WITH DELAYED RESET DUAL5V	$\begin{aligned} & \text { TO-220, 5-LEAD } \\ & \text { TO-220, 5-LEAD } \end{aligned}$
1.0	†LM2940T LM2940CT LM2941T LM2941CT	$\begin{gathered} 5 \mathrm{~V}, 8 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V} \\ 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V} \\ \text { Adjustable (} 5 \mathrm{~V} \text { to } 20 \mathrm{~V} \text {) } \\ \text { Adjustable (} 5 \mathrm{~V} \text { to } 20 \mathrm{~V} \text {) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { TO-220 } \\ & \text { TO-220 } \\ & \text { TO-220 } \\ & \text { TO-220 } \end{aligned}$

Shunt Regulators

Amps	Device	Output Voltage	Package
0.15	LM431ACZ, M	$2.5 \mathrm{~V}-36 \mathrm{~V}$	TO-92, SO-8
Building Block Regulators			
Device		Title	Package
†LM104/204/304		Negative Regulator	TO-39
†LM105/205/305		Voltage Regulator (Positive)	TO-39
LM376		Voltage Regulator (Positive)	8-Pin Plastic DIP
\dagger LM723		Voltage Regulator	14-Pin DIP, TO-39

**These products were formerly manufactured by Fairchild Semiconductor Corporation. The prefixes have been changed from $\mu \mathrm{A}$ to LM and may be found with the former prefix as well as the latter.
\dagger Military qualified device. For more information, consult the Military/Aerospace Selection Guide.

LH0075 Positive Precision Programmable Regulator

General Description

The LH0075 is a precision programmable regulator for positive voltages. Regulated output voltages from 0 to 27 V may be obtained using one external resistor. Also available without any external components are several fixed regulated voltages with accuracies to $0.1 \%(5 \mathrm{~V}, 6 \mathrm{~V}, 10 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V). The output current limit is adjustable from 0 to 200 mA using two external resistors. These features provide an inventory of precision regulated values in one package.

Features

■ Output adjustable to 0 V
■ Line regulation typically $0.008 \% / \mathrm{V}$
■ Load regulation typically 0.075%
■ Remote voltage sensing

- Ripple rejection of 80 dB
- Adjustable precision current limit
- Output currents to 200 mA
- Popular voltages available without external resistors

Schematic Diagram

Connection Diagram

TO-8 Metal Can Package

Typical Applications
Precision 15V Reference Supply without Current Limit

TL/H/5549-1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
(Note 4)
Input Voltage
Output Voltage
32 V

Output Current
Power Dissipation
200 mA
See Curve

Operating Temperature Range
LH0075
LH0075C
Storage Temperature
Lead Temp. (Soldering, 10 seconds)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics Conditions for $T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ unless otherwise noted

Parameter	Conditions	LH0075			LH0075C			Units
		Min	Typ	Max	Min	Typ	Max	
Line Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.008	0.02		0.008	0.04	\%/V
Load Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{LOAD}}<200 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }} \geq 5.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 2.5 \\ 0.055 \end{gathered}$	$\begin{gathered} 7.5 \\ 0.15 \end{gathered}$		$\begin{gathered} 2.5 \\ 0.055 \end{gathered}$	$\begin{aligned} & 15 \\ & 0.3 \end{aligned}$	$\begin{gathered} m V \\ \% \end{gathered}$
Reference Current (l)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$	0.998	1.000	1.002	0.995	1.00	1.005	mA
Load Regulation	$\begin{aligned} & 1 \mathrm{~mA}<\mathrm{l}_{\text {LOAD }}<200 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }} \leq 5.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }} \geq 5.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 4.0 \\ 0.075 \end{gathered}$	$\begin{aligned} & 15 \\ & 0.3 \end{aligned}$		$\begin{gathered} 4.0 \\ 0.075 \end{gathered}$	$\begin{aligned} & 25 \\ & 0.5 \end{aligned}$	$\begin{gathered} m V \\ \% \end{gathered}$
Reference Current Drift ($\Delta l_{\text {REF }} / \Delta$ Temp.)	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		-0.0065			-0.0065		\%/ ${ }^{\circ} \mathrm{C}$
Minimum Load Current (llim)	(Note 1)	98	100	102	95	100	105	$\mu \mathrm{A}$
Output Voltage Range		0		27	0		27	V
Minimum Input Voltage		10			10			V
Input-Output Differential Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{LOAD}}<200 \mathrm{~mA} \end{aligned}$		3.0	3.2		3.0	3.5	V
Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$		6.0	8.0		6.5	10	mA
Ripple Rejection	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=5.0 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{C}_{\text {REF }}=2.2 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 65 \\ & 80 \end{aligned}$			$\begin{aligned} & 65 \\ & 80 \end{aligned}$		dB dB
Output Voltage Tolerance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 2)		± 0.1	± 0.5		± 0.1	± 1.0	\%
Output Voltage Change with Temperature ($\Delta \mathrm{V}_{\text {OUT }} / \Delta$ Temp.)	(Note 3)		0.003			0.003		\%/ ${ }^{\circ} \mathrm{C}$

Note 1: Minimum load current is established by lLIM, the current from Q4 (see schematic). ILIM goes directly to the output if the current limit feature is used.
Note 2: For $V_{I N}=15 \mathrm{~V}$ and $V_{\text {OUT }}$ obtained by using R5, R6, R7, and R12 individually.
Note 3: Total change over specified temperature range.
Note 4: Refer to RETS075G drawing for military specifications on the LN0075.

Typical Performance Characteristics

Output Voltage Change with Temperature (Normalized)

Load Transient Response (Voltage Mode)

Reference Current Change with Temperature (Normalized)

Current Limit

Load Transient Response (Current Mode)

Line Transient Response

Input-Output Differential Voltage

Line Transient Response

Typical Applications (Continued)

$$
\mathrm{I}_{\mathrm{OUT}} \leq 200 \mathrm{~mA}
$$

Applications Information

The LH0075 does not require capacitors for stable operation, but an input bypass is recommended if device is far
from filter capacitors. A $0.1 \mu \mathrm{~F}$ for input bypassing should be adequate for almost all applications.

$$
R_{\text {PROG }}=\frac{V_{\text {OUT }} \text { Desired }}{1 \mathrm{~mA}} \quad \operatorname{IOUT(MAX)}=\left[\frac{R_{\text {LIMIT }}}{R_{\text {SENSE }}}+1\right] \times 100 \mu \mathrm{~A}
$$

Applications Information (Continued) DESCRIPTION OF OPTIONS

Ripple Rejection Compensation. (Increases Ripple Rejection Typically to 80 dB)
The ripple rejection may be improved by connecting an external capacitor between pin 9 and ground. (The typical performance curves show the rejection with a capacitance of $2.2 \mu \mathrm{Fd}$.)

Internal Voltage Programming

The LM0075 provides various precision output voltages simply by using one or more of the internal resistors. A particular voltage may be obtained by external connections as shown in Table I.

R5, R6, R7 and R12 are precision-trimmed to 0.1%.

TL/H/5549-4
FIGURE 1

External Voltage Programming

An external resistance can be connected between pin 9 and ground to obtain any voltage from 0 to 27 V using the following equation:

$$
R_{E X T}=\frac{V_{\text {OUT Desired }}}{1 \mathrm{~mA}}
$$

The reference current (lREF) has a typical temperature coefficient of $-65 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Choosing a resistive material with a temperature coefficient of $65 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will compensate the negative temperature coefficient, resulting in an output voltage with minimal change over the operating temperature range. Example of a good resistive material is Nichrome, which has a typical temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Since a current source is used as a reference, this makes remote voltage programming possible.

Current Limit Programming

The maximum current output of the device may be limited by adding two external resistors as shown below. The resistor values are easily calculated with the following equation:

$$
\operatorname{IOUT}(\mathrm{MAX})=\left[\frac{R_{\mathrm{LIMIT}}}{R_{\text {SENSE }}}+1\right] \times 100 \mu \mathrm{~A}
$$

where RSENSE $=1$ to 10Ω

FIGURE 2. Current Limit Programmng
This programmable current limit feature can be extended to make the LH0075 a programmable constant current source. This can be done by leaving pin 9 open and setting $R_{\text {LIMIT }}$ and R Rense as desired.
For applications where the current limit is used, a minimum load current of $100 \mu \mathrm{~A}$ is established at the output. This arises from the fact that the constant current used in setting maximum output current is $100 \mu \mathrm{~A}$, and it goes directly to the output of the LH0075. If the total current drawn from the output is less than the minimum, the output will rise.
As in the remote voltage adjustment application, remote current sensing can be applied similarly. RSENSE must be placed as close to the output of the LH0075 as possible, but R LIMIT can be a fixed resistor or potentiometer located remotely from the device.

TABLE I. Connection Scheme for Internal Available Output Voltages

OUTPUT VOLTAGE (V)	PIN 5	PIN 6	PIN 7	PIN 8	PIN 9
5			Gnd		
6				\bullet	
8	\bullet	\bullet			
10		Gnd	\bullet		
12	Gnd		\ddots		
15	\bullet	Gnd			
18			\bullet		

National Semiconductor
 LH0076 Negative Precision Programmable Regulator

General Description

The LH0076 is a precision programmable regulator for negative voltages. Regulated output voltages from 0 to -27 V may be obtained by using 1 external resistor. Also available without any external components are several fixed regulated voltages with accuracies to $0.1 \%(-3 \mathrm{~V},-5 \mathrm{~V},-6 \mathrm{~V}$, $-8 \mathrm{~V},-9 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$ and -18 V). The output current limit is adjustable from 0 to 200 mA using 2 external resistors. These features provide an inventory of precision regulated values in 1 package.

Schematic Diagram

Connection Diagram

Metal Can Package

Order Number LH0076G LH0076CG See NS Package H12B

Features

■ Line regulation typically $0.005 \% / \mathrm{V}$

- Load regulation typically 0.02%
- Remote voltage sensing
- Ripple rejection-70 dB
- Output Adjustable to 0 V
- Adjustable precision current limit
- Output current to 200 mA
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallability and specifications.
(Note 4)
Input Voltage
Output Voltage
Output Current
Power Dissipation

Operating Temperature Range

LH0076	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0076C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Electrical Characteristics Conditions are for $T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ unless otherwise noted

Parameter	Conditions	LH0076			LH0076C			Units
		Min	Typ	Max	Min	Typ	Max	
Line Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.005	0.02		0.005	0.04	\%/V
Load Regulation	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<200 \mathrm{~mA} \\ & V_{\text {OUT }} \geq-5.0 \mathrm{~V} \\ & V_{\text {OUT }} \leq-5.0 \mathrm{~V} \\ & \hline \end{aligned}$		0.02	$\begin{gathered} 7.5 \\ 0.15 \\ \hline \end{gathered}$		0.02	$\begin{array}{r} 15 \\ 0.3 \\ \hline \end{array}$	$\begin{gathered} \mathrm{mV} \\ \% \end{gathered}$
Reference Current (${ }_{\text {REF }}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1 \mathrm{~N}}=-15 \mathrm{~V}$	0.998	1.000	1.002	0.995	1.000	1.005	mA
Reference Current Drift (Δ I $_{\text {REF }} / \Delta$ Temp.)	$\mathrm{V}_{\mathrm{IN}}=-15 \mathrm{~V}$		-0.0065			-0.0065		\%/ ${ }^{\circ} \mathrm{C}$
Minimum Load Current (llim)	(Note 1)	98	100	102	95	100	105	$\mu \mathrm{A}$
Output Voltage Range		0		-27	0		-27	V
Minimum Input Voltage		-10			-10			V
Input-Output Differential Voltage	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}, \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{LOAD}}<200 \mathrm{~mA} \end{aligned}$		2.7	3.2		2.7	3.5	V
Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=-15 \mathrm{~V}$		11	15		11	15	mA
Ripple Rejection	$\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}$		70			70		dB
Output Voltage Tolerance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Note 2)	,	± 0.1	± 0.5		± 0.1	± 1.0	\%
Output Voltage Change with Temperature ($\Delta \mathrm{V}_{\text {OUT }} / \Delta T \mathrm{Temp}$.)	(Note 3)		0.003			0.003		\%/ ${ }^{\circ} \mathrm{C}$

Note 1: Minimum load current is established by llim, the current to Q2 (see schematic.) lLIM draws directly from the output if the current limit feature is used.
Note 2: For $\mathrm{V}_{\mathbf{I N}}=15 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT }}$ obtained by using R4, R5, R6, and R8 individually.
Note 3: Total change over specified temperature range.
Note 4: Refer to RETS0076G for military specifications on the LH0076.

Typical Performance Characteristics

2-Amp Regulator with Current Limit

TL/H/5548-4
*Recommended if device is far from filter capacitors

Application Information

The LH0076 does not require external capacitors for stable operation. However, an input bypass is recommended if the device is far from filter capacitors. A $0.1 \mu \mathrm{~F}$ for input bypassing should be adequate for most applications.

DESCRIPTION OF OPTIONS

External Voltage Programming

An external resistance can be connected between pin 10 and ground to obtain any voltage from 0 to -27 V using the following equation:
$R_{E X T}=\frac{V_{\text {OUT }} \text { desired }}{-1 \mathrm{~mA}}$

The reference current (lREF) has a typical temperature coefficient of $-60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Choosing a resistive material with a temperature coefficient of $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will compensate the negative tempco of the reference current, resulting in an output voltage with minimal change over the operating temperature range. Example of a good resistive material is nichrome, which has a typical tempco of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Nichrome is the resistive material used in the LH0076, resulting in output voltage drift of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typically.

Application Information

(Continued)
Because a current source is used as a reference, remote voltage programming is possible.

Internal Voltage Programming

The LH0076 provides various precision output voltages simply by using 1 or more of the internal programming resistors. These voltages may be obtained by using the connections as shown in Table 1.
$\mathrm{R}_{\text {TOTAL }}$ is the total resistance between pin 10 and ground

R4, R5, R6 and R8 are precision trimmed to 0.1%

FIGURE 1

Current Limit Programming

The maximum current output of the device may be limited by adding 2 external resistors as shown in Figure 2. The resistor values are calculated using the following equation:

$$
\operatorname{lout}(\operatorname{MAX})=\left[\frac{R_{\text {LIMIT }}}{R_{\text {SENSE }}}+1\right] \times 100 \mu \mathrm{~A}
$$

where R $_{\text {SENSE }}=1$ to 10Ω
This programming current limit feature can be extended to make the LH0076 a programmable current sink. This can be done by leaving pin 10 open and setting R RIMIT and RSENSE as desired. (See Figure 3).

TL/H/5548-6
FIGURE 2. Current Limit Programming
For application where the current limit is used, a minimum load current of $100 \mu \mathrm{~A}$ is established at the output. This arises from the fact that the constant current used in setting maximum output current is $100 \mu \mathrm{~A}$, and it comes directly from the output of the LH0076. If the total current is less than this minimum current, the output will drop.
As in the remote voltage adjustment application, remote current sensing can be applied similarly. RSENSE should be placed as close to the output of the LH0076 as possible, but $R_{\text {LIMIT }}$ can be a resistor or potentiometer located remotely from the device.

TL/H/5548-7

TABLE 1. Connection Scheme for Internally Available Output Voltages

OUTPUT VOLTAGE (V)	PIN 1	PIN 2	PIN 7	PIN 10	PIN 11
-3					GND
-5			\bullet		
-6	a	Gnd			
-8			\bullet		
-9	Gnd			\bullet	
-12	Gnd				
-15		Gnd		\bullet	
-18		Gnd			

National Semiconductor

LH7001

Positive/Negative Adjustable Regulator

General Description

The LH7001 combines a positive and a negative adjustable regulator in one package. Both can supply 100 mA over a 1.2 V to 37 V output range. It is exceptionally easy to use and requires only two external resistors on each side to set the output voltage.
In addition to high performance both sides of the LH7001 offer full overload protection. Included are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.
The LH7001 is intended for voltage and current regulation in systems where both polarities are required. This is, e.g., the case with supplies for op-amps and buffers, where the LH7001 can also be used to protect from overloads.
Normally, for stable operation, no external capacitor is needed on the positive side. The negative side requires only a single $1 \mu \mathrm{~F}$ solid tantalum capacitor. On both sides, larger output capacitors can be added to improve transient response. In case the device is further than 6 inches from the input filter capacitors, input bypass capacitors are needed. The adjustment terminals can be bypassed to achieve very high ripple rejection.
The positive and the negative regulator are electrically separated and can therefore be used independent from each other. Since each regulator is "floating" and sees only the
input to output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded.
The LH7001 is available in a standard molded 8 pin DIP as LH 7001 CN with a temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and in an 8 pin TO-5 package as LH7001H with a temperature range from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.

Features

- Dual output down to $\pm 1.2 \mathrm{~V}$
- Guaranteed $\pm 100 \mathrm{~mA}$ output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.5%
- Current limit constant with temperature
- Standard 8 pin DIP and 8 pin TO-5 packages
- 80 dB ripple rejection
- Output is short circuit protected

Applications

- Dual precision voltage regulator
- Dual precision current limiter
- Voltage and current protection for op-amps
- Dual tracking regulator

Connection Diagrams

Plastic Package
(Dual-In-Line, 8 Pin)

Metal Can Package
(TO-5, 8 Pin)

TL/K/10127-2
Top View
Order Number LH7001H See NS Package Number H08D

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availabillty and specifications.
Power Dissipation
Input-Output Voltage Differential
Internally Limited
40 V
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering) LH7001CN

4 sec. to $260^{\circ} \mathrm{C}$
LH7001H
10 sec . to $300^{\circ} \mathrm{C}$
ESD Rating
TBD
Operating Junction Temperature

LH7001CN	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH7001H	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1) (unless otherwise noted, these specifications apply:
$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{j}}<+150^{\circ} \mathrm{C}$ for the LH7001 and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}}<+125^{\circ} \mathrm{C}$ for the LH7001C, $\left|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right|=5 \mathrm{~V}$ and I IOUT $=40 \mathrm{~mA}$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 600 mW for LH7001H and up to 900 mW for LH7001CN, $\mathrm{I}_{\mathrm{MAX}}$ is 100 mA . Specifications apply for both positive and negative current limiter.

Parameter	Conditions		Typ	Tested Limit (Note 2)	Design Limit (Note 3)	Units (Max. Unless Otherwise Noted)
Line Regulation	$\begin{aligned} & 3 V<\left\|V_{\text {IN }}-V_{\text {OUT }}\right\|<40 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.07 \end{aligned}$		\%/V
Load Regulation	$\begin{aligned} & 5 \mathrm{~mA}<\mathrm{I}_{\mathrm{OUT}}<\mathrm{I}_{\mathrm{MAX}} \\ & \text { (Note 4), } \mathrm{P} \leq 625 \mathrm{~mW} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.5	$\begin{aligned} & 0.8 \\ & 1.5 \end{aligned}$		\%
Adjustment Pin Current			50	100		$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 5 \mathrm{~mA}<\mathrm{I}_{\mathrm{L}}<100 \mathrm{~mA} \\ & 3 \mathrm{~V}<\left\|\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}\right\|<40 \mathrm{~V}, \mathrm{P} \leq 625 \mathrm{~mW} \end{aligned}$		4	10		$\mu \mathrm{A}$
Reference Voltage	$\begin{aligned} & 3 \mathrm{~V}<\left\|\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right\|<40 \mathrm{~V} \text {, (Note 4) } \\ & 5 \mathrm{~mA}<\text { IOUT }<100 \mathrm{~mA} \end{aligned}$		1.25	$\begin{aligned} & 1.3 \\ & 1.2 \end{aligned}$		$V(\mathrm{Min})$
Current Limit	$3 \mathrm{~V}<\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\|<13 \mathrm{~V}$		200	$\begin{aligned} & 300 \\ & 100 \end{aligned}$		$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Min}) \end{gathered}$
	$\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\|<40 \mathrm{~V}$		50	$\begin{gathered} 120 \\ 25 \end{gathered}$		$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}(\mathrm{Min}) \end{gathered}$
Thermal Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Pulse		0.04	0.2		\%/W
Minimum Load Current	$\begin{aligned} & \left\|V_{\text {IN }}-V_{\text {OUT }}\right\|<40 V \\ & 3<\left\|V_{\text {IN }}-V_{\text {OUT }}\right\|<15 V \end{aligned}$		3.5	5		mA
			1.5	3.5		mA
RMS Output Noise, \% of $\mathrm{V}_{\text {OUT }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{kHz}$		0.003			\%
Ripple Rejection Ratio	$\begin{aligned} & V_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{C}_{\text {ADJ }}=0 \mu \mathrm{~F} \\ & \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 65 \\ & 80 \end{aligned}$			dB
Long Term Stability	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$.		0.3			\%
Thermal Resistance Junction to Ambient (No Heat Sink)	H Package (TO-5)		180			${ }^{\circ} \mathrm{C} / \mathrm{W}$
	N Package (DIP)		110			${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case	H Package (TO-5)		75			${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Boldface limits are guaranteed over full temperature range. Operating junction temperature range of LH 7001 CN is $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and LH 7001 H is
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note 2: Tested limits are guaranteed and 100\% production tested.
Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature or temperature range. These limits are not used to calculated outgoing quality level.
Note 4: This parameter is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Typical Performance Characteristics

Neg. Regulator Min. Operating Current vs Input-Output Differential

Pos. Regulator
Dropout Voltage vs Temperature

Negative Regulator Adjustment Pin Current vs Temperature

Negative Regulator Load Regulation vs Temperature

Pos. Regulator Output Current Limit vs Input-Output Differential

Negative Regulator Dropout Voltage vs Temperature

Positive Regulator Reference Voltage Stability vs Temperature

Positive Regulator Min. Operating Current vs Input-Output Differential

Neg. Regulator Output Current Limit vs Input-Output Differential

Positive Regualtor Adjustment Pin Current vs Temperature

Negative Regulator
Reference Voltage Stability vs Temperature
 temperature (${ }^{\circ} \mathrm{C}$)

Application Hints

In operation, the positive regulator develops a nominal 1.25 V reference voltage, $\mathrm{V}_{\text {REF }}$, between the output and the adjust terminal (Figure 1). The negative regulator develops -1.25 V . The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2, giving an output voltage of $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}}(1+\mathrm{R} 2 / \mathrm{R} 1)$ $+I_{\text {ADJ }}$ (R2)

Pinout shown for DIP (TO-5 in parenthesis)

FIGURE 1. Positive Voltage Regulator

Since the current from the adjustment terminal represents an error term, the LH7001 was designed to minimize I $\begin{aligned} & \text { ADJ }\end{aligned}$ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output voltage will rise. $\mathrm{I}_{\text {ADJ }}$ is typically $50 \mu \mathrm{~A}$ (see graph in Typical Performance Characteristics).

Stability

An input bypass capacitor is recommended for both the positive and the negative regulator in case the regulator is more than 6 inches away from the usual large filter capacitor. A $0.1 \mu \mathrm{~F}$ disk or $1 \mu \mathrm{~F}$ tantalum on the inputs is suitable bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used, but the above values will eliminate the possibility of problems.
The positive regulator is stable with no output capacitors. However, like any feedback circuit, certain values of external capacitance can cause excessive ringing. For the positive regulator these values are between 500 pF and 5000 pF . Additional capacitance on the output will correct the problem.
To stabilize the negative side, a lossy capacitor of more than $0.1 \mu \mathrm{~F}$ is needed from the negative output to ground. A $1 \mu \mathrm{~F}$ tantalum or 3.9Ω in series with a $0.1 \mu \mathrm{~F}$ ceramic will meet the requirement (Figure 2). However, in some applications, like on the supply voltage for an op-amp, a high grade bypass capacitor is needed. In this case a lossy ceramic bead in series with the negative output, followed by $0.1 \mu \mathrm{~F}$ to ground, is recommended (Figure 3). The bead needs to be optimized for frequencies around 1 MHz , a Fair-Rite 2673000101 works well.

TL/K/10127-5

TL/K/10127-6
Pinout shown for DIP (TO-5 in parenthesis)
FIGURE 2. Choice of Capacitors for Stable Operation

TL/K/10127-7
The negative regulator is stabilized with ferrite bead and C3.
Pinout shown for DIP (TO-5 in parenthesis)
FIGURE 3. LH7001 Supplying an Op-Amp

Stability (Continued)

A resistor value of 3.9Ω in series with the output followed by a $0.1 \mu \mathrm{~F}$ to ground is another way to suppress oscillations of the negative regulator, but this is only acceptable where the load regulation is not critical (Figure 4).

TL/K/10127-8
The negative regulator is stablized by $\mathrm{R}_{\mathrm{S}}, \mathrm{C} 3$.
'FIGURE 4. LH7001 Supplying an Op-Amp*
In the current limit mode the negative regulator has a series sense resistor which separates the device from the load and its bypass capacitor. A $0.1 \mu \mathrm{~F}$ ceramic capacitor in series with 3.9Ω from the output to ground will suppress oscillations (Figure 5).

TL/K/10127-9

TL/K/10127-10
R1, C1 Stabilize the negative side. IOUT $= \pm 1.25 \mathrm{~V} / \mathrm{R}_{\mathrm{S}}$.
FIGURE 5. LH7001 as Dual Current Limiter*

Improved Ripple Rejection

The adjustment terminals on both the positive and the negative regulator can be bypassed to ground to improve ripple rejection and noise. These bypass capacitors prevent ripple and noise from being amplified. With $10 \mu \mathrm{~F}$ bypass capacitors 80 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciable increase the ripple rejection at frequencies above 120 Hz . If bypass capacitors are used, it is sometimes necessary to include protection diodes (see next section) to prevent the capacitors from discharging through internal low current paths and damaging the device (Figure 6).

FIGURE 6. LH7001 with Improved Ripple Rejection*

Protection Diodes

When external capacitors are used with any IC regulator, it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage the device.
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. Figure 7 shows how to protect the device with discharge diodes.

Protection Diodes

TL/K/10127-14
FIGURE 7. LH7001 with Large Capacitive Loads*
The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of V_{IN}. In the LH7001 the discharge path is through a large junction that is able to sustain a 2 A surge without being degraded. For output capacitors of $10 \mu \mathrm{~F}$ or less, the LH7001's ballast resistors and output structure limit the peak current to a low enough level so that there is no need to use protection diodes.
The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. When shorts might occur and the capacitance is in excess of $10 \mu \mathrm{~F}$ discharge diodes are recommended (Figure 6).

Capacitors

In general, the best type of capacitor to use are solid tantalum. These capacitors have low impedance even at high frequencies. Depending on capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies, but some types have a large decrease in capacitance at frequencies around 5 MHz . For this reason, a $0.01 \mu \mathrm{~F}$ disk may work better than a $0.1 \mu \mathrm{~F}$ disk as a bypass.

Load Regulation

The LH7001 is capable of providing extremely good load regulation, but a few precautions are needed to obtain maxi-
mum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with $50 \mathrm{~m} \Omega$ resistance between the regulator and load will have a load regulation due to line resistance of $50 \mathrm{~m} \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be $50 \mathrm{~m} \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or, in this case, 11.5 times worse.
Figure 8 shows the effect of resistance between the regulator and the connection of the set resistor.

FIGURE 8. Positive Regulator with Line Resistance in Output Lead*

It is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the output pin. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.
The setting resistor is normally chosen to be 240Ω. The reference voltage of 1.25 V causes a current of 5.2 mA to flow, which is much larger than the maximally $100 \mu \mathrm{~A}$ flowing through the adjustment pin. This makes the regulation very stable. However, if a smaller set current is desired, the setting resistor can be increased at the expense of voltage accuracy, e.g. to $2 \mathrm{k} \Omega$.

Thermal Regulation

When power is dissipated in an IC, temperature gradient occurs across the chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $V_{\text {OUT }}$, per Watt, within the first 10 ms after a step of power is applied. The LH7002 specification is $0.2 \% / \mathrm{W}$, maximum.

Current Limiting and Thermal Protection

Both the positive and the negative regulator protect themselves as well as the loads. They do this by limiting the current and by a thermal shutdown feature that cuts in should the temperature in the regulator get too high.
The current limiting is relatively constant over temperature. The limit is constant up to about 15 V input-to-output differential, then drops (see the graphs in the Typical Performance Characteristics).
The thermal shutdown will cut the current off as soon as the thermal sensor reaches typically $162^{\circ} \mathrm{C}$. Thus the cut-off depends on the power dissipated in the LH7001 and the thermal resistance:

$$
I_{\text {MAX }}=T_{M A X} / R_{T H}\left(V_{I N}-V_{\text {OUT }}\right)
$$

There are also two time constants involved. One is the time constant of the chip; it is typically 100 ms . The other one is the time constant of the package; it is typically 20 sec (the exact value depends on the type of cooling, heatsink, etc.). This means that for a short time the device can absorb more power than in a steady state condition.
The thermal protection on each side is independent of the other. When the protection cuts in, the output current becomes pulse width modulated. In this way the dissipation in the device is limited. The repetition time can range from several tens to several hundreds of milliseconds, with the faster times for the higher overstress. Normally, under symmetrical electric conditions, the positive side will go into thermal protection before the negative side.
Figure 9 shows the dissipation of the positive and the negative regulator for the DIP package. The conditions are symmetrical as shown in Figure 10. The current through the regulators is held at a constant $\pm 100 \mathrm{~mA}$. With increasing voltage the dissipation in the device increases, and the positive regulator starts to turn off in a pulsed fashion. When the power is increased further, the positive regulator is OFF and the negative regulator goes into pulsed thermal shutdown. Figure 11 shows the same graph for the TO-5 package.
It needs to be mentioned that the LH7001CN in the DIP package will be protected from catastrophic failure, but if operated in thermal shutdown frequently or for long durations the thermal shutdown temperature of nominally $162^{\circ} \mathrm{C}$, will reduce the lifetime of the plastic package.

INPUT-TO-OUTPUT VOLTAGE DIFFERENTIAL ($\pm \mathrm{V}$) TL/K/10127-16
FIGURE 9. Dissipated Power of Positive and Negative Regulator vs In-to-Out Voltage Differential in a Typical LH7001CN (DIP Package)

Schematic Diagrams
LH7001CN (DIP)

TL/K/10127-20

LH7001H (TO-5)

TL/K/10127-22

TL/K/10127-23

Typical Applications

TL/K/10127-25

Typical Applications (Continued)

Dual Current and Voltage Protection*

TL/K/10127-27

$$
R_{S}=\frac{1.25 \mathrm{~V}+\mathrm{V}_{\mathrm{D}}}{10}
$$

$$
\mathrm{R}_{1}=1 \mathrm{k} \Omega \text { (Chosen) }
$$

$$
R_{2}=R_{1}\left(\frac{V_{2}}{1.25}-1\right)
$$

$$
V_{1}=V_{2}-I_{0} R_{S}
$$

Typical Applications (Continued)

Tracking Regulator*

TL/K/10127-28
$A_{1}=$ LM301A, LM307 or LF13741 Only
$R_{1}, R_{2}=$ Matched resistors with good TC tracking
*Pinout shown for DIP (TO-5 in parenthesis)
$\pm 10 \mathrm{~V}$ High Stability Regulator*

TL/K/10127-30
*Pinout shown for DIP (TO-5 in parenthesis).
${ }^{* *}$ To trim the output voltages R_{1} and R_{2} can be replaced by a series combination of 240Ω and a 100Ω potentiometer.

LM104/LM204/LM304 Negative Regulator

General Description

The LM104 series are precision voltage regulators which can be programmed by a single external resistor to supply any voltage from 40 V down to zero while operating from a single unregulated supply. They can also provide 0.01 -percent regulation in circuits using a separate, floating bias supply, where the output voltage is limited only by the breakdown of external pass transistors. Although designed primarily as linear, series regulators, the circuits can be used as switching regulators, current regulators or in a number of other control applications. Typical performance characteristics are:
■ Subsurface zener reference

- 1 mV regulation no load to full load
- $0.01 \% / \mathrm{V}$ line regulation
- $0.2 \mathrm{mV} / \mathrm{V}$ ripple rejection
- 0.3% temperature stability over military temperature range

The LM104 series is the complement of the LM105 positive regulator, intended for systems requiring regulated negative voltages which have a common ground with the unregulated supply. By themselves, they can deliver output currents to 25 mA , but external transistors can be added to get any desired current. The output voltage is set by external resistors, and either constant or foldback current limiting is made available.
The LM104 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM204 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM304 is specified for operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic Diagram

TL/H/7754-1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 6)

	LM104/LM204	LM304
Input Voltage	50 V	40 V
Input-Output Voltage Differential	50 V	40 V
Power Dissipation (Note 1)	500 mW	500 mW
Operating Temperature Range		
LM104	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
LM204	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM304		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$ for hermetic

Electrical Characteristics

Parameter	Conditions	LM104/LM204			LM304			Units
		Min	Typ	Max	Min	Typ	Max	
Input Voltage Range		-50		-8	-40		-8	V
Output Voltage Range		-40		-0.015	-30		-0.035	V
Output-Input Voltage Differential (Note 3)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.5 \end{aligned}$		$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Load Regulation (Note 4)	$\begin{aligned} & \mathrm{O} \leq \mathrm{I}_{\mathrm{O}} \leq 20 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{SC}}=15 \Omega \\ & \hline \end{aligned}$		1	5		1	5	mV
Line Regulation (Note 5)	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \leq-5 \mathrm{~V} \\ & \Delta \mathrm{~V}_{\mathrm{IN}}=0.1 \mathrm{~V}_{\mathrm{IN}} \end{aligned}$		0.056	0.1		0.056	0.1	\%
Ripple Rejection	$\begin{aligned} & \mathrm{C}_{19}=10 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{IN}}<-15 \mathrm{~V} \\ & -7 \mathrm{~V} \geq \mathrm{V}_{\mathrm{IN}} \geq-15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{gathered} 0, .5 \\ 1.0 \end{gathered}$		$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Output Voltage Scale Factor	$\mathrm{R}_{2-3}=2.4 \mathrm{k}$	1.8	2.0	2.2	1.8	2.0	2.2	$\mathrm{V} / \mathrm{k} \Omega$
Temperature Stability	$\mathrm{V}_{\mathrm{O}} \leq-1 \mathrm{~V}$		0.3	1.0		0.3	1.0	\%
Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{O}} \leq-5 \mathrm{~V}, \mathrm{C}_{1-9}=0 \\ & \mathrm{C}_{1-9}=10 \mu \mathrm{~F} \end{aligned}$		$\begin{gathered} 0.007 \\ 15 \\ \hline \end{gathered}$			$\begin{gathered} 0.007 \\ 15 \\ \hline \end{gathered}$		$\begin{gathered} \% \\ \mu \mathrm{~V} \\ \hline \end{gathered}$
Standby Current Drain	$\begin{aligned} \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}, V_{\mathrm{O}} & =0 \\ \mathrm{~V}_{\mathrm{O}} & =-30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}} & =-40 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.7 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 1.7 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Long Term Stability	$\mathrm{V}_{\mathrm{O}} \leq-1 \mathrm{~V}$		0.01	1.0		0.01	1.0	\%

Note 1: The maximum junction temperature of the LM104 is $150^{\circ} \mathrm{C}$, while that of the LM204 is $125^{\circ} \mathrm{C}$ and LM304 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 10 C package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: These specifications apply for junction temperatures between $-55^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$ (between $-25^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ for the LM 204 and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LM304) and for input and output voltages within the ranges given, unless otherwise specified. The load and line regulation specifications are for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation.
Note 3: When external booster transistors are used, the minimum output-input voltage differential is increased, In the worst case, by approximately 1V.
Noto 4: Tho output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors.

Note 5: With zero output, the de line regulation is determined from the ripplo rojection. Henco, with output voltages between 0V and - 5 V , a de output variation, determined from the ripple rejection, must be added to find the worst-case line regulation.
Note 6: Refer to RETS104X drawing for military specifications for the LM104.

Typical Performance Characteristics

Connection Diagram

Note：Pin 5 connected to case．
Top View
Order Number LM104H，LM204H or LM304H
See NS Package H10C

Typical Applications

TL／H／7754－3

National Semiconductor

LM105/LM205/LM305/LM305A,

 LM376 Voltage Regulators
General Description

The LM105 series are positive voltage regulators similar to the LM100, except that an extra gain stage has been added for improved regulation. A redesign of the biasing circuitry removes any minimum load current requirement and at the same time reduces standby current drain, permitting higher voltage operation. They are direct, plug-in replacements for the LM100 in both linear and switching regulator circuits with output voltages greater than 4.5 V . Important characteristics of the circuits are:
■ Output voltage adjustable from 4.5 V to 40 V
■ Output currents in excess of 10A possible by adding external transistors
■ Load regulation better than 0.1%, full load with current limiting

- DC line regulation guaranteed at $0.03 \% / \mathrm{V}$
- Ripple rejection on $0.01 \% \mathrm{~V}$
- 45 mA output current without external pass transistor (LM305A)
Like the LM100, they also feature fast response to both load and line transients, freedom from oscillations with varying resistive and reactive loads and the ability to start reliably on any load within rating. The circuits are built on a single silicon chip and are supplied in either an 8-lead, TO-5 header or a $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ metal flat package.
The LM105 is specified for operation for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+125^{\circ} \mathrm{C}$, the LM205 is specified for $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, and the LM305/LM305A, LM376 is specified for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}$ $\leq+70^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

TL/H/7755-1
Pin connections shown are for metal can.

Order Number LM105H, LM205H, LM305H or LM305AH
See NS Package Number H08C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

Input Voltage
Input-Output Differential
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

LM105	LM205
50 V	50 V
40 V	40 V
800 mW	800 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

$300^{\circ} \mathrm{C}$
LM305
40 V
40 V
800 mW
$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

LM305A	LM376
50 V	40 V
40 V	40 V
800 mW	400 mW
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

Parameter	Conditions	LM105			LM205			LM305			LM305A			LM376			Units
		Min	Typ	Max													
Input Voltage Range		8.5		50	8.5		50	8.5		40	8.5		50	9.0		40	V
Output Voltage Range		4.5		40	4.5		40	4.5		30	4.5		40	5.0		37	V
Input-Output Voltage Differential		3.0		30	3.0		30	3.0		30	3.0		30	3.0		30	V
Load Regulation (Note 3)	$\mathrm{R}_{S C}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.02	0.05		0.02	0.05		0.02	0.05							\%
	$\mathrm{R}_{S C}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {A(MAX }}$		0.03	0.1		0.03	0.1		0.03	0.1							\%
	$\mathrm{R}_{S C}=10 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {A(MIN })}$		0.03	0.1		0.03	0.1		0.03	0.1							\%
		$0 \leq \mathrm{l}_{0} \leq 12 \mathrm{~mA}$			$0 \leq \mathrm{l}_{\mathrm{O}} \leq 12 \mathrm{~mA}$			$0 \leq \mathrm{I}_{0} \leq 12 \mathrm{~mA}$									
	$\mathrm{R}_{\text {SC }}=0 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$											0.02	0.2			0.2	\%
	$\mathrm{R}_{\text {SC }}=0 \Omega, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$											0.03	0.4			0.5	\%
	$\mathrm{R}_{\mathrm{SC}}=0 \Omega, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$											0.03	0.4			0.5	\%
											$0 \leq \mathrm{I}_{0} \leq 45 \mathrm{~mA}$			$0 \leq \mathrm{I}_{0} \leq 25 \mathrm{~mA}$			
Line Regulation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$															0.03	\%/V
	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$															0.1	\%/V
	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 5 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.025	0.06		0.025	0.06		0.025	0.06		0.025	0.06				\%/V
	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \geq 5 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.015	0.03		0.015	0.03		0.015	0.03		0.015	0.03				\%/V
Temperature Stability	$\mathrm{T}_{\mathrm{A}(\mathrm{MIN})} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {A(MAX }}$		0.3	1.0		0.3	1.0		0.3	1.0		0.3	1.0				\%

Electrical Characteristics (Note 2) (Continued)

Parameter	Conditions	LM105			LM205			LM305			LM305A			LM376			Units
		Min	Typ	Max													
Feedback Sense Voltage		1.63	1.7	1.81	1.63	1.7	1.81	1.63	1.7	1.81	1.55	1.7	1.85	1.60	1.72	1.80	V
Output Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$																
	$\mathrm{C}_{\text {REF }}=0$		0.005			0.005			0.005			0.005					\%
	$\mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}$		0.002			0.002			0.002			0.002					\%
Standby Current Drain	$\mathrm{V}_{1 \mathrm{~N}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$															2.5	mA
	$\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$								0.8	2.0							mA
	$\mathrm{V}_{1 \mathrm{~N}}=50 \mathrm{~V}$		0.8	2.0		0.8	2.0					0.8	2.0				mA
Current Limit Sense Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SC}}=10 \Omega, \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}, \text { (Note 4) } \end{aligned}$	225	300	375	225	300	375	225	300	375	225	300	375		300		mV
Long Term Stability			0.1			0.1			0.1			0.1					\%
Ripple Rejection $\boldsymbol{\theta}_{\mathrm{JA}}$	$\begin{aligned} & C_{\text {REF }}=10 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz} \\ & \text { Epoxy Dual-In-Line Package } \end{aligned}$		0.003			0.003			0.003			0.003			140		$\begin{gathered} \% / V \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
θ JA	TO-5 Board Mount in Still Air		230			230			230			230					${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\boldsymbol{\theta}_{\text {JA }}$	TO-5 Board Mount in 400 LF/Min Air Flow		92			92			92			92					${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$	TO-5		25			25			25			25					${ }^{\circ} \mathrm{C} / \mathrm{W}$

 allowable providing the dissipation rating is not exceeded with the power average over a five second interval for the LM105 and LM205, and averaged over a two second interval for the LM305.
 of $\mathbf{2 k \Omega}$. Load and line regulation specifications are for a constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation. Note 3: The output currents given, as well as the load regulation, can be increased by the addition of external transistors. The improvement factor will be roughly equal to the composite current gain of the added transistors. Note 4: With no external pass transistor
Note 5: Refer to RETS105X Drawing for military specifications for the LM105.

Typical Performance Characteristics LM105/LM205/LМ305/LM305A

Typical Performance Characteristics Lм376

TL/H/7755-7

Typical Applications
10A Regulator with Foldback Current Limiting

TL/H/7755-4
1.0A Regulator with Protective Diodes

Linear Regulator with Foldback Current Limiting

TL/H/7755-8

Typical Applications (Continued)
Shunt Regulator

TL/H/7755-10

Switching Regulator

Basic Positive Regulator with Current Limiting

1.0A Regulator with Protective Diodes

TL/H/7755-13

Linear Regulator with Foldback Current Limiting

National Semiconductor
 LM109/LM309 5-Volt Regulator

General Description

The LM109 series are complete 5V regulators fabricated on a single silicon chip. They are designed for local regulation on digital logic cards, eliminating the distribution problems association with single-point regulation. The devices are available in two standard transistor packages. In the solidkovar TO-5 header, it can deliver output currents in excess of 200 mA , if adequate heat sinking is provided. With the TO-3 power package, the available output current is greater than 1 A .
The regulators are essentially blowout proof. Current limiting is included to limit the peak output current to a safe value. In addition, thermal shutdown is provided to keep the IC from overheating. If internal dissipation becomes too great, the regulator will shut down to prevent excessive heating.
Considerable effort was expended to make these devices easy to use and to minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response somewhat. Input bypassing is needed, however, if the regulator is located very
far from the filter capacitor of the power supply. Stability is also achieved by methods that provide very good rejection of load or line transients as are usually seen with TTL logic.
Although designed primarily as a fixed-voltage regulator, the output of the LM109 series can be set to voltages above 5 V , as shown. It is also possible to use the circuits as the control element in precision regulators, taking advantage of the good current-handling capability and the thermal overload protection.

Features

- Specified to be compatible, worst case, with TTL and DTL
(1) Output current in excess of 1 A
- Internal thermal overload protection
- No external components required

Schematic Diagram

TL/H/7138-1

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 3)
Input Voltage
35 V
Power Dissipation

Operating Junction Temperature Range	
LM109	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM309	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM109			LM309			Units
		Min	Typ	Max	Min	Typ	Max	
Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	4.7	5.05	5.3	4.8	5.05	5.2	V
Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 7.10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 25 \mathrm{~V} \end{aligned}$		4.0	50		4.0	50	mV
Load Regulation TO-5 Package TO-3 Package	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 0.5 \mathrm{~A} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 1.5 \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{gathered} 50 \\ 100 \end{gathered}$		$\begin{aligned} & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Output Voltage	$\begin{aligned} & 7.40 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 25 \mathrm{~V}, \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq \mathrm{I}_{\mathrm{MAX}}, \\ & \mathrm{P}<\mathrm{P}_{\text {MAX }} \end{aligned}$	4.6		5.4	4.75		5.25	V
Quiescent Current	$7.40 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 25 \mathrm{~V}$		5.2	10		5.2	10	mA
Quiescent Current Change	$\begin{aligned} & 7.40 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 25 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq \mathrm{I}_{\mathrm{MAX}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Output Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		40			40		$\mu \mathrm{V}$
Long Term Stability			10			20		mV
Ripple Rejection	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	50			50			dB
Thermal Resistance, Junction to Case TO-5 Package TO-3 Package	(Note 2)		$\begin{aligned} & 15 \\ & 2.5 \end{aligned}$.	$\begin{aligned} & 15 \\ & 2.5 \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM 109 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+125^{\circ} \mathrm{C}$ for the LM 309 ; $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$; and
$\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~A}$ for the TO-39 package or IOUT $=0.5 \mathrm{~A}$ for the TO-3 package. For the TO-39 package, $\mathrm{I}_{\mathrm{MAX}}=0.2 \mathrm{~A}$ and $\mathrm{P}_{\mathrm{MAX}}=2.0 \mathrm{~W}$. For the TO-3 package, $\mathrm{I}_{\mathrm{MAX}}$ $=1.0 \mathrm{~A}$ and $\mathrm{P}_{\mathrm{MAX}}=20 \mathrm{~W}$.
Note 2: Without a heat sink, the thermal resistance of the TO-39 package is about $150^{\circ} \mathrm{C} / \mathrm{W}$, while that of the $\mathrm{TO}-3$ package is approximately $35^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the sink.
Note 3: Refer to RETS109H drawing for LM109H or RETS109K drawing for LM109K military specifications.

Connection Diagrams

Metal Can Packages

Order Number LM109H or LM309H
See NS Package Number H03A

TL/H/7138-3
Order Number LM109K STEEL or LM309K STEEL See NS Package Number K02A

For Aluminum Package
Order Number LM309K
See NS Package Number KC02A

Application Hints

a. Bypass the input of the LM109 to ground with $\geq 0.2 \mu \mathrm{~F}$ ceramic or solid tantalum capacitor if main filter capacitor is more than 4 inches away.
b. Use steel package instead of aluminum if more than 5,000 thermal cycles are expected. ($\Delta \mathrm{T} \geq 50^{\circ} \mathrm{C}$)
c. Avoid insertion of regulator into "live" socket if input voltage is greater than 10 V . The output will rise to within 2 V of the unregulated input if the ground pin does not make contact, possibly damaging the load. The LM109 may also be damaged if a large output capacitor is charged up, then discharged through the internal clamp zener when the ground pin makes contact.
d. The output clamp zener is designed to absorb transients only. It will not clamp the output effectively if a failure occurs in the internal power transistor structure. Zener dynamic impedance is $\approx 4 \Omega$. Continuous RMS current into the zener should not exceed 0.5A.
e. Paralleling of LM109s for higher output current is not recommended. Current sharing will be almost nonexistent, leading to a current limit mode operation for devices with the highest initial output voltage. The current limit devices may also heat up to the thermal shutdown point ($\approx 175^{\circ} \mathrm{C}$). Long term reliability cannot be guaranteed under these conditions.

Crowbar Overvoltage Protection

TL/H/7138-8
f. Preventing latchoff for loads connected to negative voltage:
If the output of the LM109 is pulled negative by a high current supply so that the output pin is more than 0.5 V negative with respect to the ground pin, the LM109 can latch off. This can be prevented by clamping the ground pin to the output pin with a germanium or Schottky diode as shown. A silicon diode (1N4001) at the output is also needed to keep the positive output from being pulled too far negative. The 10Ω resistor will raise $+\mathrm{V}_{\text {OUT }}$ by $\approx 0.05 \mathrm{~V}$.

TL/H/7138-7

TL/H/7138-9

[^1]**Q1 must be able to withstand 7A continuous current if fusing is not used at regulator input. LM109 bond wires will fuse at currents above 7A.
tQ2 is selected for surge capability. Consideration must be given to filter capacitor size, transformer impedance, and fuse blowing time.
$\dagger \dagger$ Trip point is $\approx 7.5 \mathrm{~V}$.

Typical Performance Characteristics

Maximum Average
Power Dissipation (LM109H)

Current Limit Characteristics (Note 1)

Maximum Average
Power Dissipation (LM309K)

Maximum Average
Power Dissipation (LM309H)

Thermally Induced Output
Voltage Variation

TL/H/7138-10

Ripple Rejection

TL/H/7138-11

Note 1: Current limiting foldback characteristics are determined by input output differential, not by output voltage.

Typical Performance Characteristics (Continued)

Load Transient Response

Typical Applications

TL/H/7138-2
*Required if regulator is located more than 4 " from power supply filter capacitor.
\dagger Although no output capacitor is needed for stability, it does improve transient response.

C2 should be used whenever long wires are used to connect to the load, or when transient response is critical.
Note: Pin 3 electrically connected to case.
High Stability Regulator*

TL/H/7138-4

TL/H/7138-5
*Regulation better than 0.01%, load, line and temperature, can be obtained.
\dagger Determines zener current. May be adjusted to minimize thermal drift.
\#Solid tantalum.

Current Regulator

*Determines output current. If wirewound resistor is used, bypass with $0.1 \mu \mathrm{~F}$.

2

National Semiconductor

LM117A/LM117/LM317A/LM317 3-Terminal Adjustable Regulator

General Description

The LM117 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 1.5 A over a 1.2 V to 37 V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM117 is packaged in standard transistor packages which are easily mounted and handled.
In addition to higher performance than fixed regulators, the LM117 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.
Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3 -terminal regulators.
Besides replacing fixed regulators, the LM117 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e., avoid short-circuiting the output.
Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment pin and output, the LM117 can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

The LM117 series devices with a "K" suffix are packaged in standard TO-3 transistor packages, while those with an "H" suffix are in a solid Kovar-base TO-39 transistor package. The LM117A and LM117 are rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the LM317A from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and the LM317 from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LM317AT and the LM317T are available in a TO-220 plastic package and the LM317MP in a TO-202 plastic package.
For applications requiring greater output current, see LM150 series (3A) and LM138 series (5A) data sheets. For the negative complement, see LM137 series data sheet.

LM117 Series Packages and Power Capability

Part Number Suffix	Package	Rated Power Dissipation	Design Load Current
K	TO-3	20 W	1.5 A
H	TO-39	2 W	0.5 A
T	TO-220	20 W	1.5 A
MP	TO-202	2 W	0.5 A

Features

- Guaranteed 1% output voltage tolerance (LM117A, LM317A)
■ Guaranteed max. 0.01\%/V line regulation (LM117A, LM317A)
■ Guaranteed max. 0.3% load regulation (LM117A, LM117)
- Guaranteed 1.5A output current
adjustable output down to 1.2 V
- Current limit constant with temperature
- 100% electrical burn-in
- 80 dB ripple rejection
- Output is short-circuit protected

Typical Applications

1.2V-25V Adjustable Regulator

TL/H/9063-1
Full output current not available at high input-output voltages
*Needed if device is more than 6 inches from filter capacitors.
†Optional-improves transient response. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.
$\dagger \dagger V_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{R 2}{R 1}\right)+I_{\mathrm{ADJ}}\left(R_{2}\right)$

TL/H/9063-2 *Sets maximum $V_{\text {OUT }}$

Absolute Maximum Ratin If Military/Aerospace specified devic please contact the National Semi Office/Distributors for availability and (Note 2)	Igs (Note 1) es are required conductor Sales specifications.
Power Dissipation	Internally Limited
Input-Output Voltage Differential	$+40 \mathrm{~V},-0.3 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$
Lead Temperature	
Metal Package (Soldering, 10 seconds)	
Plastic Package (Soldering, 4 second	
(Note 5)	

Operating Temperature Range

LM117A/LM117
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$
LM317A
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

Preconditioning

Thermal Limit Burn-In
All Devices 100\%

Electrical Characteristics
Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{iN}}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$. (Note 3)

Parameter	Conditions	LM117A			LM117			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Voltage		1.238	1.250	1.262				V
	$\begin{aligned} & 3 V \leq\left(V_{I N}-V_{\text {OUT }}\right) \leq 40 \mathrm{~V}, \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}, \mathrm{P} \leq \mathrm{P}_{\text {MAX }} \end{aligned}$	1.225	1.250	1.270	1.20	1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}$ (Note 4)		0.005	0.01		0.01	0.02	\%/V
			0.01	0.02		0.02	0.05	\%/V
Load Regulation	$10 \mathrm{~mA} \leq$ Iout $\leq \mathrm{I}_{\text {MAX }}($ Note 4)		0.1	0.3		0.1	0.3	\%
			0.3	1		0.3	1	\%
Thermal Regulation	20 ms Pulse		0.03	0.07		0.03	0.07	\%/W
Adjustment Pin Current			50	100		50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{IOUT}^{\leq} \leq \mathrm{I}_{\text {MAX }} \\ & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V} \\ & \hline \end{aligned}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)=40 \mathrm{~V}$		3.5	5		3.5	5	mA
Current Limit	$\begin{aligned} & \left(\mathrm{V}_{\text {iN }}-\mathrm{V}_{\text {OUT }}\right) \leq 15 \mathrm{~V} \\ & \text { K Package } \\ & \text { H Package } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.4 \\ 1.8 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.4 \\ 1.8 \\ \hline \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
	$\begin{aligned} & \left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)=40 \mathrm{~V} \\ & \text { K Package } \\ & \text { H Package } \end{aligned}$	$\begin{gathered} 0.3 \\ 0.15 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.2 \\ & \hline \end{aligned}$		$\begin{gathered} 0.3 \\ 0.15 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.2 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
RMS Output Noise, \% of V OUT	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{C}_{\text {ADJ }}=0 \mu \mathrm{~F} \end{aligned}$		65			65		dB
	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{C}_{\mathrm{ADJ}}=10 \mu \mathrm{~F} \end{aligned}$	66	80		66	80		dB
Long-Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$		0.3	1		0.3	1	\%
Thermal Resistance, Junction-to-Case	K Package H Package		$\begin{aligned} & 2.3 \\ & 12 \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ 15 \\ \hline \end{gathered}$		$\begin{gathered} 2.3 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 15 \\ \hline \end{gathered}$	$\begin{array}{\|l} { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \hline \end{array}$
Thermal Resistance, Junction-to-Ambient (No Heat Sink)	K Package H Package		$\begin{gathered} 35 \\ 140 \\ \hline \end{gathered}$			$\begin{gathered} 35 \\ 140 \\ \hline \end{gathered}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$

Electrical Characteristics (Continued)
Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$. (Note 3)

Parameter	Conditions	LM317A			LM317			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Voltage		1.238	1.250	1.262				V
	$\begin{aligned} & 3 V \leq\left(V_{I N}-V_{O U T}\right) \leq 40 V \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}, \mathrm{P} \leq \mathrm{P}_{\text {MAX }} \end{aligned}$	1.225	1.250	1.270	1.20	1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}($ Note 4)		0.005	0.01		0.01	0.04	\%/V
			0.01	0.02		0.02	0.07	\%/V
Load Regulation	$10 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}($ Note 4)		0.1	0.5		0.1	0.5	\%
			0.3	1		0.3	1.5	\%
Thermal Regulation	20 ms Pulse		0.04	0.07		0.04	0.07	\%/W
Adjustment Pin Current			50	100		50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }} \\ & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V} \end{aligned}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)=40 \mathrm{~V}$		3.5	10		3.5	10	mA
Current Limit	$\left(V_{I N}-V_{\text {OUT }}\right) \leq 15 V$ K and T Package H Package P Package	$\begin{aligned} & 1.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 0.8 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 1.8 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
	$\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right)=40 \mathrm{~V}$ K and T Package H Package P Package	$\begin{gathered} 0.15 \\ 0.075 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$		$\begin{gathered} 0.15 \\ 0.075 \\ 0.075 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.2 \\ & 0.2 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
RMS Output Noise, \% of V ${ }_{\text {OUT }}$	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{C}_{\text {ADJ }}=0 \mu \mathrm{~F} \end{aligned}$		65			65		dB
	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \\ & \mathrm{C}_{\mathrm{ADJ}}=10 \mu \mathrm{~F} \end{aligned}$	66	80	\cdot	66	80		dB
Long-Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$		0.3	1		0.3	1	\%
Thermal Resistance, Junction-to-Case	K Package H Package T Package P Package		$\begin{gathered} 2.3 \\ 12 \\ 4 \end{gathered}$	$\begin{gathered} 3 \\ 15 \\ 5 \end{gathered}$		$\begin{gathered} 2.3 \\ 12 \\ 4 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 15 \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$
Thermal Resistance, Junction-to-Ambient (No Heat Sink)	K Package H Package T Package P Package		$\begin{gathered} 35 \\ 140 \\ 50 \end{gathered}$			$\begin{gathered} 35 \\ 140 \\ 50 \\ 80 \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Refer to RETS117AH drawing for the LM117AH, the RETS117H drawing for the LM117H, the RETS117AK drawing for the LM117AK, or the RETS117K for the LM117K military specifications.
Note 3: Although power dissipation is internally limited, these specifications are applicable for maximum power dissipations of 2 W for the TO-39 and TO-202, and 20W for the TO-3 and TO-220. I MAX is 1.5 A for the TO-3 and TO-220 packages and 0.5 A for the TO-39 and TO-202 packages. All limits (i.e., the numbers in the Min. and Max. columns) are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 4: Regulation is measured at a constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specifications for thermal regulation.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics

Output Capacitor $=0 \mu \mathrm{~F}$ unless otherwise noted

Application Hints

In operation, the LM117 develops a nominal 1.25V reference voltage, $\mathrm{V}_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current l_{1} then flows through the output set resistor R2, giving an output voltage of
$V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R 2$

TL/H/9063-5

FIGURE 1

Since the $100 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM117 was designed to minimize $I_{\text {ADJ }}$ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.
The adjustment terminal can be bypassed to ground on the LM117 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.
In general, the best type of capacitors to use is solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.
Although the LM117 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values be-
tween 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability. Any increase of the load capacitance larger than $10 \mu \mathrm{~F}$ will merely improve the loop stability and output impedance.

Load Regulation

The LM117 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output (case) of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times I_{L}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.
Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

TL/H/9063-6
FIGURE 2. Regulator with Line Resistance in Output Lead
With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, with the TO-5 package, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of V_{IN}. In the LM117, this discharge path is through a large junction that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.

Application Hints (Continued)
The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM117 is a 50Ω resistor which limits the peak discharge
current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM117 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

$V_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{R 2}{R 1}\right)+I_{A D J R 2}$
D1 protects against C1
D2 protects against C2

FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications (Continued)

5V Logic Regulator with Electronic Shutdown*

*Min. output $\approx 1.2 \mathrm{~V}$

Adjustable Regulator with Improved Ripple Rejection

*Discharges C1 if output is shorted to ground TL/H/9063-10

TL/H/9063-9

High Stability 10V Regulator

High Current Adjustable Regulator

Typical Applications (Continued)

TL/H/9063-13

\dagger Solid tantalum
TL/H/9063-15
*Lights in constant current mode

Typical Applications (Continued)

Low Cost 3A Switching Regulator

TL/H/9063-19

TL/H/9063-22

Current Limited Voltage Regulator

TL/H/9063-23

Adjusting Multiple On-Card Regulators with Single Control*

TL/H/9063-24

Typical Applications (Continued)

TL/H/9063-25

TL/H/9063-26

* R_{S} —sets output impedance of charger: $Z_{O U T}=R_{S}\left(1+\frac{R 2}{R 1}\right)$

Use of R_{S} allows low charging rates with fully charged battery.

50 mA Constant Current Battery Charger

TL/H/9063-27
Adjustable 4A Regulator

TL/H/9063-28
*Sets peak current (0.6 A for 1Ω)
**The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients

Connection Diagrams (See Physical Dimension section for further information)

(TO-220)
Plastic Package

TL/H/9063-32
Front View
Order Number LM317AT or LM317T See NS Package Number T03B
(TO-39) Metal Can Package

CASE IS OUTPUT
TL/H/9063-31 Bottom View

Order Number LM117AH, LM117H, LM317AH or LM317H See NS Package Number H03A

TL/H/9063-33
Front View
Order Number LM317MP See NS Package Number P03A

LM117HV/LM317HV 3-Terminal Adjustable Regulator

General Description

The LM117HV/LM317HV are adjustable 3-terminal positive voltage regulators capable of supplying in excess of 1.5 A over a 1.2 V to 57 V output range. They are exceptionally easy to use and require only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM117HV is packaged in standard transistor packages which are easily mounted and handled.
In addition to higher performance than fixed regulators, the LM117HV series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.
Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejections ratios which are difficult to achieve with standard 3-terminal regulators.
Besides replacing fixed regulators, the LM117HV is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e. do not short the output to ground.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM117HV can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.
The LM117HVK STEEL, and LM317HVK STEEL are packaged in standard TO-3 transistor packages while the LM117HVH, and LM317HVH are packaged in a solid Kovar base TO-39 transistor package. The LM117HV is rated for operation from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, and the LM317HV from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- Adjustable output down to 1.2 V
- Guaranteed 1.5 A output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- 100\% electrical burn-in
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection

■ Output is short-circuit protected

Typical Applications

Full output current not available at high input-output voltages
\dagger Optional-improves transient response. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.
*Needed if device is more than 6 inches from filter capacitors.
$\dagger V_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{R 2}{R 1}\right)+I_{\text {ADJ }} R_{2}$

5V Logic Regulator with
Electronic Shutdown*

TL/H/9062-3
*Min. output $\approx 1.2 \mathrm{~V}$
TL/H/9062-2
*Sets maximum $\mathrm{V}_{\text {OUT }}$

Absolute Maximum Ratings

If Military/Aerospace specified de please contact the National Se Office/Distributors for availability a (Note 3)	nductor Sales pecifications.
Power Dissipation	Internally limited
Input-Output Voltage Differential	$+60 \mathrm{~V},-0.3 \mathrm{~V}$
Operating Junction Temperature Range	
LM1.17HV	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM317HV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$
Preconditioning Burn-In in
Thermal Limit
100\% All Devices
ESD Tolerance (Note 4)

Electrical Characteristics (Note 1)

Parameter	Conditions	LM117HV			LM317HV			Units
		Min	Typ	Max	Min	Typ	Max	
Line Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }} \leq 60 \mathrm{~V} \\ & \left(\text { Note 2) } \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}\right. \end{aligned}$		0.01	0.02		0.01	0.04	\%/V
Load Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{IOUT} \mathrm{I}_{\text {IMAX }}$		0.1	0.3		0.1	0.5	\%
Thermal Regulation	$T_{J}=25^{\circ} \mathrm{C}, 20 \mathrm{~ms}$ Pulse		0.03	0.07		0.04	0.07	\%/W
Adjustment Pin Current			50	100		50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq \mathrm{I}_{\mathrm{MAX}} \\ & 3.0 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}\right) \leq 60 \mathrm{~V} \end{aligned}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Reference Voltage	$\begin{aligned} & \left.3.0 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 60 \mathrm{~V} \text {, (Note } 3\right) \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}, \mathrm{P} \leq \mathrm{P}_{\text {MAX }} \\ & \hline \end{aligned}$	1.20	1.25	1.30	1.20	1.25	1.30	V
Line Regulation	$3.0 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 60 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$, (Note 2)		0.02	0.05		0.02	0.07	\%/V
Load Regulation	$10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}$ (Note 2)		0.3	1		0.3	1.5	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$\left(V_{\text {IN }}-V_{\text {OUT }}\right)=60 \mathrm{~V}$		3.5	7		3.5	12	mA
Current Limit	$\begin{aligned} & \left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 15 \mathrm{~V} \\ & \text { K Package } \\ & \text { H Package } \\ & \left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 60 \mathrm{~V} \\ & \text { K Package } \\ & \text { H Package } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \end{aligned}$	$\begin{array}{\|c} 2.2 \\ 0.8 \\ \\ 0.1 \\ 0.03 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \end{aligned}$	$\begin{gathered} 2.2 \\ 0.8 \\ \\ 0.1 \\ 0.03 \\ \hline \end{gathered}$	$\begin{aligned} & 3.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
RMS Output Noise, \% of VOUT	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$	66	$\begin{aligned} & 65 \\ & 80 \end{aligned}$		66	$\begin{aligned} & 65 \\ & 80 \end{aligned}$		dB dB
Long-Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		0.3	1		0.3	1	\%
Thermal Resistance, Junction to Case	H Package K Package		$\begin{array}{r} 12 \\ 2.3 \\ \hline \end{array}$	$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$		$\begin{array}{r} 12 \\ 2.3 \\ \hline \end{array}$	$\begin{gathered} 15 \\ 3 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Ambient (no heat sink)	H Package K Package		$\begin{gathered} 140 \\ 35 \end{gathered}$			140 35		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM117HV, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ for the LM317HV; $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ $=5 \mathrm{~V}$ and $\mathrm{I}_{\text {OUT }}=0.1 \mathrm{~A}$ for the TO-39 package and lout $=0.5 \mathrm{~A}$ for the TO-3 package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-39 and 20 W for the TO-3. I MAX is 1.5 A for the TO-3 and 0.5A for the TO-39 package.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
Note 3: Refer to RETS117HVH for LM117HVH or RETS117HVK for LM117HVK military specificatioins.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics (K Package)

Application Hints

In operation, the LM117HV develops a nominal 1.25 V reference voltage, $\mathrm{V}_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current l_{1} then flows through the output set resistor R2, giving an output voltage of

TL/H/9062-5
FIGURE 1
Since the $100 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM117HV was designed to minimize $I_{\text {ADJ }}$ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possiblity of problems.
The adjustment terminal can be bypassed to ground on the LM117HV to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over 10 $\mu \mathrm{F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.
In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.
Although the LM117HV is stable with no output capacitors, like any feedback circuit, certain values of external capaci-
tance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or 25 $\mu \mathrm{F}$ aluminum electrolytic) on the output swamps this effect and insures stability. Any increase of load capacitance larger than $10 \mu \mathrm{~F}$ will merely improve the loop stability and output impedance.

Load Regulation

The LM117HV is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times I_{L}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+$ R2/R1) or in this case, 11.5 times worse.
Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

TL/H/9062-6

FIGURE 2. Regulator with Line Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. However, with the TO-5 package, care should be taken to minimize the wire length of the output lead. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of V_{IN}. In the LM117HV, this discharge path is through a large junction that is able to sustain 15A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.

The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM117HV is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM117HV with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

TL/H/9062-7
FIGURE 3. Regulator with Protection Diodes
$V_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{R 2}{\mathrm{R} 1}\right)+I_{\mathrm{ADJ}} R 2$
D1 protects against C1
D2 protects against C2

Schematic Diagram

Typical Applications (Continued)

Slow Turn-On 15V Regulator

TL/H/9062-9

High Stability 10V Regulator

TL/H/9062-11

TL/H/9062-13
Full output current not available at high input-output voltages

Adjustable Regulator with Improved Ripple Rejection

TL/H/9062-10
\dagger Solid tantalum
*Discharges C1 if output is shorted to ground

High Current Adjustable Regulator

TL/H/9062-12
\dagger Solid tantalum
*Minimum load current $=30 \mathrm{~mA}$
\ddagger Optional-improves ripple rejection

TL/H/9062-14

Typical Applications (Continued)

Adjustable Multiple On-Card Regulators with Single Control*

Typical Applications (Continued)

TL/H/9062-25

* R_{S}-sets output impedance of charger $\mathrm{Z}_{\mathrm{OUT}}=\mathrm{R}_{\mathrm{S}}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$

Use of R_{S} allows low charging rates with fully charged battery.
**The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients

50 mA Constant Current Battery Charger

*Sets peak current (0.6 A for 1Ω)
**The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients

Connection Diagrams (See Physical Dimension section for further information)
(TO-3 Steel)
Metal Can Package

TL/H/9062-29
Case is Output Bottom View

Order Number LM117HVK STEEL,
LM317HVK STEEL
See NS Package Number K02A
(TO-39)
Metal Can Package

TL/H/9062-30
Case is Output Bottom View
Order Number LM117HVH, or LM317HVH
See NS Package Number H03A

LM120/LM320

Series 3-Terminal Negative Regulators

General Description

The LM120 series are three-terminal negative regulators with a fixed output voltage of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V , and up to 1.5 A load current capability. Where other voltages are required, the LM137 and LM137HV series provide an output voltage range of -1.2 V to -47 V .
The LM120 need only one external component-a compensation capacitor at the output, making them easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.
Exceptional effort has been made to make the LM120 Series immune to overload conditions. The regulators have current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.
Although primarily intended for fixed output voltage applications, the LM120 Series may be programmed for higher output voltages with a simple resistive divider. The low quiescent drain current of the devices allows this technique to be used with good regulation.

Features

■ Preset output voltage error less than $\pm 3 \%$

- Preset current limit
- Internal thermal shutdown
- Operates with input-output voltage differential down to 1V
- Excellent ripple rejection
- Low temperature drift
- Easily adjustable to higher output voltage

LM120 Series Packages and Power Capability

Device	Package	Rated Power Dissipation	Design Load Current
LM120/LM320	TO-3 (K)	20 W	1.5 A
	TO-39 (H)	2 W	0.5 A
LM320	TO-220 (T)	15 W	1.5 A
LM320M	TO-202 (P)	7.5 W	0.5 A

Typical Applications

TL/H/7767-3

TL/H/7767-2
"Required if regulator is separated from filter capacitor by more than 3 ". For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
\dagger Required for stability. For value given, capacitor must be solid tantalum. 25 $\mu \mathrm{F}$ aluminum electrolytic may substituted. Values given may be increased without limit.
For output capacitance in excess of $100 \mu \mathrm{~F}$, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

- 5 Volt Regulators (Note 3)

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)
Power Dissipation Internally Limited
Input Voltage
$-25 \mathrm{~V}$

Input-Output Voltage Differential
Junction Temperatures See Note 1
Storage Temperature Range
Lead Temperature (Soldering, 10 sec .)
Plastic

25 V
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Electrical Characteristics

Order Numbers		Metal Can Package												Power Plastic Package						Units
			$\begin{aligned} & 1120 \mathrm{~K}- \\ & \text { (TO-3) } \\ & \hline \end{aligned}$			$\begin{aligned} & 1320 K \\ & \text { (TO-3 } \\ & \hline \end{aligned}$			$\begin{aligned} & 1120 \mathrm{H} \\ & \mathrm{TO}-3 \mathrm{~S} \\ & \hline \end{aligned}$		$\begin{array}{r} \text { LM3 } \\ \text { (T } \\ \hline \end{array}$	$\begin{aligned} & 320 \mathrm{H}- \\ & \mathrm{TO}-39 \end{aligned}$			$1320 \mathrm{~T}-4$			$\begin{aligned} & \text { 320MF } \\ & \text { ro-20 } \end{aligned}$	$\begin{aligned} & \text { P-5.0 } \\ & \text { 12) } \\ & \hline \end{aligned}$	
Design Output Current (ID) Device Dissipation (PD)		$\begin{aligned} & 1.5 \mathrm{~A} \\ & 20 \mathrm{~W} \\ & \hline \end{aligned}$			$\begin{aligned} & 1.5 \mathrm{~A} \\ & 20 \mathrm{~W} \\ & \hline \end{aligned}$			$\begin{gathered} 0.5 \mathrm{~A} \\ 2 \mathrm{~W} \end{gathered}$			$\begin{aligned} & 0.5 \mathrm{~A} \\ & 2 \mathrm{~W} \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 1.5 \mathrm{~A} \\ & 15 \mathrm{~W} \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \mathrm{~A} \\ & 7.5 \mathrm{~W} \end{aligned}$			
Parameter	Conditions (Note 1)	Min	Typ	Max																
Output Voltage	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}, \\ & \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	-5.1	-5	-4.9	-5.2	- 5	-4.8	-5.1	-5	-4.9	-5.2	-5	-4.8	-5.2	-5	-4.8	-5.2	- 5	-4.8	V
Line Regulation	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{I N} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$		10	25		10	40		10	25		10	40		10	40		10	40	mV
Input Voltage		-25	\%	-7	-25	*	-7	-25	\%	-7	--25		-7	-25		-7.5	-25		-7.5	V
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	54	64		54	64		54	64		54	64		54	64		54	64		dB
Load Regulation, (Note 2)	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}, \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq \mathrm{I}_{\mathrm{D}} \end{aligned}$		50	75		60	100		30	50		30.	50		50	100		40	100	mV
Output Voltage, (Note 1)	$\begin{aligned} & -7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}}, \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{LOAD}} \leq \mathrm{I}_{\mathrm{D}}, \mathrm{P} \leq \mathrm{P}_{\mathrm{D}} \end{aligned}$	-5.20		-4.80	-5.25		-4.75	-5.20	1	-4.80	-5.25	T	-4.75	-5.25	.s.	-4.75	-5.25	-5	-4.75	V
Quiescent Current	$\mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		1.	2		1	2		1	2		1	2		1	2		1	2	mA
Quiescent Current Change	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{I N} \leq \mathrm{V}_{\text {MAX }} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq \mathrm{I}_{\mathrm{D}} \\ & \hline \end{aligned}$		1 0.1 0.1	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$		$\begin{array}{r} 0.05 \\ 0.04 \end{array}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.9 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0.05 \\ & 0.04 \end{aligned}$	$\begin{gathered} 0.3 \\ 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		150			150			150			150			150			150		$\mu \mathrm{V}$
Long Term Stability			5	50		5	50		5	50		5.	50		10			10		mV
Thermal Resistance Junction to Case Junction to Ambient				$\begin{gathered} 3 \\ 35 \\ \hline \end{gathered}$			$\begin{gathered} 3 \\ 35 \end{gathered}$			Note 4 Note 4			Note 4 Note 4		$\begin{array}{r} 4 \\ 4 \\ 50 \end{array}$			12 70		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$

Note 1: This specification applies over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM 120 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ for the LM 320 .
 used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to P_{D}.
Note 3: For -5 V 3 amp regulators, see LM145 data sheet.
Note 4: Thermal resistance of typically $85^{\circ} \mathrm{C} / \mathrm{W}$ (in 400 linear feet air flow), $224^{\circ} \mathrm{C} / \mathrm{W}$ (in static air) junction to ambient, of typically $21^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.
Note 5: Refer to RETS120-5H drawing for LM120H-5.0 or RETS120-5K drawing for LM120-5K military specifications.

- 12 Volt Regulators

Absolute Maximum Ratings

f Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 4)
Power Dissipation
Internally Limited
$-35 \mathrm{~V}$ Input Voltage

Input-Output Voltage Differential Junction Temperatures
Storage Temperature Range See Note 1

Lead Temperature (Soldering, 10 sec .)

Electrical Characteristics

Order Numbers		Metal Can Package												Power Plastic Package						Units
			$\begin{aligned} & 1120 \mathrm{~K} \\ & \text { (TO-3) } \end{aligned}$			$\begin{aligned} & 1320 \mathrm{~K} \\ & \text { (TO-3) } \\ & \hline \end{aligned}$			$\begin{aligned} & 1120 \mathrm{H} \\ & \mathrm{TO} \end{aligned}$	$\begin{aligned} & 1-12 \\ & 9) \\ & \hline \end{aligned}$		$\begin{aligned} & 1320 \mathrm{H} \\ & \mathrm{TO}-39 \end{aligned}$			$\begin{aligned} & 1320 \mathrm{~T} \\ & \mathrm{rO}-220 \end{aligned}$			$\begin{aligned} & \text { 320MP } \\ & \text { TO-202 } \end{aligned}$	$\begin{aligned} & \text { P-12 } \\ & \hline 2) \\ & \hline \end{aligned}$	
Design Output Current (ID) Device Dissipation (P_{D})		$\begin{array}{r} 1 \mathrm{~A} \\ 20 \mathrm{~W} \\ \hline \end{array}$			$\begin{array}{r} 1 \mathrm{~A} \\ 20 \mathrm{~W} \\ \hline \end{array}$			$\begin{aligned} & 0.2 \mathrm{~A} \\ & 2 \mathrm{~W} \end{aligned}$			$\begin{aligned} & \hline 0.2 \mathrm{~A} \\ & 2 \mathrm{~W} \end{aligned}$			$\begin{gathered} \text { 1A } \\ \text { 15W } \end{gathered}$			$\begin{aligned} & \text { 0.5A } \\ & 7.5 \mathrm{~W} \end{aligned}$			
Parameter	Conditions (Note 1)	Min	Typ	Max																
Output Voltage	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{I N}=17 \mathrm{~V}, \\ & \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	-12.3	-12	-11.7	-12.4	-12	-11.6	-12.3	-12	-11.7	-12.4	-12	-11.6	-12.4	-12	-11.6	-12.5	-12	-11.5	V
Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{LOAD}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{I N} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$		4	10		4	20		4	10		4	20		4	20		4	24	mV
Input Voltage		-32		-14	-32		-14	-32		-14	-32		-14	-32		-14.5	-32		-14.5	V
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	56	80		56	80		56	80		56	80		56	80		56	80		dB
Load Regulation, (Note 2)	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{I N}=17 \mathrm{~V}, \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq \mathrm{I}_{\mathrm{D}} \end{aligned}$		30	80		30	80		10	25		10	40		30	80		40	100	mV
Output Voltage, (Note 1)	$\begin{aligned} & 14.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}}, \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{LOAD}} \leq \mathrm{I}_{\mathrm{D}}, \mathrm{P} \leq \mathrm{P}_{\mathrm{D}} \end{aligned}$	-12.5		-11.5	-12.6		-11.4	-12.5		-11.5	-12.6		-11.4	-12.6		-11.4	-12.6		-11.4	V
Quiescent Current	$\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		2	4		2	4		2	4		2	4		2	4		2	4	mA
Quiescent Current Change	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq \mathrm{I}_{\mathrm{D}} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 0.4 \\ 0.4 \\ \hline \end{array}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 0.4 \\ 0.4 \\ \hline \end{array}$		$\begin{array}{r} 0.05 \\ 0.03 \\ \hline \end{array}$	$\begin{array}{r} 0.4 \\ 0.4 \\ \hline \end{array}$		$\begin{array}{\|r\|} \hline 0.05 \\ 0.03 \\ \hline \end{array}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$		$\begin{array}{\|} 0.05 \\ 0.04 \\ \hline \end{array}$	$\begin{gathered} 0.3 \\ 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=17 \mathrm{~V}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		400			400			400			400			400			400		$\mu \mathrm{V}$
Long Term Stability			12	120		12	120		12.	120		12	120		24			24		mV
Thermal Resistance Junction to Case Junction to Ambient				$\begin{gathered} 3 \\ 35 \\ \hline \end{gathered}$			$\begin{gathered} 3 \\ 35 \end{gathered}$		\cdots	Note 3 Note 3			Note 3 Note 3		$\begin{gathered} 4 \\ 50 \\ \hline \end{gathered}$			$\begin{aligned} & 12 \\ & 70 \\ & \hline \end{aligned}$		$\left.\right\|^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: This specification applies over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM 120 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ for the LM 320 .
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, low duty cycle, pulse testing is used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to P_{D}.
Note 3: Thermal resistance of typically $85^{\circ} \mathrm{C} / \mathrm{W}$ (in 400 linear feet/min air flow), $224^{\circ} \mathrm{C} / \mathrm{W}$ (in static air) junction to ambient, of typically $21^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.
Note 4: Refer to RETS120H-12 drawing for LM120H-12 or RETS120-12K drawing for LM120K-12 military specifications.

- 15 Volt Regulators

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4)
Power Dissipation
Internally Limited
Input Voltage
LM120/LM320 -40V
LM320T/LM320MP
Electrical Characteristics

Order Numbers		Metal Can Package												Power Plastic Package						Units
			$\begin{aligned} & \text { 1120K- } \\ & \text { (TO-3) } \end{aligned}$			$\begin{aligned} & \text { A320K- } \\ & \text { (TO-3) } \end{aligned}$		$\begin{aligned} & \text { LM1 } \\ & \text { (T } \end{aligned}$	$\begin{aligned} & 1120 \mathrm{H}- \\ & \mathrm{TO}-39 \end{aligned}$			$\begin{aligned} & \text { I320H } \\ & \text { TO-39 } \end{aligned}$			$\begin{aligned} & \text { 1320T- } \\ & \text { ro- } 220 \end{aligned}$		LM3 (T	$\begin{aligned} & \text { 320MP } \\ & \text { ro-202 } \end{aligned}$	P-15 2)	
Design Output Current (ID) Device Dissipation (PD)		$\begin{gathered} 1 \mathrm{~A} \\ 20 \mathrm{~W} \end{gathered}$			$\begin{gathered} \text { 1A } \\ 20 W \end{gathered}$			$\begin{gathered} 0.2 A \\ 2 W \end{gathered}$			$\begin{gathered} 0.2 A \\ 2 W \end{gathered}$			$\begin{gathered} 1 A \\ 15 W \end{gathered}$			$\begin{aligned} & \text { 0.5A } \\ & 7.5 W \end{aligned}$			
Parameter	Conditions (Note 1)	Min	Typ	Max	Min	7yp	Max													
Output Voltage	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=20 \mathrm{~V}, \\ & \mathrm{I}_{\text {LOAD }}=5 \mathrm{~mA} \end{aligned}$	-15.3	-15	-14.7	-15.4	4	-14.6	-15.3	+15 $\times 1$	-14.7	-15.4	-15	-14.6	-15.5	-15	-14.5	-15.6	+15	-14.4	V
Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{LOAD}}=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$		5 -81	10		5	20		\% 5	10		+ ${ }_{\text {c }}$	20		5 5	20		5	30	mV
Input Voltage		-35	\% ${ }_{5}$	-17	-35	E ${ }^{\text {a }}$	-17	-35	**	-17	-35		-17	-35	¢	-17.5	-35	1. 2	-17.5	V
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	56	80		56	80		56	80		56	80		56	80		56	80		dB
Load Regulation, (Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=20 \mathrm{~V}, \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{LOAD}} \leq \mathrm{I}_{\mathrm{D}} \end{aligned}$		80	80		30	80		10,	25		10	40		30	80		40	100	mV
Output Voltage, (Note 1)	$\begin{aligned} & 17.5 \mathrm{~V} \leq \mathrm{V}_{I N} \leq \mathrm{V}_{\mathrm{MAX}}, \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq \mathrm{I}_{\mathrm{D}}, \mathrm{P} \leq \mathrm{P}_{\mathrm{D}} \end{aligned}$	-15.5	\%	-14.5	-15.6		-14.4	-15.5	\%	-14.5	-15.6	\because	-14.4	-15.7	- 6	-14.3	-15.7		-14.3	V
Quiescent Current	$\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		2	4		2	4		$\underline{2}$	4		2	4		2	4		2	4	mA
Quiescent Current Change	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq \mathrm{I}_{\mathrm{D}} \\ & \hline \end{aligned}$		0.1 0.1	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$		18 0.05 0.03	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.04 \end{aligned}$	$\begin{gathered} 0.3 \\ 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}= \\ & \mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \end{aligned}$		400			400			400			400			400			400		$\mu \mathrm{V}$
Long Term Stability			15	150		15	150		15	150		15	150		30			30.		mV
Thermal Resistance Junction to Case Junction to Ambient	,			$\begin{gathered} 3 \\ 35 \end{gathered}$			$\begin{gathered} 3 \\ 35 \end{gathered}$			Note 3 Note 3		\%	Note 3 Note 3		$\left.\left\lvert\, \begin{array}{c}4 \\ 50\end{array}\right.\right]$			12 70		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: This specification applies over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM 120 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ for the LM 320 .
 used. The LM120/LM320 series does have low thermal feedback, improving line and load regulation. On all other tests, even though power dissipation is internally limited, electrical specifications apply only up to P_{D}.
Note 3: Thermal resistance of typically $85^{\circ} \mathrm{C} / \mathrm{W}$ (in 400 linear feet/min air flow), $224^{\circ} \mathrm{C} / \mathrm{W}$ (in static air) junction to ambient, of typically $21^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.
Note 4: Refer to RETS120-15H drawing for LM120H-15 or RETS120-15K drawing for LM120K-15 military specifications.

Typical Performance Characteristics

Output Impedance TO-3 and TO-220 Packages

Minimum Input-Output Differential TO-5 and TO-202 Packages

Maximum Average Power Dissipation (TO-3)

TL/H/7767-4
*These curves for LM120. Derate $25^{\circ} \mathrm{C}$ further for LM320.

Typical Performance Characteristics (Continued)

Typical Applications (Continued)
High Stability 1 Amp Regulator

Lead and line regulation - 0.01\% temperature stability - 0.2\%
\dagger Determines Zener current.
$\dagger \dagger$ Solid tantalum.
An LM120-12 or LM120-15 may be used to permit higher input voltages, but the regulated output voltage must be at least -15 V when using the LM120-12 and -18V for the LM120-15.
**Select resistors to set output voltage. $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking suggested.

Typical Applications (Continued)
Wide Range Tracking Regulator

TL/H/7767-7
*Resistor tolerance of R1 and R2 determine matching of (+) and (-) inputs.
**Necessary only if raw supply capacitors are more than $3^{\prime \prime}$ from regulators An LM3086N array may substitute for Q1, D1 and D2 for better stability and tracking. In the array diode transistors Q5 and Q4 (in parallel) make up D2; similarly, Q1 and Q2 become D1 and Q3 replaces the 2N2222.

Variable Output

TL/H/7767-9
*Optional. Improves transient response and ripple rejection.
$V_{\text {OUT }}=V_{\text {SET }} \frac{R 1+R 2}{R 2}$
SELECT R2 AS FOLLOWS:

LM120-5	-300Ω
LM120-12	-750Ω
LM120-15	$-\mathbf{1 k}$

TL/H/7767-8

*Resistor tolerance of R4 and R5 determine matching of $(+)$ and $(-)$ outputs.
**Necessary only if raw supply filter capacitors are more than 2 " from regulators.

Light Controllers Using Silicon Photo Cells

TL/H/7767-10
*Lamp brightness increases until $i_{1}=5 \mathrm{~V} / \mathrm{R} 1$ (i_{1} can be set as low as $1 \mu \mathrm{~A}$). †Necessary only of raw supply filter capacitor is more than $2^{\prime \prime}$ from LM320MP.

TL/H/7767-11
*Lamp brightness increases until $i_{1}=i_{Q}(1 \mathrm{~mA})+5 \mathrm{~V} / \mathrm{R} 1$.
†Necessary only if raw supply filter capacitor is more than $2^{\prime \prime}$ from LM320.

Connection Diagrams

TL/H/7767-13
Bottom View
Metal Can Package TO-39 (H) Order Number LM120H-5.0, LM120H-12, LM120H-15, LM320H5.0, LM320H-12 or LM320H-15 See NS Package Number H03A

TL/H/7767-14
Bottom View
Steel Metal Can Package TO-3 (K) Order Number LM120K-5.0, LM120K-12, LM120K-15, LM320K5.0, LM320K-12 or LM320K-15 See NS Package Number K02A

TL/H/7767-15
Bottom View
Aluminum Metal Can Package TO-3 (KC)
Order Number LM320KC-5.0,
LM320KC-12 or LM320KC-15 See NS Package Number KC02A

TL/H/7767-16
Front View
Power Package TO-202 (P) Order Number LM320MP-5.0, LM320MP-12 or LM320MP-15 See NS Package Number P03A

TL/H/7767-17
Front View
Power Package TO-220 (T)
Order Number LM320T-5.0, LM320T-12 or LM320T-15 See NS Package Number T03B

Schematic Diagrams

Schematic Diagrams (Continued)

General Description

The LM123 is a three-terminal positive regulator with a preset 5 V output and a load driving capability of 3 amps. New circuit design and processing techniques are used to provide the high output current without sacrificing the regulation characteristics of lower current devices.
The LM123A and LM323A offer improved precision over the standard LM123 and LM323. Parameters with tightened specifications include output voltage tolerance, line regulation, and load regulation.
The 3 amp regulator is virtually blowout proof. Current limiting, power limiting, and thermal shutdown provide the same high level of reliability obtained with these techniques in the LM109 1 amp regulator.
No external components are required for operation of the LM123. If the device is more than 4 inches from the filter capacitor, however, a $1 \mu \mathrm{~F}$ solid tantalum capacitor should be used on the input. A $0.1 \mu \mathrm{~F}$ or larger capacitor may be used on the output to reduce load transient spikes created by fast switching digital logic, or to swamp out stray load capacitance.
An overall worst case specification for the combined effects of input voltage, load currents, ambient temperature, and
power dissipation ensure that the LM123 will perform satisfactorily as a system element.
For applications requiring other voltages, see LM150 series adjustable regulator data sheet.
Operation is guaranteed over the junction temperature range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ for LM123A/LM123, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for LM323A, and $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for LM323. A hermetic TO-3 package is used for high reliability and low thermal resistance.

Features

- Guaranteed 1\% initial accuracy (A version)
- 3 amp output current
- Internal current and thermal limiting
- 0.01Ω typical output impedance
- 7.5 V minimum input voltage
- 30W power dissipation
- 100% electrical burn-in

Connection Diagram

TL/H/7771-2
Order Number LM123AK STEEL, LM123K STEEL, LM323AK STEEL or LM323K STEEL See NS Package Number K02A

Typical Applications

TL/H/7771-3
*Required if LM123 is more than 4" from filter capacitor.
\dagger Regulator is stable with no load capacitor into resistive loads.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4)

Input Voltage	20 V
Power Dissipation	Internally Limited
Operating Junction Temperature Range	
LM123A, LM123	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM323A	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM323	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$
ESD Tolerance (Note 5)	2000 V

Preconditioning
Burn-In in Thermal Limit
100\% All Devices

LM123A/LM123 Electrical Characteristics (Note 1)

Parameter	Conditions	LM123A			LM123			Units
		Min	Typ	Max	Min	Typ	Max	
Output Voltage	$\begin{aligned} & \mathrm{T}_{1}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}=7.5 \mathrm{~V}, \text { IOUT }=0 \mathrm{~A} \end{aligned}$	4.95	5	5.05	4.7	5	5.3	V
	$\begin{aligned} & 7.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V} \\ & 0 \mathrm{~A} \leq \mathrm{IOUT} \leq 3 \mathrm{~A}, \mathrm{P} \leq 30 \mathrm{~W} \end{aligned}$	4.85		5.15	4.6		5.4	V
Line Regulation (Note 3)	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 15 \mathrm{~V} \end{aligned}$		5	10		5	25	mV
Load Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {IN }}=7.5 \mathrm{~V}, \\ & 0 \mathrm{~A} \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A} \end{aligned}$		25	50		25	100	mV
Quiescent Current	$\begin{aligned} & 7.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}, \\ & 0 \mathrm{~A} \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A} \end{aligned}$		12	20		12	20	mA
Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		40			40		$\mu \mathrm{Vrms}$
Short Circuit Current Limit	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \\ & \mathrm{VIN}_{\mathrm{IN}}=7.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{gathered} 4.5 \\ 6 \\ \hline \end{gathered}$		$\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} 4.5 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
Long Term Stability				35			35	mW
Thermal Resistance Junction to Case (Note 2)			2			2		${ }^{\circ} \mathrm{C} / \mathrm{W}$

LM323A/LM323 Electrical Characteristics (Note 1)

Parameter	Conditions	LM323A			LM323			Units
		Min	Typ	Max	Min	Typ	Max	
Output Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}=7.5 \mathrm{~V}, \text { IOUT }=0 \mathrm{~A} \end{aligned}$	4.95	5	5.05	4.8	5	5.2	V
	$\begin{aligned} & 7.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V} \\ & 0 \mathrm{~A} \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A}, \mathrm{P} \leq 30 \mathrm{~W} \end{aligned}$	4.85		5.15	4.75		5.25	V
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 15 \mathrm{~V} \end{aligned}$		5	10		5	25	mV
Load Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=7.5 \mathrm{~V}, \\ & 0 \mathrm{~A} \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A} \\ & \hline \end{aligned}$		25	50		25	100	mV
Quiescent Current	$\begin{aligned} & 7.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}, \\ & 0 \mathrm{~A} \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A} \end{aligned}$		12	20		12	20	mA
Output Noise Voltage	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		40			40		$\mu \mathrm{Vrms}$
Short Circuit Current Limit	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=7.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} 4.5 \\ 6 \\ \hline \end{gathered}$		$\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} 4.5 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
Long Term Stability				35			35	mW
Thermal Resistance Junction to Case (Note 2)			2			2		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise noted, specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ for the LM123A and LM123, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ for the LM323A, and $0^{\circ} \mathrm{C} \leq$ $T_{j} \leq+125^{\circ} \mathrm{C}$ for the LM323. Although power dissipation is internally limited, specifications apply only for $\mathrm{P} \leq 30 \mathrm{~W}$.
Note 2: Without a heat sink, the thermal resistance of the TO-3 package is about $35^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the specified values of $2^{\circ} \mathrm{C} / \mathrm{W}$, depending on the efficiency of the heat sink.
Note 3: Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and a duty cycle $\leq 5 \%$.
Note 4: Refer to RETS123K drawing for LM123K, and to RETS123AK for LM123AK military specifications.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Typical Applications (Continued)
Adjustable Output 5V-10V 0.1\% Regulation

*Select to Set Output Voltage
**Select to Draw 25 mA from V-

Typical Performance Characteristics

Typical Applications (Continued)

10 Amp Regulator with Complete Overload Protection

TL/H/7771-6

Adjustable Regulator 0V-10V @ 3A

$\mathrm{C}_{1}-2 \mu \mathrm{~F}$ Optional—Improves Ripple Rejection, Noise, and Transient Response

Typical Applications (Continued)

Schematic Diagram

LM125/LM325/LM325A, LM126/LM326 Voltage Regulators

General Description

These are dual polarity tracking regulators designed to provide balanced positive and negative output voltages at current up to 100 mA , the devices are set for $\pm 15 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ outputs respectively. Input voltages up to $\pm 30 \mathrm{~V}$ can be used and there is provision for adjustable current limiting. These devices are available in two package types to accommodate various power requirements and temperature ranges.

Features

- $\pm 15 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ tracking outputs
- Output current to 100 mA
- Output voltage balanced to within 1\% (LM125, LM126, LM325A)
- Line and load regulation of 0.06%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

Schematic and Connection Diagrams

Dual-In-Line Package

Top View
Order Number LM325AN, LM325N or LM326N
See NS Package Number N14A

Metal Can Package

Case connected to $-\mathrm{V}_{\mathrm{IN}}$
TL/H/7776-3
Top View
Order Number LM125H,
LM325H, LM126H or LM326H See NS Package Number H10C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications. (Note 5)

Input Voltage	$\pm 30 \mathrm{~V}$
Forced $\mathrm{V}^{+}+($Min $)$(Note 1)	-0.5 V
Forced $\mathrm{V}_{\mathrm{O}^{-}}$(Max) (Note 1)	+0.5 V
Power Dissipation (Note 2)	$\mathrm{P}_{\mathrm{MAX}}$
Output Short-Circuit Duration (Note 3)	Continuous

Operating Conditions

Operating Free Temperature Range

LM125	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM325, LM325A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

Electrical Characteristics LM125/Lм325/LM325A (Note 2)

Parameter	Conditions	Min	Typ	Max	Units
Output Voltage LM125/LM325A LM325	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 14.8 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 15.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input-Output Differential		2.0			V
Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$		2.0	10	mV
Line Regulation Over Temperature Range	$\mathrm{V}_{\mathrm{IN}}=18 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$,		2.0	20	mV
Load Regulation $\mathrm{V}_{\mathrm{O}}{ }^{+}$ $\mathrm{V}_{\mathrm{O}^{-}}$	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=0 \text { to } 50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}= \pm 30 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Load Regulation Over Temperature Range $\begin{aligned} & \mathrm{V}_{\mathrm{O}^{+}} \\ & \mathrm{V}_{\mathrm{O}^{-}} \end{aligned}$	$\mathrm{I}_{\mathrm{L}}=0$ to $50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}= \pm 30 \mathrm{~V}$		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Output Voltage Balance LM125, LM325A LM325	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Output Voltage Over Temperature Range LM125, LM325A LM325	$\begin{aligned} & \mathrm{P} \leq \mathrm{P}_{\mathrm{MAX}}, 0 \leq \mathrm{l}_{\mathrm{O}} \leq 50 \mathrm{~mA}, \\ & 18 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}\right\| \leq 30 \end{aligned}$	$\begin{aligned} & 14.65 \\ & 14.27 \end{aligned}$		$\begin{aligned} & 15.35 \\ & 15.73 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Temperature Stability of V_{O}			± 0.3		\%
Short Circuit Current Limit	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		260		mA
Output Noise Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{BW}=100-10 \mathrm{kHz}$		150		$\mu \mathrm{Vrms}$
Positive Standby Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1.75	3.0	mA
Negative Standby Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		3.1	5.0	mA
Long Term Stability			0.2		\%/kHr
Thermal Resistance Junction to Case (Note 4) LM125H, LM325H Junction to Ambient Junction to Ambient	(Still Air) (400 Lf/min Air Flow)		$\begin{gathered} 20 \\ 215 \\ 82 \\ \hline \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient LM325AN, LM325N	(Still Air)		90		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: That voltage to which the output may be forced without damage to the device.
Note 2: Unless otherwise specified these specifications apply for $T_{j}=55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ on $\mathrm{LM} 125, \mathrm{~T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ on $\mathrm{LM} 325 \mathrm{~A}, \mathrm{~T}_{j}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ on LM325, $\mathrm{V}_{\mathrm{IN}}= \pm 20 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}, I_{\mathrm{MAX}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=2.0 \mathrm{~W}$ for the H10 Package. $\mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA} . \mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=1.0 \mathrm{~W}$ for the DIP N Package.
Note 3: If the junction temperature exceeds $150^{\circ} \mathrm{C}$, the output short circuit duration is 60 seconds.
Note 4: Without a heat sink, the thermal resistance junction to ambient of the H 10 Package is about $155^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.
Note 5: Refer to RETS125X drawing for military specification of LM125.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)
Input Voltage $\pm 30 \mathrm{~V}$
Forced $\mathrm{V}^{+}{ }^{+}$(Min) (Note 1) -0.5V
Forced V^{-}(Max) (Note 1)
Power Dissipation (Note 2)
Output Short-Circuit Duration (Note 3)
Electrical Characteristics LM126/LM326 (Note 2)

Parameter	Conditions	Min	Typ	Max	Units
Output Voltage LM126/LM326	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 11.8 \\ & 11.5 \end{aligned}$	12	$\begin{aligned} & 12.2 \\ & 12.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input-Output Differential		2.0			V
Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$		2.0	10	mV
Line Regulation Over Temperature Range	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA}$		2.0	20	mV
Load Regulation $\mathrm{V}_{\mathrm{O}}{ }^{+}$ $\mathrm{V}_{\mathrm{O}^{-}}$	$\begin{aligned} & \mathrm{L}_{\mathrm{L}}=0 \text { to } 50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}= \pm 30 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Load Regulation Over Temperature Range $\begin{aligned} & \mathrm{V}_{\mathrm{O}^{+}} \\ & \mathrm{V}^{-} \end{aligned}$	$\mathrm{I}_{\mathrm{L}}=0$ to $50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}= \pm 30 \mathrm{~V}$		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Output Voltage Balance LM126, LM326	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 125 \\ & \pm 250 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Output Voltage Over Temperature Range LM126 LM326	$\begin{aligned} & P \leq P_{M A X}, 0 \leq I_{O} \leq 50 \mathrm{~mA} \\ & 15 \mathrm{~V} \leq\left\|V_{I N}\right\| \leq 30 \end{aligned}$	$\begin{aligned} & 11.68 \\ & 11.32 \end{aligned}$		$\begin{aligned} & 12.32 \\ & 12.68 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Temperature Stability of V_{O}			± 0.3		\%
Short Circuit Current Limit	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		260		mA
Output Noise Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{BW}=100-10 \mathrm{kHz}$		100		$\mu \mathrm{Vrms}$
Positive Standby Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=0$		1.75	3.0	mA
Negative Standby Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=0$		3.1	5.0	mA
Long Term Stability			0.2		\%/kHr
Thermal Resistance Junction to Case (Note 4) LM126H, LM326H Junction to Ambient Junction to Ambient	(Still Air) ($400 \mathrm{Lf} / \mathrm{min}$ Air Flow)		$\begin{gathered} 20 \\ 155 \\ 62 \end{gathered}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Junction to Ambient LM326N			150		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: That voltage to which the output may be forced without damage to the device.
Note 2: Unless otherwise specified these specifications apply for $T_{j}=55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ on $\mathrm{LM} 126, \mathrm{~T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ on $\mathrm{LM} 326, \mathrm{~V}_{\mathrm{IN}}= \pm 20 \mathrm{~V}, \mathrm{I}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{MAX}}$ $=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=2.0 \mathrm{~W}$ for the H 10 Package. $\mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA} . \mathrm{I}_{\mathrm{MAX}}=100 \mathrm{~mA}, \mathrm{P}_{\mathrm{MAX}}=1.0 \mathrm{~W}$ for the DIP N Package.
Note 3: If the junction temperature exceeds $150^{\circ} \mathrm{C}$, the output short circuit duration is 60 seconds.
Note 4: Without a heat sink, the thermal resistance junction to ambient of the H 10 Package is about $155^{\circ} \mathrm{C} / \mathrm{W}$. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.
Note 5: Refer to RETS126X drawing for military specification of L'M126.

Operating Conditions

Operating Free Temperature Range

LM126	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM326	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

Internally Limited
Continuous

Typical Performance Characteristics

TL/H/7776-7
Note: Metal can (H) packages shown.

$$
\mathrm{I}_{\mathrm{CL}}=\frac{\text { Current Limit Sense Voltage (See Curve) }}{\mathrm{R}_{\mathrm{CL}}}
$$

†Solid tantalum
$\dagger \dagger$ Short pins 6 and 7 on dip
$\dagger \dagger \dagger R_{C L}$ can be added to the basic regulator between pins 6 and 5,1 and 2 to reduce current limit.
*Required if regulator is located an appreciable distance from power supply filter.
**Although no capacitor is needed for stability, it does help transient response. (If needed use $1 \mu \mathrm{~F}$ electrolytic).
***Although no capacitor is needed for stability, it does help transient response. (If needed use $10 \mu \mathrm{~F}$ electrolytic).

Typical Applications (Continued)
Positive Current Dependent Simultaneous Current Limiting

TL/H/7776-8

$$
\begin{aligned}
& \mathrm{ICL}^{+}=\frac{\frac{\mathrm{V}_{\text {SENSENEG }}}{2}+\mathrm{V}_{\mathrm{BEQ} 1}}{\mathrm{R} 1} \\
& \mathrm{I}_{\mathrm{CL}}+=\frac{\mathrm{V}_{\text {SENSENEG }}+\mathrm{V}_{\text {DIODE }}}{R_{\mathrm{CL}^{-}}} \\
& \mathrm{I}_{\mathrm{CL}}+\text { Controls Both Sides of the Regulator. }
\end{aligned} \quad \mathrm{R}_{\mathrm{CL}^{+}}=\frac{\mathrm{V}_{\mathrm{SENSE}^{+}}^{1.1 \mathrm{ICL}^{+}}}{}
$$

Boosted Regulator With Foldback Current Limit

TL/H/7776-9

Typical Applications (Continued)

TL/H/7776-10
\dagger Solid tantalum
$\dagger \dagger$ Short pins 6 and 7 on dip
*Required if regulator is located an appreciable distance from power supply filter.
**Although no capacitor is needed for stability, it does help transient response. (If needed use $1 \mu \mathrm{~F}$ electrolytic).

LM133/LM333 3-Ampere Adjustable Negative Regulators

General Description

The LM133/LM333 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -3.0 A over an output voltage range of -1.2 V to -32 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low themal transients. Further, the LM133 series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads. The LM133/LM333 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM133/ LM333 are ideal complements to the LM150/LM350 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2 V to -32 V
- 3.0 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- 100\% electrical burn-in
- Standard 3-lead transistor package
- Output is short circuit protected

Connection Diagrams

TO-3

TL/H/9065-1
Bottom View
Steel TO-3 Metal Can Package (K STEEL)
Order Number LM133K STEEL or LM333K STEEL
See NS Package Number K02A

TO-220
Plastic Package

TL/H/9065-2
Bottom View
3-Lead TO-220 Plastic Package (T)
Order Number LM333T
See NS Package Number T03B

Typical Applications

Full output current not available at high input-output voltages.
$-\mathrm{V}_{\text {OUT }}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{120 \Omega}\right)+\left(-\mathrm{I}_{\text {ADJ }} \times \mathrm{R} 2\right)$
tC1 $=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability.
*C2 $=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than $4^{\prime \prime}$ from power supply filter capacitor.

Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Power Dissipation
Internally Limited
Input-Output Voltage Differential 35 V
Operating Junction Temperature Range
$T_{\text {MIN }}$ to $T_{\text {MAX }}$
LM133
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM333
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	
TO-3 Package	$300^{\circ} \mathrm{C}$
TO-220 Package	$260^{\circ} \mathrm{C}$

Preconditioning
Burn-In In Thermal Limit
100\% All Devices

Electrical Characteristics LM133 (Note 1)(Note 5)

Parameter	Conditions	Typical	Tested Limit (Note 3)	Design Limit (Note 4)	Units (Max Unless Noted)
Reference Voltage	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}, 3 \mathrm{~V} \leq\left\|\mathrm{V}_{I N}-V_{\text {OUT }}\right\| \leq 35 \mathrm{~V}, \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 3 A, P \leq \mathrm{P}_{\text {MAX }} \\ & \text { LM133 } \\ & \text { LM133 } \end{aligned}$	-1.250 -1.250	$\begin{array}{r} -1.238 \\ -1.262 \\ \\ -\mathbf{1 . 2 2 5} \\ \mathbf{- 1 . 2 7 5} \end{array}$		V(MIN) V(MAX) V(MIN) V(MAX)
Line Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\| \leq 35 \mathrm{~V}, \\ & \text { IOUT }=50 \mathrm{~mA} \text { (Note 2) } \\ & \text { LM133 } \end{aligned}$	$\begin{aligned} & 0.01 \\ & \mathbf{0 . 0 2} \\ & \hline \end{aligned}$	0.02		$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Load Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{lOUT} \leq 3 \mathrm{~A}, \mathrm{P} \leq \mathrm{P}_{\mathrm{MAX}} \\ & \text { (Notes } 2 \text { and } 6 \text {) } \\ & \text { LM133 } \end{aligned}$	0.2 0.4	$\begin{aligned} & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$		\% \%
Thermal Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Pulse	0.002	0.01		\% /W
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$	0.4			\%
Long Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000$ Hours	0.15		0.8	\%
Adjust Pin Current	$\begin{gathered} \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ \text { LM133 } \\ \text { LM133 } \end{gathered}$	$\begin{aligned} & 65 \\ & 70 \end{aligned}$	$\begin{gathered} 90 \\ 100 \end{gathered}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$
Adjust Pin Current Change	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 3 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right\| \leq 35 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Minimum Load Current	$\begin{aligned} & \left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 35 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & \text { LM133 } \\ & \left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 10 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \\ & \text { LM133 } \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.0 \\ 2.5 \\ \hline \end{array}$		mA mA
Current Limit (Note 6)	$\begin{aligned} & 3 V \leq\left\|V_{I N}-V_{\text {OUT }}\right\| \leq 10 V, T_{J}=25^{\circ} \mathrm{C} \\ & L M 133 \\ & \left\|V_{I N}-V_{\text {OUT }}\right\|=20 V, T_{J}=25^{\circ} \mathrm{C} \\ & L M 133 \\ & \left\|V_{I N}-V_{O U T}\right\|=30 V, T_{J}=25^{\circ} \mathrm{C} \\ & \text { LM133 } \end{aligned}$	$\begin{array}{r} 3.9 \\ 2.4 \\ 0.4 \\ \hline \end{array}$	$\begin{gathered} 3.0 \\ 1.25 \\ 0.3 \end{gathered}$		A(MIN) A(MIN) A(MIN)
Output Noise (\% of $\mathrm{V}_{\text {OUT }}$)	10 Hz to $10 \mathrm{kHz}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	0.003		0.010	\% (rms)
Ripple Rejection	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\text {ADJ }}=0 \mu \mathrm{~F} \\ & \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 60 \\ & 77 \end{aligned}$		$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & d B \\ & d B \end{aligned}$
Thermal Resistance	TO-3 Package (K STEEL) TO-220 Package (T)	$\begin{gathered} 1.2 \\ 3 \end{gathered}$		$\begin{gathered} 1.8 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Thermal Shutdown Temperature	LM133 LM133	163	150	190	${ }^{\circ} \mathrm{C}$ (MIN) ${ }^{\circ} \mathrm{C}(\mathrm{MAX})$

Electrical Characteristics LM133 (Note 1) (Note 5)

Parameter	Conditions	Typical	$\begin{array}{c}\text { Tested Limit } \\ \text { (Note 3) }\end{array}$	$\begin{array}{c}\text { Design Limit } \\ \text { (Note 4) }\end{array}$	$\begin{array}{c}\text { Units } \\ \text { (Max } \\ \text { Unless }\end{array}$
Noted)					

Note 1: Unless otherwise specified, these specifications apply: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$ for the LM 133 ; and $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J}+125^{\circ} \mathrm{C}$ for the LM 333 ; $\left|\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right|=$ 5 V ; and lout $=0.5 \mathrm{~A}$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 30 W .
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Load regulation is measured on the output pin at a point $1 / 8^{\prime \prime}$ below the base of the TO-3 package.
Note 3: Testing limits are guaranteed and 100% tested in production.
Note 4: Design limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 5: Specifcations in boldface apply over the full rated temperature range.
Note 6: The output capability of the LM333 is guaranteed at 3 A in the range of $3 \mathrm{~V} \leq\left|\mathrm{V}_{1 \mathrm{~N}}-\mathrm{V}_{\mathrm{OUT}}\right| \leq 10 \mathrm{~V}$. At voltages above 10 V , the available output current decreases, but in the range $10 \mathrm{~V} \leq\left|\mathrm{V}_{\mathbb{N}}-\mathrm{V}_{\text {OUT }}\right| \leq 15 \mathrm{~V}$, the available current is $30 \mathrm{~W}-\left|\mathrm{V}_{\mathbb{N}}-\mathrm{V}_{\text {OUT }}\right|$. At voltages higher than 15 V , refer to graphs for actual guaranteed output current available.

Guaranteed Performance Characteristics

Typical Applications (Continued)
-5.2V Regulator with Electronic Shutdown*

*When C_{L} is larger than $20 \mu \mathrm{~F}$, D1 protects the LM133 in case the input supply is shorted.
**When C2 is larger than $10 \mu \mathrm{~F}$ and $-\mathrm{V}_{\text {OUT }}$ is larger than -25 V , D2 protect the LM133 in case the output is shorted.
**In case VOUT is shorted to a positive supply, D3 protects the LM133 from overvoltage, and protects the load from reversed voltage.

Typical Applications (Continued)

TL/H/9065-8

Current Regulator

High Stability-10V Regulator

High-Current Adjustable Regulator

TL/H/9065-11
Adjustable Current Regulator

TL/H/9065-13
lout $=\left(\frac{1.5 \mathrm{~V}}{\mathrm{R} 1}\right) \pm 15 \%$ adjustable

Full output current not available at high input-output voltages.
*The $10 \mu \mathrm{~F}$ capacitors are optional to improve ripple rejection.

Typical Applications (Continued)

THERMAL REGULATION

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since the power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $\mathrm{V}_{\text {OUT }}$,

per watt, within the first 10 rms after a step of power is applied. The LM133's specification is $0.01 \% / \mathrm{W}$, max.
In Figure 1, a typical LM133's output drifts only 2 mV (or 0.02% of $\mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}$) when a 20 W pulse is applied for 10 ms . This performance is thus well inside the specification limit of $0.01 \% / W \times 20 \mathrm{~W}=0.2 \%$ max. When the 20W pulse is ended, the thermal regulation again shows a 2 mV step as the LM133 chip cools off. Note that the load regulation error of about $1 \mathrm{mV}(0.01 \%)$ is additional to the thermal regulation error. In Figure 2, when the 20W pulse is applied for 100 ms , the output drifts only slightly beyond the drift in the first 10 ms , and the thermal error stays well within $0.1 \% ~(10 \mathrm{mV})$.

FIGURE 2

National Semiconductor

LM137/LM337

3-Terminal Adjustable Negative Regulators

General Description

The LM137/LM337 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -37 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137 series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.
The LM137/LM337 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM137/ LM337 are ideal complements to the LM117/LM317 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2 V to -37 V
- 1.5 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.3%
m Excellent thermal regulation, 0.002\%/W

■ 77 dB ripple rejection

- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- 100% electrical burn-in
- Standard 3-lead transistor package
- Output is short circuit protected

LM137 Series Packages and Power Capability			
Device Package Rated Power DissipationDesign Load Current			
LM137/337	TO-3 (K)	20 W	1.5 A
TO-39 (H)	2 W	0.5 A	
LM337	TO-220 (T)	15 W	1.5 A
LM337M	TO-202 (P)	7.5 W	0.5 A

Typical Applications

TL/H/9067-1
Full output current not available at high input-output voltages

$$
-\mathrm{V}_{\mathrm{OUT}}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{120 \Omega}\right)+\left(-\mathrm{I}_{\mathrm{ADJ}} \times \mathrm{R} 2\right)
$$

$\dagger \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability
*C2 $=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than 4 " from power-supply filter capacitor
Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients

Absolute Maximum Ratings

```
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 4)
Power Dissipation
Internally Limited
Input-Output Voltage Differential
Operating Junction Temperature Range
\begin{tabular}{lr} 
LM137 & \(-55^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
LM337 & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\end{tabular}
```

Electrical Characteristics (Note 1)

Parameter	Conditions	LM137			LM337			Units
		Min	Typ	Max	Min	Typ	Max	
Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left\|\mathrm{V}_{I N}-V_{\mathrm{OUT}}\right\| \leq 40 \mathrm{~V} \\ & \text { (Note 2) } I_{\mathrm{L}}=10 \mathrm{~mA} \\ & \hline \end{aligned}$		0.01	0.02		0.01	0.04	\%/V
Load Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}$		0.3	0.5		0.3	1.0	\%
Thermal Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms} \mathrm{Pulse}$		0.002	0.02		0.003	0.04	\%/W
Adjustment Pin Current			65	100		65	100	$\mu \mathrm{A}$
Adjustment Pin Current Charge	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq \mathrm{I}_{\mathrm{MAX}} \\ & 3.0 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right\| \leq 40 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		2	5		2	5	$\mu \mathrm{A}$
Reference Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\| \leq 40 \mathrm{~V}, \text { (Note 3) } \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}, \mathrm{P} \leq \mathrm{P}_{\text {MAX }} \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} -1.225 \\ -1.200 \end{array}\right\|$	$\left\|\begin{array}{l} -1.250 \\ -1.250 \end{array}\right\|$	$\begin{aligned} & -1.275 \\ & -1.300 \end{aligned}$	$\begin{aligned} & -1.213 \\ & -1.200 \end{aligned}$	$\left\|\begin{array}{\|} -1.250 \\ -1.250 \end{array}\right\|$	$\left\|\begin{array}{\|l\|} -1.287 \\ -1.300 \end{array}\right\|$	$\begin{aligned} & v \\ & v \end{aligned}$
Line Regulation	$3 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\| \leq 40 \mathrm{~V}$, (Note 2)		0.02	0.05		0.02	0.07	\%/V
Load Regulation	$10 \mathrm{~mA} \leq \mathrm{IOUT} \leq \mathrm{I}_{\text {MAX }}$, (Note 2)		0.3	1		0.3	1.5	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }}$		0.6			0.6		\%
Minimum Load Current			$\begin{aligned} & 2.5 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{gathered} 10 \\ 6 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Current Limit	$\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\| \leq 15 \mathrm{~V}$ K and T Package H and P Package $\left\|V_{\text {IN }}-V_{\text {OUT }}\right\|=40 \mathrm{~V}, T_{j}=25^{\circ} \mathrm{C}$ K and T Package H and P Package	$\begin{aligned} & 1.5 \\ & 0.5 \\ & \\ & 0.24 \\ & 0.15 \end{aligned}$	$\begin{gathered} 2.2 \\ 0.8 \\ \\ 0.4 \\ 0.17 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 0.5 \\ & \\ & 0.15 \\ & 0.10 \end{aligned}$	$\begin{gathered} 2.2 \\ 0.8 \\ \\ 0.4 \\ 0.17 \end{gathered}$	$\begin{aligned} & 3.7 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
RMS Output Noise, \% of V ${ }_{\text {OUT }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{C}_{\mathrm{ADJ}}=10 \mu \mathrm{~F} \end{aligned}$	66	$\begin{aligned} & 60 \\ & 77 \\ & \hline \end{aligned}$		66	$\begin{aligned} & 60 \\ & 77 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Long-Term Stability	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, 1000$ Hours		0.3	1		0.3	1	\%
Thermal Resistance, Junction to Case	H Package K Package T Package P Package		$\begin{aligned} & 12 \\ & 2.3 \end{aligned}$	$\begin{gathered} 15 \\ 3 \end{gathered}$		$\begin{gathered} 12 \\ 2.3 \\ 4 \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} 15 \\ 3 \end{gathered}$	$\begin{array}{\|l} { }^{\circ} \mathrm{C} / \mathrm{W} \\ \hline \end{array}$
Thermal Resistance, Junction to Ambient (No Heat Sink)	H Package K Package T Package P Package		$\begin{gathered} 140 \\ 35 \end{gathered}$			$\begin{gathered} 140 \\ 35 \\ 50 \\ 80 \\ \hline \end{gathered}$		$\begin{aligned} & \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$

[^2]Note 3: Selected devices with tightened tolerance reference voltage available.
Note 4: Refer to RETS137H drawing for LM137H or RETS137K drawing for LM137K military specifications.

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $\mathrm{V}_{\text {OUT }}$, per Watt, within the first 10 ms after a step of power is applied. The LM137's specification is $0.02 \% / \mathrm{W}$, max.

$\rightarrow 10 \mathrm{~ms} \mid-$
LM137, V OUT $=-10 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=-40 \mathrm{~V}$
$I_{\text {IL }}=0 \mathrm{~A} \rightarrow 0.25 \mathrm{~A} \rightarrow 0 \mathrm{~A}$
Vertical sensitivity, $5 \mathrm{mV} /$ div

In Figure 1, a typical LM137's output drifts only 3 mV (or 0.03% of $\mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}$) when a 10 W pulse is applied for 10 ms . This performance is thus well inside the specification limit of $0.02 \% / \mathrm{W} \times 10 \mathrm{~W}=0.2 \%$ max. When the 10 W pulse is ended, the thermal regulation again shows a 3 mV step at the LM137 chip cools off. Note that the load regulation error of about $8 \mathrm{mV}(0.08 \%)$ is additional to the thermal regulation error. In Figure 2, when the 10W pulse is applied for 100 ms , the output drifts only slightly beyond the drift in the first 10 ms , and the thermal error stays well within 0.1% (10 mV).

TL/H/9067-4
M137, $\mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}$
TL/H/9067-4
$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=-40 \mathrm{~V}$
$\mathrm{I}_{\mathrm{L}}=\mathrm{OA} \rightarrow 0.25 \mathrm{~A} \rightarrow \mathrm{OA}$
Horizontal sensitivity, $20 \mathrm{~ms} /$ div
FIGURE 2

FIGURE 1

Input

Bottom View
Order Number LM137K STEEL or LM337K STEEL See NS Package Number K02A

TO-220
Plastic Package

Front View
Order Number LM337T
See NS Package Number T03B

TO-39 Metal Can Package

TL/H/9067-6

Order Number LM137H or LM337H See NS Package Number H03B

TO-202 Plastic Package

TL/H/9067-8 Front View

Order Number LM337MP See NS Package Number P03A

Typical Applications (Continued)

TL/H/9067-11

TL/H/9067-13
*When C_{L} is larger than $20 \mu \mathrm{~F}$, D1 protects the LM137 in case the input supply is shorted
**When C2 is larger than $10 \mu \mathrm{~F}$ and -V $\mathrm{V}_{\text {OUT }}$ is larger than -25V, D2 protects the LM137 in case the output is shorted

TL/H/9067-10
*Minimum output $\cong-1.3 \mathrm{~V}$ when control input is low

Adjustable Current Regulator

TL/H/9067-14

Typical Performance Characteristics (K Steel and T Packages)

LM137HV/LM337HV 3-Terminal Adjustable Negative Regulators (High Voltage)

General Description

The LM137HV/LM337HV are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -1.5 A over an output voltage range of -1.2 V to -47 V . These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM137HV series features internal current limiting, thermal shutdown and safe-area compensation, making them virtually blowout-proof against overloads.
The LM137HV/LM337HV serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM137HV/LM337HV are ideal complements to the LM117HV/LM317HV adjustable positive regulators.

Typical Applications

Features

■ Output voltage adjustable from -1.2 V to -47 V

- 1.5 A output current guaranteed, $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

■ Line regulation typically $0.01 \% / \mathrm{V}$

- Load regulation typically 0.3%
- Excellent thermal regulation, $0.002 \% / \mathrm{W}$
- 77 dB ripple rejection
- Excellent rejection of thermal transients
- $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- 100% electrical burn-in

■ Standard 3-lead transistor package
■ Output short circuit protected

$$
-\mathrm{V}_{\mathrm{OUT}}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{120 \Omega}\right)+\left[-I_{\mathrm{Adj}}\left(\mathrm{R}_{2}\right)\right]
$$

$\dagger \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.
*C2 $=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than $4^{\prime \prime}$ from power-supply filter capacitor.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 3)

Power Dissipation	Internally limited
Input-Output Voltage Differential	50 V
Operating Junction Temperature Range	
LM137HV	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM337HV	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	300°
ESD rating is to be determined.	

Preconditioning

Burn-In in Thermal Limit
100\% All Devices

Electrical Characteristics (Note 1)

Parameter	Conditions	LM137HV			LM337HV			Units
		Min	Typ	Max	Min	Typ	Max	
Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}\right\| \leq 50 \mathrm{~V}, \\ & \text { (Note 2) } \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \end{aligned}$		0.01	0.02		0.01	0.04	\%/V
Load Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}$		0.3	0.5		0.3	1.0	\%
Thermal Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Pulse		0.002	0.02		0.003	0.04	\%/W
Adjustment Pin Current			65	100		65	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq \mathrm{I}_{\mathrm{MAX}} \\ & 3.0 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right\| \leq 50 \mathrm{~V}, \\ & T_{J}=25^{\circ} \end{aligned}$		$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$		$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Reference Voltage	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C},(\text { Note } 3) \\ & 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\| \leq 50 \mathrm{~V}, \text { (Note 3) } \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}, \mathrm{P} \leq \mathrm{P}_{\text {MAX }} \end{aligned}$	$\left\|\begin{array}{l} -1.225 \\ -1.200 \end{array}\right\|$	$\left\|\begin{array}{l} -1.250 \\ -1.250 \end{array}\right\|$	$\left\|\begin{array}{l} -1.275 \\ -1.300 \end{array}\right\|$	$\left\|\begin{array}{\|l\|} -1.213 \\ -1.200 \end{array}\right\|$	$\left\|\begin{array}{l} -1.250 \\ -1.250 \end{array}\right\|$	$\left\|\begin{array}{l} -1.287 \\ -1.300 \end{array}\right\|$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Line Regulation	$\begin{aligned} & 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right\| \leq 50 \mathrm{~V},(\text { Note } 2) \\ & \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA} \end{aligned}$		0.02	0.05		0.02	0.07	\%/V
Load Regulation	$10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}$, (Note 2)		0.3	1		0.3	1.5	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }}$		0.6			0.6		\%
Minimum Load Current	$\begin{array}{\|l} \mid V_{\text {IN }}-V_{\text {OUT }} \\ \left\|V_{I N N}-V_{\text {OUT }}\right\| \leq 10 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & 2.5 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10 \\ 6 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Current Limit	$\begin{array}{\|l} \left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\| \leq 13 \mathrm{~V} \\ \text { K Package } \\ \text { H Package } \\ \left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\|=50 \mathrm{~V} \\ \text { K Package } \\ \text { H Package } \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 0.5 \\ & 0.2 \\ & 0.1 \end{aligned}$	$\begin{gathered} 2.2 \\ 0.8 \\ \\ 0.4 \\ 0.17 \end{gathered}$	$\begin{aligned} & 3.2 \\ & 1.6 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 0.5 \\ \\ 0.1 \\ 0.050 \end{gathered}$	$\begin{gathered} 2.2 \\ 0.8 \\ \\ 0.4 \\ 0.17 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 1.8 \\ & 0.8 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
RMS Output Noise, \% of V ${ }_{\text {OUT }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.003			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz} \\ & \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$	66	$\begin{aligned} & 60 \\ & 77 \end{aligned}$		66	$\begin{aligned} & 60 \\ & 77 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Long-Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}, 1000$ Hours		0.3	1		0.3	1	\%
Thermal Resistance, Junction to Case	H Package K Package		$\begin{array}{r} 12 \\ 2.3 \\ \hline \end{array}$	$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$		$\begin{aligned} & 12 \\ & 2.3 \end{aligned}$	$\begin{gathered} 15 \\ 3 \\ \hline \end{gathered}$	$\left.\right\|^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance	H Package K Package		$\begin{gathered} 140 \\ 35 \end{gathered}$			$\begin{gathered} 140 \\ 35 \end{gathered}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$

Note 1: Unless otherwise specified, these specifications apply: $-55^{\circ} \mathrm{C} \leq T_{j} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 137 \mathrm{HV}, 0^{\circ} \mathrm{C} \leq T_{j} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 337 \mathrm{HV} ; \mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}=$ 5 V ; and $\mathrm{IOUT}=0.1 \mathrm{~A}$ for the $\mathrm{TO}-39$ package and lOUT $=0.5 \mathrm{~A}$ for the TO-3 package. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-39 and 20 W for the TO-3. $\mathrm{I}_{\mathrm{MAX}}$ is 1.5 A for the TO-3 package and 0.2 A for the TO-39 package.
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulations. Load regulation is measured on the output pin at a point $1 / \mathrm{e}^{\prime \prime}$ below the base of the TO-3 and TO-39 packages.
Note 3: Refer to RETS237HVH drawing for LM137HVH or RETS137HVK for LM137HVK military specifications.

^HLEEWT/^HLELW7

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per Watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $\mathrm{V}_{\text {OUT }}$, per Watt, within the first 10 ms after a step of power is applied. The LM137HV's specification is $0.02 \% / W$, max.

In Figure 1, a typical LM137HV's output drifts only 3 mV (or 0.03% of $\mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}$) when a 10 W pulse is applied for 10 ms . This performance is thus well inside the specification limit of $0.02 \% / W \times 10 \mathrm{~W}=0.2 \%$ max. When the 10 W pulse is ended, the thermal regulation again shows a 3 mV step as the LM137HV chip cools off. Note that the load regulation error of about $8 \mathrm{mV}(0.08 \%)$ is additional to the thermal regulation error. In Figure 2, when the 10W pulse is applied for 100 ms , the output drifts only slightly beyond the drift in the first 10 ms , and the thermal error stays well within 0.1% (10 mV).

FIGURE 2

Connection Diagram (See Physical Dimensions section for further information)

TL/H/9066-5
Bottom View
Order Number LM137HVK Steel or LM337HVK Steel See NS Package Number K02A

TO-39
Metal Can Package

TL/H/9066-6
Bottom View
Order Number LM137HVH or LML337HVH See NS Package Number H03B

Typical Applications (Continued)

TL/H/9066-7

Full output current not available
at high input-output voltages
*The $10 \mu \mathrm{~F}$ capacitors are optional to improve ripple rejection

TL/H/9066-8

Adjustable Current Regulator

TL/H/9066-9

TL/H/9066-10
*When C_{L} is larger than $20 \mu \mathrm{~F}$, D1 protects the LM137HV in case the input supply is shorted
**When C 2 is larger than $10 \mu \mathrm{~F}$ and $-\mathrm{V}_{\text {OUT }}$ is larger than -25 V , D2 protects the LM137HV is case the output is shorted

TL/H/9066-11

* Use resistors with good tracking $\mathrm{TC}<25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Typical Performance Characteristics (Hand K-STEEL Package)

Adjustment Current

Minimum Operating Current

TL/H/9066-12

National Semiconductor
 LM138A/LM138, LM338A/LM338 5-Amp Adjustable Regulators

General Description

The LM138 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 5A over a 1.2 V to 32 V output range. They are exceptionally easy to use and require only 2 resistors to set the output voltage. Careful circuit design has resulted in outstanding load and line regulation-comparable to many commercial power supplies. The LM138 family is supplied in a standard 3-lead transistor package.
A unique feature of the LM138 family is time-dependent current limiting. The current limit circuitry allows peak currents of up to 12A to be drawn from the regulator for short periods of time. This allows the LM138 to be used with heavy transient loads and speeds start-up under full-load conditions. Under sustained loading conditions, the current limit decreases to a safe value protecting the regulator. Also included on the chip are thermal overload protection and safe area protection for the power transistor. Overload protection remains functional even if the adjustment pin is accidentally disconnected.
Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An output capacitor can be added to improve transient response, while bypassing the adjustment pin will increase the regulator's ripple rejection.
Besides replacing fixed regulators or discrete designs, the LM138 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be
regulated as long as the maximum input to output differential is not exceeded, i.e., do not short-circuit output to ground. The part numbers in the LM138 series which have a K suffix are packaged in a standard Steel TO-3 package, while those with a T suffix are packaged in a TO-220 plastic package. The LM138A/LM138 are rated for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq$ $+150^{\circ} \mathrm{C}$, while the LM338A is rated for $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq$ $+125^{\circ} \mathrm{C}$, and the LM 338 is rated for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$.

Features

- Guaranteed 7A peak output current
- Guaranteed 5A output current
- Adjustable output down to 1.2 V
- Guaranteed thermal regulation
- Current limit constant with temperature
- 100% electrical burn-in in thermal limit
- Output is short-circuit protected
- Guaranteed 1\% output voltage tolerance (LM138A, LM338A)
- Guaranteed max. $0.01 \% / \mathrm{V}$ line regulation (LM138A, LM338A)
- Guaranteed max. 0.3% load regulation (LM138A, LM338A)

Applications

- Adjustable power supplies
- Constant current regulators

■ Battery chargers

Connection Diagrams (See Physical Dimension section for further information)

(TO-3 STEEL)
Metal Can Package

TL/H/9060-30

Bottom View

Order Number LM138AK STEEL/LM138K STEEL/ LM338AK STEEL/LM338K STEEL See NS Package Number K02A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 4)
Power Dissipation
Input/Output Voltage Differential
Internally limited

$$
+40 \mathrm{~V},-0.3 \mathrm{~V}
$$

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature
$\begin{array}{ll}\text { Metal Package (Soldering, } 10 \text { seconds) } & 300^{\circ} \mathrm{C} \\ \text { Plastic Package (Soldering, } 4 \text { seconds) } & 260^{\circ} \mathrm{C}\end{array}$

ESD Tolerance
TBD

Operating Temperature Range

LM138A/LM138
LM338A
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$
LM338
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T} J \leq+125^{\circ} \mathrm{C}$

Preconditioning

Thermal Limit Burn-In
All Devices 100\%

Electrical Characteristics

Specifications with standard type face are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$; and $\mathrm{l}_{\mathrm{OUT}}=10 \mathrm{~mA}$. (Note 2)

Parameter	Conditions	LM138A			LM138			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Voltage	$\mathrm{lout}=10 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	1.238	1.250	1.262				V
	$\begin{aligned} & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 35 \mathrm{~V}, \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 5 \mathrm{~A}, \mathrm{P} \leq 50 \mathrm{~W} \end{aligned}$	1.225	1.250	1.270	1.19	1.24	1.29	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 35 \mathrm{~V}($ Note 3$)$		0.005	0.01		0.005	0.01	\%/V
			0.02	0.04		0.02	0.04	\%/V
Load Regulation	$10 \mathrm{~mA} \leq$ IOUT $) \leq 5 \mathrm{~V}$ (Note 3)		0.1	0.3		0.1	0.3	\%
			0.3	0.6		0.3	0.6	\%
Thermal Regulation	20 ms Pulse		0.002	0.01		0.002	0.01	\%/W
Adjustment Pin Current			45	100		45	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 5 \mathrm{~A}, \\ & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 35 \mathrm{~V} \end{aligned}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		3.5	5		3.5	5	mA
Current Limit	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }} \leq 10 \mathrm{~V} \\ & D C \\ & 0.5 \mathrm{~ms} \text { Peak } \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{gathered} 8 \\ 12 \end{gathered}$		$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{gathered} 8 \\ 12 \end{gathered}$		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=30 \mathrm{~V}$			1			1	A
RMS Output Noise, \% of $\mathrm{V}_{\text {OUT }}$	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.001			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & V_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {ADJ }}=0 \mu \mathrm{~F} \\ & \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$	60	$\begin{aligned} & 60 \\ & 75 \\ & \hline \end{aligned}$		60	$\begin{aligned} & 60 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Long-Term Stability	$T_{J}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$		0.3	1		0.3	1	\%
Thermal Resistance, Junction to Case	K Package			1			1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Ambient (No Heat Sink)	K Package		35			35		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics (Continued)
Specifications with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Tempera-
ture Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$; and $\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$. (Note 2)

Parameter	Conditions	LM338A			LM338			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Voltage	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	1.238	1.250	1.262				V
	$\begin{aligned} & 3 V \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 35 \mathrm{~V}, \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 5 \mathrm{~A}, \mathrm{P} \leq 50 \mathrm{~W} \end{aligned}$	1.225	1.250	1.270	1.19	1.24	1.29	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 35 \mathrm{~V}$ (Note 3)		0.005	0.01		0.005	0.03	\%/V
			0.02	0.04		0.02	0.06	\%/V
Load Regulation	$10 \mathrm{~mA} \leq$ IOUT $) \leq 5 \mathrm{~V}$ (Note 3)		0.1	0.3		0.1	0.5	\%
			0.3	0.6		0.3	1	\%
Thermal Regulation	20 ms Pulse		0.002	0.02		0.002	0.02	\%/W
Adjustment Pin Current			45	100		45	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{lOUT} \leq 5 A, \\ & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right) \leq 35 \mathrm{~V} \end{aligned}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		3.5	10		3.5	10	mA
Current Limit	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }} \leq 10 \mathrm{~V} \\ & D C \\ & 0.5 \mathrm{~ms} \text { Peak } \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{gathered} 8 \\ 12 \end{gathered}$		$\begin{aligned} & 5 \\ & 7 \\ & \hline \end{aligned}$	$\begin{gathered} 8 \\ 12 \\ \hline \end{gathered}$		$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$
	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=30 \mathrm{~V}$			1			1	A
RMS Output Noise, \% of V ${ }_{\text {OUT }}$	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.001			0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {ADJ }}=0 \mu \mathrm{~F} \\ & \mathrm{~V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \\ & \hline \end{aligned}$	60	$\begin{aligned} & 60 \\ & 75 \\ & \hline \end{aligned}$		60	$\begin{aligned} & 60 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Long-Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$		0.3	1		0.3	1	\%
Thermal Resistance Junction to Case	K Package T Package			$\begin{aligned} & 1 \\ & 4 \end{aligned}$			$\begin{aligned} & 1 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{W} / \mathrm{W} \end{array}$
Thermal Resistance, Junction to Ambient (No Heat Sink)	K Package T Package		$\begin{aligned} & 35 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 50 \end{aligned}$		$\begin{array}{\|l\|} \hline{ }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{array}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: These specifications are applicable for power dissipations up to 50 W for the TO-3 (K) package and 25W for the TO-220 (T) package. Power dissipation is guaranteed at these values up to 15 V input-output differential. Above 15 V differential, power dissipation will be limited by internal protection circuitry. All limits (i.e., the numbers in the Min. and Max. columns) are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 3: Regulation is measured at a constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specifications for thermal regulation.
Note 4: Refer to RETS138K drawing for military specifications of LM138K.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Load Transient Response

Application Hints

In operation, the LM138 develops a nominal 1.25 V reference voltage, $\mathrm{V}_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current l_{1} then flows through the output set resistor R2, giving an output voltage of

$$
V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\mathrm{I}_{\mathrm{ADJ}} \mathrm{R} 2 .
$$

TL/H/9060-6

FIGURE 1
Since the $50 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM138 was designed to minimize $I_{A D J}$ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

External Capacitors

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassiing when adjustment or output capacitors are used but the above values will eliminate the possiblity of problems.
The adjustment terminal can be bypassed to ground on the LM138 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 75 dB ripple rejection is obtainable at any output level. Increases over $20 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.
In general, the best type of capacitors to use are solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.
Although the LM138 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM138 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator (case) rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times \mathrm{I}_{\mathrm{L}}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+\mathrm{R} 2 / \mathrm{R} 1)$ or in this case, 11.5 times worse.
Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

TL/H/9060-7
FIGURE 2. Regulator with Line Resistance in Output Lead
With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using 2 separate leads to the case. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $20 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of V_{IN}. In the LM138 this discharge path is through a large junction that is able to sustain 25A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $100 \mu \mathrm{~F}$ or less at output of 15 V or less, there is no need to use diodes.
The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM138 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM138 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

Application Hints (Continued)

TL/H/9060-8

D1 protects against C1
D2 protects against C2

$$
V_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\mathrm{I}_{\mathrm{ADJ}} \mathrm{R} 2
$$

FIGURE 3. Regulator with Protection Diodes

Typical Applications

Typical Applications (Continued)
Precision Power Regulator with Low Temperature Coefficient

TḶ/H/9060-12

Adjustable Regulator with Improved Ripple Rejection

TL/H/9060-14
\dagger Solid tantalum
"Discharges C1 if output is shorted to ground
**R1 $=240 \Omega$ for LM138

TL/H/9060-16
*Sets maximum VOUT
**R1 = 240Ω for LM138

Typical Applications (Continued)
15A Regulator

5V Logic Regulator with Electronic Shutdown**

**Minimum output $\approx 1.2 \mathrm{~V}$
TL/H/9060-18

Light Controller

Typical Applications (Continued)
12V Battery Charger

TL/H/9060-20

TL/H/9060-23

Typical Applications (Continued)

Adjusting Multiple On-Card Regulators with Single Control*

$A_{V}=1, R_{F}=10 \mathrm{k}, C_{F}=100 \mathrm{pF}$
$A_{V}=10, R_{F}=100 \mathrm{k}, C_{F}=10 \mathrm{pF}$
Bandwidth $\geq 100 \mathrm{kHz}$

$$
{ }^{*} \mathrm{R}_{\mathrm{S}}-\text { sets output impedance of charger } \mathrm{Z}_{\mathrm{OUT}}=\mathrm{R}_{\mathrm{S}}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

Use of R_{S} allows low charging rates with fully charged battery.
**The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients

Typical Applications (Continued)

TL/H/9060-29
*Set max charge current to 3 A
**The $1000 \mu \mathrm{~F}$ is recommended to filter out input transients.

TL/H/9060-26

National Semiconductor

LM140A／LM140／LM340A／LM340 Series 3－Terminal Positive Regulators

General Description

The LM140A／LM140／LM340A／LM340 series of positive 3－ terminal voltage regulators are designed to provide superior performance as compared to the previously available 78XX series regulator．Computer programs were used to optimize the electrical and thermal performance of the packaged IC which results in outstanding ripple rejection，superior line and load regulation in high power applications（over 15W）．
With these advances in design，the LM340 is now guaran－ teed to have line and load regulation that is a factor of 2 better than previously available devices．Also，all parame－ ters are guaranteed at 1 A vs 0.5 A output current．The LM140A／LM340A provide tighter output voltage tolerance， $\pm 2 \%$ along with $0.01 \% / \mathrm{V}$ line regulation and $0.3 \% / \mathrm{A}$ load regulation．
Current limiting is included to limit peak output current to a safe value．Safe area protection for the output transistor is provided to limit internal power dissipation．If internal power dissipation becomes too high for the heat sinking provided， the thermal shutdown circuit takes over limiting die tempera－ ture．

Considerable effort was expended to make the LM140－XX series of regulators easy to use and minimize the number of external components．It is not necessary to bypass the out－ put，although this does improve transient response．Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply．
Although designed primarily as fixed voltage regulators， these devices can be used with external components to ob－ tain adjustable voltages and currents．
The entire LM140A／LM140／LM340A／LM340 series of regu－ lators is available in the steel TO－3 power package．The

LM340A／LM340 series is also available in the TO－220 plas－ tic power package as well as an aluminum TO－3 package．
For output voltages other than $5 \mathrm{~V}, 12 \mathrm{~V}$ ，and 15 V ，the LM117 and LM117HV series provide an output voltage range from +1.2 V to +57 V ．

Features

－Complete specifications at 1A load
■ Output voltage tolerances of $\pm 2 \%$ at $T_{j}=25^{\circ} \mathrm{C}$ and $\pm 4 \%$ over the temperature range（LM140A／LM340A）
－Fixed output voltages available 5,12 ，and 15 V
－Line regulation of 0.01% of $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}$ of $\Delta \mathrm{V}_{\mathrm{IN}}$ at 1 A load （LM140A／LM340A）
－Load regulation of 0.3% of $V_{\text {OUT }} /$（LM140A／LM340A）
－Internal thermal overload protection
－Internal short－circuit current limit
－Output transistor safe area protection
－ 100% thermal limit burn－in
－Special circuitry allows start－up even if output is pulled to negative voltage（ \pm supplies）

LM140 Series Package and Power Capability

Device	Package	Rated Power Dissipation	Design Output Current
LM140／ LM340	TO－3（K）	20W	1.5 A
LM340	TO－220（T）	15 W	1.5 A

Typical Applications

＊Required if the regulator is located far from the power supply filter．
＊＊Although no output capacitor is needed for sta－ bility，it does help transient response．（If need－ ed，use $0.1 \mu \mathrm{~F}$ ，ceramic disc）．

Adjustable Output Regulator

TL／H／7781－2
$V_{\text {OUT }}=5 \mathrm{~V}+\left(5 \mathrm{~V} / \mathrm{R}_{1}+\mathrm{I}_{\mathrm{Q}}\right) \mathrm{R} 25 \mathrm{~V} / \mathrm{RA}^{2}>3 \mathrm{I}_{\mathrm{Q}}$, load regulation $\left(L_{r}\right) \approx[(R 1+R 2) / R 1]$（ L_{r} of LM340－5）．

$$
\mathrm{I}_{\mathrm{OUT}}=\frac{\mathrm{V} 2-3}{\mathrm{R} 1}+\mathrm{I}_{\mathrm{Q}}
$$

$\Delta l_{Q}=1.3 \mathrm{~mA}$ over line and load changes．

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 3)

Input Voltage ($\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$)
Internal Power Dissipation (Note 1)
Operating Temperature Range (T_{A})

```
LM140A/LM140
LM340A/LM340
```

Maximum Junction Temperature
(TO-3 Package K, KC) $150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
TO-3 Package K, KC
$300^{\circ} \mathrm{C}$
TO-220 Package T $230^{\circ} \mathrm{C}$
ESD Tolerance (Note 4)

Electrical Characteristics LM140A/LM340A (Note 2)
lout $=1 \mathrm{~A},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}(\mathrm{LM} 140 \mathrm{~A})$, or $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ (LM340A) unless otherwise specified

Symbol	Output Voltage		5 V		12V		15V		Units
	Input Voltage (unless otherwise noted)		10V		19V		23V		
	Parameter	Conditions	Min	Typ ${ }^{\text {Max }}$	Min	Typ ${ }^{\text {Max }}$	Min	Typ Max	
V_{0}	Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	4.9	55.1	11.75	1212.25	14.7	$15 \quad 15.3$	V
		$\mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}, 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}$ $\mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}}$	$\begin{array}{\|c\|} \hline 4.8 \\ 17.5 \\ \hline \end{array}$	$\begin{array}{r} 5.2 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 20\right) \end{array}$	$\begin{array}{\|l} \hline 11.5 \\ (14.8 \leq \\ \hline \end{array}$	$\begin{array}{r} 12.5 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 27\right) \end{array}$	$\begin{aligned} & 14.4 \\ & 17.9 \end{aligned}$	$\begin{array}{r} 15.6 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 30\right) \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\Delta \mathrm{V}_{0}$	Line Regulation	$\begin{aligned} & \mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \triangle \mathrm{~V}_{\mathrm{IN}} \end{aligned}$		$\begin{gathered} 10 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 20\right) \\ \hline \end{gathered}$	(14.8	$\begin{gathered} 18 \\ \left.V_{I N} \leq 27\right) \\ \hline \end{gathered}$		$\begin{gathered} 22 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 30\right) \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
		$\begin{aligned} & \hline \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \\ & \hline \end{aligned}$	(7.5	$\begin{array}{cc} \hline 3 & 10 \\ \left.V_{\text {IN }} \leq 20\right) \\ \hline \end{array}$	(14.5	$\begin{array}{\|cc\|} \hline 4 & 18 \\ \left.V_{I N} \leq 27\right) \\ \hline \end{array}$		$\begin{array}{cc} 4 & 22 \\ \left.v_{I N} \leq 30\right) \\ \hline \end{array}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ Over Temperature $\Delta \mathrm{V}_{\mathrm{IN}}$		$\begin{array}{r} 4 \\ 12 \\ \mathrm{IN} \leq 12) \\ \hline \end{array}$		$\begin{array}{r} 9 \\ 30 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 22\right) \\ \hline \end{array}$	(20	$\begin{array}{r} 10 \\ 30 \\ \left.V_{\mathrm{IN}} \leq 26\right) \\ \hline \end{array}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation			$\begin{array}{ll} 10 & 25 \\ & 15 \\ \hline \end{array}$		$\begin{array}{ll} \hline 12 & 32 \\ & 19 \\ \hline \end{array}$		$\begin{array}{ll} \hline 12 & 35 \\ & 21 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		Over Temperature, $5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}$		25		60		75	mV
I_{Q}	Quiescent Current	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \text { Over Temperature } \\ & \hline \end{aligned}$		$\begin{gathered} 6 \\ 6.5 \end{gathered}$		$\begin{gathered} 6 \\ 6.5 \end{gathered}$		$\begin{gathered} 6 \\ 6.5 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\overline{\Delta l_{Q}}$	Quiescent Current Change	$5 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 1 \mathrm{~A}$		0.5		0.5		0.5	mA
		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\text {MAX }} \\ & \hline \end{aligned}$		$\begin{gathered} 0.8 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 20\right) \\ \hline \end{gathered}$	(14.8	$\begin{gathered} 0.8 \\ \left.\leq \mathrm{V}_{\mathrm{IN}} \leq 27\right) \\ \hline \end{gathered}$		$\begin{array}{r} 0.8 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 30\right) \end{array}$	mA
		$\begin{array}{\|l\|} \hline \mathrm{l}=500 \mathrm{~mA} \\ \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \\ \hline \end{array}$		$\begin{array}{r} 0.8 \\ \left.V_{\mathrm{N}} \leq 25\right) \\ \hline \end{array}$		$\begin{array}{r} 0.8 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 30\right) \\ \hline \end{array}$		$\begin{gathered} 0.8 \\ \left.V_{\mathrm{IN}} \leq 30\right) \end{gathered}$	mA
V_{N}	Output Noise Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$		40		75		90	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{~V}_{\mathrm{OUT}}}$	Ripple Rejection	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=1 \mathrm{~A} \\ & \text { or } \mathrm{f}=120 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA}, \end{aligned}$ Over Temperature, $\mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}}$	$\begin{aligned} & 68 \\ & 68 \\ & \\ & \hline 8 \\ & \hline \end{aligned}$	80 $\left.\mathrm{V}_{\mathrm{IN}} \leq 18\right)$	$\begin{aligned} & 61 \\ & 61 \\ & \\ & (15 \leq \\ & \hline \end{aligned}$	72 $\left.5 V_{I N} \leq 25\right)$	$\begin{array}{\|c\|} \hline 60 \\ 60 \\ \\ \hline 18.5 \\ \hline \end{array}$	70 $\left.\leq \mathrm{V}_{\mathrm{IN}} \leq 28.5\right)$	dB dB V
Ro	Dropout Voltage Output Resistance Short-Circuit Current Peak Output Current Average TC of V_{0}	$\begin{aligned} & \hline T_{j}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & T_{j}=25^{\circ} \mathrm{C} \\ & T_{j}=25^{\circ} \mathrm{C} \\ & \mathrm{Min}, \mathrm{~T}_{\mathrm{j}}=0^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \\ & \hline \end{aligned}$		2.0 8 2.1 2.4 -0.6		$\begin{gathered} \hline 2.0 \\ 18 \\ 1.5 \\ 2.4 \\ -1.5 \\ \hline \end{gathered}$		$\begin{gathered} \hline 2.0 \\ 19 \\ 1.2 \\ 2.4 \\ -1.8 \\ \hline \end{gathered}$	V $\mathrm{~m} \Omega$ A A $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IN }}$	Input Voltage Required to Maintain Line Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	7.5		14.5		17.5		V

Note 1: Thermal resistance of the TO-3 package (K, KC) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $35^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient. Thermal resistance of the TO-220 package (T) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $50^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.
Note 2: All characteristics are measured with a capacitor across the input of $0.22 \mu \mathrm{~F}$ and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_{w} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.
Note 3: Refer to RETS140A-12K for LM140K-12, RETS140A-15K for LM140K-15, or RETS140A-05K for LM140K-5.0 military drawing specifications.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Electrical Characteristics LM140 (Note 2) $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Output Voltage			$\frac{5 \mathrm{~V}}{10 \mathrm{~V}}$		12V		15V		Units
	Input Voltage (unless otherwise noted)					19V		23V		
	Parameter		Conditions	Min	Typ Max	Min	Typ ${ }^{\text {Max }}$	Min	Typ ${ }^{\text {a }}$ Max	
V_{0}	Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1 \mathrm{~A}$		4.8 5 5.2		11.5 12 12.5		14.4 15 15.6 14.25		V
		$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \leq 15 \mathrm{~W}, 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$		$\begin{array}{lr} 4.75 & 5.25 \\ \left(8 \leq V_{I N} \leq 20\right) \\ \hline \end{array}$		$\begin{array}{\|lr\|} \hline 11.4 & 12.6 \\ \left(15.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 27\right) \\ \hline \end{array}$		$\begin{array}{\|c} 14.25 \\ \left(18.5 \leq V_{I N} \leq 30\right) \\ \hline \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	l	$\begin{aligned} & \mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$	$\begin{array}{rr} 3 & 50 \\ \left(7 \leq \mathrm{V}_{\mathrm{IN}} \leq 25\right) \\ \hline \end{array}$		$\begin{array}{cc} 4 & 120 \\ \left(14.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \end{array}$		$\begin{array}{cr} 4 & 150 \\ \left(17.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \\ \hline \end{array}$		mV
			$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$	$\begin{array}{r} 50 \\ \left(8 \leq V_{\text {IN }} \leq 20\right) \\ \hline \end{array}$		$\begin{array}{r} 120 \\ \left(15 \leq \mathrm{V}_{\mathrm{IN}} \leq 27\right) \\ \hline \end{array}$		$\begin{array}{r} 150 \\ \left(18.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \end{array}$		$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
		$10 \leq 1 A$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{iN}} \end{aligned}$	$\begin{array}{r} 50 \\ \left(7.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 20\right) \\ \hline \end{array}$		$\begin{array}{r} 120 \\ \left(14.6 \leq \mathrm{V}_{\mathrm{IN}} \leq 27\right) \\ \hline \end{array}$		$\begin{array}{r} 150 \\ \left(17.7 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \\ \hline \end{array}$		$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
			$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}_{\mathrm{IN}} \end{aligned}$	$\begin{array}{r} 25 \\ \left(8 \leq \mathrm{V}_{\mathrm{IN}} \leq 12\right) \end{array}$		$\begin{array}{r} 60 \\ \left(16 \leq \mathrm{V}_{\mathrm{IN}} \leq 22\right) \end{array}$		$\left(20 \leq \mathrm{V}_{\mathrm{IN}} \leq 26\right)$		$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{IO} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{P}} \leq 750 \mathrm{~mA} \end{aligned}$		$\begin{array}{ll} \hline 10 & 50 \\ & 25 \end{array}$		$\begin{array}{cc} \hline 12 & 120 \\ & 60 \\ \hline \end{array}$		$\begin{array}{ll} \hline 12 & 150 \\ & 75 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1 \mathrm{~A}$			50		120		150	mV
I_{Q}	Quiescent Current	$10 \leq 1 \mathrm{~A}$	T ${ }_{\text {d }}=25^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}$		6 7		$\begin{aligned} & 6 \\ & 7 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Δl_{Q}	Quiescent Current Change	$5 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 1 \mathrm{~A}$			0.5		0.5		0.5	mA
		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A} \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$			$\begin{array}{r} 0.8 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq 20\right) \\ \hline \end{array}$	(15 \leq		(18.5	$\left.\leq \mathrm{V}_{\text {IN }} \leq 30\right)$	mA
		$\begin{aligned} & \mathrm{l}_{0}=500 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$		0.8$\left(8 \leq \mathrm{V}_{\mathrm{IN}} \leq 25\right)$		$\begin{array}{r} 0.8 \\ \left(15 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \\ \hline \end{array}$		$\begin{array}{r} 0.8 \\ \left(18.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \\ \hline \end{array}$		$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \end{gathered}$
V_{N}	Output Noise Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$		40		75		90		$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}$	Ripple Rejection	$\begin{aligned} & f=120 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \end{aligned}$	$\left\{\begin{array}{l} \mathrm{l}_{0} \leq 1 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \text { or } \\ \mathrm{l}_{0} \leq 500 \mathrm{~mA}, \\ -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C} \end{array}\right.$ $V_{\text {MAX }}$	$\begin{aligned} & 68 \quad 80 \\ & 68 \\ & \left(8 \leq V_{I N} \leq 18\right) \\ & \hline \end{aligned}$		$61 \quad 72$61$\left(15 \leq V_{I N} \leq 25\right)$		$60 \quad 70$60$\left(18.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 28.5\right)$		dB dB V
R_{O}	Dropout Voltage Output Resistance Short-Circuit Current Peak Output Current Average TC of $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{j}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+150^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$			$\begin{gathered} \hline 2.0 \\ 8 \\ 2.1 \\ 2.4 \\ -0.6 \\ \hline \end{gathered}$		$\begin{gathered} \hline 2.0 \\ 18 \\ 1.5 \\ 2.4 \\ -1.5 \\ \hline \end{gathered}$		$\begin{gathered} \hline 2.0 \\ 19 \\ 1.2 \\ 2.4 \\ -1.8 \\ \hline \end{gathered}$	V $\mathrm{V} \Omega$ A A $\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {IN }}$	Input Voltage Required to Maintain Line Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{l}_{0} \leq 1 \mathrm{~A}$		7.5		14.6		17.7		V

Electrical Characteristics LM 340 (Note 2) $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq+125^{\circ} \mathrm{C}$ unless otherwise specified

Note 2: All characteristics are measured with a capacitor across the input of $0.22 \mu \mathrm{~F}$ and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Note：Shaded area refers to LM340A／LM340．

일 Typical Performance Characteristics (Continued)

Equivalent Schematic

TL/H/7781-7

Application Hints

The LM340 is designed with thermal protection，output short－circuit protection and output transistor safe area pro－ tection．However，as with any IC regulator，it becomes nec－ essary to take precautions to assure that the regulator is not inadvertently damaged．The following describes possible misapplications and methods to prevent damage to the reg－ ulator．
Shorting the Regulator Input：When using large capaci－ tors at the output of these regulators，a protection diode connected input to output（Figure 1）may be required if the input is shorted to ground．Without the protection diode，an input short will cause the input to rapidly approach ground potential，while the output remains near the initial V OUT be－ cause of the stored charge in the large output capacitor． The capacitor will then discharge through a large internal input to output diode and parasitic transistors．If the energy released by the capacitor is large enough，this diode，low current metal and the regulator will be destroyed．The fast diode in Figure 1 will shunt most of the capacitors discharge current around the regulator．Generally no protection diode is required for values of output capacitance $\leq 10 \mu \mathrm{~F}$ ．

FIGURE 1．Input Short

Raising the Output Voltage above the Input Voltage： Since the output of the LM340 does not sink current，forcing the output high can cause damage to internal low current paths in a manner similar to that just described in the ＂Shorting the Regulator Input＂section．
Regulator Floating Ground（Figure 2）：When the ground pin alone becomes disconnected，the output approaches the unregulated input，causing possible damage to other cir－ cuits connected to $V_{\text {OUT }}$ ．If ground is reconnected with pow－ er＂ON＂，damage may also occur to the regulator．This fault is most likely to occur when plugging in regulators or mod－ ules with on card regulators into powered up sockets．Power should be turned off first，thermal limit ceases operating，or ground should be connected first if power must be left on．
Transient Voltages：If transients exceed the maximum rat－ ed input voltage of the 340 ，or reach more than 0.8 V below ground and have sufficient energy，they will damage the reg－ ulator．The solution is to use a large input capacitor，a series input breakdown diode，a choke，a transient suppressor or a combination of these．

TL／H／7781－9
FIGURE 2．Regulator Floating Ground

FIGURE 3．Transients

Connection Diagrams

TO-3 Metal Can Package (K and KC)

TL/H/7781-11
Bottom View
Steel Package Order Numbers:
LM140AK-5.0 LM140K-5.0 LM340AK-5.0 LM340K-5.0
LM140AK-12 LM140K-12 LM340AK-12 LM340K-12
LM140AK-15 LM140K-15 LM340AK-15 LM340K-15 See Package Number K02A
Aluminum Package Order Numbers: LM340KC-5.0
LM340KC-12
LM340KC-15
See Package Number KC02A

TO-220 Power Package (T)

Top View
Plastic Package Order Numbers: LM340AT-5.0 LM340T-5.0 LM340AT-12 LM340T-12 LM340AT-15 LM340T-15 See Package Number T03B

National Semiconductor

LM140L/LM340L Series 3-Terminal Positive Regulators

General Description

The LM140L series of three terminal positive regulators is available with several fixed output voltages making them useful in a wide range of applications. The LM140LA is an improved version of the LM78LXX series with a tighter output voltage tolerance (specified over the full military temperature range), higher ripple rejection, better regulation and lower quiescent current. The LM140LA regulators have $\pm 2 \% V_{\text {OUT }}$ specification, $0.04 \% / \mathrm{V}$ line regulation, and $0.01 \% / \mathrm{mA}$ load regulation. When used as a zener diode/resistor combination replacement, the LM140LA usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM140LA to be used in logic systems, instrumentation, $\mathrm{Hi}-\mathrm{Fi}$, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.
The LM140LA/LM340LA are available in the low profile metal three lead TO-39 (H) and the LM340LA are also available in the plastic TO-92 (Z). With adequate heat sinking the regulator can deliver 100 mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation
becomes too high for the heat sinking provided, the thermal shut-down circuit takes over, preventing the IC from overheating.
For applications requiring other voltages, see LM117L Data Sheet.

Features

- Line regulation of $0.04 \% / \mathrm{V}$
- Load regulation of $0.01 \% / \mathrm{mA}$
- Output voltage tolerances of $\pm 2 \%$ at $T_{j}=25^{\circ} \mathrm{C}$ and $\pm 4 \%$ over the temperature range (LM140LA) $\pm 3 \%$ over the temperature range (LM340LA)
■ Output current of 100 mA
- Internal thermal overload protection
- Output transistor safe area protection
- Internal short circuit current limit
- Available in metal TO-39 low profile package (LM140LA/LM340LA) and plastic TO-92 (LM340LA)

Output Voltage Options

LM140LA-5.0	5 V	LM340LA-5.0	5 V
LM140LA-12	12 V	LM340LA-12	12 V
LM140LA-15	15 V	LM340LA-15	15 V

Connection Diagrams

TO-39 Metal Can Package (H)

TL/H/7782-2

Order Number LM140LAH-5.0, LM140LAH-12, LM140LAH-15, LM340LAH-5.0, LM340LAH-12 or LM340LAH-15 See NS Package Number H03A

TO-92 Plastic Package (Z)

TL/H/7782-3
Bottom View
Order Number LM340LAZ-5.0, LM340LAZ-12 or LM340LAZ-15 See NS Package Number Z03A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)
Input Voltage
$5.0 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ Output Voltage Options
35 V
Internal Power Dissipation (Note 1)

Operating Temperature Range

LM140LA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM340LA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	
Metal Can (H package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Molded TO-92	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$+300^{\circ} \mathrm{C}$
Plastic TO-92	$+230^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

Test conditions unless otherwise specified: $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(\mathrm{LM} 140 \mathrm{LA}), \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{LM} 340 \mathrm{LA}), \mathrm{l}_{0}=40 \mathrm{~mA}$,
$\mathrm{C}_{\mathrm{IN}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.01 \mu \mathrm{~F}$.

[^3]
Typical Performance Characteristics

TL/H/7782-4

Typical Applications

Fixed Output Regulator

TL/H/7782-5
*Required if the regulator is located far from the power supply filter.
**See note 3 in the electrical characteristics table.

Adjustable Output Regulator

TL/H/7782-6
40LA-5.0)

LM140L/LM340L
Equivalent Circuit

National Semiconductor

LM145/LM345 Negative Three Amp Regulator

General Description

The LM145 is a three-terminal negative regulator with a fixed output voltage of -5 V or -5.2 V , and up to 3 A load current capability. This device needs only one external com-ponent-a compensation capacitor at the output, making it easy to apply. Worst case guarantees on output voltage deviation due to any combination of line, load or temperature variation assure satisfactory system operation.
Exceptional effort has been made to make the LM145 immune to overload conditions. The regulator has current limiting which is independent of temperature, combined with thermal overload protection. Internal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.
Although primarily intended for fixed output voltage applications, the LM145 may be programmed for higher output voltages with a simple resistive divider. The low quiescent drain
current of the device allows this technique to be used with good regulation.
The LM145 comes in a hermetic TO-3 package rated at 25 W . A reduced temperature range part LM345 is also available.

Features

- Output voltage accurate to better than $\pm 2 \%$
- Current limit constant with temperature
- Internal thermal shutdown protection
- Operates with input-output voltage differential of 2.8 V at full rated load over full temperature range
- Regulation guaranteed with 25W power dissipation
- 3A output current guaranteed
- Only one external component needed
- 100\% electrical burn-in

Schematic Diagram

TL/H/7785-1

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 3)
Input Voltage 20 V
Input-Output Differential
Electrical Characteristics (-5V \& -5.2 V) (Note 1)

Parameter	Conditions	Limits						Units
		LM145			LM345			
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Output Voltage } \\ & 5.0 \mathrm{~V} \\ & 5.2 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C}, \text { IOUT }=5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=-7.5 \end{aligned}$	$\begin{aligned} & -5.1 \\ & -5.3 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -5.2 \end{aligned}$	$\begin{aligned} & -4.9 \\ & -5.1 \end{aligned}$	$\begin{aligned} & -5.2 \\ & -5.4 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -5.2 \end{aligned}$	$\begin{aligned} & -4.8 \\ & -5.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Line Regulation (Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & -20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq-7.5 \mathrm{~V} \end{aligned}$		5	15		5	25	mV
Load Regulation (Note 2)	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=-7.5 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq \mathrm{loUT} \leq 3 \mathrm{~A} \end{aligned}$		30	75		30	100	mV
$\begin{aligned} & \text { Output Voltage } \\ & 5.0 \mathrm{~V} \\ & 5.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq-7.8 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A} \\ & \mathrm{P} \leq 25 \mathrm{~W} \\ & T_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }} \\ & \hline \end{aligned}$	$\begin{aligned} & -5.20 \\ & -5.40 \end{aligned}$		$\begin{aligned} & -4.80 \\ & -5.00 \end{aligned}$	$\begin{aligned} & -5.25 \\ & -5.45 \end{aligned}$		$\begin{aligned} & -4.75 \\ & -4.95 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Quiescent Current	$\begin{aligned} & -20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq-7.5 \mathrm{~V} \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq 3 \mathrm{~A} \end{aligned}$		1.0	3.0		1.0	3.0	mA
Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}=-20 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=+25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 4 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 4 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=4.7 \mu \mathrm{~F} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz} \end{aligned}$		150			150		$\mu \mathrm{V}$
Long Term Stability			5	50		5	50	mV
Thermal Resistance Junction to Case			2			2		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified, these specifications apply: $-55^{\circ} \mathrm{C} \leq T_{j} \leq+150^{\circ} \mathrm{C}$ for the LM 145 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+125^{\circ} \mathrm{C}$ for the LM 345 . $\mathrm{V}_{\mathrm{IN}}=7.5 \mathrm{~V}$ and lout $=5 \mathrm{~mA}$. Although power dissipation is internally limited, electrical specifications apply only for power levels up to 25 W . For calculations of junction temperature rise due to power dissipation, use a thermal resistance of $35^{\circ} \mathrm{C} / \mathrm{W}$ for the $\mathrm{TO}-3$ with no heat sink. With a heat sink, use $2^{\circ} \mathrm{C} / \mathrm{W}$ for junction to case thermal resistance.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account separately. To ensure constant junction temperature, pulse testing with a low duty cycle is used.
Note 3: Refer to RETS145K-5.2V for LM145K-5.2V or RETS145K-5V for LM145K-5.0 military specifications.

Connection Diagram

TL/H/7785-2
Bottom View
Order Number LM145K-5.0, LM345K-5.0, LM145K-5.2, or LM345K-5.2 See NS Package Number K02A

Typical Applications

Fixed Regulator

TL/H/7785-3
\dagger Required for stability. For value given, capacitor must be solid tantalum. $50 \mu \mathrm{~F}$ aluminum electrolytic may be substituted. Values given may be increased without limit.
*Required if regulator is separated from filter capacitor. For value given, capacitor must be solid tantulum. $50 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.

Typical Performance Characteristics

Typical Applications (Continued)

TL/H/7785-5
*Select resistors to set output voltage. $1 \mathrm{ppm} / \mathrm{C}$ tracking suggested.
**C1 is not needed if power supply filter capacitor is within $3^{\prime \prime}$ of regulator. \dagger Determines zener current. May be adjusted to minimize temperature drift.
$\dagger \dagger$ Solid tantalum.
Load and line regulation < 0.01\%
Temperature drift < 0.001\%/C

Typical Applications (Continued)

High Stability Regulator

TL/H/7785-6
**C1 is not needed if power supply filter capacitor is within $3^{\prime \prime}$ of regulator.
†Keep C4 within 2" of LM345.
**D2 sets initial output voltage accuracy. The LM113 is available in $-5,-2$, and -1% tolerance.
-2V ECL Termination Regulator

LM150A/LM150, LM350A/LM350 3-Amp Adjustable Regulators

General Description

The LM150 series of adjustable 3-terminal positive voltage regulators is capable of supplying in excess of 3A over a 1.2 V to 33 V output range. They are exceptionally easy to use and require only 2 external resistors to set the output voltage. Further, both line and load regulation are comparable to discrete designs. Also, the LM150 is packaged in standard transistor packages which are easily mounted and handled.
In addition to higher performance than fixed regulators, the LM150 series offers full overload protection available only in IC's. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is accidentally disconnected.
Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An output capacitor can be added to improve transient response, while bypassing the adjustment pin will increase the regulator's ripple rejection.
Besides replacing fixed regulators or discrete designs, the LM150 is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input to output differential is not exceeded, i.e., avoid short-circuiting the output.
By connecting a fixed resistor between the adjustment pin and output, the LM150 can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground
which programs the output to 1.2 V where most loads draw little current.
The part numbers in the LM150 series which have a K suffix are packaged in a standard Steel TO-3 package, while those with a T suffix are packaged in a TO-220 plastic package. The LM150A/LM150 are rated for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq$ $+150^{\circ} \mathrm{C}$, while the LM350A is rated for $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq$ $+125^{\circ} \mathrm{C}$, and the LM 350 is rated for $0^{\circ} \mathrm{C} \leq \mathrm{TJ}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$.

Features

■ Adjustable output down to 1.2 V

- Guaranteed 3A output current
- Guaranteed thermal regulation

■ Output is short circuit protected

- Current limit constant with temperature
- 100\% electrical burn-in in thermal limit
- 86 dB ripple rejection
- Guaranteed 1% output voltage tolerance (LM150A, LM350A)
- Guaranteed max. $0.01 \% / \mathrm{V}$ line regulation (LM150A, LM350A)
- Guaranteed max. 0.3% load regulation
(LM150A, LM350A)

Applications

- Adjustable power supplies
- Constant current regulators
- Battery chargers

Connection Diagrams

ESD Tolerance
TBD
Operating Temperature Range
LM150A/LM150
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$
LM350A
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
Preconditioning
Thermal Limit Burn-In
All Devices 100\%

Electrical Characteristics

Specifications with standard type face are for $T_{j}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathbb{I N}}-\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$. (Note 2)

Parameter	Conditions	LM150A			LM150			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Voltage	$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	1.238	1.250	1.262				V
	$\begin{aligned} & 3 V \leq\left(V_{I N}-V_{O U T}\right) \leq 35 V, \\ & 10 \mathrm{~mA} \leq \mathrm{IOUT} \leq 3 A, P \leq 30 \mathrm{~W} \end{aligned}$	1.225	1.250	1.270	1.20	1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 35 \mathrm{~V}$ (Note 3)	.	0.005	0.01		0.005	0.01	\%/V
			0.02	0.05		0.02	0.05	\%/V
Load Regulation	$10 \mathrm{~mA} \leq$ IOUT $\leq 3 \mathrm{~A}($ Note 3)		0.1	0.3		0.1	0.3	\%
			0.3	1		0.3	1	\%
Thermal Regulation	20 ms Pulse		0.002	0.01		0.002	0.01	\%/W
Adjustment Pin Current			50	100		50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$10 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 3 \mathrm{~A}, 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 35 \mathrm{~V}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$V_{\text {IN }}-V_{\text {OUT }}=35 \mathrm{~V}$		3.5	5		3.5	5	mA
Current Limit	$\begin{aligned} & V_{I N}-V_{O U T} \leq 10 V \\ & V_{I N}-V_{O U T}=30 V \end{aligned}$	$\begin{aligned} & 3.0 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{gathered} 4.5 \\ 1 \end{gathered}$		$\begin{array}{r} 3.0 \\ 0.3 \\ \hline \end{array}$	$\begin{gathered} 4.5 \\ 1 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
RMS Output Noise, \% of V $\mathrm{V}_{\text {OUT }}$	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.001			0.001		\%
Ripple Rejection Ratio	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {ADJ }}=0 \mu \mathrm{~F}$		65			65		dB
	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F}$	66	86		66	86		dB
Long-Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$		0.3	1		0.3	1	\%
Thermal Resistance, Junction to Case	K Package		1.2	1.5		1.2	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Ambient (No Heat Sink)	K Package		35	\cdots		35		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics (Continued)
Specifications with standard type face are for $T_{j}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}$. (Note 2) (Continued)

Parameter	Conditions	LM350A			LM350			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Voltage	$\mathrm{I}^{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1.238	1.250	1.262	,			V
	$\begin{aligned} & 3 V \leq\left(V_{I N}-V_{\text {OUT }}\right) \leq 35 V, \\ & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 3 \mathrm{~A}, \mathrm{P} \leq 30 \mathrm{~W} \end{aligned}$	1.225	1.250	1.270	1.20	1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 35 \mathrm{~V}$ (Note 3)		0.005	0.01		0.005	0.03	\%/V
			0.02	0.05		0.02	0.07	\%/V
Load Regulation	$10 \mathrm{~mA} \leq$ Iout $\leq 3 \mathrm{~A}$ (Note 3)		0.1	0.3		0.1	0.5	\%
			0.3	1		0.3	1.5	\%
Thermal Regulation	20 ms Pulse		0.002	0.01		0.002	0.03	\%/W
Adjustment Pin Current			50	100		50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$10 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 3 \mathrm{~A}, 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 35 \mathrm{~V}$		0.2	5		0.2	5	$\mu \mathrm{A}$
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {MAX }}$		1			1		\%
Minimum Load Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		3.5	10		3.5	10	mA
Current Limit	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }} \leq 10 \mathrm{~V} \\ & V_{\text {IN }}-V_{\text {OUT }}=30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{gathered} 4.5 \\ 1 \\ \hline \end{gathered}$		$\begin{array}{\|l\|} \mathbf{3 . 0} \\ 0.25 \\ \hline \end{array}$	$\begin{gathered} 4.5 \\ 1 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
RMS Output Noise, \% of V ${ }_{\text {OUT }}$	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.001			0.001		\%
Ripple Rejection Ratio	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {ADJ }}=0 \mu \mathrm{~F}$		65			65		dB
	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F}$	66	86		66	86		dB
Long-Term Stability	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, 1000 \mathrm{hrs}$		0.25	1		0.25	1	\%
Thermal Resistance, Junction to Case	K Package T Package		$\begin{gathered} 1.2 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ 4 \\ \hline \end{gathered}$		$\begin{gathered} 1.2 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ 4 \\ \hline \end{gathered}$	$\begin{array}{\|l} { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \hline \end{array}$
Thermal Resistance, Junction to Ambient (No Heat Sink)	K Package T Package		$\begin{aligned} & 35 \\ & 50 \end{aligned}$			$\begin{aligned} & 35 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & 0^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: These specifications are applicable for power dissipations up to 30W for the TO-3 (K) package and 25W for the TO-220 (T) package. Power dissipation is guaranteed at these values up to 15 V input-output differential. Above 15 V differential, power dissipation will be limited by internal protection circuitry. All limits (i.e., the numbers in the Min. and Max. columns) are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 3: Regulation is measured at a constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specifications for thermal regulation.
Note 4: Refer to RETS150K drawing for military specifications of the LM150K.

Typical Performance Characteristics

Ripple Rejection

Output Impedance

Minimum Operating Current

Ripple Rejection

Load Transient Response

TL/H/9061-6

Application Hints

In operation, the LM150 develops a nominal 1.25 V reference voltage, $\mathrm{V}_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current l_{1} then flows through the output set resistor R2, giving an output voltage of

$$
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R 2}{R 1}\right)+I_{A D J} R 2 .
$$

TL/H/9061-7
FIGURE 1
Since the $50 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM150 was designed to minimize $I_{\text {ADJ }}$ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

EXTERNAL CAPACITORS

An input bypass capacitor is recommended. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used but the above values will eliminate the possibility of problems.
The adjustment terminal can be bypassed to ground on the LM150 to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 86 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.
In general, the best type of capacitors to use is solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies, but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.
Although the LM150 is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or $25 \mu \mathrm{~F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

LOAD REGULATION

The LM150 is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output (case) of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times$ lout. If the set resistor is connected near the load the effective line resistance will be 0.05Ω ($1+\mathrm{R} 2 / \mathrm{R} 1$) or in this case, 11.5 times worse.
Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.

TL/H/9061-8

FIGURE 2. Regulator with LIne Resistance in Output Lead

With the TO-3 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the case. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

PROTECTION DIODES

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A splkes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge Into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of V_{IN}. In the LM160, this discharge path is through a large junction that is able to sustain 25A surge with no problem. 'Thls is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, there is no need to use diodes.
The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM150 is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM150 with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

D1 protects against C1
D2 protects against C2
$V_{\text {OUT }}=1.25 V\left(1+\frac{R 2}{R 1}\right)+I_{A D J} R 2$

TL/H/9061-9

FIGURE 3. Regulator with Protection Diodes

Schematic Diagram

Typical Applications

Full output current not available at high input-output voltages.
\dagger Optional-improves transient response. Output capacitors in the range of 1 $\mu \mathrm{F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.
*Needed if device is more than 6 inches from filter capacitors.
$\dagger \mathrm{V}_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\mathrm{l}_{\mathrm{ADJ}}(\mathrm{R} 2)$
Note: Usually R1 $=240 \Omega$ for LM150 and R1 $=120 \Omega$ for LM350.

Typical Applications (Continued)

\dagger Solid tantalum
TL/H/9061-15
*Discharges C1 if output is shorted to ground

High Stability 10V Regulator

TL/H/9061-16

Regulator and Voltage Reference

TL/H/9061-3

Typical Applications (Continued)

*Minimum load current 50 mA

TL/H/9061-19
*Min output $\approx 1.2 \mathrm{~V}$

TL/H/9061-20

Full output current not available at high input-output voltages

Typical Applications (Continued)

Typical Applications (Continued)

Adjusting Multiple On-Card Regulators with Single Control*

TL/H/9061-28
†Minimum load-10 mA
*All outputs within $\pm 100 \mathrm{mV}$

TL/H/9061-29

Temperature Controller

Light Controller

Typical Applications (Continued)

TL/H/9061-31

Current Limited 6V Charger

*Sets peak current (2A for 0.3Ω)
TL/H/9061-32
** $1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.

LM196/LM396 10 Amp Adjustable Voltage Regulator

General Description

The LM196 is a 10 amp regulator, adjustable from 1.25 V to 15 V , which uses a revolutionary new IC fabrication structure to combine high power discrete transistor technology with modern monolithic linear IC processing. This combination yields a high-performance single-chip regulator capable of supplying in excess of 10 amps and operating at power levels up to 70 watts. The regulators feature on-chip trimming of reference voltage to $\pm 0.8 \%$ and simultaneous trimming of reference temperature drift to $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical. Thermal interaction between control circuitry and the pass transistor which affects the output voltage has been reduced to extremely low levels by strict attention to isothermal layout. This interaction, called thermal regulation, is 100% tested.
These new regulators have all the protection features of popular lower power adjustable regulators such as LM117 and LM138, including current limiting and thermal limiting. The combination of these features makes the LM196 immune to blowout from output overloads or shorts, even if the adjustment pin is accidentally disconnected. All devices are "burned-in" in thermal shutdown to guarantee proper operation of these protective features under actual overload conditions.
Output voltage is continuously adjustable from 1.25 V to 15 V . Higher output voltages are possible if the maximum input-output voltage differential specification is not exceeded. Full load current of 10A is available at all output voltages, subject only to the maximum power limit of 70 W and of course, maximum junction temperature.

The LM196 is exceptionally easy to use. Only two external resistors are used to to set output voltage. On-chip adjustment of the reference voltage allows a much tighter specification of output voltage, eliminating any need for trimming in most cases. The regulator will tolerate an extremely wide range of reactive loads, and does not depend on external capacitors for frequency stabilization. Heat sink requirements are much less stringent, because overload situations do not have to be accounted for-only worst-case full load conditions.
The LM196 is in a TO-3 package with oversized ($0.060^{\prime \prime}$) leads to provide best possible load regulation. Operating junction temperature range is $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. The LM396 is specified for a $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range.

Features

© Output pre-trimmed to $\pm 0.8 \%$

- 10A guaranteed output current

■ 100% burn-in in thermal limit

- 70W maximum power dissipation

■ Adjustable output- 1.25 V to 15 V

- Internal current and power limiting
- Guaranteed thermal resistance
- Output voltage guaranteed under worst-case conditions
- Output is short circuit protected

Typical Applications

$$
\begin{equation*}
V_{\text {OUT }}=(1.25 \mathrm{~V})\left(\frac{R 1+R 2}{R 1}\right)+I_{\text {ADJ }}(R \tag{R2}
\end{equation*}
$$

*For best TC of $\mathrm{V}_{\text {OUT }}$, R1 should be wirewound or metal film, 1% or better.
*"R2 should be same type as R1, with TC tracking of $30 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better.
$\dagger C 1$ is necessary only if main filter capacitor is more than 6 " away, assuming \#18 or larger leads.
$\dagger \dagger$ C2 is not absolutely necessary, but is suggested to lower high frequency output impedance. Output capacitors in the range of $1 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ of aluminum or tantalum electrolytic are commonly used to provide improved output impedance and rejection of transients.
'C3 improves ripple rejection, output impedance, and noise. C2 should be $1 \mu \mathrm{~F}$ or larger close to the regulator if C3 is used.

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Power Dissipation Internally Limited
Input-Output Voltage Differential
20 V
Operating Junction Temperature Range

LM196 Control Section	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Transistor	$-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
LM396 Control Section	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Transistor	$0^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
ESD rating to be determined

Pre-Conditioning

100\% Burn-In in Thermal Limit

Electrical Characteristics (Note 1)

Parameter	Conditions	LM196			LM396			Units
		Min	Typ	Max	Min	Typ	Max	
Reference Voltage	$\mathrm{IOUT}=10 \mathrm{~mA}$	1.24	1.25	1.26	1.23	1.25	1.27	V
Reference Voltage (Note 2)	$\begin{aligned} & \mathrm{V}_{\text {MIN }} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 20 \mathrm{~V} \\ & 10 \mathrm{~mA} \leq \text { IOUT } 10 \mathrm{~A}, \mathrm{P} \leq \mathrm{P}_{\text {MAX }} \\ & \text { Full Temperature Range } \end{aligned}$	1.22	1.25	1.28	1.21	1.25	1.29	V
Line Regulation (Note 3)	$\mathrm{V}_{\mathrm{MIN}} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 20 \mathrm{~V}$ Full Temperature Range		0.005	$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$		0.005	$\begin{aligned} & 0.02 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Load Regulation LM196/LM396 (Note 4)	$\begin{aligned} & 10 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 10 A \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 10 \mathrm{~V}, \mathrm{P} \leq \mathrm{P}_{\text {MAX }} \end{aligned}$ Full Temperature Range			$\begin{gathered} 0.1 \\ 0.15 \\ \hline \end{gathered}$			$\begin{gathered} 0.1 \\ 0.15 \\ \hline \end{gathered}$	$\begin{aligned} & \text { \%/V } \\ & \% / \mathrm{A} \\ & \hline \end{aligned}$
Ripple Rejection (Note 5)	$\mathrm{C}_{\mathrm{ADJ}}=25 \mu \mathrm{~F}, \mathrm{f}=120 \mathrm{~Hz}$ Full Temperature Range	$\begin{aligned} & 60 \\ & 54 \\ & \hline \end{aligned}$	74		$\begin{aligned} & 66 \\ & 54 \\ & \hline \end{aligned}$	74		dB dB
Thermal Regulation (Note 6)	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, IOUT $=10 \mathrm{~A}$		0.003	0.005		0.003	0.015	\%/W
Average Output Voltage Temperature Coefficient	$\mathrm{T}_{\mathrm{jMIN}} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\mathrm{jMAX}}$ (See Curves for Limits)		0.003			0.003		\%/ ${ }^{\circ} \mathrm{C}$
Adjustment Pin Current			50	100		50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change (Note 7)	$\begin{aligned} & 10 \mathrm{~mA} \leq \text { IOUT } \leq 10 \mathrm{~A} \\ & 3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 20 \mathrm{~V} \\ & \mathrm{P} \leq \mathrm{P}_{\text {MAX }}, \text { Full Temperature Range } \end{aligned}$			3			3	$\mu \mathrm{A}$
Minimum Load Current (Note 9)	$2.5 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right) \leq 20 \mathrm{~V}$ Full Temperature Range			10			10	mA
Current Limit (Note 8)	$\begin{aligned} 2.5 \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right. & \leq 7 V \\ V_{\text {IN }}-V_{\text {OUT }} & =20 \mathrm{~V} \end{aligned}$	$\begin{gathered} 10 \\ 1.5 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 1.5 \\ \hline \end{gathered}$	$\begin{gathered} 14 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$
Rms Output Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		0.001			0.001		\%V ${ }_{\text {OUT }}$
Long Term Stability	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, \mathrm{t}=1000$ Hours		0.3	1.0		0.3	1.0	\%
Thermal Resistance Junction to Case (Note 10)	Control Circuitry Power Transistor		$\begin{aligned} & 0.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.2 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics (Note 1) (Continued)

Parameter	Conditions	LM196			LM396			Units
		Min	Typ	Max	Min	Typ	Max	
Power Dissipation ($\mathrm{P}_{\mathrm{MAX}}$) (Note 11)	$\begin{aligned} & 7.0 \mathrm{~V} \leq V_{\text {IN }}-V_{\text {OUT }} \leq 12 \mathrm{~V} \\ & V_{\text {IN }}-V_{\text {OUT }}=15 \mathrm{~V} \\ & V_{\text {IN }}-V_{\text {OUT }}=18 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 70 \\ & 50 \\ & 36 \\ & \hline \end{aligned}$	100		$\begin{aligned} & 70 \\ & 50 \\ & 36 \\ & \hline \end{aligned}$	100		$\begin{aligned} & W \\ & W \\ & W \end{aligned}$
Drop-Out Voltage LM196/LM396	$\text { IOUT }=10 \mathrm{~A},$ Full Temperature Range		2.1	$\begin{gathered} 2.5 \\ 2.75 \end{gathered}$.	2.1	$\begin{gathered} 2.5 \\ 2.75 \end{gathered}$	V

Note 1: Unless otherwise stated, these specifications apply for $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, I IOUT $=10 \mathrm{~mA}$ to 10 A .
Note 2: This is a worst-case specification which includes all effects due to input voltage, output current, temperature, and power dissipation. Maximum power ($\mathrm{P}_{\mathrm{MAX}}$) is specified under Electrical Characteristics.
Note 3: Line regulation is measured on a short-pulse, low-duty-cycle basis to maintain constant junction temperature. Changes in output voltage due to thermal gradients or temperature changes must be taken into account separately. See discussion of Line Regulation under Application Hints.
Note 4: Load regulation on the 2-pin package is determined primarily by the voltage drop along the output pin. Specifications apply for an external Kelvin sense connnection at a point on the output pin $1 / 4^{\prime \prime}$ from the bottom of the package. Testing is done on a short-pulse-width, low-duty-cycle basis to maintain constant junction temperature. Changes in output voltage due to thermal gradients or temperature changes must be taken into account separately. See discussion of Load Regulation under Application Hints.
Note 5: Ripple rejection is measured with the adjustment pin bypassed with $25 \mu \mathrm{~F}$ capacitor, and is therefore independent of output voltage. With no load or bypass capacitor, ripple rejection is determined by line regulation and may be calculated from; RR $=20 \log _{10}\left[100 /\left(\mathrm{K} \times \mathrm{V}_{\text {OUT }}\right)\right]$ where K is line regulation expressed in \%/V. At frequencies below 100 Hz , ripple rejection may be limited by thermal effects, if load current is above 1A.
Note 6: Thermal regulation is defined as the change in output voltage during the time period of 0.2 ms to 20 ms after a change in power dissipation in the regulator, due to either a change in input voltage or output current. See graphs and discussion of thermal effects under Application Hints.
Note 7: Adjustment pin current change is specified for the worst-case combination of input voitage, output current, and power dissipation. Changes due to temperature must be taken into account separately. See graph of adjustment pin current vs temperature.
Note 8: Current limit is measured 10 ms after a short is applied to the output. DC measurements may differ slightly due to the rapidly changing junction temperature, tending to drop slightly as temperature increases. A minimum available load current of 10 A is guaranteed over the full temperature range as long as power dissipation does not exceed 70 W , and $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}$ is less than 7.0 V .
Note 9: Minimum load current of 10 mA is normally satisfied by the resistor divider which sets up output voltage.
Note 10: Total thermal resistance, junction-to-ambient, will include junction-to-case thermal resistance plus interface resistance and heat sink resistance. See discussion of Heat Sinking under Application Hints.
Note 11: Although power dissipation is internally limited, electrical specifications apply only for power dissipation up to the limits shown. Derating with temperature is a function of both power transistor temperature and control area temperature, which are specified differently. See discussion of Heat Sinking under Application Hints. For $\mathrm{V}_{I N}-V_{\text {OUT }}$ less than 7 V , power dissipation is limited by current limit of 10A.
Note 12: Dropout voltage is input-output voltage differential measured at a forced reference voltage of 1.15 V , with a 10 A load, and is a measurement of the minimum input/output differential at full load.

Application Hints

Further improvements in efficiency can be obtained by using Schottky diodes or high efficiency diodes with lower forward voltage, combined with larger filter capacitors to reduce ripple. However, this reduces the voltage difference between input and drive pins and may not allow sufficient voltage to fully saturate the pass transistor. Special transformers are available from Signal Transformer that have a 1V tap on the output winding to provide the extra voltage for the drive pin. The transformers are available as standard items for 5 V applications at 5A, 10A and 20A. Other voltages are available on special request.

Heat Sinking

Because of its extremely high power dissipation capability, the major limitation in the load driving capability of the LM196 is heat sinking. Previous regulators such as LM109, LM340, LM117, etc., had internal power limiting circuitry which limited power dissipation to about 30W. The LM196
is guaranteed to dissipate up to 70W continuously, as long as the maximum junction temperature limit is not exceeded. This requires careful attention to all sources of thermal resistance from junction-to-ambient, including junction-tocase resistance, case-to-heat sink interface resistance ($0.1-1.0^{\circ} \mathrm{C} / \mathrm{W}$), and heat sink resistance itself. A good thermal joint compound such as Wakefield type 120 or Thermalloy Thermocote must be used when mounting the LM196, especially if an electrical insulator is used to isolate the regulator from the heat sink. Interface resistance without this compound will be no better than $0.5^{\circ} \mathrm{C} / \mathrm{W}$, and probably much worse. With the compound, and na insulator, interface resistance will be $0.2^{\circ} \mathrm{C} / \mathrm{W}$ or less, assuming $0.005^{\prime \prime}$ or less combined flatness run-out of TO-3 and heat sink. Proper torquing of the mounting bolts is important to achieve minimum thermal resistance. Four to six inch pounds is recommended. Keep in mind that good electrical, as well as thermal, contact must be made to the case.

Application Hints (Continued)

The actual heat sink chosen for the LM196 will be determined by the worst-case continuous full load current, input voltage and maximum ambient temperature. Overload or short circuit output conditions do not normally have to be considered when selecting a heat sink because the thermal shutdown built into the LM196 will protect it under these conditions. An exception to this is in situations where the regulator must recover very quickly from overload. The LM196 may take some time to recover to within specified output tolerance following an extended overload, if the regulator is cooling from thermal shutdown temperature (approximately 175°) to specified operating temperature $\left(125^{\circ} \mathrm{C}\right.$ or $150^{\circ} \mathrm{C}$). The procedure for heat sink selection is as follows:
Calculate worst-case continuous average power dissipation in the regulator from $P=\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}\right) \times$ (IOUT). To do this, you must know the raw power supply voltage/current characteristics fairly accurately. For example, consider a 10 V output with 15 V nominal input voltage. At full load of 10A, the regulator will dissipate $P=(15-10) \times$ $(10)=50 \mathrm{~W}$. If input voltage rises by 10%, power dissipation will increase to $(16.5-10) \times(10)=65 \mathrm{~W}$, a 30% increase. It is strongly suggested that a raw supply be assembled and tested to determine its average DC output voltage under full load with maximum line voltage. Do not over-design by using unloaded voltage as a worst-case, since the regulator will not be dissipating any power under no load conditions. Worst-case regulator dissipation normally occurs under full load conditions except when the effective DC resistance of the raw supply ($\Delta \mathrm{V} / \Delta \mathrm{I}$) is larger than $\left(\mathrm{V}_{\mathrm{IN}^{*}}-\mathrm{V}_{\text {OUT }}\right) / 21_{\mathrm{fL}}$, where $\mathrm{V}_{\mathrm{IN}^{*}}$ is the lightly-loaded raw supply voltage and I_{fL} is full load current. For $\left(\mathrm{V}_{\mathrm{IN}}{ }^{*}\right.$ $\left.-\mathrm{V}_{\text {OUT }}\right)=5 \mathrm{~V}-8 \mathrm{~V}$, and $\mathrm{I}_{\mathrm{fL}}=5 \mathrm{~A}-10 \mathrm{~A}$, this gives a resistance of 0.25Ω to 0.8Ω. If raw supply resistance is higher than this, the regulator power dissipation may be less at full load current, then at some intermediate current, due to the large drop in input voltage. Fortunately, most well designed raw supplies have low enough output resistance that regulator dissipation does maximize at full load current, or very close to it, so tedious testing is not usually required to find worst-case power dissipation.
A very important consideration is the size of the filter capacitor in the raw supply. At these high current levels, capacitor size is usually dictated by ripple current ratings rather than just obtaining a certain ripple voltage. Capacitor ripple current (rms) is 2-3 times the DC output current of the filter. If the capacitor has just 0.05Ω DC resistance, this can cause 30W internal power dissipation at 10A output current. Capacitor life is very sensitive to operating temperature, decreasing by a factor of two for each $15^{\circ} \mathrm{C}$ rise in internal temperature. Since capacitor life is not all that great to start with, it is obvious that a small capacitor with a large internal temperature rise is inviting very short mean-time-to-failure. A second consideration is the loss of usable input voltage to the regulator. If the capacitor is small, the large dips in the input voltage may cause the LM196 to drop out of regulation. $2000 \mu \mathrm{~F}$ per ampere of load current is the minimum recommended value, yielding about $2 \mathrm{Vp}-\mathrm{p}$ ripple of 120 Hz . Larger values will have longer life and the reduced ripple will allow lower DC input voltage to the regulator, with subse-
quent cost savings in the transformer and heat sink. Sometimes several capacitors in parallel are better to decrease series resistance and increase heat dissipating area.
After the raw supply characteristics have been determined, and worst-case power dissipation in the LM196 is known, the heat sink thermal resistance can be found from the graphs titled Maximum Heat Sink Thermal Resistance. These curves indicate the minimim size heat sink required as a function of ambient temperature. They are derived from a case-to-control area thermal resistance of $0.5^{\circ} \mathrm{C} / \mathrm{W}$ and a case-to-power transistor thermal resistance of $1.2^{\circ} \mathrm{C} / \mathrm{W}$. $0.2^{\circ} \mathrm{C} / \mathrm{W}$ is assumed for interface resistance. A maximum control area temperature of $150^{\circ} \mathrm{C}$ is used for the LM196 and $125^{\circ} \mathrm{C}$ for the LM396. Maximum power transistor temperature is $200^{\circ} \mathrm{C}$ for the LM196 and $175^{\circ} \mathrm{C}$ for the LM396. For conservative designs, it is suggested that when using these curves, you assume an ambient temperature $25^{\circ} \mathrm{C}$ $50^{\circ} \mathrm{C}$ higher than is actually anticipated, to avoid running the regulator right at its design limits of operating temperature. A quick look at the curves show that heat sink resistance $\left(\theta_{\mathrm{SA}}\right)$ will normally fall into the range of $0.2^{\circ} \mathrm{C} / \mathrm{W}-1.5^{\circ} \mathrm{C} / \mathrm{W}$. These are not small heat sinks. A model 441, for instance, which is sold by several manufacturers, has a $\theta_{\text {SA }}$ of $0.6^{\circ} \mathrm{C} / \mathrm{W}$ with natural convection and is about five inches on a side. Smaller sinks are more volumetrically efficient, and larger sinks, less so. A rough formula for estimating the volume of heat sink required is: $V=50 / \theta_{S A}{ }^{1.5} \mathrm{CU}$. IN. This holds for natural convection only. If the heat sink is inside a small sealed enclosure, $\theta_{\text {SA }}$ will increase substantially because the air is not free to form natural convection currents. Fan-forced convection can reduce $\theta_{\text {SA }}$ by a factor of two at 200 FPM air velocity, and by four at 1000 FPM.

Ripple Rejection

Ripple rejection at the normal ripple frequency of 120 Hz is a function of both electrical and thermal effects in the LM196. If the adjustment pin is not bypassed with a capacitor, it is also dependent on output voltage. A $25 \mu \mathrm{~F}$ capacitor from the adjustment pin to ground will make ripple rejection independent of output voltage for frequencies above 100 Hz . If lower ripple frequencies are encountered, the capacitor should be increased proportionally.
To keep in mind that the bypass capacitor on the adjustment pin will limit the turn-on time of the regulator. A $25 \mu \mathrm{~F}$ capacitor, combined with the output divider resistance, will give an extended output voltage settling time following the application of input power.

Load Regulation (LM196/LM396)

Because the LM196 is a three-terminal device, it is not possible to provide true remote load sensing. Load regulation will be limited by the resistance of the output pin and the wire connecting the regulator to the load. For the data sheet specification, regulation is measured $1 / 4^{\prime \prime}$ from the bottom of the package on the output pin. Negative side sensing is a true Kelvin connection; with the bottom of the output divider returned to the negative side of the load.

Application Hints (Continued)

Although it may not be immediately obvious, best load regulation is obtained when the top of the divider is connected directly to the output pin, not to the load. This is illustrated in Figure 2. If R1 were connected to the load, the effective resistance between the regulator and the load would be

$$
(R w) \times\left(\frac{R 2+R 1}{R 1}\right)
$$

$\mathrm{Rw}=$ Line Resistance
Connected as shown, Rw is not multiplied by the divider ratio. Rw is about 0.004Ω per foot using 16 gauge wire. This translates to $40 \mathrm{mV} / \mathrm{ft}$ at 10A load current, so it is important to keep the positive lead between regulator and load as short as possible.

TL/H/9059-2
FIGURE 2. Proper Divider Connection
The input resistance of the sense pin is typically $6 \mathrm{k} \Omega$, modeled as a resistor between the sense pin and the output pin. Load regulation will start to degrade if a resistance higher than 10Ω is inserted in series with the sense. This assumes a worst-case condition of 0.5 V between output and sense pins. Lower differential voltage will allow higher sense series resistance.

Thermal Load Regulation

Thermal, as well as electrical, load regulation must be considered with IC regulators. Electrical load regulation occurs in microseconds, thermal regulation due to die thermal gradients occurs in the $0.2 \mathrm{~ms}-20 \mathrm{~ms}$ time frame, and regulation due to overall temperature changes in the die occurs over a 20 ms to 20 minute period, depending on the time constant of the heat sink used. Gradient induced load regulation is calculated from

$$
\Delta V_{\text {OUT }}=\left(V_{\text {IN }}-V_{\text {OUT }}\right) \times(\Delta \text { IOUT }) \times(\beta)
$$

$\beta=$ Thermal regulation specified on data sheet.
For $\mathrm{V}_{\mathrm{IN}}=9 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \Delta_{\text {OUT }}=10 \mathrm{~A}$, and $\beta=$ $0.005 \% / \mathrm{W}$, this yields a 0.2% change in output voltage. Changes in output voltage due to overall temperature rise are calculated from

$$
V_{\text {OUT }}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times\left(\Delta \mathrm{I}_{\text {OUT }}\right) \times(\mathrm{TC}) \times\left(\theta_{\mathrm{jA}}\right)
$$

TC = Temperature coefficient of output voltage
$\theta_{\mathrm{jA}}=$ Thermal resistance from junction to ambient. $\theta_{\mathrm{j} A}$ is approximately $0.5^{\circ} \mathrm{C} / \mathrm{W}+\theta$ of heat sink.
For the same conditions as before, with $\mathrm{TC}=0.003 \% /{ }^{\circ} \mathrm{C}$, and $\theta_{\mathrm{iA}}=1.5^{\circ} \mathrm{C} / \mathrm{W}$, the change in output voltage will be 0.18%. Because these two thermal terms can have either polarity, they may subtract from, or add to, electrical load regulation. For worst-case analysis, they must be assumed to add. If the output of the regulator is trimmed under load, only that portion of the load that changes need be used in the previous calculations, significantly improving output accuracy.

Line Regulation

Electrical line regulation is very good on the LM196-typically less than 0.005% change in output voltage for a 1 V change in input. This level of regulation is achieved only for very low load currents, however, because of thermal effects. Even with a thermal regulation of 0.002%.W, and a temperature coefficient of $0.003 \% /{ }^{\circ} \mathrm{C}$, DC line regulation will be dominated by thermal effects as shown by the following example:

$$
\text { Assume } \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=9 \mathrm{~V}, \text { louT }=8 \mathrm{~A}
$$

Following a 10% change in input voltage (0.9), the output will change quickly ($\leq 100 \mu \mathrm{~s}$), due to electrical effects, by $(0.005 \% \mathrm{~V}) \times(0.9 \mathrm{~V})=0.0045 \%$. In the next 20 ms , the output will change an additional $(0.002 \% / W) \times(8 \mathrm{~A}) \times$ $(0.9 \mathrm{~V})=0.0144 \%$ due to thermal gradients across the die. After a much longer time, determined by the time constant of the heat sink, the output will change an additional $\left(0.003 \% /{ }^{\circ} \mathrm{C}\right) \times(8 \mathrm{~A}) \times(0.9 \mathrm{~V}) \times\left(2^{\circ} \mathrm{C} / \mathrm{W}\right)=0.043 \%$ due to the temperature coefficient of output voltage and the thermal resistance from die to ambient. ($2^{\circ} \mathrm{C} / \mathrm{W}$ was chosen for this calculation). The sign of these last two terms varies from part to part, so no assumptions can be made about any cancelling effects. All three terms must be added for a proper analysis. This yields $0.0045+0.0144+0.043=$ 0.062% using typical values for thermal regulation and temperature coefficient. For worst-case analysis, the maximum data sheet specifications for thermal regulation and temperature coefficient should be used, along with the actual thermal resistance of the heat sink being used.

Paralleling Regulators

Direct paralleling of regulators is not normally recommended because they do not share currents equally. The regulator with the highest reference voltage will supply all the current to the load until it current limits. With an 18A load, for instance, one regulator might be operating in current limit at 16A while the second device is only carrying 2A. Power dissipation in the high current regulator is extremely high with attendant high junction temperatures. Long term reliability cannot be guaranteed under these conditions.
Quasi-paralleling may be accomplished if load regulation is not critical. The connection shown in Figure 5a will typically share to within 1A, with a worst-case of about 3A. Load regulation is degraded by 150 mV at 20A loads. An external op amp may be used as in Figure $5 b$ to improve load regulation and provide remote sensing.

Application Hints (Continued)

Input and Output Capacitors

The LM196 will tolerate a wide range of input and output capacitance, but long wire runs or small values of output capacitance can sometimes cause problems. If an output capacitor is used, it should be $1 \mu \mathrm{~F}$ or larger. We suggest 10 $\mu \mathrm{F}$ solid tantalum if significant improvements in high frequency output impedance are needed (see output impedance graph). This capacitor should be as close to the regulator as possible, with short leads, to reduce the effects of lead inductance. No input capacitor is needed if the regulator is within 6 inches of the power supply filter capacitor, using 18 gauge stranded wire. For longer wire runs, the LM196 input should be bypassed locally with a $4.7 \mu \mathrm{~F}$ (or larger) solid tantalum capacitor, or a $100 \mu \mathrm{~F}$ (or larger) aluminum electrolytic capacitor.

Correcting for Output Wire Losses (LM196/LM396)

Three-terminal regulators can only provide partial Kelvin load sensing (see Load Regulation). Full remote sensing. can be added by using an external op amp to cancel the effect of voltage drops in the unsensed positive output lead. In Figure 7, the LM301A op amp forces the voltage loss across the unsensed output lead to appear across R3. The current through R3 then flows out the V - pin of the op amp through R4. The voltage drop across R4 will raise the output voltage by an amount equal to the line loss, just cancelling the line loss itself. A small ($\cong 40 \mathrm{mV}$) initial output voltage error is created by the quiescent current of the op amp. Cancellation range is limited by the maximum output current of the op amp, about 300 mV as shown. This can be raised by increasing R3 or R4 at the expense of more initial output error.

Transformers and Diodes

Proper transformer ratings are very important in a high current supply because of the conflicting requirements of efficiency and tolerance to low-line conditions. A transformer with a high secondary voltage will waste power and cause unnecessary heating in the regulator. Too low a secondary voltage will cause loss of regulation under low-line conditions. The following formulas may be used to calculate the required secondary voltage and current ratings using a fullwave center tap:

$$
\begin{aligned}
& V_{\text {rms }}=\left(\frac{V_{\text {OUT }}+V_{\text {REG }}+V_{\text {RECT }}+V_{\text {RIPPLE }}}{\sqrt{2}}\right) \\
& \quad\left(\frac{V_{\text {NOM }}}{V_{\text {LOW }}}\right)\left((1.1)^{*}\right) \\
& I_{\text {rms }}=(\text { (Full-wave center tap })(1.2) \\
& \text { where: } \\
& V_{\text {OUT }}= \text { DC regulated output voltage } \\
& V_{\text {REG }}= \text { Minimum input-output voltage of regulator } \\
& V_{\text {RECT }}= \text { Rectifier forward voltage drop at three times } D C \\
& \quad \text { output current } \\
& V_{\text {RIPPLE }}= 1 / 2 \text { peak-to-peak capacitor ripple voltage } \\
&= \frac{\left(5.3 \times 10^{-3}\right) \text { (loUT) }}{2 C}
\end{aligned}
$$

[^4]\[

$$
\begin{aligned}
& \mathrm{V}_{\text {NOM }}=\text { Nominal line voltage } \mathrm{AC} \text { rms } \\
& V_{\text {LOW }}=\text { Low line voltage } A C \text { rms } \\
& \text { IOUT = DC output current } \\
& \text { Example: } \text { IOUT }=10 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\
& \text { Assume: } \mathrm{V}_{\text {REG }}=2.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RECT}}=1.2 \mathrm{~V} \\
& \mathrm{~V}_{\text {RIPPLE }}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{~V}_{\text {NOM }}=115 \mathrm{~V} \text {, } \\
& V_{\text {LOW }}=105 \mathrm{~V} \\
& V_{\mathrm{rms}}=\left(\frac{5+2.2+1.2+1}{\sqrt{2}}\right)\left(\frac{115}{105}\right) 1.1 \\
& =8.01 \mathrm{~V}_{\mathrm{rms}} \\
& \text { Capacitor } \mathrm{C}=\frac{\left(5.3 \times 10^{-3}\right)(\mathrm{I} \text { OUT })}{2 \times \mathrm{V}_{\text {RIPPLE }}} \\
& =\frac{\left(5.3 \times 10^{-3}\right)(10)}{2}=26,500 \mu \mathrm{~F}
\end{aligned}
$$
\]

The diodes used in a full-wave rectified capacitor input supply must have a DC current rating considerably higher than the average current flowing through them. In a 10A supply, for instance, the average current through each diode is only 5 A , but the diodes should have a rating of 10A-15A. There are many reasons for this, both thermal and electrical. The diodes conduct current in pulses about 3.5 ms wide with a peak value of 5-8 times the average value, and an rms value 1.5-2.0 times the average value. This results in long term diode heating roughly equivalent to 10A DC current. The most demanding condition however, may be the one cycle surge through the diode during power turn on. The peak value of the surge is about 10-20 times the DC output current of the supply, or 100A-200A for a 10A supply. The diodes must have a one cycle non-repetitive surge rating of 200A or more, and this is usually not found in a diode with less than 10A average current rating. Keep in mind that even though the LM196 may be used at current levels below 10A, the diodes may still have to survive shorted output conditions where average current could rise to 12A-15A. Smaller transformers and filter capacitors used in lower current supplies will reduce surge currents, but unless specific information is available on worst-case surges, it is best not to economize on diodes. Stud-mounted devices in a DO-4 package are recommended. Cathode-to-case types may be bolted directly to the same heat sink as the LM196 because the case of the regulator is its power input. Part numbers to consider are the 1N1200 series rated at 12A average current in a DO-4 stud package. Additional types include common cathode duals in a TO-3 package, both standard and Schottky, and various duals in plastic filled assemblies. Schottky diodes will improve efficiency, especially in low voltage applications. In a 5 V supply for instance, Schottky diodes will decrease wasted power by up to 6W, or alternatively provide an additional 5\% "drop out" margin for lowline conditions. Several manufacturers are producing "high efficiency" diodes with a forward voltage drop nearly as good as Schottkys at high current levels. These devices do not have the low breakdown voltages of Schottkys, so are much less prone to reverse breakdown induced failures.

"See "Heat Sinking" under Application Hints.

${ }^{*} \mathrm{~V}_{\mathrm{IN}}$ is reduced until output drops 2%

*As limited by maximum junction temperature.

Typical Performance Characteristics (Continued)

*To obtain output noise, multiply by
$V_{\text {OUT }} / 1.25$ if adjustment pinis not bypassed.

Ripple Rejection

Output Impedance Adjustment Pin Bypassed

Load Transient Response Adjustment Pin Bypassed

TL/H/9059-6

TL/H/9059-7
*For output voltages other than 5 V , multiply vertical scale readings by $\mathrm{V}_{\text {OUT }} / 5$.

TL/H/9059-8
*With no adjustment pin bypass. For output voltages other than 5 V , multiply vertical scale by $V_{\text {OUT }} / 5$.

Typical Performance Characteristics (Continued)

Typical Applications (Continued)

TL/H/9059-10
*Regulation can be improved by adding an LM336 reference diode to increase the effective reference voltage to 3.75 V . Load and line regulation are improved by $3: 1$, including thermal effects.

FIGURE 3. Improving Regulation*

TL/H/9059-11
*R3 is selected to supply partial load current. Therefore, a minimum load must always be maintained to prevent the regulated output from rising uncontrolled. R3 must be greater than $\left(\mathrm{V}_{\text {MAX }}-\mathrm{V}_{\text {OUT }}\right) / I_{\text {MIN }}$, where $\mathrm{V}_{\text {MAX }}$ is worst-case high input voltage, and $\mathrm{I}_{\mathrm{MIN}}$ is the minimum load current. R3 must be rated for at least $\left(V_{I N}-V_{O U T}\right)^{2 / R 3}$ watts. Regulator power dissipation will be reduced by a factor of $2-3$ in a typical situation where minimum load current is $1 / 2$ full load current. Regulator dissipation will peak at:

$$
V_{I N}=\frac{(\mathrm{R} 3)\left(I_{\text {OUT }}\right)}{2}+V_{\text {OUT }}
$$

and will be equal to:
$P_{\text {MAX }}=\frac{(\text { R3 } 3)\left(l_{\text {OUT }}\right)^{2}}{4}$ Assuming: $($ R3 $)\left(l_{\text {OUT }}\right) \leq V_{\text {MAX }}-V_{\text {OUT }}$
A few words of caution; (1) R3 power rating must be increased to $\left(\mathrm{V}_{\mathrm{MAX}}\right)^{2 /}$ R3 if continuous output shorts are possible. (2) Under normal load conditions, system power dissipation is not changed, but under short circuit conditions system power dissipation increases by $\left(\mathrm{V}_{\mathrm{IN}}\right)^{2 / R 3}$ watts over the already high power of a shorted regulator. The LM196 will not be harmed and neither will R3 if it is rated properly, but the raw supply components must be able to withstand the overload also. Thermal shutdown of the LM196 will probably occur for sustained shorts, somewhat alleviating the problem.

FIGURE 4. Reducing Regulator Power Dissipation

Typical Applications (Continued)

FIGURE 5a. Paralleling Regulators

*2 feet of \#18 CU wire
**Total voltage drop across output wire and connector should not exceed 0.3 V FIGURE 5b

TL/H/9059-14
Output will be within $\pm 20 \mathrm{mV}$ at $25^{\circ} \mathrm{C}$, no load. Regulation of tracking units is improved by $\mathrm{V}_{\text {OUT }} / 1.25$ compared to a normal connection. Regulation of master unit is unchanged. Load or input voltage changes on slave units do not affect other units, but all units will be affected by changes on master. A short on any output will cause all other outputs to drop to approximately 2 V .

FIGURE 6. Tracking Regulators

Typical Applications (Continued)

TL/H/9059-16
Power NPNs have low collecter resistance, and do not require collector bond wires. Collectors are all common to substrate. Standard NPNs are still isolated.

FIGURE 8. Process Technology

Connection Diagram

Bottom View
Order Number LM196K STEEL or LM396K STEEL
See NS Package Number K02B

LM317L 3-Terminal Adjustable Regulator

General Description

The LM317L is an adjustable 3-terminal positive voltage regulator capable of supplying 100 mA over a 1.2 V to 37 V output range. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, both line and load regulation are better than standard fixed regulators. Also, the LM317L is available packaged in a standard TO-92 transistor package which is easy to use.
In addition to higher performance than fixed regulators, the LM317L offers full overload protection. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.

Features

- Adjustable output down to 1.2 V
- Guaranteed 100 mA output current
- Line regulation typically $0.01 \% \mathrm{~V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- Eliminates the need to stock many voltages
- Standard 3-lead transistor package
- 80 dB ripple rejection
- Output is short circuit protected

Normally, no capacitors are needed unless the device is situated more than 6 inches from the input filter capacitors in which case an input bypass is needed. An optional output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3 -terminal regulators.

Besides replacing fixed regulators, the LM317L is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded.

Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317L can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

The LM317L is available in a standard TO-92 transistor package and the SO-8 package. The LM317L is rated for operation over a $-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ range.

Connection Diagram

BOTTOM VIEW
TL/H/9064-4
Order Number LM317LZ
See NS Package
Number Z03A

Order Number LM317LM See NS Package Number M08A

Typical Applications

Full output current not available at high input-output voltages
\dagger Optional-improves transient response
*Needed if device is more than 6 inches from filter capacitors
$\dagger \dagger V_{\text {OUT }}=1.25 \mathrm{~V}\left(1+\frac{\mathrm{R}^{2}}{\mathrm{R} 1}\right)+I_{\mathrm{ADJ}}\left(\mathrm{R}_{2}\right)$

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Power Dissipation
Internally Limited
Input-Output Voltage Differential 40 V
Operating Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 4 seconds) $260^{\circ} \mathrm{C}$
Output is Short Circuit Protected
ESD rating to be determined.

Electrical Characteristics (Note 1)

Parameter	Conditions	Min	Typ	Max	Units
Line Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}, \mathrm{l}_{\mathrm{L}} \leq 20 \mathrm{~mA}$ (Note 2)		0.01	0.04	\%/V
Load Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq \mathrm{I}_{\text {MAX }}$, (Note 2)		0.1	0.5	\%
Thermal Regulation	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Pulse		0.04	0.2	\%/W
Adjustment Pin Current			50	100	$\mu \mathrm{A}$
Adjustment Pin Current Change	$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 100 \mathrm{~mA} \\ & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right) \leq 40 \mathrm{~V}, \mathrm{P} \leq 625 \mathrm{~mW} \end{aligned}$		0.2	5	$\mu \mathrm{A}$
Reference Voltage	$\begin{aligned} & 3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V},(\text { Note } 3) \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq 100 \mathrm{~mA}, \mathrm{P} \leq 625 \mathrm{~mW} \end{aligned}$	1.20	1.25	1.30	V
Line Regulation	$3 \mathrm{~V} \leq\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \leq 40 \mathrm{~V}, \mathrm{I}_{\mathrm{L}} \leq 20 \mathrm{~mA}$ (Note 2)		0.02	0.07	\%/V
Load Regulation	$5 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 100 \mathrm{~mA}$, (Note 2)		0.3	1.5	\%
Temperature Stability	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {Max }}$		0.65		\%
Minimum Load Current	$\begin{aligned} & \left(V_{\text {IN }}-V_{\text {OUT }} \leq 40 V\right. \\ & 3 V \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 15 V \end{aligned}$		$\begin{aligned} & 3.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 2.5 \\ \hline \end{gathered}$	mA
Current Limit	$\begin{aligned} & 3 V \leq\left(V_{\text {IN }}-V_{\text {OUT }}\right) \leq 13 V \\ & \left(V_{\text {IN }}-V_{\text {OUT }}\right)=40 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 100 \\ 25 \\ \hline \end{array}$	$\begin{gathered} 200 \\ 50 \\ \hline \end{gathered}$	$\begin{array}{r} 300 \\ 150 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Rms Output Noise, \% of V ${ }_{\text {OUT }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		- 0.003		\%
Ripple Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \mathrm{C}_{\text {ADJ }}=0 \\ & \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$	66	$\begin{aligned} & 65 \\ & 80 \end{aligned}$		dB dB
Long-Term Stability	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, 1000$ Hours		0.3	1	\%
Thermal Resistance Junction to Ambient	Z Package 0.4" Leads Z Package 0.125 Leads SO-8 Package		$\begin{aligned} & 180 \\ & 160 \\ & 165 \end{aligned}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Thermal Rating of SO Package			165		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise noted, these specifications apply: $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}$ for the LM317L; $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$ and lout $=40 \mathrm{~mA}$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 625 mW . $I_{\text {mAX }}$ is 100 mA .
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.
Note 3: Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to PC board.

Typical Performance Characteristics (Output capacitor $=0 \mu \mathrm{~F}$ unless otherwise noted.)

Application Hints

In operation, the LM317L develops a nominal 1.25 V reference voltage, $\mathrm{V}_{\text {REF }}$, between the output and adjustment terminal. The reference voltage is impressed across program resistor R1 and, since the voltage is constant, a constant current I_{1} then flows through the output set resistor R2; giving an output voltage of

$$
V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)+\mathrm{I}_{\mathrm{ADJ}}(\mathrm{R} 2)
$$

Since the $100 \mu \mathrm{~A}$ current from the adjustment terminal represents an error term, the LM317L was designed to minimize $I_{\text {ADJ }}$ and make it very constant with line and load changes. To do this, all quiescent operating current is returned to the output establishing a minimum load current requirement. If there is insufficient load on the output, the output will rise.

TL/H/9064-7

FIGURE 1

External Capacitors

An input bypass capacitor is recommended in case the regulator is more than 6 inches away from the usual large filter capacitor. A $0.1 \mu \mathrm{~F}$ disc or $1 \mu \mathrm{~F}$ solid tantalum on the input is suitable input bypassing for almost all applications. The device is more sensitive to the absence of input bypassing when adjustment or output capacitors are used, but the above values will eliminate the possiblity of problems.
The adjustment terminal can be bypassed to ground on the LM317L to improve ripple rejection and noise. This bypass capacitor prevents ripple and noise from being amplified as the output voltage is increased. With a $10 \mu \mathrm{~F}$ bypass capacitor 80 dB ripple rejection is obtainable at any output level. Increases over $10 \mu \mathrm{~F}$ do not appreciably improve the ripple rejection at frequencies above 120 Hz . If the bypass capacitor is used, it is sometimes necessary to include protection diodes to prevent the capacitor from discharging through internal low current paths and damaging the device.

In general, the best type of capacitors to use is solid tantalum. Solid tantalum capacitors have low impedance even at high frequencies. Depending upon capacitor construction, it takes about $25 \mu \mathrm{~F}$ in aluminum electrolytic to equal $1 \mu \mathrm{~F}$ solid tantalum at high frequencies. Ceramic capacitors are also good at high frequencies; but some types have a large decrease in capacitance at frequencies around 0.5 MHz . For this reason, a $0.01 \mu \mathrm{~F}$ disc may seem to work better than a $0.1 \mu \mathrm{~F}$ disc as a bypass.
Although the LM317L is stable with no output capacitors, like any feedback circuit, certain values of external capacitance can cause excessive ringing. This occurs with values between 500 pF and 5000 pF . A $1 \mu \mathrm{~F}$ solid tantalum (or 25 $\mu \mathrm{F}$ aluminum electrolytic) on the output swamps this effect and insures stability.

Load Regulation

The LM317L is capable of providing extremely good load regulation but a few precautions are needed to obtain maximum performance. The current set resistor connected between the adjustment terminal and the output terminal (usually 240Ω) should be tied directly to the output of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 15 V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05 \Omega \times I_{L}$. If the set resistor is connected near the load the effective line resistance will be $0.05 \Omega(1+$ R2/R1 $)$ or in this case, 11.5 times worse.
Figure 2 shows the effect of resistance between the regulator and 240Ω set resistor.
With the TO-92 package, it is easy to minimize the resistance from the case to the set resistor, by using two separate leads to the output pin. The ground of R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

TL/H/9064-8
FIGURE 2. Regulator with LIne Resistance in Output Lead

Application Hints (Continued)

Thermal Regulation

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of $V_{\text {OUT }}$, per watt, within the first 10 ms after a step of power is applied. The LM317L specification is $0.2 \% / \mathrm{W}$, maximum.
In the Thermal Regulation curve at the bottom of the Typical Performance Characteristics page, a typical LM317L's output changes only 7 mV (or 0.07% of $\mathrm{V}_{\text {OUT }}=-10 \mathrm{~V}$) when a 1 W pulse is applied for 10 ms . This performance is thus well inside the specification limit of $0.2 \% / \mathrm{W} \times 1 \mathrm{~W}=0.2 \%$ maximum. When the 1W pulse is ended, the thermal regulation again shows a 7 mV change as the gradients across the LM317L chip die out. Note that the load regulation error of about $14 \mathrm{mV}(0.14 \%)$ is additional to the thermal regulation error.
vent the capacitors from discharging through low current points into the regulator. Most $10 \mu \mathrm{~F}$ capacitors have low enough internal series resistance to deliver 20A spikes when shorted. Although the surge is short, there is enough energy to damage parts of the IC.
When an output capacitor is connected to a regulator and the input is shorted, the output capacitor will discharge into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and the rate of decrease of V_{IN}. In the LM317L, this discharge path is through a large junction that is able to sustain a 2A surge with no problem. This is not true of other types of positive regulators. For output capacitors of $25 \mu \mathrm{~F}$ or less, the LM317L's ballast resistors and output structure limit the peak current to a low enough level so that there is no need to use a protection diode.
The bypass capacitor on the adjustment terminal can discharge through a low current junction. Discharge occurs when either the input or output is shorted. Internal to the LM317L is a 50Ω resistor which limits the peak discharge current. No protection is needed for output voltages of 25 V or less and $10 \mu \mathrm{~F}$ capacitance. Figure 3 shows an LM317L with protection diodes included for use with outputs greater than 25 V and high values of output capacitance.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to pre-

Digitally Selected Outputs

TL/H/9064-11
*Sets maximum VOUT

Adjustable Current Limiter

TL/H/9064-13
$12 \leq$ R1 ≤ 240

TL/H/9064-15

High Stability 10V Regulator

TL/H/9064-17

High Gain Amplifier

TL/H/9064-12

Precision Current Limiter

TL/H/9064-14
Adjustable Regulator with Improved Ripple Rejection

\dagger Solid tantalum
TL/H/9064-16
*Discharges C1 if output is shorted to ground
Adjustable Regulator with Current Limiter

TL/H/9064-18
Short circuit current is approximately $600 \mathrm{mV} / \mathrm{R} 3$, or 60 mA (compared to LM317LZ's 200 mA current limit).
At 25 mA output only $3 / 4 \mathrm{~V}$ of drop occurs in R3 and R4.

Typical Applications (Continued)

TL/H/9064-19
Full output current not available at high input-output voltages

Regulator With 15 mA Short Circuit
Current

TL/H/9064-20

Typical Applications (Continued)

5V Logic Regulator with Electronic Shutdown*

TL/H/9064-26
*Minimum output $\approx 1.2 \mathrm{~V}$

TL/H/9064-27
*Sets peak current, lpEAK $=0.6 \mathrm{~V} / \mathrm{R} 1$
** $1000 \mu \mathrm{~F}$ is recommended to filter out any input transients.

Typical Applications (Continued)

TL/H/9064-29

Precision High Voltage Regulator

Typical Applications (Continued)

TL/H/9064-31

Regulator With Trimmable Output Voltage
$V_{\text {IN }}(25 \mathrm{~V}$ TO 40V)

TL/H/9064-32

Trim Procedure:

- If $\mathrm{V}_{\text {OUT }}$ is 23.08 V or higher, cut out R3 (if lower, don't cut it out).
- Then if $\mathrm{V}_{\text {OUT }}$ is 22.47 V or higher, cut out R4 (if lower, don't).
- Then if $\mathrm{V}_{\text {OUT }}$ is 22.16 V or higher, cut out R5 (if lower, don't).

This will trim the output to well within $\pm 1 \%$ of $22.00 \mathrm{~V}_{\mathrm{DC}}$, without any of the expense or uncertainty of a trim pot (see LB-46). Of course, this technique can be used at any output voltage level.

A1 = LM301A, LM307, or LF13741 only
R1, R2 = matched resistors with good TC tracking

TL/H/9064-33

[^5]
LM320L 3-Terminal Negative Regulators

General Description

The LM320L series of 3-terminal negative voltage regulators features fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V , with output current capabilities in excess of 100 mA . These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM320L series, even when combined with a minimum output compensation capacitor of $0.1 \mu \mathrm{~F}$, exhibits an excellent transient response, a maximum line regulation of $0.07 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{V}$, and a maximum load regulation of $0.01 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{mA}$.
The LM320L series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM320L series is available in the 3-lead TO-92 package.
For output voltages other than $-5 \mathrm{~V},-12 \mathrm{~V}$ and -15 V , the LM137 and LM137HV series provide an output voltage range from -1.2 V to -47 V .

Features

- Preset output voltage error is less than $\pm 5 \%$ over load, line and temperature
- LM320L is specified at an output current of 100 mA
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than 0.07% VOUT/V
- Maximum load regulation less than $0.01 \% \mathrm{~V}_{\text {OUT }} / \mathrm{mA}$
- Easily compensated with a small $0.1 \mu \mathrm{~F}$ output capacitor

Device	Package	Rated Power Dissipation	Design Output Current
LM320L	TO-92 (Z)	0.6 W	0.1 A

Connection Diagram

TO-92 Plastic Package (Z)

Order Number LM320LZ-5.0, LM320LZ-12 or LM320LZ-15 See NS Package Number Z03A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage
$V_{\text {OUT }}=-5 \mathrm{~V} 12 \mathrm{~V}$ and 15 V -35V
Internal Power Dissipation
(Notes 1 and 3)
Internally Limited

Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+125^{\circ} \mathrm{C}$
Storage Temperature Range	
\quad Molded TO-92	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $260^{\circ} \mathrm{C}$	

Electrical Characteristics (Note 2) $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.

Output Voitage				-5V		-12V		-15V	Units
Input Voltage (unless otherwise noted)			-10V		-17V		-20V		
Symbol	Parameter	Conditions	Min	Typ Max	Min	Typ ${ }^{\text {a }}$ Max	Min	Typ ${ }^{\text {Max }}$	
Vo	Output Voltage	$\mathrm{T}_{j}=25^{\circ} \mathrm{C}, \mathrm{l}_{0}=100 \mathrm{~mA}$	$\begin{array}{lll}-5.2 & -5 & -4.8\end{array}$		$\begin{array}{llll}-12.5 & -12 & -11.5\end{array}$		-15.6 -15 -14.4		V
		$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\begin{array}{lr} -5.25 & -4.75 \\ \left(-20 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -7.5) \end{array}$		$\begin{array}{lr} -12.6 & -11.4 \\ -27 \leq V_{I N} \leq & -14.8) \end{array}$		$\begin{array}{cc} -15.75 & -14.25 \\ \left(-30 \leq \mathrm{V}_{\mathrm{IN}} \leq-18\right) \end{array}$		
		$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\begin{array}{\|cc\|} \hline-5.25 & -4.75 \\ \left(-20 \leq V_{\text {IN }} \leq-7\right) \\ \hline \end{array}$		$\left\{\begin{array}{lr} -12.6 & -11.4 \\ \left(-27 \leq V_{\mathrm{IN}} \leq\right. & -14.5) \end{array}\right.$		$\begin{array}{\|lr\|} \hline-15.75 & -14.25 \\ \left(-30 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -17.5) \\ \hline \end{array}$		
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \\ & \hline \end{aligned}$	$\begin{gathered} \\ 60 \\ \left(-20 \leq V_{\mathrm{IN}} \leq-7.3\right) \end{gathered}$		$\begin{gathered} 45 \\ \left(-27 \leq V_{I N} \leq-14.6\right) \end{gathered}$		$\begin{gathered} 45 \\ \left(-30 \leq \mathrm{V}_{\mathrm{IN}} \leq-17.7\right) \end{gathered}$		mV
		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ \left(-20 \leq V_{\mathrm{IN}} \leq-7\right) \end{gathered}$		$\begin{gathered} 45 \\ \left(-27 \leq \mathrm{V}_{\mathrm{IN}} \leq-14.5\right) \end{gathered}$		$\begin{gathered} 45 \\ \left(-30 \leq \mathrm{V}_{\mathrm{IN}} \leq-17.5\right) \end{gathered}$		$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \\ \hline \end{gathered}$
ΔV_{0}	Load Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 100 \mathrm{~mA} \end{aligned}$	50		100			125	mV
ΔV_{0}	Long Term Stability	$10=100 \mathrm{~mA}$	20		48		60		$\mathrm{mV} / \mathrm{khr}$
la	Quiescent Current	$1 \mathrm{O}=100 \mathrm{~mA}$		26		26		26	mA
Δl_{Q}	Quiescent Current Change	$1 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 100 \mathrm{~mA}$		0.3		0.3		0.3	mA
		$1 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 40 \mathrm{~mA}$		0.1		0.1		0.1	
		$\begin{aligned} & 10=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }} \end{aligned}$	$(-20$	$1 \begin{gathered} 0.25 \\ 1 N \end{gathered}$	$\begin{gathered} 0.25 \\ \left(-27 \leq V_{I N} \leq-14.8\right) \end{gathered}$		0.25$\left(-30 \leq V_{\text {IN }} \leq-18\right)$		$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \end{gathered}$
V_{n}	Output Noise Voltage	$\begin{aligned} & T_{1}=25^{\circ} \mathrm{C}, \mathrm{I}_{0}=100 \mathrm{~mA} \\ & \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$	40		96		120		$\mu \mathrm{V}$
$\frac{\Delta V_{I N}}{\Delta V_{0}}$	Ripple Rejection	$\begin{aligned} & T_{1}=25^{\circ} \mathrm{C}, \mathrm{I}_{0}=100 \mathrm{~mA} \\ & \mathrm{f}=120 \mathrm{~Hz} \end{aligned}$	50		52		50		dB
	Input Voltage Required to Maintain Line Regulation	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & \mathrm{l}^{0}=100 \mathrm{~mA} \\ & 10=40 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & -7.3 \\ & -7.0 \end{aligned}$		$\begin{aligned} & -14.6 \\ & -14.5 \end{aligned}$		$\begin{aligned} & -17.7 \\ & -17.5 \end{aligned}$		V

Note 1: Thermal resistance of Z package is typically $60^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{JC}}, 232^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{IA}}$ at still air, and $88^{\circ} \mathrm{C} / \mathrm{W}$ at $400 \mathrm{ft} / \mathrm{min}$ of air. The maximum junction temperature shall not exceed $125^{\circ} \mathrm{C}$ on electrical parameters.
Note 2: To ensure constant junction temperature pulse testing is used.

Typical Performance Characteristics

Schematic Diagrams

L/H/7821-3

Fixed Output Regulator

TL/H/7821-5
*Required if the regulator is located far from the power supply filter. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
**Required for stability. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.

Adjustable Output Regulator

$$
\begin{gathered}
-V_{O}=-5 V-\left(5 V / R 1+I_{Q}\right) \cdot R 2 \\
5 V / R 1>3 I_{Q}
\end{gathered}
$$

\pm 15V, 100 mA Dual Power Supply

TL/H/7821-7

LM330 3-Terminal Positive Regulator

General Description

The LM330 5V 3-terminal positive voltage regulator features an ability to source 150 mA of output current with an inputoutput differential of 0.6 V or less. Familiar regulator features such as current limit and thermal overload protection are also provided.
The low dropout voltage makes the LM330 useful for certain battery applications since this feature allows a longer battery discharge before the output falls out of regulation. For example, a battery supplying the regulator input voltage may discharge to 5.6 V and still properly regulate the system and load voltage. Supporting this feature, the LM330 protects both itself and regulated systems from negative voltage inputs resulting from reverse installations of batteries.
Other protection features include line transient protection up to 26 V , when the output actually shuts down to avoid damaging internal and external circuits. Also, the LM330 regulator cannot be harmed by a temporary mirror-image insertion.

Features

- Input-output differential less than 0.6 V
- Output current of 150 mA
- Reverse battery protection
- Line transient protection
- Internal short circuit current limit
- Internal thermal overload protection
- Mirror-image insertion protection
- 100% electrical burn-in in the thermal limit

Schematic and Connection Diagrams

TL/H/9306-1
(TO-220)
Plastic Package

TL/H/9306-2
Front View
Order Number LM330T-5.0
See NS Package Number T03B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Input Voltage
Operating Range
26 V
Line Transient Protection (1000 ms)

Internal Power Dissipation	Internally Limited
Operating. Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$+300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Symbol	Parameter	Conditions	Min	Typ.	Max	Units
V_{0}	Output Voltage	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	4.8	5	5.2	V
	Output Voltage Over Temp	$\begin{aligned} & 5<\mathrm{I}_{0}<150 \mathrm{~mA} \\ & 6<\mathrm{V}_{\mathrm{IN}}<26 \mathrm{~V} ; 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq 100^{\circ} \mathrm{C} \end{aligned}$	4.75		5.25	
ΔV_{0}	Line Regulation	$\begin{aligned} & 9<V_{I N}<16 V, I_{0}=5 \mathrm{~mA} \\ & 6<\mathrm{V}_{\mathrm{IN}}<26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 7 \\ 30 \end{gathered}$	$\begin{aligned} & 25 \\ & 60 \end{aligned}$	mV
	Load Regulation	$5<\mathrm{I}_{0}<150 \mathrm{~mA}$		14	50	
	Long Term Stability			20		$\mathrm{mV} / 1000 \mathrm{hrs}$
l_{Q}	Quiescent Current	$\begin{aligned} & I_{0}=10 \mathrm{~mA} \\ & I_{0}=50 \mathrm{~mA} \\ & I_{0}=150 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 3.5 \\ 5 \\ 18 \end{gathered}$	$\begin{gathered} 7 \\ 11 \\ 40 \\ \hline \end{gathered}$	mA
	Line Transient Reverse Polarity	$\begin{aligned} & V_{I N}=40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, 1 \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{IN}}=-6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$		$\begin{gathered} 14 \\ -80 \end{gathered}$.	
$\Delta \mathrm{I}_{\mathrm{Q}}$	Quiescent Current Change	$6<\mathrm{V}_{\text {IN }}<26 \mathrm{~V}$		10		\%
$\mathrm{V}_{\text {IN }}$	Overvoltage Shutdown Voltage	\cdots	26	38		V
	Max Line Transient	- :		60		
		$1 \mathrm{~s}, \mathrm{~V}_{0} \leq 5.5 \mathrm{~V}$		50		
	Reverse Polarity Input Voltage			-30		
		$D C V_{0}>-0.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		-12		
	Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$		50		$\mu \mathrm{V}$
	Output Impedance	$\mathrm{I}_{0}=100 \mathrm{mADC}+10 \mathrm{mArms}$		200		$\mathrm{m} \Omega$
	Ripple Rejection			56		dB
	Current Limit		150	400	700	mA
	Dropout Voltage	$\mathrm{I}_{0}=150 \mathrm{~mA}$		0.32	0.6	V
;	Thermal Resistance	Junction to Case Junction to Ambient		$\begin{gathered} 4 \\ 50 \end{gathered}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Unless otherwise specified: $\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C} 1=0.1 \mu \mathrm{~F}, \mathrm{C} 2=10 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection are measured using pulse techniques ($\mathrm{t}_{\mathrm{W}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Typical Performance Characteristics

Peak Output Current

Line Transient Response

Quiescent Current

Ripple Rejection

Typical Performance Characteristics (Continued)

Typical Applications

The LM330 is designed specifically to operate at lower input to output voltages. The device is designed utilizing a power lateral PNP transistor which reduces dropout voltage from 2.0V to 0.3 V when compared to IC regulators using NPN pass transistors. Since the LM330 can operate at a much lower input voltage, the device power dissipation is reduced, heat sinking can be simpler and device reliability im-

TL/H/9306-5

* Required if regulator is located far from power supply filter.
** C2 may be either an Aluminum or Tantalum type capacitor but must be rated to operate at $-40^{\circ} \mathrm{C}$ to guarantee regulator stability to that temperature extreme. $10 \mu \mathrm{~F}$ is the minimum value required for stability and may be increased without bound. Locate as close as possible to the regulation.
proved through lower chip operating temperature. Also, a cost savings can be utilized through use of lower power/ voltage components. In applications utilizing battery power, the LM330 allows the battery voltage to drop to within 0.3 V of output voltage prior to the voltage regulator dropping out of regulation.

TL/H/9306-6
Note: Compared to IC regulator with 2.0 V dropout voltage and $I_{Q_{\max }}=6.0 \mathrm{~mA}$.

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.
Input Voltage: The DC voltage applied to the input terminals with respect to ground.
Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.
Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.
Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.
Temperature Stability of $\mathbf{V}_{\mathbf{0}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

National
Semiconductor

LM337L 3-Terminal Adjustable Regulator

General Description

The LM337L is an adjustable 3-terminal negative voltage regulator capable of supplying 100 mA over a 1.2 V to 37 V output range. It is exceptionally easy to use and requires only two external resistors to set the output voltage. Furthermore, both line and load regulation are better than standard fixed regulators. Also, the LM337L is packaged in a standard TO-92 transistor package which is easy to use.
In addition to higher performance than fixed regulators, the LM337L offers full overload protection. Included on the chip are current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional even if the adjustment terminal is disconnected.
Normally, only a single $1 \mu \mathrm{~F}$ solid tantalum output capacitor is needed unless the device is situated more than 6 inches from the input filter capacitors, in which case an input bypass is needed. A larger output capacitor can be added to improve transient response. The adjustment terminal can be bypassed to achieve very high ripple rejection ratios which are difficult to achieve with standard 3 -terminal regulators.
Besides replacing fixed regulators, the LM337L is useful in a wide variety of other applications. Since the regulator is "floating" and sees only the input-to-output differential voltage, supplies of several hundred volts can be regulated as long as the maximum input-to-output differential is not exceeded.
Also, it makes an especially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM337L can be used as a precision current regulator. Supplies with electronic shutdown can be achieved by clamping the adjustment terminal to ground which programs the output to 1.2 V where most loads draw little current.

The LM337L is available in a standard TO-92 transistor package and a SO-8 surface mount package. The LM337L is rated for operation over a $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range.
For applications requiring greater output current in excess of 0.5 A and 1.5A, see LM137 series data sheets. For the positive complement, see series LM117 and LM317L data sheets.

Features

- Adjustable output down to 1.2 V
- Guaranteed 100 mA output current
- Line regulation typically $0.01 \% / \mathrm{V}$
- Load regulation typically 0.1%
- Current limit constant with temperature
- Eliminates the need to stock many voltages

■ Standard 3-lead transistor package

- 80 dB ripple rejection
- Output is short circuit protected

Connection Diagram

TL/H/9134-1

Bottom View

Order Number LM337LM or LM337LZ See NS Package Number M08A or Z03A

Typical Applications

Full output current not available at high input-output voltages
$-\mathrm{V}_{\text {OUT }}=-1.25 \mathrm{~V}\left(1+\frac{\mathrm{R} 2}{240 \Omega}\right)$
${ }^{\dagger} \mathrm{C} 1=1 \mu \mathrm{~F}$ solid tantalum or $10 \mu \mathrm{~F}$ aluminum electrolytic required for stability

* $\mathrm{C} 2=1 \mu \mathrm{~F}$ solid tantalum is required only if regulator is more than 4 " from power supply filter capacitor

Regulator with Trimmable Output Voltage

TL/H/9134-4
Trim Procedure:
-If $\mathrm{V}_{\text {OUT }}$ is -23.08 V or bigger, cut out R 3 (if smaller, don't cut it out).
-Then if $V_{\text {OUT }}$ is -22.47 V or bigger, cut out R4 (if smaller, don't).
-Then if $\mathrm{V}_{\text {OUT }}$ is -22.16 V or bigger, cut out R5 (if smaller, don't).
This will trim the output to well within 1% of $-22.00 \mathrm{~V}_{\mathrm{DC}}$, without any of the expense or trouble of a trim pot (see LB-46). Of course, this technique can be used at any output voltage level.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Power Dissipation
Input-Output Voltage Differential
Internally Limited
40 V

Operating Junction Temperature Range $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$ Plastic Package (Soldering 4 sec.) $260^{\circ} \mathrm{C}$ ESD rating to be determined.

Electrical Characteristics

 (Note 1)| Parameter | Condltions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Line Regulation | $T_{A}=25^{\circ} \mathrm{C}, 3 \mathrm{~V} \leq\left\|V_{I N}-V_{O U T}\right\| \leq 40 \mathrm{~V}$
 (Note 2) | | 0.01 | 0.04 | \%/V |
| Load Regulation | $\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq \mathrm{I}_{\mathrm{MAX}}$, (Note 2) | | 0.1 | 0.5 | \% |
| Thermal Regulation | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms}$ Pulse | | 0.04 | 0.2 | \%/W |
| Adjustment Pin Current | | | 50 | 100 | $\mu \mathrm{A}$ |
| Adjustment Pin Current Change | $\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{L}} \leq 100 \mathrm{~mA} \\ & 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{IN}}-V_{\text {OUT }}\right\| \leq 40 \mathrm{~V} \end{aligned}$ | | 0.2 | 5 | $\mu \mathrm{A}$ |
| Reference Voltage | $\begin{aligned} & 3 V \leq\left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 40 \mathrm{~V},(\text { Note } 3) \\ & 10 \mathrm{~mA} \leq \text { IOUT } \leq 100 \mathrm{~mA}, \mathrm{P} \leq 625 \mathrm{~mW} \end{aligned}$ | 1.20 | 1.25 | 1.30 | V |
| Line Regulation | $3 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\| \leq 40 \mathrm{~V}$, (Note 2) | | 0.02 | 0.07 | \%/V |
| Load Regulation | $5 \mathrm{~mA} \leq \mathrm{IOUT} \leq 100 \mathrm{~mA}$, (Note 2) | | 0.3 | 1.5 | \% |
| Temperature Stability | $\mathrm{T}_{\text {MiN }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {MAX }}$ | | 0.65 | | \% |
| Minimum Load Current | $\begin{aligned} & \left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 40 \mathrm{~V} \\ & 3 V \leq\left\|V_{\text {IN }}-V_{\text {OUT }}\right\| \leq 15 \mathrm{~V} \end{aligned}$ | | $\begin{aligned} & 3.5 \\ & 2.2 \end{aligned}$ | $\begin{gathered} 5 \\ 3.5 \end{gathered}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| Current Limit | $\begin{aligned} & 3 \mathrm{~V} \leq\left\|\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right\| \leq 13 \mathrm{~V} \\ & \left\|\mathrm{~V}_{\text {IN }}-V_{\text {OUT }}\right\|=40 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 100 \\ & 25 \end{aligned}$ | $\begin{gathered} 200 \\ 50 \\ \hline \end{gathered}$ | $\begin{aligned} & 320 \\ & 120 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| Rms Output Noise, \% of V ${ }_{\text {OUT }}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$ | | 0.003 | | \% |
| Ripple Rejection Ratio | $\begin{aligned} & V_{O U T}=-10 \mathrm{~V}, \mathrm{~F}=120 \mathrm{~Hz}, \mathrm{C}_{\mathrm{ADJ}}=0 \\ & \mathrm{C}_{\text {ADJ }}=10 \mu \mathrm{~F} \end{aligned}$ | 66 | $\begin{aligned} & 65 \\ & 80 \\ & \hline \end{aligned}$ | | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$ |
| Long-Term Stability | $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ | | 0.3 | 1 | \% |

Note 1: Unless otherwise specified, these specifications apply $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{i}} \leq+125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 337 \mathrm{~L} ;\left|\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}\right|=5 \mathrm{~V}$ and IOUT $=40 \mathrm{~mA}$. Although power dissipation is internally limited, these specifications are applicable for power dissipations up to 625 mW . $\mathrm{I}_{\mathrm{MAX}}$ is 100 mA .
Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Note 3: Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to PC board. The M package θ_{JA} is $180^{\circ} \mathrm{C} / \mathrm{W}$ in still air.

LM341 Series 3-Terminal Positive Regulators

General Description

The LM341-XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. AIthough designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.
The LM341-XX series is available in TO-202 and TO-220 plastic packages allowing these regulators to deliver over 0.5 A if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Considerable effort was expended to make the LM341-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.
For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

■ Output current in excess of 0.5A

- Internal thermal overioad protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-202 and TO-220 package
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

Schematic Diagram

TL/H/10484-1

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications. input Voltage

35 V
Internal Power Dissipation Internally Limited
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Maximum Junction Temperature	$+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$+230^{\circ} \mathrm{C}$
ESD Susceptibility	TBD

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, 10=500 \mathrm{~mA}$, unless otherwise noted

Output Voltage			5 V	12V	15V	Units
Input Voltage (unless otherwise noted)			10V	19V	23V	
Symbol	Parameter	Conditions	Min Typ Max	Min Typ Min	Min Typ Max	
V_{0}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{array}{lll}4.8 & 5 & 5.2\end{array}$	$\begin{array}{llll}11.5 & 12 & 12.5\end{array}$	14.4 15 15.6 14.5	V
		$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \leq 7.5 \mathrm{~W}, 5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 500 \mathrm{~mA} \\ & \text { and } \mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\begin{array}{\|lr\|} \hline 4.75 & 5.25 \\ \left(7.5 \leq V_{I N} \leq 20\right) \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline 11.4 & 12.6 \\ \left(14.8 \leq \mathrm{V}_{\mathrm{IN}} \leq 27\right) \\ \hline \end{array}$	$\begin{gathered} 14.25 \\ \left(18 \leq \mathrm{V}_{\mathbb{I N}} \leq 30\right) \\ \hline \end{gathered}$	V
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \end{aligned}$	$\begin{array}{r} 50 \\ 100 \\ \left(7.2 \leq \mathrm{V}_{\mathrm{IN}} \leq 25\right) \\ \hline \end{array}$	$\begin{array}{r} 120 \\ 240 \\ \left(14.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \\ \hline \end{array}$	150 300 $\left(17.6 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right)$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 5 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 500 \mathrm{~mA}$	100	240	300	mV
$\Delta \mathrm{V}_{\mathrm{O}}$	Long Term Stability		20	48	60	$\mathrm{mV} / \mathrm{khrs}$
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$4 \quad 10$	410	$4 \quad 10$	mA
Δl_{Q}	Quiescent Current Change	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 500 \mathrm{~mA} \\ & \hline \end{aligned}$	0.5	0.5	0.5	mA
		$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\begin{gathered} 1 \\ \left(7.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 25\right) \end{gathered}$	$\begin{gathered} \\ \left(14.8 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \end{gathered}$	$\begin{array}{r} 1 \\ \left(18 \leq V_{I N} \leq 30\right) \end{array}$	mA
V_{n}	Output Noise Voltage	$T_{J}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{~Hz}-100 \mathrm{kHz}$	40	75	90	$\mu \mathrm{V}$
$\frac{\Delta V_{\text {IN }}}{\Delta V_{\text {OUT }}}$	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	78	71	69	dB
	Input Voltage Required to Maintain Line Regulation	$T_{J}=25^{\circ} \mathrm{C}, \mathrm{l}_{0}=500 \mathrm{~mA}$	7.2	14.5	17.6	V
	Thermal Resistance Junction to Case	P Package T Package	$\begin{gathered} 12 \\ 5 \end{gathered}$	$\begin{aligned} & 12 \\ & 5 \end{aligned}$	$\begin{gathered} 12 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
	Thermal Resistance Junction to Ambient	P Package T Package	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$

Typical Performance Characteristics

Ripple Rejection

Quiescent Current

Ripple Rejectlon

Output Voltage (Normalized to $\mathbf{1 V}$ at $\mathrm{T}_{\mathbf{J}}=\mathbf{2 5}^{\circ} \mathrm{C}$)

TL/H/10484-4

Connection Diagrams

LM342 Series

3-Terminal Positive Regulators

General Description

The LM342-XX series of three-terminal regulators is available with several fixed output voltages, making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.
The LM342-XX series is available in the plastic TO-202 package. This package allows these regulators to deliver over 0.25A if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over, preventing the IC from overheating.
Considerable effort was expended to make the LM342-XX series of regulators easy to use and minimize the number of external components. It is not necessary to bypass the
output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.
For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Output current in excess of 0.25A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-202 package
- Special circuitry allows start-up even if output is pulled to negative voltage (\pm supplies)

Voltage Range

LM342-5.0 5V
LM342-12 12V
LM342-15 15V

Schematic Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Input Voltage
$\begin{array}{ll}V_{O}=5 \mathrm{~V} & 30 \mathrm{~V} \\ V_{O}=12 \mathrm{~V} \text { and } 15 \mathrm{~V} & 35 \mathrm{~V}\end{array}$
Internal Power Dissipation
Internally Limited
Operating Temperature Range

Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
ESD Susceptibility	TBD

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA}$ (Note 2) unless noted

Output Voltage			5 V	12V	15V	Units
Input Voltage (unless otherwise noted)			10V	19V	23 V	
Symbol	Parameter	Conditions	Min Typ Max	Min Typ Min	Min Typ Max	
V_{0}	Output Voltage (Note 3)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{array}{lll}4.8 & 5 & 5.2\end{array}$	$\begin{array}{llll}11.5 & 12 & 12.5\end{array}$	14.4 15 15.6	V
		$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 250 \mathrm{~mA} \text { and } \\ & \mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\begin{array}{cr} 4.75 & 5.25 \\ \left(7.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 20\right) \end{array}$	$\begin{array}{lr} 11.4 & 12.6 \\ \left(14.8 \leq \mathrm{V}_{\mathrm{IN}} \leq 27\right) \\ \hline \end{array}$	$\begin{gathered} 14.25 \\ \left(18 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \end{gathered}$	V
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{O}}=250 \mathrm{~mA}$	$\begin{array}{r} 55 \\ \left(7.3 \leq V_{\mathrm{IN}} \leq 25\right) \end{array}$	$\begin{array}{r} 100 \\ \left(14.6 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \end{array}$	$\begin{array}{r} 100 \\ \left(17.7 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \end{array}$	mV
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 250 \mathrm{~mA}$	50	120	150	mV
$\Delta \mathrm{V}_{\mathrm{O}}$	Long Term Stability		20	48	60	$\mathrm{mV} / \mathrm{khrs}$
l_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	6	6	6	mA
Δl_{Q}	Quiescent Current Change	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, 1 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 250 \mathrm{~mA}$	0.5	0.5	0.5	mA
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{MAX}}$	$\begin{array}{r} 1.5 \\ \left(7.3 \leq V_{\mathrm{IN}} \leq 25\right) \\ \hline \end{array}$	$\begin{array}{r} 1.5 \\ \left(14.6 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \\ \hline \end{array}$	$\begin{array}{r} 1.5 \\ \left(17.7 \leq \mathrm{V}_{\mathbb{I N}} \leq 30\right) \\ \hline \end{array}$	mA
V_{n}	Output Noise Voltage	$T_{J}=25^{\circ} \mathrm{C}, \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz}$	40	96	120	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{~V}_{\mathrm{OUT}}}$	Ripple Rejection	$f=120 \mathrm{~Hz}$	5064	$44 \cdot 56$	4256	dB
	Input Voltage Required to Maintain Line Regulation	$T_{J}=25^{\circ} \mathrm{C}, \mathrm{l}_{0}=250 \mathrm{~mA}$	7.3	14.6	17.7	V
	Thermal Resistance Junction to Case	P Package	15	15	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Thermal Resistance Junction to Ambient	P Package	80	80	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: The electrical characteristics data represent pulse test conditions with junction temperatures as shown at the initiation of tests.
Note 3: The temperature coefficient of $\mathrm{V}_{\mathrm{OUT}}$ is typically within $0.01 \% \mathrm{~V}_{\mathrm{O}} /{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Quiescent Current

TO-202 (P) Plastic Package

TL/H/10485-2
Order Number LM342P-5.0, LM342P-12 or LM342P-15 See NS Package Number P03A

Typical Applications
Flxed Output Regulator

TL/H/10485-4
*Required if the regulator is located far from power supply filter
**Although not required, C2 does improve transient response. (If needed, use $0.1 \mu \mathrm{~F}$ ceramic disc.)

Adjustable Output Regulator

TL/H/10485-5
$V_{O}=5 V+\left(5 V / R 1+I_{Q}\right) R 2$
$5 \mathrm{~V} / \mathrm{R} 1>3 \mathrm{l}_{\mathrm{Q}}$, Load Regulation $\left(\mathrm{L}_{\mathrm{R}}\right)=[(\mathrm{R} 1+\mathrm{R} 2) / R 1] \times\left(\mathrm{L}_{\mathrm{r}}\right.$ of LM342-05$)$

Current Regulator

TL/H/10485-6
$\mathrm{I}_{\text {OUT }}=\mathrm{V}^{2-3 / R 1}+\mathrm{I}_{\mathrm{Q}}$
$\Delta l_{Q} \leq 1.5 \mathrm{~mA}$ over line and load changes

Typical Applications (Continued)

High Output Voltage Regulator

TL/H/10485-7
*Necessary if regulator is located far from the power supply filter
**D3 aids in full load start-up and protects the regulator during short circuits from high input to output voltage differentials

TL/H/10485-8

Variable Output Regulator 0.5V-18V

$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}(\mathrm{R} 2 / \mathrm{R} 4)$ for $(\mathrm{R} 2+\mathrm{R} 3)=(\mathrm{R} 4+\mathrm{R} 5)$
30 pF
TL/H/10485-9
*Solid tantalum

LM431A

Adjustable Precision Zener Shunt Regulator

General Description

The LM431A is a 3-terminal adjustable shunt regulator with guaranteed temperature stability over the entire temperature range of operation. The output voltage may be set at any level greater than 2.5 V ($\mathrm{V}_{\mathrm{REF}}$) up to 36 V merely by selecting two external resistors that act as a voltage divided network. Due to the sharp turn-on characteristics this device is an excellent replacement for many zener diode applications.

Features

- Average temperature coefficient $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Temperature compensated for operation over the full temperature range
- Programmable output voltage
- Fast turn-on response
- Low output noise

Connection Diagrams

Order Number LM431ACZ or LM431AIZ See NS Package Number Z03A

Order Number LM431ACM See NS Package Number M08A

Absolute Maximum Ratings
If MIIItary/Aerospace specified devices are required,
please contact the Natlonal Semiconductor Sales
Office/Distributors for avallability and specifications.
Storage Temperature Range
Operating Temperature Range Industrial (LM431AI)
Commercial (LM431AC)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature
TO-92 Package/SO-8 Package
(Soldering, 10 sec.$)$
$265^{\circ} \mathrm{C}$
Internal Power Dissipation (Notes 1, 2)
TO-92 Package
0.78 W

SO-8 Package

Cathode Voltage
37 V
Continuous Cathode Current $\quad-10 \mathrm{~mA}$ to +150 mA
Reference Voltage
$-0.5 \mathrm{~V}$
Reference Input Current
10 mA
Operating Conditions
Cathode Voltage
Cathode Current
Note 1: T_{J} Max $=150^{\circ} \mathrm{C}$.
Note 2: Ratings appy to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the TO-92 at $6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the $\mathrm{SO}-8$ at $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

LM431A

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Conditions		Min	Typ	Max	Units
$V_{\text {REF }}$	Reference Voltage	$\mathrm{V}_{\mathrm{Z}}=\mathrm{V}_{\text {REF, }} \mathrm{l}_{\mathrm{I}}=10 \mathrm{~mA}$ (Figure 1)		2.440	2.495	2.550	V
$V_{\text {DEV }}$	Deviation of Reference Input Voltage Over Temperature (Note 3)	$\begin{aligned} & V_{Z}=V_{R E F}, I_{I}=10 \mathrm{~mA}, \\ & T_{A}=\text { Full Range (Figure 1) } \end{aligned}$			8.0	17	mV
$\frac{\Delta V_{R E F}}{\Delta V_{Z}}$	Ratio of the Change in Reference Voltage to the Change in Cathode Voltage	$I_{z}=10 \mathrm{~mA}$ (Figure 2)	V_{Z} from $\mathrm{V}_{\text {REF }}$ to 10 V		-1.4	-2.7	mV / V
			V_{Z} from 10 V to 36 V		-1.0	-2.0	
$I_{\text {REF }}$	Reference Input Current	$\begin{aligned} & \mathrm{R}_{1}=10 \mathrm{k} \Omega, \mathrm{R}_{2}=\infty, \\ & \mathrm{l}_{1}=10 \mathrm{~mA} \text { (Figure 2) } \end{aligned}$			2.0	4.0	$\mu \mathrm{A}$
$\propto l_{\text {REF }}$	Deviation of Reference Input Current over Temperature	$\begin{aligned} & R_{1}=10 \mathrm{k} \Omega, R_{2}=\infty, \\ & I_{1}=10 \mathrm{~mA}, \\ & T_{A}=\text { Full Range (Figure 2) } \end{aligned}$			0.4	1.2	$\mu \mathrm{A}$
IZ(MIN)	Minimum Cathode Current for Regulation	$\mathrm{V}_{\mathrm{Z}}=\mathrm{V}_{\text {REF }}$ (Figure 1)			0.4	1.0	mA
IZ(OFF)	Off-State Current	$\mathrm{V}_{\mathrm{Z}}=36 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}$ (Figure 3)			0.3	1.0	$\mu \mathrm{A}$
${ }^{\text {r }}$	Dynamic Output Impedance (Note 4)	$\begin{aligned} & V_{Z}=V_{R E F}, \\ & \text { Frequency }=0 \mathrm{~Hz} \text { (Figure 1) } \end{aligned}$				0.75	Ω

Note 3: Deviation of reference input voltage, $V_{D E V}$, is defined as the maximum variation of the reference input voltage over the full temperature range.

The average temperature coefficient of the reference input voltage, $\propto V_{R E F}$, is defined as:

$$
\propto V_{\text {REF }} \frac{\text { ppm }}{{ }^{\circ} \mathrm{C}}=\frac{ \pm\left[\frac{V_{\text {Max }}-V_{\text {Min }}}{V_{\text {REF }}\left(\text { at } 25^{\circ} \mathrm{C}\right)}\right]_{10^{6}}}{T_{2}-T_{1}}=\frac{ \pm\left[\frac{V_{\text {DEV }}}{V_{\text {REF }}\left(\text { at } 25^{\circ} \mathrm{C}\right)}\right]_{106}}{T_{2}-T_{1}}
$$

TL/H/10055-7

Where:
$T_{2}-T_{1}=$ full temperature change.
$\propto \mathrm{V}_{\text {REF }}$ can be positive or negative depending on whether the slope is positive or negative.
Example: $\mathrm{V}_{\mathrm{DEV}}=8.0 \mathrm{mV}, \mathrm{V}_{\mathrm{REF}}=2495 \mathrm{mV}, \mathrm{T}_{2}-\mathrm{T}_{1}=70^{\circ} \mathrm{C}$, slope is positive.

$$
\propto V_{\text {REF }}=\frac{\left[\frac{8.0 \mathrm{mV}}{2495 \mathrm{mV}}\right]_{{ }_{10} 6}}{70^{\circ} \mathrm{C}}=+46 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
$$

Note 4: The dynamic output impedance, r_{Z}, is defined as:

$$
r_{Z}=\frac{\Delta V_{Z}}{\Delta I_{Z}}
$$

When the device is programmed with two external resistors, R1 and R2, (see Figure 2), the dynamic output impedance of the overall circuit, r_{2}, is defined as:

$$
\mathrm{rz}=\frac{\Delta \mathrm{V}_{\mathrm{z}}}{\Delta \mathrm{I}_{\mathrm{z}}} \cong\left[\begin{array}{ll}
\mathrm{r}_{\mathrm{z}} & \left.1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right]
\end{array}\right]
$$

Equivalent Circuit

TL/H/10055-3
DC Test Circuits

TL/H/10055-4
FIGURE 1. Test Circuit for $\mathrm{V}_{\mathrm{Z}}=\mathrm{V}_{\mathrm{REF}}$

TL/H/10055-5
Note: $\mathrm{V}_{\mathrm{Z}}=\mathrm{V}_{\mathrm{REF}}(1+\mathrm{R} 1 / \mathrm{R} 2)+\mathrm{I}_{\mathrm{REF}} \bullet \mathrm{R} 1$
FIGURE 2. Test Circuit for $\mathbf{V}_{\mathbf{Z}}>\mathbf{V}_{\text {REF }}$

TL/H/10055-6
FIGURE 3. Test Circuit for Off-State Current

Typical Performance Characteristics

Dynamic Impedance vs

 Frequency

TL/H/10055-9

TL/H/10055-11
Test Circuit for Curve A Above

TL/H/10055-10

Note 1: The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial V_{Z} and I_{Z} conditions with $\mathrm{C}_{\mathrm{L}}=0 . \mathrm{V}^{+}$and C_{L} were then adjusted to determine the ranges of stability.

TL/H/10055-13

Typical Applications

$\mathrm{V}_{\mathrm{O}} \approx\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \mathrm{V}_{\mathrm{REF}}$
Series Regulator

$V_{0} \approx\left(1+\frac{R 1}{R 2}\right) V_{R E F}$

Single Supply Comparator with Temperature Compensated Threshold

TL/H/10055-15

TL/H/10055-17
$V_{O}=\left(1+\frac{R 1}{R 2}\right) V_{R E F}$
$V_{O M I N}=V_{\text {REF }}+5 V$

Typical Applications (Continued)
Higher Current Shunt Regulator

TL/H/10055-18

$V_{O}=\left(1+\frac{R 1}{R 2}\right) V_{R E F}$

$$
\mathrm{V}_{\mathrm{LIMIT}} \approx\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \mathrm{V}_{\mathrm{REF}}
$$

ver Voltage/Under Voltage
Protection Circuit

TL/H/10055-20
LOW LIMIT $\approx V_{\text {REF }}\left(1+\frac{R 1 B}{\text { R2B }}\right)+V_{B E}$
HIGH LIMIT $\approx V_{\text {REF }}\left(1+\frac{R 1 A}{R 2 A}\right)$


```
LOW LIMIT \(\approx V_{\text {REF }}\left(1+\frac{\text { R1B }}{\text { R2B }}\right) \quad \begin{aligned} & \text { LED ON WHEN } \\ & \text { LOW LIMIT }<V^{+}<\text {HIGH LIMIT }\end{aligned}\)
HIGH LIMIT \(\approx V_{\text {REF }}\left(1+\frac{\text { R1A }}{\text { R2A }}\right)\)
```


Typical Applications (Continued)

TL/H/10055-22
$D E L A Y=R \cdot C \cdot \ln \frac{V+}{\left(V^{+}\right)-V_{R E F}}$

TL/H/10055-24

LM723/LM723C Voltage Regulator

General Description

The LM723/LM723C is a voltage regulator designed primarily for series regulator applications. By itself, it will supply output currents up to 150 mA ; but external transistors can be added to provide any desired load current. The circuit features extremely low standby current drain, and provision is made for either linear or foldback current limiting.
The LM723/LM723C is also useful in a wide range of other applications such as a shunt regulator, a current regulator or a temperature controller.
The LM723C is identical to the LM723 except that the LM723C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Features

- 150 mA output current without external pass transistor
- Output currents in excess of 10A possible by adding external transistors
- Input voltage 40 V max
- Output voltage adjustable from 2 V to 37 V
- Can be used as either a linear or a switching regulator

Connection Diagrams

TL/H/8563-3
Note: Pin 5 connected to case.
Top View
Order Number LM723H or LM723CH See NS Package H10C

Equivalent Circuit*

TL/H/8563-4
*Pin numbers refer to metal can package.

```
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 9)
Pulse Voltage from V+ to V- (50 ms) 50V
Continuous Voltage from V+ to V- 40V
Input-Output Voltage Differential 40V
Maximum Amplifier Input Voltage (Either Input) 8.5V
Maximum Amplifier Input Voltage (Differential) 5V
Current from V Z 
Current from VREF
15 mA
```

Internal Power Dissipation Metal Can (Note 1)	800 mW
Cavity DIP (Note 1)	900 mW
Molded DIP (Note 1)	660 mW
Operating Temperature Range LM723 $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Storage Temperature Range Metal Can $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Molded DIP $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 4 sec . max.)	
Hermetic Package	$300^{\circ} \mathrm{C}$
Plastic Package	$260^{\circ} \mathrm{C}$
ESD Tolerance	1200 V

(Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF)

Electrical Characteristics (Note 2)

Parameter	Conditions	LM723			LM723C			Units
		Min	Typ	Max	Min	Typ	Max	
Line Regulation	$\begin{aligned} & V_{I N}=12 V \text { to } V_{I N}=15 \mathrm{~V} \\ & -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\ & V_{I N}=12 \mathrm{~V} \text { to } V_{I N}=40 \mathrm{~V} \end{aligned}$		$\begin{array}{\|l\|} 0.01 \\ 0.02 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.3 \\ & \\ & 0.2 \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline 0.01 \\ 0.1 \\ \hline \end{array}$	$\begin{aligned} & 0.1 \\ & 0.3 \\ & 0.5 \\ & \hline \end{aligned}$	\% VOUT \% V OUT \% Vout \% Vout
Load Regulation	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA} \text { to } \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$		0.03	$\begin{array}{\|c\|} \hline 0.15 \\ 0.6 \end{array}$		0.03	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	\% V OUT \% V OUT \% V
Ripple Rejection	$\begin{aligned} & \mathrm{f}=50 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=0 \\ & \mathrm{f}=50 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 74 \\ & 86 \\ & \hline \end{aligned}$			$\begin{aligned} & 74 \\ & 86 \\ & \hline \end{aligned}$		$d B$ dB
Average Temperature Coefficient of Output Voltage (Note 8)	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$		0.002	0.015		0.003	0.015	$\begin{aligned} & \% /{ }^{\circ} \mathrm{C} \\ & \% /{ }^{\circ} \mathrm{C} \end{aligned}$
Short Circuit Current Limit	$\mathrm{R}_{\text {SC }}=10 \Omega, \mathrm{~V}_{\text {OUT }}=0$		65			65		mA
Reference Voltage		6.95	7.15	7.35	6.80	7.15	7.50	V
Output Noise Voltage	$\begin{aligned} & \mathrm{BW}=100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=0 \\ & \mathrm{BW}=100 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F} \end{aligned}$		$\begin{aligned} & 86 \\ & 2.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 86 \\ & 2.5 \\ & \hline \end{aligned}$		μ Vrms μ Vrms
Long Term Stability			0.05			0.05		\%/1000 hrs
Standby Current Drain	$\mathrm{l}_{\mathrm{L}}=0, \mathrm{~V}_{\mathrm{IN}}=30 \mathrm{~V}$		1.7	3.5		1.7	4.0	mA
Input Voltage Range		9.5		40	9.5		40	V
Output Voltage Range		2.0		37	2.0		37	V
Input-Output Voltage Differential		3.0		38	3.0		38	V
$\theta_{\text {JA }}$	Molded DIP		105			105		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	Cavity DIP		150			150		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	H10C Board Mount in Still Air		165			165		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	H10C Board Mount in 400 LF/Min Air Flow		66			66		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	SO					125		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$			22			22		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: See derating curves for maximum power rating above $25^{\circ} \mathrm{C}$.
Note 2: Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}^{+}=\mathrm{V}_{\mathrm{C}}=12 \mathrm{~V}, \mathrm{~V}^{-}=0, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{SC}}=0, \mathrm{C}_{1}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{REF}}=0$ and divider impedance as seen by error amplifier $\leq 10 \mathrm{k} \Omega$ connected as shown in Figure 1. Line and load regulation specifications are given for the condition of constant chip temperature. Temperature drifts must be taken into account separately for high dissipation conditions.
Note 3: L_{1} is 40 turns of No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core or equivalent with 0.009 in. air gap.
Note 4: Figures in parentheses may be used if R1/R2 divider is placed on opposite input of error amp.
Note 5: Replace R1/R2 in figures with divider shown in Figure 13.
Note 6: V^{+}and V_{CC} must be connected to a +3 V or greater supply.
Note 7: For metal can applications where V_{Z} is required, an external 6.2 V zener diode should be connected in series with $\mathrm{V}_{\text {OUT }}$.
Note 8: Guaranteed by correlation to other tests.
Note 9: Refer to RETS723X military specifications for the LM723.

Typical Performance Characteristics

TL/H/8563-6
Maximum Power Ratings

TL/H/8563-7

TABLE I. Resistor Values (k Ω) for Standard Output Voltage

Positive Output Voltage	Applicable Figures	Fixed Output $\pm 5 \%$		$\begin{gathered} \text { Output } \\ \text { Adjustable } \\ \pm 10 \% \text { (Note 5) } \\ \hline \end{gathered}$			Negative Output Voltage	Applicable Figures	Fixed Output $\pm 5 \%$		5\% Output Adjustable $\pm 10 \%$		
	(Note 4)	R1	R2	R1	P1	R2			R1	R2	R1	P1	R2
+3.0	1, 5, 6, 9, 12 (4)	4.12	3.01	1.8	0.5	1.2	+100	7	3.57	102	2.2	10	91
+3.6	1, 5, 6, 9, 12 (4)	3.57	3.65	1.5	0.5	1.5	+250	7	3.57	255	2.2	10	240
+5.0	1, 5, 6, 9, 12 (4)	2.15	4.99	0.75	0.5	2.2	-6 (Note 6)	3, (10)	3.57	2.43	1.2	0.5	0.75
+6.0	1,5, 6, 9, 12 (4)	1.15	6.04	0.5	0.5	2.7	-9	3, 10	3.48	5.36	1.2	0.5	2.0
+9.0	$2,4,(5,6,9,12)$	1.87	7.15	0.75	1.0	2.7	-12	3, 10	3.57	8.45	1.2	0.5	3.3
+12	$2,4,(5,6,9,12)$	4.87	7.15	2.0	1.0	3.0	-15	3,10	3.65	11.5	1.2	0.5	4.3
+15	$2,4,(5,6,9,12)$	7.87	7.15	3.3	1.0	3.0	-28	3,10	3.57	24.3	1.2	0.5	10
+28	2, 4, (5, 6, 9, 12)	21.0	7.15	5.6	1.0	2.0	-45	8	3.57	41.2	2.2	10	33
+45	7	3.57	48.7	2.2	10	39	-100	8	3.57	97.6	2.2	10	91
+75	7	3.57	78.7	2.2	10	68	-250	8	3.57	249	2.2	10	240

TABLE II. Formulae for Intermediate Output Voltages

Outputs from +2 to +7 volts (Figures 1, 5, 6, 9, 12, [4]) $v_{\text {OUT }}=\left(v_{\text {REF }} \times \frac{R 2}{R 1+R 2}\right)$	Outputs from $+\mathbf{4}$ to $\mathbf{+ 2 5 0}$ volts (Figure 7) $V_{\text {OUT }}=\left(\frac{V_{\text {REF }}}{2} \times \frac{R 2-R 1}{R 1}\right) ; R 3=R 4$	Current Limiting $\text { l}_{\text {LIMIT }}=\frac{V_{\text {SENSE }}}{R_{\text {SC }}}$
$\begin{gathered} \text { Outputs from }+7 \text { to }+37 \text { volts } \\ (\text { Figures } 2,4,[5,6,9,12]) \\ V_{\text {OUT }}=\left(V_{\text {REF }} \times \frac{R 1+R 2}{R 2}\right) \end{gathered}$	Outputs from -6 to - 250 volts (Figures 3, 8, 10) $V_{\text {OUT }}=\left(\frac{V_{\text {REF }}}{2} \times \frac{R 1+R 2}{R 1}\right) ; R 3=R 4$	Foldback Current Limiting $\begin{gathered} I_{\text {KNEE }}=\left(\frac{V_{\text {OUT }} R 3}{R_{\text {SC }} R 4}+\frac{V_{\text {SENSE }}(R 3+R 4)}{R_{\text {SC }} R 4}\right) \\ I_{\text {SHORT CKT }}=\left(\frac{V_{\text {SENSE }}}{R_{\text {SC }}} \times \frac{\text { R3 }+R 4}{R 4}\right) \end{gathered}$

Typical Applications

TL/H/8563-8
Note: R3 $=\frac{\mathbf{R 1} \text { R2 }}{\mathbf{R 1}+\mathbf{R 2}}$
for minimum temperature drift. Regulated Output Voltage 5 V Line Regulation ($\Delta \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$) $\quad 0.5 \mathrm{mV}$ Load Regulation ($\Delta \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$) $\quad 1.5 \mathrm{mV}$

FIGURE 1. Basic Low Voltage Regulator
(Vout = 2 to 7 Volts)

TL/H/8563-9
Note: R3 $=\frac{\mathbf{R 1} \mathbf{R 2}}{\mathbf{R 1}+\mathbf{R 2}}$
for minimum temperature drift. R3 may be eliminated for minimum component count.

Typical Performance Regulated Output Voltage 15V Line Regulation $\left(\Delta V_{I N}=3 V\right) \quad 1.5 \mathrm{mV}$ Load Regulation ($\Delta I_{\mathrm{L}}=50 \mathrm{~mA}$) $\quad 4.5 \mathrm{mV}$

FIGURE 2. Basic High Voltage Regulator
(Vout $=7$ to 37 Volts)

FIGURE 3. Negative Voltage Regulator

FIGRE 3. Negative Voltage Regulator

Typical Applications (Continued)

FIGURE 4. Positive Voltage Regulator (External NPN Pass Transistor)

FIGURE 6. Foldback Current Limiting

FIGURE 5. Positive Voltage Regulator (External PNP Pass Transistor)

Typlcal Performance
Regulated Output Voltage
Line Regulation $\left(\Delta V_{I N}=20 \mathrm{~V}\right) \quad 15 \mathrm{mV}$
Load Regulation ($\Delta I_{\mathrm{L}}=50 \mathrm{~mA}$) $\quad 20 \mathrm{mV}$
FIGURE 7. Positive Floating Regulator

TL/H/8563-15

FIGURE 8. Negative Floating Regulator

Typical Applications (Continued)

TL/H/8563-16

FIGURE 9. Positive Switching Regulator

TL/H/8563-17
Typlcal Performance
Regulated Output Voltage
$-15 \mathrm{~V}$
Line Regulation $\left(\Delta V_{I N}=20 \mathrm{~V}\right) 8 \mathrm{mV}$
Load Regulation $\left(\Delta I_{L}=2 A\right) \quad 6 \mathrm{mV}$
FIGURE 10. Negative Switching Regulator

Typical Applications (Continued)

TL/H/8563-18
Note: Current limit transistor may be used for shutdown if current limiting is not required.

Typical Performance
Regulated Output Voltage +5 V
Line Regulation ($\Delta \mathrm{V}_{I \mathrm{~N}}=3 \mathrm{~V}$) $\quad 0.5 \mathrm{mV}$
Load Regulation ($\Delta \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$) $\quad 1.5 \mathrm{mV}$

FIGURE 11. Remote Shutdown Regulator with Current Limiting

FIGURE 12. Shunt Regulator

Typical Applications (Continued)

TL/H/8563-20
FIGURE 13. Output Voltage Adjust (See Note 5)

Schematic Diagram

TL/H/8563-1

National Semiconductor

LM2925 Low Dropout Regulator with Delayed Reset

General Description

The LM2925 features a low dropout, high current regulator. Also included on-chip is a reset function with an externally set delay time. Upon power up, or after the detection of any error in the regulated output, the reset pin remains in the active low state for the duration of the delay. Types of errors detected include any that cause the output to become unregulated: low input voltage, thermal shutdown, short circuit, input transients, etc. No external pull-up resistor is necessary. The current charging the delay capacitor is very low, allowing long delay times.
Designed primarily for automotive applications, the LM2925 and all regulated circuitry are protected from reverse battery installations or two-battery jumps. During line transients, such as a load dump (60 V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the 0.75 A regulator will automatically shut down to protect both internal circuits and the load. The LM2925 cannot be harmed by temporary mirror-image insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.

Features

■ 5V, 750 mA output

- Externally set delay for reset
- Input-output differential less than 0.6 V at 0.5 A
- Reverse battery protection
- 60 V load dump protection
- -50 V reverse transient protection
- Short circuit protection
- Internal thermal overload protection
- Available in plastic TO-220
- Long delay times available

■ 100% electrical burn-in in thermal limit

Typical Application Circuit

*Required if regulator is located far from power supply filter.
**Cout must be at least $10 \mu \mathrm{~F}$ to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator. The equivalent series resistance (ESR) of this capacitor is critical; see curve.

TL/H/5268-1
FIGURE 1. Test and Application Circuit

Connection Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage

Operating Range
Internally Limited

Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$ Storage Temperature Range Lead Temperature
(Soldering, 10 seconds)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ESD rating is to be determined

Electrical Characteristics for $V_{\text {OUT }}$

$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{C} 2=10 \mu \mathrm{f}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 3) (unless otherwise specified)

Parameter	Conditions	Min	Typ	Max	Units
		Note 2			
Output Voltage	$\begin{aligned} & 6 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq 26 \mathrm{~V}, \mathrm{I}_{0} \leq 500 \mathrm{~mA}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	4.75	5.00	5.25	V
Line Regulation	$\begin{aligned} & 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \\ & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 4 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 25 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Load Regulation	$5 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 500 \mathrm{~mA}$		10	50	mV
Output Impedance	$500 \mathrm{~mA} A C$ and 10 mArms , $100 \mathrm{~Hz}-10 \mathrm{kHz}$		200		$\mathrm{m} \Omega$
Quiescent Current	$\begin{aligned} & \mathrm{I}_{\mathrm{O}} \leq 10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=750 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 3 \\ 40 \\ 90 \\ \hline \end{gathered}$	100	mA mA mA
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$		100		$\mu \mathrm{Vrms}$
Long Term Stability			20		$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$		66		dB
Dropout Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=750 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.45 \\ & 0.82 \\ & \hline \end{aligned}$	0.6	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Current Limit		0.75	1.2		A
Maximum Operational Input Voltage		26	31		V
Maximum Line Transient	$\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	60	70		V
Reverse Polarity Input Voltage, DC	$\mathrm{V}_{\mathrm{O}} \geq-0.6 \mathrm{~V}, 10 \Omega$ Load	-15	-30		V
Reverse Polarity Input Voltage, Transient	$\begin{aligned} & 1 \% \text { Duty Cycle, } \tau \leq 100 \mathrm{~ms}, \\ & 10 \Omega \text { Load } \end{aligned}$	-50	-80		V

Electrical Characteristics for Reset Output

$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{C} 3=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3) (unless otherwise specified)

Parameter	Conditions	Min	Typ	Max	Units
		Note 2			
Reset Voltage Output Low Output High	$\begin{aligned} & I_{\text {SINK }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=35 \mathrm{~V} \\ & \mathrm{I}_{\text {SOURCE }}=0 \end{aligned}$	4.5	$\begin{aligned} & 0.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Reset Internal Pull-up Resistor			30		$\mathrm{k} \Omega$
Reset Output Current Limit	$\mathrm{V}_{\text {RESET }}=1.2 \mathrm{~V}$		5		mA
V OUT Threshold			4.5		V
Delay Time	$\begin{aligned} & \mathrm{C}_{3}=.005 \mu \mathrm{~F} \\ & \mathrm{C}_{3}=0.1 \mu \mathrm{~F} \\ & \mathrm{C}_{3}=4.7 \mu \mathrm{~F} \text { tantalum } \end{aligned}$	150	$\begin{gathered} 12 \\ 250 \\ 12 \\ \hline \end{gathered}$	300	$\begin{gathered} \mathrm{ms} \\ \mathrm{~ms} \\ \mathrm{~s} \end{gathered}$
Delay Current	Pin 4	1.2	1.95	2.5	$\mu \mathrm{A}$

Note 1: Thermal resistance without a heat sink for junction to case temperature is $3^{\circ} \mathrm{C} / \mathrm{W}$ (TO-220). Thermal resistance for TO-220 case to ambient temperature is $50^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: These parameters are guaranteed and 100% production tested.
Note 3: To ensure constant junction temperature, low duty cycle pulse testing is used.

Typical Circuit Waveforms

FIGURE 2

Typical Performance Characteristics

TL/H/5268-4

TL/H/5268-7
Reset Voltage
on Power-up

TL/H/5268-5

Delay Time

TL/H/5268-8

TL/H/5268-6

Reset Pull-up
Resistor R10

TL/H/5268-9

Typical Performance Characteristics (Continued)

TL/H/5268-10

TL/H/5268-13

TL/H/5268-19

TL/H/5268-20

TL/H/5268-11

Quiescent Current

TL/H/5268-14

TL/H/5268-17

Maximum Power

Dissipation (TO-220)

TL/H/5268-21

TL/H/5268-12

Output Voltage

TL/H/5268-15

Load Translent Response

TL/H/5268-22

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.
Input Voltage: The DC voltage applied to the input terminals with respect to ground.
Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation: The change in output voltage for a change in load current at constant chip temperature.
Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.
Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Quiescent Current: The part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.
Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.
Temperature Stability of V_{O} : The percentage change in ouput voltage for a thermal variation from room temperature to either temperature extreme.

Application Hints

EXTERNAL CAPACITORS

The LM2925 output capacitor is required for stability. Without it, the regulator output will oscillate, sometimes by many volts. Though the $10 \mu \mathrm{~F}$ shown is the minimum recommended value, actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) also effects the IC stability. Since ESR varies from one brand to the next, some bench work may be required to determine the minimum capacitor value to use in production. Worst-case is usually determined at the minimum junction and ambient temperature and maximum load expected.
Output capacitors can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltages during brief conditions of negative input transients that might be characteristic of a particular system.
Capacitors must also be rated at all ambient temperatures expected in the system. Many aluminum type electrolytics will freeze at temperatures less than $-30^{\circ} \mathrm{C}$, reducing their effective capacitance to zero. To maintain regulator stability down to $-40^{\circ} \mathrm{C}$, capacitors rated at that temperature (such as tantalums) must be used.

RESET OUTPUT

The range of values for the delay capacitor is limited only by stray capacitances on the lower extreme and capacitance leakage on the other. Thus, delay times from microseconds to seconds are possible. The low charging current, typically 2.0 microamps, allows the use of small, inexpensive disc capacitors for the nominal range of 100 to 500 milliseconds. This is the time required in many microprocessor systems for the clock oscillator to stabilize when initially powered up. The RESET output of the regulator will thus prevent erroneous data and/or timing functions to occur during this part of operation. The same delay is incorporated after any other fault condition in the regulator output is corrected.

LM2930 3-Terminal Positive Regulator

General Description

The LM2930 3-terminal positive regulator features an ability to source 150 mA of output current with an input-output differential of 0.6 V or less. Efficient use of low input voltages obtained, for example, from an automotive battery during cold crank conditions, allows 5 V circuitry to be properly powered with supply voltages as low as 5.6 V . Familiar regulator features such as current limit and thermal overload protection are also provided.
Designed originally for automotive applications, the LM2930 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump (40 V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both internal circuits and the load. The LM2930 cannot be harmed by temporary mirror-image insertion.
Fixed outputs of 5 V and 8 V are available in the plastic TO220 power package.

Features

(1nput-output differential less than 0.6 V
(4) Output current in excess of 150 mA

- Reverse battery protection
- 40 V load dump protection
- Internal short circuit current limit
- Internal thermal overload protection
- Mirror-image insertion protection
-100\% electrical burn-in in thermal limit

Voltage Range

$\begin{array}{ll}\text { LM2930T-5.0 } & 5 \mathrm{~V} \\ \text { LM2930T-8.0 } & 8 \mathrm{~V}\end{array}$

Schematic and Connection Diagrams

(TO-220)
Plastic Package

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Input Voltage

Operating Range	26 V
Overvoltage Protection	40 V
Reverse Voltage (100 ms)	-12 V
Reverse Voltage (DC)	-6 V

Internal Power Dissipation (Note 1)	Internally Limited
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$230^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

LM2930T-5.0 $\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Note 5), $\mathrm{C} 2=10 \mu \mathrm{~F}$, unless otherwise specified

Parameter	Conditions	Typ	Tested Limit (Note 3)	Design Limit (Note 4)	Unit
Output Voltage		5	$\begin{aligned} & 5.3 \\ & 4.7 \end{aligned}$		$V_{\text {MAX }}$ $V_{\text {MIN }}$
	$\begin{aligned} & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}, 5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 150 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 5.5 \\ & 4.5 \\ & \hline \end{aligned}$	$V_{\text {MAX }}$ $V_{\text {MIN }}$
Line Regulation	$\begin{aligned} & 9 V \leq V_{I N} \leq 16 V, I_{O}=5 \mathrm{~mA} \\ & 6 V \leq V_{I N} \leq 26 V, I_{O}=5 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} 7 \\ 30 \end{gathered}$	$\begin{aligned} & 25 \\ & 80 \\ & \hline \end{aligned}$		$m V_{\text {MAX }}$ mV MAX
Load Regulation	$5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 150 \mathrm{~mA}$	14	50		$\mathrm{mV}_{\text {MAX }}$
Output Impedance	$100 \mathrm{~mA}_{\text {DC }}$ \& $10 \mathrm{~mA}_{\text {rms }}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$	200			$\mathrm{m} \Omega$
Quiescent Current	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \hline 4 \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \\ 40 \\ \hline \end{gathered}$		mA $_{\text {MAX }}$ mA MAX
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$	140			$\mu \mathrm{V}_{\text {rms }}$
Long Term Stability		20			$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	56			dB
Current Limit		400	$\begin{aligned} & 700 \\ & 150 \\ & \hline \end{aligned}$		mA MAX mA MIN
Dropout Voltage	$\mathrm{l}_{\mathrm{O}}=150 \mathrm{~mA}$	0.32	0.6		$\mathrm{V}_{\text {MAX }}$
Output Voltage Under Transient Conditions	$-12 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		$\begin{gathered} 5.5 \\ -0.3 \\ \hline \end{gathered}$		$V_{\text {MAX }}$ $\mathrm{V}_{\mathrm{MIN}}$

Electrical Characteristics (Note 2)

LM2930T-8.0 $\left(\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right.$ (Note 5), $\mathrm{C} 2=10 \mu \mathrm{~F}$, unless otherwise specified)

Parameter	Conditions	Typ	Tested Limit (Note 3)	Design Limit (Note 4)	Unit
Output Voltage		8	$\begin{aligned} & 8.5 \\ & 7.5 \\ & \hline \end{aligned}$		$V_{\text {MAX }}$ $V_{\text {MIN }}$
	$\begin{aligned} & 9.4 \mathrm{~V} \leq \mathrm{V}_{I N} \leq 26 \mathrm{~V}, 5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 150 \mathrm{~mA}, \\ & -40^{\circ} \mathrm{C} \leq T_{J} \leq 125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			$\begin{aligned} & 8.8 \\ & 7.2 \end{aligned}$	$V_{\text {MAX }}$ $V_{\text {MIN }}$
Line Regulation	$\begin{aligned} & 9.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN} \leq 16 \mathrm{~V}, I_{0}=5 \mathrm{~mA}}^{9.4 \mathrm{~V} \leq \mathrm{IN}_{\mathrm{IN}} \leq 26 \mathrm{~V}, \mathrm{I}_{0}=5 \mathrm{~mA}} \end{aligned}$	$\begin{aligned} & 12 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$		$m V_{\text {MAX }}$ mV $V_{\text {MAX }}$
Load Regulation	$5 \mathrm{~mA} \leq 1 \mathrm{O} \leq 150 \mathrm{~mA}$	25	50		$\mathrm{mV}_{\text {MAX }}$
Output Impedance	$100 \mathrm{~mA}_{\text {DC }}$ \& $10 \mathrm{~mA}_{\text {rms }}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$	300			$\mathrm{m} \Omega$
Quiescent Current	$\begin{aligned} & \mathrm{I}_{0}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 4 \\ 18 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ 40 . \end{gathered}$		$\mathrm{mA}_{\mathrm{MAX}}$ mA MAX
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$	170			$\mu V_{\text {rms }}$
Long Term Stability		30			$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	52			dB
Current Limit		400	$\begin{aligned} & 700 \\ & 150 \end{aligned}$		mA MAX mA MIN
Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$	0.32	0.6		$\mathrm{V}_{\text {MAX }}$
Output Voltage Under Transient Conditions	$-12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		$\begin{gathered} 8.8 \\ -0.3 \\ \hline \end{gathered}$		$V_{\text {MAX }}$ $V_{\text {MIN }}$

Note 1: Thermal resistance without a heat sink for junction to case temperature is $3^{\circ} \mathrm{C} / \mathrm{W}$ and for case to ambient temperature is $50^{\circ} \mathrm{C} / \mathrm{W}$
Note 2: All characteristics are measured with a capacitor across the input of $0.1 \mu \mathrm{~F}$ and a capacitor across the output of $10 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathrm{tw} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.
Note 3: Guaranteed and 100% production tested.
Note 4: Guaranteed (but not 100\% production tested) over the operating temperature and input current ranges. These limits are not used to calculate outgoing quality levels.
Note 5: To ensure constant junction temperature, low duty cycle pulse testing is used.

Typical Application

TL/H/5539-5
*Required if regulator is located far from power supply filter.
${ }^{* *}$ Cout must be at least $10 \mu \mathrm{~F}$ to
maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator. The equivalent series resistance (ESR) of this capacitor should be less than 1Ω over the expected operating temperature range.

Typical Performance Characteristics

Output at Reverse

Output Voltage (Normalized to 1 V at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$)

TL/H/5539-4

Typical Performance Characteristics (Continued)

Quiescent Current
 Ripple Rejection

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.
Input Voltage: The DC voltage applied to the input terminals with respect to ground.
Input-Output Differentlal: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.
Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Qulescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.
Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.
Temperature Stability of $\mathbf{V}_{\mathbf{O}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

National
Semiconductor

LM2931 Series Low Dropout Regulators

General Description

The LM2931 positive voltage regulator features a very low quiescent current of 1 mA or less when supplying 10 mA loads. This unique characteristic and the extremely low in-put-output differential required for proper regulation (0.2 V for output currents of 10 mA) make the LM2931 the ideal regulator for standby power systems. Applications include memory standby circuits, CMOS and other low power processor power supplies as well as systems demanding as much as 100 mA of output current.
Designed originally for automotive applications, the LM2931 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump $(60 \mathrm{~V})$ when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both internal circuits and the load. The LM2931 cannot be harmed by temporary mirror-image insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.
Fixed output of 5 V is available in the plastic TO-220 power package or the popular TO-92 package. An adjustable output version, with on/off switch, is available in a 5 -lead TO220 package.

Features

- Very low quiescent current
- Output current in excess of 100 mA
- Input-output differential less than 0.6 V
- Reverse battery protection
- 60V load dump protection
- -50 V reverse transient protection
- Short circuit protection
- Internal thermal overload protection
- Mirror-image insertion protection

■ Available in plastic TO-220 or TO-92

- Available as adjustable with TTL compatible switch
- 100% electrical burn-in in thermal limit

Output Voltage Options

LM2931T-5.0	5V	LM2931AT-5.0	5
LM2931Z-5.0	5V	LM2931AZ-5.0	5
LM2931CT	Adjustable from 3V to 26 V		

Schematic and Connection Diagrams

TO-220 3-Lead

Front Vlew Order Number LM2931 See NS Package T03B, Z03A, T05A

TO-92

TO-220 5-Lead

Front View

Absolute Maximum Ratings

If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Input Voltage
26V
Operating Range
Overvoltage Protection
LM2931A, LM2931CT Adjustable 60 V
LM2931

Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Lead Temp. (Soldering, 10 seconds)

Internally Limited
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$230^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 1), $\mathrm{C} 2=100 \mu \mathrm{~F}$ (unless otherwise specified)

Parameter	Conditions	LM2931A-5.0			LM2931-5.0			Units Limit
		Typ			Typ		$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 3) } \\ \hline \end{array}$	
Output Voltage		5	$\begin{aligned} & 5.19 \\ & 4.81 \end{aligned}$			$\begin{aligned} & 5.25 \\ & 4.75 \end{aligned}$		$V_{\text {MAX }}$ $V_{\text {MIN }}$
	$\begin{aligned} & 6.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}, \mathrm{IO} 100 \mathrm{~mA} \\ & -40^{\circ} \mathrm{C} \leq T_{\mathrm{j}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 5.25 \\ & 4.75 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$V_{\text {MAX }}$ $V_{\text {MIN }}$
Line Regulation	$\begin{aligned} & 9 V \leq V_{I N} \leq 16 V \\ & 6 V \leq V_{I N} \leq 26 V \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 30 \\ & \hline \end{aligned}$		$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 30 \\ & \hline \end{aligned}$		$m V_{\text {MAX }}$ $m V_{\text {MAX }}$
Load Regulation	$5 \mathrm{~mA} \leq 10 \leq 100 \mathrm{~mA}$	14	50		14	50		mV ${ }_{\text {MAX }}$
Output Impedance	100 mADC and $10 \mathrm{~mA}_{\text {rms }}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$	200		600	200			$\mathrm{m} \Omega_{\text {MAX }}$
Quiescent Current	$\left\{\begin{array}{l} l_{\mathrm{O}} \leq 10 \mathrm{~mA}, 6 \mathrm{~V} \leq \mathrm{V}_{I \mathrm{~N}} \leq 26 \mathrm{~V} \\ -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}} \leq 125^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=14 \mathrm{~V}, T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{array}\right.$	0.4 15	1.0	$\begin{gathered} 1.0 \\ 30 \\ 5 \\ \hline \end{gathered}$	0.4	1.0	1.0	mA MAX mAMIN mA MAX $\mathrm{mA}_{\text {MIN }}$
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}, \mathrm{C}_{\text {OUT }}=100 \mu \mathrm{~F}$	500		1000	500			$\mu \mathrm{V}_{\text {rmsmax }}$
Long Term Stability		20		50	20			$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	80		55	80			$\mathrm{dB}_{\text {MIN }}$
Dropout Voltage	$\begin{aligned} & \mathrm{l}_{0}=10 \mathrm{~mA} \\ & \mathrm{I}=100 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|c\|} \hline 0.05 \\ 0.3 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline 0.05 \\ 0.3 \\ \hline \end{array}$	$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$		$V_{\text {MAX }}$ $V_{\text {MAX }}$
Maximum Operational Input Voltage		33	26		33	26		$V_{\text {MAX }}$ $V_{\text {MIN }}$
Maximum Line Transient	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}, 100 \mathrm{~ms}$	70	60		70	50		$\mathrm{V}_{\text {MIN }}$
Reverse Polarity Input Voltage, DC	$\mathrm{V}_{\mathrm{O}} \geq-0.3 \mathrm{~V}, R_{L}=500 \Omega$	-30	-15		-30	-15		$\mathrm{V}_{\text {MIN }}$
Reverse Polarity Input Voltage, Transient	1% Duty Cycle, $\tau \leq 100 \mathrm{~ms}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	-80	-50		-80	-50		$\mathrm{V}_{\text {MIN }}$

Note 1: To ensure constant junction temperature, low duty cycle pulse testing is used.
Note 2: Guaranteed and 100\% production tested.
Note 3: Guaranteed (but not 100% production tested) over the operating temperature and input current ranges. These limits are not used to calculate outgoing quality levels.
Note 4: Thermal resistance junction-to-case $\left(\theta_{j \mathrm{c}}\right)$ is $3^{\circ} \mathrm{C} / \mathrm{W}$; case-to-ambient is $50^{\circ} \mathrm{C} / \mathrm{W}$.

Electrical Characteristics for Adjustable lм2931ст

$\mathrm{V}_{\mathbb{I N}}=14 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 1), $\mathrm{R} 1=27 \mathrm{k}, \mathrm{C} 2=100 \mu \mathrm{~F}$ (unless otherwise specified)

Parameter	Conditions	Typ	Tested Limit	Design Limit	Units Limit
Reference Voltage		1.20	$\begin{aligned} & 1.26 \\ & 1.14 \\ & \hline \end{aligned}$		$V_{\text {MAX }}$ $V_{\text {MIN }}$
	$\mathrm{I}_{\mathrm{O}} \leq 100 \mathrm{~mA},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{j}}=\leq 125^{\circ} \mathrm{C}, \mathrm{R} 1=27 \mathrm{k}$ Measured from $V_{\text {OUT }}$ to Adjust Pin			$\begin{aligned} & 1.32 \\ & 1.08 \\ & \hline \end{aligned}$	$V_{\text {MAX }}$ $V_{\text {MIN }}$
Output Voltage Range			$\begin{gathered} 24 \\ 3 \end{gathered}$		$V_{\text {MAX }}$ $V_{\text {MIN }}$
Line Regulation	$\mathrm{V}_{\text {OUT }}+0.6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$	0.2	1.5		$\mathrm{mV} / \mathrm{V}_{\text {MAX }}$
Load Regulation	$5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 100 \mathrm{~mA}$	0.3	1		$\%_{\text {max }}$
Output Impedance	$100 \mathrm{~mA}_{\text {DC }}$ and $10 \mathrm{~mA}_{\text {rms }}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$	40			$\mathrm{m} \Omega / \mathrm{V}$
Quiescent Current	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \text { During Shutdown } R_{L}=500 \Omega \end{aligned}$	$\begin{aligned} & 0.4 \\ & 15 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$		$\begin{gathered} m A_{M A X} \\ m A \\ m A_{M A X} \end{gathered}$
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$	100			$\mu \mathrm{V}_{\text {rms }} / \mathrm{V}$
Long Term Stability		0.4			$\% / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	0.02			\%/V
Dropout Voltage	$\begin{aligned} & \mathrm{l}_{\mathrm{O}} \leq 10 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{O}}=100 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 0.05 \\ 0.3 \\ \hline \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$		$V_{\text {MAX }}$ $V_{\text {MAX }}$
Maximum Operational Input Voltage		33	26		$\mathrm{V}_{\text {MIN }}$
Maximum Line Transient	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$, Reference Voltage $\leq 1.5 \mathrm{~V}$	70	60		$\mathrm{V}_{\text {MIN }}$
Reverse Polarity Input Voltage, DC	$V_{O} \geq-0.3 V, R_{L}=500 \Omega$	-30	-15		$\mathrm{V}_{\text {MIN }}$
Reverse Polarity Input Voltage, Transient	1\% Duty Cycle, $\mathrm{T} \leq 100 \mathrm{~ms}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	-80	-50		$\mathrm{V}_{\text {MIN }}$
On/Off Threshold Voltage On Off	$\mathrm{V}_{0}=3 \mathrm{~V}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{gathered} 1.2 \\ 3.25 \\ \hline \end{gathered}$		$V_{\text {MAX }}$ $V_{\text {MIN }}$
On/Off Threshold Current		20	50		$\mu \mathrm{A}_{\text {MAX }}$

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Applications

$\mathrm{V}_{\text {is }}-\mathrm{V}_{\text {OUT }}$

TL/H/5254-4
$\mathrm{V}_{\text {OUT }}=$ Reference Voltage $\times \frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 1}$
Note: Using 28k for R1 will automatically compensate for errors in VOUT due to the input bias current of the ADJ pin (approximately $1 \mu \mathrm{~A}$).

TL/H/5254-5

Reference Voltage

Maximum Power Dissipation (TO-92)

TL/H/5254-3
*Required if regulator is located far from power supply filter.
**COUT must be at least $100 \mu \mathrm{~F}$ to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator. The equivalent series resistance (ESR) of this capacitor is critical; see curve.

Application Hints

One of the distinguishing factors of the LM2931 series regulators is the requirement of an output capacitor for device stability. The value required varies greatly depending upon the application circuit and other factors. Thus some comments on the characteristics of both capacitors and the regulator are in order.
High frequency characteristics of electrolytic capacitors depend greatly on the type and even the manufacturer. As a result, a value of capacitance that works well with the LM2931 for one brand or type may not necessary be sufficient with an electrolytic of different origin. Sometimes actual bench testing, as described later, will be the only means to determine the proper capacitor and value. Experience has shown that, as a rule of thumb, the more expensive and higher quality electrolytics generally allow a smaller value for regulator stability. As an example, while a high-quality $100 \mu \mathrm{~F}$ aluminum electrolytic covers all general application circuits, similar stability can be obtained with a tantalum electrolytic of only $47 \mu \mathrm{~F}$. This factor of two can generally be applied to any special application circuit also.
Another critical characteristic of electrolytics is their performance over temperature. While the LM2931 is designed to operate to $-40^{\circ} \mathrm{C}$, the same is not always true with all electrolytics (hot is generally not a problem). The electrolyte in many aluminum types will freeze around $-30^{\circ} \mathrm{C}$, reducing their effective value to zero. Since the capacitance is needed for regulator stability, the natural result is oscillation (and lots of it) at the regulator output. For all application circuits where cold operation is necessary, the output capacitor must be rated to operate at the minimum temperature. By coincidence, worst-case stability for the LM2931 also occurs at minimum temperatures. As a result, in applications where the regulator junction temperature will never be less than $25^{\circ} \mathrm{C}$, the output capacitor can be reduced approximately by a factor of two over the value needed for the entire temperature range. To continue our example with the tantalum electrolytic, a value of only $22 \mu \mathrm{~F}$ would probably thus suffice. For high-quality aluminum, $47 \mu \mathrm{~F}$ would be adequate in such an application.
Another regulator characteristic that is noteworthy is that stability decreases with higher output currents. This sensible fact has important connotations. In many applications, the LM2931 is operated at only a few milliamps of output current or less. In such a circuit, the output capacitor can be further reduced in value. As a rough estimation, a circuit that is required to deliver a maximum of 10 mA of output current from the regulator would need an output capacitor of only half the value compared to the same regulator required to deliver the full output current of 100 mA . If the example of the tantalum capacitor in the circuit rated at $25^{\circ} \mathrm{C}$ junction temperature and above were continued to include a maximum of 10 mA of output current, then the $22 \mu \mathrm{~F}$ output capacitor could be reduced to only $10 \mu \mathrm{~F}$.
In the case of the LM2931CT adjustable regulator, the minimum value of output capacitance is a function of the output voltage. As a general rule, the value decreases with higher output voltages, since internal loop gain is reduced.

At this point, the procedure for bench testing the minimum value of an output capacitor in a special application circuit should be clear. Since worst-case occurs at minimum operating temperatures and maximum operating currents, the entire circuit, including the electrolytic, should be cooled to the minimum temperature. The input voltage to the regulator should be maintained at 0.6 V above the output to keep internal power dissipation and die heating to a minimum. Worst-case occurs just after input power is applied and before the die has had a chance to heat up. Once the minimum value of capacitance has been found for the brand and type of electrolytic in question, the value should be doubled for actual use to account for production variations both in the capacitor and the regulator. (All the values in this section and the remainder of the data sheet were determined in this fashion.)

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.
Input Voltage: The DC voltage applied to the input terminals with respect to ground.
Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation: The change in output voltage for a change in load current at constant chip temperature.
Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.
Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.
Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.
Temperature Stability of $\mathbf{V}_{\mathbf{0}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

National Semiconductor

LM2935 Low Dropout Dual Regulator

General Description

The LM2935 dual 5V regulator provides a 750 mA output as well as a 10 mA standby output. It features a low quiescent current of 3 mA or less when supplying 10 mA loads from the 5 V standby regulator output. This unique characteristic and the extremely low input-output differential required for proper regulation (0.55 V for output currents of 10 mA) make the LM2935 the ideal regulator for power systems that include standby memory. Applications include microprocessor power supplies demanding as much as 750 mA of output current.
Designed for automotive applications, the LM2935 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as a load dump (60 V) when the input voltage to the regulator can momentarily exceed the specified maximum operating voltage, the 0.75 A regulator will automatically shut down to protect both internal circuits and the load while the standby regulator will continue to power any standby load. The LM2935 cannot be harmed by temporary mirror-image insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.

Features

- Two 5V regulated outputs
- Output current in excess of 750 mA
- Low quiescent current standby regulator
- Input-output differential less than 0.6 V at 0.5 A
- Reverse battery protection
- 60V load dump protection
- -50 V reverse transient protection
- Short circuit protection
- Internal thermal overload protection
- Available in 5 -lead TO-220
- ON/OFF switch controls high current output
- Reset error flag
- 100% electrical burn-in in thermal limit

Typical Application Circuit

FIGURE 1. Test and Application Circuit

Connection Diagram

TO-220 5-Lead

Front View
Order Number LM2935T See NS Package Number T05A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage
$\begin{array}{ll}\text { Operating Range } & 26 \mathrm{~V} \\ \text { Overvoltage Protection } & 60 \mathrm{~V}\end{array}$

Internal Power Dissipation (Note 1) Operating Temperature Range Maximum Junction Temperature Storage Temperature Range Lead Temp. (Soldering, 10 seconds)

Internally Limited
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$230^{\circ} \mathrm{C}$

Electrical Characteristics for VOUT

$V_{I N}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 4), $\mathrm{C} 2=10 \mu \mathrm{~F}$ (unless otherwise specified)

Parameter	Conditions	Typ		Units Limit
Output Voltage	$\begin{aligned} & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}, 5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 500 \mathrm{~mA}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C} \text { (Note 2) } \end{aligned}$	5.00	$\begin{aligned} & 5.25 \\ & 4.75 \end{aligned}$	$V_{\text {MAX }}$ $V_{\text {MIN }}$
Line Regulation	$\begin{aligned} & 9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN} \leq 16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}} \\ & 6 \mathrm{~V} \leq \mathrm{I}_{\mathrm{IN}} \leq 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 4 \\ 10 \\ \hline \end{gathered}$	$\begin{array}{r} 25 \\ 50 \\ \hline \end{array}$	$\mathrm{mV}_{\text {MAX }}$ $m V_{\text {MAX }}$
Load Regulation	$5 \mathrm{~mA} \leq 10 \leq 500 \mathrm{~mA}$	10	50	$\mathrm{mV}_{\text {MAX }}$
Output Impedance	$500 \mathrm{~mA}_{\text {DC }}$ and $10 \mathrm{~mA}_{\text {rms }}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$	200		$\mathrm{m} \Omega$
Quiescent Current	$\mathrm{l} \mathrm{O} \leq 10 \mathrm{~mA}$, No Load on Standby $\mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA}$, No Load on Standby $\mathrm{I}_{\mathrm{O}}=750 \mathrm{~mA}$, No Load on Standby	$\begin{gathered} 3 \\ 40 \\ 90 \end{gathered}$	100	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA}_{\mathrm{MAX}} \\ \mathrm{~mA} \\ \hline \end{gathered}$
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$	100		$\mu \mathrm{V}_{\text {rms }}$
Long Term Stability		20		$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	66		dB
Dropout Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \\ & \mathrm{I}=750 \mathrm{~mA} \end{aligned}$	$\begin{array}{r} 0.45 \\ 0.82 \\ \hline \end{array}$	0.6	$\mathrm{V}_{\text {MAX }}$
Current Limit		1.2	0.75	$A_{\text {MIN }}$
Maximum Operational Input Voltage		31	26	$\mathrm{V}_{\text {MIN }}$
Maximum Line Transient	$\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	70	60	V
Reverse Polarity Input Voltage, DC		-30	-15	V
Reverse Polarity input Voltage, Transient	1% Duty Cycle, $\tau \leq 100 \mathrm{~ms}$, 10Ω Load	-80	-50	V
Reset Output Voltage Low High	$\begin{aligned} & \mathrm{R} 1=20 \mathrm{k}, \mathrm{~V}_{\mathrm{IN}}=4.0 \mathrm{~V} \\ & \mathrm{R} 1=20 \mathrm{k}, \mathrm{~V}_{\mathrm{IN}}=14 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.9 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$V_{\text {MAX }}$ $V_{\text {MAX }}$ $V_{\text {MIN }}$
Reset Output Current	Reset $=1.2 \mathrm{~V}$	5		mA
ON/OFF Resistor	R1 ($\pm 10 \%$ Tolerance)		20	$k \Omega_{\text {MAX }}$

Note 1: Thermal resistance without a heat sink for junction to case temperature is $3^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{TO}-220)$. Thermal resistance for TO-220 case to ambient temperature is $50^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: The temperature extremes are guaranteed but not 100% production tested. This parameter is not used to calculate outgoing AQL.
Note 3: Tested Limits are guaranteed and 100% tested in production.
Note 4: To ensure constant junction temperature, low duty cycle pulse testing is used.

Electrical Characteristics for Standby Output
$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{~S} 1$ open, $\mathrm{C}_{\mathrm{OUT}}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 4), (unless otherwise specified)

Parameter	Standby Output Conditions	Typ	Tested Limit	Units Limit
Output Voltage	$\begin{aligned} & \mathrm{I} O \leq 10 \mathrm{~mA}, 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	5.00	$\begin{aligned} & 5.25 \\ & 4.75 \\ & \hline \end{aligned}$	$V_{\text {MAX }}$ $V_{\text {MIN }}$
Tracking	$V_{\text {OUT }}$-Standby Output Voltage	50	200	$\mathrm{mV}_{\text {MAX }}$
Line Regulation	$6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$	4	50	$\mathrm{mV}_{\text {MAX }}$
Load Regulation	$1 \mathrm{~mA} \leq \mathrm{l}$ ¢ $\leq 10 \mathrm{~mA}$	10	50	mV ${ }_{\text {MAX }}$
Output Impedance	10 mA DC and $1 \mathrm{~mA}_{\text {rms }}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$	1		Ω
Quiescent Current	$\begin{aligned} & l_{0} \leq 10 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {OUT }} \text { OFF (Note 2) } \end{aligned}$	2	3	$\mathrm{mA}_{\text {MAX }}$
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$	300		$\mu \mathrm{V}$
Long Term Stability		20		$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	66		dB
Dropout Voltage	$10 \leq 10 \mathrm{~mA}$	0.55	0.7	$\mathrm{V}_{\text {MAX }}$
Current Limit		70	25	$\mathrm{mA}_{\text {MIN }}$
Maximum Operational Input Voltage	$\mathrm{V}_{\mathrm{O}} \leq 6 \mathrm{~V}$	70	60	$\mathrm{V}_{\text {MIN }}$
Reverse Polarity Input Voltage, DC	$\mathrm{V}_{\mathrm{O}} \geq-0.3 \mathrm{~V}, 510 \Omega$ Load	-30	-15	$\mathrm{V}_{\text {MIN }}$
Reverse Polarity Input Voltage, Transient	1% Duty Cycle Ts 100 ms 500Ω Load	-80	-50	$\mathrm{V}_{\text {MIN }}$

Typical Circuit Waveforms

FIGURE 2

Typical Performance Characteristics

Quiescent Current (Vout)
 Vout-OUTPUT CURRENT (mA)

Ripple Rejection

Output Impedance

Reset on Startup

Maximum Power

TL/H/5232-4

Typical Performance Characteristics (Continued)

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at 14 V input, dropout voltage is dependent upon load current and junction temperature.
Input Voltage: The DC voltage applied to the input terminals with respect to ground.
Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.
Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.
Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Quiescent Current: The part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.
Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.
Temperature Stability of $\mathrm{V}_{\mathbf{O}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Application Hints

EXTERNAL CAPACITORS

The LM2935 output capacitors are required for stability. Without them, the regulator outputs will oscillate, sometimes by many volts. Though the $10 \mu \mathrm{~F}$ shown are the minimum recommended values, actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) also factors in the IC stability. Since ESR varies from one brand to the next, some bench work may be required to determine the minimum capacitor value to use in production. Worst-case is usually determined at the minimum ambient temperature and maximum load expected.
Output capacitors can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltage during brief conditions of negative input transients that might be characteristic of a particular system.
Capacitors must also be rated at all ambient temperatures expected in the system. Many aluminum type electrolytics will freeze at temperatures less than $-30^{\circ} \mathrm{C}$, reducing their effective capacitance to zero. To maintain regulator stability down to $-40^{\circ} \mathrm{C}$, capacitors rated at that temperature (such as tantalums) must be used.
No capacitor must be attached to the ON/OFF and ERROR FLAG pin. Due to the internal circuits of the IC, oscillation on this pin could result.

STANDBY OUTPUT

The LM2935 differs from most fixed voltage regulators in that it is equipped with two regulator outputs instead of one. The additional output is intended for use in systems requiring standby memory circuits. While the high current regulator output can be controlled with the ON/OFF pin described below, the standby output remains on under all conditions as long as sufficient input voltage is applied to the IC. Thus, memory and other circuits powered by this output remain unaffected by positive line transients, thermal shutdown, etc.
The standby regulator circuit is designed so that the quiescent current to the IC is very low ($<3 \mathrm{~mA}$) when the other regulator output is off.

Application Hints (Continued)

In applications where the standby output is not needed, it may be disabled by connecting a resistor from the standby output to the supply voltage. This eliminates the need for a more expensive capacitor on the output to prevent unwanted oscillations. The value of the resistor depends upon the minimum input voltage expected for a given system. Since the standby output is shunted with an internal 5.7 V zener (Figure 3), the current through the external resistor should be sufficient to bias R2 and R3 up to this point. Approximately $60 \mu \mathrm{~A}$ will suffice, resulting in a 10k external resistor for most applications (Figure 4).

TL/H/5232-6
FIGURE 4. Disabling Standby Output to Eliminate C3

HIGH CURRENT OUTPUT

Unlike the standby regulated output, which must remain on whenever possible, the high current regulated output is fault protected against overvoltage and also incorporates thermal shutdown. If the input voltage rises above approximately 30 V (e.g., load dump), this output will automatically shutdown. This protects the internal circuitry and enables the IC to survive higher voltage transients than would otherwise be expected. Thermal shutdown is effective against die overheating since the high current output is the dominant source of power dissipation in the IC.

TL/H/5232-7
FIGURE 5. Controlling ON/OFF Terminal with a Typical Open Collector Logic Gate

ON/OFF AND ERROR FLAG PIN

This pin has the ability to serve a dual purpose if desired. When controlled in the manner shown in Figure 1 (common in automotive systems where S1 is the ignition switch), the pin also serves as an output flag that is active low whenever a fault condition is detected with the high current regulated output. In other words, under normal operating conditions, the output voltage of this pin is high $(5 \mathrm{~V})$. This is set by an internal clamp. If the high current output becomes unregulated for any reason (line transients, short circuit, thermal shutdown, low input voltage, etc.) the pin switches to the active low state, and is capable of sinking several milliamps. This output signal can be used to initiate any reset or start-up procedure that may be required of the system.
The ON/OFF pin can also be driven directly from open collector logic circuits. The only requirement is that the 20 k pull-up resistor remain in place (Figure 5). This will not affect the logic gate since the voltage on this pin is limited by the internal clamp in the LM2935 to 5V.

FIGURE 6. Reset Pulse on Power-Up (with approximately $\mathbf{3 0 0} \mathbf{~ m s}$ delay)

National Semiconductor

LM2936 Ultra-Low Quiescent Current 5V Regulator

General Description

The LM2936 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than $15 \mu \mathrm{~A}$ quiescent current at a $100 \mu \mathrm{~A}$ load, the LM2936 is ideally suited for automotive and other battery operated systems. The LM2936 retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The LM2936 has a 40 V operating voltage limit, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range, and $\pm 2 \%$ output voltage tolerance over the entire output current, input voltage, and temperature range. The LM2936 is available in a TO-92 package with a fixed 5 V output.

Features

- Ultra low quiescent current ($\mathrm{l}_{\mathrm{Q}} \leq 15 \mu \mathrm{~A}$ for $10 \leq 100 \mu \mathrm{~A}$)
- Fixed 5V, 50 mA output
- Output tolerance $\pm 2 \%$ over line, load, and temperature
- Dropout voltage typically 200 mV @ $\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$
- Reverse battery protection
- -50 V reverse transient protection

■ Internal short circuit current limit

- Internal thermal shutdown protection

■ 40V operating voltage limit

Typical Application

*Required if regulator is located more than $\mathbf{2}^{\prime \prime}$ from power supply filter capacitor.
** Required for stability. Must be rated for $10 \mu \mathrm{~F}$ minimum over intended operating temperature range. Effective series resistance (ESR) is critical, see curve. Locate capacitor as close as possible to the regulator output and ground pins. Capacitance may be increased without bound.

TL/H/9759-1
Connection Diagram
TO-92 Plastic Package (Z)

TL/H/9759-2

Bottom View

Order Number LM2936Z
See NS Package Number Z03A

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Input Voltage (Survival)
$+60 \mathrm{~V},-50 \mathrm{~V}$
ESD Susceptability (Note 2)
Power Dissipation (Note 3)
Junction Temperature ($T_{J \max }$)
2000 V
Internally limited

Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified. Boldface limits apply over entire operating temperature range

Parameter	Conditions	Typical (Note 4)	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 5) } \end{aligned}$	Design Limit (Note 6)	Units
Output Voltage	$\begin{aligned} & 5.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}, \\ & \mathrm{l} \mathrm{O} \leq 50 \mathrm{~mA}(\text { Note } 7) \end{aligned}$		4.9		$\mathrm{V}_{\text {min }}$
		5			V
			5.1		$\mathrm{V}_{\text {max }}$
Line Regulation	$9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 16 \mathrm{~V}$	5	10		$m V_{\text {max }}$
	$6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA}$	10	30		
Load Regulation	$100 \mu \mathrm{~A} \leq \mathrm{l}_{\mathrm{O}} \leq 5 \mathrm{~mA}$	10	30		$m V_{\text {max }}$
	$5 \mathrm{~mA} \leq 10 \leq 50 \mathrm{~mA}$	10	30		
Output Impedance	$\begin{aligned} & l_{0}=30 \mathrm{mAdc} \text { and } 10 \mathrm{mArms}, \\ & f=1000 \mathrm{~Hz} \end{aligned}$	450			$\mathrm{m} \Omega$
Quiescent Current	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 24 \mathrm{~V}$	9	15		$\mu \mathrm{A}_{\text {max }}$
	$\mathrm{l}_{\mathrm{O}}=10 \mathrm{~mA}, 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 24 \mathrm{~V}$	0.20	0.50		$\mathrm{mA}_{\text {max }}$
	$\mathrm{l}_{0}=50 \mathrm{~mA}, 8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 24 \mathrm{~V}$	1.5	2.5		$\mathrm{mA}_{\text {max }}$
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$	500			$\mu \mathrm{V}_{\text {rms }}$
Long Term Stability		20			$\mathrm{mV} / 1000 \mathrm{Hr}$
Ripple Rejection	$\mathrm{V}_{\text {ripple }}=1 \mathrm{~V}_{\text {rms }}, f_{\text {ripple }}=120 \mathrm{~Hz}$	60	40		$\mathrm{dB}_{\text {min }}$
Dropout Voltage	$\mathrm{l}_{0}=100 \mu \mathrm{~A}$	0.05	0.10		$\mathrm{V}_{\text {max }}$
	$10=50 \mathrm{~mA}$	0.20	0.40		$V_{\text {max }}$
Reverse Polarity DC Input Voltage	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\mathrm{O}} \geq-0.3 \mathrm{~V}$		-15		$V_{\text {min }}$
Reverse Polarity Transient Input Voltage	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~T}=1 \mathrm{~ms}$	-80	-50		$V_{\text {min }}$
Output Leakage with Reverse Polarity Input	$\mathrm{V}_{\mathrm{IN}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	-0.1	-600		$\mu A_{\text {max }}$
Maximum Line Transient	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}, \mathrm{~T}=40 \mathrm{~ms}$		60		$\mathrm{V}_{\text {min }}$
Short Circuit Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	120	250		$\mathrm{mA}_{\text {max }}$
			65		$\mathrm{mA}_{\text {min }}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.
Note 2: Human body model, 100 pF discharge through a $1.5 \mathrm{k} \Omega$ resistor.
Note 3: The maximum power dissipation is a function of $T_{J \max }, \Theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J \max }-T_{A}\right) / \Theta_{J A}$. If this dissipation is exceeded, the die temperature will rise above $150^{\circ} \mathrm{C}$ and the LM2936 will go into thermal shutdown. For the LM2936Z, the junction-to-ambient thermal resistance (Θ_{JA}) is $195^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: Typicals are at $25^{\circ} \mathrm{C}$ (unless otherwise specified) and represent the most likely parametric norm.
Note 5: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level) and 100\% tested.
Note 6: Design limits are guaranteed to National's AOQL (Average Outgoing Quality Level) but not 100\% tested.
Note 7: To ensure constant junction temperature, pulse testing is used.

Typical Performance Characteristics

Quiescent Current

Quiescent Current

TL/H/9759-3

Typical Performance Characteristics (Continued)

Line Transient Response

TL/H/9759-4

Applications Information

Unlike other PNP low dropout regulators, the LM2936 remains fully operational to 40 V . Owing to power dissipation characteristics of the TO-92 package, full output current cannot be guaranteed for all combinations of ambient temperature and input voltage. As an example, consider an LM2936 operating at $25^{\circ} \mathrm{C}$ ambient. Using the formula for maximum allowable power dissipation given in Note 3, we find that $P_{D \max }=641 \mathrm{~mW}$ at $25^{\circ} \mathrm{C}$. Including the small contribution of the quiescent current to total power dissipation the maximum input voltage (while still delivering 50 mA output current) is 17.3 V . The device will go into thermal shutdown if it attempts to deliver full output current with an input voltage of more than 17.3 V . Similarly, at 40 V input and $25^{\circ} \mathrm{C}$ ambient the LM2936 can deliver 18 mA maximum.

Under conditions of higher ambient temperatures, the voltage and current calculated in the previous examples will drop. For instance, at the maximum ambient of $125^{\circ} \mathrm{C}$ the LM2936 can only dissipate 128 mW , limiting the input voltage to 7.34 V for a 50 mA load, or 3.5 mA output current for a 40 V input.
While the LM2936 maintains regulation to 60V, it will not withstand a short circuit above 40V because of safe operating area limitations in the internal PNP pass device. Above 60V the LM2936 will break down with catastrophic effects on the regulator and possibly the load as well. Do not use this device in a design where the input operating voltage may exceed 40 V , or where transients are likely to exceed 60 V .

Equivalent Schematic Diagram

LM2940 1A Low Dropout Regulator

General Description

The LM2940 positive voltage regulator features the ability to source 1 A of output current with a dropout voltage of typically 0.5 V and a maximum of 1 V over the entire temperature range. Futhermore, a quiescent current reduction circuit has been included which reduces the ground current when the differential between the input voltage and the output voltage exceeds approximately 3 V . The quiescent current with 1 A of output current and an input-output differential of 5 V is therefore only 30 mA . Higher quiescent currents only exist when the regulator is in the dropout mode ($\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {out }} \leq 3 \mathrm{~V}$).
Designed also for vehicular applications, the LM2940 and all regulated circuitry are protected from reverse battery installations or 2 battery jumps. During line transients, such as load dump (60 V) when the input voltage can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both the internal circuits and the load. The LM2940 cannot be harmed by temporary mirror-image insertion. Familiar regulator features such as short circuit and thermal overload protection are also provided.

Features

- Dropout voltage typically 0.5 V @ $\mathrm{I}_{0}=1 \mathrm{~A}$
- Output current in excess of 1A
- Output voltage trimmed before assembly
- Reverse battery protection
- Internal short circuit current limit
- Mirror image insertion protection
- 100% electrical burn-in in thermal limit

Output Voltages

LM2940T-5.0
LM2940T-8.0 8V
LM2940T-10 10V
For output voltages of $5 \mathrm{~V}, 12 \mathrm{~V}$, and 15 V , refer to the LM2940C datasheet.

Equivalent Schematic Diagram

TL/H/8822-1
Order Number LM2940T-5.0, LM2940T-8.0, LM2940T-10
See NS Package Number TO3B

\section*{Absolute Maximum Ratings
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage
 Internal Power Dissipation (Note 1) Internally Limited
 | Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Maximum Junction Temperature | $150^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Lead Temperature | |
| \quad (Soldering, 10 seconds) | |
| ESD susceptibility rating is to be determined | |}

Electrical Characteristics $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{o}}+5 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=1 \mathrm{~A}, \mathrm{C}_{\text {out }}=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Output Voltage (V_{0})		5 V			8V			10V			Units
Parameter	Conditions	Typ	Tested Limit (Note 2)		Typ	Tested Limit (Note 2)		Typ	Tested Limit (Note 2)		
		$\mathbf{6 . 2 5 V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$			$\mathbf{9 . 4 V} \leq \mathrm{V}_{\text {IN }} \leq \mathbf{2 6 V}$			$11.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}$			
Output Voltage	$5 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 1 \mathrm{~A}$	5.00	$\begin{aligned} & 4.85 \\ & 5.15 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 5.25 \end{aligned}$	8.00	$\begin{aligned} & 7.76 \\ & 8.24 \end{aligned}$	$\begin{aligned} & 7.60 \\ & 8.40 \end{aligned}$	10.00	$\begin{gathered} 9.70 \\ 10.30 \\ \hline \end{gathered}$	$\begin{gathered} 9.50 \\ 10.50 \end{gathered}$	$\mathrm{V}_{\text {MIN }}$ $V_{\text {MAX }}$
Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}+2 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 26 \mathrm{~V}, \\ & \mathrm{l}_{0}=5 \mathrm{~mA} \end{aligned}$	20	50		20	80		20	100		$\mathrm{mV}_{\text {MAX }}$
Load Regulation	$50 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 1 \mathrm{~A}$	35	50	80	55	80	130	65	100	165	mV ${ }_{\text {MAX }}$
Output Impedance	100 mADC and 20 mArms $\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	35			55			65			$\mathrm{m} \Omega$
Quiescent Current	$\mathrm{V}_{0}+2 \mathrm{~V} \leq \mathrm{V}_{\text {in }}<26 \mathrm{~V}, \mathrm{I}_{0}=5 \mathrm{~mA}$	10	15	20	10	15	20	10	15	20	$\mathrm{mA}_{\text {MAX }}$
	$\mathrm{V}_{\text {in }}=\mathrm{V}_{0}+5 \mathrm{~V}, \mathrm{I}_{0}=1 \mathrm{~A}$	30	45	60	30	45	60	30	45	60	mA MAX
Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz}-100 \mathrm{kHz} \\ & \mathrm{l}_{0}=5 \mathrm{~mA} \end{aligned}$	150			240			300			$\mu \mathrm{V}$ RMS
Ripple Rejection	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}, 1 \mathrm{Vrms} ; \\ & \mathrm{I}_{\mathrm{I}}=100 \mathrm{~mA} \end{aligned}$	72	60	54	66	54	48	63	51	45	$\mathrm{dB}_{\text {MIN }}$
Long Term Stability		20			32			36			$\begin{aligned} & \mathrm{mV} / \\ & 1000 \mathrm{Hr} \end{aligned}$
Dropout Voltage	$\mathrm{l}_{0}=1 \mathrm{~A}$	0.5	0.8	1.0	0.5	0.8	1.0	0.5	0.8	1.0	$\mathrm{V}_{\text {MAX }}$
	$\mathrm{l}_{0}=100 \mathrm{~mA}$	110	150	200	110	150	200	110	150	200	$m \mathrm{~V}_{\text {MAX }}$
Short Circuit Current		1.9	1.6		1.9	1.6		1.9	1.6		$A_{\text {MIN }}$
Maximum Line Transient	$\begin{aligned} & \mathrm{R}_{\mathrm{O}}=100 \Omega \\ & \mathrm{~T} \leq 100 \mathrm{~ms} \end{aligned}$	$\mathrm{V}_{0} \leq 6 \mathrm{~V}$			$\mathrm{V}_{0}<9 \mathrm{~V}$			$\mathrm{V}_{0}<11 \mathrm{~V}$			$\mathrm{V}_{\text {MIN }}$
		75	60	60	75	60	60	75	60	60	
Maximum Operational Input Voltage		31	26	26	31	26	26	31	26	26	$V_{\text {dc }}$
Reverse Polarity Input Voltage DC	$\mathrm{R}_{\mathrm{O}}=100 \Omega$	-30	-15	-15	-30	-15	-15	-30	-15	-15	$\mathrm{V}_{\text {MIN }}$
Reverse Polarity Input Voltage Transient	$\mathrm{T} \leq 100 \mathrm{~ms}, \mathrm{R}_{0}=100 \Omega$	-75	-50	-50	-75	-50	-50	-75	-50	-50	$\mathrm{V}_{\text {MIN }}$

Note 1: Thermal resistance without a heatsink for junction-to-case temperature is $3^{\circ} \mathrm{C} / \mathrm{W}$. Thermal resistance case-to-ambient is $50^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Tested Limits are guaranteed and 100% production tested.
Note 3: Design Limits are guaranteed (but not 100\% production tested) over the operating temperature and supply voltage range. These limits are not used to calculate outgoing quality levels.

Typical Performance Characteristics

Quiescent Current vs Temperature

Output Impedance

Typical Performance Characteristics (Continued)

Output at Voltage Extremes

Output at
Voltage Extremes

Output at
Voltage Extremes

TL/H/8822-5

Typical Application

TL/H/8822-3
*Required if regulator is located far from power supply filter.
**CoUt must be at least $22 \mu \mathrm{~F}$ to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator and the ESR is critical; see curve.

Connection Diagram
(TO-220) Plastic Package

TL/H/8822-2
Front View
Order Number LM2940T-5.0, LM2940T-8.0, LM2940T-10 See NS Package Number T03B

Definition of Terms

Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at ($\mathrm{V}_{\mathrm{O}}+$ 5 V) input, dropout voltage is dependent upon load current and junction temperature.
Input Voltage: The DC voltage applied to the input terminals with respect to ground.
Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.
Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.
Output Nolse Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.
Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.
Temperature Stability of $\mathbf{V}_{\mathbf{O}}$: The percentange change in output voltage for a thermal variation from room temperature to either temperature extreme.

General Description

The LM2940C positive voltage regulator features the ability to source 1A of output current with an input-output differential of typically 0.5 V and a maximum of 1 V over the entire temperature range. Familiar regulator features such as internal current limit and thermal overload protection are also provided. Furthermore, a quiescent current reduction circuit has been added which reduces the ground current when the differential between the input voltage and the output voltage exceeds approximately 3 V . The quiescent current with 1 A of output current and an input-output differential of 5 V is therefore only 30 mA . Higher quiescent currents only exist when the regulator is in the dropout mode $\left(\mathrm{V}_{I N}-\mathrm{V}_{\text {OUT }} \leq 3 \mathrm{~V}\right)$.
The low dropout voltage coupled with the high output current capability make the LM2940C useful in applications where the input voltage is maintained at a level within one or two volts of the output voltage to reduce power dissipation and increase overall system efficiency.
The LM2940C is particularly suited for applications where battery life and reverse installation of batteries is a concern.

For automotive temperature range ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) applications, refer to the LM2940 datasheet.

Features

■ Dropout voltage typically $0.5 \mathrm{~V} @ \mathrm{l}_{\mathrm{O}}=1 \mathrm{~A}$

- Output current in excess of 1A
- Output voltage trimmed before assembly
- Reverse battery protection
- Internal short circuit current limit
- Mirror image insertion protection
- 100% electrical burn-in in thermal limit

Output Voltages

LM2940CT-5.0
LM2940CT-12 12 V

LM2940CT-15

For output voltages of $5 \mathrm{~V}, 8 \mathrm{~V}$, and 10 V , refer to the LM2940 datasheet.

Equivalent Schematic

Order Number LM2940CT-5.0, LM2940CT-12, and LM2940CT-15 See NS Package T03B

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Input Voltage
Survival Voltage ($\leq 1 \mathrm{~ms}$)
45 V
Operational Voltage

Internal Power Dissipation (Note 1) Internally limited
Electrical Characteristics $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{O}}+5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{C}_{\mathrm{OUT}}=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Output Voltage (V_{0})		5 V			12V			15V			Units
Parameter	Conditions	Typ	Tested Limlt (Note 2)	$\begin{aligned} & \text { Design } \\ & \text { Limit } \\ & \text { (Note 3) } \end{aligned}$	Typ	$\begin{array}{\|c\|} \hline \text { Tested } \\ \text { Limit } \\ \text { (Note 2) } \end{array}$	$\begin{array}{\|c\|} \text { Design } \\ \text { Limit } \\ \text { (Note 3) } \end{array}$	Typ	Tested Limit (Note 2)	$\left\lvert\, \begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 3) } \end{gathered}\right.$	
Output Voltage	$5 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 1 \mathrm{~A}$	5.00	$\begin{aligned} & 4.85 \\ & 5.15 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 5.25 \end{aligned}$	12.00	$\begin{aligned} & \hline 11.64 \\ & 12.36 \end{aligned}$	$\begin{aligned} & 11.40 \\ & 12.60 \end{aligned}$	15.00	$\begin{aligned} & 14.55 \\ & 15.45 \end{aligned}$	$\begin{aligned} & 14.25 \\ & 15.75 \end{aligned}$	$V_{\text {MIN }}$ $V_{\text {MAX }}$
		$6.25 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$			$13.6 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$			$16.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$			
Line Regulation	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}+2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V}, \\ & 1 \mathrm{O}=5 \mathrm{~mA} \end{aligned}$	20	50		20	120		20	150		mV ${ }_{\text {MAX }}$
Load Regulation	$50 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 1 \mathrm{~A}$	35	50		55	120		70	150		$V_{\text {MAX }}$
Output Impedance	100 mADC and 20 mArms $\mathrm{fo}_{\mathrm{O}}=120 \mathrm{~Hz}$	35			80			100			$\mathrm{m} \Omega$
Quiescent Current	$\begin{aligned} & V_{O}+2 V \leq V_{I N} \leq 26 \mathrm{~V}, \\ & \mathrm{O}=5 \mathrm{~mA} \end{aligned}$	10	15		10	15		10	15		mA ${ }_{\text {MAX }}$
	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}}+5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	30	45	60	30	45	60	30	45	60	$\mathrm{mA}_{\text {MAX }}$
Output Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz}-100 \mathrm{kHz} \\ & \mathrm{lO}=5 \mathrm{~mA} \\ & \hline \end{aligned}$	150			360			450			$\mu \mathrm{Vrms}$
Ripple Rejection	$\begin{aligned} & \mathrm{fo}_{\mathrm{o}}=120 \mathrm{~Hz}, 1 \mathrm{Vrms}, \\ & \mathrm{l}=100 \mathrm{~mA} \end{aligned}$	72	60		66	54		64	52		dBmin
Long Term Stability		20			48			60			mV/1000 Hr
Dropout Voltage	$10=1 \mathrm{~A}$	0.5	0.8	1.0	0.5	0.8	1.0	0.5	0.8	1.0	$\mathrm{V}_{\text {MAX }}$
	$\mathrm{I}_{0}=100 \mathrm{~mA}$	110	150	200	110	150	200	110	150	200	$\mathrm{mV}_{\text {MAX }}$
Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\text {IN MAX }}=26 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	1.9	1.6		1.9	1.6		1.9	1.6		$A_{\text {MIN }}$
Maximum Line Transient	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T} \leq 1 \mathrm{~ms}$	55	45		55	45		55	45		$\mathrm{V}_{\text {MIN }}$
		$\mathrm{V}_{0}<6 \mathrm{~V}$			$\mathrm{V}_{\mathrm{O}}<13 \mathrm{~V}$			$\mathrm{V}_{\mathrm{O}}<16 \mathrm{~V}$			
Reverse Polarity DC Input Voltage	$R_{L}=100 \Omega, V_{O} \geq-0.6 \mathrm{~V}$	-30	-15		-30	-15		-30	-15		$\mathrm{V}_{\text {MIN }}$
Reverse Polarity, Transient Input Voltage	$\mathrm{T} \leq 1 \mathrm{~ms}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	-55	-45	-45	-55	-45	-45	-55	-45	-45	$\mathrm{V}_{\text {MIN }}$

Note 1: Thermal resistance without a heat sink for junction-to-case temperature is $3^{\circ} \mathrm{C} / \mathrm{W}$. Thermal resistance case-to-ambient is $50^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Tested Limits are guaranteed and 100\% production tested.
Note 3: Design Limits are guaranteed (but not 100% production tested) over the operating temperature and supply voltage range. These limits are not used to calculate outgoing quality levels.
Note 4: Output current will decrease with increasing temperature, but will not go below 1 A at the maximum specified temperature.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Application

[^6]
Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Output at
Voltage Extremes

TL/H/6158-5

LM2941 1A Low Dropout Adjustable Regulator

General Description

The LM2941 positive voltage regulator features the ability to source 1A of output current with a typical dropout voltage of 0.5 V and a maximum of 1 V over the entire temperature range. Furthermore, a quiescent current reduction circuit has been included which reduces the ground pin current when the differential between the input voltage and the output voltage exceeds approximately 3 V . The quiescent current with 1A of output current and an input-output differential of 5 V is therefore only 30 mA . Higher quiescent currents only exist when the regulator is in the dropout mode ($\mathrm{V}_{\mathbb{N}}$ $V_{\text {OUT }} \leq 3 \mathrm{~V}$).
Designed also for vehicular applications, the LM2941 and all regulated circuitry are protected from reverse battery installations or two-battery jumps. During line transients, such as load dump (60 V) when the input voltage can momentarily exceed the specified maximum operating voltage, the regu-
lator will automatically shut down to protect both the internal circuits and the load. Familiar regulator features such as short circuit and thermal overload protection are also provided.

Features

- Output voltage adjustable from 5 V to 20 V
- Dropout voltage typically 0.5 V @ $\mathrm{I}_{0}=1 \mathrm{~A}$
- Output current in excess of 1 A
- Trimmed reference voltage
- Reverse battery protection
- Internal short circuit current limit
- Mirror image insertion protection
- 100% electrical burn-in in thermal limit
- TTL, CMOS compatible ON/OFF switch

Equivalent Schematic and Connection Diagram

TL/H/8823-1
(TO-220)
Plastic Package

TL/H/8823-2
Front View
Order Number LM2941T
See NS Package Number TO5A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage

Survival Voltage ($\leq 100 \mathrm{~ms}$) 60V
Operational Voltage
26 V
Internal Power Dissipation (Note 1)

Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature $150^{\circ} \mathrm{C}$
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)
$260^{\circ} \mathrm{C}$
ESD susceptibility rating is to be determined.

Electrical Characteristics

$5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 20 \mathrm{~V}, \mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{O}}+5 \mathrm{~V}, \mathrm{C}_{\mathrm{O}}=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Conditions	Typ	Tested Limit (Note 2)	Design Limit (Note 3)	Units (Limits)
Reference Voltage	$5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1 \mathrm{~A},($ Note 4)	1.275	$\begin{aligned} & 1.237 \\ & 1.313 \end{aligned}$	$\begin{aligned} & 1.211 \\ & 1.339 \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\max) \end{aligned}$
Line Regulation	$\mathrm{V}_{\mathrm{O}}+2 \mathrm{~V} \leq \mathrm{V}_{1 N} \leq 26 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA}$	4	10		$\mathrm{mV} / \mathrm{V}(\mathrm{max})$
Load Regulation	$50 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1 \mathrm{~A}$	7	10	16	$\mathrm{mV} / \mathrm{V}(\mathrm{max})$
Output Impedance	100 mADC and 20 mArms $\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	7			$\mathrm{m} \Omega / \mathrm{V}$
Quiescent Current	$\mathrm{V}_{\mathrm{O}}+2 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}}<26 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA}$	10	15	20	mA (max)
	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}}+5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=1 \mathrm{~A}$	30	45	60	mA (max)
RMS Output Noise, $\%$ of $V_{\text {OUT }}$	$\begin{aligned} & 10 \mathrm{~Hz}-100 \mathrm{kHz} \\ & \mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	0.003			\%
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}, 1 \mathrm{Vrms}, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	0.005	0.02	0.04	\%/V(max)
Long Term Stability		0.4			\%/1000 Hr
Dropout Voltage	$\mathrm{l}_{0}=1 \mathrm{~A}$	0.5	0.8	1.0	V (max)
	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	110	200	200	mV (max)
Short Circuit Current	$\mathrm{V}_{\text {IN }}$ max $=26 \mathrm{~V}$ (Note 5)	1.9	1.6		A(min)
Maximum Line Tranisient	$V_{O} \max 1 \mathrm{~V}$ above nominal V_{O} $\mathrm{R}_{\mathrm{O}}=100 \Omega, \mathrm{~T} \leq 100 \mathrm{~ms}$	75	60	60	$V(\min)$
Maximum Operational Input Voltage		31	26	26	$V_{D C}$
Reverse Polarity DC Input Voltage	$\mathrm{R}_{\mathrm{O}}=100 \Omega, \mathrm{~V}_{\mathrm{O}} \geq-0.6 \mathrm{~V}$	-30	-15	-15	V (min)
Reverse Polarity Transient Input Voltage	$\mathrm{T} \leq 100 \mathrm{~ms}, \mathrm{R}_{\mathrm{O}}=100 \Omega$	-75	-50	-50	V (min)
ON/OFF Threshold Voltage ON	$\mathrm{I}_{0} \leq 1 \mathrm{~A}$	1.30	0.80	0.80	V (max)
ON/OFF Threshold Voltage OFF	$\mathrm{l}_{0} \leq 1 \mathrm{~A}$	1.30	2.00	2.00	V (min)
ON/OFF Threshold Current	$\begin{aligned} & \mathrm{V}_{\mathrm{ON} / \mathrm{OFF}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{0} \leq 1 \mathrm{~A} \end{aligned}$	50	100	300	$\mu \mathrm{A}$ (max)

Note 1: The maximum power dissipation is a function of $T_{J}(\max), \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J}(\max)-T_{A}\right) / \theta_{J A}$. If this dissipation is exceeded, the die temperature will rise above $150^{\circ} \mathrm{C}$ and the LM2941 will go into thermal shutdown. For the LM2941, the junction-to-ambient thermal resistance is $53^{\circ} \mathrm{C} / \mathrm{W}$, and the junction-to-case thermal resistance is $3^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Tested Limits are guaranteed and 100\% production tested.
Note 3: Design Limits are guaranteed (but not 100% production tested) over the operating temperature and supply voltage range. These limits are not used to calculate outgoing quality levels.
Note 4: The output voltage range is 5 V to 20 V and is determined by the two external resistors, R1 and R2. See Typical Application Circuit.
Note 5: Output current will decrease with increasing temperature, but will not go below 1 A at the maximum specified temperatures.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Output at Voltage Extremes

TL/H/8823-5

Definition of Terms

Dropout Voltage: The input-voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at (VOUT +5 V) input, dropout voltage is dependent upon load current and junction temperature.
Input Voltage: The DC voltage applied to the input terminals with respect to ground.
Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.

Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.
Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.
Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.
Temperature Stability of $\mathrm{V}_{\mathbf{0}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Typical Applications

TL/H/8823-3
$V_{\text {OUT }}=$ Reference voltage $\times \frac{R 1+R 2}{R 1}$ where $V_{\text {REF }}=1.275$ typical
Solving for R2: R2 $=R 1\left(\frac{V_{O}}{V_{R E F}}-1\right)$
Note: Using 1 k for R1 will ensure that the input blas current error of the adjust pin will be negligible. Do not bypass R1 or R2. This will lead to instabilities.
*Required if regulator is located far from power supply filter.
**Cout must be at least $22 \mu \mathrm{~F}$ to maintain stability. May be increased with out bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator and the ESR is critical; see curve.

TL/H/8823-6
**'To assure shutdown, select Resistor R3 to guarantee at least $300 \mu \mathrm{~A}$ of pull-up current when S1 is open. (Assume 2 V at the ON/OFF pin.)

LM2941C 1A Low Dropout Adjustable Regulator

General Description

The LM2941C positive voltage regulator features the ability to source 1A of output current with a typical dropout voltage of 0.5 V and a maximum of 1 V over the entire temperature range. Furthermore, a quiescent current reduction circuit has been included which reduces the ground pin current when the differential between the input voltage and the output voltage exceeds approximately 3 V . The quiescent current with 1 A of output current and an input-output differential of 5 V is therefore only 30 mA . Higher quiescent currents only exist when the regulator is in the dropout mode ($\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }} \leq 3 \mathrm{~V}$).
Low dropout voltage, coupled with 1A current capability, makes the LM2941C useful in applications where the input voltage is maintained at a level within one or two volts of the output voltage. Operation at these low input-output voltage differentials reduces regulator power dissipation and increases overall system efficiency.

The LM2941C can be used to provide on-board regulation and post-switcher regulation. Other applications include fault protected 1A switches.

Features

- Output voltage adjustable from 5 V to 20 V
- Dropout voltage typically $0.5 \mathrm{~V} @ \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$
- Output current in excess of 1 A
- Trimmed reference voltage
- Reverse battery protection
- Internal short circuit current limit
- Mirror image insertion protection
- 100% electrical burn-in in thermal limit
- TTL, CMOS compatible ON/OFF switch

Equivalent Schematic and Connection Diagram

TL/H/10367-1
(TO-220)
Plastic Package

TL/H/10367-2
Front View
Order Number LM2941CT
See NS Package Number TO5A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Input Voltage
Survival Voltage ($\leq 100 \mathrm{~ms}$) 45V
Operational Voltage 26V
Internal Power Dissipation (Note 1) Internally limited

Operating Temperature Range $\left(T_{A}\right)$	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	

ESD susceptibility rating is to be determined.

Electrical Characteristics

$5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}}+5 \mathrm{~V}, \mathrm{C}_{\mathrm{O}}=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Parameter	Conditions	Typ	Tested Limit (Note 2)	Design Limit (Note 3)	Units (Limits)
Reference Voltage	$5 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1 \mathrm{~A},($ Note 4)	1.275	$\begin{aligned} & 1.237 \\ & 1.313 \end{aligned}$	$\begin{aligned} & 1.211 \\ & 1.339 \end{aligned}$	$\begin{aligned} & V(\min) \\ & V(\max) \end{aligned}$
Line Regulation	$\mathrm{V}_{\mathrm{O}}+2 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq 26 \mathrm{~V}, \mathrm{l}_{0}=5 \mathrm{~mA}$	4	10		$\mathrm{mV} / \mathrm{V}(\max)$
Load Regulation	$50 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1 \mathrm{~A}$	7	10		$\mathrm{mV} / \mathrm{V}(\mathrm{max})$
Output Impedance	100 mADC and 20 mArms $\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	7			$\mathrm{m} \Omega / \mathrm{V}$
Quiescent Current	$\mathrm{V}_{\mathrm{O}}+2 \mathrm{~V} \leq \mathrm{V}_{1}<26 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA}$	10	15		mA (max)
	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{O}}+5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	30	45	60 "	mA(max)
RMS Output Noise, $\%$ of $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & 10 \mathrm{~Hz}-100 \mathrm{kHz} \\ & \mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA} \end{aligned}$	0.003			\%
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}, 1 \mathrm{Vrms}, \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	0.005	0.02		\%/V(max)
Long Term Stability		0.4			\%/1000 Hr
Dropout Voltage	$\mathrm{l}_{0}=1 \mathrm{~A}$	0.5	0.8	1.0	V (max)
	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	110	200	200	mV (max)
Short Circuit Current	$\mathrm{V}_{\text {IN }} \mathrm{max}=26 \mathrm{~V}$ (Note 5)	1.9	1.6		A(min)
Maximum Line Transient	V_{O} max 1 V above nominal V_{O} $\mathrm{R}_{\mathrm{O}}=100 \Omega, \mathrm{~T} \leq 100 \mathrm{~ms}$	55	45		V (min)
Maximum Operational Input Voltage		31	26		$V_{D C}$
Reverse Polarity DC Input Voltage	$\mathrm{R}_{\mathrm{O}}=100 \Omega, \mathrm{~V}_{\mathrm{O}} \geq-0.6 \mathrm{~V}$	-30	-15		V (min)
Reverse Polarity Transient Input Voltage	$\mathrm{T} \leq 100 \mathrm{~ms}, \mathrm{R}_{\mathrm{O}}=100 \Omega$	-55	-45		$V(\min)$
ON/OFF Threshold Voltage ON	$\mathrm{l}_{0} \leq 1 \mathrm{~A}$	1.30	0.80		V(max)
ON/OFF Threshold Voltage OFF	$10 \leq 1 A$	1.30	2.00		V (min)
ON/OFF Threshold Current	$\begin{aligned} & \mathrm{V}_{\mathrm{ON} / \mathrm{OFF}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A} \end{aligned}$	50	100		$\mu \mathrm{A}$ (max)

Note 1: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$ and T_{A}. The maximum ailowable power dissipation at any ambient temperature is $\mathrm{P}_{\mathrm{D}}=$ $\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. If this dissipation is exceeded, the die temperature will rise above $150^{\circ} \mathrm{C}$ and the LM 2941 C will go into thermal shutdown. For the LM 2941 C , the junction-to-ambient thermal resistance is $53^{\circ} \mathrm{C} / \mathrm{W}$, and the junction-to-case thermal resistance is $3^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Tested Limits are guaranteed and 100% production tested.
Note 3: Design Limits are guaranteed (but not 100% production tested) over the operating temperature and supply voltage range. These limits are not used to calculate outgoing quality levels.
Note 4: The output voltage range is 5 V to 20 V and is determined by the two external resistors, R1 and R2. See Typical Application Circuit.
Note 5: Output current will decrease with increasing temperature, but will not go below 1 A at the maximum specified temperatures.

Typical Performance Characteristics

Definition of Terms

Dropout Voltage: The input-voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100 mV from the nominal value obtained at (VOUT +5 V) input, dropout voltage is dependent upon load current and junction temperature.
Input Voltage: The DC voltage applied to the input terminals with respect to ground.
Input-Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation: The change in output voltage for a change in load current at constant chip temperature.
Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature.
Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.
Quiescent Current: That part of the positive input current that does not contribute to the positive load current. The regulator ground lead current.
Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage.
Temperature Stability of $\mathrm{V}_{\mathbf{O}}$: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.

Typical Applications

5V to 20V Adjustable Regulator

TL／H／10367－5
$V_{\text {OUT }}=$ Reference voltage $\times \frac{R 1+R 2}{R 1}$ where $V_{\text {REF }}=1.275$ typical
Solving for $\mathrm{R} 2: \mathrm{R} 2=\mathrm{R} 1\left(\frac{\mathrm{~V}_{\mathrm{O}}}{\mathrm{V}_{\mathrm{REF}}}-1\right)$
Note：Using 1 k for R1 will ensure that the input bias current error of the adjust pin will be negligible．Do not bypass R1 or R2．This will lead to instabil－ ities．

${ }^{* * *}$ To assure shutdown，select resistor R 3 to guarantee at least $300 \mu \mathrm{~A}$ of pull－up current when S 1 is open．（Assume 2 V at the ON／OFF pin．）

LM2984C Microprocessor Power Supply System

General Description

The LM2984C positive voltage regulator features three independent and tracking outputs capable of delivering the power for logic circuits, peripheral sensors and standby memory in a typical microprocessor system. The LM2984C includes circuitry which monitors both its own high-current output and also an external $\mu \mathrm{P}$. If any error conditions are sensed in either, a reset error flag is set and maintained until the malfunction terminates. Since these functions are included in the same package with the three regulators, a great saving in board space can be realized in the typical microprocessor system. The LM2984C also features very low dropout voltages on each of its three regulator outputs (0.6 V at the rated output current). Furthermore, the quiescent current can be reduced to 1 mA in the standby mode. Designed also for vehicular applications, the LM2984C and all regulated circuitry are protected from reverse battery installations or 2-battery jumps. Familiar regulator features such as short circuit and thermal overload protection are
also provided. Fixed outputs of 5 V are available in the plastic TO-220 power package.

Features

- Three low dropout tracking regulators
- Output current in excess of 500 mA
- Low quiescent current standby regulator
- Microprocessor malfunction RESET flag
- Delayed RESET on power-up
- Accurate pretrimmed 5V outputs
- Reverse battery protection
- Overvoltage protection
- Reverse transient protection
- Short circuit protection
- Internal thermal overload protection

■ ON/OFF switch for high current outputs

- 100\% electrical burn-in in thermal limit

Typical Application Circuit

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Input Voltage
Survival Voltage (<100 ms)
Operational Voltage

Internal Power Dissipation	Internally Limited
Operating Temperature Range (T_{A})	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature (Note 1)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$230^{\circ} \mathrm{C}$
ESD rating is to be determined.	

Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}$, IOUT $=5 \mathrm{~mA}, \mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Note 6) unless otherwise indicated

Parameter	Conditions	Typical		Design Limit (Note 3)	Units
$\mathrm{V}_{\text {OUT }}$ (Pin 11)					
Output Voltage	$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 500 \mathrm{~mA} \\ & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V} \end{aligned}$	5.00	$\begin{array}{r} 4.85 \\ 5.15 \\ \hline \end{array}$	$\begin{aligned} & 4.75 \\ & 5.25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {min }} \\ & \mathrm{V}_{\text {max }} \end{aligned}$
Line Regulation	$9 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}$	2	25		mV max
	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$	5	50		mV max
Load Regulation	$5 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 500 \mathrm{~mA}$	12	50		mV max
Output Impedance	$250 \mathrm{~mA}_{\mathrm{dc}}$ and $10 \mathrm{~mA}_{\mathrm{rms}}$, $\mathrm{f}_{\mathrm{o}}=120 \mathrm{~Hz}$	24			$\mathrm{m} \Omega$
Quiescent Current	IOUT $=500 \mathrm{~mA}$	38	100		$\mathrm{mA}_{\text {max }}$
	$\mathrm{I}_{\text {OUT }}=250 \mathrm{~mA}$	14	50		$\mathrm{mA}_{\text {max }}$
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$, I OUT $=100 \mathrm{~mA}$	100			$\mu \mathrm{V}$
Long Term Stability		20			$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{0}=120 \mathrm{~Hz}$	70	60		$\mathrm{dB}_{\text {min }}$
Dropout Voltage	l OUT $=500 \mathrm{~mA}$	0.53	0.80	1.00	$\mathrm{V}_{\text {max }}$
	$\mathrm{l}_{\text {OUT }}=250 \mathrm{~mA}$	0.28	0.50	0.60	$\mathrm{V}_{\text {max }}$
Current Limit		0.92	0.75		$A_{\text {min }}$
Maximum Operational Input Voltage	Continuous DC	32	26	26	$V_{\text {min }}$
Maximum Line Transient	$\mathrm{V}_{\text {OUT }} \leq 6 \mathrm{~V}, \mathrm{R}_{\text {OUT }}=100 \Omega$	45	35	35	$\mathrm{V}_{\text {min }}$
Reverse Polarity Input Voltage DC	$\mathrm{V}_{\text {OUT }} \geq-0.6 \mathrm{~V}, \mathrm{R}_{\text {OUT }}=100 \Omega$	-30	-15	-15	$V_{\text {min }}$
Reverse Polarity Input Voltage Transient	$\mathrm{T} \leq 100 \mathrm{~ms}, \mathrm{R}_{\text {OUT }}=100 \Omega$	-55	-35	-35	$V_{\text {min }}$

Electrical Characteristics (Continued)
$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\text {buf }}=5 \mathrm{~mA}, \mathrm{C}_{\text {buf }}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Note 6) unless otherwise indicated

Parameter	Conditions	Typical		Design Limit (Note 3)	Units
$\mathrm{V}_{\text {buffer }}$ (Pin 10)					
Output Voltage	$\begin{aligned} & 5 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 100 \mathrm{~mA} \\ & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V} \\ & \hline \end{aligned}$	5.00	$\begin{array}{r} 4.85 \\ 5.15 \\ \hline \end{array}$	$\begin{array}{r} 4.75 \\ 5.25 \\ \hline \end{array}$	$\begin{aligned} & V_{\text {min }} \\ & V_{\text {max }} \end{aligned}$
Line Regulation	$9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 16 \mathrm{~V}$	2	25		mV max
	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$	5	50		$m V_{\text {max }}$
Load Regulation	$5 \mathrm{~mA} \leq \mathrm{I}_{\text {buf }} \leq 100 \mathrm{~mA}$	15	50		$\mathrm{mV}_{\text {max }}$
Output Impedance	$50 \mathrm{~mA}_{\mathrm{dc}}$ and $10 \mathrm{~mA}_{\text {rms }}$,	200			$\mathrm{m} \Omega$
Quiescent Current	$l_{\text {buf }}=100 \mathrm{~mA}$	8.0	15.0		$\mathrm{mA}_{\text {max }}$
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}$, IOUT $=100 \mathrm{~mA}$	100			$\mu \mathrm{V}$
Long Term Stability		20			$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{0}=120 \mathrm{~Hz}$	70	60		$\mathrm{dB}_{\text {min }}$
Dropout Voltage	$l_{\text {buf }}=100 \mathrm{~mA}$	0.35	0.50	0.60	$\mathrm{V}_{\text {max }}$
Current Limit		0.23	0.15		$\mathrm{A}_{\text {min }}$
Maximum Operational Input Voltage	Continuous DC	32	26	26	$V_{\text {min }}$
Maximum Line Transient	$\mathrm{V}_{\text {buf }} \leq 6 \mathrm{~V}, \mathrm{R}_{\text {buf }}=100 \Omega$	45	35	35	$\mathrm{V}_{\text {min }}$
Reverse Polarity Input Voltage DC	$\mathrm{V}_{\text {buf }} \geq-0.6 \mathrm{~V}, \mathrm{R}_{\text {buf }}=100 \Omega$	-30	-15	-15	$V_{\text {min }}$
Reverse Polarity Input Voltage Transient	$\mathrm{T} \leq 100 \mathrm{~ms}, \mathrm{R}_{\text {buf }}=100 \Omega$	-55	-35	-35	$\mathrm{V}_{\text {min }}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{IN}}=14 \mathrm{~V}, \mathrm{I}_{\text {stby }}=1 \mathrm{~mA}, \mathrm{C}_{\text {stby }}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Note 6) unless otherwise indicated

Parameter	Conditions	Typical			Units
$\mathbf{V}_{\text {standby }}$ (Pin 9)					
Output Voltage	$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 7.5 \mathrm{~mA} \\ & 6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 26 \mathrm{~V} \end{aligned}$	5.00	$\begin{array}{r} 4.85 \\ 5.15 \\ \hline \end{array}$	$\begin{array}{r} 4.75 \\ 5.25 \\ \hline \end{array}$	$V_{\text {min }}$ $V_{\text {max }}$
Line Regulation	$9 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 16 \mathrm{~V}$	2	25		$m V_{\text {max }}$
	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 26 \mathrm{~V}$	5	50		$m V_{\text {max }}$
Load Regulation	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {stby }} \leq 7.5 \mathrm{~mA}$	6	50		$m V_{\text {max }}$
Output Impedance	$5 \mathrm{~mA}_{\text {dc }}$ and $1 \mathrm{~mA}_{\text {rms }}, \mathrm{f}_{\mathrm{o}}=120 \mathrm{~Hz}$	0.9			Ω
Quiescent Current	$\mathrm{l}_{\text {stby }}=7.5 \mathrm{~mA}$	1.2	2.0		$\mathrm{mA}_{\text {max }}$
	$\mathrm{l}_{\text {stby }}=2 \mathrm{~mA}$	0.9	1.5		$\mathrm{mA}_{\text {max }}$

Electrical Characteristics (Continued)

$V_{I N}=14 \mathrm{~V}, \mathrm{I}_{\text {stby }}=1 \mathrm{~mA}, \mathrm{C}_{\text {stby }}=10 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Note 6) unless otherwise indicated

Parameter	Conditions	Typical	Tested LImit (Note 2)	Design Limit (Note 3)	Units
$\mathbf{V}_{\text {standby }}$ (Continued)					
Output Noise Voltage	$10 \mathrm{~Hz}-100 \mathrm{kHz}, \mathrm{I}_{\text {stby }}=1 \mathrm{~mA}$	100			$\mu \mathrm{V}$
Long Term Stability		20			$\mathrm{mV} / 1000 \mathrm{hr}$
Ripple Rejection	$\mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}$	70	60		$\mathrm{dB}_{\text {min }}$
Dropout Voltage	$\mathrm{l}_{\text {stby }}=1 \mathrm{~mA}$	0.26	0.50	0.50	$\mathrm{V}_{\text {max }}$
Dropout Voltage	$\mathrm{I}_{\text {stby }}=7.5 \mathrm{~mA}$	0.38	0.60	0.70	$\mathrm{V}_{\text {max }}$
Current Limit		15	12		$\mathrm{mA}_{\text {min }}$
Maximum Operational Input Voltage	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\text {stby }} \leq 6 \mathrm{~V} \\ & \mathrm{R}_{\text {stby }}=1000 \Omega \\ & \hline \end{aligned}$	45	35	35	$V_{\text {min }}$
Maximum Line Transient	$\begin{aligned} & V_{\text {stby }} \leq 6 \mathrm{~V}, \\ & R_{\text {stby }}=1000 \Omega \\ & \hline \end{aligned}$	45	35	35	$V_{\text {min }}$
Reverse Polarity Input Voltage DC	$\begin{aligned} & V_{\text {stby }} \geq-0.6 \mathrm{~V} \\ & R_{\text {stby }}=1000 \Omega \\ & \hline \end{aligned}$	-30	-15	-15	$V_{\text {min }}$
Reverse Polarity Input Voltage Transient	$\mathrm{T} \leq 100 \mathrm{~ms}, \mathrm{R}_{\text {stby }}=1000 \Omega$	-55	-35	-35	$V_{\text {min }}$

Electrical Characteristics

$\mathrm{V}_{\text {IN }}=14 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Note 6) $\mathrm{C}_{\mathrm{OUT}}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {buf }}=10 \mu \mathrm{~F}, \mathrm{C}_{\text {stby }}=10 \mu \mathrm{~F}$ unless otherwise specified

Parameter	Conditions	Typical		Design Llmit (Note 3)	Units
Tracking and Isolation					
Tracking $V_{\text {OUT }}-V_{\text {stby }}$	$\begin{aligned} & \mathrm{I}_{\text {Out }} \leq 500 \mathrm{~mA}, \mathrm{I}_{\text {buf }}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\text {stby }} \leq 7.5 \mathrm{~mA} \end{aligned}$	± 30	± 100		$m V_{\text {max }}$
Tracking $V_{\text {buf }}-V_{\text {stby }}$	$\begin{aligned} & \mathrm{l}_{\text {OUT }}=5 \mathrm{~mA}, \mathrm{I}_{\text {buf }} \leq 100 \mathrm{~mA}, \\ & \mathrm{I}_{\text {stby }} \leq 7.5 \mathrm{~mA} \end{aligned}$	± 30	± 100		$m V_{\text {max }}$
Tracking $\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {buf }}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }} \leq 500 \mathrm{~mA}, \mathrm{I}_{\text {buf }} \leq 100 \mathrm{~mA}, \\ & \mathrm{I}_{\text {stby }}=1 \mathrm{~mA} \end{aligned}$	± 30	± 100		$m V_{\text {max }}$
Isolation* $\mathrm{V}_{\text {buf }}$ from $\mathrm{V}_{\text {OUT }}$	$R_{\text {OUT }}=1 \Omega$, l $_{\text {buf }} \leq 100 \mathrm{~mA}$	5.00	$\begin{aligned} & 4.50 \\ & 5.50 \\ & \hline \end{aligned}$		$V_{\text {min }}$ $V_{\text {max }}$
Isolation* $\mathrm{V}_{\text {stby }}$ from $\mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\text {OUT }}=1 \Omega, \mathrm{I}_{\text {Stby }} \leq 7.5 \mathrm{~mA}$	5.00	$\begin{aligned} & 4.50 \\ & 5.50 \\ & \hline \end{aligned}$		$V_{\text {min }}$ $V_{\text {max }}$
Isolation* $\mathrm{V}_{\text {OUT }}$ from $\mathrm{V}_{\text {buf }}$	$\mathrm{R}_{\text {buf }}=1 \Omega$, lout $\leq 500 \mathrm{~mA}$	5.00	$\begin{array}{r} 4.50 \\ 5.50 \\ \hline \end{array}$		$\begin{aligned} & V_{\text {min }} \\ & V_{\text {max }} \\ & \hline \end{aligned}$
Isolation* $\mathrm{V}_{\text {stby }}$ from $\mathrm{V}_{\text {buf }}$	$\mathrm{R}_{\text {buf }}=1 \Omega, \mathrm{l}_{\text {stby }} \leq 7.5 \mathrm{~mA}$	5.00	$\begin{aligned} & 4.50 \\ & 5.50 \end{aligned}$		$\begin{aligned} & V_{\text {min }} \\ & V_{\max } \end{aligned}$

[^7]
Electrical Characteristics (Continued)

$V_{I N}=14 \mathrm{~V}, l_{\text {Out }}=5 \mathrm{~mA}, \mathrm{I}_{\text {buf }}=5 \mathrm{~mA}, \mathrm{I}_{\text {stby }}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{t}}=130 \mathrm{k}, \mathrm{C}_{\mathrm{t}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{mon}}=0.47 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ (Note 6) unless otherwise specified

| Parameter | Conditions | Typical | Tested
 Limit
 (Note 2) | Design
 Limit
 (Note 3) | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Computer Monitor/Reset Functions

Ireset Low	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}, \mathrm{~V}_{\text {rst }}=0.4 \mathrm{~V}$	5	2	1	$\mathrm{mA}_{\text {min }}$
$\mathrm{V}_{\text {reset }}$ Low	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}, \mathrm{I}_{\text {rst }}=1 \mathrm{~mA}$	0.10	0.40		$\mathrm{V}_{\text {max }}$
$\mathrm{R}_{\text {t voltage }}$	$($ Pin 2$)$	1.22	1.15		$V_{\text {min }}$
		1.22	1.30		$V_{\text {max }}$
Power On Reset Delay	$\begin{aligned} & V \mu \mathrm{P}_{\text {mon }}=5 \mathrm{~V} \\ & \left(\mathrm{~T}_{\text {dly }}=1.2 \mathrm{R}_{\mathrm{t}} \mathrm{C}_{t}\right) \end{aligned}$	50	45		$\mathrm{ms}_{\text {min }}$
		50	55		$\mathrm{ms}_{\text {max }}$
VOUT Low Reset Threshold	(Note 4)	4.00	3.60		$\mathrm{V}_{\text {min }}$
		4.00	4.40		$\mathrm{V}_{\text {max }}$
$V_{\text {OUT }}$ High Reset Threshold	(Note 4)	5.50	5.25		$\mathrm{V}_{\text {min }}$
		5.50	6.00		$\mathrm{V}_{\text {max }}$
Reset Output Leakage	$\mathrm{V} \mu \mathrm{P}_{\text {mon }}=5 \mathrm{~V}, \mathrm{~V}_{\text {rst }}=12 \mathrm{~V}$	0.01	1		$\mu A_{\text {max }}$
$\mu \mathrm{P}_{\text {mon }}$ Input Current (Pin 4)	$\mathrm{V} \mu \mathrm{P}_{\text {mon }}=2.4 \mathrm{~V}$	7.5	25		$\mu \mathrm{A}_{\text {max }}$
	$\mathrm{V} \mu \mathrm{P}_{\text {mon }}=0.4 \mathrm{~V}$	0.01	10		$\mu \mathrm{A}_{\text {max }}$
$\mu \mathrm{P}_{\text {mon }}$ Input Threshold Voltage		1.22	0.80	0.80	$V_{\text {min }}$
		1.22	2.00	2.00	$V_{\text {max }}$
$\mu \mathrm{P}$ Monitor Reset Oscillator Period	$\begin{aligned} & \mathrm{V} \mu \mathrm{P}_{\text {mon }}=0 \mathrm{~V} \\ & \left(\mathrm{~T}_{\text {window }}=0.82 \mathrm{R}_{\mathrm{t}} \mathrm{C}_{\text {mon }}\right) \end{aligned}$	50	45		$\mathrm{ms}_{\text {min }}$
		50	55		$\mathrm{ms}_{\text {max }}$
μ P Monitor Reset Oscillator Pulse Width	$\begin{aligned} & V \mu P_{\text {mon }}=0 \mathrm{~V} \\ & \left(\text { RESET }_{\text {pw }}=2000 \mathrm{C}_{\text {mon }}\right) \end{aligned}$	1.0	0.7	0.5	$\mathrm{ms}_{\text {min }}$
		1.0	1.3	2.0	$\mathrm{ms}_{\text {max }}$
Minimum $\mu \mathrm{P}$ Monitor Input Pulse Width	(Note 5)	2			$\mu \mathrm{S}_{\text {max }}$
Reset Fall Time	$\mathrm{R}_{\text {rst }}=10 \mathrm{k}, \mathrm{V}_{\text {rst }}=5 \mathrm{~V}, \mathrm{C}_{\text {rst }} \leq 10 \mathrm{pF}$	0.20	1.00		$\mu \mathrm{S}_{\text {max }}$
Reset Rise Time	$\mathrm{R}_{\text {rst }}=10 \mathrm{k}, \mathrm{V}_{\text {rst }}=5 \mathrm{~V}, \mathrm{C}_{\text {rst }} \leq 10 \mathrm{pF}$	0.60	1.00		$\mu \mathrm{S}_{\text {max }}$
On/Off Switch Input Current (Pin 8)	$\mathrm{V}_{\mathrm{ON}}=2.4 \mathrm{~V}$	7.5	25		$\mu A_{\text {max }}$
	$\mathrm{V}_{\mathrm{ON}}=0.4 \mathrm{~V}$	0.01	10		$\mu A_{\text {max }}$
On/Off Switch Input Threshold Voltage		1.22	0.80	0.80	$V_{\text {min }}$
		1.22	2.00	2.00	$\mathrm{V}_{\text {max }}$

Note 1: Thermal resistance without a heatsink for junction-to-case temperature is $3^{\circ} \mathrm{C} / \mathrm{W}$. Thermal resistance case-to-ambient is $40^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Tested Limits are guaranteed and 100% production tested.
Note 3: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage range. These limits are not used to calculate outgoing quality levels.
Note 4: An internal comparator detects when the main regulator output ($\mathrm{V}_{\mathrm{OUT}}$) drops below 4.0V or rises above 5.5V. If either condition exists at the output, the Reset Error Flag is held low until the error condition has terminated. The Reset Error Flag is then allowed to go high again after a delay set by R_{t} and C_{t}. (See Applications Section.)
Note 5: This parameter is a measure of how short a pulse can be detected at the $\mu \mathrm{P}$ Monitor Input. This parameter is primarily influenced by the value of $\mathrm{C}_{\text {mon }}$. (See Typical Performance Characteristics and Applications Section.)
Note 6: To ensure constant junction temperature, low duty cycle pulse testing is used.

Block Diagram

Pin Description

Pin No.	Pin Name	Comments
1	$\mathrm{~V}_{\text {IN }}$	Positive supply input voltage
2	R_{t}	Sets internal timing currents
3	C_{t}	Sets power-up reset delay timing
4	$\mu \mathrm{P}_{\text {mon }}$	Microcomputer monitor input
5	$\mathrm{C}_{\text {mon }}$	Sets $\mu \mathrm{C}$ monitor timing
6	Ground	Regulator ground
7	Reset	Reset error flag output
8	ON/OFF	Enables/disables high current regulators
9	V standby Standby regulator output $(7.5 \mathrm{~mA})$	
10	V buffer	Buffer regulator output $(100 \mathrm{~mA})$
11	VOUT $^{l \mid}$	Main regulator output $(500 \mathrm{~mA})$

External Components

Component	Typical Value	Component Range	Comments		
C_{IN}	$1 \mu \mathrm{~F}$	$0.47 \mu \mathrm{~F}-10 \mu \mathrm{~F}$	$\begin{array}{l}\text { Required if device is located far from power supply filter. } \\ \mathrm{R}_{\mathrm{t}}\end{array}$		
C_{t}	130 k	$24 \mathrm{k}-1.2 \mathrm{M}$		$]$	Sets internal timing currents.
:---					
C_{tc}					

Typical Circuit Waveforms

TL/H/8821-3

Connection Diagram

TL/H/8821-4

Typical Performance Characteristics

JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right.$)
JUNCTION TEMPERATURE (${ }^{\circ}$)

TL/H/8821-5

Typical Performance Characteristics (Continued)

TL/H/8821-6

Typical Performance Characteristics

Line Transient
Response ($\mathrm{V}_{\text {buf }}$)

Load Transient
Response ($\mathrm{V}_{\text {buf }}$)

Typical Performance Characteristics (Continued)

Application Hints

OUTPUT CAPACITORS

The LM2984C output capacitors are required for stability. Without them, the regulator outputs will oscillate, sometimes by many volts. Though the $10 \mu \mathrm{~F}$ shown are the minimum recommended values, actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) also affects the IC stability. Since ESR varies from one brand to the next, some bench work may be required to determine the minimum capacitor value to use in production. Worst case is usually determined at the minimum ambient temperature and the maximum load expected.
Output capacitors can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltages during brief conditions of negative input transients that might be characteristic of a particular system.
Capacitors must also be rated at all ambient temperatures expected in the system. Many aluminum type electrolytics will freeze at temperatures less than $-30^{\circ} \mathrm{C}$, reducing their effective capacitance to zero. To maintain regulator stability down to $-40^{\circ} \mathrm{C}$, capacitors rated at that temperature (such as tantalums) must be used.
Each output must be terminated by a capacitor, even if it is not used.

STANDBY OUTPUT

The standby output is intended for use in systems requiring standby memory circuits. While the high current regulator
outputs are controlled with the ON/OFF pin described later, the standby output remains on under all conditions as long as sufficient input voltage is supplied to the IC. Thus, memory and other circuits powered by this output remain unaffected by positive line transients, thermal shutdown, etc.
The standby regulator circuit is designed so that the quiescent current to the IC is very low ($<1.5 \mathrm{~mA}$) when the other regulator outputs are off.
The capacitor on the output of this regulator can be increased without bound. This will help maintain the output voltage during negative input transients and will also help to reduce the noise on all three outputs. Because the other two track the standby output: therefore any noise reduction here will also reduce the other two noise voltages.

BUFFER OUTPUT

The buffer output is designed to drive peripheral sensor circuitry in a $\mu \mathrm{P}$ system. It will track the standby and main regulator within a few millivolts in normal operation. Therefore, a peripheral sensor can be powered off this supply and have the same operating voltage as the $\mu \mathrm{P}$ system. This is important if a ratiometric sensor system is being used.
The buffer output can be short circuited while the other two outputs are in normal operation. This protects the $\mu \mathrm{P}$ system from disruption of power when a sensor wire, etc. is temporarily shorted to ground, i.e. only the sensor signal would be interrupted, while the $\mu \mathrm{P}$ and memory circuits would remain operational.
The buffer output is similar to the main output in that it is controlled by the ON/OFF switch in order to save power in

Application Hints (Continued)

the standby mode. It is also fault protected against overvoltage and thermal overload. If the input voltage rises above approximately 30 V (e.g. load dump), this output will automatically shut down. This protects the internal circuitry and enables the IC to survive higher voltage transients than would otherwise be expected. Thermal shutdown is necessary since this output is one of the dominant sources of power dissipation in the IC.

MAIN OUTPUT

The main output is designed to power relatively large loads, i.e. approximately 500 mA . It is therefore also protected against overvoltage and thermal overload.
This output will track the other two within a few millivolts in normal operation. It can therefore be used as a reference voltage for any signal derived from circuitry powered off the standby or buffer outputs. This is important in a ratiometric sensor system or any system requiring accurate matching of power supply voltages.

ON/OFF SWITCH

The ON/OFF switch controls the main output and the buffer output. The threshold voltage is compatible with most logic families and has about 20 mV of hysteresis to insure 'clean' switching from the standby mode to the active mode and vice versa. This pin can be tied to the input voltage through a $10 \mathrm{k} \Omega$ resistor if the regulator is to be powered continuously.

POWER DOWN OVERRIDE

Another possible approach is to use a diode in series with the ON/OFF signal and another in series with the main output in order to maintain power for some period of time after the ON/OFF signal has been removed (see Figure 1). When the ON/OFF switch is initially pulled high through diode D1, the main output will turn on and supply power through diode D2 to the ON/OFF switch effectively latching the main output. An open collector transistor Q1 is connected to the ON/OFF pin along with the two diodes and forces the regulators off after a period of time determined by the $\mu \mathrm{P}$. In this way, the $\mu \mathrm{P}$ can override a power down command and store data, do housekeeping, etc. before reverting back to the standby mode.

FIGURE 1. Power Down Override

RESET OUTPUT

This output is an open collector NPN transistor which is forced low whenever an error condition is present at the main output or when a $\mu \mathrm{P}$ error is sensed (see $\mu \mathrm{P}$ Monitor section). If the main output voltage drops below 4 V or rises above 5.5V, the RESET output is forced low and held low for a period of time set by two external components, R_{t} and C_{t}. There is a slight amount of hysteresis in these two threshold voltages so that the RESET output has a fast rise and fall time compatible with the requirements of most $\mu \mathrm{P}$ RESET inputs.

DELAYED RESET

Resistor R_{t} and capacitor C_{t} set the period of time that the RESET output is held low after a main output error condition has been sensed. The delay is given by the formula:

$$
T_{\mathrm{dly}}=1.2 \mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}} \text { (seconds) }
$$

The delayed RESET will be initiated any time the main output is outside the 4 V to 5.5 V window, i.e. during power-up, short circuit, overvoltage, low line, thermal shutdown or power-down. The $\mu \mathrm{P}$ is therefore RESET whenever the output voltage is out of regulation. (It is important to note that a RESET is only initiated when the main output is in error. The buffer and standby outputs are not directly monitored for error conditions.)

$\mu \mathrm{P}$ MONITOR RESET

There are two distinct and independent error monitoring systems in the LM2984C. The one described above monitors the main regulator output and initiates a delayed RESET whenever this output is in error. The other error monitoring system is the $\mu \mathrm{P}$ watchdog. These two systems are OR'd together internally and both force the RESET output low when either type of error occurs.
This watchdog circuitry continuously monitors a pin on the $\mu \mathrm{P}$ that generates a positive going pulse during normal operation. The period of this pulse is typically on the order of milliseconds and the pulse width is typically on the order of 10's of microseconds. If this pulse ever disappears, the watchdog circuitry will time out and a RESET low will be sent to the $\mu \mathrm{P}$. The time out period is determined by two external components, R_{t} and $\mathrm{C}_{\text {mon }}$, according to the formula:

$$
T_{\text {window }}=0.82 R_{t} C_{\text {mon }} \text { (seconds) }
$$

The width of the RESET pulse is set by $\mathrm{C}_{\text {mon }}$ and an internal resistor according to the following:

$$
\text { RESET }_{\text {pw }}=2000 \text { C mon } \text { (seconds) }
$$

A square wave signal can also be monitored for errors by filtering the $\mathrm{C}_{\text {mon }}$ input such that only the positive edges of the signal are detected. Figure 2 is a schematic diagram of a typical circuit used to differentiate the input signal. Resistor $R_{t c}$ and capacitor. $C_{t c}$ pass only the rising edge of the square wave and create a short positive pulse suitable for the $\mu \mathrm{P}$ monitor input. If the incoming signal continues in a high state or in a low state for too long a period of time, a RESET low will be generated.

FIGURE 2. Monitoring Square Wave $\mu \mathrm{P}$ Signals
The threshold voltage and input characteristics of this pin are compatible with nearly all logic families.
There is a limit on the width of a pulse that can be reliably detected by the watchdog circuit. This is due to the output resistance of the transistor which discharges $\mathrm{C}_{\text {mon }}$ when a high state is detected at the input. The minimum detectable pulse width can be determined by the following formula:

$$
P W_{\min }=20 \mathrm{C}_{\text {mon }} \text { (seconds) }
$$

LM78XX Series Voltage Regulators

General Description

The LM78XX series of three terminal regulators is available with several fixed output voltages making them useful in a wide range of applications. One of these is local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow these regulators to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustable voltages and currents.
The LM78XX series is available in an aluminum TO-3 package which will allow over 1.0A load current if adequate heat sinking is provided. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistor is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.
Considerable effort was expanded to make the LM78XX series of regulators easy to use and mininize the number
of external components. It is not necessary to bypass the output, although this does improve transient response. Input bypassing is needed only if the regulator is located far from the filter capacitor of the power supply.
For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117 series provides an output voltage range from 1.2 V to 57 V .

Features

- Output current in excess of 1A
- Internal thermal overload protection
- No external components required
- Output transistor safe area protection
- Internal short circuit current limit
- Available in the aluminum TO-3 package

Voltage Range

LM7805C	5 V
LM7812C	12 V
LM7815C	15 V

Schematic and Connection Diagrams

Metal Can Package
TO-3 (K) Aluminum

TL/H/7746-2
Bottom View
Order Number LM7805CK, LM7812CK or LM7815CK See NS Package Number KC02A

Plastic Package
TO-220 (T)

TL/H/7746-3
Top View
Order Number LM7805CT, LM7812CT or LM7815CT See NS Package Number T03B

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage ($\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V) Internal Power Dissipation (Note 1)
Operating Temperature Range (T_{A})

Internally Limited $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Maximum Junction Temperature	
(K Package)	$150^{\circ} \mathrm{C}$
(T Package)	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	
TO-3 Package K	$300^{\circ} \mathrm{C}$
TO-220 Package T	$230^{\circ} \mathrm{C}$

Electrical Characteristics LM78XXC (Note 2) $0^{\circ} \mathrm{C} \leq \mathrm{Tj} \leq 125^{\circ} \mathrm{C}$ unless otherwise noted.

[^8]
Typical Performance Characteristics

Output Voltage (Normalized
to $\mathbf{1 V}$ at $\mathrm{Tj}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Output Impedance

Ripple Rejection

Dropout Voltage

Quiescent Current

General Description

The LM7800 series of monolithic 3-terminal positive voltage regulators employ internal current-limiting, thermal shutdown and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 1.0A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

Features

■ Output current in excess of 1.0A

- No external components
- Internal thermal overload protection
- Internal short circuit current-limiting
- Output transistor safe-area compensation
- Available in JEDEC TO-220 and TO-3 packages
- Output voltages of $6 \mathrm{~V}, 8 \mathrm{~V}, 18 \mathrm{~V}$ and 24 V (See Note)
- Available in extended temperature range

Connection Diagrams

Note: See General Purpose Linear Databook for specifications on similar devices with $5 \mathrm{~V}, 12 \mathrm{~V}$, or 15 V outputs. These parts can be found under LM140/LM340, LM140A/LM340A (for tighter output tolerance) and LM78XX datasheets.

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range
TO-3 Metal Can
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
TO-220 Package
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Junction Temperature Range
Extended (LM7800)

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

Lead Temperature TO-3 Metal Can (Soldering, 60 sec .) $300^{\circ} \mathrm{C}$ TO-220 Package (Soldering, 10 sec.) $265^{\circ} \mathrm{C}$
Power Dissipation
Input Voltage 6.0 V to 18 V 35 V 24V 40 V
ESD Susceptibility

Lead Temperature	
TO-3 Metal Can (Soldering, 60 sec.)	$300^{\circ} \mathrm{C}$
TO-220 Package (Soldering, 10 sec.)	$265^{\circ} \mathrm{C}$
Power Dissipation	Internally Limited
Input Voltage	
6.0 V to 18 V	35 V
24 V	40 V
ESD Susceptibility	(to be determined)

LM7806C

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{I}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{O}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		5.75	6.0	6.25	V	
$V_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}$		5.0	120	mV	
			$9.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 13 \mathrm{~V}$		1.5	60			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$		14	120	mV
			$250 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 750 \mathrm{~mA}$			4.0	60		
V_{0}	Output Voltage		$8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 21 \mathrm{~V}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}$		5.7		6.3	V	
I_{Q}	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.3	8.0	mA	
Δl_{Q}	Quiescent Current Change	With Line	$8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}$				1.3	mA	
		With Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 1.0 \mathrm{~A}$				0.5		
No	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			45		$\mu \mathrm{V}$	
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$f=2400 \mathrm{~Hz}, \mathrm{l}_{0}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		59	75		dB	
V_{DO}	Dropout Voltage		$\mathrm{I}_{0}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			2.0		V	
R_{0}	Output Resistance		$\mathrm{f}=1.0 \mathrm{kHz}$			19		$\mathrm{m} \Omega$	
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$			550		mA	
$l_{\text {pk }}$	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			2.2		A	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage		$\mathrm{I}^{\circ}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

LM7808

Electrical Characteristics

$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=14 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		7.7	8.0	8.3	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}$		6.0	80	mV	
			$11 \mathrm{~V} \leq \mathrm{V}_{1} \leq 17 \mathrm{~V}$		2.0	40			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$		12	100	mV
			$250 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 750 \mathrm{~mA}$			4.0	40		
V_{O}	Output Voltage		$11.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 23 \mathrm{~V}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}$		7.6		8.4	V	
I_{Q}	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.3	6.0	mA	
Δl_{Q}	Quiescent Current Change	With Line	$11.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}$				0.8	mA	
		With Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}$				0.5		

LM7808

Electrical Characteristics (Continued)
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter	Conditions (Note 1)	Min	Typ	Max	Units
N_{O}	Noise	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$		8.0	40	$\mu \mathrm{~V} / \mathrm{V}_{\mathrm{O}}$
$\Delta \mathrm{V}_{\mathrm{l}} / \Delta \mathrm{V}_{\mathrm{O}}$	Ripple Rejection	$\mathrm{f}=2400 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	62	72		dB
$\mathrm{~V}_{\mathrm{DO}}$	Dropout Voltage	$\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2.0	2.5	V
R_{O}	Output Resistance	$\mathrm{f}=1.0 \mathrm{kHz}$		16		$\mathrm{~m} \Omega$
I_{OS}	Output Short Circuit Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}$		0.75	1.2	A
I_{pk}	Peak Output Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1.3	2.2	3.3	A
$\Delta \mathrm{~V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage	$\mathrm{IO}_{\mathrm{O}}=5.0 \mathrm{~mA}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}$		0.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C} /$

LM7808C

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		7.7	8.0	8.3	V	
$\mathrm{V}_{\text {RLINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}$		6.0	160	mV	
			$11 \mathrm{~V} \leq \mathrm{V}_{1} \leq 17 \mathrm{~V}$		2.0	80			
$\mathrm{V}_{\text {RLOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$		12	160	mV
			$250 \mathrm{~mA} \leq 10 \leq 750 \mathrm{~mA}$			4.0	80		
V_{0}	Output Voltage		$10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 23 \mathrm{~V}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}$		7.6		8.4	V	
10	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.3	8.0	mA	
Δl_{Q}	Quiescent Current Change	With Line	$10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}$				1.0	mA	
		With Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 1.0 \mathrm{~A}$				0.5		
No	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			52		$\mu \mathrm{V}$	
$\Delta \mathrm{V}_{1} / \Delta \mathrm{V}_{\text {O }}$	Ripple Rejection		$f=2400 \mathrm{~Hz}, \mathrm{l}_{0}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		56	72		dB	
V_{DO}	Dropout Voltage		$\mathrm{l}_{0}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			2.0		V	
Ro	Output Resistance		$\mathrm{f}=1.0 \mathrm{kHz}$			16		$\mathrm{m} \Omega$	
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$			450		mA	
$l_{\text {pk }}$	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			2.2		A	
$\Delta V_{O} / \Delta T$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}^{\circ}=5.0 \mathrm{~mA}$			0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

LM7818

Electrical Characteristics
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		17.3	18.0	18.7	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$21 \mathrm{~V} \leq \mathrm{V}_{1} \leq 33 \mathrm{~V}$		15	180	mV	
			$24 \mathrm{~V} \leq \mathrm{V}_{1} \leq 30 \mathrm{~V}$		5.0	90			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$		12	180	mV
			$250 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 750 \mathrm{~mA}$			4.0	90		
V_{0}	Output Voltage		$22 \mathrm{~V} \leq \mathrm{V}_{1} \leq 33 \mathrm{~V}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}$		17.1		18.9	V	
l_{Q}	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.5	6.0	mA	
Δl_{Q}	Quiescent Current Change	With Line	$22 \mathrm{~V} \leq \mathrm{V}_{1} \leq 33 \mathrm{~V}$				0.8	mA	
		With Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 1.0 \mathrm{~A}$				0.5		
N_{0}	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			8.0	40	$\mu \mathrm{V} / \mathrm{V}_{0}$	
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$\mathrm{f}=2400 \mathrm{~Hz}, \mathrm{l}_{0}=350 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		59	69		dB	
V_{DO}	Dropout Voltage		$\mathrm{I}_{0}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			2.0		V	
R_{0}	Output Resistance		$\mathrm{f}=1.0 \mathrm{kHz}$			22		$\mathrm{m} \Omega$	
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=35 \mathrm{~V}$			0.75		A	
l_{pk}	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.3	2.2	3.3	A	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{\mathrm{O}}=5.0 \mathrm{~mA}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}$			0.4	$\begin{gathered} \mathrm{mV} /{ }^{\circ} \mathrm{C} / \\ \mathrm{V}_{\mathrm{O}} \end{gathered}$	
			$+25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			0.3			

LM7818C

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=27 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions (Note 1)		Min	Typ	Max	Units
V_{0}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		17.3	18.0	18.7	V
$\mathrm{V}_{\text {R LINE }}$	Line Regulation	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$21 \mathrm{~V} \leq \mathrm{V}_{1} \leq 33 \mathrm{~V}$		15	360	mV
			$24 \mathrm{~V} \leq \mathrm{V}_{1} \leq 30 \mathrm{~V}$		5.0	180	
$V_{\text {R LOAD }}$	Load Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$		12	360	mV
			$250 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 750 \mathrm{~mA}$		4.0	180	
V_{0}	Output Voltage	$21 \mathrm{~V} \leq \mathrm{V}_{1} \leq 33 \mathrm{~V}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}$		17.1		18.9	V
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.5	8.0	mA

LM7818C

Electrical Characteristics (Continued)

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		- Conditions (Note 1)	Min	Typ	Max	Units
Δl_{Q}	Quiescent Current Change	With Line	$21 \mathrm{~V} \leq \mathrm{V}_{1} \leq 33 \mathrm{~V}$			1.0	mA
		With Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}$			0.5	
N_{0}	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$		110		$\mu \mathrm{V}$
$\Delta \mathrm{V}_{1} / \Delta \mathrm{V}_{\mathrm{O}}$	Ripple Rejection		$\mathrm{f}=2400 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	53	69		dB
V_{DO}	Dropout Voltage		$\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2.0		V
R_{O}	Output Resistance		$\mathrm{f}=1.0 \mathrm{kHz}$		22		$\mathrm{m} \Omega$
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$		200		mA
l_{pk}	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2.1		A
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage		$\mathrm{I}^{0}=5.0 \mathrm{~mA}$		1.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

LM7824

Electrical Characteristics

$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{O}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		23.0	24.0	25.0	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$27 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}$		18	240	mV	
			$30 \mathrm{~V} \leq \mathrm{V}_{1} \leq 36 \mathrm{~V}$		6.0	120			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$		12	240	mV
			$250 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 750 \mathrm{~mA}$			4.0	120		
V_{O}	Output Voltage		$28 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}$		22.8		25.2	V	
I_{Q}	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.6	6.0	mA	
Δl_{Q}	Quiescent Current Change	With Line	$28 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}$				0.8	mA	
		With Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}$				0.5		
N_{0}	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			8.0	40	$\mu \mathrm{V} / \mathrm{V}_{\mathrm{O}}$	
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$\mathrm{f}=2400 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		56	66		dB	
V_{DO}	Dropout Voltage		$\mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			2.0	2.5	V	
R_{0}	Output Resistance		$f=1.0 \mathrm{kHz}$			28		$\mathrm{m} \Omega$	
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$			0.75	1.2	A	
l_{pk}	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.3	2.2	3.3	A	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{\mathrm{O}}=5.0 \mathrm{~mA}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}$			0.4	$\begin{gathered} \mathrm{mV} /{ }^{\circ} \mathrm{C} / \\ \mathrm{V}_{\mathrm{O}} \end{gathered}$	
			$+25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			0.3			

LM7824C

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Characteristics	Conditions (Note 1)		Min	Typ	Max	Units
V_{0}	Output Voltage	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		23.0	24.0	25.0	V
$\mathrm{V}_{\text {R LINE }}$	Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$27 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}$		18	480	mV
			$30 \mathrm{~V} \leq \mathrm{V}_{1} \leq 36 \mathrm{~V}$		6.0	240	
$V_{\text {R LOAD }}$	Load Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}$ - $\leq 1.5 \mathrm{~A}$		12	480	mV
			$250 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 750 \mathrm{~mA}$		4.0	240	
V_{0}	Output Voltage	$27 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W}$		22.8		25.2	V
I_{0}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.6	8.0	mA

LM7824C

Electrical Characteristics (Continued)
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)	Min	Typ	Max	Units
Δl_{Q}	Quiescent Current Change	With Line	$27 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}$			1.0	mA
		With Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}$			0.5	
No	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$		170		$\mu \mathrm{V}$
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$\mathrm{f}=2400 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	50	66		dB
$V_{D O}$	Dropout Voltage		$\mathrm{I}_{0}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2.0		V
R_{0}	Output Resistance		$\mathrm{f}=1.0 \mathrm{kHz}$		28		$\mathrm{m} \Omega$
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$		150		mA
l_{pk}	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2.1		A
$\Delta V_{O} / \Delta T$	Average Temperature Coefficient of Output Voltage		$10=5.0 \mathrm{~mA}$		1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Note 1: For all tables, all characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (tw $\leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Equivalent Circuit

Typical Performance Characteristics

Peak Output Current vs Input/Output Voltage Differential

Dropout Voltage vs Junction Temperature

Quiescent Current vs Junction Temperature

Load Transient Response

TL/H/10052-4

Typical Performance Characteristics (Continued)

DC Parameter Test Circuit

Note: The other LM7800 series devices have similar curves.

Design Considerations

The LM7800 fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the regulator's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased.
Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature $\left(150^{\circ} \mathrm{C}\right.$ for LM7800, $125^{\circ} \mathrm{C}$ for LM7800C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ $\theta_{\text {Jc }}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Max $\theta_{\text {Jc }}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Typ $\theta_{\text {JA }}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Max $\theta_{\text {JA }}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$
TO-3	3.5	5.5	35	40
TO-220	3.0	5.0	40	60

Typical Applications

Note 1: To specify an output voltage, substitute voltage value for " 00 ".
Note 2: Bypass capacitors are recommended for optimum stability and transient response, and should be located as close as possible to the regulator.

$$
\begin{aligned}
& P_{D \text { Max }}=\frac{T_{J \text { Max }}-T_{A}}{\theta_{J C}+\theta_{C A}} \text { or } \\
& =\frac{T_{J M a x} T_{A}}{\theta_{J A}} \text { (without heat sink) } \\
& \theta_{C A}=\theta_{C S}+\theta_{S A} \\
& \text { Solving for } T_{J} \text { : } \\
& T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right) \text { or } \\
& =T_{A}+P_{D} \theta_{J A} \text { (without heat sink) }
\end{aligned}
$$

Where:
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\boldsymbol{\theta}_{\mathrm{JC}}=$ Junction-to-Case Thermal Resistance
$\theta_{\mathrm{CA}}=$ Case-to-Ambient Thermal Resistance
$\theta_{C S}=$ Case-to-Heat Sink to Thermal Resistance
$\theta_{\text {SA }}=$ Heat Sink-to-Ambient Thermal Resistance
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance

High Current Voltage Regulator
$\beta(Q 1) \geq \frac{\text { lom max }^{\text {lin }}}{\text { REG Max }}$
$R 1=\frac{0.9}{I_{\text {REG }}}=\frac{\beta(\text { Q1 }) V_{B E(Q 1)}}{I_{\text {REG Max }}(\beta+1)-l_{0 \text { Max }}}$
TL/H/10052-10

Typical Applications (Continued)
High Output Current, Short Circuit Protected

Positive and Negative Regulator

National Semiconductor

LM78G/LM79G
4-Terminal Adjustable Voltage Regulators

General Description

The LM78G and LM79G are 4-terminal adjustable voltage regulators. They are designed to deliver continuous load currents of up to 1.0A with a maximum input voltage of +40 V for the positive regulator LM78G and -40 V for the negative regulator LM79G. Output current capability can be increased to greater than 1.0A through use of one or more external transistors. The output voltage range of the LM78G positive voltage regulator is +5 V to +30 V and the output voltage range of the negative LM79G is -30 V to -2.55 V . For systems requiring both a positive and negative, the LM78G and LM79G are excellent for use as a dual tracking regulator with appropriate external circuitry.

Features

- Output current in excess of 1A
- LM78G positive output +5 V to +30 V
- LM79G negative output -30 V to -2.55 V
- Internal thermal overload protection
- Internal short circuit protection
- Output transistor safe-area protection

Connection Diagrams

Top View
Heat sink tabs connected to common through device substrate.

TL/H/10054-2

Top View

Heat sink tabs connected to input through device substrate. Not recommended for direct electrical connection.

Order Number LM78GCP or LM79GCP
See NS Package Number P04A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$265^{\circ} \mathrm{C}$
Power Dissipation
Internally Limited

Operating Junction

Temperature Range
Lead Temperature (Soldering, 10 sec .)

Input Voltage

LM78G	+40 V
LM79G	-40 V
Control Lead Voltage	
LM78G	$0 \mathrm{~V} \leq \mathrm{V}^{+} \leq \mathrm{V}_{\mathrm{O}}$
LM79G	$\mathrm{VO}^{-} \leq \mathrm{V}^{-} \leq 0 \mathrm{~V}$

LM78G

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{1}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$, Test Circuit 1 , unless otherwise specified

Note 1: V_{O} is defined for the LM78G as $V_{O}=\frac{R 1+R 2}{R 2}(5.0)$;
Note 2: Dropout Voltage is defined as that input/output voltage differential which causes the output voltage to decrease by 5% of its initial value.
Note 3: All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathrm{t}_{\mathrm{w}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

LM79G

Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for $\mathrm{LM} 79 \mathrm{G}, \mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}$, $\mathrm{l} \mathrm{O}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=2.0 \mu \mathrm{~F}$,
$\mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, Test Circuit 2 and Note 3, unless otherwise specified

Note 1: V_{O} is defined for the $L M 79 G$ as $V_{O}=\frac{R 1+R 2}{R 2}(-2.55)$.
Note 2: Dropout Voltage is defined as that input/output voltage differential which causes the output voltage to decrease by 5% of its initial value.
Note 3: The convention for negative regulators is the algebraic value, thus -15 V is less than -10 V .
Note 4: All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($t_{w} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

LM78G Equivalent Circuit

Typical Performance Curves for LM78G

Typical Performance Curves for LM79G

TL/H/10054-7

Line Transient Response

TL/H/10054-10

Test Circuits
LM78G Test Circuit 1

TLT/H/10054-8
$V_{\mathrm{O}}=\left(\frac{R 1+R 2}{R 2}\right) V_{\text {CONT }}$
$\mathrm{V}_{\text {CONT }}$ Nominal $=5.0 \mathrm{~V}$
LM79G Test Circuit 2

TL/H/10054-9
$V_{\mathrm{O}}=\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right) \mathrm{V}_{\text {CONT }}$
$V_{\text {CONT }}$ Nominal $=-2.55 \mathrm{~V}$
Recommended R2 current $\approx 1.0 \mathrm{~mA}$
$\therefore \mathrm{R} 2=5.0 \mathrm{k} \Omega$ (LM78G)
R2 $=2.55 \mathrm{k} \Omega$ (LM79G)

Design Considerations

The LM78G and LM79G Adjustable Voltage Regulators have an output voltage which varies from $\mathrm{V}_{\text {CONT }}$ to typically

$$
\mathrm{V}_{1}-2.0 \mathrm{~V} \text { by } \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CONT}} \frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}
$$

The nominal reference in the LM78G is 5.0 V and LM79G is -2.55 V . If we allow 1.0 mA to flow in the control string to eliminate bias current effects, we can make R2 $=5.0 \mathrm{k} \Omega$ in the LM78G. Then, the output voltage is; $\mathrm{V}_{\mathrm{O}}=(\mathrm{R} 1+\mathrm{R} 2) \mathrm{V}$, where R1 and R2 are in k $\Omega \mathrm{s}$.
Example: If $\mathrm{R} 2=5.0 \mathrm{k} \Omega$ and $\mathrm{R} 1=10 \mathrm{k} \Omega$ then
$V_{O}=15 \mathrm{~V}$ nominal, for the LM78G
$\mathrm{R} 2=2.55 \mathrm{k} \Omega$ and $\mathrm{R} 1=12.8 \mathrm{k} \Omega$ then
$V_{O}=-15.35$ nominal, for the LM79G
By proper wiring of the feedback resistors, load regulation of the device can be improved significantly.
Both LM78G and LM79G regulators have thermal overload protection from excessive power, internal short circuit protection which limits each circuit's maximum current, and out-
put transistor safe-area protection for reducing the output current as the voltage across each pass transistor is increased.
Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

	Typ ${ }^{\circ} \mathbf{C} / W$	Max ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Typ ${ }^{\circ} \mathbf{C} / W$	Max ${ }^{\circ} \mathbf{C} / \mathrm{W}$
Package	$\theta_{\text {JC }}$	$\theta_{\text {JC }}$	$\theta_{\text {JA }}$	$\theta_{\text {JA }}$
Power Watt	7.5	11	75	80

$$
\begin{aligned}
& P_{D M a x}=\frac{T_{J M a x}-T_{A}}{\theta_{J C}+\theta_{C A}} \text { or } \\
& =\frac{T_{J M a x}-T_{A}}{\theta_{J A}} \text { (without a heat sink) } \\
& \theta_{\mathrm{CA}}=\theta \mathrm{CS}+\theta_{\mathrm{SA}} \\
& \text { Solving for } T_{J} \text { : } \\
& T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right) \text { or } \\
& =T_{A}+P_{D} \theta_{J A} \text { (without heat sink) }
\end{aligned}
$$

Where:
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\theta_{\mathrm{JA}}=$ Junctiuon to Ambient Thermal Resistance
$\theta_{\mathrm{JC}}=$ Junction to Case Thermal Resistance
$\theta_{\mathrm{CA}}=$ Case to Ambient Thermal Resistance
$\theta_{\mathrm{CS}}=$ Case to Heat Sink Resistance
$\theta_{\mathrm{SA}}=$ Heat Sink to Ambient Thermal Resistance
LM78G and LM79G
Power Tab (U1) Package Worst Case Power Dissipation vs Ambient Temperature

AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$
TL/H/10054-11

Typical Applications for LM78G
Bypassing of the input and output ($0.33 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$, respectively) is necessary.

Basic Positlve Regulator

TL/H/10054-12

$$
\mathrm{v}_{\mathrm{O}}=\mathrm{v}_{\mathrm{CONT}}\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right)
$$

Positive 5.0V to 30V
Adjustable Regulator

Positive 5.0V to 30V
Adjustable Regulator ($10>5.0 \mathrm{~A}$) (Note 1)

Positive High Current Short Circuit, Protected Regulator

\pm 10V, 1.0A, Dual Tracking Regulator (Note 2)

TL/H/10054-16

Positive High Current, Short Circuit Protected Regulator

TL/H/10054-17
Note 1: External series pass device is not short circuit protected.
Note 2: If load is not ground referenced, connect reverse biased diodes from outputs to ground.

Typical Applications for LM79G

All LM78G applications apply to the LM79G under the following conditions: R2 values are $2.5 \mathrm{k} \Omega$, all external transistors and diodes reverse polarity.

Basic Negative Regulator

TL/H/10054-19

$$
V_{\text {OUT }}=-V_{\text {CONT }}\left(\frac{R 1+R 2}{R 2}\right)
$$

The bypass capacitors ($2 \mu \mathrm{~F}$ on the input, $1 \mu \mathrm{~F}$ on the output), should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be $10 \mu \mathrm{~F}$ or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

National Semiconductor

LM78LXX Series 3-Terminal Positive Regulators

General Description

The LM78LXX series of three terminal positive regulators is available with several fixed output voltages making them useful in a wide range of applications. When used as a zener diode/resistor combination replacement, the LM78LXX usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM78LXX to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment. Although designed primarily as fixed voltage regulators these devices can be used with external components to obtain adjustment voltages and currents.
The LM78LXX is available in the metal three lead TO-39(H) the plastic TO-92 (Z), and SO-8 plastic. With adequate heat sinking the regulator can deliver 100 mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistors is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

For output voltage other than $5 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V the LM117L series provides an output voltage range from 1.2 V to 37 V .

Features

■ Output voltage tolerances of $\pm 5 \%$ (LM78LXXAC) over the temperature range

- Output current of 100 mA
- Internal thermal overload protection
- Ouiput transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-92 and metal TO-39 and plastic SO-8 low profile packages

Voltage Range

LM78L05 5V
LM78L12 12V
LM78L15 15V

Connection Diagrams

TL/H/7744-1
Bottom View
Order Number LM78L05ACH,
LM78L12ACH or LM78L15ACH
See NS Package Number H03A

SO-8 Plastic
(Narrow Body)

TL/H/7744-2
Top View
Order Number LM78L05ACM, LM78L12ACM or LM78L15ACM See NS Package Number M08A

Plastic Package

TL/H/7744-3
Bottom View
Order Number LM78L05ACZ,
LM78L12ACZ or LM78L15ACZ See NS Package Number Z03A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage
$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$
30 V
$V_{O}=12 \mathrm{~V}$ to 15 V
Internal Power Dissipation (Note 1)

Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$125^{\circ} \mathrm{C}$
Storage Temperature Range	
Metal Can (H Package)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Molded TO-92 (Z Package)	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
ESD Tolerance (Note 5)	2000 V

LM78LXXAC Electrical Characteristics

(Note 2) $\mathrm{T}_{\mathrm{j}}=0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$ (unless noted)

LM78LXXAC Output Voltage			5 V			12V			15V			Units
Input Voltage (unless otherwise noted)			10V			19V			23V			
Symbol	Parameter	Conditions	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
V_{0}	Output Voltage (Note 4)	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	4.8	5	5.2	11.5	12	12.5	14.4	15	15.6	V
		$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 70 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA} \text { and } \\ & \mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} . \end{aligned}$	4.75 4.75 $(7 \leq$	$V_{\mathbb{I N}} \leq$	$\begin{aligned} & 5.25 \\ & 5.25 \\ & 20) \\ & \hline \end{aligned}$	11.4 11.4 $(14.5$	$\leq \mathrm{V}_{\mathrm{IN}}$	$\begin{array}{r} 12.6 \\ 12.6 \\ \leq 27) \\ \hline \end{array}$	14.25 14.25 $(17.5$	$\leq \mathrm{V}_{\mathrm{IN}}$	$\begin{array}{r} 15.75 \\ 15.75 \\ \text { S 30) } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
ΔV_{0}	Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\begin{array}{rr} 10 & 54 \\ \left(8 \leq V_{I N} \leq 20\right) \\ 18 & 75 \\ \left(7 \leq V_{\mathbb{I N}} \leq 20\right) \\ \hline \end{array}$			$\begin{gathered} 20 \\ \left(16 \leq V_{I N} \leq 27\right) \\ 30 \\ \left(14.5 \leq V_{I N} \leq 27\right) \\ \hline \end{gathered}$			$\begin{gathered} 25 \\ \left(20 \leq V_{\mathrm{IN}} \leq 30\right) \\ 37 \\ \left(17.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 30\right) \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \\ \mathrm{mV} \\ \mathrm{~V} \\ \hline \end{gathered}$
ΔV_{O}	Load Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 40 \mathrm{~mA} \\ & \mathrm{Tj}=25^{\circ} \mathrm{C}, \\ & 1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 100 \mathrm{~mA} \end{aligned}$		5 20				50 100		12 35	$\begin{array}{r} 75 \\ 150 \end{array}$	$m V$ $m V$
ΔV_{O}	Long Term Stability			12			24			30		$\mathrm{mV} / 1000 \mathrm{hrs}$
I_{Q}	Quiescent Current	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 5 \\ 4.7 \\ \hline \end{gathered}$			$\begin{gathered} 5 \\ 4.7 \\ \hline \end{gathered}$		3.1	$\begin{gathered} 5 \\ 4.7 \end{gathered}$	mA
Δl_{Q}	Quiescent Current Change	$1 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 40 \mathrm{~mA}$			0.1			0.1			0.1	mA
		$\mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$		$V_{\text {IN }} \leq$		(16	$\leq \mathrm{V}_{1 \mathrm{~N}} \leq$	1.0 27)		$\left(20 \leq \mathrm{V}_{\mathbb{N}} \leq 30\right)$		$\stackrel{\mathrm{mA}}{\mathrm{~V}}$
V_{n}	Output Noise Voltage	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \text { (Note } 3 \text {) } \\ & \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$	40			80			90			$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\text {IN }}}{\Delta \mathrm{V}_{\mathrm{OUT}}}$	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	$\begin{aligned} & 47 \quad 62 \\ & \left(8 \leq V_{I N} \leq 16\right) \end{aligned}$			$\begin{aligned} & 40 \quad 54 \\ & \left(15 \leq V_{I N} \leq 25\right) \end{aligned}$			$\begin{gathered} 37 \\ \left(18.5 \leq \mathrm{V}_{\mathrm{IN}} \leq 28.5\right) \end{gathered}$			$\begin{gathered} \mathrm{dB} \\ \mathrm{~V} \\ \hline \end{gathered}$
	Input Voltage Required to Maintain Line Regulation	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	7			14.5			17.5			V

Note 1: Thermal resistance of H package is typically $26^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{jc}}$ still Air, and $94^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{ja}} 400 \mathrm{ft} / \mathrm{min}$ of air. For the Z package is $60^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{jc}}, 232^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{ja}}$ still air, and $88^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{ja}}$ at $400 \mathrm{ft} / \mathrm{min}$ of air. For the M package, θ_{ja} is $180^{\circ} \mathrm{C} / \mathrm{W}$ in still air. The maximum junction temperature shall not exceed $125^{\circ} \mathrm{C}$ on Electrical parameters.
Note 2: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of test.
Note 3: Recommended minimum load capacitance of $0.01 \mu \mathrm{~F}$ to limit high frequency noise bandwidth.
Note 4: The temperature coefficient of $\mathrm{V}_{\mathrm{OUT}}$ is typically within $\pm 0.01 \% \mathrm{~V}_{\mathrm{O}} /{ }^{\circ} \mathrm{C}$.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

TL/H/7744-5

TL/H/7744-6

Equivalent Circuit

LM78LXX

TL/H/7744-7

Typical Applications

Fixed Output Regulator

TL/H/7744-8
*Required if the regulator is located far from the power supply filter.
**See Note 3 in the electrical characteristics table.

Adjustable Output Regulator

TL/H/7744-9
$V_{\text {OUT }}=5 \mathrm{~V}+\left(5 \mathrm{~V} / \mathrm{R}_{1}+\mathrm{I}_{\mathrm{Q}}\right) \mathrm{R} 2$
$5 \mathrm{~V} / \mathrm{R1} 1>3 \mathrm{l}_{\mathrm{Q}}$, load regulation $\left(\mathrm{L}_{r}\right) \approx[(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 1]$ (L_{r} of LM78L05)

Typical Applications (Continued)

Current Regulator

$$
\text { IOUT }=\left(V_{23} / R 1\right)+I_{Q}
$$

L/H/7744-10

5V, 500 mA Regulator with Short Circuit Protection

**Heat sink Q1.
TL/H/7744-11
***Optional: Improves ripple rejection and transient response. Load Regulation: $0.6 \% 0 \leq \mathrm{I}_{\mathrm{L}} \leq 250 \mathrm{~mA}$ pulsed with $\mathrm{t} \mathbf{N}=50 \mathrm{~ms}$.

National Semiconductor

LM78L00 Series

3-Terminal Positive Voltage Regulators

General Description

The LM78L00 series of 3-terminal positive voltage regulators employ internal current-limiting and thermal shutdown, making them essentially indestructible. If adequate heat sinking is provided, they can deliver up to 100 mA output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power pass elements to make high current voltage regulators. The LM78L00, used as a Zener diode/resistor combination replacement, offers an effective output impedance improvement of typically two orders of magnitude, along with lower quiescent current and lower noise.

Features

- Output current up to 100 mA
- No external components
- Internal thermal overload protection
- Internal short circuit current-limiting
- Available in JEDEC TO-92
- Output Voltages of $5.0 \mathrm{~V}, 6.2 \mathrm{~V}, 8.2 \mathrm{~V}, 9.0 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$
- Output voltage tolerances of $\pm 5 \%$ over the temperature range

Connection Diagram

TL/H/10051-1
Top View
Order Number LM78L05ACZ, LM78L09ACZ, LM78L12ACZ, LM78L15ACZ, LM78L62ACZ or LM78L82ACZ See NS Package Number Z03A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operation Junction Temperature Range
Commercial (LM78LOOAC)
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Lead Temperature
TO-92 Package/SO-8
(Soldering, 10 sec .)
$265^{\circ} \mathrm{C}$
Power Dissipation Internally Limited
Input Voltage
5.0 V to 15 V

35V
ESD Susceptibility to be determined

LM78L05AC

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified (Note 1)

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4.8	5.0	5.2	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$7.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$		55	150	mV	
			$8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$		45	100			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 100 \mathrm{~V}$		11	60	mV
			$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 40 \mathrm{~mA}$			5.0	30		
V_{0}	Output Voltage (Note 2)		$7.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 40 \mathrm{~mA}$	4.75		5.25	V	
			$7.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {Max }}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 70 \mathrm{~mA}$	4.75		5.25		
10	Quiescent Current					2.0	5.5	mA	
Δl_{Q}	Quiescent Current Change	With Line	$8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$				1.5	mA	
		With Load	$1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 40$				0.1		
No	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			40		$\mu \mathrm{V}$	
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$f=120 \mathrm{~Hz}, 8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 18 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		41	49		dB	
$V_{\text {DO }}$	Dropout Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1.7		V	
$\mathrm{I}_{\text {pk }} / \mathrm{l}_{\text {OS }}$	Peak Output/Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			140		mA	
$\Delta V_{0} / \Delta T$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{0}=5.0 \mathrm{~mA}$			-0.65		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

Note 1: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data
above represent pulse test conditions with junction temperatures as indicated at the initiation of tests.
Note 2: Power Dissipation $\leq 0.75 W$.

LM78L62AC

Electrical Characteristics
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified (Note 1)

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		5.95	6.2	6.45	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$8.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$		65	175	mV	
			$9.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$		55	125			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 100 \mathrm{~mA}$		13	80	mV
			$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 40 \mathrm{~mA}$			6.0	40		
V_{0}	Output Voltage (Note 2)		$8.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 40 \mathrm{~mA}$	5.90		6.5	V	
			$8.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {Max }}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 70 \mathrm{~mA}$	5.90		6.5		
I_{Q}	Quiescent Current					2.0	5.5	mA	
Δl_{Q}	Quiescent Current Change	With Line	$8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}$				1.5	mA	
		With Load	$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 40 \mathrm{~mA}$				0.1		
No	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			50		$\mu \mathrm{V}$	
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$\mathrm{f}=120 \mathrm{~Hz}, 10 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		40	46		dB	
$V_{D O}$	Dropout Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1.7		V	
Ipk $/$ los	Peak Output/Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			140		mA	
$\Delta V_{0} / \Delta T$	Average Temperature Coefficient of Output Voltage		$\mathrm{I}_{0}=5.0 \mathrm{~mA}$			-0.75		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

LM78L82AC

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=14 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified (Note 1)

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		7.87	8.2	8.53	V	
$V_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$11 \mathrm{~V} \leq \mathrm{V}_{1} \leq 23 \mathrm{~V}$		80	175	mV	
			$12 \mathrm{~V} \leq \mathrm{V}_{1} \leq 23 \mathrm{~V}$		70	125			
$V_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 100 \mathrm{~mA}$		15	80	mA
			$1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 40 \mathrm{~mA}$			8.0	40		
V_{0}	Output Voltage (Note 2)		$11 \mathrm{~V} \leq \mathrm{V}_{1} \leq 23 \mathrm{~V}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 40 \mathrm{~mA}$	7.8		8.5	V	
			$11 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {Max }} \quad 1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 70 \mathrm{~mA}$		7.8		8.6		
I_{Q}	Quiescent Current					2.1	5.5	mA	
Δl_{Q}	Quiescent Current Change	With Line	$12 \mathrm{~V} \leq \mathrm{V}_{1} \leq 23 \mathrm{~V}$				1.5	mA	
		With Load	$1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 40 \mathrm{~mA}$				0.1		
No	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			60		$\mu \mathrm{V}$	
$\Delta \mathrm{V}_{1} / \Delta \mathrm{V}_{\text {O }}$	Ripple Rejection		$\mathrm{f}=120 \mathrm{~Hz}, 12 \mathrm{~V} \leq \mathrm{V}_{1} \leq 22 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		39	45		dB	
$V_{D O}$	Dropout Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1.7		V	
$\mathrm{I}_{\mathrm{pk}} / \mathrm{l}_{\text {OS }}$	Peak Output/Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			140		mA	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{0}=5.0 \mathrm{~mA}$			-0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

[^9]
LM78L09AC

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{\mid}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified (Note 1)

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		8.64	9.0	9.36	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$11.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 24 \mathrm{~V}$		90	200	mV	
			$13 \mathrm{~V} \leq \mathrm{V}_{1} \leq 24 \mathrm{~V}$		100	150			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 100 \mathrm{~mA}$		20	90	mV
			$1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 40 \mathrm{~mA}$			10	45		
V_{0}	Output Voltage (Note 2)		$11.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 24 \mathrm{~V}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 40 \mathrm{~mA}$	8.55		9.45	V	
			$11.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{Max}}$	$1.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 70 \mathrm{~mA}$	8.55		9.45		
I_{Q}	Quiescent Current					2.1	5.5	mA	
Δl_{Q}	Quiescent Current Change	With Line	$11.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 24 \mathrm{~V}$				1.5	mA	
		With Load	$1.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 40 \mathrm{~mA}$				0.1		
N_{O}	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			70		$\mu \mathrm{V}$	
$\Delta \mathrm{V}_{1} / \Delta \mathrm{V}_{\mathrm{O}}$	Ripple Rejection		$f=120 \mathrm{~Hz}, 15 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		38	44		dB	
V_{DO}	Dropout Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1.7		V	
$\mathrm{I}_{\mathrm{pk}} / \mathrm{l}_{\mathrm{OS}}$	Peak Output/Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			140		mA	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta$?	Average Temperature Coefficient of Output Voltage		$\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}$			-0.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

LM78L12AC

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified (Note 1)

Note 1: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of tests.
Note 2: Power Dissipation $\leq 0.75 \mathrm{~W}$.

LM78L15AC

Electrical Characteristics
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{1}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified (Note 1)

Note 1: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of tests.
Note 2: Power Dissipation $\leq 0.75 W$.
Equivalent Circuit

Typical Performance Characteristics

TL/H/10051-3
Note: Other LM78L00 Series devices have similar curves.

Design Considerations

The LM78L series regulators have thermal overload protection from excessive power, internal short-circuit protection which limits each circuit's maximum current, and output transistor safe-area protection for reducing the output current as the voltage across each pass transistor is increased. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature $\left(125^{\circ} \mathrm{C}\right)$ in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ $\theta_{\text {JC }}$	Max $\theta_{\text {JC }}$	Typ $\theta_{\text {JA }}$	Max $\theta_{\text {JA }}$
TO-92			160	160

Thermal Considerations

The TO-92 molded package is capable of unusually high power dissipation due to the lead frame design. However, its thermal capabilities are generally overlooked because of a lack of understanding of the thermal paths from the semiconductor junction to ambient temperature. While thermal resistance is normally specified for the device mounted 1 cm above an infinite heat sink, very little has been mentioned of the options available to improve on the conservatively rated thermal capability.
An explanation of the thermal paths of the TO-92 will allow the designer to determine the thermal stress he is applying in any given application.

The TO-92 Package

The TO-92 package thermal paths are complex. In addition to the path through the molding compound to ambient temperature, there is another path through the leads, in parallel with the case path, to ambient temperature, as shown in Figure 1.
The total thermal resistance in this model is then:

$$
\begin{equation*}
\theta_{\mathrm{JA}}=\frac{\left(\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}\right)\left(\theta_{\mathrm{JL}}+\theta_{\mathrm{LA}}\right)}{\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}+\theta_{\mathrm{JL}}+\theta_{\mathrm{LA}}} \tag{1}
\end{equation*}
$$

Where:
$\theta_{\mathrm{JC}}=$ thermal resistance of the case between the regulator die and a point on the case directly above the die location.
$\theta_{C A}=$ thermal resistance between the case and air at ambient temperature.
$\theta_{\mathrm{JL}}=$ thermal resistance from regulator die through the input lead to a point $1 / 16$ inch below the regulator case.
$\theta_{\mathrm{LA}}=$ total thermal resistance of the input/output ground leads to ambient temperature.
$\theta_{\mathrm{JA}}=$ junction to ambient thermal resistance.

Methods of Heat Sinking

With two external thermal resistances in each leg of a parallel network available to the circuit designer as variables, he can choose the method of heat sinking most applicable to his particular situation. To demonstrate, consider the effect of placing a small $72^{\circ} \mathrm{C} / \mathrm{W}$ flag type heat sink, such as the Staver F1-7D-2, on the LM78L00 molded case. The heat sink effectively replaces the θ_{CA} (Figure 2) and the new thermal resistance, θ^{\prime} JA, equals $145^{\circ} \mathrm{C} / \mathrm{W}$ (assuming, 0.125 inch lead length).
The net change of $15^{\circ} \mathrm{C} / \mathrm{W}$ increases the allowable power dissipation to 0.86 W with a minimal inserted cost. A still further decrease in θ_{JA} could be achieved by using a heat sink rated at $46^{\circ} \mathrm{C} / \mathrm{W}$, such as the Staver FS-7A. Also, if the case sinking does not provide an adequate reduction in total θ_{JA}, the other external thermal resistance, θ_{LA}, may be reduced by shortening the lead length from package base to mounting medium. However, one point must be kept in mind. The lead thermal path includes a thermal resistance, $\theta_{\text {SA }}$, from the leads at the mounting point to ambient, that is, the mounting medium. θ_{LA} is then equal to $\theta_{\mathrm{LS}}+\theta_{\mathrm{SA}}$. The new model is shown in Figure 2.
In the case of a socket, θ_{SA} could be as high as $270^{\circ} \mathrm{C} / \mathrm{W}$, thus causing a net increase in θ_{JA} and a consequent decrease in the maximum dissipation capability. Shortening the lead length may return the net θ_{JA} to the original value, but lead sinking would not be accomplished.
In those cases where the regulator is inserted into a copper clad printed circuit board, it is advantageous to have a maximum area of copper at the entry points of the leads. While it would be desirable to rigorously define the effect of PC board copper, the real world variables are too great to allow anything more than a few general observations.

Methods of Heat Sinking (Continued)
The best analogy for PC board copper is to compare it with parallel resistors. Beyond some point, additional resistors are not significantly effective; beyond some point, additional copper area is not effective.

TL/H/10051-5
FIGURE 2. TO-92 Thermal Equivalent Circuit (Lead at other than Ambient Temperature)

High Dissipation Applications

Where it is necessary to operate a LM78L00 regulator with a large input/output differential voltage, the addition of series resistor R1 will extend the output current range of the device by sharing the total power dissipation between R1 and the regulator.

$$
\begin{equation*}
R 1=\frac{V_{I M i n}-V_{O}-2.0 V}{I_{L M a x}+I_{Q}} \tag{2}
\end{equation*}
$$

where:
I_{Q} is the regulator quiescent current.

Regulator power dissipation at maximum input voltage and maximum load current is now

$$
\begin{equation*}
P_{D \text { Max }}=\left(V_{1}-V_{O}\right) I_{L M a x}+V_{1} I_{Q} \tag{3}
\end{equation*}
$$ where:

$$
V_{1}=V_{I M a x}-\left(I_{L \text { Max }}+I_{Q}\right) R 1
$$

The presence of R1 will affect load regulation according to the equation:
Load regulation (at constant V_{1})
$=$ load regulation (at constant V_{1})

+ line regulation (mV per V)
$\times(R I) \times\left(\Delta I_{\mathrm{L}}\right)$.
As an example, consider a 15 V regulator with a supply voltage of $30 \pm 5.0 \mathrm{~V}$, required to supply a maximum load current of 30 mA . I_{Q} is 4.3 mA , and minimum load current is to be 10 mA .

$$
\begin{aligned}
& R 1=\frac{25-15-2}{30+4.3}=\frac{8}{34.3} \cong 240 \Omega \\
& \mathrm{~V}_{1}=35-(30+4.3) 0.24=35-8.2=26.8 \mathrm{~V} \\
& P_{D \text { Max }}=(26.8-15) 30+26.8(4.3) \\
& =354+115 \\
& =470 \mathrm{~mW} \text {, which permit operation up to } \\
& 70^{\circ} \mathrm{C} \text { in most applications. }
\end{aligned}
$$

Line regulation of this circuit is typically 110 mV for an input range of $25 \mathrm{~V}-35 \mathrm{~V}$ at a constant load current; i.e. $11 \mathrm{mV} / \mathrm{V}$. Load regulation $=$ constant V_{1} load regulation
(typically $10 \mathrm{mV}, 10 \mathrm{~mA}-30 \mathrm{~mA} \mathrm{~L}$) $+(11 \mathrm{mV} / \mathrm{V}) \times 0.24 \times 20 \mathrm{~mA}$ (typically 53 mV)
$=63 \mathrm{mV}$ for a load current change of 20 mA at a constant V_{1} of 30 V .

Typical Applications

TL/H/10051-8
Note 1: To specify an output voltage, substitute voltage value for " 00 ".
Note 2: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulator.

National Semiconductor

LM78MG/LM79MG

4-Terminal Adjustable Voltage Regulators

General Description

The LM78MG and LM79MG are 4-terminal adjustable voltage regulators. They are designed to deliver continuous load currents of up to 500 mA with a maximum input voltage of +40 V for the positive regulator LM78MG and -40 V for the negative regulator LM79MG. Output current capability can be increased to greater than 10A through use of one or more external transistors. The output voltage range of the LM78MG positive voltage regulator is 5.0 V to 30 V and the output voltage range of the negative LM79MG is -30 V to -2.2 V . For systems requiring both a positive and negative, the LM78MG and LM79MG are excellent for use as a dual tracking regulator.

Features

- Output current in excess of 0.5 A
- LM78MG positive output voltage +5.0 V to +30 V
- LM79MG negative output voltage -30 V to -2.2 V
- Internal thermal overload protection
- Internal short circuit current protection

■ Output transistor safe-area protection

Connection Diagrams

TL/H/10058-1

Ordering Information

Device Code	Package Code	Package Description
LM78MGCT	P04A	Molded 4-Lead TO-202
LM79MGCT	P04A	Molded 4-Lead TO-202

Top View
Heat sink tabs connected to input through device substrate. Not recommended for direct electrical connection.

LM79MG

TL/H/10058-2
Top View
Heat sink tabs connected to input through device substrate. Not recommended for direct electrical connection.

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature Range
Lead Temperature (Soldering, 10 sec.)
Internal Power Dissipation

Input Voltage

$$
\text { LM78MGC }+40 \mathrm{~V}
$$

LM79MGC
-40V
Control Lead Voltage
LM78MGC
LM79MGC
$\mathrm{OV} \leq \mathrm{V}^{+} \leq \mathrm{V}_{\mathrm{O}}$ $\mathrm{VO}^{-} \leq \mathrm{V}^{-} \leq \mathrm{OV}$

LM78MGC

Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for $\mathrm{LM} 78 \mathrm{MGC}, \mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}, \mathrm{l}_{0}=350 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}$, $\mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, Test Circuit 1, unless otherwise specified

Symbol	Parameter	Conditions (Notes 1, 3)			Min	Typ	Max	Units
$V_{\text {IR }}$	Input Voltage Range	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$			7.5		40	V
V_{OR}	Output Voltage Range	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{O}}+5.0 \mathrm{~V}$			5.0		30	V
V_{O}	Output Voltage Tolerance	$\begin{aligned} & \left(V_{O}+3.0 \mathrm{~V}\right) \leq V_{1} \leq\left(V_{O}+15 \mathrm{~V}\right), \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{D}} \leq 5.0 \mathrm{~W}, \mathrm{~V}_{\mathrm{I} \text { Max }}=38 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.	4.0	\% (V)
							5.0	
Voline	Line Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}} \leq 10 \mathrm{~V}, \\ & \left(V_{O}+2.5 \mathrm{~V}\right) \leq V_{1} \leq\left(V_{O}+20 \mathrm{~V}\right), \\ & T_{J}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}, V_{O} \geq 10 \mathrm{~V} \end{aligned}$					1.0	\%(V)
V OLOAD	Load Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{O}}+7.0 \mathrm{~V} \end{aligned}$					1.0	\%(V)
Ic	Control Lead Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				1.0	6.0	$\mu \mathrm{A}$
							7.0	
I_{Q}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				2.8	5.0	mA
							6.0	
RR	Ripple Rejection	$\begin{aligned} & \mathrm{l}_{\mathrm{O}}=125 \mathrm{~mA}, 8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 18 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{f}=2400 \mathrm{~Hz} \end{aligned}$			62	80		dB
No	Output Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}$				8	40	$\begin{aligned} & \dot{\mu} V^{\prime} \\ & V_{0} \end{aligned}$
$V_{\text {DO }}$	Dropout Voltage (Note 2)					2	2.5	V
los	Short Circuit Current	$\mathrm{V}_{1}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$					600	mA
l_{pk}	Peak Output Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			0.4	0.8	1.4	A
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$				0.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C} /$ V_{0}
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				0.3	
V_{C}	Control Lead Voltage (Reference)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.8	5.0	5.2	V
					4.75		5.25	

LM79MGC

Electrical Characteristics $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$ for LM79MGC, $\mathrm{V}_{\mathrm{I}}=-14 \mathrm{~V}$, $\mathrm{IO}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=2.0 \mu \mathrm{~F}$,
$\mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}$, Test Circuit 2, unless otherwise specified

Symbol	Parameter	Conditions (Notes 1, 3 \& 5)			Min	Typ	Max	Units
$\mathrm{V}_{\text {IR }}$	Input Voltage Range	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			-40		-7.0	V
$\mathrm{V}_{\text {OR }}$	Output Voltage Range	$\mathrm{V}_{1}=\mathrm{V}_{0}-5.0 \mathrm{~V}$			-30		-2.23	V
V_{0}	Output Voltage Tolerance	$\begin{aligned} & \left(V_{O}-15 \mathrm{~V}\right) \leq \mathrm{V}_{1} \leq\left(\mathrm{V}_{\mathrm{O}}-3.0 \mathrm{~V}\right), \\ & 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}, \\ & \mathrm{P}_{\mathrm{D}} \leq 5.0 \mathrm{~W}, \mathrm{~V}_{\mathrm{I} \text { Max }}=-38 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.0	\% (V)
							5.0	
V OLINE	Line Regulation	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}} \leq-10 \mathrm{~V}, \\ & \left(\mathrm{~V}_{\mathrm{O}}-20 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{I}} \leq\left(\mathrm{V}_{\mathrm{O}}-2.5 \mathrm{~V}\right) \\ & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}} \leq-10 \mathrm{~V} \\ & \hline \end{aligned}$					1.0	\%(V)
V LOAD	Load Regulation	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{O}}-7.0 \mathrm{~V}, 5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 500 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$					1.0	\%(Vo)
Ic	Control Lead Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$					2.0	$\mu \mathrm{A}$
							3.0	
10	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				0.5	2.5	mA
							3.5	
RR	Ripple Rejection	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=125 \mathrm{~mA}, \mathrm{~V}_{\mathrm{l}}=-13 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=-5.0 \mathrm{~V}, \mathrm{f}=2400 \mathrm{~Hz} \end{aligned}$			50			dB
No	Noise	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{O}}=-8.0 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{L}}=50 \mathrm{~mA} \end{aligned}$				25	80	$\begin{aligned} & \mu \mathrm{V} / \\ & \mathrm{V}_{\mathrm{O}} \end{aligned}$
V_{DO}	Dropout Voltage					1.1	2.3	V
los	Short Circuit Current	$V_{1}=35 \mathrm{~V}, T_{J}=25^{\circ} \mathrm{C}$					600	mA
l_{pk}	Peak Output Current				0.4	0.65	1.4	mA
$\Delta V_{O} / \Delta T$	Average Temperature Coefficient of Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-5.0 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{O}}=-5.0 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$				0.3	$\begin{gathered} \mathrm{mV} /{ }^{\circ} \mathrm{C} / \\ \mathrm{V}_{\mathrm{O}} \end{gathered}$
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				0.3	
V_{C}	Control Lead Voltage (Reference)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			-2.32	-2.23	-2.14	V
					-2.35		-2.11	

Note 1: V_{O} is defined for the LM78MGC as $V_{O}=\frac{R 1+R 2}{R 2}(5.0)$; the LM79MGC as $V_{O}=\frac{R 1+R 2}{R 2}(-2.23)$.
Note 2: Dropout voltage is defined as that input/output voltage differential which causes the output voltage to decrease by 5% of its initial value.
Note 3: All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($\mathrm{t}_{\mathrm{W}} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.
Note 4: The convention for negative regulators is the Algebraic value, thus -15 V is less than -10 V .

LM78MG Equivalent Circuit

TL/H/10058-3

Design Considerations

The LM78MG and LM79MG variable voltage regulators have an output voltage which varies from $\mathrm{V}_{\mathrm{CONT}}$ to typically

$$
\mathrm{V}_{\mathrm{I}}-2.0 \mathrm{~V} \text { by } \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CONT}} \frac{(\mathrm{R} 1+\mathrm{R} 2)}{\mathrm{R} 2}
$$

The nominal reference in the LM78MG is 5.0 V and LM79MG is -2.23 V . If we allow 1.0 mA to flow in the control swing to eliminate bias current effects, we can make R2 $=5 \mathrm{k} \Omega$ in the LM78MG. The output voltage is then: $\mathrm{V}_{\mathrm{O}}=$ (R1 + R2) Volts, where R1 and R2 are in $\mathrm{k} \Omega \mathrm{s}$.
Example: If R2 $=5.0 \mathrm{k} \Omega$ and $R 1=10 \mathrm{k} \Omega$ then

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} \text { nominal, for the } \mathrm{LM} 78 \mathrm{MG} ; \\
& \mathrm{R} 2=2.2 \mathrm{k} \Omega \text { and } \mathrm{R} 1=12.8 \mathrm{k} \Omega \text { then } \\
& \mathrm{V}_{\mathrm{O}}=-15.2 \mathrm{~V} \text { nominal, for the } \mathrm{LM} 79 \mathrm{MG} .
\end{aligned}
$$

By proper wiring of the feedback resistors, load regulation of the devices can be improved significantly.
Both LM78MG and LM79MG regulators have thermal overload protection from excessive power, internal short circuit protection which limits each circuit's maximum current, and output transistor safe-area protection for reducing the output current as the voltage across each pass transistor is increased.
Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ $\boldsymbol{\theta}_{\text {JC }}$	Max $\boldsymbol{\theta}_{\text {JC }}$	Typ $\boldsymbol{\theta}_{\text {JA }}$	Max $\boldsymbol{\theta}_{\text {JA }}$
Power Watt	8.0	12.0	70	75

$$
\begin{aligned}
P_{\mathrm{D} \text { Max }}= & \frac{T_{J M a x}-T_{A}}{\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}} \text { or } \\
& \frac{T_{\mathrm{JMax}}-T_{\mathrm{A}}}{\theta_{\mathrm{JA}}} \text { (without a heat sink) } \\
\theta_{\mathrm{CA}}= & \theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}
\end{aligned}
$$

Solving for T_{J} :

$$
T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right) \text { or }
$$

$$
T_{A}+P_{D} \theta_{J A} \text { (without heat sink) }
$$

Where
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\theta_{\mathrm{JC}}=$ Junction-to-Case Thermal Resistance
$\theta_{\text {CA }}=$ Case-to-Ambient Thermal Resistance
$\theta_{\text {CS }}=$ Case-to-Heat Sink Thermal Resistance
$\theta_{\text {SA }}=$ Heat Sink-to-Ambient Thermal Resistance
$\boldsymbol{\theta}_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance

Typical Applications for LM78MG (Note 1)

Bypass capacitors are recommended for stable operation of the LM78MG over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator.
The bypass capacitors, ($0.33 \mu \mathrm{~F}$ on the input, $0.1 \mu \mathrm{~F}$ on the output) should be ceramic or solid tantalum which have good high frequency characteristics. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.
Note 1: All resistor values in ohms.

Basic Positive Regulator

$\mathrm{v}_{\mathrm{O}}=\mathrm{v}_{\mathrm{CONT}}\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right)$
Positive 5.0V to 30V Adjustable Regulator

TL/H/10058-9
Positive 5.0V to 30 V
Adjustable Regulator $\mathrm{IO}_{\mathrm{O}}>1.5 \mathrm{~A}$

TL/H/10058-10
$R 1=\frac{\beta V_{B E(Q 1)}}{I_{R M a x(\beta)}-\mathrm{l}_{\mathrm{O}}}$

Typical Applications for LM78MG (Note 1) (Continued)

Positive High-Current Voltage Regulator

TL/H/10058-12
TL/H/10058-11
Note: External series pass device is not short circuit protected.
Positive High Current Short Circuit Protected Regulator

$R 1=\frac{\beta V_{B E(Q 1)}}{V_{\mathrm{RMax}(\beta+1)}-I_{\mathrm{OMax}}}$
If load is not ground referenced, connect reverse biased diodes from outputs to ground.

External Series Pass (a)

TL/H/10058-15

Short-Circuit Limit (b)
Output Waveform

TL/H/10058-16
Note 1: All resistor values in ohms.

Typical Applications for LM79MG (Note 1)

Bypass capacitors are recommended for stable operation of the LM79MG over the input voltage and output current ranges. Output bypass capacitors will improve the transient response of the regulator.
The bypass capacitors, ($2.0 \mu \mathrm{~F}$ on the input, $1.0 \mu \mathrm{~F}$ on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be $10 \mu \mathrm{~F}$ or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

Negative High Current Short CIrcuit Protected Regulator

$T_{1}=\frac{\beta V_{B E(Q 1)}}{I_{R M a x(\beta)}-l_{M a x}}$
Basic Negative Regulator

TL/H/10058-19
$\mathrm{v}_{\mathrm{O}}=-\mathrm{v}_{\mathrm{CONT}}\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right)$
-30V to -2.2V Adjustable Regulator

TL/H/10058-21
Note 1: All resistor values in ohms.

Peak Output Current vs Input/Output Differential Voltage

Quiescent Current
vs Input Voltage

Differential Control Voltage vs Output Current

Ripple Rejection vs Frequency

Typical Performance Characteristics for LM79MG

Typical Performance Characteristics for LM78MG and LM79MG

LM78MXX Series

3-Terminal Positive Voltage Regulators

General Description

The LM78M00 series of 3-terminal medium current positive voltage regulators employ internal current-limiting, thermal shutdown and safe-area compensation making them essentially indestructible. If adequate heat sinking is provided, they can deliver in excess of 0.5A output current. They are intended as fixed voltage regulators in a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single-point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

Features

- Output current in excess of 0.5A
- No external components
- Internal thermal overload protection
- Internal short circuit current-limiting
- Output transistor safe-area compensation
- Available in JEDEC TO-220 and TO-39 packages
- Output voltages of $5 \mathrm{~V}, 6 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$, and 24 V

Connection Diagrams

TL/H/10053-1
Lead 3 connected to case

TL/H/10053-2
Top View
Lead 3 connected to tab.
Order Number LM78M05CT, LM78M06CT, LM78M08CT, LM78M12CT, LM78M15CT or LM78M24CT See NS Package Number T03B

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range

TO-39 Metal Can	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
TO-220 Package	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature Range	$0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature
TO-39 Metal Can (Soldering, 60 sec.$)$
$300^{\circ} \mathrm{C}$ $265^{\circ} \mathrm{C}$ Power Dissipation Internally Limited Input Voltage 5.0 V to 15 V 35 V 24V 40V
ESD Susceptibility

LM78M05C

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{1}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4.8	5.0	5.2	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 7.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}, \\ & \mathrm{l}=200 \mathrm{~mA} \end{aligned}$		3.0	100	V	
			$\begin{aligned} & 8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA} \end{aligned}$		1.0	50			
$V_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 500 \mathrm{~mA}$		20	100	mV
			$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 200 \mathrm{~mA}$			10	50		
V_{0}	Output Voltage		$\begin{aligned} & 7.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}, \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA} \end{aligned}$		4.75		5.25	V	
10	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.5	8.0	mA	
Δl_{Q}	Quiescent Current Change	with Line	$8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}$				0.8	mA	
		with Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 350 \mathrm{~mA}$				0.5		
No	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			40		$\mu \mathrm{V}$	
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$\mathrm{f}=2400 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=125 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		62	80		dB	
$V_{D O}$	Dropout Voltage		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.0		V	
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$			300		mA	
l_{pk}	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			700		mA	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{0}=5.0 \mathrm{~mA}$			1.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

LM78M06C

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{1}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter			onditions (Note 1)	Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		5.75	6.0	6.25	V	
$V_{\text {RLINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 8.0 \mathrm{~V} \leq V_{1} \leq 25 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA} \end{aligned}$		5.0	100	mV	
			$\begin{aligned} & 9.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 20 \mathrm{~V}, \\ & \mathrm{l}_{0}=200 \mathrm{~mA} \end{aligned}$		1.5	50			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq 1 \mathrm{l} \leq 500 \mathrm{~mA}$		20	120	mV
			$5.0 \mathrm{~mA} \leq 10 \leq 200 \mathrm{~mA}$			10	60		
V_{0}	Output Voltage		$\begin{aligned} & 8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 21 \mathrm{~V}, \\ & 5.0 \mathrm{~mA} \leq 1_{0} \leq 350 \mathrm{~mA} \end{aligned}$		5.7		6.3	V	
I_{0}	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.5	8.0	mA	
Δl_{Q}	Quiescent Current Change	with Line	$9.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}, \mathrm{l}_{0}=200 \mathrm{~mA}$				0.8	mA	
		with Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}$				0.5		

LM78M06C

Electrical Characteristics (Continued)
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{1}=11 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{1}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified.

Symbol	Parameter	Conditions (Note 1)	Min	Typ	Max	Units
N_{0}	Noise	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$		45		$\mu \mathrm{V}$
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection	$\mathrm{f}=2400 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=125 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	59	80		dB
V_{DO}	Dropout Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0		V
los	Output Short Circuit Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$		270		mA
l_{pk}	Peak Output Current	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		700		mA
$\Delta V_{O} / \Delta T$	Average Temperature Coefficient of Output Voltage	$\mathrm{I}_{0}=5.0 \mathrm{~mA}$		0.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

LM78M08C

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{I}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		7.7	8.0	8.3	V	
$\mathrm{V}_{\text {RLINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}, \\ & \mathrm{I}_{0}=200 \mathrm{~mA} \end{aligned}$		6.0	100	mV	
			$\begin{aligned} & 11 V \leq V_{1} \leq 20 V \\ & l_{0}=200 \mathrm{~mA} \end{aligned}$		2.0	50			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 500 \mathrm{~mA}$		25	160	mV
			$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 200 \mathrm{~mA}$			10	80		
V_{0}	Output Voltage		$\begin{aligned} & 10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 23 \mathrm{~V}, \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA} \end{aligned}$		7.6		8.4	V	
I_{0}	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.6	8.0	mA	
Δl_{Q}	Quiescent Current Change	with Line	$10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 25 \mathrm{~V}, \mathrm{l}_{0}=200 \mathrm{~mA}$				0.8	mA	
		with Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}$				0.5		
No	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			52		$\mu \mathrm{V}$	
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$f=2400 \mathrm{~Hz}, \mathrm{l}_{\mathrm{O}}=125 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		56	80		dB	
V_{DO}	Dropout Voltage		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.0		V	
los	Output Short Circuit Current		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$			250		mA	
I_{pk}	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			700		mA	
$\Delta V_{0} / \Delta T$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{0}=5.0 \mathrm{~mA}$			0.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

LM78M12C

Electrical Characteristics
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{1}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{I}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter	Conditions (Note 1)		Min	Typ	Max	Units
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		11.5	12.0	12.5	V
$\mathrm{V}_{\text {R LINE }}$	Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 14.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 30 \mathrm{~V}, \\ & l_{0}=200 \mathrm{~mA} \end{aligned}$		8.0	100	mV
			$\begin{aligned} & 16 \mathrm{~V} \leq V_{1} \leq 25 \mathrm{~V}, \\ & I_{0}=200 \mathrm{~mA} \end{aligned}$		2.0	50	

LM78M12C

Electrical Characteristics (Continued)
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 500 \mathrm{~mA}$		25	240	m	
			$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 200 \mathrm{~mA}$		10	120			
V_{0}	Output Voltage			$\begin{aligned} & 14.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 27 \mathrm{~V}, \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA} \end{aligned}$		11.4		12.6	V
I_{Q}	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.8	8.0	mA	
Δl_{Q}	Quiescent Current Change	with Line	$14.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 30 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}$				0.8	mA	
		with Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}$				0.5		
N_{O}	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			75		$\mu \mathrm{V}$	
$\Delta \mathrm{V}_{1} / \Delta \mathrm{V}_{\mathrm{O}}$	Ripple Rejection		$\begin{aligned} & f=2400 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=125 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{l}}=17 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		55	80		dB	
V_{DO}	Dropout Voltage		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.0		V	
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$			240		mA	
$l_{\text {pk }}$	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			700		mA	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{0}=5.0 \mathrm{~mA}$			1.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

LM78M15C

Electrical Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{1}=23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified (Continued)

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		14.4	15.0	15.6	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 17.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 30 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA} \end{aligned}$		10	100	mV	
			$\begin{aligned} & 20 V \leq V_{1} \leq 28 V, \\ & I_{O}=200 \mathrm{~mA} \end{aligned}$		3.0	50			
$V_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 500 \mathrm{~mA}$		25	300	mV
			$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 200 \mathrm{~mA}$			10	150		
V_{0}	Output Voltage		$\begin{aligned} & 17.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 30 \mathrm{~V}, \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA} \end{aligned}$		14.25		15.75	V	
I_{0}	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			4.8	8.0	mA	
Δl_{Q}	Quiescent Current Change	with Line	$17.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 30 \mathrm{~V}, \mathrm{I}_{0}=200 \mathrm{~mA}$				0.8	mA	
		with Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}$				0.5		
N_{O}	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$.	90		$\mu \mathrm{V}$	
$\Delta \mathrm{V}_{1} / \Delta \mathrm{V}_{\mathrm{O}}$	Ripple Rejection		$\begin{aligned} & f=2400 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=125 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{I}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		54	70		dB	
V_{DO}	Dropout Voltage		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.0		V	
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$			240		mA	
l_{pk}	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			700		mA	
$\Delta V_{0} / \Delta T$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{0}=5.0 \mathrm{~mA}$			1.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

LM78M24C

Electrical Characteristics
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=33 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{C}_{\mathrm{I}}=0.33 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=0.1 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		23.0	24.0	25.0	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & 27 V \leq V_{1} \leq 38 V \\ & l_{0}=200 \mathrm{~mA} \end{aligned}$		10	100	V	
			$\begin{aligned} & 28 V \leq V_{1} \leq 36 V \\ & l_{0}=200 \mathrm{~mA} \end{aligned}$		5.0	50			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 500 \mathrm{~mA}$		30	480	mV
			$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 200 \mathrm{~mA}$			10	240		
V_{0}	Output Voltage		$\begin{aligned} & 27 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}, \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA} \end{aligned}$		22.8		25.2	V	
I_{0}	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			5.0	8.0	mA	
Δl_{Q}	Quiescent Current Change	with Line	$27 \mathrm{~V} \leq \mathrm{V}_{1} \leq 38 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=200 \mathrm{~mA}$				0.8	mA	
		with Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 350 \mathrm{~mA}$				0.5		
N_{0}	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			170		$\mu \mathrm{V}$	
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$\begin{aligned} & f=2400 \mathrm{~Hz}, \mathrm{I}_{\mathrm{O}}=125 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=30 \mathrm{~V}, \\ & T_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		50	70		dB	
V_{DO}	Dropout Voltage		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.0		V	
los	Output Short Circuit Current		$\mathrm{T}_{\mathrm{J}}=35^{\circ} \mathrm{C}, \mathrm{V}_{1}=35 \mathrm{~V}$			240		mA	
I_{pk}	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			700		mA	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{0}=5.0 \mathrm{~mA}$			1.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

Note 1: All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ($T_{W} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Equivalent Circuit

Typical Performance Characteristics

Note: Other LM78M00 Series devices have similar curves.

Typical Performance Characteristics (Continued)

TL/H/10053-5

Design Considerations

The LM78MXX fixed voltage regulator series has thermaloverload protection from excessive power, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output short circuit current as the voltage across the pass transistor is increased.
Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature ($+125^{\circ} \mathrm{C}$ for LM78MXXC) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ $\boldsymbol{\theta} \mathbf{J}_{\mathbf{C}}$	Max $\boldsymbol{\theta} \mathbf{J}_{\mathbf{C}}$	Typ $\boldsymbol{\theta} \mathbf{J}_{\mathbf{A}}$	Max $\boldsymbol{\theta} \mathbf{J}_{\mathbf{A}}$
TO-39	18	25	120	140
TO-220	3.0	5.0	60	40

$$
\begin{aligned}
P_{D \text { Max }} & =\frac{T_{J M a x}-T_{A}}{\theta_{J C}+\theta_{C A}} \text { or } \\
& =\frac{T_{J M a x}-T_{A}}{\theta_{J A}} \text { (Without a Heat Sink) } \\
\theta_{C A} & =\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}
\end{aligned}
$$

Solving for T_{J} :

$$
T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right) \text { or }
$$

$$
=T_{A}+P_{D} \theta_{J A} \text { (Without a Heat Sink) }
$$

TL/H/10053-6

Where:
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\theta_{\mathrm{JC}}=$ Junction to Case Thermal Resistance
$\theta_{\mathrm{CA}}=$ Case-to-Ambient Thermal Resistance
$\theta_{\mathrm{CS}}=$ Case-to-Heat Sink to Resistance
$\theta_{\text {SA }}=$ Heat Sink-to-Ambient Thermal Resistance
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance

Typical Applications

TL/H/10053-7
Note 1: To specify an output voltage, substitue voltage value for " XX ".
Note 2: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulator.

LM79XX Series 3-Terminal Negative Regulators

General Description

The LM79XX series of 3-terminal regulators is available with fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V . These devices need only one external component-a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5A of output current.

These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions.
Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current drain of
these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.
For applications requiring other voltages, see LM137 data sheet.

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 1.5A output current
- 4% preset output voltage

Typical Applications

	(-15)	$(+15)$
Load Regulation at $\Delta I_{\mathrm{L}}=1 \mathrm{~A}$	40 mV	2 mV
Output Ripple, $\mathrm{C}_{\mathrm{N}}=3000 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=1 \mathrm{~A}$	$100 \mu \mathrm{Vrms}$	$100 \mu \mathrm{Vrms}$
Temperature Stability	50 mV	50 mV
Output Noise $10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	$150 \mu \mathrm{Vrms}$	$150 \mu \mathrm{Vrms}$

*Resistor tolerance of R4 and R5 determine matching of (+) and (-) outputs.
*"Necessary only if raw supply filter capacitors are more than 3 " from regulators.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage

$$
\begin{array}{ll}
\left(V_{0}=5 \mathrm{~V}\right) & -35 \mathrm{~V} \\
\left(\mathrm{~V}_{0}=12 \mathrm{~V} \text { and } 15 \mathrm{~V}\right) & -40 \mathrm{~V}
\end{array}
$$

Input-Output Differential

$$
\left(V_{0}=5 V\right)
$$

$$
25 \mathrm{~V}
$$

$$
\left(V_{0}=12 \mathrm{~V} \text { and } 15 \mathrm{~V}\right) \quad 30 \mathrm{~V}
$$

Power Dissipation (Note 1) Internally Limited
Operating Junction Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $230^{\circ} \mathrm{C}$

Electrical Characteristics Conditions unless otherwise noted: $\mathrm{I}_{\mathrm{OUT}}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}$, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$, Power Dissipation $\leq 1.5 \mathrm{~W}$.

Part Number			LM7905C			Units
Output Voltage			5 V			
Input Voltage (unless otherwise specified)			-10V			
Symbol	Parameter	Conditions	Min	Typ	Max	
V_{0}	Output Voltage	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 1 \mathrm{~A}, \\ & \mathrm{P} \leq 15 \mathrm{~W} \end{aligned}$	-4.8 -5.0 -5.2 -4.75 $\left(-20 \leq V_{\mathrm{IN}} \leq-7\right)^{-5.25}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},($ Note 2)	$\begin{array}{cc} \hline & 8 \\ \left(-25 \leq \mathrm{V}_{\mathrm{IN}} \leq-7\right) & \\ 2 & \\ 20 \\ \left(-12 \leq \mathrm{V}_{\mathrm{IN}} \leq-8\right) & \\ \hline \end{array}$			$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \\ \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
ΔV_{0}	Load Regulation	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C},(\text { Note } 2) \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 750 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 15 \\ 5 \\ \hline \end{gathered}$	$\begin{array}{r} 100 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
I_{0}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1	2	mA
$\Delta_{\text {Q }}$	Quiescent Current Change	With Line With Load, $5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{OUT}} \leq 1 \mathrm{~A}$	$\left(-25 \leq \mathrm{V}_{\text {IN }} \leq-7\right) \begin{aligned} & 0.5 \\ & 0.5\end{aligned}$			mA V mA
V_{n}	Output Noise Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{~Hz}$	125			$\mu \mathrm{V}$
	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	$54 \begin{gathered} 66 \\ \left(-18 \leq \mathrm{V}_{\mathrm{IN}} \leq-8\right) \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{dB} \\ \mathrm{~V} \\ \hline \end{gathered}$
	Dropout Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~A}$	1.1			V
lomax	Peak Output Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	2.2			A
	Average Temperature Coefficient of Output Voltage	$\begin{aligned} & \text { lout }=5 \mathrm{~mA} \\ & 0 \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 100^{\circ} \mathrm{C} \end{aligned}$	0.4			$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Typical Applications (Continued)

TL/H/7340-2
*Improves transient response and ripple rejection. Do not increase beyond $50 \mu \mathrm{~F}$.
$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SET }}\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right)$
Select R2 as follows:

LM7905CT	300Ω
LM7912CT	750Ω
LM7915CT	1 k

Electrical Characteristics (Continued) Conditions unless otherwise noted: Iout $=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}$,
$\mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$, Power Dissipation $=1.5 \mathrm{~W}$.

Part Number			LM7912C		LM7915C			Units
Output Voltage			12V		15V			
Input Voltage (unless otherwise specified)			-19V		-23V			
Symbol	Parameter	Conditions	Min	Typ Max	Min	Typ	Max	
V_{O}	Output Voltage	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C} \\ & 5 \mathrm{~mA} \leq \mathrm{loUT}_{\mathrm{O}} \leq 1 \mathrm{~A}, \\ & \mathrm{P} \leq 15 \mathrm{~W} \end{aligned}$	$\begin{array}{rr} -11.5-12.0 & -12.5 \\ -11.4 & -12.6 \\ \left(-27 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -14.5) \end{array}$		$\begin{array}{ccc} -14.4 & -15.0 & -15.6 \\ -14.25 & -15.75 \\ \left(-30 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -17.5) \end{array}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\mathrm{T}_{J}=25^{\circ} \mathrm{C},($ Note 2$)$	$\begin{array}{rr} 5 & 80 \\ \left(-30 \leq \mathrm{V}_{\text {IN }} \leq\right. & -14.5) \\ 3 & 30 \\ -22 \leq \mathrm{V}_{\text {IN }} \leq & -16) \end{array}$		$\begin{array}{cr} 5 & 100 \\ \left(-30 \leq V_{\text {IN }} \leq\right. & -17.5) \\ 3 & 50 \\ \left(-26 \leq V_{\text {IN }} \leq-20\right) \end{array}$			$\begin{gathered} \mathrm{mV} \\ \mathrm{~V} \\ \mathrm{mV} \\ \mathrm{~V} \end{gathered}$
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C},(\text { Note } 2) \\ & 5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 1.5 \mathrm{~A} \\ & 250 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 750 \mathrm{~mA} \\ & \hline \end{aligned}$		15 200 15 200 5 75		$\begin{gathered} 15 \\ 15 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 200 \\ 75 \\ \hline \end{gathered}$	mV mV mV
I_{Q}	Quiescent Current	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		1.53		1.5	3	mA
Δl_{Q}	Quiescent Current Change	With Line With Load, $5 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 1 \mathrm{~A}$	$(-30$	$\begin{array}{r} 0.5 \\ \left.\mathrm{~V}_{\mathrm{IN}} \leq-14.5\right) \\ 0.5 \end{array}$	$(-30$	$V_{I N} \leq$	$\begin{array}{r} 0.5 \\ 17.5) \\ 0.5 \end{array}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
V_{n}	Output Noise Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{~Hz}$		300		375		$\mu \mathrm{V}$
	Ripple Rejection	$f=120 \mathrm{~Hz}$	$\begin{aligned} & 54 \\ & (-25 \end{aligned}$	$\begin{gathered} 70 \\ \left.\leq V_{\mathrm{IN}} \leq-15\right) \end{gathered}$	$\begin{aligned} & 54 \\ & (-30 \\ & \hline \end{aligned}$	$\begin{gathered} 70 \\ V_{\text {IN }} \leq \end{gathered}$	7.5)	$\begin{gathered} \text { dB } \\ \mathrm{V} \end{gathered}$
	Dropout Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{l}_{\text {OUT }}=1 \mathrm{~A}$		1.1		1.1		V
Iomax	Peak Output Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2.2		2.2		A
	Average Temperature Coefficient of Output Voltage	$\begin{aligned} & \text { lout }=5 \mathrm{~mA}, \\ & 0 \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 100^{\circ} \mathrm{C} \end{aligned}$		-0.8		-1.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Note 1: For calculations of junction temperature rise due to power dissipation, thermal resistance junction to ambient ($\theta \mathrm{JA}$) is $50^{\circ} \mathrm{C} / \mathrm{W}$ (no heat sink) and $5^{\circ} \mathrm{C} / \mathrm{W}$ (infinite heat sink).
Note 2: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

Typical Applications (Continued)

Fixed Regulator

TL/H/7340-3
*Required if regulator is separated from filter capacitor by more than $3^{\prime \prime}$. For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
\dagger Required for stability. For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted. Values given may be increased without limit.
For output capacitance in excess of $100 \mu \mathrm{~F}$, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

TL/H/7340-4

Typical Applications (Continued)
High Stability 1 Amp Regulator

Load and line regulation $<0.01 \%$ temperature stability $\leq 0.2 \%$
TL/H/7340-5
\dagger Determine Zener current
$\dagger \dagger$ Solid tantalum
*Select resistors to set output voltage. $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking suggested

TL/H/7340-7
${ }^{*}$ IOUT $=1 \mathrm{~mA}+\frac{5 V}{\mathrm{R}_{1}}$

Light Controllers Using Silicon Photo Cells

*Lamp brightness increase until $i_{i}=i_{Q}(\approx 1 \mathrm{~mA})+5 \mathrm{~V} / \mathrm{R} 1$.
†Necessary only if raw supply filter capacitor is more than $2^{\prime \prime}$ from LM7905CT

Typical Applications (Continued)

*Lamp brightness increases until $i_{i}=5 \mathrm{~V} / \mathrm{R} 1$ (l_{i} can be set as low as $1 \mu \mathrm{~A}$)
\dagger Necessary only if raw supply filter capacitor is more than $2^{\prime \prime}$ from LM7905CT

Connection Diagrams

TO-3 Package

TL/H/7340-10
Bottom View
Order Number LM7905CK, LM7912CK or LM7915CK See NS Package Number KC02A

LM7900 Series

3-Terminal Negative Voltage Regulators

General Description

The LM7900 series of monolithic 3-terminal negative regulators are intended as complements to the popular LM7800 series of positive voltage regulators, and they are available in voltage options from -5.0 V to -15 V . The LM7900 series employ internal current-limiting, thermal shutdown, and safe-area compensation, making them virtually indestructible.

Connection Diagrams

TL/H/10050-1
Top View
Order Number LM7908K and LM7908CK See NS Package Number K02A
Note: See the LM79xx datasheet in the General Purpose Linear Databook for specifications on products in this series with $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V outputs. Refer to the LM120/ LM320 datasheet for $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V regulators specified over extended temperature ranges.

Features

- Output current in excess of 1.0A
- Internal thermal overload protection
- Internal short circuit current-limiting
- Output transistor safe-area compensation
- Available in JEDEC TO-220 and TO-3 packages
- Output voltage of -8 V (See Note)

TL/H/10050-2
Lead 3 connected to case.

Top Vlew

Order Number LM7908CT See NS Package Number T03B

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range
TO-3 Metal Can
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

TO-220 Package
Operating Junction Temperature Range
Extended (LM7900)

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

Lead Temperature TO-3 Metal (soldering, 60 sec .) $300^{\circ} \mathrm{C}$ TO-220 Package (soldering, 10 sec.) $265^{\circ} \mathrm{C}$
Power Dissipation Input Voltage -5 V to -15 V -35V
ESD Susceptibility
Note 1: The convention for Negative Regulators is the Algebraic value, thus -15 V is less then -10 V .

LM7908

Electrical Characteristics
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{1}=-14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{\mathrm{l}}=2.0 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		-7.7	-8.0	-8.3	V	
$V_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$-10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq-25 \mathrm{~V}$		6.0	80	mV	
			$-11 \mathrm{~V} \leq \mathrm{V}_{1} \leq-17 \mathrm{~V}$		2.0	40			
$V_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$		12	100	mV
			$250 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 750 \mathrm{~mA}$			4.0	40		
Vo	Output Voltage		$\begin{aligned} & -11.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq-23 \mathrm{~V}, \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W} \end{aligned}$		-7.6		-8.4	V	
10	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			3.5	7.0	mA	
Δl_{Q}	Quiescent Current Change	With Line	$-11.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq-25 \mathrm{~V}$				1.0	mA	
		With Load	$5.0 \mathrm{~mA} \leq \mathrm{I}_{0} \leq 1.0 \mathrm{~A}$				0.5		
No	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			25	80	$\mu \mathrm{V} / \mathrm{V}_{0}$	
$\Delta V_{1} / \Delta V_{0}$	Ripple Rejection		$\begin{aligned} & f=2400 \mathrm{~Hz}, V_{1}=-13 \mathrm{~V} \\ & \mathrm{l}_{0}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		54	60		dB	
$V_{D O}$	Dropout Voltage		$\mathrm{l}_{0}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1.1	2.3	V	
$l_{\text {pk }}$	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.3	2.1	3.3	A	
$\Delta V_{O} / \Delta T$	Average Temperature Coefficient of Output Voltage		$\mathrm{l}_{\mathrm{O}}=5.0 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$				0.3	$\mathrm{mV} /{ }^{\circ} \mathrm{C} / \mathrm{V}_{0}$	
los	Output Short Circuit Current		$V_{1}=-35 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$				1.2	A	

LM7908C

Electrical Characteristics
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{1}=-14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{C}_{1}=2.0 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}}=1.0 \mu \mathrm{~F}$, unless otherwise specified

Symbol	Parameter		Conditions (Note 1)		Min	Typ	Max	Units	
V_{0}	Output Voltage		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		-7.7	-8.0	-8.3	V	
$\mathrm{V}_{\text {R LINE }}$	Line Regulation		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$-10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq-25 \mathrm{~V}$		6.0	160	mV	
			$-11 \mathrm{~V} \leq \mathrm{V}_{1} \leq-17 \mathrm{~V}$		2.0	80			
$\mathrm{V}_{\text {R LOAD }}$	Load Regulation			$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.5 \mathrm{~A}$		12	160	mV
			$250 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 750 \mathrm{~mA}$			4.0	80		
V_{0}	Output Voltage		$\begin{aligned} & -10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq 23 \mathrm{~V}, \\ & 5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}, \mathrm{P} \leq 15 \mathrm{~W} \end{aligned}$		-7.6		-8.4	V	
$\mathrm{l}_{\mathbf{Q}} \cdot \cdots$	Quiescent Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			3.5	7.0	mA	
$\Delta \mathrm{l}_{\mathrm{Q}}$	Quiescent Current Change	With Line	$-10.5 \mathrm{~V} \leq \mathrm{V}_{1} \leq-25 \mathrm{~V}$				1.0	mA	
		With Load	$5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 1.0 \mathrm{~A}$				0.5		
N_{O}	Noise		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$			200		$\mu \mathrm{V}$	
$\Delta \mathrm{V}_{\mathrm{l}} / \Delta \mathrm{V}_{\mathrm{O}}$	Ripple Rejection		$\begin{aligned} & f=2400 \mathrm{~Hz}, V_{l}=-13 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		54	60		dB	
V_{DO}	Dropout Voltage		$\mathrm{I}_{0}=1.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1.1		V	
l_{pk}	Peak Output Current		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			2.1		A	
$\Delta V_{O} / \Delta T$	Average Temperature Coefficient of Output Voltage		$\mathrm{I}_{0}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$			0.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

Note 1: All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques (tw $\leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$). Output voltage changes due to changes in internal temperature must be taken into account separately.

Equivalent Circuit

Typical Performance Characteristics

 AMBIENT TEMPERATURE (${ }^{\circ}$ C)

Worst Case Power Dlssipation vs
Amblent Temperature (TO-220)

Dropout Voltage vs Junction Temperature

Ripple Rejection vs Frequency

Peak Output Current vs Input/Output Voltage Differential

Quiescent Current vs Input Voitage

Ripple Rejection vs Output Voltages

Output Impedance vs Frequency

TL/H/10050-4

Design Considerations

The LM7900 fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased.
Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature $\left(150^{\circ} \mathrm{C}\right.$ for LM7900, $125^{\circ} \mathrm{C}$ for LM7900C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used:

Package	Typ $\theta_{\mathbf{J C}}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Max $\theta_{\mathbf{J C}}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Typ $\boldsymbol{\theta} \mathbf{J A}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Max $\boldsymbol{\theta}_{\mathbf{J A}}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$
TO-3	3.5	5.5	40	35
TO-220	3.0	5.0	60	40

$P_{D \text { MAX }}=\frac{T_{J M a x}-T_{A}}{\theta_{J C}+\theta_{C A}}$ or $\frac{T_{J M a x} T_{A}}{\theta_{J A}}$
$\theta_{C A}=\theta_{C S}+\theta_{S A}$ (without heat sink)
Solving for T_{J} :
$T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right)$ or
$=T_{A}+P_{D} \theta_{J A}$ (without heat sink)
Where:
$T_{J}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\theta_{J A}=$ Junction-to-Ambient Thermal Resistance
$\theta_{\mathrm{JC}}=$ Junction-to-Case Thermal Resistance
$\theta_{\mathrm{CA}}=$ Case-to-Ambient Thermal Resistance
$\theta_{\mathrm{CS}}=$ Case-to-Heat Sink Thermal Resistance
$\theta_{\text {SA }}=$ Heat Sink-to-Ambient Thermal Resistance

Typical Applications

Bypass capacitors are necessary for stable operation of the LM7900 series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response by the regulator.
The bypass capacitors, ($2.0 \mu \mathrm{~F}$ on the input, $1.0 \mu \mathrm{~F}$ on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be $10 \mu \mathrm{~F}$ or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals.

Fixed Output Regulator

TL/H/10050-5

High Current Voltage Regulator

Output Current HIGH, Foldback Current-Limited

Output Current HIGH, Short Circuit Protected

$\mathrm{RSC}=\frac{\mathrm{V}_{\mathrm{BE}(\mathrm{Q2})}}{\mathrm{I}_{\mathrm{OS}}}$

National
Semiconductor

LM79LXXAC Series 3-Terminal Negative Regulators

General Description

The LM79LXXAC series of 3-terminal negative voltage regulators features fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V with output current capabilities in excess of 100 mA . These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of 0.1 $\mu \mathrm{F}$, exhibits an excellent transient response, a maximum line regulation of $0.07 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{V}$, and a maximum load regulation of $0.01 \% \mathrm{~V}_{\mathrm{O}} / \mathrm{mA}$.
The LM79LXXAC series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage regulators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM79LXXAC series is available in the 3-lead TO92 package, and SO-8; 8 lead package.

For output voltage other than $-5 \mathrm{~V},-12 \mathrm{~V}$ and -15 V the LM137L series provides an output voltage range from 1.2 V to 47 V .

Features

- Preset output voltage error is less than $\pm 5 \%$ overload, line and temperature
- Specified at an output current of 100 mA

■ Easily compensated with a small $0.1 \mu \mathrm{~F}$ output capacitor

- Internal short-circuit, thermal and safe operating area protection
■ Easily adjustable to higher output voltages
- Maximum line regulation less than $0.07 \% \mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}$
- Maximum load regulation less than $0.01 \% \mathrm{~V}_{\text {OUT }} \mathrm{mA}$
- TO-92 package

Typical Applications

*Required if the regulator is located far from the power supply filter. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
**Required for stability. A $1 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.

Adjustable Output Regulator

Connection Diagrams

SO-8 Plastic (Narrow Body)

TL/H/7748-4
Top View
Order Number LM79L05ACM, LM79L12ACM or LM79L15ACM See NS Package Number M08A

TO-92 Plastic Package (Z)

TL/H/7748-2
Bottom View
Order Number LM79L05ACZ, LM79L12ACZ or LM79L15ACZ See NS Package Number Z03A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Input Voltage
$\mathrm{V}_{\mathrm{O}}=-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$
Internal Power Dissipation (Note 1)

Operating Temperature Range Maximum Junction Temperature Storage Temperature Range Lead Temperature (Soldering, 10 sec.)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $260^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2) $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.

Output Voltage			-5V		-12V		-15V		Units
Input Voltage (unless otherwise noted)			-10V		-17V		-20V		
Symbol	Parameter	Conditions	Min	Typ Max	Min	Typ Max	Min	Typ Max	
V_{0}	Output Voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{l}_{\mathrm{O}}=100 \mathrm{~mA}$	-5.2		-12.5				
		$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\left\lvert\, \begin{array}{lr} -5.25 & -4.75 \\ \left(-20 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -7.5) \end{array}\right.$		$\begin{array}{lr} -12.6 & -11.4 \\ \left(-27 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -14.8) \\ \hline \end{array}$		$\left\lvert\, \begin{array}{cc} -15.75 & -14.25 \\ \left(-30 \leq \mathrm{V}_{\mathrm{IN}} \leq-18\right) \end{array}\right.$		V
		$\begin{aligned} & 1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \end{aligned}$	$\begin{array}{\|ll\|} \hline-5.25 & -4.75 \\ \left(-20 \leq \mathrm{V}_{\mathrm{IN}} \leq-7\right) \\ \hline \end{array}$		$\begin{array}{r} -12.6 \\ (-11.4 \\ \left(-27 \leq \mathrm{V}_{\mathrm{IN}} \leq-14.5\right) \end{array}$		$\begin{array}{\|lr\|} \hline-15.75 & -14.25 \\ \left(-30 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -17.5) \\ \hline \end{array}$		
$\Delta \mathrm{V}_{0}$	Line Regulation	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \\ & \hline \end{aligned}$	$\left(-20 \leq \mathrm{V}_{\mathrm{IN}} \leq-7.3\right)$		45$\left(-27 \leq V_{I N} \leq-14.6\right)$		$\left(-30 \leq V_{I N} \leq-17.7\right)$		mV
		$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}} \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ \left(-20 \leq \mathrm{V}_{\mathrm{IN}} \leq-7\right) \end{gathered}$		$\begin{gathered} \\ \\ \left(-27 \leq V_{I N} \leq-14.5\right) \end{gathered}$		$\begin{gathered} 45 \\ \left(-30 \leq V_{\text {IN }} \leq 17.5\right) \end{gathered}$		mV
$\Delta \mathrm{V}_{0}$	Load Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 100 \mathrm{~mA} \end{aligned}$		50		100		125	mV
$\Delta \mathrm{V}_{\mathrm{O}}$	Long Term Stability	$1 \mathrm{O}=100 \mathrm{~mA}$		20		48		60	mV/khrs
l_{Q}	Quiescent Current	$\mathrm{l} \mathrm{O}=100 \mathrm{~mA}$		26		26		26	mA
Δl_{Q}	Quiescent Current Change	$1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 100 \mathrm{~mA}$		0.3		0.3		0.3	mA
		$1 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 40 \mathrm{~mA}$		0.1		0.1		0.1	
		$\mathrm{l}=100 \mathrm{~mA}$		0.25		0.25		0.25	mA
		$\mathrm{V}_{\text {MIN }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {MAX }}$	$\left(-20 \leq \mathrm{V}_{\mathrm{IN}} \leq-7.5\right)$		$\left(-27 \leq \mathrm{V}_{\mathrm{IN}} \leq-14.8\right)$		$\left(-30 \leq \mathrm{V}_{\mathrm{IN}} \leq-18\right)$		V
V_{n}	Output Noise Voltage	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{f}=10 \mathrm{~Hz}-10 \mathrm{kHz} \end{aligned}$	40		96		120		$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{~V}_{\mathrm{O}}}$	Ripple Rejection	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{f}=120 \mathrm{~Hz} \end{aligned}$	50		52		50		dB
	Input Voltage Required to Maintain Line Regulation	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & -7.3 \\ & -7.0 \end{aligned}$		-14.6 -14.5		-17.7 -17.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Note 1: Thermal resistance of Z package is $60^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{jc}}, 232^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{ja}}$ at still air, and $88^{\circ} \mathrm{C} / \mathrm{W}$ at $400 \mathrm{ft} / \mathrm{min}$ of air. The M package θ_{ja} is $180^{\circ} \mathrm{C} / \mathrm{W}$ in still air.
The maximum junction temperature shall not exceed $125^{\circ} \mathrm{C}$ on electrical parameters.
Note 2: To ensure constant junction temperature, low duty cycle pulse testing is used.

Typical Performance Characteristics

Typical Applications (Continued)

$$
\pm 15 \mathrm{~V}, 100 \mathrm{~mA} \text { Dual Power Supply }
$$

0VXX76LW7

LM79MXX Series

3-Terminal Negative Regulators

General Description

The LM79MXX series of 3-terminal regulators is available with fixed output voltages of $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V . These devices need only one external component-a compensation capacitor at the output. The LM79MXX series is packaged in the TO-202 power package and TO-39 metal can and is capable of supplying 0.5 A of output current.
These regulators employ internal current limiting, safe area protection, and thermal shotdown for protection against virtually all overload conditions.
Low ground pin current of the LM79MXX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode.

For output voltage other than $-5 \mathrm{~V},-12 \mathrm{~V}$, and -15 V the LM137 series provides an output voltage range from 1.2 V to 57 V .

Features

- Thermal, short circuit and safe area protection
- High ripple rejection
- 0.5A output current
- 4% preset output voltage

Connection Diagram

TO-202 (P) Plastic Package

TL/H/10483-5
Front View
Order Number LM79M05CP, LM79M12CP or LM79M15CP
See NS Package Number P03A

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications. Input Voltage

$V_{O}=5 \mathrm{~V}$	-25 V
$V_{O}=12 \mathrm{~V}$ and 15 V	-35 V
Input/Output Differential	
$V_{O}=5 \mathrm{~V}$	25 V
$V_{O}=12 \mathrm{~V}$ and 15 V	30 V

Electrical Characteristics

Conditions unless otherwise noted: $\mathrm{l}_{\mathrm{OUT}}=350 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=2.2 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

Part Number			LM79M05C	LM79M12C	LM79M15C	Units
Output Voltage			-5V	-12V	-15V	
Input Voltage (Unless Otherwise Specified)			-10V	-19V	-23V	
Symbol	Parameter	Conditions	Min Typ Max	Min Typ Max	Min Typ Max	
V_{O}	Output Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\begin{array}{lll}-4.8 & -5.0 & -5.2\end{array}$	$\begin{array}{llll}-11.5 & -12.0 & -12.5\end{array}$	$\begin{array}{llll}-14.4 & -15.0 & -15.6\end{array}$	V
		$5 \mathrm{~mA} \leq$ IOUT $\leq 350 \mathrm{~mA}$	$\begin{gathered} -4.75 \\ \left(-25 \leq \mathrm{V}_{\mathrm{IN}} \leq-7\right) \end{gathered}$	$\begin{array}{lc} -11.4 & -12.6 \\ \left(-27 \leq V_{\text {IN }} \leq-14.5\right) \end{array}$	$\begin{array}{cc} -14.25 & -15.75 \\ \left(-30 \leq \mathrm{V}_{\mathbb{N}} \leq\right. & -17.5) \end{array}$	V
$\Delta \mathrm{V}_{\mathrm{O}}$	Line Regulation	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 2)	$\begin{array}{cr} 8 & 50 \\ \left(-25 \leq V_{\mathbb{I N}} \leq\right. & -7) \\ 2 & 30 \\ \left(-18 \leq V_{\mathbb{I N}} \leq\right. & -8) \end{array}$	$\begin{array}{rr} 5 & 80 \\ \left(-30 \leq \mathrm{V}_{\text {IN }} \leq\right. & \leq 14.5) \\ 3 & 30 \\ \left(-25 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -15) \\ \hline \end{array}$	$\begin{array}{rr} 5 & 80 \\ \left(-30 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -17.5) \\ 3 & 50 \\ \left(-28 \leq \mathrm{V}_{\mathrm{IN}} \leq\right. & -18) \end{array}$	mV mV
$\Delta \mathrm{V}_{\mathrm{O}}$	Load Regulation	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \text { (Note } 2 \text {) } \\ & 5 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 0.5 \mathrm{~A} \\ & \hline \end{aligned}$	$30 \quad 100$	$30 \quad 240$	$30 \quad 240$	mV
I_{0}	Quiescent Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	12	1.53	1.53	mA
Δl_{Q}	Quiescent Current Change	With Input Voltage With Load, $5 \mathrm{~mA} \leq \mathrm{IOUT}^{\leq} 350 \mathrm{~mA}$	$\begin{array}{r} 0.4 \\ \left(-25 \leq \mathrm{V}_{\mathrm{IN}} \leq-8\right) \end{array}$ 0.4	$\begin{gathered} \\ 0.4 \\ \left(-30 \leq V_{\mathrm{IN}} \leq-14.5\right) \end{gathered}$ 0.4	$\left(-30 \leq \mathrm{V}_{\mathbb{N}} \leq-27\right)$	mA mA
v_{n}	Output Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{~Hz} \end{aligned}$	750	400	400	$\mu \mathrm{V}$
	Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$	$\begin{aligned} & 54 \quad 66 \\ & \left(-18 \leq V_{\mathrm{IN}} \leq-8\right) \end{aligned}$	$\begin{aligned} & 54 \quad 70 \\ & \left(-25 \leq \mathrm{V}_{\mathrm{IN}} \leq-15\right) \end{aligned}$	$\begin{gathered} 54 \quad 70 \\ \left(-30 \leq V_{\mathrm{IN}} \leq-17.5\right) \end{gathered}$	dB
	Dropout Voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }}=0.5 \mathrm{~A}$	1.1	1.1	1.1	V
$\underline{\text { lomax }}$	Peak Output Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	800	800	800	mA
	Average Temperature Coefficient of Output Voltage	$\begin{aligned} & \text { lout }=5 \mathrm{~mA}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 100^{\circ} \mathrm{C} \end{aligned}$	-0.4	-0.8	-1.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
	Thermal Resistance Junction to Case	P Package	12	12	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Thermal Resistance Junction to Ambient	P Package	70	70	70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 2: Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account.

Typical Applications

TL/H/10483-1
Performance (Typical)

	Performance (Typical)		
Load Regulation at 0.5 A	(-15)	$(+15)$	"Resistor tolerance of R4 and R5 determine
Output Ripple, $\mathrm{C}_{\mathrm{IN}}=3000 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{L}}=0.5 \mathrm{~A}$	$100 \mu \mathrm{Vrms}$	$100 \mu \mathrm{Vrms}$	matching of $(+)$ and $(-)$ outputs
Temperature Stability	50 mV	50 mV	"Necessary only if raw supply filter capacitors
Output Noise $10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	$150 \mu \mathrm{Vrms}$	$150 \mu \mathrm{Vrms}$	

*Improves transient response and ripple rejection. Do not increase beyond $50 \mu \mathrm{~F}$.
$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SET}}\left(\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}\right)$

Select R2 as follows:

$$
\text { LM79M05C } \quad 300 \Omega
$$

LM79M12C 750Ω
LM79M15C 1 k

Fixed Regulator

TL/H/10483-2
*Required if regulator is separated from filter capacitor by more than $3^{\prime \prime}$. For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted.
\dagger Required for stability. For value given, capacitor must be solid tantalum. $25 \mu \mathrm{~F}$ aluminum electrolytic may be substituted. Values given may be increased without limit.
For output capacitance in excess of $100 \mu \mathrm{~F}$, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts.

Dual Trimmed Supply

7 National
 Semiconductor

LP2950/LP2950AC/LP2950C 5V and LP2951/LP2951AC/LP2951C Adjustable Micropower Voltage Regulators

General Description

The LP2950 and LP2951 are micropower voltage regulators with very low quiescent current ($75 \mu \mathrm{~A}$ typ.) and very low dropout voltage (typ. 40 mV at light loads and 380 mV at 100 mA). They are ideally suited for use in battery-powered systems. Furthermore, the quiescent current of the LP2950/LP2951 increases only slightly in dropout, prolonging battery life.
The LP2950 in the popular 3-pin TO-92 package is pin-compatible with older 5 V regulators. The 8-lead LP2951 is available in plastic, ceramic dual-in-line, or metal can packages and offers additional system functions.
One such feature is an error flag output which warns of a low output voltage, often due to falling batteries on the input. It may be used for a power-on reset. A second feature is the logic-compatible shutdown input which enables the regulator to be switched on and off. Also, the part may be pin-strapped for a 5 V output or programmed from 1.24 V to 29 V with an external pair of resistors.
Careful design of the LP2950/LP2951 has minimized all contributions to the error budget. This includes a tight initial
tolerance (.5\% typ.), extremely good load and line regulation (. 05% typ.) and a very low output voltage temperature coefficient, making the part useful as a low-power voltage reference.

Features

■ High accuracy 5V, guaranteed 100 mA output
■ Extremely low quiescent current

- Low dropout voltage
- Extremely tight load and line regulation

■ Very low temperature coefficient
■ Use as Regulator or Reference

- Needs only $1 \mu \mathrm{~F}$ for stability
- Current and Thermal Limiting

LP2951 versions only

- Error flag warns of output dropout
- Logic-controlled electronic shutdown

■ Output programmable from 1.24 to 29 V

Block and Connection Diagrams

Order Number LP2951H See NS Package Number H08C

TO-92 Plastic Package (Z)

Bottom View
Order Number LP2950ACZ-5.0
or LP2950CZ-5.0
See NS Package Number Z03A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Power Dissipation
Lead Temp. (Soldering, 5 seconds)
Storage Temperature Range
Internally Limited

Operating Junction Temperature Range (Note 8)
LP2951
LP2950AC/LP2950C,
LP2951AC/LP2951C
Electrical Characteristics (Note 1)

Input Supply Voltage
-0.3 to +30 V
Feedback Input Voltage
-1.5 to +30 V
(Notes 9 and 10)
Shutdown Input Voltage (Note 9)
Error Comparator Output Voltage (Note 9)
-0.3 to +30 V

ESD Rating is to be determined.

Parameter	Conditions (Note 2)	LP2951		$\begin{aligned} & \text { LP2950AC } \\ & \text { LP2951AC } \end{aligned}$			$\begin{aligned} & \text { LP2950C } \\ & \text { LP2951C } \end{aligned}$			Units
		Typ	Tested Limit (Note 3)	Typ	$\begin{gathered} \hline \text { Tested } \\ \text { Limit } \\ \text { (Note 3) } \\ \hline \end{gathered}$	Design Limit (Note 4)	Typ	Tested Limit (Note 3)	Design Limit (Note 4)	
Output Voltage	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	5.0	$\begin{aligned} & 5.025 \\ & 4.975 \end{aligned}$	5.0	$\begin{aligned} & 5.025 \\ & 4.975 \end{aligned}$		5.0	$\begin{aligned} & 5.05 \\ & 4.95 \end{aligned}$		V max V min
	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 85^{\circ} \mathrm{C}$					$\begin{aligned} & 5.05 \\ & 4.95 \end{aligned}$			$\begin{aligned} & 5.075 \\ & 4.925 \end{aligned}$	\checkmark max V min
	Full Operating Temperature Range		$\begin{aligned} & 5.06 \\ & 4.94 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.06 \\ & 4.94 \\ & \hline \end{aligned}$			$\begin{array}{r} 5.1 \\ 4.9 \\ \hline \end{array}$	V max V min
Output Voltage	$\begin{aligned} & 100 \mu A \leq I_{L} \leq 100 \mathrm{~mA} \\ & T_{J} \leq T_{J_{\text {MAX }}} \end{aligned}$		$\begin{array}{\|l\|} \hline 5.075 \\ 4.925 \\ \hline \end{array}$			$\begin{aligned} & 5.07 \\ & 4.93 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.12 \\ & 4.88 \\ & \hline \end{aligned}$	V max V min
Output Voltage Temperature Coefficient	(Note 12)	20	120	20		100	50		150	ppm $/{ }^{\circ} \mathrm{C}$
Line Regulation (Note 14)	$\begin{aligned} & 6 V \leq V_{\text {in }} \leq 30 \mathrm{~V} \\ & \text { (Note 15) } \\ & \hline \end{aligned}$	0.03	$\begin{aligned} & 0.1 \\ & 0.5 \\ & \hline \end{aligned}$	0.03	0.1	0.2	0.04	0.2	0.4	\% max \% max
Load Regulation (Note 14)	$100 \mu \mathrm{~A} \leq \mathrm{L}_{\mathrm{L}} \leq 100 \mathrm{~mA}$	0.04	$\begin{aligned} & 0.1 \\ & 0.3 \\ & \hline \end{aligned}$	0.04	0.1	0.2	0.1	0.2	0.3	\% max \% max
Dropout Voltage (Note 5)	$\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$	50	$\begin{gathered} 80 \\ 150 \\ \hline \end{gathered}$	50	80	150	50	80	150	mV max $m V$ max
	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	380	$\begin{aligned} & 450 \\ & 600 \end{aligned}$	380	450	600	380	450	600	$m V$ max $m V$ max
Ground Current	$\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$	75	$\begin{aligned} & 120 \\ & 140 \end{aligned}$	75	120	140	75	120	140	μA max μA max
	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$	8	$\begin{aligned} & 12 \\ & 14 \end{aligned}$	8	12	14	8	12	14	mA max mA max
Dropout Ground Current	$\begin{aligned} & \mathrm{V}_{\text {in }}=4.5 \mathrm{~V} \\ & \mathrm{~L}_{\mathrm{L}}=100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	110	$\begin{array}{r} 170 \\ 200 \\ \hline \end{array}$	110	170	200	110	170	200	μA max μA max
Current Limit	$\mathrm{V}_{\text {out }}=0$	160	$\begin{array}{r} 200 \\ 220 \\ \hline \end{array}$	160	200	220	160	200	220	mA max mA max
Thermal Regulation	(Note 13)	0.05	0.2	0.05	0.2		0.05	0.2		\%/W max
Output Noise, 10 Hz to 100 KHz	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	430		430			430			$\mu \mathrm{V} \mathrm{rms}$
	$\mathrm{C}_{\mathrm{L}}=200 \mu \mathrm{~F}$	160		160			160			$\mu \mathrm{V}$ rms
	$\begin{array}{\|l\|} \hline C_{L}=3.3 \mu \mathrm{~F} \\ \text { (Bypass }=0.01 \mu \mathrm{~F} \\ \text { Pins } 7 \text { to } 1(\text { LP2951)) } \\ \hline \end{array}$	100		100			100			$\mu \mathrm{V}$ rms
8-Pin Versions only		LP2951		LP2951AC			LP2951C			
Reference Voltage		1.235	$\begin{aligned} & 1.25 \\ & 1.26 \\ & 1.22 \\ & 1.2 \\ & \hline \end{aligned}$	1.235	$\begin{aligned} & 1.25 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 1.26 \\ & 1.2 \\ & \hline \end{aligned}$	1.235	$\begin{aligned} & 1.26 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 1.27 \\ & 1.2 \\ & \hline \end{aligned}$	\checkmark max V max V min V min
Reference Voltage	(Note 7)		$\begin{aligned} & 1.27 \\ & 1.19 \end{aligned}$			$\begin{aligned} & 1.27 \\ & 1.19 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.285 \\ & 1.185 \end{aligned}$	\checkmark max V min

Parameter	Conditions (Note 2)	LP2951		LP2951AC			LP2951C			Units
		Typ	Tested Limit (Note 3)	Typ		Design Limit (Note 4)	Typ	Tested Limit (Note 3)	Design Limit (Note 4)	
8-Pin Versions only (Continued)										
Feedback Pin Bias Current		20	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	20	40	60	20	40	60	nA max nA max
Reference Voltage Temperature Coefficient	(Note 12)	20		20			50			ppm $/{ }^{\circ} \mathrm{C}$
Feedback Pin Bias Current Temperature Coefficient		0.1		0.1			0.1			$n A /{ }^{\circ} \mathrm{C}$
Error Comparator										
Output Leakage Current	$\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}$	0.01	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	0.01	1	2	0.01	1	2	$\mu \mathrm{A}$ max $\mu \mathrm{A}$ max
Output Low Voltage	$\begin{array}{\|l\|} \hline V_{\text {in }}=4.5 \mathrm{~V} \\ \mathrm{l}_{\mathrm{OL}}=400 \mu \mathrm{~A} \\ \hline \end{array}$	150	$\begin{array}{r} 250 \\ \mathbf{4 0 0} \end{array}$	150	250	400	150	250	400	mV max mV max
Upper Threshold Voltage	(Note 6)	60	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	60	40	25	60	40	25	mV min mV min
Lower Threshold Voltage	(Note 6)	75	$\begin{gathered} 95 \\ 140 \\ \hline \end{gathered}$	75	95	140	75	95	140	mV max mV max
Hysteresis	(Note 6)	15		15			15			mV
Shutdown Input										
Input Logic Voltage	Low (Regulator ON) High (Regulator OFF)	1.3	$\begin{aligned} & 0.6 \\ & 2.0 \\ & \hline \end{aligned}$	1.3		$\begin{array}{r} 0.7 \\ 2.0 \\ \hline \end{array}$	1.3		$\begin{aligned} & 0.7 \\ & 2.0 \\ & \hline \end{aligned}$	
Shutdown Pin Input Current	$\mathrm{V}_{\text {shutdown }}=2.4 \mathrm{~V}$	30	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	30	50	100	30	50	100	$\mu \mathrm{A}$ max $\mu A \max$
	$\mathrm{V}_{\text {shutdown }}=30 \mathrm{~V}$	450	$\begin{aligned} & 600 \\ & \mathbf{7 5 0} \end{aligned}$	450	600	750	450	600	750	$\mu A \max$ $\mu A \max$
Regulator Output Current in Shutdown	(Note 11)	3	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	3	10	20	3	10	20	$\mu A \max$ $\mu \mathrm{A}$ max

Note 1: Boldface limits apply at temperature extremes.
Note 2: Unless otherwise specified all limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {in }}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$ and $\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$. Additional conditions for the 8 -pin versions are Feedback tied to 5 V Tap and Output tied to Output Sense ($\mathrm{V}_{\text {out }}=5 \mathrm{~V}$) and $\mathrm{V}_{\text {shutdown }} \leq 0.8 \mathrm{~V}$.
Note 3: Guaranteed and 100% production tested.
Note 4: Guaranteed but not 100% production tested. These limits are not used to calculate outgoing AQL levels.
Note 5: Dropout Voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1 V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2 V ($\mathbf{2} .3 \mathrm{~V}$ over temperature) must be taken into account.
Note 6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the nominal reference voltage measured at 6 V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain $=\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {ref }}=(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$. For example, at a programmed output voltage of 5 V , the Error output is guaranteed to go low when the output drops by $95 \mathrm{mV} \times 5 \mathrm{~V} / 1.235 \mathrm{~V}=384 \mathrm{mV}$. Thresholds remain constant as a percent of $\mathrm{V}_{\text {out }}$ as $\mathrm{V}_{\text {out }}$ is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
Note 7: $\mathrm{V}_{\text {ref }} \leq \mathrm{V}_{\text {out }} \leq\left(\mathrm{V}_{\text {in }}-1 \mathrm{~V}\right), 2.3 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{~V}, 100 \mu \mathrm{~A} \leq \mathrm{L}_{\mathrm{L}} \leq 100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}} \leq \mathrm{T}_{\mathrm{Jmax}}$.
Note 8: The junction-to-ambient thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ with $0.4^{\prime \prime}$ leads and $160^{\circ} \mathrm{C} / \mathrm{W}$ with $0.25^{\prime \prime}$ leads to a PC board. The thermal resistance of the 8 -pin DIP packages is $105^{\circ} \mathrm{C} / \mathrm{W}$ for the molded plastic (N) and $130^{\circ} \mathrm{C} / \mathrm{W}$ for the cerdip (J) junction to ambient when soldered directly to a PC board. Thermal resistance for the metal can (H) is $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient and $20^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. Junction to ambient thermal resistance for the S.O. (M) package is $160^{\circ} \mathrm{C} / \mathrm{W}$.

Note 9: May exceed input supply voltage.
Note 10: When used in dual-supply systems where the output terminal sees loads returned to a negative supply, the output voltage should be diode-clamped to ground.
Note 11: $V_{\text {shutdown }} \geq 2 \mathrm{~V}, \mathrm{~V}_{\text {in }} \leq 30 \mathrm{~V}, \mathrm{~V}_{\text {out }}=0$, Feedback pin tied to 5 V Tap.
Note 12: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
Note 13: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at $\mathrm{V}_{\mathbb{I N}}=30 \mathrm{~V}(1.25 \mathrm{~W}$ pulse) for $T=10 \mathrm{~ms}$.
Note 14: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.
Note 15: Line regulation for the LP2951 is tested at $150^{\circ} \mathrm{C}$ for $\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}$. For $\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$ and $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$, line regulation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus temperature and load current.

Typical Performance Characteristics

Output Voltage vs.
Temperature of 3
Representative Units

temperature (${ }^{\circ}$ C)

input voltage (v)

TL/H/8546-3

LP2951
Feedback Bias Current

LP2951
Feedback Pin Current

LP2951
Enable Transient

Typical Performance Characteristics (Continued)

LP2950 Maximum Rated Output Current

Application Hints

EXTERNAL CAPACITORS

A $1.0 \mu \mathrm{f}$ (or greater) capacitor is required between the LP2950/LP2951 output and ground for stability. Without this capacitor the part will oscillate. Most types of tantalum or aluminum electrolytics work fine here; even film types work but are not recommended for reasons of cost. Many aluminum electrolytics have electrolytes that freeze at about $-30^{\circ} \mathrm{C}$, so solid tantalums are recommended for operation below $-25^{\circ} \mathrm{C}$. The important parameters of the capacitor are an ESR of about 5Ω or less and a resonant frequency above 500 kHz . The value of this capacitor may be increased without limit.
At lower values of output current, less output capacitance is required for stability. The capacitor can be reduced to 0.33 μf for currents below 10 mA or $0.1 \mu \mathrm{f}$ for currents below 1 mA . Using the 8 -Pin versions at voltages below 5 V runs

TL/H/8546-5
the error amplifier at lower gains so that more output capacitance is needed. For the worst-case situation of a 100 mA load at 1.23V output (Output shorted to Feedback) a $3.3 \mu \mathrm{f}$ (or greater) capacitor should be used.
Unlike many other regulators, the L2950 will remain stable and in regulation with no load in addition to the internal voltage divider. This is especially important in CMOS RAM keep-alive applications. When setting the output voltage of the LP2951 version with external resistors, a minimum load of $1 \mu \mathrm{~A}$ is recommended.
A $0.1 \mu \mathrm{f}$ capacitor should be placed from the LP2950/LP2951 input to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery is used as the input.
Stray capacitance to the LP2951 Feedback terminal (pin 7) can cause instability. This may especially be a problem

Application Hints (Continued)

when using high value external resistors to set the output voltage. Adding a 100 pf capacitor between Output and Feedback and increasing the output capacitor to at least 3.3 μf will fix this problem.

ERROR DETECTION COMPARATOR OUTPUT

The comparator produces a logic low output whenever the LP2951 output falls out of regulation by more than approximately 5%. This figure is the comparator's built-in offset of about 60 mV divided by the 1.235 reference voltage. (Refer to the block diagram in the front of the datasheet.) This trip level remains " 5% below normal" regardless of the programmed output voltage of the 2951. For example, the error flag trip level is typically 4.75 V for a 5 V output or 11.4 V for a 12 V output. The out of regulation condition may be due either to low input voltage, current limiting, or thermal limiting.
Figure 1 below gives a timing diagram depicting the ERROR signal and the regulated output voltage as the LP2951 input is ramped up and down. The ERROR signal becomes valid (low) at about 1.3 V input. It goes high at about 5 V input (the input voltage at which $\mathrm{V}_{\text {OUT }}=4.75$). Since the LP2951's dropout voltage is load-dependent (see curve in typical performance characteristics), the input voltage trip point (about 5 V) will vary with the load current. The output voltage trip point (approx. 4.75 V) does not vary with load.
The error comparator has an open-collector output which requires an external pullup resistor. This resistor may be returned to the 5 V output or some other supply voltage depending on system requirements. In determining a value for this resistor, note that while the output is rated to sink 400 $\mu \mathrm{A}$, this sink current adds to battery drain in a low battery condition. Suggested values range from 100 k to $1 \mathrm{M} \Omega$. The resistor is not required if this output is unused.

PROGRAMMING THE OUTPUT VOLTAGE (LP2951)

The LP2951 may be pin-strapped for 5V using its internal voltage divider by tying Pin 1 (output) to Pin 2 (sense) and Pin 7 (feedback) to Pin 6 (5V Tap). Alternatively, it may be programmed for any output voltage between its 1.235 V reference and its 30 V maximum rating. As seen in Figure 2, an external pair of resistors is required.

*In shutdown mode, ERROR will go high if it has been pulled up to an external 5 V supply. To avoid this invalid response, ERROR should be pulled up to $\mathrm{V}_{\text {OUT }}$ (see Figure 2).

FIGURE 1. ERROR Output Timing

The complete equation for the output voltage is

$$
V_{\mathrm{OUT}}=V_{\mathrm{REF}} \cdot\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)+I_{\mathrm{FB}} R_{1}
$$

where $V_{R E F}$ is the nominal 1.235 reference voltage and I_{FB} is the feedback pin bias current, nominally -20 nA . The minimum recommended load current of $1 \mu \mathrm{~A}$ forces an upper limit of $1.2 \mathrm{M} \Omega$ on the value of R_{2}, if the regulator must work with no load (a condition often found in CMOS in standby). IFB will produce a 2% typical error in VOUT which may be eliminated at room temperature by trimming R_{1}. For better accuracy, choosing $R_{2}=100 \mathrm{k}$ reduces this error to 0.17% while increasing the resistor program current to 12 $\mu \mathrm{A}$. Since the LP2951 typically draws $60 \mu \mathrm{~A}$ at no load with Pin 2 open-circuited, this is a small price to pay.

REDUCING OUTPUT NOISE

In reference applications it may be advantageous to reduce the AC noise present at the output. One method is to reduce the regulator bandwidth by increasing the size of the output capacitor. This is the only way noise can be reduced on the 3 lead LP2950 but is relatively inefficient, as increasing the capacitor from $1 \mu \mathrm{~F}$ to $220 \mu \mathrm{~F}$ only decreases the noise from $430 \mu \mathrm{~V}$ to $160 \mu \mathrm{~V}$ rms for a 100 kHz bandwidth at 5 V output.
Noise can be reduced fourfold by a bypass capacitor accross R_{1}, since it reduces the high frequency gain from 4 to unity. Pick

$$
\mathrm{C}_{\mathrm{BYPASS}} \cong \frac{1}{2 \pi \mathrm{R}_{1} \cdot 200 \mathrm{~Hz}}
$$

or about $0.01 \mu \mathrm{~F}$. When doing this, the output capacitor must be increased to $3.3 \mu \mathrm{~F}$ to maintain stability. These changes reduce the output noise from $430 \mu \mathrm{~V}$ to $100 \mu \mathrm{~V}$ rms for a 100 kHz bandwidth at 5 V output. With the bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.

TL/H/8546-7
FIGURE 2. Adjustable Regulator
*See Application Hints
$V_{\text {out }}=V_{\text {Ref }}\left(1+\frac{R_{1}}{R_{2}}\right)$
**Drive with TTL-high to shut down. Ground or leave open if shutdown feature is not to be used.
Note: Pins 2 and 6 are left open.

Typical Applications

1A Regulator with 1.2V Dropout

TL/H/8546-22

Low Drift Current Source

TL/H/8546-9
*Minimum input-output voltage ranges from 40 mV to 400 mV , depending on load current.
Current limit is typically 160 mA .

TL/H/8546-10
*Minimum input-output voltage ranges from 40 mV to 400 mV , depending on load current. Current limit is typically 160 mA .

Typical Applications (Continued)
Regulator with Early Warning and Auxillary Output

TL/H/8546-11

- Early warning flag on low input voltage

Main output latches off at lower input voltages

- Battery backup on auxiliary output

Operation: Reg. \#1's $V_{\text {out }}$ is programmed one diode drop above 5 V . Its error flag becomes active when $\mathrm{V}_{\text {in }} \leq 5.7 \mathrm{~V}$. When $\mathrm{V}_{\text {in }}$ drops below 5.3 V , the error flag of Reg. \#2 becomes active and via Q1 latches the main output off. When $V_{\text {in }}$ again exceeds 5.7V Reg. \#1 is back in regulation and the early warning signal rises, unlatching Reg. \#2 via D3.

Latch Off When Error Flag Occurs

TL/H/8546-12

2 Ampere Low Dropout Regulator

$V_{\text {out }}=1.23 \mathrm{~V}\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)$
For $5 \mathrm{~V}_{\text {out, }}$, use internal resistors. Wire pin 6 to $7, \&$ wire pin 2 to $+\mathrm{V}_{\text {out }}$ Buss
5V Regulator with 2.5V Sleep Function

TL/H/8546-14
Open Circuit Detector for
$4 \rightarrow 20 \mathrm{~mA}$ Current Loop

Typical Applications (Continued)

*Optional Latch off when drop out occurs. Adjust R3 for C 2 Switching when $\mathrm{V}_{\text {in }}$ is 6.0 V .
**Outputs go low when $\mathrm{V}_{\text {in }}$ drops below designated thresholds.

Low Battery Disconnect

For values shown, Regulator shuts down when $\mathrm{V}_{\text {in }}<5.5 \mathrm{~V}$ and turns on again at 6.0 V . Current drain in disconnected mode is $\approx 150 \mu \mathrm{~A}$.

TL/H/8546-17
*Sets disconnect Voltage
**Sets disconnect Hysteresis

Typical Applications (Continued)
System Overtemperature Protection Circuit

TL/H/8546-18
LM34 for 125° F Shutdown
LM35 for $125^{\circ} \mathrm{C}$ Shutdown

Section 2 Switching Voltage Regulators

Section 2 Contents

Switching Voltage Regulators Selection Guide 2-3
HS7067/HS7107 7-Amp, Multimode, High Efficiency Switching Regulator 2-4
LH1605/LH1605C 5-Amp, High Efficiency Switching Regulator 2-14
LM494 Pulse Width Modulated Control Circuit 2-17
LM1524D/LM2524D/LM3524D Regulating Pulse Width Modulator 2-24
LM1525A/LM3525A/LM1527A/LM3527A Pulse Width Modulator 2-41
LM1575-5.0/LM2575-5.0 Simple Switcher Step-Down Voltage Regulator 2-51
LM1578A/LM2578A/LM3578A Switching Regulators 2-59
LM2579 Switching Regulator 2-73
LM78S40 Universal Switching Regulator Subsystem 2-86
LMC7660 Switched Capacitor Voltage Converter 2-93

N. National				
Switching Voltage Regulators Selection Guide				
Switching Voltage Regulators				
Amps	Device	Operation Modes	$\mathrm{V}_{\text {IN }}$ Range	Package
7.0	†HS7107CK	Step-Down, Invert, Flyback	10V-100V	TO-3
	†HS7067CK	Step-Down, Invert, Flyback	$10 \mathrm{~V}-60 \mathrm{~V}$	TO-3
5.0	LH1605CK	Step-Down		TO-3
3.0	LM2579	Step-Up, Step-Down, Invert	$2 \mathrm{~V}-50 \mathrm{~V}$	TO-220
1.5	+LM78S40CN	Step-Up, Step-Down, Invert	$2.5 \mathrm{~V}-40 \mathrm{~V}$	16-Pin DIP
1.0	LM1575-5.0	Step-Down	$8 \mathrm{~V}-40 \mathrm{~V}$	TO-220
0.75	\dagger LM1578H LM2578H, N LM3578N, H, M	Step-Up, Step-Down, Invert, Flyback	$2 \mathrm{~V}-40 \mathrm{~V}$	$\begin{gathered} \text { TO-39, } \\ \text { 8-Pin DIP } \\ \text { SO-8 } \end{gathered}$
0.05	LMC76601N	Invert	$1.5 \mathrm{~V}-10 \mathrm{~V}$	8 -Pin DIP

Switching Controllers

Device	Title	Package
LM1524/2524/3524	Switching Regulator	16-Pin Plastic DIP, SO-16
LM1525A/3525A	Switching Regulator	16-Pin Ceramic DIP
		16-Pin Plastic DIP
LM1527A/3527A	Switching Regulator	16-Pin Ceramic DIP
LM494	16-Pin Plastic DIP	
	Pulse Width Modulated	16-Pin Ceramic DIP
	Control Circuit	16-Pin Plastic and

HS7067/HS7107 7 Amp, Multimode, High Efficiency Switching Regulator

General Description

The HS7067/HS7107 is a hybrid high efficiency switching regulator with high output current capability. The device is housed in a standard TO-3 package containing a temperature compensated voltage reference, a pulse-width modulator with programmable oscillator frequency, error amplifier, high current, high voltage output switch and steering diode. The HS7067/HS7107 operates in a step-down, inverting, as well as in a transformer-coupled mode.
The HS7067/HS7107 can supply up to 7A of continuous output current over a wide range of input and output voltages.

Features

- HS7067-10V to 60V input
- HS7107-10V to 100 V input
- 7A continuous output current
- Step-down, inverting, and transformer-coupled operation
- Frequency adjustable to 200 kHz
- High-efficiency (>75\%)

■ Standard 8-pin TO-3 package

Block and Connection Diagrams

TL/K/6746-1

Metal Can Package

TL/K/6746-2
Top View
Case is ground
Order Number HS7067CK, HS7067K,
HS7107CK or HS7107K
See NS Package Number K08A

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
$V_{\text {IN }}$, Input Voltage

HS7067	65 V
HS7107	105 V
lout, Output Current $^{T_{J}, \text { Operating Temperature }}$	8 A
P_{D}, Internal Power Dissipation	$150^{\circ} \mathrm{C}$

HS7107 105V
IOUT, Output Current
P_{D}, Internal Power Dissipation

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=20 \mathrm{~V}$ (unless otherwise specified)

Symbol	Parameter		Conditions		Min	Typ	Max	Units	
$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$	Min $\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}$ Differential	HS7067	$\begin{aligned} & 10 V \leq V_{I N} \leq V_{I N(M A X)} \\ & \text { louT }=2 A(\text { Note } 6) \end{aligned}$			3.0		V	
		HS7107				3.0		V	
V_{S}	Switch Saturation Voltage		$\mathrm{IC}=7.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}$	HS7107		1.6	TBD	V	
			HS7607			1.9	V		
			$\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V}$		1.0		V		
V_{F}	Steering Diode On Voltage			$\mathrm{I}_{\mathrm{D}}=7.0 \mathrm{~A}$	HS7107		1.3	TBD	V
			HS7607			1.7	TBD		
			$\mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$			0.9		V	
V_{IN}	Supply Voltage Range (Note 7)	HS7067	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$		10		60	V	
		HS7107	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$		10		100	V	
I_{R}	Steering Diode Reverse Current		$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$				60	$\mu \mathrm{A}$	
I_{Q}	Quiescent Current (Note 3)		0% Duty Cycle ($\mathrm{V}_{3}=3.0 \mathrm{~V}$)			6		mA	
			100\% Duty Cycle ($\mathrm{V}_{3}=0 \mathrm{~V}$)			26		mA	
V_{2}	Reference Voltage on Pin 2		$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		2.3	2.5	2.7	V	
$\mathrm{V}_{\text {CLK }}$	Clock Output High		$\mathrm{I}_{\text {CLK }}=-750 \mu \mathrm{~A}$		1.2	1.6		V	
$\mathrm{V}_{\text {CLKL }}$	Clock Output Low		$\mathrm{I}_{\text {CLK }}=80 \mu \mathrm{~A}$				0.9	V	
ΔV_{2}	Line Regulation of Reference Voltage on Pin 2		$\mathrm{V}_{\mathrm{MIN}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{MAX}}$			5		mV	
R_{A}	Resistance on Pin 3 to Ground		(Note 4)			4.0		k Ω	
$\mathrm{V}_{\text {OUT }}$	Feedback Resistor R_{f} Tol. $\pm 1 \%$			HS7107		4	TBD	\%	
				HS7067			9		
V_{4}	Voltage Swing-Pin 4					3.0		V	
I_{4}	Charging Current-Pin 4					330		$\mu \mathrm{A}$	
ICLK	Clock Input Current - Pin 6		$\mathrm{V}_{\text {CLK }}=3.5 \mathrm{~V}$			1.75	4	mA	
t_{r}	Transistor Current Rise Time		$I_{0}=2.0 \mathrm{~A}(\text { Note } 6)$			70		ns	
			$\mathrm{I}_{0}=7.0 \mathrm{~A}$ (Note 6)			120		ns	
t_{f}	Transistor Current Fall Time		$I_{0}=2.0 \mathrm{~A}(\text { Note } 6)$			100		ns	
			$\mathrm{I}_{0}=7.0 \mathrm{~A}$ (Note 6)			160		ns	
$\mathrm{t}_{\text {s }}$	Diode Storage Time		$10=7.0 \mathrm{~A}(\text { Note } 6)$			120		ns	
t_{d}	Delay Time		$I_{0}=7.0 \mathrm{~A}(\text { Note } 6)$			600		ns	
$\mathrm{f}_{\text {MAX }}$	Max Clock Frequency		(Note 5)				200	kHz	

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$ (unless otherwise specified) (Continued)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
ZPIN 1	Impedance at Pin 1	(Note 6)			5		M Ω
η	Efficiency	$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V} \\ & \text { loUT }=1 \mathrm{~A} \end{aligned}$	$\mathrm{fo}_{0}=25 \mathrm{kHz}$ (Note 6)		80		\%
			$\mathrm{f}_{\mathrm{O}}=200 \mathrm{kHz}$ (Note 5)		70		\%
θ_{JC}	Thermal Resistance	(Note 1)			4.0		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: θ_{JA} is typically $35^{\circ} \mathrm{C} / \mathrm{W}$ for natural convection cooling.
Note 2: VOUT and lout refer to the output DC voltage and output current of a switching supply after the output LC filter as shown in Figure 1.
Note 3: Quiescent current depends on the duty cycle of the switching translator.
Note 4: This test includes the input bias current of the error amplifier.
Note 5: Circuit configured as shown in Figure 1.
Note 6: These parameters are not tested. They are given for informational purposes only.
Note 7: Functionally tested at limits only (pass-fail).

Typical Performance Characteristics

$$
\theta_{\mathrm{JC}}=4^{\circ} \mathrm{C} / \mathrm{W}
$$

$$
\theta_{\mathrm{JA}}=35^{\circ} \mathrm{C} / \mathrm{W}
$$

$\mathrm{f}_{\mathrm{O}}=\frac{1}{10 \mathrm{k} \times \mathrm{C}_{\mathrm{T}}}$

Typical Compensation Input Voltage vs $\mathbf{R}_{\mathbf{C}}$

Typical Applications

THE BUCK CONVERTER (Step Down)

The buck converter is the most common application in switching-power conversion. It allows to step down a voltage with a minimum of components and a maximum of efficiency (for further information on the theory of operation of a buck converter, see AN-343).

f_{0}	25 kHz	200 kHz
L	$86 \mu \mathrm{H}$	$21 \mu \mathrm{H}$
C_{T}	$0.0039 \mu \mathrm{~F}$	330 pF
C_{C}	$0.2 \mu \mathrm{~F}$	$0.068 \mu \mathrm{~F}$
R_{f}	$4 \mathrm{k} \Omega$	$4 \mathrm{k} \Omega$
R_{C}	$5.7 \mathrm{k} \Omega$	$5.7 \mathrm{k} \Omega$
$\mathrm{C}_{\text {OUT }}$	$1500 \mu \mathrm{~F}$	$680 \mu \mathrm{~F}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \text { to } 35 \mathrm{~V} \\
& \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\
& \text { IOUT }=1 \mathrm{~A} \text { to } 6 \mathrm{~A}
\end{aligned}
$$

Load Regulation $=40 \mathrm{mV}$
Line Regulation $=5 \mathrm{mV}$

TL/K/6746-4

Typical Applications (Continued)

Design equations:
Following are the design equations for a buck converter application using the HS 7107/7067:

$$
\begin{gathered}
C_{T}=\frac{1}{10^{4} \times f_{\mathrm{O}}} \\
\mathrm{~L}_{\mathrm{MIN}}=\frac{\left(V_{I N(M A X)}-\mathrm{V}_{\mathrm{O}}\right) \mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{IN}(\mathrm{MAX})} \times \mathrm{f}_{\mathrm{O}} \times \Delta I} \\
\mathrm{C}_{\mathrm{MIN}}=\frac{\Delta I}{4 \mathrm{f}_{\mathrm{O}}\left(e_{\mathrm{O}}-\Delta I \times \mathrm{ESR}\right)} \\
\mathrm{C}_{\mathrm{C}}=\frac{\sqrt{10 \mathrm{LC}}}{R_{\mathrm{C}}} \\
R_{\mathrm{C}}=\frac{2 \times 10^{5}}{V_{I N(M A X)}} \\
R_{f}=4 \mathrm{k}\left(\frac{V_{\mathrm{O}}-2.5}{2.5}\right) \Omega
\end{gathered}
$$

(Note 7, 9)
(Note 8, 9)

Note 7: $L_{\text {MIN }}$ is the minimum value of output filter inductance, L, for stable operation.
Note 8: $\mathrm{C}_{\text {MIN }}$ is the minimum value of output filter capacitance, C , necessary to achieve an output ripple voltage, e 0 . ESR is the Effective Series Resistance of the output filter capacitor, C , at the operating frequency , fo.
Note 9: $\Delta I=$ Peak to Peak Ripple current through the inductor and the capacitor. $\frac{\Delta l}{2}<\mathrm{I}_{\mathrm{OMIN}}$ and $\frac{\Delta l}{2}<7-\mathrm{I}_{\mathrm{OMAX}}$.

Efficiency Equations

Since high efficiency is the principal advantage of switchedmode power conversion, switching regulator losses are an important design concern. Losses and efficiency of a buck converter can be calculated with the following equations.
Note: Pin 7 is grounded; $\mathrm{l}_{\mathrm{O}}=$ average output current at pin 8
Switching Period (T)

$$
\mathrm{T}=\frac{1}{\mathrm{f}_{\mathrm{O}}}=\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}
$$

Duty Cycle (D)

$$
D=\frac{t_{O N}}{t_{O N}+t_{O F F}}=\frac{v_{O}+v_{F}}{V_{I N}-v_{S}+v_{F}}
$$

Transistor DC Losses (P_{T})

$$
\mathrm{P}_{\mathrm{T}}=\mathrm{V}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{O}} \times \mathrm{D}
$$

Transistor Switching Losses (P_{S})

$$
P_{S}=\left(V_{I N}+V_{F}\right) \times l_{0} \times \frac{\left(t_{\mathrm{f}}+t_{f}+2 t_{\mathrm{S}}\right) f_{\mathrm{O}}}{2}
$$

Capacitor Losses (PC)

$$
P_{C}=E S R \times\left(\frac{V_{O}(T-D T)}{4 L}\right)^{2}
$$

Diode DC Losses (P_{D})

$$
P_{D}=V_{f} \times l_{0} \times(1-D)
$$

Drive Circuit Losses (D_{L})

$$
\mathrm{D}_{\mathrm{L}}=0.02 \times \mathrm{V}_{\mathrm{IN}} \times \mathrm{D}
$$

Inductor Losses (P_{L})

$$
P_{L}=I_{O^{2}} \times R_{L}(D C \text { winding resistance })
$$

Power Output (Po)

$$
\mathrm{P}_{\mathrm{O}}=\frac{\left(\left(\mathrm{V}_{\mathrm{IN}}-V_{\mathrm{S}}\right) \mathrm{t}_{\mathrm{ON}}\right)-\left(\left(\mathrm{V}_{\mathrm{F}}\right) \mathrm{t}_{\mathrm{OFF}}\right)}{t_{\mathrm{ON}}+t_{\mathrm{OFF}}} \times \mathrm{l}_{\mathrm{O}}
$$

Efficiency (η)

$$
\eta=\frac{P_{\mathrm{O}}}{P_{\mathrm{IN}}}=\frac{\mathrm{P}_{\mathrm{O}}}{\mathrm{P}_{\mathrm{O}}+\mathrm{P}_{\mathrm{T}}+\mathrm{P}_{\mathrm{S}}+\mathrm{P}_{\mathrm{D}}+\mathrm{D}_{\mathrm{L}}+\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{C}}}
$$

TRANSFORMER COUPLED CONVERTERS

In addition to the implementation of a buck converter, the HS 7107/7067 can be used in various transformer coupled configurations. They can be used in various topologies such as: step-up, step-down, inverter, multiple outputs and isolated converters.
There are basically two different methods in implementing transformer coupled converters: the flyback and the foward topology

The Flyback Principle

Figure 1 shows a functional diagram of a flyback converter. Depending on the turn ratio N2/N1 and the feedback voltage, it can be implemented as a step-down or step-up converter.
When the switch is on, the current (l_{p}) flows through the primary winding creating a magnetic flux in the core and storing the energy. At this time, the voltage at the secondary keeps the same polarity (with respect to the dotted terminals), the diode is off and no current flows through it. When the switch is off, the voltage at the secondary and primary becomes reversed and the diode turns-on $\left(l_{d}\right)$. The stored energy is then transferred to the load and the output filter capacitor. The energy stored in the capacitor will supply the load current during the next turn-on.

FIGURE 1. Typical Flyback Functional Diagram

Typical Applications (Continued)

V_{p}	$=$ Voltage at primary
$V_{a s}$	$=$ Voltage across the switch
V_{s}	$=$ Voltage at the secondary
I_{p}	$=$ Current at primary
I_{d}	$=$ Current through diode
I_{c}	$=$ Current through output cap
$\mathrm{I}_{\text {out }}$	$=$ Output current of the converter
ΔI	$=$ Ripple current
D	$=T_{\text {on }} /\left(T_{\text {off }}+T_{\text {on }}\right)$
F	$=$ Switching frequency
$V_{d f}$	$=$ Forward voltage drop of the diode
V_{1}	$=V_{\text {out }} \times N_{1} / N_{2} \quad V_{2}=V_{\text {in }}+V_{\text {out }} N_{1} / N_{2}$
V_{3}	$=$ Saturation voltage of the switch
V_{4}	$=V_{\text {out }}+V_{d f} \quad V_{5}=V_{\text {in }} \times N_{2} / N_{1}$

$\mathrm{V}_{\mathrm{p}} \quad=$ Voltage at primary
$V_{\mathrm{as}}=$ Voltage across the switch
$=$ Voltage at the secondary
$=$ Current at primary
$I_{d}=$ Current through diode
$I_{c} \quad=$ Current through output cap
lout = Output current of the converter
$=$ Ripple current
Ton/(Toff $\left.+T_{\text {on }}\right)$
$V_{\mathrm{df}} \quad=$ Forward voltage drop of the diode
$V_{1}=V_{\text {out }} \times N_{1} / N_{2} \quad V_{2}=V_{\text {in }}+V_{\text {out }} N_{1} / N_{2}$
$V_{4}=V_{\text {out }}+V_{d f} \quad V_{5}=V_{\text {in }} \times N_{2} / N_{1}$

TL/K/6746-6
FIGURE 2. Typical Flyback Waveforms

The Forward Principle

The forward converter is a little more complex and requires more components than the flyback, but the output ripple voltage is smaller. Figure 3 shows a simplified diagram of a forward converter.
When the switch turns-on, a voltage $\mathrm{V}_{5}=\mathrm{V}_{1} \times \mathrm{N}_{2} / \mathrm{N}_{1}$ appears at the secondary of the transformer. The diode D_{2}

TL/K/6746-7
FIGURE 3. Typical Forward Functional Diagram

Typical Applications (Continued)

is off while D_{1} turns-on, allowing the current to flow through the inductor L ($I_{d 1}$ and I_{L}), storing energy in its core, and supplying the load current ($l_{\text {out }}$) and the capacitor current $\left(I_{c}\right)$ at the same time. When the switch turns-off, the magnetic energy stored in the core of the inductor creates a current ($l_{\mathrm{d} 2}$) which flows through the diode D_{2}. The load current $I_{\text {out }}$ therefore, equals to $I_{d 2}+I_{c}$.
During the "off" time of the switch, some residual magnetism will stay in the core of the transformer and has to be removed before the next cycle, so that it does not accumulate, leading to core saturation.
A demagnetizing winding is used to "dump" the residual energy back to the input or output of the converter. The
$V_{p} \quad=$ Voltage at primary
$\mathrm{V}_{\mathrm{as}}=$ Voltage across the switch
$\mathrm{V}_{\mathrm{s}} \quad=$ Voltage at secondary
$I_{p} \quad=$ Current at primary
$I_{d 1}=$ Current through diode D_{1}
$I_{d 2}=$ Current through diode D_{2}
$I_{d 3}=$ Current through diode D_{3}
$\mathrm{L} \quad=$ Current through inductor L
Ic Current through output cap
I $_{\text {out }}=$ Output current of the converter
$\Delta_{I} \quad=$ Ripple current
$\mathrm{F} \quad=$ Switching frequency
$D=T_{\text {on }} /\left(T_{\text {off }}+T_{\text {on }}\right)$
$V_{1}=V_{\text {in }} \times N_{1} / N_{3} \quad V_{3}=V_{\text {in }}$
$V_{2}=V_{\text {in }}+V_{1}$
$V_{4} \quad=$ Saturation voltage of the switch
$v_{5} \quad=V_{\text {in }} \times N_{2} / N_{1} \quad V_{6}=V_{\text {in }} \times N_{2} / N_{3}$
Figure 4 shows the waveforms of the forward converter.
When the switch is off, $\mathrm{V}_{\text {as }}=\mathrm{V}_{\text {in }}+\left(\mathrm{V}_{\text {in }} \times \mathrm{N}_{1} / \mathrm{N}_{3}\right)$ during the demagnetization time (T_{d}) and then, drops to $\mathrm{V}_{\mathrm{as}}=\mathrm{V}_{\text {in }}$ as indicated in Figure 4.
functional principle of the demagnetizing winding is similar to the flyback in the sense that, during the turn-off time, the residual magnetism will generate a reverse voltage at the demagnetizing winding (with respect to the dotted terminals) turning on the diode D_{3}.
In the forward mode, when the switch is off, the load current is supplied by the energy stored in the output capacitor and the choke inductor but when the switch is on, it is supplied by the input source through the transformer. This accounts for the lower output ripple voltage.
The output voltage is monitored by the feedback loop, which controls the duty cycle through the PWM, which in turn modulates the amount of energy being transferred from the input to the output.

Typical Applications (Continued)

With both flyback and forward topologies, it is possible to design an inverting converter by using an external op-amp (Figure 5).

FIGURE 5

Flyback Step-Up Application

Figure 6 shows flyback converter in a step-up mode where an input voltage of +12 V to +30 V will be converted into a regulated output voltage of +50 V .

Performance Data

Parameter	Conditions	Result
Efficiency	$V_{\text {out }}=50 \mathrm{~V} @ 300 \mathrm{~mA}$ $\mathrm{~V}_{\text {in }}=15 \mathrm{~V}$	82%
Line Regulation	$\mathrm{V}_{\text {out }}=50 \mathrm{~V} @ 300 \mathrm{~mA}$ $12 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{~V}$	0.2%
Load Regulation	$\mathrm{V}_{\text {in }}=15 \mathrm{~V}$ $\mathrm{~V}_{\text {out }}=50 \mathrm{~V}$ $50 \mathrm{~mA} \leq \mathrm{I}_{\text {out }} \leq 300 \mathrm{~mA}$	0.2%

Isolated Flyback Converter

Figure 7 shows an isolated flyback converter using a sense winding for feedback. Although, in practice the line regulation is acceptable, the load regulation can be marginal if the coupling between the windings is poor. However, the sense winding cannot detect any ohmic voltage drop in the main output so, a heavier gauge wire should be used to reduce this regulation error. Also, the sense winding will not sense the non-linear voltage drop across the diode, and this accounts for most of the load regulation inaccuracy. Therefore, the sense winding method is only recommended for applications where load variations are small.
Figure 7 shows an isolated flyback converter with an output of 5 V at 2 A . The input voltage range is from +10 V to +40 V . The output can be adjusted to +5 V by using the $5 \mathrm{k} \Omega$ trimpot.
Performance Data

Parameter	Conditions	Result
Efficiency	$V_{\text {out }}=5 \mathrm{~V}$ @ 2A $V_{\text {in }}=30 \mathrm{~V}$	75%
Line Regulation	$\mathrm{V}_{\text {out }}=5 \mathrm{~V}$ @ 2A $10 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 40 \mathrm{~V}$	5%
Load Regulation	$\mathrm{V}_{\text {in }}=30 \mathrm{~V}$ $1 \mathrm{~A} \leq \mathrm{I}_{\text {out }} \leq 2 \mathrm{~A}$	7%

Isolated Forward Converter

As described previously, forward converters exhibit lower output ripple voltage and the opto-coupler feedback scheme provides good regulation as well as input to output isolation.
An opto-coupler feedback is usually difficult to implement because the transfer function of the opto-coupler is non-linear, the current transfer ratio changes with time and temperture and also from one unit to another. Figure 8 shows the circuit diagram of a 5 V @ 3 A power converter with an input voltage range of +14 V to +30 V using an isolated forward topology.

TL/K/6746-11
A 12 V to 60 V input Voltage Range is possible by replacing the HS7067 with a HS7107. The converter will operate in a discontinuous mode above 30 V with a 300 mA load (the transformer's secondary current drops to zero before the switch turns on) and therefore, may generate more switching noise.

FIGURE 6. Flyback Step-Up Converter

Typical Applications (Continued)

$\mathrm{D}_{1}=$ International Rectifier 50SQ060
$\mathrm{D}_{2}=1 \mathrm{~N} 4148$
$\mathrm{l}_{\text {out }(\text { min })}=1 \mathrm{~A}$
$\mathrm{fo}_{0}=100 \mathrm{kHz}$
$\mathrm{T} \quad=$ Transformer made of a core Fenoxcube 1811PA2503B7
Primary $=8$ turns with 5 strands \#29
Secondary $=6$ turns with 15 strands $\# 30$
Sense $\quad=25$ turns with 1 strand \#30
windings should be interleaved in order to improve the coupling and regulation.

TL/K/6746-12

FIGURE 8a. Isolated Forward Converter
TL/K/6746-13

TL/K/6746-9
Figure $8 b$ shows the typical forward converter waveforms in continuous mode which can be observed using the circuit from Figure $8 a$. Top waveform is the voltage across the switch ($20 \mathrm{~V} /$ div). Bottom waveform is the current throughout the switch ($1 \mathrm{~A} / \mathrm{dv}$). Horizontal Scale $=5 \mu \mathrm{~S} / \mathrm{dir}$. $\mathrm{V}_{\text {in }}=20 \mathrm{~V} ; \mathrm{V}_{\text {out }}=5 \mathrm{~V} @ 3 \mathrm{~A}$.

Figure 8b.

Typical Applications (Continued)
An LM $385 z$ (adjustable reference) is used as a comparator and error amplifier. This reference always wants to maintain 1.2 V between pins 1 and 2 and will draw as much current as necessary from the opto-coupler to achieve this. Therefore, the feedback loop is virtually independent of the gain of the opto-coupler.

Performance Data

Parameter	Conditions	Result
Efficiency	$V_{\text {out }}=5 \mathrm{~V} @ 3 \mathrm{~A}$ $V_{\text {in }}=30 \mathrm{~V}$	78%
Line Regulation	$V_{\text {out }}=5 \mathrm{~V} @ 3 \mathrm{~A}$ $14 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 30 \mathrm{~V}$	0.1%
Load Regulation	$V_{\text {out }}=5 \mathrm{~V}$ $V_{\text {in }}=20 \mathrm{~V}$ $0.5 \mathrm{~A} \leq \mathrm{I}_{\text {out }} \leq 3 \mathrm{~A}$	0.1%

Isolated Telecom Converter

Figure 9 shows an isolated triple output converter which will transform a positive or negative input voltage of 32 V to 60 V to an uncommitted triple output of $+12 \mathrm{~V},-12 \mathrm{~V}$, and 5 V , which may be later referenced to the system ground. This converter is ideal for a step down converter of high positive voltage or high negative voltage such as -48 V used in telecom circuits.

Performance Data

Parameter	Conditions	Result
Efficiency	$\begin{aligned} & V_{1}=5.1 \mathrm{~V} @ 2 \mathrm{~A} \\ & V_{2}=-12 \mathrm{~V} @ 150 \mathrm{~mA} \\ & V_{3}=12 \mathrm{~V} @ 100 \mathrm{~mA} \\ & \left\|V_{\text {in }}\right\|=48 \mathrm{~V} \\ & \hline \end{aligned}$	62\%
Line Regulation on Main Secondary	$\begin{aligned} & 40 \mathrm{~V} \leq\left\|V_{\text {in }}\right\| \leq 60 \mathrm{~V} \\ & V_{1}=5.1 \mathrm{~V} @ 2 \mathrm{~A} \\ & \mathrm{~V}_{2}=-12 \mathrm{~V} @ 150 \mathrm{~mA} \\ & \mathrm{~V}_{3}=+12 \mathrm{~V} @ 150 \mathrm{~mA} \end{aligned}$	0.8\%
Load Regulation on Main Secondary	$\begin{aligned} & \left\|V_{\text {in }}\right\|=48 \mathrm{~V} \\ & V_{1}=5.1 \mathrm{~V} \\ & V_{2}=12 \mathrm{~V} @ 150 \mathrm{~mA} \\ & V_{3}=12 \mathrm{~V} @ 150 \mathrm{~mA} \\ & 0.5 \leq I_{\text {out }} \leq 2 \mathrm{~A} \\ & \hline \end{aligned}$	1\%
Load Regulation on 12V Secondary for Simultaneous Load Changes	$\begin{aligned} & \left\|V_{\text {in }}\right\|=48 \mathrm{~V} \\ & V_{1}=5.1 \mathrm{~V} @ 2 \mathrm{~A} \\ & V_{2}=-12 \mathrm{~V} \\ & V_{3}=12 \mathrm{~V} \\ & 75 \mathrm{~mA} \leq I_{\text {out }} \leq 150 \mathrm{~mA} \end{aligned}$	5\%

$D_{1}=D_{2}=D_{3}$ Unitrode UES1302
$\mathrm{T}=$ Pulse Engineering PE64379
$\mathrm{f}_{\mathrm{O}}=100 \mathrm{kHz}$

Note 10: An input voltage of -10 V to -30 V may cause the transformer to operate at a higher temperature at full load.
TL/K/6746-14
FIGURE 9. Telecom Flyback Converter

Application Hints

dUTY CYCLE LIMIting

In a flyback converter, the error amplifier sees OV at the output of the converter during the initial turn-on, and forces the duty cycle to 100% until it sees the output voltage rising to the final value; but no voltage will appear if the switch does not turn off (see flyback principle). The result is that the core will saturate, reducing the effective impedance of the transformer to about 0Ω, and destroying the pass transistor. To prevent this, the duty cycle must be limited to a value at which the core does not saturate. A diode connected between pins 1 and 2 (Figure 10), will limit the duty cycle to about 80%.

TL/K/6746-15
FIGURE 10. Duty Cycle Limiting Circuit

SOFT START

For any converter, connecting a large capacitor (20 to $200 \mu \mathrm{~F}$) between pin 2 and the case is recommended to allow the reference voltage to slowly reach its final value after start-up. This allows the HS 7067/7107 to start-up smoothly and minimizes the inrush current. The time constant can be calculated by:

$$
T=10^{3} \times C
$$

It is always a good practice to incorporate soft start and duty cycle limiting when designing a switching power converter, especially when a current limit circuitry is not utilized.

CURRENT LIMIT

The schematic in Figure 11 shows how to protect the pass transistor against excessive current, by sensing the current through a series resistor, and shorting the PWM control voltage at pin 1 to ground, using transistor 2N5772 (this is made possible by the $5 \mathrm{M} \Omega$ output impedance of the error amplifier), which will cause the pass transistor to turn off.

TL/K/6746-16
FIGURE 11. Current Limit Circuitry

The sense resistor should be a low inductance type, otherwise the series inductance creates a high impedance at transients and activates the shutdown circuitry. If such a resistor cannot be found, a $0.1 \mu \mathrm{~F}$ connected in parallel with it will compensate the series inductance.
When such a circuitry is used, the duty cycle limiting diode becomes optional, but the soft start capacitor should still be at least $10 \mu \mathrm{~F}$.

DECOUPLING AND GROUNDING

Special attention should be given to the decoupling of the HS 7107/7067 itself at the input (pin 5), where the capacitor must be at least $100 \mu \mathrm{~F}$ and connected as close to the device as possible. Large switching spikes at the input of the pass transistor can cause breakdown of the junction and destroy the device. (See Figure 12.)
The waveform at the top of the picture represents the voltage across the switch of a typical BUCK (step down) converter. When the switch is turned off, the current in the inductor falls to zero (see waveform at the bottom) and a switching spike occurs across the switch. This spike can reach several tens of volts on top of the normally expected voltage across the switch and lead to stress on the device if the overall voltage exceeds the maximum rating.
The picture below shows a spike of about ten volts with a $330 \mu \mathrm{~F}$ capacitor of average quality.

TL/K/6746-17
FIGURE 12
The reference voltage (pin 2) must be decoupled with at least $10 \mu \mathrm{~F}$ and the compensation network (pin 1) should be decoupled with a ceramic capacitor of 1 nF to 10 nF . Switching noise on the reference voltage pin (pin 2) or on the compensation pin (pin 1) can create different types of oscillations and instabilities.
Because of the high current and high voltage capability of the HS 7107/7067 a single point grounding or, at least a grounding where the force ground is separated from the circuit ground, is highly recommended.

Ordering Information (Transformers and Inductors)

PULSE ENGINEERING INC.
7250 Convoy Court
San Diego, CA 92111
Tel: (619) 268-2400
TWX: 910-335-1527
FAX: 619 268-2515

LH1605/LH1605C

5 Amp, High Efficiency Switching Regulator

General Description

The LH1605 is a hybrid switching regulator with high output current capabilities. It incorporates a temperature-compensated voltage reference, a duty cycle modulator with the oscillator frequency programmable, error amplifier, high cur-rent-high voltage output switch, and a power diode. The LH1605 can supply up to 5A of output current over a wide range of regulated output voltage.

Features

- Step down switching regulator

■ Output adjustable from 3.0 V to 30 V

- 5A output current
- High efficiency

■ Frequency adjustable to 100 kHz

- Standard 8-pin TO-3 package

Block and Connection Diagrams

TL/K/10114-2
Top View
Order Number LH1605K or LH1605CK
See NS Package Number K08A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage (V_{IN})

35 V max
Output Current (lo)
6A
Operating Temperature (T_{J})
$150^{\circ} \mathrm{C}$
Internal Power Dissipation (P_{D}) (Note 1) 20W
Operating Temperature (T_{A})
LH1605C
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH1605
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Storage Temperature Range (TSTG) $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Duty Cycle (D.C.)

20\% to 80%
Steering Diode Reverse Voltage
$\left(V_{R}\right)\left(V_{8-7}\right)$
60V
Steering Diode Forward Current
(ID) (1_{7-8})
6 A

Electrical Characteristics $T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V}$ unless otherwise specified

Symbol	Characteristics	Conditions	LH1605			LH1605C			Units
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OUT }}$	Output Voltage Range	$\begin{aligned} & V_{I N} \geq V_{O}+5 V \\ & I_{O}=2 A \\ & \text { (Note 2) } \\ & \hline \end{aligned}$	3.0		30	3.0		30	
V_{S}	Switch Saturation Voltage	$\begin{aligned} & I_{C}=5.0 \mathrm{~A} \\ & I_{C}=2.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1.6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.2 \end{aligned}$		$\begin{aligned} & 1.6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.2 \end{aligned}$	V
V_{F}	Steering Diode On Voltage	$\begin{aligned} & I_{D}=5.0 \mathrm{~A} \\ & I_{D}=2.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.0 \end{aligned}$	
$\mathrm{V}_{\text {IN }}$	Supply Voltage Range		10		35	10		35	
I_{R}	Steering Diode Reverse Current	$\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$		0.1	5.0		0.1	5.0	$\mu \mathrm{A}$
I_{Q}	Quiescent Current	IOUT $=0.2 \mathrm{~A}$		20			20		mA
V_{2}	Voltage on Pin 2			2.5			2.5		V
$\Delta V_{2} / \Delta T$	V_{2} Temperature Coeff.			100			100		ppm $/{ }^{\circ} \mathrm{C}$
V_{4}	Voltage Swing-Pin 4			3.0			3.0		V
I_{4}	Charging Current-Pin 4			70			70		$\mu \mathrm{A}$
$\mathrm{R}_{\text {A }}$	Resistance Pin 3 to GND			2.0			2.0		k Ω
$\Delta R_{A} / \Delta T$	Resistance Temp. Coeff.			75			75		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
t_{r}	Voltage Rise Time	$\begin{aligned} & \text { loUT }=2.0 \mathrm{~A} \\ & \text { IOUT }=5.0 \mathrm{~A} \end{aligned}$		$\begin{array}{r} 350 \\ 500 \\ \hline \end{array}$			$\begin{array}{r} 350 \\ 500 \\ \hline \end{array}$		ns
t_{f}	Voltage Fall Time	$\begin{aligned} & \text { IOUT }=2.0 \mathrm{~A} \\ & \text { IOUT }=5.0 \mathrm{~A} \end{aligned}$		$\begin{aligned} & 300 \\ & 400 \\ & \hline \end{aligned}$			$\begin{aligned} & 300 \\ & 400 \\ & \hline \end{aligned}$		
t_{s}	Storage Time	IOUT $=5.0 \mathrm{~A}$		1.5			1.5		$\mu \mathrm{S}$
t_{d}	Delay Time			100			100		ns
P_{D}	Power Dissipation	$\begin{aligned} & V_{\text {OUT }}=10 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=5.0 \mathrm{~A} \end{aligned}$		16			16		W
η	Efficiency			75			75		\%
OJC	Thermal Resistance (Note 1)			5.0			5.0		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note 1: θ_{JA} is typically $30^{\circ} \mathrm{C} / \mathrm{W}$ for natural convection cooling.
Note 2: VOUT refers to the output voltage range of switching supply after the output LC filter as shown in the Typical Application circuit.

TL/K/10114-3
Minimum $\mathbf{V}_{\text {IN }}-\mathbf{V}_{\text {OUT }}=\mathbf{5 V}$ for Proper Operation
$\mathrm{R}_{\mathrm{S}}=\frac{2 \times 10^{3}\left(\mathrm{~V}_{\text {OUT }}-2.5\right)}{2.5}$

$$
\begin{aligned}
& \mathrm{V}_{\text {IN }}=10-18 \mathrm{~V} \\
& \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \\
& \text { IOUT }=3 \mathrm{~A}(\mathrm{Max}) \\
& \text { IOUT }=1 \mathrm{~A}(\mathrm{Min}) \\
& \eta \cong 70 \%
\end{aligned}
$$

(20.

Load Reg. $=50 \mathrm{mV}$
Line Reg. $=10 \mathrm{mV}$
Ripple $=20 \mathrm{mV}$

TL/K/10114-4
TL/K/10114-5

Design Equations
Efficiency $(\eta)=\frac{\text { POUT } \times 100}{P_{I N}}$
Transistor DC Losses $\left(\mathrm{P}_{\mathrm{T}}\right)=\mathrm{l}_{\mathrm{OUT}} \times \mathrm{V}_{\mathrm{S}}\left(\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{ON}}+t_{\mathrm{OFF}}}\right)$
Diode DC Losses $\left(P_{D}\right)=I_{\text {OUT }} \times V_{F}\left(\frac{t_{\text {OFF }}}{t_{O N}+t_{O F F}}\right)$
Drive Circuit Losses $\left(D_{L}\right)=\frac{V_{I N^{2}}}{300} \times \frac{t_{O N}}{t_{O N}+t_{O F F}}$
Switching Losses Transistor $\left(P_{S}\right)=V_{I N} \times$ loUT $\times \frac{t_{r}+t_{f}}{2\left(t_{O N}+t_{O F F}\right.}$
Transistor Duty Cycle $=\frac{t_{\mathrm{ON}}}{t_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}$
Diode Duty Cycle $=\frac{t_{\mathrm{OFF}}}{t_{\mathrm{ON}}+t_{\mathrm{OFF}}}=1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}$
Power Inductor $\left(P_{L}\right)=$ lout $^{2} \times R_{L}$ (Winding Resistance)
Efficiency $(\eta)=\frac{V_{\text {OUTIOUT }}}{V_{\text {OUTlOUT }}+P_{T}+P_{D}+D_{L}+P_{S}+P_{L}} \times 100 \%$

2
 National Semiconductor

LM494

Pulse Width Modulated Control Circuit

General Description

The LM494 is a monolithic integrated circuit which includes all the necessary building blocks for the design of pulse width modulated (PWM) switching power supplies, including push-pull, bridge and series configurations. The device can operate at switching frequencies between 1.0 kHz and 300 kHz and output voltages up to 40 V . The operating temperature range specified for the LM494C is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and for the LM494V is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

■ Uncommitted output transistors capable of 200 mA source or sink

- On-chip error amplifiers

■ On-chip 5.0V reference

- Internal protection from double pulsing of outputs with narrow pulse widths or with supply voltages below specified limits
- Dead time control comparator
- Output control selects single ended or push-pull operation
- Easily synchronized (slaved) to other circuits

Block Diagram

TL/H/10056-2

Connection Diagram

Ordering Information

Device Code	Package Code	Package Description
LM494IN	N16A	Molded DIP
LM494CJ	J16A	Ceramic DIP
LM494CN	N16A	Molded DIP

Recommended Operating Conditions

Power Supply Voltage ($\mathrm{V}_{C C}$)	7.0 V to 40V
Voltage on Any Lead except Leads 8 and 11 (Referenced to Ground) (V_{1})	
Output Voltage Collector ($\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}$)	-0.3 V to 40V
Output Collector Current ($\mathrm{IC}_{1}, \mathrm{I}_{\mathrm{C} 2}$)	200 mA
Timing Capacitor (C_{T})	470 pF to $10 \mu \mathrm{~F}$
Timing Resistor (R_{T})	$1.8 \mathrm{k} \Omega$ to 50
Oscillator Frequency (fosc)	1.0 kHz to 300 k

LM494

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the $\mathrm{LM} 494 \mathrm{C}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 4941, \mathrm{~V}_{\mathrm{CC}}=$ 15 V , fosc $=10 \mathrm{kHz}$, unless otherwise specified

Symbol	Parameter	Conditions		Min	Typ	Max	Units
REFERENCE SECTION							
$V_{\text {REF }}$	Reference Voltage (Note 3)	$\mathrm{I}_{\text {REF }}=1.0 \mathrm{~mA}$		4.75	5.0	5.25	V
Regline	Line Regulation of Reference Voltage	$7.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 40 \mathrm{~V}$			2.0	25	mV
TCV ${ }_{\text {REF }}$	Temperature Coefficient of Reference Voltage	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$			0.01	0.03	\%/ ${ }^{\circ} \mathrm{C}$
Regload	Load Regulation of Reference Voltage	$1.0 \mathrm{~mA} \leq \mathrm{I}_{\text {REF }} \leq 10 \mathrm{~mA}$			1.0	15	mV
los	Output Short Circuit Current	$\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	10	35	50	mA
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		35		
OSCILLATOR SECTION							
fosc	Oscillator Frequency (Figure 10)	$\begin{aligned} & \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \\ & \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega \\ & \hline \end{aligned}$			10		kHz
$\Delta \mathrm{fosc}$	Oscillator Frequency Change	$\begin{aligned} & \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \\ & \mathrm{R}_{\mathrm{T}}=12 \mathrm{k} \Omega \end{aligned}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			2.0	\%
			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			2.0	

DEAD TIME CONTROL SECTION

IIB (DT)	Input Bias Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{4} \leq 5.25 \mathrm{~V}$		-2.0	-10	$\mu \mathrm{A}$
$\mathrm{DC}_{(\text {Max })}$	Maximum Duty Cycle, Each Output	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \text {, Lead } 4=0 \mathrm{~V} \text {, } \\ & \text { Output Control }=\mathrm{V}_{\text {REF }} \end{aligned}$	45			\%
$\mathrm{V}_{\text {TH(in) }}$	Input Threshold Voltage	Zero Duty Cycle		3.0	3.3	V
		Maximum Duty Cycle	0			
ERROR AMPLIFIER SECTIONS						
V_{10}	Input Offset Voltage	$\mathrm{V}_{3}=2.5 \mathrm{~V}$		2.0	10	mV
I_{10}	Input Offset Current	$\mathrm{V}_{3}=2.5 \mathrm{~V}$		25	250	nA
$\mathrm{IIB}^{\text {I }}$	Input Bias Current	$\mathrm{V}_{3}=2.5 \mathrm{~V}$		0.2	1.0	$\mu \mathrm{A}$
VICR	Input Common Mode Voltage Range	$7.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 40 \mathrm{~V}$	-0.3		$V_{C C}$	V
AVS	Large Signal Voltage Gain	$0.5 \mathrm{~V} \leq \mathrm{V}_{3} \leq 3.5 \mathrm{~V}$	60	74		dB
BW	Bandwidth			650		kHz

LM494

Electrical Characteristics $T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the $\mathrm{LM} 494 \mathrm{C}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LM 4941 ,
$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$, fosc $=10 \mathrm{kHz}$, unless otherwise specified (Continued)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
PWM COMPARATOR SECTION (Figure 9)						
$\mathrm{V}_{\text {THI }}$	Inhibit Threshold Voltage	Zero Duty Cycle		4.0	4.5	V
10^{-}	Output Sink Current (Note 4)	$0.5 \mathrm{~V} \leq \mathrm{V}_{3} \leq 3.5 \mathrm{~V}$	-0.2	-0.6		mA
10^{+}	Output Source Current (Note 4)	$0.5 \mathrm{~V} \leq \mathrm{V}_{3} \leq 3.5 \mathrm{~V}$	2.0			mA
OUTPUT SECTION						

$\mathrm{V}_{\text {CE(sat) }}$	Output Saturation Voltage Common Emitter Configuration (Figure 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}, \\ & \mathrm{IC}_{\mathrm{C}}=200 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C} \end{aligned}$	1.1	1.3	v
	Emitter Follower Configuration (Figure 4)	$\mathrm{V}_{\mathrm{C}}=15 \mathrm{~V}, \mathrm{l}_{\mathrm{E}}=200 \mathrm{~mA}$		1.5	2.5	
$I_{\text {c(off) }}$	Collector Off-State Current	$\mathrm{V}_{\text {CC }}=40 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=40 \mathrm{~V}$		2.0	100	$\mu \mathrm{A}$
${ }^{\text {E (Off) }}$	Emitter Off-State Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{C}}=40 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{E}}=0 \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \end{aligned}$		-100	$\mu \mathrm{A}$

OUTPUT CONTROL (Figure 6)

VOCL	Output Control Voltage Required for Single Ended or Parallel Output Operation				0.4	V
$\mathrm{~V}_{\mathrm{OCH}}$	Output Control Voltage Required for Push-Pull Operation		2.4		V	

TOTAL DEVICE

ICC	Standby Power Supply Current			6.0	10	mA

OUTPUT AC CHARACTERISTICS Use Recommended Operating Conditions with $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

t_{r}	Rise Time of Output Voltage Common Emitter Configuration (Figure 3)			100	200	n
	Emitter Follower Configuration (Figure 4)		100	200	ns	
t_{f}	Fall Time of Output Voltage Common Emitter Configuration (Figure 3)		25	100	n	
	Emitter Follower Configuration (Figure 4)		40	100		

Note 1: $T_{J \text { Max }}=150^{\circ} \mathrm{C}$ for the Molded DIP, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 16 L -Ceramic DIP at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the $16 \mathrm{~L}-\mathrm{Molded} \mathrm{DIP}$ at $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 3: Selected devices with tightened tolerance reference voltage available.
Note 4: These limits apply when the voltage measured at Lead 3 is within the range specified.

Functional Description

The basic oscillator (switching) frequency is controlled by an external resistor (R_{T}) and capacitor $\left(\mathrm{C}_{\mathrm{T}}\right)$. The relationship between the values of $\mathrm{R}_{\mathrm{T}}, \mathrm{C}_{\mathrm{T}}$ and frequency is shown in Figure 10.
The level of the sawtooth wave form is compared with an error voltage by the pulse width modulated comparator. The output of the PWM Comparator directs the pulse steering flip-flop and the output control logic.
The error voltage is generated by the error amplifier. The error amplifier boosts the voltage difference between the output and the 5.0 V internal reference. See Figure 7 for error amp sensing techniques. The second error amp is typically used to implement current-limiting.
The output control logic selects either push-pull or singleended operation of the output transistors (see Figure 6).
The dead time control prevents on-state overlap of the output transistors as can be seen in Figure 5. The dead time is approximately 3.0% or 5.0% of the total period if the dead time control is grounded. This dead time can be increased by connecting the dead time control to a voltage up to 5.0 V .
The frequency response of the error amps (Figure 11) can be modified by using external resistors and capacitors. These components are typically connected between the compensation terminal and the inverting input of the error amps.
The switching frequency of two or more LM494 circuits can be synchronized. The timing capacitor, C_{T}, is connected as shown in Figure 8. Charging current is provided by the master circuit. Discharging is through all the circuits slaved to the master. R_{T} is required only for the master circuit.

Test Circuits

TL/H/10056-3
FIGURE 1. Error Amplifier Test Circuit

TL/H/10056-4
FIGURE 2. Current Limit Sense Amplifier Test Circuit

TL/H/10056-5

TL/H/10056-6
FIGURE 3. Common Emitter Configuration Test Circuit and Waveform

TL/H/10056-7

TL/H/10056-8
FIGURE 4. Emitter Follower Configuration Test Circuit and Waveform

TL/H/10056-9
FIGURE 5. Dead Time and Feedback Control Test Circuit

Typical Applications

FIGURE 7. Error Amplifier Sensing Techniques

TL/H/10056-14
FIGURE 8. Slaving Two or More Control Circuits

Typical Applications (Continued)

TL/H/10056-15
FIGURE 9. Error Amplifier and Current Limit
Sense Amplifier Output Circults

Typical Performance Characteristics

FIGURE 10. Oscillator Frequency vs Timing Resistance

TL/H/10056-17
FIGURE 11. Amplifier Voltage Gain vs Frequency

Voltage Waveforms

LM1524D/LM2524D/LM3524D Regulating Pulse Width Modulator

General Description

The LM1524D family is an improved version of the industry standard LM1524. It has improved specifications and additional features yet is pin for pin compatible with existing 1524 families. New features reduce the need for additional external circuitry often required in the original version.
The LM1524D has a $\pm 1 \%$ precision 5 V reference. The current carrying capability of the output drive transistors has been raised to 200 mA while reducing $\mathrm{V}_{\text {CEsat }}$ and increasing $\mathrm{V}_{\text {CE }}$ breakdown to 60 V . The common mode voltage range of the error-amp has been raised to 5.5 V to eliminate the need for a resistive divider from the 5 V reference.
In the LM1524D the circuit bias line has been isolated from the shut-down pin. This prevents the oscillator pulse amplitude and frequency from being disturbed by shut-down. Also at high frequencies ($\cong 300 \mathrm{kHz}$) the max. duty cycle per output has been improved to 44% compared to 35% max. duty cycle in other 1524s.
In addition, the LM1524D can now be synchronized externally, through pin 3. Also a latch has been added to insure
one pulse per period even in noisy environments. The LM1524D includes double pulse suppression logic that insures when a shut-down condition is removed the state of the T-flip-flop will change only after the first clock pulse has arrived. This feature prevents the same output from being pulsed twice in a row, thus reducing the possibility of core saturation in push-pull designs.

Features

- Fully interchangeable with standard LM1524 family

■ $\pm 1 \%$ precision 5 V reference with thermal shut-down

- Output current to 200 mA DC
- 60 V output capability
- Wide common mode input range for error-amp

■ One pulse per period (noise suppression)

- Improved max. duty cycle at high frequencies
- Double pulse suppression
- Synchronize through pin 3

Block Diagram

Absolute Maximum Ratings (Note 5)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avaliability and specifications.
Supply Voltage
40 V
Collector Supply Voltage

(LM1524D)	60 V
(LM2524D)	55 V
(LM3524D)	40 V
Output Current DC (each)	200 mA
Oscillator Charging Current (Pin 7)	5 mA
Internal Power Dissipation	1 W

Operating Junction Temperature Range J Package (Note 2) $\begin{array}{ll}\text { LM1524D } & -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { LM2524D } & -40^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}\end{array}$
Operating Maximum Junction Temperature N Package (Note 2)

LM2524D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM3524D	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec.$) \mathrm{J} \mathrm{Pkg}$.	$260^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

			LM1524D			LM2524D			LM3524D			Units
Symbol	Parameter	Conditions	Typ		Design Limit (Note 4)	Typ		Design Limit (Note 4)	Typ		Design Limit (Note 4)	

REFERENCE SECTION

$V_{\text {REF }}$	Output Voltage		5	$\begin{aligned} & 4.95 \\ & 4.90 \end{aligned}$		5	4.85	4.80	5	4.75		$V_{\text {Min }}$
				$\begin{array}{r} 5.05 \\ 5.10 \end{array}$			5.15	5.20		5.25		$\mathrm{V}_{\text {Max }}$
$\mathrm{V}_{\text {RLine }}$	Line Regulation	$\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$ to 40 V	10	20		10	15	30	10	25	50	$m V_{\text {Max }}$
$\mathrm{V}_{\text {RLoad }}$	Load Regulation	$\mathrm{L}=0 \mathrm{~mA}$ to 20 mA	5	15		10	15	25	10	25	50	$\mathrm{mV}_{\text {Max }}$
$\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{~V}_{\mathrm{REF}}}$	Ripple Rejection	$f=120 \mathrm{~Hz}$	66			66			66			dB
los	Short Circuit Current	$\mathrm{V}_{\text {REF }}=0$	50	$\begin{aligned} & 25 \\ & 150 \end{aligned}$		50	$\begin{array}{r} 25 \\ 180 \end{array}$		50	$\begin{array}{r} 25 \\ 200 \\ \hline \end{array}$		mA Min mA Max
No	Output Noise	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	40		100	40		100	40		100	$\mu \mathrm{V}_{\text {rms Max }}$
	Long Term Stability	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	20			20			20			mV/kHr

OSCILLATOR SECTION

fosc	Max. Freq.	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=1 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F} \\ & (\text { Note 7) } \end{aligned}$	550		500	550		500	350		$\mathrm{kHz}_{\text {Min }}$
fosc	Initial Accuracy	$\begin{aligned} & \mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F} \\ & \text { (Note 7) } \end{aligned}$	20	$\begin{aligned} & 18.5 \\ & 21.5 \end{aligned}$		20	$\begin{aligned} & 17.5 \\ & 22.5 \end{aligned}$		20	$\begin{aligned} & 17.5 \\ & 22.5 \end{aligned}$	$\begin{aligned} & \mathrm{kHz}_{\text {Min }} \\ & \mathrm{kHz}_{\text {Max }} \end{aligned}$
		$\mathrm{R}_{\mathrm{T}}=2.7 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$ (Note 7)	38	$\begin{array}{r} 36 \\ 40 \end{array}$		38	34 42		38	30 46	$\begin{aligned} & \mathrm{kHz}_{\text {Min }} \\ & \mathrm{kHz}_{\text {Max }} \end{aligned}$
$\Delta \mathrm{fosc}$	Freq. Change with V_{IN}	$\mathrm{V}_{\mathrm{IN}}=8$ to 40 V	0.5	1		0.5	1		0.5	1.0	$\%_{\text {Max }}$
$\Delta \mathrm{fosc}$	Freq. Change with Temp.	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \text { at } 20 \mathrm{kHz} \mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F} \end{aligned}$	5			5			5		\%
Vosc	Output Amplitude (Pin 3) (Note 8)	$\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$	3	2.4		3	2.4		3	2.4	$V_{\text {Min }}$
tpW	Output Pulse Width (Pin 3)	$\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$	0.5	1.5		0.5	1.5		0.5	1.5	$\mu \mathrm{S}_{\text {Max }}$

Electrical Characteristics (Continued)

			LM1524D			LM2524D			LM3524D			Units
Symbol	Parameter	Conditions	Typ	Tested Limit (Note 3)	Design Limit (Note 4)	Typ			Typ	Tested Limit (Note 3)	Design Limit (Note 4)	

OSCILLATOR SECTION (Continued)

| Sawtooth Peak
 Voltage | $\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{~K}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$ | 3.4 | 3.6 | | 3.4 | 3.6 | 3.8 | | 3.8 | | $\mathrm{~V}_{\mathrm{Max}}$ |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sawtooth Valley
 Voltage | $\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{~K}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}$ | 1.1 | 0.8 | | 1.1 | 0.8 | 0.6 | | 0.6 | . | $\mathrm{~V}_{\mathrm{Min}}$ |

ERROR-AMP SECTION

V_{10}	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$	0.5	5		2	8	10	2	10		$m \mathrm{~V}_{\text {Max }}$
IIB	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$	1	5		1	8	10	1.	10		$\mu A_{\text {Max }}$
10	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$	0.5	1		0.5	1.0	1	0.5	1		$\mu A_{\text {Max }}$
ICOSI	Compensation Current (Sink)	$\mathrm{V}_{\mathbf{I N}(\mathrm{I})}-\mathrm{V}_{\mathrm{IN}(\mathrm{NI})}=150 \mathrm{mV}$	95	75 115		95	$\begin{array}{r} 65 \\ 125 \end{array}$		95	$\begin{array}{r} 65 \\ 125 \\ \hline \end{array}$		$\mu \mathrm{A}_{\text {Min }}$ $\mu A_{\text {Max }}$
I'coso	Compensation Current (Source)	$\mathrm{V}_{\mathbf{I N (N I)}}-\mathrm{V}_{\mathrm{IN}(\mathrm{I})}=150 \mathrm{mV}$	-95	$\begin{aligned} & -115 \\ & -75 \end{aligned}$		-95	$\begin{array}{r} -125 \\ -65 \\ \hline \end{array}$		-95	$\begin{aligned} & -125 \\ & -65 \end{aligned}$		$\mu A_{\text {Min }}$ $\mu A_{\text {Max }}$
Avol	Open Loop Gain	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$	80	74		80	74	60	80	70	60	$\mathrm{dB}_{\text {Min }}$
VCMR	Common Mode Input Voltage Range			$\begin{array}{r} 1.5 \\ 5.5 \\ \hline \end{array}$			$\begin{aligned} & 1.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 1.4 \\ 5.4 \\ \hline \end{array}$		$\begin{aligned} & 1.5 \\ & 5.5 \\ & \hline \end{aligned}$		$V_{\text {Min }}$ $V_{\text {Max }}$
CMRR	Common Mode Rejection Ratio		90	80		90	80		90	70		$\mathrm{dB}_{\text {Min }}$
G_{BW}	Unity Gain Bandwidth	$A^{\text {VOL }}=0 \mathrm{~dB}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}$	3			3			2			MHz
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=\infty$		$\begin{aligned} & 0.5 \\ & 5.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 5.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 5.5 \\ & \hline \end{aligned}$		$\mathrm{V}_{\text {Min }}$ $V_{\text {Max }}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}=8$ to 40 V	80		76	80		70	80	65		$\mathrm{db}_{\text {Min }}$

$\frac{\operatorname{ton}}{\operatorname{tosc}}$	Minimum Duty Cycle	$\begin{aligned} & \operatorname{Pin} 9=0.8 \mathrm{~V}, \\ & {\left[\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}\right]} \end{aligned}$	0	0	0	0		0	0	"	$\%_{\text {Max }}$
$\frac{t_{0 N}}{t_{\text {OsC }}}$	Maximum Duty Cycle	$\begin{aligned} & \operatorname{Pin} 9=3.9 \mathrm{~V} \\ & {\left[\mathrm{R}_{\mathrm{T}}=5.6 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}\right]} \\ & \hline \end{aligned}$	49	47	49	45		49	45		$\%_{\text {Min }}$
$\frac{\operatorname{ton}}{\operatorname{tosc}}$	Maximum Duty Cycle	$\begin{aligned} & \operatorname{Pin} 9=3.9 \mathrm{~V} \\ & {\left[R_{T}=1 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}\right]} \end{aligned}$	44	40	44	35		44	35		$\%_{\text {Min }}$
$\mathrm{V}_{\text {COMPZ }}$	$\begin{aligned} & \text { Input Threshold } \\ & (\operatorname{Pin} 9) \end{aligned}$	Zero Duty Cycle	1		1			1			V
$\mathrm{V}_{\text {COMPM }}$	Input Threshold (Pin 9)	Maximum Duty Cycle	3.5		3.5			3.5			V
IIB	Input Bias Current		-1		-1			-1			$\mu \mathrm{A}$

Electrical Characteristics (Continued)

			LM1524D			LM2524D			LM3524D			Units
Symbol	Parameter	Conditions	Typ	Tested Limit (Note 3)	Design Limit (Note 4)	Typ		Design Limit (Note 4)	Typ			

CURRENT LIMIT SECTION

$\mathrm{V}_{\text {SEN }}$	Sense Voltage	$\mathrm{V}_{(\text {Pin 2) }}-\mathrm{V}_{\text {(Pin 1) }} \geq$ 150 mV	200	190 210		200	180		200	180		$\mathrm{mV}_{\text {Min }}$
2200												

SHUT DOWN SECTION
$\left.\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l}\hline \mathrm{V}_{\mathrm{SD}} & \begin{array}{l}\text { High Input } \\ \text { Voltage }\end{array} & \begin{array}{l}\mathrm{V}_{(\text {Pin 2) }}-\mathrm{V}_{\text {(Pin 1) }} \geq \\ 150 \mathrm{mV}\end{array} & 1 & \begin{array}{l}0.5 \\ 1.5\end{array} & & 1 & 0.5 \\ 1.5\end{array}\right)$

OUTPUT SECTION (EACH OUTPUT)

$\mathrm{V}_{\text {CES }}$	Collector Emitter Voltage Breakdown	$\mathrm{lc} \leq 100 \mu \mathrm{~A}$		60		55		40	$V_{\text {Min }}$
ICES	Collector Leakage Current	$\mathrm{V}_{\text {CE }}=60 \mathrm{~V}$	0.1	50					$\mu A_{\text {Max }}$
		$\mathrm{V}_{\text {CE }}=55 \mathrm{~V}$			0.1	50			
		$\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}$					0.1	50	
$\mathrm{V}_{\text {CESAT }}$	Saturation Voltage	$\mathrm{I}_{\mathrm{E}}=20 \mathrm{~mA}$	0.2	0.4	0.2	0.5	0.2	0.7	$\mathrm{V}_{\text {Max }}$
		$\mathrm{l}_{\mathrm{E}}=200 \mathrm{~mA}$	1.5	2.2	1.5	2.2	1.5	2.5	
$V_{E O}$	Emitter Output Voltage	$\mathrm{I}_{\mathrm{E}}=50 \mathrm{~mA}$	18	17	18	17	18	17	$\mathrm{V}_{\text {Min }}$
t_{R}	Rise Time	$\begin{aligned} & \mathrm{V}_{I N}=20 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{E}}=-250 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{C}}=2 \mathrm{k} \end{aligned}$	200		200		200		ns
$\mathrm{t}_{\text {F }}$	Fall Time	$\mathrm{R}_{\mathrm{C}}=2 \mathrm{k}$	100		100		100		ns

SUPPLY CHARACTERISTICS SECTION

V_{IN}	Input Voltage Range	After Turn-on		8 40			8 40			8 40		$\mathrm{V}_{\text {Min }}$ $\mathrm{V}_{\text {Max }}$
T	Thermal Shutdown Temp.	(Note 2)	160			160			160			${ }^{\circ} \mathrm{C}$
$\mathbb{I N}_{\mathbb{N}}$	Stand By Current	$\mathrm{V}_{\mathbb{I N}}=40 \mathrm{~V}$ (Note 6)	5	10		5	10		5	10		mA

Note 1: Unless otherwise stated, these specifications apply for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface numbers apply over the rated temperature range: LM1524D is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, LM2524D is -40° to $85^{\circ} \mathrm{C}$ and LM3524D is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$ and fosc $=20 \mathrm{kHz}$.
Note 2: For operation at elevated temperatures, devices in the J package must be derated based on a thermal resistance of $132^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, and devices in the N package must be derated based on a thermal resistance of $86^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: Tested limits are guaranteed and 100% tested in production.
Note 4: Design limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage range. These limits are not used to calculate outgoing quality level.
Note 5: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 6: Pins 1, 4, 7, 8, 11, and 14 are grounded; Pin $2=2$ V. All other inputs and outputs open.
Note 7: The value of a C_{t} capacitor can vary with frequency. Careful selection of this capacitor must be made for high frequency operation. Polystyrene was used in this test. NPO ceramic or polypropylene can also be used.
Note 8: OSC amplitude is measured open circuit. Available current is limited to 1 mA so care must be exercised to limit capacitive loading of fast pulses.

Typical Performance Characteristics

Output Transistor Saturation Voltage

Switching Transistor Peak Output Current vs Temperature

Reference Transistor Peak Output Current

Current Limit Sense Voltage

Test Circuit

Functional Description

INTERNAL VOLTAGE REGULATOR

The LM1524D has an on-chip 5V, 50 mA , short circuit protected voltage regulator. This voltage regulator provides a supply for all internal circuitry of the device and can be used as an external reference.

For input voltages of less than 8 V the 5 V output should be shorted to pin $15, \mathrm{~V}_{\mathrm{IN}}$, which disables the 5 V regulator. With these pins shorted the input voltage must be limited to a maximum of 6 V . If input voltages of $6 \mathrm{~V}-8 \mathrm{~V}$ are to be used, a pre-regulator, as shown in Figure 1, must be added.

TL/H/8650-10
*Minimum C_{O} of $10 \mu \mathrm{~F}$ required for stability.
FIGURE 1

OSCILLATOR

The LM1524D provides a stable on-board oscillator. Its frequency is set by an external resistor, $\mathrm{R}_{\boldsymbol{T}}$ and capacitor, C_{T}. A graph of R_{T}, C_{T} vs oscillator frequency is shown is Figure 2. The oscillator's output provides the signals for triggering an internal flip-flop, which directs the PWM information to the outputs, and a blanking pulse to turn off both outputs during transitions to ensure that cross conduction does not occur. The width of the blanking pulse, or dead time, is controlled by the value of C_{T}, as shown in Figure 3. The recommended values of R_{T} are $1.8 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$, and for C_{T}, $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$.

If two or more LM1524D's must be synchronized together, the easiest method is to interconnect all pin 3 terminals, tie all pin 7's (together) to a single C_{T}, and leave all pin 6's open except one which is connected to a single R_{T}. This method works well unless the LM1524D's are more than 6" apart.
A second synchronization method is appropriate for any circuit layout. One LM1524D, designated as master, must have its $\mathrm{R}_{T} \mathrm{C}_{\mathrm{T}}$ set for the correct period. The other slave LM1524D(s) should each have an $R_{T} C_{T}$ set for a 10% longer period. All pin 3's must then be interconnected to allow the master to properly reset the slave units.
The oscillator may be synchronized to an external clock source by setting the internal free-running oscillator frequency 10% slower than the external clock and driving pin 3 with a pulse train (approx. 3V) from the clock. Pulse width should be greater than 50 ns to insure full synchronization.

TL/H/8650-5
FIGURE 2

Functional Description (Continued)

TL/H/8650-6
FIGURE 3

ERROR AMPLIFIER

The error amplifier is a differential input, transconductance amplifier. Its gain, nominally 86 dB , is set by either feedback or output loading. This output loading can be done with either purely resistive or a combination of resistive and reactive components. A graph of the amplifier's gain vs output load resistance is shown in Figure 4.

The output of the amplifier, or input to the pulse width modulator, can be overridden easily as its output impedance is very high ($Z_{0} \cong 5 \mathrm{M} \Omega$). For this reason a DC voltage can be applied to pin 9 which will override the error amplifier and force a particular duty cycle to the outputs. An example of this could be a non-regulating motor speed control where a variable voltage was applied to pin 9 to control motor speed. A graph of the output duty cycle vs the voltage on pin 9 is shown in Figure 5.

The duty cycle is calculated as the percentage ratio of each output's ON-time to the oscillator period. Paralleling the outputs doubles the observed duty cycle.

The amplifier's inputs have a common-mode input range of $1.5 \mathrm{~V}-5.5 \mathrm{~V}$. The on board regulator is useful for biasing the inputs to within this range.

CURRENT LIMITING

The function of the current limit amplifier is to override the error amplifier's output and take control of the pulse width. The output duty cycle drops to about 25% when a current limit sense voltage of 200 mV is applied between the $+\mathrm{C}_{\mathrm{L}}$ and $-C_{L}$ sense terminals. Increasing the sense voltage approximately 5% results in a 0% output duty cycle. Care should be taken to ensure the -0.7 V to +1.0 V input com-mon-mode range is not exceeded.

OUTPUT STAGES

The outputs of the LM1524D are NPN transistors, capable of a maximum current of 200 mA . These transistors are driven 180° out of phase and have non-committed open collectors and emitters as shown in Figure 6.

FIGURE 6

Typical Applications

Design Equations
$R_{F}=5 k\left(\frac{V_{0}}{2.5}-1\right)$
fosc $\approx \frac{1}{R_{T} C_{T}}$
$L 1=\frac{2.5 \mathrm{~V}_{I N^{2}}\left(\mathrm{~V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{IN}}\right)}{f_{\mathrm{OSC}} \mathrm{l}_{0} \mathrm{~V}_{\mathrm{O}}^{2}}$
$C_{0}=\frac{I_{0}\left(V_{0}-V_{I N}\right)}{f_{\mathrm{OSc}} \Delta V_{0} V_{0}}$
$I_{O(\text { MAX })}=I_{I N} \frac{V_{I N}}{V_{0}}$

TL/H/8650-11
FIGURE 7. Positive Regulator, Step-Up Basic Configuration (IIN(MAX) $=\mathbf{8 0} \mathbf{m A})$

FIGURE 8. Positive Regulator, Step-Up Boosted Current Configuration

FIGURE 9. Positive Regulator, Step-Down Basic Configuration (IN(MAX) $=\mathbf{8 0} \mathbf{m A}$)

TL/H/8650-14
FIGURE 10. Positive Regulator, Step-Down Boosted Current Configuration

Typical Applications (Continued)

FIGURE 11. Boosted Current Polarity Inverter

BASIC SWITCHING REGULATOR THEORY AND APPLICATIONS

The basic circuit of a step-down switching regulator circuit is shown in Figure 12, along with a practical circuit design using the LM3524D in Figure 15.

The circuit works as follows: Q1 is used as a switch, which has ON and OFF times controlled by the pulse width modulator. When Q1 is ON, power is drawn from $\mathrm{V}_{\mathbb{I N}}$ and supplied to the load through L1; V_{A} is at approximately $\mathrm{V}_{\mathrm{I}}, \mathrm{D} 1$ is reverse biased, and C_{0} is charging. When Q1 turns OFF the inductor L1 will force V_{A} negative to keep the current flowing in it, D1 will start conducting and the load current will flow through D1 and L1. The voltage at V_{A} is smoothed by the L1, C_{0} filter giving a clean DC output. The current flowing through L1 is equal to the nominal DC load current plus some $\Delta l_{I L}$ which is due to the changing voltage across it. A good rule of thumb is to set $\Delta / L_{p . p} \cong 40 \% \times I_{0}$.

FIGURE 12. Basic Step-Down Switching Regulator

FIGURE 13

Typical Applications (Continued)

From the relation $\mathrm{V}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{d}_{\mathrm{i}}}{d_{\mathrm{t}}}, \Delta \mathrm{I}_{\mathrm{L}} \cong \frac{\mathrm{V}_{\mathrm{L}} T}{\mathrm{~L} 1}$

$$
\Delta L_{\mathrm{L}}+=\frac{\left(V_{\mathbb{I N}}-V_{0}\right) t_{\mathrm{ON}}}{\mathrm{~L} 1} ; \Delta \mathrm{L}^{-}=\frac{V_{0} t_{\text {OFF }}}{\mathrm{L} 1}
$$

Neglecting $\mathrm{V}_{\mathrm{SAT}}, \mathrm{V}_{\mathrm{D}}$, and settling $\Delta \mathrm{I}_{\mathrm{L}}{ }^{+}=\Delta \mathrm{I}_{\mathrm{L}}{ }^{-}$;

$$
\mathrm{V}_{\mathrm{O}} \cong \mathrm{~V}_{\mathrm{IN}}\left(\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{OFF}}+\mathrm{t}_{\mathrm{ON}}}\right)=\mathrm{V}_{\mathrm{IN}}\left(\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{~T}}\right) ;
$$

where $\mathbf{T}=$ Total Period
The above shows the relation between $\mathrm{V}_{\mathbb{N}}, \mathrm{V}_{\mathrm{O}}$ and duty cycle.

$$
\operatorname{lin}_{\mathrm{IN}(\mathrm{DC})}=\mathrm{I}_{\mathrm{OUT}(\mathrm{DC})}\left(\frac{t_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}}\right)
$$

as Q1 only conducts during toN.

$$
\begin{gathered}
P_{I N}=I_{I N(D C)} V_{I N}=\left(I_{O(D C)}\right)\left(\frac{t_{O N}}{t_{O N}+t_{O F F}}\right) V_{I N} \\
P_{O}=I_{0} V_{0}
\end{gathered}
$$

The efficiency, η, of the circuit is:

$$
\begin{aligned}
\eta_{\text {MAX }} & =\frac{P_{0}}{P_{I N}}=\frac{I_{0} V_{0}}{I_{0} \frac{\left(t_{O N}\right)}{T} V_{I N}+\frac{\left(V_{S A T} t_{O N}+V_{D 1} t_{O F F}\right)}{T} I_{0}} \\
& =\frac{V_{0}}{V_{0}+1} \text { for } V_{S A T}=V_{D 1}=1 V .
\end{aligned}
$$

η MAX will be further decreased due to switching losses in Q1. For this reason Q1 should be selected to have the maximum possible f_{T}, which implies very fast rise and fall times.

CALCULATING INDUCTOR L1

$$
\begin{aligned}
t_{O N} \cong & \frac{\left(\Delta I_{L}+\right) \times L 1}{\left(V_{I N}-V_{0}\right)}, t_{\text {OFF }}=\frac{\left(\Delta I_{L}-\right) \times L 1}{V_{0}} \\
t_{O N}+t_{O F F}=T & =\frac{\left(\Delta I_{L}+\right) \times L 1}{\left(V_{I N}-V_{Q}\right)}+\frac{\left(\Delta I_{L}-\right) \times L 1}{V_{0}} \\
& =\frac{0.4 I_{0} L 1}{\left(V_{I N}-V_{0}\right)}+\frac{0.4 I_{0} L 1}{V_{0}}
\end{aligned}
$$

Since $\Delta I_{L}{ }^{+}=\Delta I^{-}{ }^{-}=0.4 I_{0}$

Solving the above for L 1

$$
L 1=\frac{2.5 V_{0}\left(V_{I N}-V_{0}\right)}{I_{0} V_{I N} f}
$$

where: L1 is in Henrys
f is switching frequency in Hz
Also, see LM1578 data sheet for graphical methods of inductor selection.

CALCULATING OUTPUT FILTER CAPACITOR C_{0} :

Figure 14 shows L1's current with respect to Q1's toN and toff times. This curent must flow to the load and C_{o}. C_{o} 's current will then be the difference between I_{L}, and I_{0}.

$$
I c_{0}=I_{L}-I_{0}
$$

From Figure 14 it can be seen that current will be flowing into C_{0} for the second half of $t_{O N}$ through the first half of $t_{\text {OFF }}$, or a time, $t_{\text {ON }} / 2+t_{\text {OFF }} / 2$. The current flowing for this time is $\Delta I_{L} / 4$. The resulting ΔV_{C} or ΔV_{o} is described by:

$$
\begin{aligned}
& \Delta V_{\text {Op-p }}=\frac{1}{\mathrm{C}} \times \frac{\Delta I_{\mathrm{L}}}{4} \times\left(\frac{t_{\text {ON }}}{2}+\frac{t_{\text {OFF }}}{2}\right) \\
&=\frac{\Delta I_{\mathrm{L}}}{4 \mathrm{C}}\left(\frac{t_{\mathrm{ON}}+t_{\text {OFF }}}{2}\right) \\
& \text { Since } \Delta I_{\mathrm{L}}=\frac{V_{0}\left(T-t_{\mathrm{ON}}\right)}{\mathrm{L1}} \text { and } t_{\mathrm{ON}}=\frac{V_{0} T}{V_{I N}} \\
& \Delta V_{\text {OP-p }}=\frac{V_{0}\left(T-\frac{V_{0} T}{V_{I N}}\right)}{4 C L 1}\left(\frac{T}{2}\right)=\frac{\left(V_{I N}-V_{0}\right) V_{0} T^{2}}{8 V_{I N} C_{0} L 1} \text { or } \\
& C_{0}=\frac{\left(V_{I N}-V_{0}\right) V_{0} T^{2}}{8 \Delta V_{0} V_{I N} L 1}
\end{aligned}
$$

where: C is in farads, T is $\frac{1}{\text { switching frequency }}$

$$
\Delta V_{0} \text { is p-p output ripple }
$$

For best regulation, the inductor's current cannot be allowed to fall to zero. Some minimum load current I_{0}, and thus inductor current, is required as shown below:

$$
\mathrm{I}_{\mathrm{O}(\mathrm{MIN})}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{0}\right) \mathrm{t}_{\mathrm{ON}}}{2 \mathrm{~L} 1}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{0}\right) \mathrm{V}_{0}}{2 \mathrm{FV}_{\mathrm{IN}} \mathrm{~L} 1}
$$

 TL/H/8650-19

Typical Applications (Continued)

A complete step-down switching regulator schematic, using the LM3524D, is illustrated in Figure 15. Transistors Q1 and Q2 have been added to boost the output to 1 A . The 5 V regulator of the LM3524D has been divided in half to bias the error amplifier's non-inverting input to within its com-mon-mode range. Since each output transistor is on for half the period, actually 45%, they have been paralleled to allow longer possible duty cycle, up to 90%. This makes a lower possible input voltage. The output voltage is set by:
where V_{NI} is the voltage at the error amplifier's non-inverting input.
Resistor R3 sets the current limit to:

$$
\frac{200 \mathrm{mV}}{\mathrm{R} 3}=\frac{200 \mathrm{mV}}{0.15}=1.3 \mathrm{~A} .
$$

Figure 16 and 17 show a PC board layout and stuffing diagram for the 5V, 1A regulator of Figure 15. The regulator's performance is listed in Table I.

$$
\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{NI}}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

Typical Applications (Continued)
TABLE I

Parameter	Conditions	Typical Characteristics
Output Voltage	$\mathrm{V}_{\mathbb{I N}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	5 V
Switching Frequency	$\mathrm{V}_{\mathbb{I N}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	20 kHz
Short Circuit	$\mathrm{V}_{\mathbb{I N}}=10 \mathrm{~V}$	1.3 A
Current Limit	$\mathrm{V}_{\mathbb{I N}}=10 \mathrm{~V}$	
Load Regulation	$\mathrm{I}_{\mathrm{O}}=0.2-1 \mathrm{~A}$	3 mV
Line Regulation	$\Delta \mathrm{V}_{\mathbb{I N}}=10-20 \mathrm{~V}$,	6 mV
	$\mathrm{f}_{\mathrm{O}}=1 \mathrm{~A}$	80%
Efficiency	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	80
Output Ripple	$\mathrm{V}_{\mathbb{I}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	$10 \mathrm{mVp}-\mathrm{p}$

FIGURE 16. 5V, 1 Amp Switching Regulator, Foil Side

TL/H/8650-22
FIGURE 17. Stuffing Diagram, Component Side

Typical Applications (Continued)

THE STEP-UP SWITCHING REGULATOR

Figure 18 shows the basic circuit for a step-up switching regulator. In this circuit Q1 is used as a switch to alternately apply $\mathrm{V}_{\mathbb{I N}}$ across inductor L1. During the time, toN, Q1 is ON and energy is drawn from $\mathrm{V}_{\mathbb{I}}$ and stored in L1; D1 is reverse biased and I_{0} is supplied from the charge stored in C_{0}. When Q1 opens, toff, voltage V1 will rise positively to the point where D1 turns ON. The output current is now supplied through L1, D1 to the load and any charge lost from C_{0} during $t_{O N}$ is replenished. Here also, as in the step-down regulator, the current through L1 has a DC component plus some $\Delta I_{L} . \Delta I_{L}$ is again selected to be approximately 40% of I_{L}. Figure 19 shows the inductor's current in relation to Q1's ON and OFF times.

TL/H/8650-23
FIGURE 18. Basic Step-Up Switching Regulator

FIGURE 19

Typical Applications (Continued)

From $\Delta I_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{L}} \mathrm{T}}{\mathrm{L}}, \Delta \mathrm{I}_{\mathrm{L}}+\cong \frac{\mathrm{V}_{\mathrm{IN}}{ }^{t} \mathrm{ON}}{\mathrm{L} 1}$
and $\Delta I_{L}-\cong \frac{\left(V_{0}-V_{I N}\right) t_{\text {OFF }}}{L 1}$
Since $\Delta I_{L}+=\Delta I_{L}^{-}, V_{I N}{ }^{+}{ }^{+}=V_{0 N} t_{\text {OFF }}-V_{I_{N}}{ }^{\text {tOFF }}$, and neglecting $V_{S A T}$ and $V_{D 1}$

$$
\mathrm{v}_{0} \cong \mathrm{~V}_{\mathrm{IN}}\left(1+\frac{\mathrm{t}_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{OFF}}}\right)
$$

The above equation shows the relationship between $\mathrm{V}_{\mathbf{I N}}, \mathrm{V}_{0}$ and duty cycle.
In calculating input current $l_{\mathbb{N}(D C)}$, which equals the inductor's DC current, assume first 100\% efficiency:

$$
\begin{gathered}
P_{\text {IN }}=I_{\mathbb{N}(D C)} V_{I N} \\
P_{\text {OUT }}=I_{0} V_{O}=I_{0} V_{I N}\left(1+\frac{t_{O N}}{t_{\text {OFF }}}\right)
\end{gathered}
$$

for $\eta=100 \%$, POUT $=P_{\text {IN }}$

$$
\begin{gathered}
I_{0} V_{I N}\left(1+\frac{t_{O N}}{t_{O F F}}\right)=I_{I N(D C)} V_{I N} \\
I_{I N(D C)}=I_{0}\left(1+\frac{t_{O N}}{t_{O F F}}\right)
\end{gathered}
$$

This equation shows that the input, or inductor, current is larger than the output current by the factor ($1+\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$). Since this factor is the same as the relation between V_{0} and $\mathrm{V}_{\mathbb{N}}, \operatorname{l}_{\mathbb{N}(\mathrm{DC})}$ can also be expressed as:

$$
\operatorname{IIN(DC)}=I_{0}\left(\frac{V_{0}}{V_{I N}}\right)
$$

So far it is assumed $\eta=100 \%$, where the actual efficiency or $\eta_{\text {MAX }}$ will be somewhat less due to the saturation voltage of Q1 and forward on voltage of D1. The internal power loss due to these voltages is the average I_{L} current flowing, or $I_{\mathbb{N}}$, through either $V_{S A T}$ or $V_{D 1}$. For $V_{S A T}=V_{D 1}=1 V$ this power loss becomes $\operatorname{liN}_{\mathrm{N}(\mathrm{DC})}(1 \mathrm{~V})$. η_{MAX} is then:

$$
\Delta_{M A X}=\frac{P_{0}}{P_{I N}}=\frac{V_{0} l_{0}}{V_{0} I_{0}+l_{I N}(1 V)}=\frac{V_{0} l_{0}}{V_{0} l_{0}+I_{0}\left(1+\frac{t_{O N}}{t_{O F F}}\right)}
$$

From $V_{O}=v_{I N}\left(1+\frac{t_{O N}}{t_{O F F}}\right)$

$$
\eta_{\max }=\frac{V_{I N}}{V_{I N}+1}
$$

This equation assumes only DC losses, however η_{MAX} is further decreased because of the switching time of Q1 and D1.
In calculating the output capacitor C_{0} it can be seen that C_{0} supplies I_{0} during toN. The voltage change on C_{0} during this time will be some $\Delta \mathrm{V}_{\mathrm{c}}=\Delta \mathrm{V}_{\mathrm{o}}$ or the output ripple of the regulator. Calculation of C_{0} is:

$$
\Delta V_{0}=\frac{l_{0} t O N}{C_{0}} \text { or } C_{0}=\frac{l_{0} t_{O N}}{\Delta V_{0}}
$$

From $V_{O}=V_{I N}\left(\frac{T}{\text { toFF }}\right) ;$ tOFF $=\frac{V_{I N}}{V_{0}} T$
where $T=t_{\text {ON }}+t_{\text {OFF }}=\frac{1}{f}$

$$
\begin{gathered}
\mathrm{t}_{\mathrm{ON}}=\mathrm{T}-\frac{\mathrm{V}_{I N}}{V_{0}} T=T\left(\frac{V_{0}-V_{I N}}{V_{0}}\right) \text { therefore: } \\
\mathrm{C}_{0}=\frac{\mathrm{I}_{0} T\left(\frac{V_{0}-V_{I N}}{V_{0}}\right)}{\Delta V_{0}}=\frac{I_{0}\left(V_{0}-V_{I N}\right)}{f \Delta V_{0} V_{0}}
\end{gathered}
$$

where: C_{0} is in farads, f is the switching frequency,

$$
\Delta V_{O} \text { is the p-p output ripple }
$$

Calculation of inductor L1 is as follows:

$$
\mathrm{L} 1=\frac{\mathrm{V}_{\mathrm{IN}^{+}} \mathrm{ON}}{\left.\Delta\right|_{\mathrm{L}}{ }^{+}} \text {, since during } \mathrm{tON}_{\mathrm{O}}
$$

V_{IN} is applied across L1

$$
\begin{gathered}
\Delta I_{\text {Lp-p }}=0.4 I_{L}=0.41 \mathrm{I}_{\mathrm{IN}}=0.4 \mathrm{I}_{0}\left(\frac{V_{0}}{V_{I N}}\right), \text { therefore: } \\
L 1=\frac{V_{I N} t_{0 N}}{0.4 \mathrm{I}_{0}\left(\frac{V_{0}}{V_{I N}}\right)} \text { and since } t_{O N}=\frac{T\left(V_{0}-V_{I N}\right)}{V_{0}} \\
L 1=\frac{2.5 V_{I N}\left(V_{0}-V_{I N}\right)}{f I_{0} V_{0}{ }^{2}}
\end{gathered}
$$

where: L1 is in henrys, f is the switching frequency in Hz

Typical Applications (Continued)

To apply the above theory, a complete step-up switching regulator is shown in Figure 20. Since $\mathrm{V}_{\text {IN }}$ is $5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}$ is tied to V_{IN}. The input voltage is divided by 2 to bias the error amplifier's inverting input. The output voltage is:

$$
V_{\text {OUT }}=\left(1+\frac{R 2}{R 1}\right) \times V_{I N V}=2.5 \times\left(1+\frac{R 2}{R 1}\right)
$$

The network D1, C1 forms a slow start circuit.
This holds the output of the error amplifier initially low thus reducing the duty-cycle to a minimum. Without the slow start
circuit the inductor may saturate at turn-on because it has to supply high peak currents to charge the output capacitor from OV. It should also be noted that this circuit has no supply rejection. By adding a reference voltage at the noninverting input to the error amplifier, see Figure 21, the input voltage variations are rejected.
The LM3524D can also be used in inductorless switching regulators. Figure 22 shows a polarity inverter which if connected to Figure 20 provides a -15 V unregulated output.

TL/H/8650-25
L1 $=>25$ turns No. 24 wire on Ferroxcube No. K300502 Torroid core.
FIGURE 20. 15V, 0.5A Step-Up Switching Regulator

LL/H/8650-26
FIGURE 21

TL/H/8650-2
Top View
Order Number LM1524DJ, LM2524DN or LM3524DN
See NS Package Number J16A and N16A

National Semiconductor

LM1525A/LM3525A/LM1527A/LM3527A Pulse Width Modulator

General Description

The LM1525A/1527A series of pulse-width-modulator integrated circuits are designed to offer improved performance and lowered external parts count when used to implement all types of switching power supplies. The on-chip +5.1 V reference is trimmed to $\pm 1 \%$ initial accuracy, and the input common mode range of the error amplifier includes the reference voltage, eliminating external potentiometers and dividers. A Sync input to the oscillator permits multiple devices to be slaved together, or a single device to be synchronized to an external system clock. A single resistor between the C_{T} pin and the Discharge pin provides a wide range of deadtime adjustment. These devices also feature built-in soft-start circuitry with only a timing capacitor required externally. A Shutdown pin controls both the softstart circuitry and the output stages, providing instantaneous turn-off with soft-start recycle for slow turn-on. These functions are also controlled by an undervoltage lockout which keeps the outputs off and the soft-start capacitor discharged for input voltages less than that required for normal operation. The undervoltage lockout circuitry features approximately 200 mV of hysteresis to prevent threshold oscillations. Another unique feature of these improved PWM in-
tegrated circuits is the latch following the comparator (thus preventing double-pulsing). Once a PWM pulse has been terminated for any reason, the outputs will remain OFF for the duration of that period. The latch is reset with each clock pulse. The output stages are totem-pole designs capable of sourcing or sinking more than 200 mA . The LM1525A output stage features NOR logic, resulting in LOW outputs for an OFF stage. The LM1527A uses OR logic which results in HIGH outputs when OFF.

Features

- 8 to 35 V operation
- 5.1V reference trimmed to $\pm 1 \%$
- 100 Hz to 500 kHz oscillator range
- Separate oscillator sync terminal
- Adjustable deadtime control
- Internal soft-start
- Input undervoltage lockout with hysteresis
- Latching P.W.M. to prevent multiple pulses
- Dual source/sink output drivers

Block \& Connection Diagrams


```
Absolute Maximum Ratings (Note 7)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Input Voltage (Pins 13, and 15)
-0.3 V to +40 V
Reference Output Current (Pin 16)
Reference Output Short Circuit
Output Current (Pins 11, 14)
Oscillator Current (Pins 5, 6, 7) (Note 8)
    Op Amp Inputs: \(\mathrm{V}_{\mathrm{CM}}\)
    (Pins 1, 2) V VIFF
Logic Inputs
    50 mADC
    5 Seconds
    \(\pm 200 \mathrm{~mA}\)
    5 mADC
    -0.3 V to \(+\mathrm{V}_{\text {in }}\)
    \(\pm 6 \mathrm{~V}\)
```

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range ($\mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\max }$)

LM1525A, LM1527A	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
LM3525A, LM3527A	
Lead Temperature (Soldering, 4 Seconds)	$+300^{\circ} \mathrm{C}$
J Package	$+260^{\circ} \mathrm{C}$
N Package	1 Watt
Power Dissipation (Note 9)	
ESD Tolerance	
Czap $=100$ pF, Rzap $=1.5 \mathrm{k}$	2000 V

 LM3525A, LM3527A \(0^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
 Lead Temperature (Soldering, 4 Seconds)
J Package
$+300^{\circ} \mathrm{C}$
N Package $+260^{\circ} \mathrm{C}$
Power Dissipation (Note 9) 1 Watt
ESD Tolerance
Czap $=100$ pF, Rzap $=1.5 \mathrm{k}$
2000V

Electrical Characteristics

$V_{\text {in }}=20 \mathrm{~V}_{\text {dc }}$, Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Note 1), all other limits $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Parameter	Conditions	LM1525A LM1527A			LM3525A LM3527A			Units
		Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	

REFERENCE SECTION

$\left.\begin{array}{l|l|c|c|c|c|c|c|c} \\ \hline \text { Reference Voltage Output } & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} & 5.10 & 5.05 \\ 5.15\end{array}\right)$

OSCILLATOR SECTION (Note 4) Unless otherwise specified

Initial Accuracy	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	± 2	± 6		± 2	± 6		\%
Accuracy of Freq. vs. Temp.		± 3	± 8		± 3		± 10	\%
Voltage Stability	$8.0 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 35 \mathrm{~V}$	± 0.3	± 1		± 0.3	± 2	± 2	\%
Temperature Stability	$\Delta \mathrm{F}_{\text {osc }} / \mathrm{F}_{\text {osc }}$	± 3		± 6	± 3		± 6	\%
Minimum Frequency	$\begin{aligned} & R_{T}=300 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{R}_{\mathrm{D}}=0(\text { Note } 5) \end{aligned}$	70	100		70	90	100	Hz max
Maximum Frequency	$\begin{gathered} \mathrm{R}_{\mathrm{T}}=2.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \\ \mathrm{R}_{\mathrm{D}}=0 \end{gathered}$	450	400		450	430	400	kHz min
Current Mirror $\mathrm{I}_{\text {pin } 5}$	$\mathrm{I}_{\mathrm{RT}}=2.0 \mathrm{~mA}$	2.0	$\begin{aligned} & 1.7 \\ & 2.2 \end{aligned}$		2.0	$\begin{aligned} & 1.8 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.2 \\ & \hline \end{aligned}$	$\mathrm{mA}_{\text {min }}$ $\mathrm{mA}_{\text {max }}$
Clock Amplitude	At pin 4	3.5		3.0	3.5		3.0	$V_{\text {min }}$
Clock Width	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$	0.5		$\begin{aligned} & 1.0 \\ & 0.3 \end{aligned}$	0.5		$\begin{aligned} & 1.0 \\ & 0.3 \end{aligned}$	$\mu \mathrm{s}$ max μs min
Sync Threshold	(Note 6)	1.8	$\begin{aligned} & 1.2 \\ & 2.8 \\ & \hline \end{aligned}$		1.8	$\begin{gathered} 1.25 \\ 2.8 \end{gathered}$	$\begin{aligned} & 1.2 \\ & 2.8 \end{aligned}$	V min \checkmark max
Sync Input Current	Sync Voltage $=3.5 \mathrm{~V}$	1.0	2.5		1.0	2.30	2.5	$\mathrm{mA}_{\text {max }}$

Electrical Characteristics

$\mathrm{V}_{\text {in }}=20 \mathrm{~V}_{\mathrm{dc}}$, Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Note 1), all other limits $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Continued)

Parameter	Conditions	LM1525A LM1527A			LM3525A LM3527A			Units
		Typical	Tested Limit (Note 2)	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 3) } \end{array}$	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
ERROR AMPLIFIER SECTION $\mathrm{V}_{\mathrm{CM}}=5.1 \mathrm{~V}$, Unless otherwise noted								
Input Offset Voltage		0.5	5		2	7	10	mV max
Input Bias Current		1	10		1	2	10	$\mu A_{\text {max }}$
Input Offset Current		0.1	1		0.1	0.8	1	$\mu A_{\text {max }}$
DC Open Loop Gain	$R_{L} \geq 10 \mathrm{M} \Omega$	80	66		80	66	60	dB min
Gain Bandwidth Product	$\begin{aligned} & A_{V}=0, T_{j}=25^{\circ} \mathrm{C} \\ & C_{L} \leq 30 \mathrm{pF} \end{aligned}$	2		1	2		1	$\mathrm{MHz}_{\text {min }}$
Output Low Level		0.2	0.5		0.2	0.4	0.5	$\mathrm{V}_{\text {max }}$
Output High Level		5.6	3.8		5.6	4.1	3.8	$\mathrm{V}_{\text {min }}$
Common Mode Rejection	$V_{C M}=1.5 \mathrm{~V}$ to 5.2 V	80	66		80	70	66	dB min
Supply Voltage Rejection	$\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$ to 35V	90	60		90	64	60	dB min

P.W.M. COMPARATOR

Minimum Duty Cycle			$\mathbf{0}$			0	0	$\% \max$
Maximum Duty Cycle		49	$\mathbf{4 5}$		49	46	$\mathbf{4 5}$	$\% \mathrm{~min}$
Input Threshold	Zero Duty Cycle	0.9	$\mathbf{0 . 6}$		0.9	0.70	$\mathbf{0 . 6}$	$\mathrm{~V}_{\min }$
Input Threshold	Max. Duty Cycle	3.3	$\mathbf{3 . 6}$		3.3	3.6	$\mathbf{3 . 6}$	$V_{\max }$
Input Bias Current		0.05		$\mathbf{1 . 0}$	0.05		1.0	$\mu \mathrm{~A}_{\max }$

SOFT-START SECTION
$\left.\begin{array}{l|l|c|c|c|c|c|c|c}\hline \text { Soft Start Current } & V_{\text {SHUTDOWN }}=0 \mathrm{~V} & 50 & \mathbf{8 0} \\ \mathbf{2 5}\end{array}\right)$

OUTPUT DRIVERS (Each Output) $\mathrm{V}_{\mathrm{C}}=20 \mathrm{~V}$, Unless otherwise noted

Undervoltage Lockout Hysteresis	,	0.2			0.2			V
Output Low Level	$\mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$	0.2	0.4		0.2	0.35	0.4	$\mathrm{V}_{\text {max }}$
	$\operatorname{ISINK}=100 \mathrm{~mA}$	1.0	2.0		1.0	1.9	2.0	$\mathrm{V}_{\text {max }}$
Output High Level	ISOURCE $=20 \mathrm{~mA}$	19	18		19	18.2	18	$\mathrm{V}_{\text {min }}$
	$I_{\text {SOURCE }}=100 \mathrm{~mA}$	18	17		18	17.4	17	$\mathrm{V}_{\text {min }}$
Undervoltage Lockout	$\mathrm{V}_{\text {COMP }}$ and $\mathrm{V}_{\text {SS }}=$ High	7	$\begin{aligned} & 8 \\ & 6 \end{aligned}$		7	$\begin{aligned} & 7.7 \\ & 6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	$V_{\text {max }}$ $V_{\text {min }}$
Collector Leakage	LM1525A and LM3525A Only $V_{\mathrm{C}}=35 \mathrm{~V}$		200			120	200	$\mu A_{\text {max }}$
Rise Time	$C_{L}=1 \mathrm{nf}, \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	100		600	100		600	ns max
Fall Time	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nf}, \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	50		300	50		300	ns max

Electrical Characteristics

$\mathrm{V}_{\text {in }}=20 \mathrm{~V}_{\mathrm{dc}}$, Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ (Note 1), all other limits $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Continued)

Parameter	Conditions	LM1525A LM1527A			LM3525A LM3527A			Units
		Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
Shutdown Delay	$\begin{aligned} & V_{S D}=3 V, C_{L}=0, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	200		500	200		500	ns max
TOTAL STANDBY CURRENT								
Supply Current	$\mathrm{V}_{\text {IN }}=35 \mathrm{~V}$	13	18		13	14.5	20	mA

Note 1: Unless otherwise noted these specifications apply: $-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{j}}<+125^{\circ} \mathrm{C}$ for LM1525A and LM1527A, $0^{\circ} \mathrm{C}<\mathrm{T}_{j}<+125^{\circ} \mathrm{C}$ for LM 3525 A and LM 3527 A .
Note 2: Tested limits are guaranteed and 100% tested in production.
Note 3: Design limits are guaranteed (but not 100% production tested) over the indicated temperature and supply ranges.
Note 4: Tested at $\mathrm{F}_{\mathrm{osc}}=40 \mathrm{kHz}(\mathrm{Rt}=3.6 \mathrm{k}, \mathrm{Ct}=0.01 \mu \mathrm{~F}, \mathrm{Rd}=0)$.
Note 5: These specifications are also guaranteed with $\mathrm{Rt}=150 \mathrm{k}, \mathrm{Ct}=0.2 \mu \mathrm{~F}, \mathrm{Rd}=0$.
Note 6: Tested with a pulse of width 500 ns and amplitudes of 1.2 and 2.8 V at 50 kHz .
Note 7: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 1 and conditions.
Note 8: Do not ground pin 6.
Note 9: For operation at elevated temperatures, devices in the J package must be derated based on thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}$ (junction to ambient), or $85^{\circ} \mathrm{C} / \mathrm{W}$ in the N package.

SHUTDOWN OPTIONS (See Block Diagram)

1. Since both the compensation and soft-start terminals (pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of $100 \mu \mathrm{~A}$ to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.
2. An alternative approach is the use of the shutdown circuitry of pin 10. Activating this circuit by applying a posi-tive-going pulse at pin 10 will result in the output of the comparator going high, and thus turning off the outputs. The pulse will start the fast discharge of the soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus allowing, for example, a convenient implementation of pulse-by-pulse current limiting.

Holding pin 10 high for a long time will ultimately discharge the soft-start capacitor, thus recycling slow turn on upon release. This method of shutdown is the fastest shutdown possible.

SYNCHRONIZATION PROCEDURE

The device may be synchronized to an external clock; however the following points have to be observed: a) The frequency of the free-running oscillator of the device must be set at least 10% less than the frequency of the external clock. b) The external clock pulse must be at least 300 ns wide but must not exceed the free-running pulse width (pin 4) by more than 200 ns . c) The amplitude of the external pulse must be between 2 and 5 V .
Multiple devices may be synchronized together by connecting all pin 4's together and all pin 5's together; pins 6 and 7 of slave oscillator must be left open.

TL/H/9112-4

Oscillator Charge
Time vs $\mathbf{R}_{\mathbf{T}}$

Oscillator Discharge Time vs R_{D} and C_{T}

Typical Applications

Typical Applications (Continued)

Typical Applications (Continued)

LM1525A/1527A Lab Test Fixture

TL/H/9112-12

National Semiconductor

LM1575-5.0/LM2575-5.0
 Simple Switcher Step-Down Voltage Regulator

General Description

The LM1575/LM2575 are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator. These devices feature a 5 V output capable of driving a 1A load with excellent line and load regulation.
Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator.
The LM1575/2575 offers a high efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in many cases no heat sink is required.
A standard series of inductors are available from several different manufacturers optimized for use with the LM1575/ LM2575. This feature greatly simplifies the design of switchmode power supplies.
Other features include a guaranteed $\pm 3 \%$ tolerance on output voltage within specified input voltages and output load conditions, and $\pm 10 \%$ on the oscillator frequency. External shutdown is included, featuring less than $200 \mu \mathrm{~A}$ standby
current. The output switch includes current limiting, as well as thermal shutdown for full protection under fault conditions.

Features

- 5 V output, $\pm 3 \%$ Max over line and load conditions
- Guaranteed 1A output current

■ Wide input voltage range, 7 V to 35 V

- Requires only 4 external components
- 52 kHz fixed frequency internal oscillator

■ Low power standby mode, I_{Q} typically $<200 \mu \mathrm{~A}$

- 82% efficiency
- Uses readily available standard inductors
- Thermal shutdown and current limit protection

Applications

■ Simple high-efficiency step-down regulator

- Efficient pre-regulator for linear regulators
- On-card switching regulators

Typical Application

TL/H/10527-1

Connection Diagram and Order Information

4-Lead TO-3 (K)

TL/H/10527-2
Bottom View
Order Number LM1575K-5.0, LM2575K-5.0
See NS Package Number K04A
For information about LM2575 in dual-in-line or surface-mount packages, contact the factory.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Total Supply Voltage (see Figure 5)
40V
$-1 \leq \mathrm{V} \leq 15 \mathrm{~V}$
-1V
Output Voltage to Ground (Steady State)
Power Dissipation
Storage Temperature Range

Minimum ESD Rating
($\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$)
2 kV
Lead Temperature (Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
Maximum Junction Temperature $150^{\circ} \mathrm{C}$
Operating Temperature Range

LM1575-5.0	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$
LM2575-5.0	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+150^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

Electrical Characteristics Specifications with standard type face are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, and $\mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}$.

Symbol	Parameter	Conditions	Typ	LM1575-5.0 Limit (Note 2)	LM2575-5.0 Limit (Note 3)	Units (Limits)

SYSTEM PARAMETERS (Note 4) Test Circuit Figure 1

$\mathrm{V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0.2 \mathrm{~A}$	5.0	$\begin{aligned} & 4.950 \\ & 5.050 \end{aligned}$	$\begin{aligned} & 4.900 \\ & 5.100 \end{aligned}$	$\begin{aligned} & V \\ & V(\operatorname{Min}) \\ & V(\operatorname{Max}) \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage	$0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 35 \mathrm{~V}$	5.0	$\begin{aligned} & 4.850 / 4.800 \\ & 5.150 / 5.200 \end{aligned}$	$\begin{aligned} & 4.800 / 4.750 \\ & 5.200 / 5.250 \end{aligned}$	$\begin{array}{\|l} \hline V \\ \text { V (Min) } \\ \text { V (Max) } \\ \hline \end{array}$
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$	82			\%

DEVICE PARAMETERS

fo^{0}	Oscillator Frequency		52	$\begin{aligned} & 47 / 43 \\ & 58 / 62 \end{aligned}$	$\begin{aligned} & 47 / 42 \\ & 58 / 63 \end{aligned}$	kHz kHz (Min) kHz (Max)
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	IOUT $=1 \mathrm{~A}($ Note 5)	0.9	1.2/1.4	1.2/1.4	$\begin{aligned} & V \\ & V(\text { Max }) \end{aligned}$
DC	Max Duty Cycle (ON)	(Note 6)	98	93	93	\% \% (Min)
${ }^{\text {I CL }}$	Current Limit	Peak Current, ton $\leq 3 \mu \mathrm{~s}$ (Note 5)	2.2	$\begin{aligned} & 1.7 / 1.3 \\ & 3.0 / 3.2 \end{aligned}$	$\begin{aligned} & 1.7 / 1.3 \\ & 3.0 / 3.2 \end{aligned}$	A A (Min) A (Max)
I_{L}	Output Leakage Current	$\begin{aligned} \mathrm{V}_{\mathrm{IN}}=35 \mathrm{~V},(\text { Note } 7), \text { Output } & =0 \mathrm{~V} \\ \text { Output } & =-1 \mathrm{~V} \end{aligned}$	7.5	2 30	2 30	mA (Max) mA mA (Max)
I_{0}	Quiescent Current	(Note 7)	5	10/12	10	mA mA (Max)
Istby	Standby Quiescent Current	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=5 \mathrm{~V}(\mathrm{OFF})$	50	200/500	200	$\mu \mathrm{A}$ $\mu \mathrm{A}$ (Max)
$\begin{aligned} & \boldsymbol{\theta}_{\mathrm{JA}} \\ & \boldsymbol{\theta}_{\mathrm{JC}} \\ & \boldsymbol{\theta}_{\mathrm{JA}} \\ & \boldsymbol{\theta}_{\mathrm{JC}} \end{aligned}$	Thermal Resistance	K Package, Junction to Ambient K Package, Junction to Case T Package, Junction to Ambient T Package, Junction to Case	$\begin{gathered} 35 \\ 1.5 \\ 40 \\ 2 \end{gathered}$			${ }^{\circ} \mathrm{C} / \mathrm{W}$

ON/OFF CONTROL Test Circuit Figure 1

$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	$\overline{O N} / O F F$ Pin Threshold Voltage	$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 22 / 2.4 \\ & 1.0 / 0.8 \end{aligned}$	$\begin{aligned} & 2.2 / 2.4 \\ & 1.0 / 0.8 \end{aligned}$	V (Min) V (Max)
$\mathrm{IIH}^{\text {H }}$	$\overline{O N} / O F F$ Pin Input Current	$\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin $=5 \mathrm{~V}$ (OFF)	12	30	30	$\mu \mathrm{A}$ $\mu \mathrm{A}$ (Max)
ILL		$\overline{\text { ON} / O F F ~ P i n ~}=0 \mathrm{~V}(\mathrm{ON})$	0	10	10	$\mu \mathrm{A}$ $\mu A(M a x)$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to calculate Average Outgoing Quality Level, and all are 100% production tested.
Note 3: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100\% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.
Note 4: External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM1575/LM2575 is used as shown in the Figure 1 test circuit, system performance will be as shown in system parameters section of Electrical Characteristics.
Note 5: Output (pin 2) sourcing current. No diode, inductor or capacitor connected to output.
Note 6: Feedback (pin 4) removed from output and connected to OV.
Note 7: Feedback (pin 4) removed from output and connected to 12 V to force the output transistor OFF.

Typical Performance Characteristics (Circuit of Figure 1)

Current Limit

 JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

Supply Current

Switch
Saturation Voltage

Typical Performance Characteristics (Continued)

TL/H/10527-6
A: Output pin voltage, $10 \mathrm{~V} /$ div
B: Output pin current, 1A/div
C: Inductor current, 0.5A/div
D: Output ripple voltage, $20 \mathrm{mV} / \mathrm{div}, \mathrm{AC}$-coupled
Horizontal: $5 \mu \mathrm{sec} / \mathrm{div}$

Test Circuit and Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance generate voltage transients which cause problems. For minimal stray inductance and ground loops, the length of the leads indicated by heavy lines should be kept as short as possible. Single-point grounding (as indicated) or ground plane construction should be used for best results.
C_{IN} - 509DRSA107M050S (Sprague)
Cout - 509DRSA227M010S (Sprague)
D1 - any manufacturer
*for $\mathrm{V}_{\mathrm{IN}} \leq 35 \mathrm{~V}$, D1 should be 31DQ05 or MBR350.
L1 - 415-0926 (AIE) for ILOAD $\leq 0.9 \mathrm{~A}, 430-0635$ (AIE) for LOAD $\leq 1.0 \mathrm{~A}$
5-pin TO-220 socket-2396 (Loranger Mfg. Co.)
4-pin TO-3 socket-8112-AG7 (Augat Inc.)
FIGURE 1

Block Diagram and Typical Application

LM1575/LM2575 Design Procedure

Procedure	Example
Given: $\mathrm{V}_{\mathrm{IN}}(\mathrm{Max})=$ Maximum input voltage LLOAD (Max) = Maximum load current 1. Inductor Selection (L1) A. From Figure 3 , identify inductor code for region indicated by $\mathrm{V}_{\mathbb{I N}}$ (Max) and ILOAD (Max). B. From Figure 4, identify inductor value from the inductor code. C. Select from the three manufacturer's part numbers listed in Figure 4. Alternately, another inductor of the appropriate value may be used. It must be rated for operation at the LM2575 switching frequency (typically 52 kHz), and for a current rating of $1.25 \times \operatorname{loAD}$ (Max).	Given: $V_{I N}(\operatorname{Max})=18 \mathrm{~V}$ $\mathrm{l}_{\text {LOAD }}(\mathrm{Max})=0.8 \mathrm{~A}$ 1. Inductor Selection (L1) A. Code $=\mathrm{L} 330$ B. Value $=330 \mu \mathrm{H}$ C. Choose AIE 415-0926, Pulse Engineering PE 52627, or Renco RL1952

FIGURE 3. Inductor Value Selection Guide

Inductor Code	Inductor Valve	AIE8	Pulse Eng.9	Renco10
L100	$100 \mu \mathrm{H}$	$415-0930$	PE-92108	RL1955
L150	$150 \mu \mathrm{H}$	$415-0953$	PE-53113	RL1954
L220	$220 \mu \mathrm{H}$	$415-0922$	PE-52626	RL1953
L330	$330 \mu \mathrm{H}$	$415-0926$	PE-52627	RL1952
L470	$470 \mu \mathrm{H}$	$415-0927$	PE-53114	RL1951
L680	$680 \mu \mathrm{H}$	$415-0928$	PE-52629	RL1950
H330	$330 \mu \mathrm{H}$	$430-0635$	PE-53117	RL1962
H470	$470 \mu \mathrm{H}$	$430-0634$	PE-53118	RL1961
H680	$680 \mu \mathrm{H}$	$415-0935$	PE-53119	RL1960
H1000	$1000 \mu \mathrm{H}$	$415-0934$	PE-53120	RL1959

FIGURE 4. Inductor Selection by Manufacturer's Part Number.

Note 8: AIE Magnetics, Div. Vernatron Corp. Passive Components Group, (813) 347-2181

2801 72nd Street North, St. Petersburg, FL 33710

Note 9: Pulse Engineering, (619) 268-2400
P.O. Box 12235, San Diego, CA 92112

Note 10: Renco Electronics Inc., (516) 586-5566
60 Jeffryn Blvd. East, Deer Park, NY 11729

LM1575/LM2575 Design Procedure (Continued)

2. Output Capacitor Selection (COUT)

A. The output capacitor value and the type of capacitor used will determine the amount of ripple voltage that appears as the output. A value of between $220 \mu \mathrm{~F}$ and $1000 \mu \mathrm{~F}$ is recommended. Selecting a low ESR (Equivalent Series Resistance) capacitor will result in the lowest amount of ripple. The lower capacitor values will allow typically 50 mV to 150 mV of output ripple, while larger-value capacitors will reduce the ripple to approximately 35 mV to 50 mV .
To further reduce the output ripple voltage, several lowvalue standard capacitors may be paralleled, or a highergrade capacitor may be used. Such capacitors are often called "high-frequency", "low-inductance", or "low-ESR". These will reduce the output ripple to 10 mV to 20 mV . However, reducing the ESR below 0.05Ω can cause instability. For this reason, the use of tantalum capacitors is not recommended.
B. The capacitor's voltage rating should be at least 1.25 times greater than the output voltage. For a 5 V regulator, a rating of at least 6.3 V is appropriate, and a 10 V rating is recommended.
3. Catch Dlode Selection (D1)

The catch diode current rating must be at least 1.2 times greater than the maximum load current. Also, if the power supply design must withstand continuous shorted output conditions, the diode current rating should be greater than 3A. The most stressful condition for this diode is an overload or short circuit condition.
A. The reverse voltage rating of the diode should be at leas' 1.25 times the maximum input voltage.
B. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best efficiency, especially in 5 V switching regulators. Fast-Recovery, High-Efficiency, or Ultra-Fast Recovery diodes are also suitable, but some types with an abrupt turn-off characteristic may cause instability and EMI problems. A fast-recovery diode with soft recovery characteristics is a better choice. To prevent damage to the LM2575, fastrecovery diodes should not be used for $V_{I N} \geq 35 \mathrm{~V}$. Standard 60 Hz diodes (e.g., 1N4001, etc.) are also not suitable. See Figure 5 for Schottky and "soft" fastrecovery diode selection guide.
2. Output Capacitor Selection (COUT)
A. $\mathrm{C}_{\text {OUT }}=220 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ standard aluminum electrolytic or
$\mathrm{C}_{\text {OUt }}=470 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$ high-grade capacitor (see text)
B. Capacitor voltage rating $=10 \mathrm{~V}$
3. Catch Diode Selection (D1)
A. For this example, a 20 V rating is adequate.
B. Use the 1N5821 or 31DQ03 Schottky diodes, or any of the suggested fast-recovery diodes.

$V_{I N}$ (Max)	Current Rating	Use Part Number (or Equivalent)	
		Fast-Recovery	
20 V	$3 A$	1N5821 $31 D Q 03$	FR302, HER302 or MR850 (All These are Rated over 35V)
30 V	$3 A$	1N5822 or $31 D Q 04$	Rat
40 V	$3 A$	$31 D Q 05$ MBR350	Not Recommended (See Text)

FIGURE 5. Dlode Selection Guide

RMS ripple current rating should be greater than $1.2 \times$ (ONN $^{\prime} /$ T) \times LLOAD.

Feedback Connection

The LM2575 feedback circuitry is designed so that, when the output voltage is connected directly to the Feedback pin, the output voltage is 5 V .

ON/OFF Input

For normal operation, the $\overline{O N} / O F F$ pin should be grounded or driven with a low-level TTL voltage. To put the regulator into standby mode, drive this pin with a high-level TTL signal.

Application Hints (Continued)

Grounding

To maintain output voltage stability, the power ground connections must be low-impedance (see Figure 1). For the TO-3 style package, the case is ground. For the 5-lead TO-220 style package, both the tab and pin 3 are ground and either connection may be used, as they are both part of the same copper leadframe.

Heat Sink/Thermal Considerations

In many cases, no heat sink is required to keep the LM2575 junction temperature within the allowed operating range. For each application, to determine whether or not a heat sink will be required, the following must be identified:

1. Maximum ambient temperature (in the application).
2. Maximum regulator power dissipation (in application).
3. Maximum allowed junction temperature $\left(150^{\circ} \mathrm{C}\right.$ for LM1575 or $125^{\circ} \mathrm{C}$ for the LM2575). For a safe, conservative design, a temperature approximately $15^{\circ} \mathrm{C}$ cooler than the maximum temperatures should be selected.
4. LM2575 package thermal resistances θ_{JA} and θ_{JC}.

Total power dissipated by the LM2575 can be calculated as follows:

$$
P_{D}=\left(V_{I N}\right)\left(I_{S}\right)+\left(V_{O} / V_{I N}\right)\left(I_{\text {LOAD }}\right)\left(V_{S A T}\right)
$$

where Is (supply current) and $V_{S A T}$ can be found in the Characteristic Curves shown previously, V_{IN} is the applied minimum input voltage, V_{O} is the regulated output voltage, and ILOAD is the load current. The dynamic losses during turn-on and turn-off are negligible if a Schottky is used as the catch diode.
When no heat sink is used, the junction temperature rise can be determined by the following:

$$
\Delta T_{J}=\left(P_{D}\right)\left(\theta_{\mathrm{JA}}\right)
$$

To arrive at the actual operating junction temperature, add the junction temperature rise to the maximum ambient temperature.

$$
T_{J}=\Delta T_{J}+T_{A}
$$

If the actual operating junction temperature is greater than the selected safe operating junction temperature determined step 3, then a heat sink is required.
When using a heat sink, the junction temperature rise can be determined by the following:

$$
\Delta T_{J}=\left(\mathrm{PD}_{\mathrm{D}}\right)\left(\theta_{\mathrm{JC}}+\theta \text { interface }+\theta \text { Heat sink }\right)
$$

The operating junction temperature will be:

$$
T_{J}=T_{A}+\Delta T_{J}
$$

As above, if the actual operating junction temperature is greater than the selected safe operating junction temperature, then a larger heat sink is required (one that has a lower thermal resistance).

Definition of Terms

Buck Regulator

A switching regulator topology in which a higher voltage is converted to a lower voltage. Also known as a step-down switching regulator.

Catch Dlode

The diode which provides a return path for the load current when the LM2575 switch is OFF.

Duty Cycle (D)

Ratio of the output switch's on-time to the oscillator period.

$$
D=\frac{t_{O N}}{T}=\frac{V_{\text {OUT }}}{V_{I N}} \text { for buck regulator }
$$

where T is the oscillator period, typically $1 / 52 \mathrm{kHz}$.

Efficlency (η)

The proportion of input power actually delivered to the load.

$$
\eta=\frac{\mathrm{P}_{\text {OUT }}}{\mathrm{P}_{\text {IN }}}=\frac{\mathrm{P}_{\text {OUT }}}{\mathrm{P}_{\text {OUT }}+\mathrm{P}_{\text {LOSS }}}
$$

Equivalent Series Inductance (ESL)

The pure inductance component of a capacitor (see Figure 6). The amount of inductance is determined to a large extent on the capacitor's construction.

TL/H/10527-10

FIGURE 6. Simple Model of a Real Capacitor

Equivalent Series Resistance (ESR)

The purely resistive component of a real capacitor's impedance. (see Figure 6). It causes power loss resulting in capacitor heating, which directly affects the capacitor's operating lifetime. When used as a switching regulator output filter, higher ESR values result in higher output ripple voltages.
Most standard aluminum electrolytic capacitors in the $220 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$ range have 0.1Ω to 0.3Ω ESR. Highergrade capacitors ("low-ESR", "high-frequency", or "low-inductance') in the $220 \mu \mathrm{~F}-1000 \mu \mathrm{~F}$ range generally have ESR of less than 0.15Ω.

Output Ripple Voltage

The AC component of the switching regulator's output voltage. It is usually dominated by the output capacitor's ESR multiplied by the inductor's ripple current. The peak-to-peak value of this sawtooth ripple current will be typically 40% of the maximum load current (when the Design Procedure in the datasheet is followed).

Ripple Current

RMS value of the maximum allowable alternating current at which a capacitor can be operated continuously at a specified temperature.

Standby Current (ISTBY)

Supply current required by the LM2575 when in the standby mode ($\overline{\mathrm{ON}} / \mathrm{OFF}$ pin is driven to TTL-high voltage), thus turning the output switch OFF.

Pin Name	Pin Number (TO-220 Pkg.)	Normal Operation	Observed Problem		
		Voltage Waveform \& Values	Condition	Probable Reason	Solution
Feedback	4	DC, Vout (5V Typ.) Plus Tri-Wave Ripple Voltage Plus Switching Noise	$0<\mathrm{V} 4<5 \mathrm{~V}$	$V_{\text {IN }}$ Is Too Low . Regulator Is in Current Limit	Increase V_{IN} to 7 V Reduce Load to Less Than 1A
			$\mathrm{V} 4=0 \mathrm{~V}$	ON/OFF Pin Is Not "Low"	Apply Correct Voltage to ON/OFF Pin
Output	2	Pulse Train $\mathrm{T}=1 / \mathrm{fOSC} \cong 19.2 \mu \mathrm{~s}$ (Typ.) $\frac{t_{\mathrm{ON}}}{T} \cong \frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}$	No Pulse Train Observed but $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	Regulator Is Unloaded	Add 200 mA Load to Observe Switching
			Pulse Width Not Steady or Stable	Scope Not Triggered	Adjust Scope Trigger
				C_{IN} Is Too Far from LM2575	Reposition Capacitor as Close as Possible to Input Pin, so That Lead Length $\leq 1^{\prime \prime}$
				Regulator Is in Current Limit	Reduce Load to Less Than 1A
				"Hard" Fast Recovery Diode Used	Change Diode to Schottky or "Soft" Fast Recovery Type (as Recommended)
				LM2575 Not Seated Firmly in Its Socket (if Used)	Improve Connections of Device to Circuit
ON/OFF	5	DC, OV	V5 > OV	Pin Control Not Set for Normal Operation (Improper Logic or Connection)	Apply Correct Voltage to Pin
Ground (Case of TO-3 Pkg.)	$\begin{gathered} 3 \\ \text { (Tab) } \end{gathered}$	DC, OV	Noisy	Probe Ground Lead Is Picking up Switching Noise	Use Short Ground Lead ($\leq 1^{\prime \prime}$)
V IN	1	DC, $\mathrm{V}_{\text {IN }}$ (from Unregulated Source)	$0<\mathrm{V} 1^{<} \mathrm{V}_{\mathrm{IN}}$	Input Supply Overloaded	Verify That Input Supply Is Capable of Delivering at Least ($5 \mathrm{~V} \times$ lioad \times 1.3) $/ V_{\text {IN }}$ Amps

FIGURE 7. LM2575 Troubleshooting Guide

LM1578A/LM2578A/LM3578A Switching Regulator

General Description

The LM1578A is a switching regulator which can easily be set up for such DC-to-DC voltage conversion circuits as the buck, boost, and inverting configurations. The LM1578A features a unique comparator input stage which not only has separate pins for both the inverting and non-inverting inputs, but also provides an internal 1.0 V reference to each input, thereby simplifying circuit design and p.c. board layout. The output can switch up to 750 mA and has output pins for its collector and emitter to promote design flexibility. An external current limit terminal may be referenced to either the ground or the $\mathrm{V}_{\text {in }}$ terminal, depending upon the application. In addition, the LM1578A has an on board oscillator, which sets the switching frequency with a single external capacitor from $<1 \mathrm{~Hz}$ to 100 kHz (typical).
The LM1578A is an improved version of the LM1578, offering higher maximum ratings for the total supply voltage and output transistor emitter and collector voltages.

Functional Diagram

Features

■ Inverting and non-inverting feedback inputs

- 1.0V reference at inputs

M Operates from supply voltages of 2 V to 40 V

- Output current up to 750 mA , saturation less than 0.9 V
- Current limit and thermal shut down
- Duty cycle up to 90%

Applications

■ Switching regulators in buck, boost, inverting, and single-ended transformer configurations

- Motor speed control
- Lamp flasher

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

Total Supply Voltage
Collector Output to Ground
Emitter Output to Ground (Note 2)
Power Dissipation (Note 3)
Output Current
Storage Temperature
Lead Temperature
(soldering, 10 seconds)

50 V
-0.3 V to +50 V
-1 V to +50 V
Internally limited 750 mA
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Maximum Junction Temperature
$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 4) 2 kV

Operating Ratings

Ambient Temperature Range
LM1578A
LM2578A
LM3578A

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \leq T_{J} \leq+150^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \leq \mathrm{T}_{1}<+125^{\circ} \mathrm{C}
\end{array}
$$

Junction Temperature Range
LM1578A

Electrical Characteristics

These specifications apply for $2 \mathrm{~V} \leq \mathrm{V}_{I N} \leq 40 \mathrm{~V}\left(2.2 \mathrm{~V} \leq \mathrm{V}_{I N} \leq 40 \mathrm{~V}\right.$ for $\left.\mathrm{T}_{\mathrm{J}} \leq-25^{\circ} \mathrm{C}\right)$, timing capacitor $\mathrm{C}_{\mathrm{T}}=3900 \mathrm{pF}$, and 25% \leq duty cycle $\leq 75 \%$, unless otherwise specified. Values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in boldface type apply for operation over the specified operating junction temperature range.

Symbol	Parameter	Conditions	Typical (Note 5)	LM1578A Limit (Note 6)	LM2578A/ LM3578A Limit (Note 7)	Units
OSCILLATOR						
fosc	Frequency		20	$\begin{aligned} & 22.4 \\ & 17.6 \end{aligned}$	$\begin{aligned} & 24 \\ & 16 \end{aligned}$	kHz kHz (max) kHz (min)
$\Delta f_{\text {OSC }} / \Delta T$	Frequency Drift with Temperature		-0.13			\%/ ${ }^{\circ} \mathrm{C}$
	Amplitude		550			$m V_{p-p}$

REFERENCE/COMPARATOR (Note 8)

V_{R}	Input Reference Voltage	$\begin{aligned} & l_{1}=I_{2}=0 \mathrm{~mA} \text { and } \\ & \left.I_{1}=I_{2}=1 \mathrm{~mA} \pm 1 \% \text { (Note } 9\right) \end{aligned}$	1.0	$\begin{aligned} & 1.035 / 1.050 \\ & 0.965 / 0.950 \end{aligned}$	$\begin{aligned} & 1.050 / 1.070 \\ & 0.950 / 0.930 \end{aligned}$	$\begin{aligned} & V \\ & V(\max) \\ & V(\min) \\ & \hline \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{V}_{\mathrm{IN}}$	Input Reference Voltage Line Regulation	$\begin{aligned} & I_{1}=I_{2}=0 \mathrm{~mA} \text { and } \\ & \left.I_{1}=I_{2}=1 \mathrm{~mA} \pm 1 \% \text { (Note } 9\right) \end{aligned}$	0.003	0.01/0.02	0.01/0.02	$\begin{aligned} & \% / V \\ & \% / V(\max) \end{aligned}$
IINV	Inverting Input Current	$\mathrm{I}_{1}=\mathrm{I}_{2}=0 \mathrm{~mA}$, duty cycle $=25 \%$	0.5			$\mu \mathrm{A}$
	Level Shift Accuracy	Level Shift Current $=1 \mathrm{~mA}$	1.0	5/8	10/13	$\begin{aligned} & \% \\ & \% \text { (max) } \end{aligned}$
$\Delta V_{R} / \Delta t$	Input Reference Voltage Long Term Stability		100			ppm/1000h
OUTPUT						
V_{C} (sat)	Collector Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=750 \mathrm{~mA}$ pulsed, Emitter grounded	0.7	0.85/1.2	0.90/1.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \text { (max) } \end{aligned}$
V_{E} (sat)	Emitter Saturation Voltage	$\begin{aligned} & l_{\mathrm{O}}=80 \mathrm{~mA} \text { pulsed, }, \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{C}}=40 \mathrm{~V} \end{aligned}$	1.4	1.6/2.1	1.7/2.0	$\begin{aligned} & V \\ & V(\max) \end{aligned}$
$\mathrm{I}_{\text {CES }}$	Collector Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}$, Emitter grounded, Output OFF	0.1	50/100	200/250	$\mu \mathrm{A}$ $\mu \mathrm{A}$ (max)
BVCEO(SUS)	Collector-Emitter Sustaining Voltage	ISUST $=0.2 \mathrm{~A}$ (pulsed), $\mathrm{V}_{\text {IN }}=0$	60	50	50	$\begin{aligned} & V \\ & V(\text { min }) \end{aligned}$

Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Typical (Note 5)	$\begin{aligned} & \text { LM1578A } \\ & \text { LImit } \\ & \text { (Note 6) } \end{aligned}$	LM2578A/ LM3578A Limit (Note 7)	Units
CURRENT LIMIT						
V_{CL}	Sense Voltage Shutdown Level	Referred to V_{IN} or Ground (Note 10)	110	$\begin{gathered} 95 \\ 140 \end{gathered}$	$\begin{gathered} 80 \\ 160 \end{gathered}$	mV mV (min) mV (max)
$\Delta V_{C L} / \Delta T$	Sense Voltage Temperature Drift		0.3			\%/ ${ }^{\circ} \mathrm{C}$
ICL	Sense Bias Current	Referred to V_{IN} Referred to ground	$\begin{aligned} & 4.0 \\ & 0.4 \end{aligned}$			$\mu \mathrm{A}$ $\mu \mathrm{A}$
DEVICE POWER CONSUMPTION						
Is	Supply Current	Output OFF, $\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}$	2.0	3.0/3.3	3.5/4.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA}(\max) \end{aligned}$
		Output ON, $\mathrm{IC}_{\mathrm{C}}=750 \mathrm{~mA}$ pulsed, $\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}$	14			mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: For $T_{J} \geq 100^{\circ} \mathrm{C}$, the Emitter pin voltage should not be driven more than 0.6 V below ground (see Application Information).
Note 3: At elevated temperatures, devices must be derated based on package thermal resistance. The device in the TO-99 package must be derated at $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $45^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The device in the 8 -pin DIP must be derated at $95^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. The device in the surface-mount package must be derated at $150^{\circ} \mathrm{C} / \mathrm{W}$, junction-to-ambient.
Note 4: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .
Note 5: Typical values are for $T_{J}=25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 6: All limits guaranteed and 100\% production tested at room temperature (standard type face) and at temperature extremes (bold type face). All limits are used to calculate Average Outgoing Quality Level (AOQL).
Note 7: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). Room temperature limits are 100\% production tested. Limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate AOQL.
Note 8: Input terminals are protected from accidental shorts to ground but if external voltages higher than the reference voltage are applied, excessive current will flow and should be limited to less than 5 mA .
Note 9: I_{1} and I_{2} are the external sink currents at the inputs (refer to Test Circuit).
Note 10: Connection of a $10 \mathrm{k} \Omega$ resistor from pin 1 to pin 4 will drive the duty cycle to its maximum, typically 90%. Applying the minimum Current Limit Sense Voltage to pin 7 will not reduce the duty cycle to less than 50%. Applying the maximum Current Limit Sense Voltage to pin 7 is certain to reduce the duty cycle below 50%. Increasing this voltage by 15 mV may be required to reduce the duty cycle to 0%, when the Collector output swing is 40 V or greater (see Ground-Referred Current Limit Sense Voltage typical curve).

Connection Diagram and Ordering Information

TL/H/8711-29
Order Number LM3578AM, LM2578AN or LM3578AN See NS Package Number M08A or N08E

Typical Performance Characteristics

Test Circuit*

Parameter tests can be made using the test circuit shown. Select the desired V_{in}, collector voltage and duty cycle with adjustable power supplies. A digital volt meter with an input resistance greater than $100 \mathrm{M} \Omega$ should be used to measure the following:

Input Reference Voltage to Ground; S1 in either position.
Level Shift Accuracy (\%) $=\left(\mathrm{T}_{\mathrm{P}}(\mathrm{V}) / 1 \mathrm{~V}\right) \times 100 \%$; S1 at $I_{1}=I_{2}=1 \mathrm{~mA}$
Input Current $(\mathrm{mA})=\left(1 \mathrm{~V}-\mathrm{T}_{\mathrm{p} 3}(\mathrm{~V})\right) / 1 \mathrm{M} \Omega$: S1 at $\mathrm{I}_{1}=$ $\mathrm{I}_{2}=0 \mathrm{~mA}$.
Oscillator parameters can be measured at $T_{p 4}$ using a frequency counter or an oscilloscope.

The Current Limit Sense Voltage is measured by connecting an adjustable 0-to-1V floating power supply in series with the current limit terminal and referring it to either the ground or the $V_{\text {in }}$ terminal. Set the duty cycle to 90% and monitor test point $T_{P 5}$ while adjusting the floating power supply voltage until the LM1578A's duty cycle just reaches 0\%. This voltage is the Current Limit Sense Voltage.
The Supply Current should be measured with the duty cycle at 0% and S 1 in the $\mathrm{I}_{1}=\mathrm{I}_{2}=0 \mathrm{~mA}$ position.
*LM1578A specifications are measured using automated test equipment. This circuit is provided for the customer's convenience when checking parameters. Due to possible variations in testing conditions, the measured values from these testing procedures may not match those of the factory.

Note 3: *LM1578 max duty cycle is 90%
TL/H/8711-3

Definition of Terms

Input Reference Voltage: The reference voltage referred to ground, applied to either the inverting or non-inverting inputs, which will cause the output to switch ON or OFF.
Input Reference Current: The current applied to either the inverting or the non-inverting input which will cause the output to switch ON or OFF.
Input Level Shift Accuracy: If there are two equal resistors sinking current from the inverting and non-inverting input terminals, the Input Level Shift Accuracy is the ratio of the voltage across the resistors to produce a given duty cycle at the output.
Collector Saturation Voltage: With the inverting input terminal grounded thru a $10 \mathrm{k} \Omega$ resistor and the output transistor's emitter connected to ground, the Collector Saturation Voltage is the collector-to-emitter voltage for a given collector current.
Emitter Saturation Voltage: With the inverting input terminal grounded thru a $10 \mathrm{k} \Omega$ resistor and the output transis-
tor's collector connected to $\mathrm{V}_{\text {in }}$, the Emitter Saturation Voltage is the collector-to-emitter voltage for a given emitter current.
Collector Emitter Sustaining Voltage: The collector-emitter breakdown voltage of the output transistor, measured at a specified current.
Current Limit Sense Voltage: The voltage at the Current Limit pin, referred to either the supply or the ground terminal, which (via logic circuitry) will cause the output transistor to turn OFF and resets cycle-by-cycle at the oscillator frequency.
Current Limit Sense Current: The bias current for the Current Limit terminal with the applied voltage equal to the Current Limit Sense Voltage.
Supply Current: The IC power supply current, excluding the current drawn through the output transistor, with the oscillator operating.

Functional Description

The LM1578A is a pulse-width modulator designed for use as a switching regulator controller. It may also be used in other applications which require controlled pulse-width voltage drive.
A control signal, usually representing output voltage, fed into the LM1578A's comparator is compared with an inter-nally-generated reference. The resulting error signal and the oscillator's output are fed to a logic network which determines when the output transistor will be turned ON or OFF. The following is a brief description of the subsections of the LM1578A.

COMPARATOR INPUT STAGE

The LM1578A's comparator input stage is unique in that both the inverting and non-inverting inputs are available to the user, and both contain a 1.0 V reference. This is accomplished as follows: A 1.0 V reference is fed into a modified voltage follower circuit (see FUNCTIONAL DIAGRAM). When both input pins are open, no current flows through R1 and R2. Thus, both inputs to the comparator will have the potential of the 1.0 V reference, V_{A}. When one input, for example the non-inverting input, is pulled ΔV away from V_{A}, a current of $\Delta V / R 1$ will flow through R1. This same current flows through R2, and the comparator sees a total voltage of $2 \Delta \mathrm{~V}$ between its inputs. The high gain of the system, through feedback, will correct for this imbalance and return both inputs to the 1.0 V level.
This unusual comparator input stage increases circuit flexibility, while minimizing the total number of external components required for a voltage regulator system. The inverting switching regulator configuration, for example, can be set up without having to use an external op amp for feedback polarity reversal (see TYPICAL APPLICATIONS).

OSCILLATOR

The LM1578A provides an on-board oscillator which can be adjusted up to 100 kHz . Its frequency is set by a single external capacitor, C_{1}, as shown in Figure 1, and follows the equation

$$
\mathrm{fosc}_{\mathrm{O}}=8 \times 10^{-5 / G_{1}}
$$

The oscillator provides a blanking pulse to limit maximum duty cycle to 90%, and a reset pulse to the internal circuitry.

TL/H/8711-4
FIGURE 1. Value of Timing Capacitor vs Oscillator Frequency

OUTPUT TRANSISTOR

The output transistor is capable of delivering up to 750 mA with a saturation voltage of less than 0.9 V . (see Collector Saturation Voltage and Emitter Saturation Voltage curves).
The emitter must not be pulled more than IV below ground (this limit is 0.6 V for $\mathrm{T}_{\mathrm{J}} \geq 100^{\circ} \mathrm{C}$). Because of this limit, an external transistor must be used to develop negative output voltages (see the Inverting Regulator Typical Application). Other configurations may need protection against violation of this limit (see the Emitter Output section of the Applications Information).

CURRENT LIMIT

The LM1578A's current limit may be referenced to either the ground or the $\mathrm{V}_{\text {in }}$ pins, and operates on a cycle-by-cycle basis.
The current limit section consists of two comparators: one with its non-inverting input referenced to a voltage 110 mV below V_{in}, the other with its inverting input referenced 110 mV above ground (see FUNCTIONAL DIAGRAM). The current limit is activated whenever the current limit terminal is pulled 110 mV away from either V_{in} or ground.

Applications Information

CURRENT LIMIT

As mentioned in the functional description, the current limit terminal may be referenced to either the $\mathrm{V}_{\text {in }}$ or the ground terminal. Resistor R3 converts the current to be sensed into a voltage for current limit detection.

TL/H/8711-15
FIGURE 2. Current Limit, Ground Referred

TL/H/8711-16
FIGURE 3. Current Limit, $\mathrm{V}_{\text {in }}$ Referred

Applications Information (Continued)

CURRENT LIMIT TRANSIENT SUPPRESSION

When noise spikes and switching transients interfere with proper current limit operation, R1 and C1 act together as a low pass filter to control the current limit circuitry's response time.
Because the sense current of the current limit terminal varies according to where it is referenced, R1 should be less than $2 \mathrm{k} \Omega$ when referenced to ground, and less than 100Ω when referenced to V_{in}.

TL/H/8711-17
FIGURE 4. Current Limit Transient Suppressor, Ground Referred

TL/H/8711-18
FIGURE 5. Current LImit Transient Suppressor, $V_{\text {in }}$ Referred

C.L. SENSE VOLTAGE MULTIPLICATION

When a larger sense resistor value is desired, the voltage divider network, consisting of R1 and R2, may be used. This effectively multiplies the sense voltage by ($1+\mathrm{R} 1 / \mathrm{R} 2$). Also, R1 can be replaced by a diode to increase current limit sense voltage to about 800 mV (diode $\mathrm{V}_{\mathrm{f}}+110 \mathrm{mV}$).

TL/H/8711-19
FIGURE 6. Current Limit Sense Voltage Multiplication, Ground Referred

TL/H/8711-20
FIGURE 7. Current Limit Sense Voltage Multiplication, $V_{\text {in }}$ Referred
UNDER-VOLTAGE LOCKOUT
Under-voltage lockout is accomplished with few external components. When $\mathrm{V}_{\text {in }}$ becomes lower than the zener breakdown voltage, the output transistor is turned off. This occurs because diode D1 will then become forward biased, allowing resistor R3 to sink a greater current from the noninverting input than is sunk by the parallel combination of R1 and R2 at the inverting terminal. R3 should be one-fifth of the value of R1 and R2 in parallel.

TL/H/8711-22
FIGURE 8. Under-Voltage Lockout

MAXIMUM DUTY CYCLE LIMITING

The maximum duty cycle can be externally limited by adjusting the charge to discharge ratio of the oscillator capacitor with a single external resistor. Typical values are $50 \mu \mathrm{~A}$ for the charge current, $450 \mu \mathrm{~A}$ for the discharge current, and a voltage swing from 200 mV to 750 mV . Therefore, R1 is selected for the desired charging and discharging slopes and C 1 is readjusted to set the oscillator frequency.

Applications Information (Continued)

TL/H/8711-21
FIGURE 9. Maximum Duty Cycle Limiting

DUTY CYCLE ADJUSTMENT

When manual or mechanical selection of the output transistor's duty cycle is needed, the cirucit shown below may be used. The output will turn on with the beginning of each oscillator cycle and turn off when the current sunk by R2 and R3 from the non-inverting terminal becomes greater than the current sunk from the inverting terminal.
With the resistor values as shown, R3 can be used to adjust the duty cycle from 0% to 90%.
When the sum of R2 and R3 is twice the value of R1, the duty cycle will be about 50%. C1 may be a large electrolytic capacitor to lower the oscillator frequency below 1 Hz .

TL/H/8711-23
FIGURE 10. Duty Cycle Adjustment

REMOTE SHUTDOWN

The LM1578A may be remotely shutdown by sinking a greater current from the non-inverting input than from the inverting input. This may be accomplished by selecting resistor R3 to be approximately one-half the value of R1 and R2 in parallel.

TL/H/8711-24
FIGURE 11. Shutdown Occurs when V_{L} is High

EMITTER OUTPUT

When the LM1578A output transistor is in the OFF state, if the Emitter output swings below the ground pin voltage, the output transistor will turn ON because its base is clamped near ground. The Collector Current with Emitter Output Below Ground curve shows the amount of Collector current drawn in this mode, vs temperature and Emitter voltage. When the Collector-Emitter voltage is high, this current will cause high power dissipation in the output transistor and should be avoided.
This situation can occur in the high-current high-voltage buck application if the Emitter output is used and the catch diode's forward voltage drop is greater than 0.6 V . A fast-recovery diode can be added in series with the Emitter output to counter the forward voltage drop of the catch diode (see Figure 2). For better efficiency of a high output current buck regulator, an external PNP transistor should be used as shown in Figure 16.

TL/H/8711-30
FIGURE 12. D1 Prevents Output Transistor from Improperly Turning ON due to D2's Forward Voltage

Applications Information (Continued)

SYNCHRONIZING DEVICES

When several devices are to be operated at once, their oscillators may be synchronized by the application of an external signal. This drive signal should be a pulse waveform with a minimum pulse width of $2 \mu \mathrm{~s}$. and an amplitude from 1.5 V to 2.0 V . The signal source must be capable of 1.) driving capacitive loads and 2.) delivering up to $500 \mu \mathrm{~A}$ for each LM1578A.
Capacitors C1 thru CN are to be selected for a 20% slower frequency than the synchronization frequency.

FIGURE 13. Synchronizing Devices

Typical Applications

The LM1578A may be operated in either the continuous or the discontinuous conduction mode. The following applications (except for the Buck-Boost Regulator) are designed for continuous conduction operation. That is, the inductor current is not allowed to fall to zero. This mode of operation has higher efficiency and lower EMI characteristics than the discontinuous mode.

BUCK REGULATOR

The buck configuration is used to step an input voltage down to a lower level. Transistor Q1 in Figure 14 chops the input DC voltage into a squarewave. This squarewave is then converted back into a DC voltage of lower magnitude by the low pass filter consisting of L1 and C1. The duty cycle, D , of the squarewave relates the output voltage to the input voltage by the following equation:

$$
V_{\text {out }}=D \times V_{\text {in }}=V_{\text {in }} \times\left(t_{\text {on }}\right) /\left(t_{\text {on }}+t_{\text {off }}\right) .
$$

TL/H/8711-5
FIGURE 14. Basic Buck Regulator
Figure 15 is a 15 V to 5 V buck regulator with an output current, I_{0}, of 350 mA . The circuit becomes discontinuous at 20% of $\mathrm{I}_{0(\max)}$, has 10 mV of output voltage ripple, an efficiency of 75%, a load regulation of $30 \mathrm{mV}(70 \mathrm{~mA}$ to $350 \mathrm{~mA})$ and a line regulation of $10 \mathrm{mV}\left(12 \leq \mathrm{V}_{\mathrm{in}} \leq 18 \mathrm{~V}\right)$.

Component values are selected as follows:
$R 1=\left(V_{0}-1\right) \times R 2$ where $R 2=10 \mathrm{k} \Omega$
$\mathrm{R} 3=\mathrm{V} / \mathrm{I}_{\mathrm{sw}(\text { max })}$
$R 3=0.15 \Omega$
where:
V is the current limit sense voltage, 0.11 V
$\mathrm{I}_{\mathrm{sw}(\max)}$ is the maximum allowable current thru the output transistor.
L 1 is the inductor and may be found from the inductance calculation chart (Figure 16) as follows:

$$
\begin{aligned}
& \text { Given } V_{\text {in }}=15 \mathrm{~V} \quad V_{0}=5 \mathrm{~V} \\
& I_{O(\max)}=350 \mathrm{~mA} \text { fosc }=50 \mathrm{kHz} \\
& \text { Discontinuous at } 20 \% \text { of } I_{o(\max)} .
\end{aligned}
$$

Note that since the circuit will become discontinuous at 20% of $I_{0 \text { (max) }}$, the load current must not be allowed to fall below 70 mA .
Step 1: Calculate the maximum DC current through the inductor, $L_{L(\max)}$. The necessary equations are indicated at the top of the chart and show that $\mathrm{I}_{\mathrm{L}(\max)}=\mathrm{I}_{\mathrm{O}(\max)}$ for the buck configuration. Thus, $I_{L(\max)}=350 \mathrm{~mA}$.
Step 2: Calculate the inductor Volts-sec product, E-T T_{op}, according to the equations given from the chart. For the Buck:
$E-T_{\text {op }}=\left(V_{\text {in }}-V_{0}\right)\left(V_{0} / V_{\text {in }}\right)\left(1000 / f_{\text {osc }}\right)$
$=(15-5)(5 / 15)(1000 / 50)$
$=66 \mathrm{~V}-\mu \mathrm{s}$.
with the oscillator frequency; $\mathrm{f}_{\text {osc }}$, expressed in kHz .

TL/H/8711-6

FIGURE 15. Buck or Step-Down Regulator

Step 3: Using the graph with axis labeled "Discontinuous At \% IOUT" and "IL(max, DC)" find the point where the desired maximum inductor current, $\mathrm{I}_{\mathrm{L}(\max , \mathrm{DC})}$ intercepts the desired discontinuity percentage.
In this example, the point of interest is where the 0.35A line intersects with the 20% line. This is nearly the midpoint of the horizontal axis.
Step 4: This last step is merely the translation of the point found in Step 3 to the graph directly below it. This is accomplished by moving straight down the page to the point which intercepts the desired $\mathrm{E}-\mathrm{T}_{\mathrm{op}}$. For this example, $\mathrm{E}-\mathrm{T}_{\mathrm{op}}$ is $66 \mathrm{~V}-\mu \mathrm{s}$ and the desired inductor value is $470 \mu \mathrm{H}$. Since this example was for 20% discontinuity, the bottom chart could have been used directly, as noted in step 3 of the chart instructions.

Typical Applications (Continued)
For a full line of standard inductor values, contact Pulse Engineering (San Diego, Calif.) regarding their PE526XX series, or A. I. E. Magnetics (Nashville, Tenn.).
A more precise inductance value may be calculated for the Buck, Boost and Inverting Regulators as follows:

BUCK

$L=V_{o}\left(V_{\text {in }}-V_{0}\right) /\left(\Delta I_{L} V_{\text {in }} f_{o s c}\right)$
BOOST
$L=V_{\text {in }}{ }^{2}\left(V_{o}-V_{\text {in }}\right) /\left(\Delta I_{L} f_{\text {osc }} V_{o}{ }^{2}\right)$

INVERT

$L=V_{\text {in }}{ }^{2}\left|V_{0}\right| /\left[\Delta I_{L}\left(V_{\text {in }}+\left|V_{0}\right|\right)^{2 f_{\text {osc }}}\right]$
where ΔI_{L} is the current ripple through the inductor. ΔI_{L} is usually chosen based on the minimum load current expected of the circuit. For the buck regulator, since the inductor current I_{L} equals the load current l_{0},

$$
\Delta I_{\mathrm{L}}=2 \cdot I_{O(\text { min })}
$$

$\Delta I_{L}=140 \mathrm{~mA}$ for this circuit. ΔI_{L} can also be interpreted as $\Delta I_{L}=2 \bullet$ (Discontinuity Factor) • I_{L}
where the Discontinuity Factor is the ratio of the minimum load current to the maximum load current. For this example, the Discontinuity Factor is 0.2 .

The remainder of the components of Figure 15 are chosen as follows:
C1 is the timing capacitor found in Figure 1.

$$
\mathrm{C} 2 \geq \mathrm{V}_{\mathrm{o}}\left(\mathrm{~V}_{\text {in }}-V_{0}\right) /\left(8 f_{\text {osc }}{ }^{2} V_{\text {in }} V_{\text {ripple }} L 1\right)
$$

where $\mathrm{V}_{\text {ripple }}$ is the peak-to-peak output voltage ripple. C3 is necessary for continuous operation and is generally in the 10 pF to 30 pF range.
D1 should be a Schottky type diode, such as the 1N5818 or 1N5819.

BUCK WITH BOOSTED OUTPUT CURRENT

For applications requiring a large output current, an external transistor may be used as shown in Figure 17. This circuit steps a 15 V supply down to 5 V with 1.5 A of output current. The output ripple is 50 mV , with an efficiency of 80%, a load regulation of $40 \mathrm{mV}(150 \mathrm{~mA}$ to 1.5 A$)$, and a line regulation of $20 \mathrm{mV}\left(12 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 18 \mathrm{~V}\right)$.
Component values are selected as outlined for the buck regulator with a discontinuity factor of 10%, with the addition of R4 and R5:
$R 4=10 V_{B E 1} B_{f} / l_{p}$
$R 5=\left(V_{\text {in }}-V-V_{B E 1}-V_{\text {sat }}\right) B_{f} /\left(I_{L(\max , D C}+I_{R 4}\right)$ where:
$V_{B E 1}$ is the $V_{B E}$ of transistor Q1.
$V_{\text {sat }}$ is the saturation voltage of the LM1578A output transistor.
V is the current limit sense voltage.
B_{f} is the forced current gain of transistor Q1 ($B_{f}=30$ for Figure 17).
$\mathrm{I}_{\mathrm{R} 4}=\mathrm{V}_{\mathrm{BE} 1} / \mathrm{R} 4$
$\mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{L}(\max , \mathrm{DC})}+0.5 \Delta \mathrm{I}_{\mathrm{L}}$

$V_{\text {in }}=15 \mathrm{~V}$
$V_{0}=5 \mathrm{~V}$
$V_{\text {ripple }}=50 \mathrm{mV}$
$\mathrm{I}_{0}=1.5 \mathrm{~A}$
$\mathrm{f}_{\text {osc }}=50 \mathrm{kHz}$
$R 1=40 \mathrm{k} \Omega$
$R 2=10 \mathrm{k} \Omega$
$R 3=0.05 \Omega$
$R 4=200 \Omega$
$R 5=330 \Omega$
$\mathrm{C} 1=1820 \mathrm{pF}$
$\mathrm{C} 2=330 \mu \mathrm{~F}$
$\mathrm{C} 3=20 \mathrm{pF}$
$\mathrm{L1}=220 \mu \mathrm{H}$
D1 $=1$ N5819
Q1 = D45
TL/H/8711-8

FIGURE 17. Buck Converter with Boosted Output Current

Typical Applications (Continued)

BOOST REGULATOR

The boost regulator converts a low input voltage into a higher output voltage. The basic configuration is shown in Figure 18. Energy is stored in the inductor while the transistor is on and then transferred with the input voltage to the output capacitor for filtering when the transistor is off. Thus,

$$
V_{0}=V_{\mathrm{in}}+V_{\mathrm{in}}\left(\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\mathrm{off}}\right)
$$

TL/H/8711-9
FIGURE 18. Basic Boost Regulator
The circuit of Figure 19 converts a 5V supply into a 15 V supply with 150 mA of output current, a load regulation of 14 mV (30 mA to 150 mA), and a line regulation of 35 mV $\left(4.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 8.5 \mathrm{~V}\right)$.

$$
\mathrm{V}_{\text {in }}=5 \mathrm{~V}
$$

$$
V_{0}=15 \mathrm{~V}
$$

$V_{\text {ripple }}=10 \mathrm{mV}$
$\mathrm{I}_{0}=150 \mathrm{~mA}$
$\mathrm{f}_{\mathrm{osc}}=50 \mathrm{kHz}$
$R 1=140 \mathrm{k} \Omega$
$R 2=10 \mathrm{k} \Omega$
R3 $=0.1 \Omega$
R4 $=220 \mathrm{k} \Omega$
$\mathrm{R} 4=220 \mathrm{k} \Omega$
$\mathrm{C} 1=1820 \mathrm{pF}$
$\mathrm{C} 2=470 \mu \mathrm{~F}$
$\mathrm{C} 3=20 \mathrm{pF}$
$\mathrm{C} 4=0.0022 \mu \mathrm{~F}$
$\mathrm{L} 1=330 \mu \mathrm{H}$
D1 $=1$ N5818
TL/H/8711-11
FIGURE 19. Boost or Step-Up Regulator
$R 1=\left(V_{0}-1\right) R 2$ where R2 $=10 \mathrm{k} \Omega$.
$\mathrm{R} 3=\mathrm{V} /\left(\mathrm{L}_{\mathrm{L}(\text { max }, ~ D C)}+0.5 \Delta \mathrm{I}_{\mathrm{L}}\right)$
where:
$\Delta L_{L}=2\left(l_{\text {LOAD }}(\right.$ min $)\left(V_{0} / V_{\text {in }}\right)$
R4, C3 and C4 are necessary for continuous operation and are typically $220 \mathrm{k} \Omega, 20 \mathrm{pF}$, and $0.0022 \mu \mathrm{~F}$ respectively.

$$
C 2 \geq I_{0}\left(V_{0}-V_{\text {in }}\right) /\left(f_{\text {osc }} V_{0} V_{\text {ripple }}\right)
$$

D1 is a Schottky type diode such as a IN5818 or IN5819.
L1 is found as described in the buck converter section.

INVERTING REGULATOR

Figure 20 shows the basic configuration for an inverting reg; ulator. The input voltage is of a positive polarity, but the output is negative. The output may be less than, equal to, or greater in magnitude than the input. The relationship between the magnitude of the input voltage and the output voltage is $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {in }} \times\left(\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\mathrm{off}}\right)$.

TL/H/8711-10
FIGURE 20. Basic Inverting Regulator
Figure 21 shows an LM1578A configured as a 5V to -15V polarity inverter with an output current of 300 mA , a load regulation of $44 \mathrm{mV}(60 \mathrm{~mA}$ to 300 mA$)$ and a line regulation of $50 \mathrm{mV}\left(4.5 \mathrm{~V} \leq \mathrm{V}_{\text {in }} \leq 8.5 \mathrm{~V}\right)$.

$$
\begin{gathered}
R 1=\left(\left|V_{0}\right|+1\right) R 2 \text { where } R 2=10 \mathrm{k} \Omega . \\
R 3=V /\left(l_{L(\max , D C)}+0.5 \Delta I_{L}\right) . \\
R 4=10 V_{B E .1} B_{f} /\left(l_{L}(\max , D C)+0.5 \Delta I_{L}\right)
\end{gathered}
$$

where:
$\mathrm{V}, \mathrm{V}_{\mathrm{BE} 1}, \mathrm{~V}_{\text {sat }}$, and B_{f} are defined in the "Buck Converter with Boosted Output Current" section.
$\Delta I_{L}=2\left(l_{\text {LOAD }}(\right.$ min $\left.) ~\right)\left(V_{\text {in }}+\left|V_{0}\right|\right) / V_{I N}$
R5 is defined in the "Buck with Boosted Output Current" section.
R6 serves the same purpose as R4 in the Boost Regulator circuit and is typically $220 \mathrm{k} \Omega$.
C1, C3 and C4 are defined in the "Boost Regulator" section.

$$
\mathrm{C} 2 \geq \mathrm{I}_{0}\left|\mathrm{~V}_{0}\right| /\left[f_{\text {osc }}\left(\left|V_{0}\right|+V_{\text {in }}\right) V_{\text {ripple }}\right]
$$

L1 is found as outlined in the section on buck converters, using the inductance chart for the invert configuration and 20% discontinuity.

C 1 is the timing capacitor found in Figure 1.

FIGURE 21. Inverting Regulator

Typical Applications (Continued)

BUCK-BOOST REGULATOR

The Buck-Boost Regulator, shown in Figure 22, may step a voltage up or down, depending upon whether or not the desired output voltage is greater or less than the input voltage. In this case, the output voltage is 12 V with an input voltage from 9 V to 15 V . The circuit exhibits an efficiency of 75%, with a load regulation of $60 \mathrm{mV}(10 \mathrm{~mA}$ to 100 mA$)$ and a line regulation of 52 mV .
$R 1=\left(V_{0}-1\right) R 2$ where R2 $=10 \mathrm{k} \Omega$
$\mathrm{R} 3=\mathrm{V} / 0.75 \mathrm{~A}$
R4, C1, C3 and C4 are defined in the "Boost Regulator" section.
D1 and D2 are Schottky type diodes such as the 1N5818 or 1N5819.

$$
\mathrm{C} 2 \geq \frac{\left(I_{0} / V_{\text {ripple }}\right)\left(V_{0}+2 V_{d}\right)}{\left[f_{\text {osc }}\left(V_{\text {in }}+V_{o}+2 V_{d}-V_{\text {sat }}-V_{\text {sat } 1}\right)\right]}
$$

where:
V_{d} is the forward voltage drop of the diodes.
$\mathrm{V}_{\text {sat }}$ is the saturation voltage of the LM1578A output transistor.
$\mathrm{V}_{\text {sat } 1}$ is the saturation voltage of transistor Q1.

$$
L 1 \geq\left(V_{\text {in }}-V_{\text {sat }}-V_{\text {sat } 1}\right)\left(t_{\text {on }} / I_{p}\right)
$$

where:

$$
\begin{aligned}
& t_{\text {on }}=\frac{\left(1 / f_{\text {osc }}\right)\left(V_{o}+2 V_{d}\right)}{\left(V_{o}+V_{\text {in }}+2 V_{d}-V_{\text {sat }}-V_{\text {sat } 1}\right)} \\
& I_{p}=\frac{2 I_{0}\left(V_{\text {in }}+V_{o}+2 V_{d}-V_{\text {sat }}-V_{\text {sat } 1}\right)}{\left(V_{\text {in }}-V_{\text {sat }}-V_{\text {sat } 1}\right)}
\end{aligned}
$$

RS-232 LINE DRIVER POWER SUPPLY

The power supply, shown in Figure 23, operates from an input voltage as low as 4.2 V (5 V nominal), and delivers an output of $\pm 12 \mathrm{~V}$ at $\pm 40 \mathrm{~mA}$ with better than 70% efficiency. The circuit provides a load regulation of $\pm 150 \mathrm{mV}$ (from 10% to 100% of full load) and a line regulation of $\pm 10 \mathrm{mV}$. Other notable features include a cycle-by-cycle current limit and an output voltage ripple of less than $40 \mathrm{mVp}-\mathrm{p}$.
A unique feature of this circuit is its use of feedback from both outputs. This dual feedback configuration results in a sharing of the output voltage regulation by each output so that neither side becomes unbalanced as in single feedback systems. In addition, since both sides are regulated, it is not necessary to use a linear regulator for output regulation.
The feedback resistors, R2 and R3, may be selected as follows by assuming a value of $10 \mathrm{k} \Omega$ for R1;
$R 2=\left(V_{0}-1 \mathrm{~V}\right) / 45.8 \mu \mathrm{~A}=240 \mathrm{k} \Omega$
$R 3=\left(\left|V_{0}\right|+1 V\right) / 54.2 \mu \mathrm{~A}=240 \mathrm{k} \Omega$
Actually, the currents used to program the values for the feedback resistors may vary from $40 \mu \mathrm{~A}$ to $60 \mu \mathrm{~A}$, as long as their sum is equal to the $100 \mu \mathrm{~A}$ necessary to establish the 1V threshold across R1. Ideally, these currents should be equal ($50 \mu \mathrm{~A}$ each) for optimal control. However, as was done here, they may be mismatched in order to use standard resistor values. This results in a slight mismatch of regulation between the two outputs.
The current limit resistor, R4, is selected by dividing the current limit threshold voltage by the maximum peak current level in the output switch. For our purposes R4 = $90 \mathrm{mV} / 750 \mathrm{~mA}=0.12 \Omega$. A value of 0.1Ω was used.

$V_{\text {in }}=5 \mathrm{~V}$
$V_{0}= \pm 12 \mathrm{~V}$
$I_{0}= \pm 40 \mathrm{~mA}$
$\mathrm{f}_{\mathrm{osc}}=80 \mathrm{kHz}$
$\mathrm{R} 1=10 \mathrm{k} \Omega$
$R 2=240 \mathrm{k} \Omega$
$R 3=240 \mathrm{k} \Omega$
$R 4=0.1 \Omega$
$\mathrm{C} 1=820 \mathrm{pF}$
$\mathrm{C} 2=10 \mathrm{pF}$
$\mathrm{C} 3=220 \mu \mathrm{~F}$
D1, D2, D3 $=1$ N5819
$\mathrm{T} 1=\mathrm{PE}-64287$

TL/H/8711-14
FIGURE 23. RS-232 Line Driver Power Supply

Typical Applications (Continued)

Capacitor C1 sets the oscillator frequency and is selected from Figure 1.
Capacitor C2 serves as a compensation capacitor for synchronous operation and a value of 10 to 50 pF should be sufficient for most applications.
A minimum value for an ideal output capacitor C 3 , could be calculated as $C=I_{0} \times t / \Delta V$ where I_{0} is the load current, t is the transistor on time (typically $0.4 / \mathrm{f}_{\text {osc }}$), and $\Delta \mathrm{V}$ is the peak-to-peak output voltage ripple. A larger output capacitor than this theoretical value should be used since electrolytics have poor high frequency performance. Experience has shown that a value from 5 to 10 times the calculated value should be used.

For good efficiency, the diodes must have a low forward voltage drop and be fast switching. 1N5819 Schottky diodes work well.

Transformer selection should be picked for an output transistor "on" time of $0.4 / \mathrm{f}_{\text {osc }}$, and a primary inductance high enough to prevent the output transistor switch from ramping higher than the transistor's rating of 750 mA . Pulse Engineering (San Diego, Calif.) and Renco Electronics, Inc. (Deer Park, N.Y.) can provide further assistance in selecting the proper transformer for a specific application need. The transformer used in Figure 23 was a Pulse Engineering PE-64287.

LM2579 Switching Regulator

General Description

The LM2579 can easily be used in switching regulator configurations, such as the buck, boost, and inverting, to perform DC-to-DC voltage conversion. The LM2579 features a unique comparator input stage which not only has separate pins for both the inverting and non-inverting inputs, but also provides an internal 1.0 V reference to each input, thereby simplifying circuit design and p.c. board layout. The output can switch up to $3 A$ and has output pins for both its collector and emitter to promote design flexibility. An external current limit terminal may be referenced to either the ground or the $\mathrm{V}_{\text {IN }}$ terminal, depending upon the application. In addition, the LM2579 has an onboard oscillator, which sets the switching frequency with a single external capacitor, from $<1 \mathrm{~Hz}$ to 100 kHz (typical).

Features

- Inverting and non-inverting feedback inputs
- 1.0V reference at inputs
- Operates from supply voltages of 3.5 V to 40 V
- Output current up to 3 A , saturation less than 0.75 V
- Emitter output can swing below ground terminal, for ease of use in inverting applications
- Current limit and thermal shutdown
- Duty cycle up to 90%

Applications

- Switching regulators in buck, boost, inverting, and sin-gle-ended transformer configurations
- Motor speed control
- Lamp flasher

Functional Diagram

Absolute Maximum Ratings
 (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Total Supply Voltage
50 V
Collector Output to Ground
Emitter Output to Ground (Note 2)
Power Dissipation (Note 3)
Output Current
Storage Temperature
-0.3 V to +50 V
-20 V to +50 V
Internally limited
3A
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature
(Soldering, 10 seconds) $260^{\circ} \mathrm{C}$
Maximum Junction Temperature $150^{\circ} \mathrm{C}$
ESD Tolerance (Note 4) 2 kV

Operating Ratings

Ambient Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Junction Temperature	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
Supply Voltage	$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}$

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$ $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}$

Electrical Characteristics

These specifications apply for $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}$, timing capacitor $\mathrm{C}_{\mathrm{T}}=3900 \mathrm{pF}$, and $25 \% \leq$ duty cycle $\leq 75 \%$, unless otherwise specified. Values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$, values in boldface type apply for $-\mathbf{4 0 ^ { \circ }} \mathrm{C} \leq \mathbf{T}_{J} \leq+125^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	Limit (Note 6)	Units
OSCILLATOR					
fosc	Frequency	,	20	$\begin{aligned} & 24 \\ & 16 \end{aligned}$	kHz kHz (max) $\mathrm{kHz}($ min $)$
$\Delta \mathrm{f}_{\text {OSC }} / \Delta \mathrm{T}$	Frequency Drift with Temperature		-0.13		\%/ ${ }^{\circ} \mathrm{C}$
	Amplitude		550		$m V_{p-p}$
REFERENCE/COMPARATOR (Note 7)					
V_{R}	Input Reference Voltage	$\begin{aligned} & l_{1}=l_{2}=0 \mathrm{~mA} \text { and } \\ & l_{1}=I_{2}=1 \mathrm{~mA} \pm 1 \% \text { (Note } 8 \text {) } \end{aligned}$	1.0	$\begin{aligned} & 1.050 / 1.070 \\ & 0.950 / 0.930 \end{aligned}$	$\begin{aligned} & V \\ & V(\max) \\ & V(\min) \end{aligned}$
$\Delta \mathrm{V}_{\mathrm{R}} / \Delta \mathrm{V}_{\mathrm{IN}}$	Input Reference Voltage Line Regulation	$\begin{aligned} & I_{1}=I_{2}=0 \mathrm{~mA} \text { and } \\ & I_{1}=I_{2}=1 \mathrm{~mA} \pm 1 \% \text { (Note } 8 \text {) } \end{aligned}$	0.003	0.01/0.02	$\begin{aligned} & \% / V \\ & \% / V(\max) \end{aligned}$
IINV	Inverting Input Current	$\mathrm{I}_{1}=\mathrm{I}_{2}=0 \mathrm{~mA}$, duty cycle $=25 \%$	0.5		$\mu \mathrm{A}$
	Level Shift Accuracy	Level Shift Current $=1 \mathrm{~mA}$	1.0	10/13	$\begin{aligned} & \% \\ & \% \text { (max) } \end{aligned}$
$\Delta V_{R} / \Delta t$	Input Reference Voltage Long Term Stability		100		ppm/1000h
OUTPUT					
V_{C} (sat)	Collector Saturation Voltage	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}$ Pulsed, Emitter Grounded	0.55	0.75/1.0	$\begin{aligned} & \text { V } \\ & \text { V (max) } \end{aligned}$
V_{E} (sat)	Emitter Saturation Voltage	$\mathrm{l}_{0}=3 \mathrm{~A}$ Pulsed, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{C}}=40 \mathrm{~V}$	1.7	1.9/2.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \text { (max }) \end{aligned}$
ICES	Collector Leakage Current	$V_{I N}=V_{C E}=40 \mathrm{~V},$ Emitter Grounded, Output OFF	0.1	600/750	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A}(\max) \end{aligned}$
ICEX	Emitter Leakage Current	$\begin{aligned} & V_{I N}=V_{C}=20 \mathrm{~V}, \\ & V_{E}=-20 \mathrm{~V}, \text { Output OFF } \end{aligned}$	0.1	600/750	$\begin{aligned} & \mu A \\ & \mu A(\max) \end{aligned}$
$\mathrm{BV}_{\text {CEO(SUS) }}$	Collector-Emitter Sustaining Voltage	ISUST $=0.2 \mathrm{~A}$ (Pulsed), $\mathrm{V}_{\mathrm{IN}}=0$	60	50	$\begin{aligned} & \text { V } \\ & \text { V (Min) } \end{aligned}$

Electrical Characteristics (Continued)
These specifications apply for $3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}$, timing capacitor $\mathrm{C}_{\mathrm{T}}=3900 \mathrm{pF}$, and $25 \% \leq$ duty cycle $\leq 75 \%$, unless otherwise specified. Values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$, values in boldface type apply for $-\mathbf{4 0 ^ { \circ }} \mathbf{C} \leq \mathbf{T}_{J} \leq+125^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Typical (Note 5)	Limit (Note 6)	Units
CURRENT LIMIT					
$V_{C L}$	Sense Voltage Shutdown Level	Referred to VIN or Ground	115	$\begin{gathered} 80 \\ 160 \end{gathered}$	mV mV (min) $m V(\max)$
$\Delta \mathrm{V}_{\mathrm{CL}} / \Delta \mathrm{T}$	Sense Voltage Temperature Drift		0.3		\%/ ${ }^{\circ} \mathrm{C}$
ICL	Sense Bias Current	Referred to $V_{\text {IN }}$ Referred to Ground	$\begin{aligned} & 40 \\ & 0.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
DEVICE POWER CONSUMPTION					
Is	Supply Current	Output OFF, $\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}$	3.0	5.0/7.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA}(\max) \end{aligned}$
		Output ON, $\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}$ Pulsed, $V_{E}=0 V$	55	75/150	mA, peak (max)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Maximum voltage between emitter and collector or supply is 50 V .
Note 3: At elevated temperatures, devices must be derated based on package thermal resistance. The device in the 11-lead TO-220 package must be derated at $36^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $1^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 4: Human body model, $\mathrm{R}=1.5 \mathrm{k} \Omega, \mathrm{C}=100 \mathrm{pF}$.
Note 5: Typical values are for $T_{j}=25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 6: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). Room temperature limits are 100\% production tested. Limits' at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
Note 7: Input terminals are protected from accidental shorts to ground but if external voltages higher than the reference voltage is applied, excessive current will flow and should be limited to less than 5 mA .
Note 8: I_{1} and I_{2} are the external sink currents at the inputs (refer to Test Circuit).

Connection Diagram and Ordering Information

TL/H/10355-2
Top View
Tab connected to Pin 4 (Ground)
*N.C. $=$ No internal connection
Order Number LM2579T
See NS Package Number TA11B

Typical Performance Characteristics

Current Limit Sense Voltage Drift with Temperature

Collector Saturation Voltage
(Sinking Current,
Emitter Grounded)

Current Limit Response Time for Various Over Drives

Oscillator Frequency Change with Temperature

Emitter Saturation Voltage
(Sourcing Current,
Collector at V_{IN})

Current Limit Response Time for Various Over Drives

Test Circuit \dagger

Parameter tests can be made using the test circuit shown. Select the desired $\mathrm{V}_{\mathbb{I}}$, collector voltage and duty cycle with adjustable power supplies. A digital volt meter with an input resistance greater than $100 \mathrm{M} \Omega$ should be used to measure the following:

Input Reference voltage to Ground; S1 in either position.
Level Shift Accuracy (\%) $\left.=T_{P 3}(V) / 1 V\right) \cdot 100 \%$; 1 at
$I_{1}=I_{2}=1 \mathrm{~mA}$
Input current $(\mathrm{mA})=\left(1 \mathrm{~V}-\mathrm{T}_{\mathrm{P}}(\mathrm{V})\right) / 1 \mathrm{M} \Omega ; \mathrm{S} 1$ at $I_{1}=I_{2}=0 \mathrm{~mA}$.
Oscillator parameters can be measured at TP4 using a frequency counter or an oscilloscope.
The Current Limit Sense Voltage is measured by connecting an adjustable 0 -to-1V floating power supply in series with the current limit terminal and referring it to either the ground or the $\mathrm{V}_{\mathbb{N}}$ terminal. Set the duty cycle to 90% and monitor test point TP5 while adjusting the floating power supply voltage until the LM2579's duty cycle just reaches 0%. This voltage is the Current Limit Sense Voltage.
The Supply Current should be measured with the duty cycle at 0% and S 1 in the $\mathrm{I}_{1}=\mathrm{I}_{2}=0 \mathrm{~mA}$ position.
\dagger LM2579 specifications are measured using automated test equipment. This circuit is provided for the customer's convenience when checking parameters. Due to possible variations in testing conditions, the measured values from these testing procedures may not match those of the factory.

Definition of Terms

Input Reference Voltage: The reference voltage referred to ground, applied to either the inverting or non-inverting inputs, which will cause the output to switch ON or OFF.
Input Reference Current: The current applied to either the inverting or the non-inverting input which will cause the output to switch ON or OFF.
Input Level Shift Accuracy: If there are two equal resistors sinking current from the inverting and non-inverting input terminals, the Input Level Shift Accuracy is the ratio of the voltage across the resistors to produce a given duty cycle at the output.
Collector Saturation Voltage: With the inverting input terminal grounded through a $10 \mathrm{k} \Omega$ resistor and the output transistor's emitter connected to ground, the Collector Saturation Voltage is the collector-to-emitter voltage for a given collector current.
Emitter Saturation Voltage: With the inverting input terminal grounded through a $10 \mathrm{k} \Omega$ resistor and the output transistor's collector connected to V_{IN}, the Emitter Saturation Voltage is the collector-to-emitter voltage for a given emitter current.
Collector-Emitter Sustaining Voltage: The collector-emitter breakdown voltage of the output transistor, measured at a specified current.

Note 1: Op amp supplies are +15 V .
Note 2: DVM input resistance $>100 \mathrm{M} \Omega$.
Note 3: *LM2579 max duty cycle is 90%.

Definition of Terms (Continued)

Current Limit Sense Voltage: The voltage at the current Limit pin, referred to either the V_{IN} terminal or the ground terminal, which (via logic circuitry) will cause the output transistor to turn OFF. The logic circuitry is reset at the beginning of each oscillator cycle.
Current Limit Sense Current: The bias current for the Current Limit terminal with the applied voltage equal to the Current Limit Sense Voltage.
Supply Current: The IC power supply current, excluding current drawn through the output transistor, with the oscillator operating.

Functional Description

The LM2579 is a pulse-width modulator designed for use as a switching regulator controller. It may also be used in other applications which require controlled pulse-width voltage drive.
A control signal, usually representing output voltage, fed into the LM2579's comparator is compared with an internal-ly-generated reference. The resulting error signal and the oscillator's output are fed to a logic network which determines when the output transistor will be turned ON or OFF. The following is a brief description of the subsections of the LM2579.

COMPARATOR INPUT STAGE

The LM2579's comparator input stage is unique in that both the inverting and non-inverting inputs are available to the user, and both contain a 1.0 V reference. This is accomplished as follows: A 1.0 V reference is fed into a modified voltage follower circuit (see FUNCTIONAL DIAGRAM). When both input pins are open, no current flows through R_{1} and R_{2}. Thus, both inputs to the comparator will have the potential of the 1.0 V reference, V_{A}. When one input, for example the non-inverting input, is pulled ΔV away from V_{A}, a current of $\Delta V / R_{1}$ will flow through R_{1}. This same current flows through R_{2}, and the comparator sees a total voltage of $2 \Delta \mathrm{~V}$ between its inputs. The high gain of the system, through feedback, will correct for this imbalance and return both inputs to the 1.0 V level.
This unusual comparator input stage increases circuit flexibility, while minimizing the total number of external components required for a voltage regulator system. The inverting switching regulator configuration, for example, can be set up

FIGURE 1. Value of Timing Capacitor vs Oscillator Frequency
without having to use an external op amp for feedback polarity reversal (See TYPICAL APPLICATIONS).

OSCILLATOR

The LM2579 provides an on-board oscillator which can be adjusted up to 100 kHz . Its frequency is set by a single external capacitor, C_{1}, as shown in Figure 1, and follows the equation

$$
\mathrm{fosc}^{\prime}=8 \times 10^{-5 / C_{1}}
$$

The oscillator provides a blanking pulse to limit maximum duty cycle to 90%, and a reset pulse to the internal circuitry.

OUTPUT TRANSISTOR

The output transistor is capable of delivering up to 3 A with a saturation voltage of less than 0.75 V (see Collector Saturation Voltage and Emitter Saturation Voltage curves).
The emitter can be pulled below ground, as long as the total voltage between the emitter pin and collector or supply pin does not exceed 50V. This feature allows the LM2579 to be used in an inverting regulator configuration without an additional output transistor which would normally be required to protect the device from the negative output voltage.

CURRENT LIMIT

The LM2579's current limit may be referenced to either the ground or the V_{IN} pin, and operates on a cycle-by-cycle basis.
The current limit section consists of two comparators: one with its non-inverting input referenced to a voltage 115 mV below V_{IN}, the other with its inverting input referenced 115 mV above ground (see FUNCTIONAL DIAGRAM). The current limit is activated whenever the current limit terminal is pulled 115 mV away from either V_{IN} or ground.

Application Information

CIRCUIT BOARD LAYOUT

Because of fast switching of high output currents, the circuit board layout should be carefully thought out. The comparator inputs are sensitive to noise, and should be kept away from the high-energy switching signals. Feedback resistors should be located near the input terminals. A single-point ground should be used for the oscillator capacitor, device ground, and feedback (when appropriate) to avoid ground loops.

LEAD INDUCTANCE IMPACTS DIODE CHOICE

It is always important to use diodes designed for switching applications. Schottky diodes generally provide superior performance, although fast recovery diodes can also be used. Fast recovery diodes differ from Schottky diodes in their turn-on and turn-off characteristics, which can cause voltage transients that will affect circuit operation.
The turn-off, or "recovery," time of a diode refers to the time it takes for the charge that has been stored in the diode during the forward conduction period to be depleted. During this recovery period, the diode appears to be a short, causing a fast current pulse to flow through the switch. Since the LM2579's output is capable of switching current at a rate of approximately $30 \mathrm{~A} / \mu \mathrm{s}$, and one inch of 20 -gauge wire has approximately 30 nH of inductance, a transient of nearly 1 V can be generated for every inch of stray wire ($\mathrm{V}=\mathrm{L}$ di/dt = $30 \mathrm{nH} \times 30 \mathrm{~A} / \mu \mathrm{s}=0.9 \mathrm{~V}$). Since the LM2579's current limit sense voltage is 115 mV (typ.), transients like these can

Application Information (Continued)

greatly affect circuit operation. They can be minimized by keeping all lead lengths short, thus reducing stray inductances. Additional methods of suppressing noise spikes and switching transients are described in the Current Limit Transient Suppression section.
The turn-on time of the switching diode must also be considered. A slow turn-on can cause an increase in the voltage across the output transistor, which is rated for 50 V (maximum) in the LM2579). This condition can exist in all configurations.

FIGURE 2. Transient Applied to Output Transistor by Slow Turn-On of Diode
Referring to Figure 2, at t_{1} the transistor turns OFF; at t_{2}, the diode turns ON. This delay allows buildup of voltage across the non-conducting diode, which is applied to the transistor until the diode begins conducting.

CURRENT LIMIT

As noted in the functional description, the current limit terminal may be referred to either V_{IN} or ground (see Figures 3, 4). The resistor $R_{C L}$ converts the current to be sensed into a voltage for current limit detection.

TL/H/10355-7
FIGURE 3. Current Limit, Ground Referred

TL/H/10355-8
FIGURE 4. Current Limit, V_{IN} Referred

C. L. SENSE VOLTAGE MULTIPLICATION

When a larger sense resistor value is desired, a voltage divider network may be used (see Figures 5, 6). This effectively multiplies the sense voltage by ($1+\mathrm{R} 1 / \mathrm{R} 2$). Alternatively, R1 can be replaced by a diode to increase current limit sense voltage to about 800 mV (diode $\mathrm{V}_{\mathrm{d}}+115 \mathrm{mV}$).

TL/H/10355-9
FIGURE 5. Current Limit Sense Voltage Multiplication, Ground Referred

TL/H/10355-10
FIGURE 6. Current Limit Sense Voltage Multiplication, VIN Referred

CURRENT LIMIT TRANSIENT SUPPRESSION

When noise spikes and switching transients interfere with proper current limit operation, an RC low-pass filter can be used to control the current limit circuitry's response time (see Figures 7, 8).

TL/H/10355-11
FIGURE 7. Current Limit Transient Suppressor, Ground Referred

Application Information (Continued)

TL/H/10355-12

FIGURE 8: Current Limit Transient Suppressor, $\mathrm{V}_{\text {IN }}$ Referred

Because the input current of the current limit terminal varies according to its reference point, R_{S} should be less than $2 \mathrm{k} \Omega$ when referred to ground, and less than 100Ω when referred to V_{IN}. C_{S} is typically $0.01 \mu \mathrm{~F}$.

UNDER-VOLTAGE LOCKOUT

Under-voltage lockout requires few external components, as shown in Figure 9. When V_{iN} becomes lower than the zener breakdown voltage, the LM2579's output transistor is turned OFF. This occurs because diode D1 will then become forward biased, allowing resistor R_{U} to sink a greater current from the non-inverting input than is sunk by the parallel combination of the feedback resistors, R1 and R2, at the inverting terminal. R_{U} should be one-fifth of the value of R1 and R2 in parallel.

TL/H/10355-13
D1 $=1$ N457 or similar
FIGURE 9. Under-Voltage Lockout

MAXIMUM DUTY CYCLE LIMITING

The maximum duty cycle can be externally limited by adjusting the charge-to-discharge ratio of the oscillator capacitor with a single external resistor, as shown in Figure 10. Typical values are $50 \mu \mathrm{~A}$ for the charge current, $450 \mu \mathrm{~A}$ for the discharge current and a voltage swing from 200 mV to 750 mV . Therefore, R_{d} is selected for the desired charging and discharging slopes, and C 1 is readjusted to set the oscillator frequency.

TL/H/10355-14
FIGURE 10. Maximum Duty Cycle Limiting

DUTY CYCLE ADJUSTMENT

When manual or mechanical selection of the output transistor's duty cycle is needed, the circuit shown in Figure 11 may be used. The output will turn ON with the beginning of each oscillator cycle, and turn OFF when the current sunk by $R_{a 1}$ and $R_{a 2}$ from the non-inverting terminal becomes greater than the current sunk from the inverting terminal.
With the resistor values as shown, $\mathrm{R}_{\mathrm{a} 2}$ can be used to adjust the duty cycle from 0% to 90%. When the sum of $R_{a 1}$ and $R_{a 2}$ is twice the value of R_{p}, the duty cycle will be about 50%. C1 may be a large electrolytic capacitor, to lower the oscillator frequency below 1 Hz if appropriate for the application.

TL/H/10355-15
FIGURE 11. Duty Cycle Adjustment

REMOTE SHUTDOWN

The LM2579 may be remotely shut down by sinking a greater current from the non-inverting input than from the inverting input. This may be accomplished by selecting resistor R_{S} to be approximately one-half the value of the parallel combination of R1 and R2 (see Figure 12). Shutdown will occur when V_{L} is high.

Application Information (Continued)

TL/H/10355-16
FIGURE 12. Remote Shutdown

SYNCHRONIZING DEVICES

When several devices are to be operated at once, their oscillators may be synchronized by the application of an external signal, as shown in Figure 13. This drive signal should be a pulse waveform with a minimum pulse width of $2 \mu \mathrm{~s}$, and an amplitude of from 1.5 V to 2.0 V . The signal source must be capable of both driving capacitive loads and delivering up to $500 \mu \mathrm{~A}$ for each LM2579.
Capacitors C1 through Cn are to be selected for a 20\% slower frequency than the synchronizing frequency.

TL/H/10355-17
FIGURE 13. Synchronizing Devices

IMPROVING TRANSISTOR SATURATION

The efficiency of a switching regulator is highest when the power transistor is allowed to fully saturate, minimizing the Collector-Emitter voltage when the transistor is ON. When the Collector is used as the output, with the Emitter grounded, the output transistor will fully saturate. Saturation voltage depends on the load current (see Collector Saturation Voltage curve), and is normally under 0.8 V , over temperature.
However, when the Emitter is used as the output (Collector tied to V_{IN}, as in Figure 14), the output transistor cannot fully saturate because of the Darlington configuration of the output stage. This results in a 1.7 V drop (typically) across the power device Q3 during the conduction period (refer to Emitter Saturation Voltage curve).

TL/H/10355-18
FIGURE 14. Collector-Emitter Saturation Prevented by Darlington Construction of Output Stage (Simplified Schematic)
To achieve Collector-Emitter saturation, the base for the LM2579 output transistor Q3 must be driven higher than its Collector. This cannot happen if the Collector is tied to $V_{i N}$. However, by increasing V_{IN} to 1.5 V or more above V_{C}, Col-lector-Emitter saturation can occur (see Figure 15). Techniques for accomplishing this are shown in the Typical Applications examples.

TL/H/10355-19
FIGURE 15. Increasing $\mathrm{V}_{\text {IN }}$ Above V_{C} Allows Collector-Emitter Saturation

ADAPTING LM1578 DESIGNS TO THE LM2579

All LM1578 designs may be adapted for use with the LM2579 to achieve higher output power. The LM2579 is based on the design of the LM1578 switching regulator controller, with a few modifications. The output switching transistor is capable of delivering 3 A (peak or DC), compared to the 0.75A maximum current rating of the LM1578, and the Emitter output can swing more negative than the ground terminal. Because of the difference in current rating, the LM2579 is in the TO-220 style package so it may be easily heat-sunk. Heat sinking is necessary for most LM2579 designs, especially those operating at high switch currents. For example, the loss of 3 W in the output switch of a converter operating at $35^{\circ} \mathrm{C}$ ambient would raise the die temperature near its maximum rating of $150^{\circ} \mathrm{C}$ if no heat sink were used (see Note 3 in the Electrical Characteristics).
The other modification seen in the LM2579 is the 20 pF capacitor that is used, in LM1578 applications, to inject an end-of-cycle signal into the error comparator, improving synchronization of the switching to the oscillator. It is not necessary to add this capacitor in LM2579 applications.

Typical Applications

The LM2579 can be used in all standard configurations which require a single switching transistor. These include the buck (or step-down), boost (or step-up), invert, flyback, and forward styles.

Typical Applications (Continued)

Several design examples follow which include a variety of techniques to improve regulator performance.
Inductors having the standard values shown in the nomograph of Figure 17 are available from Pulse Engineering (San Diego, CA); AIE Magnetics, division of Vernatron (St. Petersburg, FL); and Renco Electronics (Deer Park, NY).

BUCK REGULATOR

In the buck regulator of Figure 16, a 28 V input is converted to 5 V , with a load of up to 2.5 A . Efficiency at maximum load is approximately 80%, and load regulation is approximately $0.05 \% / \mathrm{A}$ in the range $0.3 \mathrm{~A} \leq$ LIOAD $\leq 2.5 \mathrm{~A}$. Switching frequency has been set to 40 kHz by the choice of 2 nF for C_{1} (see Figure 1).
The value of the inductor, L, is determined by the use of the Inductance Calculator (Figure 17), or by the equation

$$
L=V_{O}\left(V_{I N}-V_{O}\right) /\left(\Delta I_{L} V_{I N} f o s c\right)
$$

where ΔI_{L} is the current ripple through the inductor. ΔI_{L} is usually chosen based on the minimum load current expected of the circuit: For the Buck regulator, since $I_{L}=I_{\text {LOAD }}$, ΔL_{L} is twice the minimum load current value $\Delta I_{L}=350 \mathrm{~mA}$ for this circuit, so operation will become discontinuous at $\left(\Delta I_{\mathrm{L}(\min)} / 2\right)\left(100 \% / \mathrm{L}_{\mathrm{L}(\max)}\right)=7 \%$ of the maximum load current. (This is the "\% Discontinuity" referred to in the Inductance Calculator.)
At this minimum value, the inductor current will just reach zero at the end of every switching period. Below the "minimum," the inductor will "run dry" and the regulator will be "discontinuous," as the inductor current is zero for part of each cycle. In this mode, the inductor is no longer storing energy, so is not an effective part of the output filter. Regulation will continue but performance will be degraded.

Output ripple voltage is about 40 mVpp when the output filter capacitor, C_{2}, is a standard $1000 \mu \mathrm{~F}$ electrolytic. Replacing this capacitor with a $1500 \mu \mathrm{~F}$ "low ESR" (equivalent series resistance) capacitor reduces the ripple to 20 mVpp . The minimum value of this capacitor can be determined by the following equation

$$
C_{2} \geq V_{O}\left(V_{I N}-V_{O}\right) /\left(8 V_{I N} V_{\text {RIPPLE }} L f_{O S C}^{2}\right)
$$

where $\mathrm{V}_{\text {RIPPLE }}$ is the desired maximum output voltage ripple in peak-to-peak Volts. The ripple will be greater than predicted by this equation due to effects of ESR in C_{2}.
Figure 16 illustrates the single-point grounding and supply bypassing necessary for this type of moderate-to-high current switching regulator. For best regulation, all high-current paths, including ground, must be kept low-resistance.
*Note: When pin 5, the Emitter of the LM2579 output transistor, is used to drive the output filter, it may oscillate when driven into positive saturation and when loaded with capacitance of between 100 pF and 500 pF . This capacitance is usually caused by socket capacitance, input capacitance of external components (such as the Schottky diode), and stray capacitance in the layout. The oscillation, which is usually near 30 MHz , can be eliminated by adding a series RC of 4.7Ω to 10Ω and 1 nF from the Emitter (pin 5) to Ground.
In the Emitter-driven configurations, the Collector output (pin 7) is normally tied to $\mathrm{V}_{\mathrm{IN}}(\mathrm{pin} 8)$. If this connection uses long lead lengths (greater than $3^{\prime \prime}$ total), the Collector should be bypassed to V_{IN} with $0.01 \mu \mathrm{~F}$ (or greater), attached directly to the terminals. In addition, when current limiting is used, connections to the Current Limit pin (pin 9) should be made with short leads. Use of these techniques to minimize lead inductance will also minimize switching transients, thus reducing conducted noise.

TL/H/10355-20
FIGURE 16. Buck Converter: $\mathbf{2 8 V}$ to 5 V at 2.5A
*Refer to Note in text.

FIGURE 17. DC/DC Inductance Calculator

Typical Applications (Continued)
 BOOST REGULATOR

The boost converter of Figure 18 produces 15 V at up to 800 mA from a 5 V input, with 82% efficiency. The output ripple (with an 800 mA load) is 100 mV when a standard $1000 \mu \mathrm{~F}$ electrolytic output capacitor is used, or 75 mV if a $1500 \mu \mathrm{~F}$ low-ESR electrolytic is used. The minimum value of C_{2} may be calculated using the same equation as shown in the BUCK REGULATOR section.

The inductor value is selected either using the Inductance Calculator (Figure 17), or by the equation

$$
L=V_{I N}{ }^{2}\left(V_{O}-V_{I N}\right) /\left(\Delta I_{L} V_{O^{2}} f_{\mathrm{OSC}}\right)
$$

where, as in the previous section, Δ_{L} is determined by minimum expected DC inductor current. For the boost regulator,

$$
\Delta I_{\mathrm{L}}=2 I_{\mathrm{LOAD}(\mathrm{~min})}\left(\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{I N}\right)
$$

Load regulation for this circuit is approximately $0.04 \% / \mathrm{A}$ in the range $50 \mathrm{~mA} \leq \mathrm{I}_{\text {LOAD }} \leq 800 \mathrm{~mA}$. Line regulation is $4 \mathrm{mV} / \mathrm{V}$ for the input range $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 8.5 \mathrm{~V}$.
Stability of the circuit is improved with the use of a series R-C network from the Current Limit pin to the Inverting Input.

INVERTING REGULATOR

The inverting regulator of Figure 19 converts a 15 V input to -15 V at 1 A . The load regulation is about $30 \mathrm{mV} / \mathrm{A}$ for the range $0.1 \mathrm{~A} \leq$ l LOAD $\leq 1.0 \mathrm{~A}$.
The inductor value is determined either by the Inductance Calculator (Figure 17), or by the equation

$$
L=V_{I N}{ }^{2}\left|V_{O}\right| /\left[\Delta I_{L}\left(V_{I N}+\left|V_{O}\right|\right)^{2} f_{O S C}\right]
$$

where ΔI_{L} is based on minimum DC inductor current, and may be calculated as follows:

$$
\Delta I_{\mathrm{L}}=2 I_{\mathrm{LOAD}(\min)}\left(\mathrm{V}_{\mathbb{N}}+\left|V_{\mathrm{O}}\right|\right) / \mathrm{V}_{\mathbb{I}}
$$

The output voltage ripple (at full load) is approximately 120 mVpp when C_{2} is a $1000 \mu \mathrm{~F}$ standard electrolytic capacitor, or 60 mVpp when a $1500 \mu \mathrm{~F}$ low-ESR capacitor is used. The minimum value of C_{2} may be calculated using the equation shown in the BUCK REGULATOR section.
The efficiency of this regulator is approximately 76%. To achieve higher efficiency, the circuit may be modified (as shown in Figure 20) to increase the supply voltage to the LM2579, which reduces the saturation voltage of the output transistor.

FIGURE 18. Boost Converter: $\mathbf{5 V}$ to $\mathbf{1 5 V}$ at $\mathbf{8 0 0} \mathbf{~ m A}$

Typical Applications (Continued)

TL/H/10355-23
†Output voltage trim
*Wire-wound resistor may be used here
**See text
FIGURE 19. Inverting Regulator: +15 V to -15 V at 1 A

To improve circuit stability, a series R-C network is added from the Current Limit pin to the Inverting Input. In addition, an R-C damper may be required from the Emitter to Ground, as described in the BUCK REGULATOR section Note.
**Note: The additional winding L_{B} shown in Figure 20 is used to create a flyback effect which provides an extra 3 V to the LM2579 supply voltage. In this example, the inductor L was 46 turns of 20-gauge wire on an Arnold 4F-068200-2 toroid core, providing $300 \mu \mathrm{H}$; booster winding L_{B} was 20 turns of \#28 wire on the same core.
Regulator efficiency will be increased to about 86% with the boosted supply voltage, as this allows the saturation voltage of the output transistor to decrease to about 0.55 V (from the typical Emitter saturation voltage of 1.7 V).

LM78S40

Universal Switching Regulator Subsystem

General Description

The LM78S40 is a monolithic regulator subsystem consisting of all the active building blocks necessary for switching regulator systems. The device consists of a temperature compensated voltage reference, a duty-cycle controllable oscillator with an active current limit circuit, an error amplifier, high current, high voltage output switch, a power diode and an uncommitted operational amplifier. The device can drive external NPN or PNP transistors when currents in excess of 1.5 A or voltages in excess of 40 V are required. The device can be used for step-down, step-up or inverting switching regulators as well as for series pass regulators. It features wide supply voltage range, low standby power dissipation, high efficiency and low drift. It is useful for any stand-alone, low part count switching system and works extremely well in battery operated systems.

Features

- Step-up, step-down or inverting switching regulators
- Output adjustable from 1.25 V to 40 V
- Peak currents to 1.5 A without external transistors
- Operation from 2.5 V to 40 V input
- Low standby current drain
- 80 dB line and load regulation
- High gain, high current, independent op amp
- Pulse width modulation with no double pulsing

Block and Connection Diagrams

Ordering Information

Device Code	Package Code	Package Description
LM78S40J	J16A	Ceramic DIP
LM78S40N	N16A	Molded DIP
LM78S40CJ	J16A	Ceramic DIP
LM78S40CN	N16A	Molded DIP

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range

Ceramic DIP
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP
Operating Temperature Range
Extended (LM78S40J) $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Industrial (LM78S40N) $\quad-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial (LM78S40CN)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature
Ceramic DIP (Soldering, 60 sec .) $300^{\circ} \mathrm{C}$
Molded DIP (Soldering, 10 sec .) $265^{\circ} \mathrm{C}$
Internal Power Dissipation (Notes 1, 2)
16L-Ceramic DIP
1.50W

16L-Molded DIP 1.04W
Input Voltage from $\mathrm{V}+$ to $\mathrm{V}-$
Input Voltage from V + Op Amp to V -

Common Mode Input Range (Error Amplifier and Op Amp) -0.3 to V +
Differential Input Voltage (Note 3) $\pm 30 \mathrm{~V}$
Output Short Circuit Duration (Op Amp) Continuous
Current from VREF 10 mA
voltage from Switch Collectors to GND 40V
Voltage from Switch
Emitters to GND
Voltage from Switch Collectors to Emitter 40V
Voltage from Power Diode to GND 40V
Reverse Power Diode Voltage 40V
Current through Power Switch 1.5A
Current through Power Diode 1.5A
ESD Susceptibility
(to be determined)

LM78S40

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=$ Operating temperature range, $\mathrm{V}_{1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Op} \text { Amp }}=5.0 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
GENERAL CHARACTERISTICS						
Icc	Supply Current (Op Amp Disconnected)	$\mathrm{V}_{1}=5.0 \mathrm{~V}$		1.8	3.5	mA
		$\mathrm{V}_{1}=40 \mathrm{~V}$		2.3	5.0	mA
Icc	Supply Current (Op Amp Connected)	$\mathrm{V}_{1}=5.0 \mathrm{~V}$			4.0	mA
		$V_{1}=40 \mathrm{~V}$			5.5	mA

REFERENCE SECTION

$V_{\text {REF }}$	Reference Voltage (Note 4)	$\mathrm{l}_{\text {REF }}=1.0 \mathrm{~mA}$	$\begin{aligned} & \text { Extend }-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \text {, } \\ & \text { Comm } 0<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}, \\ & \text { Indus }-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	1.180	1.245	1.310	V
$\mathrm{V}_{\text {R LINE }}$	Reference Voltage Line Regulation	$\begin{aligned} & \mathrm{V}_{1}=3.0 \mathrm{~V} \text { to } \mathrm{V} \\ & \mathrm{I}_{\text {REF }}=1.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & =40 \mathrm{~V}, \\ & \mathrm{~A}=25^{\circ} \mathrm{C} \end{aligned}$		0.04	0.2	mV / V
$\mathrm{V}_{\text {R LOAD }}$	Reference Voltage Load Regulation	$\begin{aligned} & I_{R E F}=1.0 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {REF }}=10 \mathrm{~mA},$		0.2	0.5	$\mathrm{mV} / \mathrm{mA}$

OSCILLATOR SECTION

$I_{\text {CHG }}$	Charging Current	$V_{1}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	20		50	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{CHG}}$	Charging Current	$\mathrm{V}_{1}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	20		70	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {DISCHG }}$	Discharge Current	$\mathrm{V}_{1}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	150		250	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {DISCHG }}$	Discharge Current	$\mathrm{V}_{1}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	150		350	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {OSC }}$	Oscillator Voltage Swing	$\mathrm{V}_{1}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	V	
$\mathrm{t}_{\text {On }} / \mathrm{t}_{\text {off }}$	Ratio of Charge/ Discharge Time			6.0		$\mu \mathrm{~s} / \mu \mathrm{s}$

Electrical Characteristics (Continued)
$\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range, $\mathrm{V}_{\mathrm{I}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Op}} \mathrm{Amp}=5.0 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CURRENT LIMIT SECTION						
$\mathrm{V}_{\text {CLS }}$	Current Limit Sense Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	250		350	mV
OUTPUT SWITCH SECTION						
$\mathrm{V}_{\text {SAT } 1}$	Output Saturation Voltage 1	$\mathrm{I}_{\text {SW }}=1.0 \mathrm{~A}$ (Figure 1)		1.1	1.3	V
$\mathrm{V}_{\text {SAT } 2}$	Output Saturation Voltage 2	$\mathrm{I}_{\text {SW }}=1.0 \mathrm{~A}$ (Figure 2)		0.45	0.7	V
$\mathrm{h}_{\text {FE }}$	Output Transistor Current Gain	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		70		
IL	Output Leakage Current	$\mathrm{V}_{\mathrm{O}}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10		nA
POWER DIODE						
$V_{F D}$	Forward Voltage Drop	$\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$		1.25	1.5	V
IDR	Diode Leakage Current	$\mathrm{V}_{\mathrm{D}}=40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10		nA
COMPARATOR						
V_{10}	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {REF }}$		1.5	15	mV
IIB	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {REF }}$		35	200	nA
110	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {REF }}$		5.0	75	nA
$\mathrm{V}_{\text {CM }}$	Common Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		V1-2	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{1}=3.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	70	96		dB
OUTPUT OPERATIONAL AMPLIFIER						
V_{10}	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		4.0	15	mV
IIB	Input Bias Current	$V_{C M}=2.5 \mathrm{~V}$		30	200	nA
110	Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$		5.0	75	nA
Avs ${ }^{+}$	Voltage Gain+	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \text { to } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	25	250		V/mV
Avs ${ }^{-}$	Voltage Gain ${ }^{-}$	$\begin{array}{\|l\|} R_{\mathrm{L}}=2.0 \mathrm{k} \Omega \text { to } \mathrm{V}+(\mathrm{Op} \mathrm{Amp}) \\ \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline \end{array}$	25	250		V/mV
V_{CM}	Common Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0		$\mathrm{V}_{\mathrm{CC}}-2$	V
CMR	Common Mode Rejection	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	76	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}+\mathrm{Op} \mathrm{Amp}=3.0 \mathrm{~V}$ to $40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	76	100		dB
10^{+}	Output Source Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	75	150		mA
10^{-}	Output Sink Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	35		mA
SR	Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.6		$\mathrm{V} / \mu \mathrm{s}$
V_{OL}	Output Voltage LOW	$\mathrm{I}_{\mathrm{L}}=-5.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.0	V
V_{OH}	Output Voltage High	$\mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} V+O p \\ A m p-3 V \\ \hline \end{gathered}$			V

Note 1: $T_{J \text { Max }}=150^{\circ} \mathrm{C}$ for the Molded DIP, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 16 L -Ceramic DIP at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the $16 \mathrm{~L}-\mathrm{Molded} \mathrm{DIP}$ at $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 3: For supply voltages less than 30V, the absolute maximum voltage is equal to the supply voltage.
Note 4: Selected devices with tightened tolerance reference voltage available.

Typical Performance Characteristics

TL/H/10057-6

Reference Voltage vs Junction Temperature

TL/H/10057-7

TL/H/10057-9

Design Formulas

Characteristic	Step-Down	Step-Up	Inverting	Units
$\frac{t_{\text {on }}}{t_{\text {off }}}$	$\frac{V_{O}+V_{D}}{V_{I}-V_{S A T}-V_{O}}$	$\frac{V_{O}+V_{D}-V_{1}}{V_{1}-V_{S A T}}$	$\frac{\left\|V_{0}\right\|+V_{D}}{V_{1}-V_{S A T}}$	
$\left(t_{\text {on }}+t_{\text {off }}\right)$ Max	$\frac{1}{f_{\text {Min }}}$	$\frac{1}{f_{\text {Min }}}$	$\frac{1}{f_{\text {MIN }}}$	$\mu \mathrm{s}$
$\mathrm{C}_{\text {T }}$	$4 \times 10^{-5} \mathrm{t}_{\text {on }}$	$4 \times 10^{-5} \mathrm{t}_{\text {on }}$	$4 \times 10^{-5} t_{\text {on }}$	$\mu \mathrm{F}$
$l_{\text {pk }}$	210 Max	$2 \text { lo Max } \cdot \frac{t_{\text {on }}+t_{\text {off }}}{t_{\text {off }}}$	$2 \mathrm{lOMax}^{\bullet} \cdot \frac{t_{\text {on }}+t_{\text {off }}}{t_{\text {off }}}$	A
$L_{\text {Min }}$	$\left(\frac{V_{1}-V_{\text {SAT }}-V_{0}}{I_{\text {pk }}}\right) t_{\text {on Max }}$	$\left(\frac{V_{1}-V_{\text {SAT }}}{l_{\text {pk }}}\right) t_{\text {on Max }}$	$\left(\frac{V_{1}-V_{\text {SAT }}}{l_{\text {pk }}}\right) t_{\text {on Max }}$	$\mu \mathrm{H}$
RSC	0.33/ $/ \mathrm{pk}$	$0.33 / /_{\text {pk }}$	$0.33 / /_{\text {pk }}$	Ω
Co_{0}	$\frac{\mathrm{l}_{\mathrm{pk}}\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {fff }}\right)}{8 \mathrm{~V}_{\text {ripple }}}$	$\approx \frac{l_{0}}{V_{\text {ripple }}} \cdot t_{\mathrm{on}}$	$\approx \frac{l_{0}}{V_{\text {ripple }}} \bullet t_{\text {on }}$	$\mu \mathrm{F}$

Note: $\mathrm{V}_{\text {SAT }}=$ Saturation voltage of the switching element.
$V_{D}=$ Forward voltage of the flyback diode.

Functional Description

The LM78S40 is a variable frequency, variable duty cycle device. The initial switching frequency is set by the timing capacitor (Note 1). The initial duty cycle is $6: 1$. This switching frequency and duty cycle can be modified by two mech-anisms-the current limit circuitry ($l_{\text {pk }}$ sense) and the comparator.
The comparator modifies the OFF time. When the output voltage is correct, the comparator output is in the HIGH state and has no effect on the circuit operation. If the output voltage is too high then the comparator output goes LOW. In the LOW state the comparator inhibits the turn-on of the output stage switching transistors. As long as the comparator is LOW the system is in OFF time. As the output current rises the OFF time decreases. As the output current nears its maximum the OFF time approaches its minimum value. The comparator can inhibit several ON cycles, one ON cycle or any portion of an ON cycle. Once the ON cycle has begun the comparator cannot inhibit until the beginning of the next ON cycle.
The current limit modifies the ON time. The current limit is activated when a 300 mV potential appears between lead $13\left(\mathrm{~V}_{\mathrm{CC}}\right)$ and lead $14\left(l_{\mathrm{pk}}\right)$. This potential is intended to result when designed for peak current flows through RSC. When the peak current is reached the current limit is turned on. The current limit circuitry provides for a quick end to ON time and the immediate start of OFF time.
Generally the oscillator is free running but the current limit action tends to reset the timing cycle.
Increasing load results in more current limited ON time and less OFF time. The switching frequency increases with load current.
V_{FD} is the forward voltage drop across the internal power diode. It is listed on the data sheet as 1.25 V typical, 1.5 V maximum. If an external diode is used, then its own forward voltage drop must be used for $V_{F D}$.
$\mathrm{V}_{\text {SAT }}$ is the voltage across the switch element (output transistors Q1 and Q2) when the switch is closed or ON. This is listed on the data sheet as output saturation voltage.
Output saturation voltage 1-defined as the switching element voltage for Q2 and Q1 in the Darlington configuration with collectors tied together. This applies to Figure 1, the step down mode.
Output saturation voltage 2-switching element voltage for Q1 only when used as a transistor switch. This applies to Figure 2, the step up mode.
For the inverting mode, Figure 3, the saturation voltage of the external transistor should be used for $\mathrm{V}_{\text {SAT }}$.
Note 1: Oscillator frequency is set by a single external capacitor and may be varied over a range of 100 Hz to 100 kHz .

Typical Applications

TL/H/10057-3
FIGURE 1. Typical Step-Down Operational Performance ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$)

Characteristic	Condition	Typical Value
Output Voltage	$\mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$	10 V
Line Regulation	$20 \mathrm{~V} \leq \mathrm{V}_{1} \leq 30 \mathrm{~V}$	1.5 mV
Load Regulation	$5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}}$ $\mathrm{I}_{\mathrm{O}} \leq 300 \mathrm{~mA}$	3.0 mV
Max Output Current	$\mathrm{V}_{\mathrm{O}}=9.5 \mathrm{~V}$	500 mA
Output Ripple	$\mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$	50 mV
Efficiency	$\mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$	74%
Standby Current	$\mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$	2.8 mA

Note A: For $\mathrm{I}_{\mathrm{O}} \geq \mathbf{2 0 0} \mathrm{mA}$ use external diode to limit on-chip power dissipation.
Note B: It is recommended that the internal reference (lead 8) be bypassed by a $0.1 \mu \mathrm{~F}$ capacitor directly to (lead 11) the ground point of the LM78S40.

Typical Applications (Continued)

TL/H/10057-4
FIGURE 2. Typical Step-Up Operational

$$
\text { Performance }\left(T_{A}=25^{\circ} \mathrm{C}\right)
$$

Characteristic	Condition	Typical Value
Output Voltage	$\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$	25 V
Line Regulation	$5.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 15 \mathrm{~V}$	4.0 mV
Load Regulation	$5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}}$ $\mathrm{I}_{\mathrm{O}} \leq 100 \mathrm{~mA}$	2.0 mV
Max Output Current	$\mathrm{V}_{\mathrm{O}}=23.75 \mathrm{~V}$	160 mA
Output Ripple	$\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$	30 mV
Efficiency	$\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$	79%
Standby Current	$\mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$	2.6 mA

FIGURE 3. Typical Inversion Operational Performance ($\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristic	Condition	Typical Value
Output Voltage	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	-15 V
Line Regulation	$8.0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 18 \mathrm{~V}$	5.0 mV
Load Regulation	$5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}}$ $\mathrm{I} \leq 150 \mathrm{~mA}$	3.0 mV
Max Output Current	$\mathrm{V}_{\mathrm{O}}=14.25 \mathrm{~V}$	160 mA
Output Ripple	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	20 mV
Efficiency	$I_{\mathrm{O}}=100 \mathrm{~mA}$	70%
Standby Current	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	2.3 mA

FIGURE 4. Pulse Width Modulator

National Semiconductor

LMC7660 Switched Capacitor Voltage Converter

General Description

The LMC7660 is a CMOS voltage converter capable of converting a positive voltage in the range of +1.5 V to +10 V to the corresponding negative voltage of -1.5 V to -10 V . The LMC7660 is a pin-for-pin replacement for the industry-standard 7660. The converter features: operation over full temperature and voltage range without need for an external diode, low quiescent current, and high power efficiency.
The LMC7660 uses its built-in oscillator to switch 4 power MOS switches and charge two inexpensive electrolytic capacitors.

Features

- Operation over full temperature and voltage range without an external diode
- Low supply current, $200 \mu \mathrm{~A}$ max
- Pin-for-pin replacement for the 7660
- Wide operating range 1.5 V to 10 V
- 97% Voltage Conversion Efficiency
- 95\% Power Conversion Efficiency
- Easy to use, only 2 external components
- Extended temperature range

Block Diagram

TL/H/9136-1

Pin Configuration

LMC7660

Ordering Information
LMC7660MJ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
LMC7660IN $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$

TL/H/9136-2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage
Input Voltage on Pin 6, 7
(Note 2)

$$
\begin{aligned}
& -0.3 \mathrm{~V} \text { to }\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right) \\
& \text { for } \mathrm{V}^{+}<5.5 \mathrm{~V} \\
& \left(\mathrm{~V}^{+}-5.5 \mathrm{~V}\right) \text { to }\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right) \\
& \text { for } \mathrm{V}^{+}>5.5 \mathrm{~V}
\end{aligned}
$$

Current into Pin 6 (Note 2)
Output Short Circuit Duration $\left(\mathrm{V}^{+} \leq 5.5 \mathrm{~V}\right)$
$20 \mu \mathrm{~A}$
Continuous

	Package	
	J	N
Power Dissipation (Note 3)	0.9W	1.4W
T M Max (Note 3)	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$\theta_{\mathrm{j}}($ Note 3)	$140^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temp. Range	$-65^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 5 sec)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
ESD Tolerance (Note 8)		$\pm 2000 \mathrm{~V}$

Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Typ	LMC7660MJ	LMC7660IN		Units Limits
				Tested Limit (Note 5)	Tested Limit (Note 5)	Design Limit (Note 6)	
I_{s}	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	120	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	200	400	$\mu \mathrm{A}$ \max
$\mathrm{V}^{+} \mathrm{H}$	Supply Voltage Range High (Note 7)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \text { Pin } 6 \text { Open } \\ & \text { Voltage Efficiency } \geq 90 \% \\ & \hline \end{aligned}$	3 to 10	3 to 10	3 to 10	3 to 10	V
$V^{+}{ }_{L}$	Supply Voltage Range Low	$R_{L}=10 \mathrm{k} \Omega$, Pin 6 to Gnd. Voltage Efficiency \geq 90\%	1.5 to 3.5	1.5 to 3.5	1.5 to 3.5	1.5 to 3.5	V
$\mathrm{R}_{\text {out }}$	Output Source Resistance	$\mathrm{L}_{\mathrm{L}}=20 \mathrm{~mA}$	55	$\begin{aligned} & 100 \\ & 150 \\ & \hline \end{aligned}$	100	120	$\begin{gathered} \Omega \\ \max \end{gathered}$
		$\mathrm{V}=2 \mathrm{~V}, \mathrm{I}=3 \mathrm{~mA}$ $\text { Pin } 6 \text { Short to Gnd. }$	110	$\begin{aligned} & 200 \\ & 300 \\ & \hline \end{aligned}$	200	300	$\begin{gathered} \Omega \\ \max \end{gathered}$
$F_{\text {osc }}$	Oscillator Frequency	.	10				kHz
$P_{\text {eff }}$	Power Efficiency	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	97	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	95	90	$\begin{aligned} & \% \\ & \mathrm{~min} \end{aligned}$
$V_{0 \text { eff }}$	Voltage Conversion Efficiency	$\mathrm{R}_{\mathrm{L}}=\infty$	99.9	$\begin{aligned} & 97 \\ & 95 \end{aligned}$	97	95	$\begin{gathered} \hline \% \\ \mathrm{~min} \\ \hline \end{gathered}$
losc	Oscillator Sink or Source Current	Pin 7 = Gnd. or V^{+}	3				$\mu \mathrm{A}$

Note 1: Absolute Maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 4 for conditions.
Note 2: Connecting any input terminal to voltages greater than $\mathrm{V}+$ or less than ground may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power-up" of the LMC7660.
Note 3: For operation at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{j a}$ and T_{j} max, $T_{j}=T_{A}+\theta_{j a} P_{D}$.
Note 4: Boldface numbers apply at temperature extremes. All other numbers apply at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{C}_{\mathbf{o s c}}=0$, and apply for the $\mathrm{LMC7660}$ unless otherwise specified. Test circuit is shown in Figure 1.
Note 5: Guaranteed and 100\% production tested.
Note 6: Guaranteed over the operating temperature range (but not 100% tested). These limits are not used to calculate outgoing quality levels.
Note 7: The LMC7660 can operate without an external diode over the full temperature and voltage range. The LMC7660 can also be used with the external diode Dx, when replacing previous 7660 designs.
Note 8: The test circuit consists of the human body model of 100 pF in series with 1500Ω.

TL/H/9136-5

FIGURE 1. LMC7660 Test Circuit

Typical Performance Characteristics

TL/H/9136-4

CIRCUIT DESCRIPTION

The LMC7660 contains four large CMOS switches which are switched in a sequence to provide supply inversion $\mathrm{V}_{\text {out }}$ $=-\mathrm{V}_{\text {in }}$. Energy transfer and storage are provided by two inexpensive electrolytic capacitors. Figure 2 shows how the LMC7660 can be used to generate $-\mathrm{V}+$ from V^{+}. When switches S1 and S3 are closed, C_{p} charges to the supply voltage V^{+}. During this time interval, switches S2 and S4 are open. After C_{p} charges to $\mathrm{V}+, \mathrm{S} 1$ and S 3 are opened, S 2 and S 4 are then closed. By connecting S 2 to ground, C_{p} develops a voltage $-\mathrm{V}+/ 2$ on C_{r}. After a number of cycles C_{r} will be pumped to exactly $-\mathrm{V}^{+}$. This transfer will be exact assuming no load on C_{r}, and no loss in the switches. In the circuit of Figure 2, S1 is a P-channel device and S2, S3, and S4 are N-channel devices. Because the output is biased below ground, it is important that the p^{-}wells of S3 and S 4 never become forward biased with respect to either their sources or drains. A substrate logic circuit guarantees that these p - wells are always held at the proper voltage. Under all conditions S4 p^{-}well must be at the lowest potential in the circuit. To switch off S4, a level translator generates $\mathrm{V}_{\mathrm{GS} 4}=\mathrm{OV}$, and this is accomplished by biasing the level translator from the $\mathrm{S} 4 \mathrm{p}^{-}$well.
An internal RC oscillator and $\div 2$ circuit provide timing signals to the level translator. The built-in regulator biases the oscillator and divider to reduce power dissipation on high supply voltage. The regulator becomes active at about $\mathrm{V}+$ $=6.5 \mathrm{~V}$. Low voltage operation can be improved if the LV pin is shorted to ground for $\mathrm{V}^{+} \leq 3.5 \mathrm{~V}$. For $\mathrm{V}^{+} \geq 3.5 \mathrm{~V}$, the LV pin must be left open to prevent damage to the part.

POWER EFFICIENCY AND RIPPLE

It is theoretically possible to approach 100\% efficiency if the following conditions are met:

1) The drive circuitry consumes little power.
2) The power switches are matched and have low Ron.
3) The impedance of the reservoir and pump capacitors are negligibly small at the pumping frequency.

The LMC7660 closely approaches 1 and 2 above. By using a large pump capacitor C_{p}, the charge removed while supplying the reservoir capacitor is small compared to C_{p} 's total charge. Small removed charge means small changes in the pump capacitor voltage, and thus small energy loss and high efficiency. The energy loss by C_{p} is:

$$
E=1 / 2 C_{p}\left(V 1^{2}-V 2^{2}\right)
$$

By using a large reservoir capacitor, the output ripple can be reduced to an acceptable level. For example, if the load current is 5 mA and the accepted ripple is 200 mV , then the reservoir capacitor can omit approximately be calculated from:

$$
\begin{gathered}
\text { Is }=C_{r} \frac{d v}{d t} \\
\sim C_{r} \times \frac{V_{\text {ripplep }-p}}{4 / F_{\text {osc }}} \quad C_{r}=\frac{0.5 \mathrm{~mA}}{0.5 \mathrm{~V} / \mathrm{ms}}=10 \mu \mathrm{~F}
\end{gathered}
$$

PRECAUTIONS

1) Do not exceed the maximum supply voltage or junction temperature.
2) Do not short pin 6 (LV terminal) to ground for supply voltages greater than 3.5 V .
3) Do not short circuit the output to V^{+}.
4) External electrolytic capacitors C_{r} and C_{p} should have their polarities connected as shown in Figure 1.

REPLACING PREVIOUS 7660 DESIGNS

To prevent destructive latchup, previous 7660 designs require a diode in series with the output when operated at elevated temperature or supply voltage. Although this prevented the latchup problem of these designs, it lowered the available output voltage and increased the output series resistance.
The National LMC7660 has been designed to solve the inherent latch problem. The LCM7660 can operate over the

FIGURE 2. Idealized Voltage Converter
entire supply voltage and temperature range without the need for an output diode. When replacing existing designs, the LMC7660 can be operated with diode Dx.

Typical Applications

Changing Oscillator Frequency

It is possible to dramatically reduce the quiescent operating current of the LMC7660 by lowering the oscillator frequency. The oscillator frequency can be lowered from a nominal 10 kHz to several hundred hertz, by adding a slow-down capacitor $\mathrm{C}_{\text {osc }}$ (Figure 3). As shown in the Typical Performance Curves the supply current can be lowered to the $10 \mu \mathrm{~A}$ range. This low current drain can be extremely useful when
used in μ Power and battery back-up equipment. It must be understood that the lower operating frequency and supply current cause an increased impedance of C_{r} and C_{p}. The increased impedance, due to a lower switching rate, can be offset by raising C_{r} and C_{p} until ripple and load current requirements are met.

Synchronizing to an External Clock

Figure 4 shows an LMC7660 synchronized to an external clock. The CMOS gate overrides the internal oscillator when it is necessary to switch faster or reduce power supply interference. The external clock still passes through the $\div 2$ circuit in the 7660, so the pumping frequency will be $1 / 2$ the external clock frequency.

TL/H/9136-7
FIGURE 3. Reduce Supply Current by Lowering Oscillator Frequency

TL/H/9136-8
FIGURE 4. Synchronizing to an External Clock

Typical Applications (Continued)

Lowering Output Impedance

Paralleling two or more LMC7660's lowers output impedance. Each device must have it's own pumping capacitor C_{p}, but the reservoir capacitor C_{r} is shared as depicted in Figure 5. The composite output resistance is:

$$
R_{\text {out }}=\frac{R_{\text {out }} \text { of one LMC7660 }}{\text { Number of devices }}
$$

Increasing Output Voltage

Stacking the LMC7660s is an easy way to produce a greater negative voltage. It should be noted that the input
current required for each stage is twice the load current on that stage as shown in Figure 6A. The effective output resistance is approximately the sum of the individual $R_{\text {out }}$ values, and so only a few levels of multiplication can be used. It is possible to generate -15 V from +5 V by connecting the second 7660's pin 8 to +5 V instead of ground as shown in Figure 6B. Note that the second 7660 sees a full 20 V and the input supply should not be increased beyond +5 V .

TL/H/9136-9
FIGURE 5. Lowering Output Resistance by Paralleling Devices

TL/H/9136-10
FIGURE 6A. Higher Voltage by Cascade

TL/H/9136-11
FIGURE 6B. Getting -15 V from +5 V

Typical Applications (Continued)

Split V+ In Half

Figure 7 is one of the more interesting applications for the LMC7660. The circuit can be used as a precision voltage divider (for very light loads), alternately it is used to generate a $1 / 2$ supply point in battery applications. In the $1 / 2$ cycle when S1 and S3 are closed, the supply voltage divides across the capacitors in a conventional way proportional to their value. In the $1 / 2$ cycle when S2 and S4 are closed, the capacitors switch from a series connection to a parallel connection. This forces the capacitors to have the same voltage; the charge redistributes to maintain precisely $\mathrm{V}+/ 2$, across C_{p} and C_{r}. In this application all devices are only $\mathrm{V}+/ 2$, and the supply voltage can be raised to 20 V giving exactly 10 V at $\mathrm{V}_{\text {out }}$.

Getting Up . . . and Down

The LMC7660 can also be used as a positive voltage multiplier. This application, shown in Figure 8, requires 2 additional diodes. During the first $1 / 2$ cycle S 2 charges $\mathrm{C}_{\mathrm{p}} 1$ through D 1 ; D2 is reverse biased. In the next $1 / 2$ cycle S 2 is open and $S 1$ is closed. Since $C_{p} 1$ is charged to $V^{+}-V_{D 1}$ and is referenced to $\mathrm{V}+$ through S 1, the junction of D 1 and D 2 is at $\mathrm{V}^{+}+\left(\mathrm{V}^{+}-\mathrm{V}_{\mathrm{D} 1}\right)$. D 1 is reverse biased in this interval. This application uses only two of the four switches in the 7660. The other two switches can be put to use in performing a negative conversion at the same time as shown in Figure 9 . In the $1 / 2$ cycle that D 1 is charging $\mathrm{C}_{\mathrm{p}} 1$, $\mathrm{C}_{\mathrm{p}} 2$ is connected from ground to $-\mathrm{V}_{\text {out }}$ via S2 and S4, and $\mathrm{C}_{\mathrm{r}} 2$ is storing $\mathrm{C}_{\mathrm{p}} 2$'s charge. In the interval that S1 and S3 are closed, $\mathrm{C}_{\mathrm{p}} 1$ pumps the junction of D1 and D2 above V^{+}, while $C_{p} 2$ is refreshed from V^{+}.

FIGURE 8. Positive Voltage Multiplier

TL/H/9136-14
FIGURE 9. Combined Negative Converter and Positive Multiplier

Thermometer Spans $180^{\circ} \mathrm{C}$

Using the combined negative and positive multiplier of Figure 10 with an LM35 it is possible to make a μ Power thermometer that spans a $180^{\circ} \mathrm{C}$ temperature range. The LM35 temperature sensor has an output sensitivity of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, while drawing only $50 \mu \mathrm{~A}$ of quiescent current. In order for the LM35 to measure negative temperatures, a pull down to a negative voltage is required. Figure 10 shows a thermometer circuit for measuring temperatures from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and requiring only two 1.5 V cells. End of battery life can be extended by replacing the up converter diodes with Schottky's.

Regulating - $\mathbf{V}_{\text {out }}$

It is possible to regulate the output of the LMC7660 and still maintain μ Power performance. This is done by enclosing
the LMC7660 in a loop with a LP2951. The circuit of Figure 11 will regulate $\mathrm{V}_{\text {out }}$ to -5 V for $\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$, and $\mathrm{V}_{\text {in }}=6 \mathrm{~V}$. For $V_{\text {in }}>7 \mathrm{~V}$, the output stays in regulation up to $I_{L}=25$ mA . The error flag on pin 5 of the LP2951 sets low when the regulated output at pin 4 drops by about 5\%. The LP2951 can be shutdown by taking pin 3 high; the LMC7660 can be shutdown by shorting pin 7 and pin 8.
The LP2951 can be reconfigured to an adjustable type regulator, which means the LMC7660 can give a regulated output from -2.0 V to -10 V dependent on the resistor ratios R1 and R2, as shown in Figure 12, $\mathrm{V}_{\text {ref }}=1.235 \mathrm{~V}$:

$$
V_{\text {out }}=V_{\text {ref }}\left(1+\frac{R 1}{R 2}\right)
$$

*For lower voltage operation, use Schottky rectifiers
TL/H/9136-15
FIGURE 10. μ Power Thermometer Spans $180^{\circ} \mathrm{C}$, and Pulls Only $150 \mu \mathrm{~A}$

Typical Applications (Continued)

TL/H/9136-16
FIGURE 11. Regulated - 5V with $200 \mu \mathrm{~A}$ Standby Current

FIGURE 12. LMC7660 and LP2951 Make a Negative Adjustable Regulator

Section 3

Operational Amplifiers

Section 3 Contents
Operational Amplifiers Definition of Terms 3-5
Operational Amplifiers Selection Guide 3-6
LF147/LF347/LF347B Wide Bandwidth Quad JFET Input Operational Amplifiers 3-15
LF155/LF156/LF157 Series Monolithic JFET Input Operational Amplifiers 3-24
LF351 Wide Bandwidth JFET Input Operational Amplifier 3-39
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier 3-47
LF400A/LF400 Fast Settling JFET Input Operational Amplifier 3-56
LF401A/LF401 Precision Fast Settling JFET Input Operational Amplifier 3-67
LF411A/LF411 Low Offset, Low Drift JFET Input Operational Amplifier 3-76
LF412A/LF412 Low Offset, Low Drift Dual JFET Operational Amplifier 3-83
LF441A/LF441 Low Power JFET Input Operational Amplifier 3-90
LF442A/LF442 Dual Low Power JFET Input Operational Amplifier 3-97
LF444A/LF444 Quad Low Power JFET Input Operational Amplifier 3-106
LF451 Wide-Bandwidth JFET Input Operational Amplifier 3-113
LF453 Wide-Bandwidth Dual JFET Input Operational Amplifier 3-119
LF13741 Monolithic JFET Input Operational Amplifier 3-126
LH0003/LH0003C Wide Bandwidth Operational Amplifier 3-138
LH0004/LH0004C High Voltage Operational Amplifier 3-141
LH0020/LH0020C High Gain Operational Amplifier 3-145
LH0021/LH0021C 1.0-Amp Power Operational Amplifier 3-148
LH0041/LH0041C 0.2-Amp Power Operational Amplifier 3-148
LH0022/LH0022C High Performance FET Operational Amplifier 3-156
LH0042/LH0042C Low Cost FET Operational Amplifier 3-156
LH0052/LH0052C Precision FET Operational Amplifier 3-156
LH0024/LH0024C High Slew Rate Operational Amplifier 3-168
LH0032/LH0032A/LH0032C/LH0032AC Ultra Fast FET-Input Operational Amplifier 3-172
LH0044 Series Precision Low Noise Operational Amplifiers 3-179
LH0045/LH0045C Two Wire Transmitter 3-187
LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier 3-199
LH0062/LH0062C High Speed FET Operational Amplifier 3-202
LH0082 Optical Communication Receiver/Amplifier 3-211
LH0086/LH0086C Digitally-Programmable-Gain Amplifier 3-225
LH0101/LH0101C/LH0101A/LH0101AC Power Operational Amplifier 3-232
LH2101A/LH2201A/LH2301A Dual High Performance Operational Amplifiers 3-243
LH2108/LH2108A/LH2308/LH2308A Dual Super Beta Operational Amplifiers 3-246
LH4101/LH4101C Wideband High Current Operational Amplifier 3-249
LH4104/LH4104C Fast Settling High Current Operational Amplifier 3-254
LH4105 Precision Fast Settling High Current Operational Amplifier 3-260
LH4106/LH4106C ± 5 V High Speed Operational Amplifier 3-266
LH4117/LH4117C Precision RF Amplifier 3-271
LH4118/LH4118A/LH4118C Low Gain Wide Band RF Amplifier 3-277
LH4124C High Slew Rate Operational Amplifier 3-287
LH4141C 0.2-Amp Power Operational Amplifier 3-291
LH4161A/LH4161/LH4161C High Speed Operational Amplifier 3-298
LH4162A/LH4162/LH4162C Dual High Speed Operational Amplifier 3-304
LH4200 General Purpose GaAs FET Amplifier 3-312
LM10/LM10B(L)/LM10C(L) Operational Amplifier and Voltage Reference 3-319
LM11/LM11C/LM11CL Operational Amplifiers 3-335
Section 3 Contents (Continued)
LM12(L/C/CL) 150W Operational Amplifier 3-348
LM101A/LM201A/LM301A Operational Amplifiers 3-361
LM107/LM207/LM307 Operational Amplifiers 3-371
LM108/LM208/LM308 Operational Amplifiers 3-377
LM108A/LM208A/LM308A Operational Amplifiers 3-384
LM112/LM212/LM312 Operational Amplifiers 3-390
LM118/LM218/LM318 Operational Amplifiers 3-395
LM124/LM224/LM324/LM124A/LM224A/LM324A/LM2902 Low Power Quad Operational Amplifiers 3-405
LM143/LM343 High Voltage Operational Amplifier 3-418
LM144/LM344 High Voltage, High Slew Rate Operational Amplifiers 3-428
LM146/LM246/LM346 Programmable Quad Operational Amplifiers 3-435
LM148/LM248/LM348 Quad 741 Operational Amplifiers; LM149/LM249/LM349 Wide Band Decompensated $\left(A_{V}(M I N)=5\right)$ 3-447
LM158/LM258/LM358/LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers 3-460
LM392/LM2924 Low Power Operational Amplifier/Voltage Comparators 3-473
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier 3-477
LM604A/LM604 4-Channel MUX-Amp 3-495
LM607/LM607A/LM607B Precision Operational Amplifier 3-508
LM611 Adjustable Micropower Floating Voltage Reference and Single-Supply Operational Amplifier 3-516
LM613A/LM613 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference 3-528
LM614A/LM614 Quad Operational Amplifier and Adjustable Reference 3-544
LM627/LM637 Precision Operational Amplifiers 3-557
LM675 Power Operational Amplifier 3-566
LM725/LM725A/LM725C Operational Amplifiers 3-573
LM741/LM741A/LM741C/LM741E Operational Amplifier 3-581
LM759 Power Operational Amplifier 3-584
LM776 Multi-Purpose Programmable Operational Amplifier 3-595
LM833 Dual Audio Operational Amplifier 3-604
LM837 Low Noise Quad Operational Amplifier 3-613
LM1558/LM1458 Dual Operational Amplifier 3-619
LM2900/LM3900/LM3301/LM3401 Quad Amplifiers 3-621
LM3080/LM3080A Operational Transconductance Amplifier 3-639
LM3303/LM3403/LM3503 Quad Operational Amplifier 3-643
LM4136 Quad Operational Amplifier 3-651
LM4250/LM4250C Programmable Operational Amplifier 3-659
LM6118/LM6218A/LM6218 Fast Settling Dual Operational Amplifier 3-666
LM6161/LM6261/LM6361 High Speed Operational Amplifiers 3-675
LM6164/LM6264/LM6364 High Speed Operational Amplifiers 3-682
LM6165/LM6265/LM6365 High Speed Operational Amplifiers 3-689
LM6313 High Speed, High Power Operational Amplifier 3-696
LM13080 Programmable Power Operational Amplifier 3-705
LM13600/LM13600A Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 3-713
LM13700/LM13700A Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers 3-731
LMC660AM/LMC660AI/LMC660C CMOS Quad Operational Amplifiers 3-751
LMC662AM/LMC662AI/LMC662C CMOS Dual Operational Amplifiers 3-759
LMC669 Auto Zero 3-768
LP124/LP2902/LP324 Micropower Quad Operational Amplifiers 3-782
Section 3 Contents (Continued)
LPC660AM/LPC660AI/LPC660I CMOS Quad Operational Amplifier 3-789
LPC662AM/LPC662AI/LPC662I CMOS Dual Operational Amplifier 3-796
OP-07 Low Offset, Low Drift Operational Amplifier 3-803
TL081CP Wide Bandwidth JFET Input Operational Amplifier 3-809
TL082CP Wide Bandwidth Dual JFET Input Operational Amplifier 3-816

Operational Amplifiers Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.
Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.
Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. \% harmonic distortion $=$

$$
\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamental and V 2, V3, $\mathrm{V} 4, \ldots$ are the rms amplitudes of the individual harmonics.
Input Bias Current: The average of the two input currents. Input Common-Mode Voltage Range (or Input Voltage Range): The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.
Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance $\left(R_{S}\right)$ and load resistance (R_{L}).
Output Resistance: The small signal resistance seen at the output with the output voltage near zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.
Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.
Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.
Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

Part \#	$\begin{gathered} V_{\text {OS }} \\ \mathrm{mV} \text { (Max) } \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{nA}(\text { Max }) \end{gathered}$	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	Slew Rate V/ $\mu \mathrm{s}$ (Typ)	Supply Current (Note 3) mA (Max)	Supply Voltage		Special Features
						Min \mathbf{v}	$\begin{gathered} \text { Max } \\ \mathbf{V} \end{gathered}$	
Military Temperature Range ($-55^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$) Specs at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (continued)								
LH0022	4	0.01	1	3	2.5	± 5	± 22	
LF155	5	0.1	2.5	5	4	± 5	± 22	
LF156	5	0.1	5	12	7	± 5	± 22	
LF157	5	0.1	20	50	7	± 5	± 22	Minimum Gain of 5
LF147	5	0.2	4	13	11	± 6	± 22	Quad
LF442	5	0.1	1	1	0.5	± 6	± 18	Dual
LF444A	5	0.1	1	1	0.80	± 6	± 22	Quad
LH0086	5	0.5	3	10	15.5	± 8	± 18	Programmable Gain OA
LM124	5	150	1	0.5	3	3	32	Quad
LM143	5	20	1	2.5	4	± 4	± 40	
LM144	5	20	1	2.5	4	± 4	± 40	Minimum Gain of 10
LM146	5	100	1.2	0.4	2	± 1.5	± 22	(Note 5)
LM148	5	100	1	0.5	3.6	± 5	± 22	Quad
LM149	5	100	4	2	3.6	± 5	± 22	Minimum Gain of 5, Quad
LM158	5	150	1	0.5	1.2	3	32	Dual
LM192	5	150	1	0.5	2	3	32	Comparator + Op Amp
LM741	5	500	1	0.5	2.8	± 3	± 22	
LM1558	5	500	*	*	5	± 3	± 22	Dual
LM4250	5	50	0.2	0.2	0.1	± 1	± 18	(Note 5)
LH0042	20	0.025	1	3	3.5	± 5	± 22	
							-	
Part \#	$\begin{gathered} V_{\text {OS }} \\ \mathrm{mV}(\operatorname{Max}) \end{gathered}$	$\stackrel{\mathrm{I}_{\mathrm{B}}}{\mathrm{nA}(\mathrm{Max})}$	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	Slew Rate V/ $\mu \mathrm{s}$ (Typ)	Supply Current (Note 3) mA (Max)	Supply Voltage		Special Features
						$\begin{gathered} \text { Min } \\ \mathbf{V} \end{gathered}$	$\begin{gathered} \text { Max } \\ \mathbf{V} \end{gathered}$	
Automotive Temperature Range ($-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)								
LM604	3	60	7	3	9	4	36	Multiplexed Op Amp
LMC660A	3	0.02	1.4	1.1	2.2	5	15	Quad CMOS
LMC662A	3	0.02	1.4	1.1	1.3	5	15	Dual CMOS
LP2902	4	20	0.1	0.05	0.15	3	26	Quad
LM2902	7	250	1	0.5	3	3	26	Quad
LM2904	7	250	1	0.5	2	3	26	Dual
LM2924	7	250	1	0.5	2	3	26	Comparator + Op Amp

Part \#	V_{OS}	I_{B}	GBW	Slew Rate	Supply Current			Special
	mV (Max)	nA (Max)	MHz (Typ)	$\mathrm{V} / \mu \mathrm{s} \text { (Typ) }$	(Note 3) mA (Max)	Min \mathbf{v}	Max \mathbf{v}	Features
Industrial Temperature Range (-25 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) (Note 1)								
LM637A	0.025	10	65	14	4.5	± 3.5	± 18	Improved OP-37
LM627A	0.025	10	14	4.5	4.5	± 3.5	± 18	Improved OP-27
LMC669B	0.025	0.1	*	*	6	± 8	± 22	Autozero Block
LH0044B	0.05	30	0.4	0.06	4	± 2	± 20	
LH0044C	0.05	30	0.4	0.06	4	± 2	± 20	
LMC669C	0.05	0.1	*	*	6	± 8	± 22	Autozero Block
LM637	0.1	25	65	14	4.8	± 3.5	± 18	Improved OP-37
LM627	0.1	25	14	4.5	4.8			Improved OP-27
LM208A	0.5	2	1	0.3	0.6	± 2	± 20	
LH0052C	2	0.005	1	3	3.8	± 5	± 22	
LM10B(L)	2	20	0.09	0.1	0.4	(Not		Op Amp + Reference
LM201A	2	75	1	0.5	3	± 3	± 22	
LM207	2	75	1	0.5	3	± 3	± 22	Compensated LM201A
LM208	2	2	1	0.3	0.6	± 2	± 20	
LM212	2	2	1	0.3	0.6	± 2	± 20	Compensated LM208
LM224A	3	80	1	0.5	2	3	32	Quad
LM258A	3	80	1	0.5	1.2	3	32	Dual
LF255	5	0.1	2.5	5	4	± 5	± 22	.
LF256	5	0.1	5	12	7	± 5	± 22	, -
LF257	5	0.1	20	50	7	± 5	± 22	Minimum Gain of 5
LM224	5	150	1	0.5	2	3	32	Quad
LM258	5	150	1	0.5	1.2	3	32	Dual
LM292	5	250	1	0.5	2	3	32	Comparator and Op Amp
LH0020C	6	500	*	*	6	± 5	± 22.	.
LH0022C	6	0.025	1	3	2.8	± 5	± 22	
LM246	6	250	0.5	0.4	2.5	± 2	± 18	(Note 5)
LM248	6	200	1	0.5	4.5	± 5	± 18	Quad
LM249	6	200	4	2	4.5	± 5	± 18	Minimum Gain of 5, Quad
LH0086C	10	0.5	3	10	15.5	± 8	± 18	Programmable Gain 1 to 200
LH0042C	20	0.05	1	3	4	± 5	± 22	

General Purpose Operational Amplifier Selection Guide (Continued)

Part \#	$\begin{gathered} \mathrm{V}_{\mathrm{OS}} \\ \mathrm{mV}(\mathrm{Max}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{nA} \text { (Max) } \end{gathered}$	GBW MHz (Typ)	$\begin{gathered} \text { Slew } \\ \text { Rate } \\ \mathrm{V} / \mu \mathrm{s} \text { (Typ) } \end{gathered}$	Supply Current (Note 3) mA (Max)	Supply Voltage		Special Features
						Min v	Max V	
Commercial Temperature Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) (Notes 1 and 2)								
LMC669B	0.025	0.1	*	*	6	± 8	± 22	Autozero Block
LM607A	0.025	2	1.8	0.7	1.5	± 3	± 18	Improved OP-07
LMC669C	0.05	0.1	*	*	6	± 8	± 22	Autozero Block
LM607B	0.06	3	1.8	0.7	1.5	± 3	± 18	Improved OP-07
LM607	0.15	10	1.8	0.7	1.8	± 3	± 18	Improved OP-07
LF411A	0.5	0.2	4	15	2.8	± 6	± 22	
LF441A	0.5	0.05	1	1	0.2	± 6	± 22	
LM308A	0.5	7	1	0.3	0.8	± 2	± 20	
LM11C	0.6	0.1	0.8	0.3	0.8	± 2.5	± 20	
LF412A	1	0.2	4	15	5.6	± 6	± 22	Dual
LF442A	1	0.05	1	1	0.4	± 6	± 22	Dual
LM604A	1	40	(5)	3	9	4	36	Multiplexed Op Amp
LF355A	2	0.05	2.5	5	4	± 5	± 22	
LF356A	2	0.05	5	12	10	± 5	± 22	
LF357A	2	0.05	20	50	10	± 5	± 22	Minimum Gain of 5
LF411	2	0.2	4 ?	15	3.4	± 6	± 22	
LF412	3	0.2	$4)$	15	6.8	± 6	± 22	Dual
LM324A	3	100	1	0.5	3	3	32	Quad
LM358A	3	100	1	0.5	2	3	32	Dual
LM604	3	60	(5)	7	9	4	36	Multiplexed Op Amp
LM741E	3	80	1.5	0.7	2.8	± 3	± 22	
LM10C(L)	4	30	0.09	0.1	0.5			Op Amp + Reference
LP324	4	10	0.1	0.05	0.15	3	32	
LF347B	5	0.2	4)	13	11	± 6	± 22	Quad
LF355B	5	0.1	2.5	5	4	± 5	± 22	
LF356B	5	0.1	5	12	4	± 5	± 22	
LF357B	5	0.1	20	50	7	± 5	± 22	
LF441	5	0.1	1	1	0.25	± 6	± 22	
LF442	5	0.1	1	1	0.5	± 6	± 22	Dual
LM11CL	5	0.2	0.8	0.3	0.8	± 2.5	± 20	
LF451	5	0.2	4	13	3.4	10	32	SO Pkg
LF453	5	0.2	(4)	13	6.5	10	32	SO Pkg Dual
LM611	5	35	1.4	0.7	0.3	3	36	Op Amp + Ref
LM613	5	35	0.8	0.7	1	3	36	2 Op Amps + 2 Comparators + Ref

Low IBIAS Selection Guide

$\leq 5 \mathrm{pA}$	$\leq 20 \mathrm{pA}$	$\leq 50 \mathrm{pA}$	$\leq 100 \mathrm{pA}$	≤ 200 pA	$\leq 500 \mathrm{pA}$	$\leq 1 \mathrm{nA}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
LH0022	LMC668	LH0032A	LH0032	LF401A	LH4101	
	LMC660	LF155A/156A/	LF155/156/	LF401	LH0032C	
	LMC662	LF157A	LF157	LF400A		
	LH0022C	LF355A/356A/	LF255/256/	LF400		
LH0052	LH0042	LF357A	LF257	TL081	LH4004	
LH0052C	LH0042C	LF441A	LF355B/356B/	LH0032AC		
LH0062	LH0062C	LF442A	LF357B	LF351		
		LF444A	LF441	LF411A/411		
		LM11	LF442	LF355/356/		
			LF444	LF357		
			LM11C	LF147/347B/347		
				LF353		
			LH0101	LF412A/412		
			LH0086	LF13741		
			LH0086C	LM11CL		
				LH0084		
				LH0084C		
				LH4104		
				LH4104C		
				LH4105		
				LH4105C		
				LH4117		
				LH4117C		

Note: Datasheet should be referred to for conditions and more detailed information.

National
Semiconductor

High Speed Operational Amplifier Selection Guide

Part \#	Slew Rate V/ $\mu \mathrm{S}$ (Typ)	GBW MHz (Typ)	VOS mV (Max)	IS mA (Max) (Note 1)

\qquad

LH4117	2500	400	20	± 45	FET Input, Current Feedback
LH4118A	2400	300	2	± 25	Low $\mathrm{V}_{\text {OS }}$, Current Feedback
LH4004	600	200	15	± 40	FET Input, Current Feedback
LH0024	500	70	4	± 15	
LH0032	500	70	5	± 20	FET Input
LH4124	400	70	8	± 15	Low Cost LH0024
LH4161A	300	50	1	± 6.5	Trimmed LM6161
LH4162A	300	50	2	± 13	Dual LH4161A
LM6161	300	50	7	6.8	Unity Gain Stable, VIPTM
LM6164	300	175	4	6.8	Min Gain of 5, VIP
LM6165	300	725	3	6.8	Min Gain of 25, VIP
LH4101	250	40	15	± 40	Medium Power JFET
LH4106	170	34	20	± 20	Drives 50Ω Loads
LM6313	250	35	20	23	Hi Speed Hi Power
LM6218	140	17	3	7	Fast Settling Dual, VIP
LF400	70	16	0.5	12	Fast Settling JFET
LF401	70	16	0.2	12	Precision Fast Settling JFET
LH0003	70	30	3	± 3	
LH0062	70	15	5	± 8	FET Input
LM118	70	15	4	7	
LF157	50	20	2	7	Min Gain of 5, JFET
LH4104	40	18	10	± 25	Medium Power Fast Settling JFET
LH4105	40	18	2	± 25	Trimmed LH4104
LM359	30	30	*	22	Dual Current Mode (Norton) Amp
LF411	15	4	0.5	2.8	JFET
LF412	15	4	1.0	5.6	Dual JFET
LF147	13	4	5	11	Quad JFET
LF451	13	4	5	3.4	SO Pkg
LF453	13	4	5	6.5	SO Pkg Dual
LF351	13	4	10	3.4	JFET
LF353	13.	4	10	6.8	Dual JFET
LF156	12	4.5	2	7	JFET
LM833	7	15	5	8	Dual Low Noise

*Not specified.
Note 1: Supply current is for all amplifiers in a package.

National Semiconductor Medium and High Power Operational Amplifier Selection Guide (≥ 0.1 A Output) ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, Note 1)					
Part \#	$\begin{gathered} \text { lout } \\ \text { A (Typ) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{OS}} \\ \mathrm{mV} \text { (Max) } \end{gathered}$	$\begin{gathered} \text { IS } \\ \text { mA (Max) } \end{gathered}$	Slew Rate V/ $\mu \mathrm{S}$ (Typ)	PBW (Typ)
LH4104	0.1	10	± 25	40	600 kHz
LH4101	0.1	15	± 40	250	8 MHz
LH4105	0.1	2	± 25	40	600 kHz
LH4118	0.1	2	± 25	2400	55 MHz
LH0041	0.2	3	± 3.5	3	20 kHz
LH4141	0.2	6	± 4	3	20 kHz
LH4117	0.2	20	± 45	2500	40 MHz
LH0061	0.6	4	± 10	70	1 MHz
LH0021	1.2	3	± 3.5	3	20 kHz
LH0101A	2.2	3	± 35	10	300 kHz
LH0101	2.2	10	± 35	10	300 kHz
LM675	3	10	50	8	*
LM12(L)	(Note 2)	7	80	9	60 kHz
LM12C(L)	(Note 2)	15	120	9	60 kHz

[^10]Note 2: IOUT for the LM12 is dependent on the amount of power dissipated in the output transistor. The datasheet should be referred to, to determine amount of current available.

Special Amplifier Selection Guide

Amplifiers with Added Functions

Featuring the new Super-BlockTM family, these amplifiers have additional special functions within their packages which help minimize the number of components required in an application. These devices are often used in control circuits, power supplies, and automatic test systems.

LH0045	Two-Wire Transmitter
LM10	Op Amp and Adjustable Voltage Reference
LM392	Op Amp and Comparator
LM604	Super-Block Multiplexed Op Amp (4 Inputs, 1 Output)
LM611	Super-Block Op Amp and Adjustable Voltage Reference
LM613	Super-Block Dual Op Amp, Dual Comparator, and Adjustable Voltage Reference
LM614	Super-Block Quad Op Amp and Adjustable Voltage Reference

Transconductance Amplifiers (Voltage In, Current Out)

These amplifiers provide a transconductance $\left(g_{m}\right)$ proportional to their bias current, which is controlled externally. This programmable gain makes the amplifiers useful in applications such as voltage-controlled amplifiers, current-controlled amplifiers, AGC circuits, and voltage multipliers.

LM3080	Operational Transconductance Amplifier
LM13600	Dual Operational Transconductance Amplifier
with Linearizing Diodes and Buffers	
LM13700	Improved Dual Operational Transconductance

Transimpedance Amplifiers (Current In, Voltage Out)

Transimpedance amplifiers are widely used to amplify photo-diode signals, and to ground-reference differential voltage signals which have high common-mode voltages. The LH0082 was designed to receive and amplify analog and digital signals transmitted by fiber optics. Like the LM359, the LH0082 can also be used as a video amplifier. The LM2900 series has found popularity in filter applications, as well as general-purpose amplifiers.

LH0082	20 MHz Transimpedance Amplifier/Comparator
LM359	Dual Current Mode (Norton) Amplifier
LM2900	Quad Current Mode (Norton) Amplifier
LM3900	
LM3301	

LF147/LF347/LF347B Wide Bandwidth Quad JFET Input Operational Amplifiers

General Description

The LF147 is a low cost, high speed quad JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF147 is pin compatible with the standard LM148. This feature allows designers to immediately upgrade the overall performance of existing LF148 and LM124 designs.
The LF147 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift.

Features

■ Internally trimmed offset voltage 5 mV max
■ Low input bias current 50 pA

- Low input noise current
$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth 4 MHz
- High slew rate $13 \mathrm{~V} / \mu \mathrm{s}$
■ Low supply current 7.2 mA
- High input impedance $10^{12} \Omega$
- Low total harmonic distortion $A_{V}=10$,
<0.02\%

$$
\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{Vp-p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}
$$

- Low $1 / \mathrm{f}$ noise corner

50 Hz
■ Fast settling time to $0.01 \% \quad 2 \mu \mathrm{~s}$

Simplified Schematic

TL/H/5647-13

Connection Diagram

Dual-In-Line Package

Order Number LF147D, LF347D, LF147J, LF347BJ, LF347J, LF347M, LF347WM, LF347BN or LF347N See NS Package Number D14E, J14A, M14A, M14B or N14A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availablity and specifications.

LF147	LF347B/LF347
$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Continuous	Continuous
900 mW	1000 mW

ower Dissipation
(Notes 3 and 9)
T_{j} max
$\theta_{\mathrm{J}} \mathrm{A}$
Cavity DIP (D) Package
Ceramic DIP (J) Package
Plastic DIP (N) Package
Surface Mount Narrow (M)
Surface Mount Wide (WM)

Operating Temperature	LF147 (Note 4)	LF347B/LF347 Range
(Note 4)		

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

ESD rating to be determined.

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	LF147			LF347B			LF347			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$R_{S}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ Over Temperature		1	$\begin{aligned} & 5 \\ & 8 \end{aligned}$		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta V_{O S} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 5,6)$ Over Temperature		25	$\begin{array}{\|c\|} \hline 100 \\ 25 \\ \hline \end{array}$		25	$\begin{array}{\|c\|} \hline 100 \\ 4 \\ \hline \end{array}$		25	$\begin{array}{\|c\|} \hline 100 \\ 4 \\ \hline \end{array}$	pA nA
I_{B}	Input Bias Current	$T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 5,6)$ Over Temperature		50	$\begin{array}{\|c\|} \hline 200 \\ 50 \\ \hline \end{array}$		50	$\begin{array}{\|c\|} \hline 200 \\ \hline \\ \hline \end{array}$		50	$\begin{array}{\|c\|} \hline 200 \\ 8 \\ \hline \end{array}$	pA nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}			1012			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { Over Temperature } \end{aligned}$	$\begin{array}{r} 50 \\ 25 \end{array}$	100		$\begin{array}{r} 50 \\ 25 \end{array}$	100		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		± 12	± 13.5		± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$,	± 11	$\begin{aligned} & +15 \\ & -12 \\ & \hline \end{aligned}$		± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)	80	100		80	100		70	100		dB
Is	Supply Current			7.2	11		7.2	11		7.2	11	mA

AC Electrical Characteristics（Note 5）												
Symbol	Parameter	Conditions	LF147			LF347B			LF347			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$		－120			－120			－120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	13		8	13		8	13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain－Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	2.2	4		2.2	4		2.2	4		MHz
θ_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		20			20			20		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Pulse Response $R_{L}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

Small Signal Inverting

 TIME ($0.2 \mu \mathrm{~s} / \mathrm{DIV})$

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Application Hints

The LF147 is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET IITM). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages
should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier

Application Hints (Continued)

output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 4.5 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The LF147 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed back-
wards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

TL/H/5647-10

Long Time Integrator with Reset, Hold and Starting Threshold Adjustment

- VOUT starts from zero and is equal to the integral of the input voltage with respect to the threshold voltage:

$$
V_{\mathrm{OUT}}=\frac{1}{R C} \int_{0}^{t}\left(V_{I N}-V_{\mathrm{TH}}\right) \mathrm{dt}
$$

- Output starts when $V_{\mathbb{N}} \geq V_{T H}$
- Switch S1 permits stopping and holding any output value
- Switch S2 resets system to zero

Typical Applications (Continued)

Universal State Variable Filter

For circuit shown:
$\mathrm{f}_{\mathrm{O}}=3 \mathrm{kHz}, \mathrm{f}_{\mathrm{NOTCH}}=9.5 \mathrm{kHz}$
$Q=3.4$
Passband gain:
Highpass-0.1
Bandpass-1
Lowpass-1
Notch-10

- $f_{0} \times Q \leq 200 \mathrm{kHz}$
- 10V peak sinusoidal output swing without slew limiting to 200 kHz
- See LM148 data sheet for design equations

LF155/LF155A/LF255/LF355/LF355A/ LF355B Low Supply Current LF156/LF156A/LF256/LF356/LF356A/ LF356B Wide Band LF157/LF157A/LF257/LF357/LF357A/ LF357B Wide Band Decompensated ($\mathrm{A}_{\mathrm{VmIN}}=5$)

General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BI-FETTM Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or commonmode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner.

Advantages

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance-very low 1/f corner
■ Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
■ New output stage allows use of large capacitive loads ($10,000 \mathrm{pF}$) without stability problems
- Internal compensation and large differential input voltage capability

Applications

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers

■ Wideband, low noise, low drift amplifiers

- Logarithmic amplifiers
- Photocell amplifiers
- Sample and Hold circuits

Common Features

(LF155A, LF156A, LF157A)

- Low input bias current	30 pA
- Low Input Offset Current	3 pA
- High input impedance	$10^{12} \Omega$
- Low input offset voltage	1 mV
Low input offset voltage temp. drift	$3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High common-mode rejection ratio	100 dB
- Large dc voltage gain	106 dB

Uncommon Features

	LF155A	LF156A	LF157A $\left(A_{V}=5\right)$ Extremely	4
East settling				
time to				

TL/H/5646-1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 8)

(Not	LF155A/6A/7A	LF155/6/7	$\begin{gathered} \text { LF355B/6B/7B } \\ \text { LF255/6/7 } \end{gathered}$	$\begin{gathered} \text { LF355/6/7 } \\ \text { LF355A/6A/7A } \end{gathered}$
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 40 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 20 \mathrm{~V}$	$\pm 16 \mathrm{~V}$
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
TjMAX H-Package N-Package J-Package M-Package	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$ $150{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 115^{\circ} \mathrm{C} \\ & 100^{\circ} \mathrm{C} \\ & 115^{\circ} \mathrm{C} \\ & 100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 115^{\circ} \mathrm{C} \\ & 100^{\circ} \mathrm{C} \\ & 115^{\circ} \mathrm{C} \\ & 100^{\circ} \mathrm{C} \end{aligned}$
Power Dissipation at $T_{A}=25^{\circ} \mathrm{C}$ (Notes H-Package (Still Air) H-Package (400 LF/Min Air Flow) N-Package J-Package M-Package	and 9) $\begin{gathered} 560 \mathrm{~mW} \\ 1200 \mathrm{~mW} \end{gathered}$	$\begin{gathered} 560 \mathrm{~mW} \\ 1200 \mathrm{~mW} \\ 1260 \mathrm{~mW} \end{gathered}$	$\begin{gathered} 400 \mathrm{~mW} \\ 1000 \mathrm{~mW} \\ 670 \mathrm{~mW} \\ 900 \mathrm{~mW} \\ 380 \mathrm{~mW} \end{gathered}$	$\begin{gathered} 400 \mathrm{~mW} \\ 1000 \mathrm{~mW} \\ 670 \mathrm{~mW} \\ 900 \mathrm{~mW} \\ 380 \mathrm{~mW} \end{gathered}$
Thermal Resistance (Typical) θ_{JA} H-Package (Still Air) H-Package (400 LF/Min Air Flow) N-Package J-Package M-Package	$\begin{array}{r} 160^{\circ} \mathrm{C} / \mathrm{W} \\ 65^{\circ} \mathrm{C} / \mathrm{W} \end{array}$	$\begin{array}{r} 160^{\circ} \mathrm{C} / \mathrm{W} \\ 65^{\circ} \mathrm{C} / \mathrm{W} \\ 100^{\circ} \mathrm{C} / \mathrm{W} \end{array}$	$\begin{array}{r} 160^{\circ} \mathrm{C} / \mathrm{W} \\ 65^{\circ} \mathrm{C} / \mathrm{W} \\ 130^{\circ} \mathrm{C} / \mathrm{W} \\ 100^{\circ} \mathrm{C} / \mathrm{W} \\ 195^{\circ} \mathrm{C} / \mathrm{W} \end{array}$	$\begin{array}{r} 160^{\circ} \mathrm{C} / \mathrm{W} \\ 65^{\circ} \mathrm{C} / \mathrm{W} \\ 130^{\circ} \mathrm{C} / \mathrm{W} \\ 100^{\circ} \mathrm{C} / \mathrm{W} \\ 195^{\circ} \mathrm{C} / \mathrm{W} \end{array}$
(Typical) θ_{JC} H-Package	$23^{\circ} \mathrm{C} / \mathrm{W}$			
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Soldering Information (Lead Temp.) Metal Can Package Soldering (10 sec .)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Dual-In-Line Package Soldering (10 sec .) Small Outline Package		$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Vapor Phase (60 sec .) Infrared (15 sec.)			$\begin{aligned} & 215^{\circ} \mathrm{C} \\ & 220^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 215^{\circ} \mathrm{C} \\ & 220^{\circ} \mathrm{C} \end{aligned}$
See AN-450 "Surface Mounting Metho mount devices. ESD tolerance (100 pF discharged through $1.5 \mathrm{k} \Omega$)	and Their Effect on $1200 \mathrm{~V}$	oduct Reliability" for $1200 \mathrm{~V}$	her methods of sol $1200 \mathrm{~V}$	ing surface $1200 \mathrm{~V}$

DC Electrical Characteristics (Note 3) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	LF155A/6A/7A			LF355A/6A/7A			Units
			Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		1	$\begin{gathered} 2 \\ 2.5 \end{gathered}$		1	$\begin{gathered} 2 \\ 2.3 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		3	5		3	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{TC} / \Delta \mathrm{V}_{\mathrm{OS}}$	Change in Average TC with $V_{\text {OS }}$ Adjust	$\mathrm{R}_{S}=50 \Omega$, (Note 4)		0.5			0.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ per mV
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {HIGH }} \end{aligned}$		3	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		3	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,5) \\ & \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {HIGH }} \end{aligned}$		30	$\begin{aligned} & 50 \\ & 25 \\ & \hline \end{aligned}$		30	$\begin{gathered} 50 \\ 5 \end{gathered}$	pA nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$		10^{12}			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$ Over Temperature	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
V_{0}	Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

DC Electrical Characteristics $T_{A}=T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Parameter	$\begin{gathered} \text { LF155A/155, } \\ \text { LF255, } \\ \text { LF355A/355B } \end{gathered}$		LF355		LF156A/156, LF256/356B		LF356A/356		LF157A/157 LF257/357B		LF357A/357		Units
	Typ	Max											
Supply Current	2	4	2	4	5	7	5	10	5	7	5	10	mA

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Conditions	$\begin{array}{\|c\|} \hline \text { LF155/255/ } \\ \text { 355/355B } \\ \hline \end{array}$	LF156/256, LF356B	$\begin{gathered} \text { LF156/256/ } \\ 356 / 356 \mathrm{~B} \end{gathered}$	$\begin{aligned} & \text { LF157/257, } \\ & \text { LF357B } \end{aligned}$	$\begin{gathered} \text { LF157/257/ } \\ 357 / 357 B \end{gathered}$	Units
			Typ	Min	Typ	Min	Typ	
SR	Slew Rate	$\begin{aligned} & \text { LF155/6: } A_{V}=1, \\ & \text { LF157: } A_{V}=5 \end{aligned}$	5	7.5	12	30	50	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
GBW	Gain Bandwidth Product		2.5		5		20	MHz
$\mathrm{t}_{\text {s }}$	Settling Time to 0.01\%	(Note 7)	4		1.5		1.5	$\mu \mathrm{s}$
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega \\ & \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 12 \end{aligned}$		$\begin{aligned} & 15 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Equivalent Input Current Noise	$\begin{aligned} & f=100 \mathrm{~Hz} \\ & f=1000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
C_{IN}	Input Capacitance		3		3		3	pF

Notes for Electrical Characteristics

Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A x}, \theta_{j A}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$, whichever is less.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: Unless otherwise stated, these test conditions apply:

	LF155A/6A/7A LF155//6/7	LF255//6/7	LF355A/6A/7A	LF355B/6B/7B	LF355//6/7
Supply Voltage, $\mathrm{V}_{\text {S }}$	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	$\pm 15 \mathrm{~V} \leq \mathrm{V}_{S} \pm 20 \mathrm{~V}$	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$
$\mathrm{T}_{\text {A }}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {HIGH }}$	$+125^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$

and $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount ($0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typically) for each mV of adjustment from its original unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{J}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{Pd} . \mathrm{T}_{j}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{jA}} \mathrm{Pd}$ where θ_{j} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.
Note 7: Settling time is defined here, for a unity gain inverter connection using $2 \mathrm{k} \Omega$ resistors for the LF155/6. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10 V step input is applied to the inverter. For the LF157, $A_{V}=-5$, the feedback resistor from output to input is $2 \mathrm{k} \Omega$ and the output step is 10 V (See Settling Time Test Circuit).
Note 8: Refer to RETS155AX for LF155A, RETS155X for LF155, RETSF156AX for LF156A, RETS156X for LF156, RETS157A for LF157A and RETS157X for LF157 military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical DC Performance Characteristics

Curves are for LF155, LF156 and LF157 unless otherwise specified.

Negative Common-Mode Input Voltage Limit

Positive Common-Mode Input Voltage Limit

TL/H/5646-2

Typical AC Performance Characteristics

Typical AC Performance Characteristics (Continued)

Common-Mode Rejection Ratio

Power Supply Rejection Ratio

Equivalent Input Noise

Power Supply Rejection Ratio

Equivalent Input Noise Voltage (Expanded Scale)
(zH//Au) 39viton 3sion indmi inatvainoz

TL/H/5646-11

Detailed Schematic

TL/H/5646-13
Connection Diagrams (Top Views)

Dual-In-Line Package (M and N)

Order Number
LF355M, LF356M, LF357M, LF356BM, LF355BN, LF356BN, LF357BN, LF355N, LF356N or LF357N
See NS Package Number M08A or N08E

Application Hints

The LF155/6/7 series are op amps with. JFET input devices. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore large differential input voltages can easily be accomodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the commonmode voltage can exceed the positive supply by approximately 100 mV independent of supply voltage and over the full operating temperature range. The positive supply can therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in
polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
All of the bias currents in these amplifiers are set by FET current sources. The drain currents for the amplifiers are therefore essentially independent of supply voltage.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to ac ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Circuit Connections

Vos Adjustment

- $V_{\text {OS }}$ is adjusted with a 25 k potentiometer
- The potentiometer wiper is connected to V^{+}
- For potentiometers with temperature coefficient of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less the additional drift with adjust is $\approx 0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adjustment
- Typical overall drift: $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \pm(0.5$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C} / \mathrm{mV}$ of adj.)

Driving Capacitive Loads

*LF155/6 R=5k
LF157 R=1.25k
Due to a unique output stage design, these amplifiers have the ability to drive large capacitive loads and still maintain stability. $\mathrm{C}_{\mathrm{L}(\mathrm{MAX})} \cong 0.01$ $\mu \mathrm{F}$.

Overshoot $\leq 20 \%$
Settling time $\left(\mathrm{t}_{\mathrm{s}}\right) \cong 5 \mu \mathrm{~s}$

LF157. A Large Power BW Amplifier

TL/H/5646-15
For distortion $\leq 1 \%$ and a $20 \mathrm{Vp}-\mathrm{p} \mathrm{V}_{\text {OUT }}$ swing, power bandwidth is: 500 kHz .

Typical Applications

Low Drift Adjustable Voltage Reference

- $\Delta \mathrm{V}_{\mathrm{OUT}} / \Delta \mathrm{T}= \pm 0.002 \% /{ }^{\circ} \mathrm{C}$
- All resistors and potentiometers should be wire-wound
- P1: drift adjust
- P2: V OUT adjust
- Use LF155 for
- Low I_{B}
- Low drift
- Low supply current

Fast Logarithmic Converter

- Dynamic range: $100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{i}} \leq 1 \mathrm{~mA}$ (5 decades), $\left|V_{O}\right|=1 \mathrm{~V} /$ decade
- Transient response: $3 \mu \mathrm{~s}$ for $\Delta l_{i}=1$ decade
- C1, C2, R2, R3: added dynamic compensation
- VOS adjust the LF156 to minimize quiescent error
- R_{T} : Tel Labs type Q81 + $0.3 \% /{ }^{\circ} \mathrm{C}$
$\left|V_{O U T}\right|=\left[1+\frac{R 2}{R_{T}}\right] \frac{k T}{q} \ln V_{1}\left[\frac{R_{r}}{V_{R E F R I}}\right]=\log V_{1} \frac{1}{R_{1} l_{r}} R 2=15.7 \mathrm{k}, R_{T}=1 \mathrm{k}, 0.3 \% /{ }^{\circ} \mathrm{C}$ (for temperature compensation)

Precision Current Monitor

8-Bit D/A Converter with Symmetrical Offset Binary Operation

TL/H/5646-32

- R1, R2 should be matched within $\pm 0.05 \%$
- Full-scale response time: 3μ s

E $_{\mathbf{O}}$	B1	B2	B3	B4	B5	B6	B7	B8	Comments
+9.920	1	1	1	1	1	1	1	1	Positive Full-Scale
+0.040	1	0	0	0	0	0	0	0	$(+)$ Zero-Scale
-0.040	0	1	1	1	1	1	1	1	$(-)$ Zero-Scale
-9.920	0	0	0	0	0	0	0	0	Negative Full-Scale

Typical Applications (Continued)

Wide BW Low Noise, Low Drift Amplifier

- Power BW: $f_{M A X}=\frac{S_{r}}{2 \pi V_{P}} \approx 240 \mathrm{kHz}$
- Parasitic input capacitance C1 $\approx(3 \mathrm{pF}$ for LF155, LF156 and LF157 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2C2 \approx R1C1.

Boosting the LF156 with a Current Amplifler

- IOUT(MAX) $\approx 150 \mathrm{~mA}$ (will drive $R_{L} \geq 100 \Omega$)
- $\frac{\Delta V_{\text {OUT }}}{\Delta T}=\frac{0.15}{10^{-2}} \mathrm{~V} / \mu \mathrm{s}$ (with C_{L} shown)
- No additional phase shift added by the current amplifier

$f=\frac{V_{C}(R 8+R 7)}{\left(8 V_{P U} R 8 R 1\right) C}, 0 \leq V_{C} \leq 30 \mathrm{~V}, 10 \mathrm{~Hz} \leq f \leq 10 \mathrm{kHz}$
R1, R4 matched. Linearity 0.1% over 2 decades.

- Overshoot 6\%

TL/H/5646-22

- $\mathrm{t}_{\mathrm{s}} 10 \mu \mathrm{~s}$
- When driving large C_{L}, the $V_{\text {OUT }}$ slew rate determined by C_{L} and IOUT(MAX):
$\frac{\Delta V_{\text {OUT }}}{\Delta T}=\frac{\mathrm{louT}}{\mathrm{C}_{\mathrm{L}}} \approx \frac{0.02}{0.5} \mathrm{~V} / \mu \mathrm{s}=0.04 \mathrm{~V} / \mu \mathrm{s}$ (with C_{L} shown)
Low Drift Peak Detector

- By adding D1 and $\mathrm{R}_{\mathrm{f}}, \mathrm{V}_{\mathrm{D} 1}=0$ during hold mode. Leakage of D 2 provided by feedback path through R_{f}.
- Leakage of circuit is essentially lb (LF155, LF156) plus capacitor leakage of Cp .
- Diode D3 clamps $V_{\text {OUT }}(A 1)$ to $V_{I N}-V_{D 3}$ to improve speed and to limit reverse bias of D2.
- Maximum input frequency should be $\ll 1 / 2 \pi R_{f} C_{D 2}$ where $C_{D 2}$ is the shunt capacitance of D2.

Non-Inverting Unity Gain Operation for LF157

Inverting Unity Gain for LF157

$$
\mathrm{R} 1 \mathrm{C} \geq \frac{1}{(2 \pi)(5 \mathrm{MHz})}
$$

$R 1=\frac{R 2}{4}$
$A_{V(D C)}=-1$
$\mathrm{f}_{-3 \mathrm{~dB}} \approx 5 \mathrm{MHz}$
TL/H/5646-25

High Impedance, Low Drift Instrumentation Amplifier

- $V_{\text {OUT }}=\frac{R 3}{R}\left[\frac{2 R 2}{R 1}+1\right] \Delta V, V^{-}+2 V \leq V_{1 N}$ common-mode $\leq \mathrm{V}^{+}$
- System Vos adjusted via A2 Vos adjust
- Trim R3 to boost up CMRR to 120 dB . Instrumentation amplifier resistor array recommended for best accuracy and lowest drift

Fast Sample and Hold

- Both amplifiers (A1, A2) have feedback loops individually closed with stable responses (overshoot negligible)
- Acquisition time T_{A}, estimated by:
$T_{A} \cong\left[\frac{2 R_{O N}, V_{I N}, C_{h}}{S_{r}}\right]^{1 / 2}$ provided that:
$\mathrm{V}_{I N}<2 \pi \mathrm{~S}_{\mathrm{r}} \mathrm{R}_{\mathrm{ON}} \mathrm{C}_{h}$ and $\mathrm{T}_{\mathrm{A}}>\frac{\mathrm{V}_{\mathrm{IN}^{\prime}} C_{h}}{\operatorname{lOUT}(\mathrm{MAX})}, R_{\mathrm{ON}}$ is of SW1
If inequality not satisfied: $T_{A} \cong \frac{V_{I N} C_{h}}{20 \mathrm{~mA}}$
- LF156 develops full S_{r} output capability for $\mathrm{V}_{\mathrm{IN}} \geq 1 \mathrm{~V}$
- Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop
- Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2

High Accuracy Sample and Hold

TL/H/5646-27

- By closing the loop through A2, the Vout accuracy will be determined uniquely by A1. No Vos adjust required for A2.
- T_{A} can be estimated by same considerations as previously but, because of the added propagation delay in the feedback loop (A2) the overshoot is not negligible.
- Overall system slower than fast sample and hold
- R1, C_{C} : additional compensation
- Use LF156 for
- Fast settling time
- Low Vos

Typical Applications (Continued)

High Q Band Pass Filter

TL/H/5646-28

High Q Notch Filter

$$
\text { - } 2 R 1=R=10 \mathrm{M} \Omega
$$

$$
2 \mathrm{C}=\mathrm{C} 1=300 \mathrm{pF}
$$

- Capacitors should be matched to obtain high Q
- $\mathrm{f}_{\mathrm{NOTCH}}=120 \mathrm{~Hz}$, notch $=-55 \mathrm{~dB}, \mathrm{Q}>$ 100
- Use LF155 for
- Low lB
- Low supply current

LF351 Wide Bandwidth JFET Input Operational Amplifier

General Description

The LF351 is a low cost high speed JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF351 is pin compatible with the standard LM741 and uses the same offset voltage adjustment circuitry. This feature allows designers to immediately upgrade the overall performance of existing LM741 designs.
The LF351 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift, but for applications where these requirements are critical, the LF356 is recommended. If maximum supply
current is important, however, the LF351 is the better choice.

Features

- Internally trimmed offset voltage	10 mV
Low input bias current	50 pA
- Low input noise voltage	$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
Wide gain bandwidth	4 MHz
- High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$
- Low supply current	1.8 mA
- High input impedance	1012Ω
Low total harmonic distortion $\mathrm{AV}_{\mathrm{V}}=10$,	$<0.02 \%$
R $=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$	
Low 1/f noise corner	50 Hz
- Fast settling time to 0.01%	$2 \mu \mathrm{~s}$

Typical Connection

Connection Diagrams (Top Views)
Metal Can Package

Note. Pin 4 connected to case.

Order Number LF351H
See NS Package Number H08C

Simplified Schematic

Dual-In-Line Package

top view
Order Number LF351J, LF351M or LF351N
See NS Package Number J08A, M08A or N08E

```
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
```


Supply Voltage

Power Dissipation (Notes 1 and 6)
Operating Temperature Range
$\mathrm{T}_{\mathrm{j} \text { (MAX) }}$
Differential Input Voltage
Input Voltage Range (Note 2)
Output Short Circuit Duration
Continuous
Storage Temperature Range
Lead Temp. (Soldering, 10 sec.)
Metal Can
DIP

$\theta_{\mathrm{j}} \mathrm{A}$	H Package	N Package
	$164^{\circ} \mathrm{C} / \mathrm{W}$ (Still Air)	$120^{\circ} \mathrm{C} / \mathrm{W}$
	$66^{\circ} \mathrm{C} / \mathrm{W}$	
	(400 LF/min Air Flow)	
$\theta_{j} \mathrm{C}$	$21^{\circ} \mathrm{C} / \mathrm{W}$	
Soldering Information		
Dual-In-Line Package		
Solder	(10 sec.)	$260^{\circ} \mathrm{C}$
Small Outline Package		
Vapor Phase (60 sec.)Infrared (15 sec.)		$215^{\circ} \mathrm{C}$
		$220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.		
ESD rating to be determined.		

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	LF351			Units
			Min	Typ	Max	
Vos	Input Offset Voltage	$R_{S}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\text {S }}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & \mathrm{T}_{\mathrm{j}} \leq 70^{\circ} \mathrm{C} \end{aligned}$		25	$\begin{gathered} 100 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & \mathrm{T}_{\mathrm{j}} \leq \pm 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \\ \hline \end{gathered}$	pA nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	25 15	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
$V_{\text {CM }}$	Input Common-Mode Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \\ & \hline \end{aligned}$		V V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 5)	70	100		dB
Is	Supply Current			1.8	3.4	mA

AC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	LF351			Units
			Min	Typ	Max	
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperature, the device must be derated based on the thermal resistance, θ_{JA}.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{jA}} \mathrm{P}_{\mathrm{D}}$ where θ_{j} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 5: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. From $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$.

Note 6: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical Performance Characteristics

Positive Common-Mode Input Voltage Limit

Input Bias Current

Negative Common-Mode Input Voltage Limit

150 100

Supply Current

R $_{\text {L - OUTPUT LOAD (k }}$)

Typical Performance Characteristics (Continued)

Open Loop Voltage

Pulse Response

Application Hints

The LF351 is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET IITM). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output.
Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the

Application Hints (Continued)

common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The LF351 is biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The LF351 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed back-
wards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

- $V_{\text {OUT }}$ switches high when $R_{S} l_{S}>V_{D}$

Hi-Z ${ }_{\text {IN }}$ Inverting Amplifier

Parasitic input capacitance $\mathrm{C} 1 \cong(3 \mathrm{pF}$ for LF351 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C 2 such that: R2C2 \cong R1C1.

Ultra-Low (or High) Duty Cycle Pulse Generator

- HOUTPUT HIGH \approx R1C $\ell \mathrm{n} \frac{4.8-2 \mathrm{~V}_{\mathrm{S}}}{4.8-\mathrm{V}_{\mathrm{S}}}$
- toutput low \approx R2C $\ell \mathrm{n} \frac{2 V_{S}-7.8}{V_{S}-7.8}$
where $\mathrm{v}_{\mathrm{s}}=\mathrm{v}^{+}+|\mathrm{v}-|$

TL/H/5648-10
Low leakage capacitor

- 50k pot used for less sensitive $V_{\text {OS }}$ adjust
*low leakage capacitor

National Semiconductor

LF353 Wide Bandwidth Dual JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET IITM technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very. low input bias and offset currents. The LF353 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and LM358 designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Features

- Internally trimmed offset voltage 10 mV

■ Low input bias current 50pA

- Low input noise voltage $16 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

■ Low input noise current . $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$

- Wide gain bandwidth 4 MHz
- High slew rate $13 \mathrm{~V} / \mu \mathrm{s}$

■ Low supply current 3.6 mA
■ High input impedance 1012Ω

- Low total harmonic distortion $A_{V}=10, \quad<0.02 \%$ $\mathrm{RL}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
■ Low 1/f noise corner 50 Hz
- Fast settling time to $0.01 \% \quad 2 \mu \mathrm{~s}$

Typical Connection

Simplified Schematic

Connection Diagrams

Metal Can Package (Top View)

Order Number LF353H See NS Package Number H08C

Order Number LF353J, LF353M or LF353N See NS Package Number J08A, M08A or N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Supply Voltage
$\pm 18 \mathrm{~V}$
Power Dissipation
Operating Temperature Range T_{j} (MAX)
(Note 1)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
Differential Input Voltage
$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 2)
Output Short Circuit Duration

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Soldering Information	
Dual-In-Line Package	$260^{\circ} \mathrm{C}$
Soldering (10 sec.)	
Small Outline Package	$215^{\circ} \mathrm{C}$
\quad Vapor Phase (60 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating to be determined.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	LF353			Units
			MIn	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		25	$\begin{gathered} 100 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega \\ & \text { Over Temperature } \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \\ & \hline \end{aligned}$	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	70	100		dB
Is	Supply Current			3.6	6.5	mA

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	LF353			Units
			Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$		-120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8.0	13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	2.7	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega, \\ & f=1000 \mathrm{~Hz} \end{aligned}$		25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperatures, the device must be derated based on a thermal resistance of $115^{\circ} \mathrm{C} / \mathrm{W}$ typ junction to ambient for the N package, and $158^{\circ} \mathrm{C} / \mathrm{W}$ typ junction to ambient for the H package.
Note 2: Uniess otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: The power dissipation limit, however, cannot be exceeded.
Note 4: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} . V_{O S}, I_{B}$ and $l_{O S}$ are measured at $V_{C M}=0$.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. $V_{S}= \pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

Typical Performance Characteristics

Open Loop Voltage Gain (V/V)

Undistorted Output Voltage Swing

Power Supply Rejection Ratlo

Output Impedance

Open Loop Frequency Response

Equivalent Input Noise Voltage

Pulse Response

TIME ($0.2 \mu \mathrm{~s} / \mathrm{DIV})$
TL/H/5649-4

TIME ($2 \mu \mathrm{~s} / \mathrm{DIV}$)
TL/H/5649-6

Small Signal Non-Inverting

TIME ($0.2 \mu \mathrm{~s} / \mathrm{DIV}$)
TL/H/5649-5
Large Signal Non-Inverting

TIME ($2 \mu \mathrm{~s} / \mathrm{DIV}$)

TL/H/5649-7

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Application Hints

These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Application Hints (Continued)

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 6 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through theresult-
ing forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

TL/H/5649-9

Typical Applications

Note 2: Bass and treble boost, mid flat.
Note 3: Bass and treble cut, mid flat.
Note 4: Mid boost, bass and treble flat.
Note 5: Mid cut, bass and treble flat.

- All potentiometers are linear taper
- Use the LF347 Quad for stereo applications

Typical Applications (Coninued)

$A_{V}=\left(\frac{2 R 2}{R 1}+1\right) \quad \frac{R 5}{R 4}$
$\not / 7$ and \perp are separate isolated grounds
Matching of R2's, R4's and R5's control CMRR
With $A V_{T}=1400$, resistor matching $=0.01 \%: C M R R=136 \mathrm{~dB}$

- Very high input impedance
- Super high CMRR

Fourth Order Low Pass Butterworth Filter

- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{R 1 R 2 C C 1}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{R_{1}^{\prime} R 2^{\prime} C C 1}} \cdot \frac{1}{2 \pi}$
- Passband gain $\left(\mathrm{H}_{\mathrm{O}}\right)=(1+\mathrm{R} 4 / \mathrm{R} 3)\left(1+\mathrm{R} 4^{\prime} / \mathrm{R} 3^{\prime}\right)$
- First stage $Q=1.31$
- Second stage $\mathbf{Q}=0.541$
- Circuit shown uses nearest 5% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100
- Offset nulling necessary for accurate DC performance

- Corner frequency $\left(\mathrm{f}_{\mathrm{c}}\right)=\sqrt{\frac{1}{\mathrm{R} 1 \mathrm{R} 2 \mathrm{C}^{2}}} \bullet \frac{1}{2 \pi}=\sqrt{\frac{1}{\mathrm{R} 1^{\prime} \mathrm{R}^{\prime} \mathrm{C}^{2}}} \bullet \frac{1}{2 \pi}$
- Passband gain ($\mathrm{H}_{\mathrm{O}}=(1+\mathrm{R} 4 / \mathrm{R} 3)\left(1+\mathrm{R} 4^{\prime} / \mathrm{R}^{\prime}\right)$
- First stage $Q=1.31$
- Second stage $Q=0.541$
- Circuit shown uses closest 5% tolerance resistor values for a filter with a corner frequency of 1 kHz and a passband gain of 10 .

[^11]

LF400A/LF400

Fast-Settling JFET-Input Operational Amplifier

General Description

The LF400 is a fast-settling (under 400 ns to 0.01% for a 10V output step) Bi-FET operational amplifier. Features include 16 MHz bandwidth, $60 \mathrm{~V} / \mu \mathrm{s}$ inverting slew rate, low input offset voltage (0.5 mV for the LF400A at $25^{\circ} \mathrm{C}$), and adjustable output current limit, enabling the amplifier to drive 600Ω loads.

Typical Connection

Applications

- DAC output amplifiers
- High speed ramp generators
- Fast buffers
- Sample-and-holds

■ Fast integrators
■ Piezoelectric transducer signal conditioners

Connection Diagram

Note: Pin 4 connected to case.
Top View
Order Number LF400ACH, LF400CH,
LF400AMH or LF400MH
See NS Package Number H08B

Simplified Schematic

Absolute Maximum Ratings（Notes 1 \＆2）		Operating Ratings（Notes 1 \＆2）	
If Military／Aerospace specified de please contact the National Se Office／Distributors for availability a	ces are required， iconductor Sales d specifications．	Temperature Range LF400AMH，LF 400 MH LF400ACH，LF400CH	$\begin{array}{r} T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \\ -55^{\circ} \mathrm{C} \leq T_{A} \leq+25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C} \end{array}$
Supply Voltage	$\pm 18 \mathrm{~V}$	Positive Supply Voltage	+10 V to +16 V
Differential Input Voltage	$\pm 32 \mathrm{~V}$	Negative Supply Voltage	-10 V to -16 V
Input Voltage Range（Note 3）	$\pm 16 \mathrm{~V}$		
Output Short Circuit Duration（Pin 6）	Continuous		
Power Dissipation（Note 4）H package	500 mW		
Junction Temperature（TJMAX）	$150^{\circ} \mathrm{C}$		
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Lead Temperature（Soldering， 10 sec ．）	$+300^{\circ} \mathrm{C}$		
ESD Susceptibility（Note 9）	800 V		

AC Electrical Characteristics（LF400ACH，LF400CH）

The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}^{-}=-15 \mathrm{~V}$ unless otherwise specified．
Tested Limits in Boldface apply for $\mathbf{T}_{J}=25^{\circ} \mathrm{C}$ to $\mathbf{9 5}^{\circ} \mathrm{C}$ ．Design Limits in Boldface apply for $\mathbf{T}_{A}=\mathrm{T}_{\text {min }}$ to $\mathbf{T}_{\text {MAX }}$ ；other Design Limits are for $T_{A}=25^{\circ} \mathrm{C}$ ；all other limits for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ ．

Symbol	Parameter	Conditions	LF400ACH			LF400CH			Units
			Typical （Note 6）	Tested Limit （Note 7）	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 8) } \\ \hline \end{array}$	Typical （Note 6）		Design Limit （Note 8）	
t_{s}	Settling Time to 0.01% to 0.10%	See Figure 1 See Figure 1	$\begin{aligned} & 365 \\ & 200 \end{aligned}$			$\begin{aligned} & 365 \\ & 200 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
GBW	Minimum Gain Bandwidth Product	$A_{V}=+1, C_{L}=10 \mathrm{pF}$	16	14		16	14		MHz
SR	Minimum Slew Rate	$A_{V}=+1, C_{L}=10 \mathrm{pF}$	30	27		30	27		$\mathrm{V} / \mu \mathrm{s}$
		$A_{V}=-1, C_{L}=10 \mathrm{pF}$	60			60			$\mathrm{V} / \mu \mathrm{s}$
ϕ	Phase Margin	$A_{V}=+1, C_{L}=10 \mathrm{pF}$	60			60			Degrees
e_{n}	Input Noise Voltage	$\begin{aligned} & f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=100 \Omega \\ & \text { Broadband, } \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & 10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 23 \\ & 2.3 \end{aligned}$			$\begin{aligned} & 23 \\ & 2.3 \end{aligned}$			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{V}$ rms
i_{n}	Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$ Broadband $10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}$	$\begin{gathered} 0.01 \\ 1.0 \end{gathered}$			$\begin{gathered} 0.01 \\ 1.0 \end{gathered}$			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$ pA rms
THD	Total Harmonic Distortion	$\begin{aligned} & f=1 \mathrm{kHz}, A_{V}=-1, \\ & R_{L}=10 k \end{aligned}$	0.002			0.002			\％
$\mathrm{C}_{\text {IN }}$	Input Capacitance		7			7			pF

DC Electrical Characteristics (LF400ACH, LF400CH) The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}^{-}=-15 \mathrm{~V}$ unless otherwise specified. Tested Limits in Boldface apply for $\mathbf{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$. Design Limits in Boldface apply for $\mathbf{T}_{\mathbf{A}}=\mathrm{T}_{\mathrm{min}}$ to $\mathbf{T}_{\text {MAX }}$; other Design Limits are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; all other limits for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.													
Symbol	Parameter		Conditions		LF400ACH			LF400CH			Units		
			Typical (Note 6)		Design Limit (Note 8)	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)					
VOS	Maximum Input Offset Voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}=0, \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		± 0.5			± 3.0		mV
			$\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$			± 2.0			± 5.0		mV		
los	Maximum Input Offset Current		$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)		± 50	$\begin{array}{r} \pm 100 \\ \pm \mathbf{2 . 5} \end{array}$		± 50	$\begin{array}{r} \pm 100 \\ \pm \mathbf{2 . 5} \end{array}$		pA nA		
I_{B}	Maximum Input Bias Current		$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)		100	$\begin{aligned} & 200 \\ & 26 \end{aligned}$		100	$\begin{aligned} & 200 \\ & 26 \end{aligned}$		pA nA		
$\mathrm{R}_{\text {IN }}$	Input Resistance				1011			10^{11}			Ω		
$\mathrm{V}_{\text {CM }}$	Input Common-Mode Voltage Range				$\begin{gathered} -12 \text { to } \\ +14 \\ \hline \end{gathered}$	± 11		$\begin{gathered} -12 \text { to } \\ +14 \end{gathered}$	± 11		V		
AVOL	Minimum Large Signal Voltage Gain	Using Pin 6	$V_{O}= \pm 10 \mathrm{~V}$	$R_{L}=2 \mathrm{k} \Omega$	300	100		300	100		V/mV		
		Using Pin 8	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	$R_{L}=600 \Omega$	280	100		280	100		V/mV		
V_{0}	Minimum Output Voltage Swing	Using Pin 6	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		± 12.5	± 12.0		± 12.5	± 12.0		V		
		Using Pin 8	$\mathrm{R}_{\mathrm{L}}=600 \Omega$		± 12.0	± 11.0		± 12.0	± 11.0		V		
Isc	Output Short Circuit Current	MIN Using Pin 6 MAX Using Pin 6 MIN Using Pin 8	Pulse Test		25	$\begin{gathered} 15 \\ 45 \\ 100 \\ \hline \end{gathered}$		25	$\begin{gathered} 15 \\ 45 \\ 100 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$		
Ro	Output Resistance	Using Pin 6	Open Loop, DC		75			75			Ω		
		Using Pin 8	Open Loop, DC		50			50			Ω		
CMRR	Minimum DC Common Mode Rejection Ratio		$-11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+11 \mathrm{~V}$		100	90		100	80		dB		
PSRR	Minimum DC Power Supply Rejection Ratio		$\begin{aligned} & +10 \mathrm{~V} \leq \mathrm{V}+ \\ & -15 \mathrm{~V} \leq \mathrm{V}- \\ & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \leq+15 \mathrm{~V} \\ & \leq-10 \mathrm{~V} \end{aligned}$	100	90		100	80		dB		
Is	Maximum Supply Current		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		11.0	13.0		11.0	13.0		mA		

AC Electrical Characteristics（LF400AMH，LF400MH） The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$ ，and $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified． Tested Limits in Boldface apply for $T_{J}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$									
Symbol	Parameter	Conditions	LF400AMH			LF400MH			Units
			Typical （Note 6）	Tested Limit （Note 7）	Design Limit （Note 8）	Typical （Note 6）	Tested Limit （Note 7）	Design Limit （Note 8）	
$\mathrm{t}_{\text {s }}$	Settling Time to 0．01\％ to 0．10\％	See Figure 1 See Figure 1	$\begin{aligned} & 365 \\ & 200 \end{aligned}$			$\begin{aligned} & 365 \\ & 200 \end{aligned}$			$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
GBW	Minimum Gain Bandwidth Product	$A_{V}=+1, C_{L}=10 \mathrm{pF}$	16	$\begin{aligned} & 14 \\ & 10 \end{aligned}$		16	$\begin{aligned} & 14 \\ & 10 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
SR	Minimum Slew Rate	$A_{V}=+1, C_{L}=10 \mathrm{pF}$	30	27		30	27		$\mathrm{V} / \mu \mathrm{s}$
		$A_{V}=-1, C_{L}=10 \mathrm{pF}$	60			60			$\mathrm{V} / \mu \mathrm{s}$
ϕ	Phase Margin	$A_{V}=+1, C_{L}=10 \mathrm{pF}$	60			60			Degrees
e_{n}	Input Noise Voltage	$\begin{aligned} & f=1 \mathrm{kHz}, R_{S}=100 \Omega \\ & \text { Broadband, } R_{S}=100 \Omega, \\ & 10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 23 \\ & 2.3 \end{aligned}$			$\begin{aligned} & 23 \\ & 2.3 \end{aligned}$			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{V}$ rms
i_{n}	Input Noise Current	$\begin{array}{\|l} \hline f=1 \mathrm{kHz} \\ \text { Broadband } \\ 10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \\ \hline \end{array}$	$\begin{gathered} 0.01 \\ 1.0 \end{gathered}$			$\begin{gathered} 0.01 \\ 1.0 \end{gathered}$			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$ pA rms
THD	Total Harmonic Distortion	$\begin{aligned} & f=1 \mathrm{kHz}, A_{V}=-1, \\ & R_{L}=10 \mathrm{k} \end{aligned}$	0.002			0.002			\％
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance		7			7			pF

DC Electrical Characteristics（LF400AMH，LF400MH）
The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$ ，and $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise specified．
Tested Limits in Boldface apply for $\mathbf{T}_{\mathbf{J}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．

Symbol	Parameter		Conditions		LF400AMH			LF400MH			Unit		
			Typical （Note 6）	Tested Limit （Note 7）	Design Limit （Note 8）	Typical （Note 6）		Design Limit （Note 8）					
Vos	Maximum Input Offset Voltage				$\begin{aligned} & V_{C M}=0 V, \\ & R_{S}=0, \\ & R_{L}=\infty \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		± 0.5			± 3.0		mV
						± 2.0			± 5.0		mV		
los	Maximum Input Offset Current		$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$（Note 5）		± 50	$\begin{aligned} & \pm 100 \\ & \pm \mathbf{1 5} \end{aligned}$		± 50	$\begin{aligned} & \pm 100 \\ & \pm 25 \end{aligned}$		$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$		
I_{B}	Maximum Input Bias Current		$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$（Note 5）		100	$\begin{aligned} & 200 \\ & 35 \end{aligned}$		100	$\begin{gathered} 200 \\ 50 \end{gathered}$		pA nA		
$\mathrm{R}_{\text {IN }}$	Input Resistance				1011			1011			Ω		
$\mathrm{V}_{\text {CM }}$	Input Common－Mode Voltage Range				$\begin{gathered} -12 \text { to } \\ +14 \end{gathered}$	± 11		$\begin{gathered} -12 \text { to } \\ +14 \\ \hline \end{gathered}$	± 11		V		
Avol	Minimum Large Signal Voltage Gain	Using Pin 6	$\mathrm{V}_{\mathrm{O}}= \pm 10$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	300	100		300	50		V / mV		
		Using Pin 8	$V_{O}= \pm 10 \mathrm{~V}$	$R_{L}=600 \Omega$	280	100		280	50		V / mV		

DC Electrical Characteristics (LF400AMH, LF400MH)
The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$, and $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Tested Limits in Boldface apply for $\mathbf{T}_{\mathbf{J}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter		Conditions	LF400AMH			LF400MH			Units	
			Typical (Note 6)	Tested Limit (Note 7)		Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)			
V_{0}	Minimum Output Voltage Swing	Using Pin 6		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12.5	$\begin{gathered} \pm 12.0 \\ \pm 11.5 \end{gathered}$		± 12.5	$\begin{gathered} \pm 12.0 \\ \pm \mathbf{1 1 . 5} \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		Using Pin 8	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	± 12.0	± 11.0		± 12.0	± 11.0		V	
Isc	Output Short Circuit Current	MIN Using Pin 6 MAX Using Pin 6 MIN Using Pin 8	Pulse Test	25	$\begin{gathered} 15 \\ 45 \\ 100 \\ \hline \end{gathered}$		25	$\begin{gathered} 15 \\ 45 \\ 100 \\ \hline \end{gathered}$		mA mA mA mA	
R_{0}	Output Resistance	Using Pin 6	Open Loop, DC	75			75			Ω	
		Using Pin 8	Open Loop, DC	50			50			Ω	
CMRR	Minimum DC Common Mode Rejection Ratio		$-11 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+11 \mathrm{~V}$	100	$\begin{aligned} & 90 \\ & 80 \end{aligned}$		100	$\begin{aligned} & 80 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
PSRR	Minimum DC Power Supply Rejection Ratio		$\begin{aligned} & +10 \mathrm{~V} \leq \mathrm{V}^{+} \leq+15 \mathrm{~V}, \\ & -15 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 90 \\ & 85 \end{aligned}$		100	$\begin{aligned} & 80 \\ & 75 \end{aligned}$		dB dB	
Is	Maximum Supply Current		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	11.0	$\begin{gathered} 13.0 \\ \mathbf{1 3 . 0} \end{gathered}$		11.0	$\begin{gathered} 13.0 \\ 15.0 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are with respect to ground.
Note 3: Unless otherwise specified, the Absolute Minimum Input Voltage is equal to the negative power supply voltage,
Note 4: The maximum power dissipation must be derated at elevated temperatures as is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature T_{A}. $\theta_{J A}$ for the LF400H is $150^{\circ} \mathrm{C} / \mathrm{W}$ in free air, so a heat sink will generally be required when T_{A} is greater than about $70^{\circ} \mathrm{C} . \theta_{\mathrm{JC}}$ for the LF 400 H is $17^{\circ} \mathrm{C} / \mathrm{W}$, which dictates the use of a heat sink with $\theta_{C A}$ less than about $35^{\circ} \mathrm{C} / \mathrm{W}$ when $\mathrm{T}_{A}=+125^{\circ} \mathrm{C}$.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature T_{J}. Due to limited production test time, input bias currents are measured at $T_{J}=25^{\circ} \mathrm{C}$. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation P_{D}. Use of a heat sink is recommended when input bias current must be minimized.
Note 6: Typicals represent the most likely parametric norm.
Note 7: Guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 9: Human body model, 100 pF discharged through a 1500Ω resistor.

Slew Rate vs Temperature

AC Common-Mode Rejection

Bode Plot

Distortion vs Frequency

AC Power Supply Rejection

Typical Performance Characteristics (Continued)

Typical Performance Characteristics (Continued)

Voltage Transfer Characteristic

TL/H/9414-17

Typical Performance Characteristics (Continued)

Application Hints

The LF400 is a high-speed, low input bias current Bi-FET operational amplifier capable of settling to 0.01% of a 10 V output swing in less than 400 ns . The rugged JFET inputs allow differential input voltages as high as 32 V without a large increase in input current. However, the inputs should never be driven to voltages lower than the negative supply, as this can result in input currents large enough to damage the device. To prevent this from occurring when power is first applied, always turn the positive and negative power supplies on simultaneously, or turn the negative supply on first.
Exceeding the common-mode input range will not damage the device as long as the Absolute Maximum Ratings are not violated, but it will result in a high output voltage. Latching will not occur, however, and when the offending signal is removed the LF400 will recover quickly.
The nominal power supply voltage is $\pm 15 \mathrm{~V}$, but the LF400 will operate satisfactorily from $\pm 10 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$. The LF400 is functional down to $\pm 5 \mathrm{~V}$, but performance will be degraded. (See Typical Performance curves.)

Settling Time Considerations

The settling performance of any high-speed operational amplifier is highly dependent on the external components and circuit board layout. Capacitance between the amplifier summing junction and ground affects the closed-loop transfer function and should be minimized. The compensation capacitor C_{C} between the output and the inverting input should be carefully chosen to counteract the effect of the
input capacitance. Since input capacitance is made up of several stray capacitances that are difficult to predict, the compensation capacitor will generally have to be determined empirically for best settling time. A good starting point is around 10 pF for $\mathrm{A}_{\mathrm{V}}=-1$.
Settling time may be verified using a circuit similar to the one in Figure 1. The LF400 is connected for inverting operation, and the output voltage is summed with the input voltage step. When the LF400's output voltage is equal to the input voltage, the voltage on the gate of Q1 will be zero. Any voltage appearing at this point will represent an error. The FET source follower output is observed on an oscilloscope, and the settling time is equal to the time required for the error signal displayed on the oscilloscope to decay to less than one-half the necessary accuracy (see oscilloscope photos of "Settling Time-Positive Output Swing" and "Settling Time-Negative Output Swing"). For a 10 V input signal, settling time to 0.01% (1 mV) will occur when the displayed error is less than $1 / 2 \mathrm{mV}$. Since settling time is strongly dependent on slew rate, settling will be faster for smaller signal swings. The LF400's inverting slew rate is faster than its non-inverting slew rate, so settling will be faster for inverting applications, as well.
It is important to note that the oscilloscope input amplifier will be overdriven during a settling time measurement, so the oscilloscope must be capable of recovering from overdrive very quickly. Very few oscilloscopes are suitable for this sort of measurement. The signal generator used for set-

Application Hints（Continued）

FIGURE 1．Simplified Settling Time Test Circuit（see Text）
tling time testing must be able to drive 50Ω with a very clean $\pm 5 \mathrm{~V}$ square wave．For more information on measuring set－ tling time，see Application Note AN－428．

Output Compensation

When operating at very low temperatures，a compensation network should be added to the LF400＇s output．The 100／／ 22 pF network shown on the first page of this data sheet should be used when the junction temperature might reach $25^{\circ} \mathrm{C}$（roughly $0^{\circ} \mathrm{C}$ ambient when the LF400 is＂warmed up＇）．In applications where the device will be operating with a junction temperature near $0^{\circ} \mathrm{C}$ ，the output RLC network in Figure 1 should be used．This network will provide a small （about 20 ns ）improvement in settling time at higher temper－ atures，as well．

Supply Bypassing

Power supply bypassing is extremely important for good high－speed performance．Ideally，multiple bypass capacitors as in Figure 2 should be used．A $10 \mu \mathrm{~F}$ tantalum，a $2.2 \mu \mathrm{~F}$ ceramic，and a $0.47 \mu \mathrm{~F}$ ceramic work well．All bypass ca－ pacitor leads should be very short．For best results，the ground leads of the capacitors should be separated to re－ duce the inductance to ground．A ground plane layout ap－ proach will give the best results．For simplicity，bypass ca－ pacitors have been omitted from some of the schematics in this data sheet，but they should always be used．

TL／H／9414－22
FIGURE 2．Power Supply Bypassing（see Text）

Output Drive and Current Limit

The LF400 can drive heavier resistive loads than most oper－ ational amplifiers．The output at pin 6 is internally current－ limited when the voltage drop across the 25Ω output resis－ tor reaches about 0.55 V （IOUT $=22 \mathrm{~mA}$ ）．When more out－ put current is needed，pin 8 provides a means of increasing the maximum output current up to about 100 mA ．A resistor may be connected from pin 8 to pin 6，paralleling the inter－ nal sense resistor and increasing the current limit threshold （Figure 3）．Pins 6 and 8 may be shorted together to com－ pletely bypass the current limiting circuit．To avoid damaging the LF400，observe the power dissipation limitations men－ tioned in the Absolute Maximum Ratings and in Note 4.
The effective load impedance（including feedback resist－ ance）should be kept above 500Ω for fastest settling．Load capacitance should also be minimized if good settling time is to be optimized．Large feedback resistors will make the circuit more susceptible to stray capacitance，so in high－ speed applications keep the feedback resistors in the $1 \mathrm{k} \Omega$ to $2 \mathrm{k} \Omega$ range wherever practical．Avoid the use of inductive feedback resistors（some wirewounds for example）as these will degrade settling time．

$\mathrm{L}_{\text {Limit }} \approx \frac{0.55 \mathrm{~V}}{\mathrm{R}_{\mathrm{x}} / / 25 \Omega}$
TL／H／9414－23
FIGURE 3．Increasing the current limit using pin 8. Current limit is now determined by \mathbf{R}_{X} in parallel with the internal 25Ω sense resistor．

$\mathbf{V}_{\text {os }}$ Adjustment

Offset voltage can be nulled using a 27 k resistor and a 10 k potentiometer connected to pins 1 and 5 as shown in Figure $4 a$ ．Bypassing the V_{os} adjust pins with $0.1 \mu \mathrm{~F}$ capacitors will help to avoid noise pickup．When not used for offset adjust－ ment，pins 1 and 5 can often be left open，but to minimize the possibility of noise pickup the unused $\mathrm{V}_{\text {os }}$ trim pins should be connected to ground or V^{-}．

Application Hints (Continued)

TL/H/9414-24
FIGURE 4a. Vos Adjust Circuit

FIGURE 4b. Automatic Offset Adjustment Using LMC669

In very critical applications where a manual adjustment is impractical, the LMC669 Auto Zero circuit may be used to reduce the effective input offset voltage to around $5 \mu \mathrm{~V}$ as in Figure 4b. The LF400 will perform better than slower amplifiers in an auto zero loop, because its fast settling capability keeps its summing node voltage more stable. Therefore, the LMC669 is able to more accurately sample the summing node voltage before making an offset correction.

Input Bias Current

The JFET input stage of the LF400 ensures low input bias current (200 pA maximum) when the die is at room temperature, but this current approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature. In applications that demand the lowest possible input bias current, a heat sink should be used with the LF400. "Press on" heat sinks from manufacturers such as Thermalloy and AAVID can reduce junction temperature by roughly $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

Typical Applications

High-Speed DAC with Voltage Output

TL/H/9414-26

National Semiconductor

LF401/LF401A Precision Fast Settling JFET Input Operational Amplifier

General Description

The LF401A is a fast settling (guaranteed under 400 ns to 0.01% for a 10 V output step) BI-FET operational amplifier. The input offset voltage of the LF401A is guaranteed less than $200 \mu \mathrm{~V}$ maximum at $25^{\circ} \mathrm{C}$. The LF401 also features 16 MHz bandwidth, $70 \mathrm{~V} / \mu \mathrm{s}$ inverting slew rate and adjustable short circuit current limit, enabling it to drive 600Ω loads easily.

Applications

■ DAC output amplifiers

- Fast buffers
- High speed ramp generators
- Sample-and-holds
- Fast integrators
- Piezoelectric transducer signal conditioners

Typical Connection

TL/H/8839-1
*See Figure 2 for Power Supply Bypassing.

Connection Diagram

TL/H/8839-2
Order Number LF401ACD or LF401CD
See NS Package Number D14E

Simplified Schematic

Absolute Maximum Ratings (Notes 1\&2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
$\pm 18 \mathrm{~V}$
Differential Input Voltage $\pm 32 \mathrm{~V}$
Input Voltage Range (Note 3)
$\pm 16 \mathrm{~V}$
Output Short Circuit Duration (Pin 12)
Power Dissipation (Note 4) D package
Continuous
500 mW $115^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\begin{array}{lr}\text { Lead Temperature (Soldering, } 10 \mathrm{sec} .) & +300^{\circ} \mathrm{C} \\ \text { ESD Susceptibility (Note 10) } & 500 \mathrm{~V}\end{array}$

Operating Ratings (Notes 1 \& 2)
Temperature Range
$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$
LF401ACD, LF401CD
Positive Supply Voltage
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
+10 V to +16 V
-10 V to -16 V
Total Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 20 V to 32 V

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}^{-}=-15 \mathrm{~V}$ unless otherwise specified. Tested Limits in Boldface apply for $\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$. Design Limits in Boldface apply for $\mathrm{T}_{\mathbf{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$; other Design Limits are for $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$; all other limits for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LF401ACD			LF401CD			Unit
			$\begin{aligned} & \text { Typical } \\ & \text { (Note 6) } \end{aligned}$	Tested Limit (Note 7)	Design Limit (Note 8)	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
t_{s}	Maximum Settling Time to 0.01% to 0.10%	See Figure 1, $\mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$ See Figure 1, $\mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$	$\begin{array}{r} 335 \\ 200 \\ \hline \end{array}$	400		$\begin{aligned} & 335 \\ & 200 \\ & \hline \end{aligned}$	500		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
GBW	Minimum Gain Bandwidth Product	$\begin{aligned} & A_{v}=+1, C_{L}=10 \mathrm{pF}, \\ & f=100 \mathrm{kHz} \end{aligned}$	16	14		16	14		MHz
SR	Minimum Slew Rate	$A_{V}=+1, C_{L}=10 \mathrm{pF}$		27			27		$\mathrm{V} / \mu \mathrm{s}$
		$A_{V}=-1, C_{L}=10 \mathrm{pF}$	70			70			$\mathrm{V} / \mu \mathrm{s}$
ϕ	Minimum Phase Margin	$A_{\text {vol }}=+1, C_{L}=10 \mathrm{pF}$	60			60			。
e_{n}	İnput Noise Voltage	$\begin{aligned} & f=1 \mathrm{KHz}, \mathrm{Rs}=100 \Omega \\ & \text { Broadband, Rs }=100 \Omega, \\ & 10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 23 \\ & 2.3 \end{aligned}$			$\begin{aligned} & 23 \\ & 2.3 \end{aligned}$			$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mu \mathrm{Vmss} \end{aligned}$
i_{n}	Input Noise Current	$\begin{aligned} & f=1 \mathrm{kHz} \\ & \text { Broadband } \\ & 10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 0.01 \\ 2.0 \end{gathered}$			$\begin{gathered} 0.01 \\ 2.0 \end{gathered}$			$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} \mathrm{rms} \end{aligned}$
THD	Total Harmonic Distortion (Max)	$\begin{aligned} & f=1 \mathrm{kHz}, A v=-1, \\ & R_{L}=10 k \end{aligned}$	0.002			0.002			\%
CIN	Input Capacitance	Differential	7			7			pF

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}^{-}=-15 \mathrm{~V}$ unless otherwise specified. Tested Limits in Boldface apply for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $\mathbf{9 5 ^ { \circ }} \mathbf{C}$. Design Limits in Boldface apply for $\mathrm{T}_{A}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$; other Design Limits are for $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$; all other limits for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions		LF401ACD			LF401CD			Unit		
			Typical (Note 6)		Design Limit (Note 8)	Typical (Note 6)		Design Limit (Note 8)					
$\mathrm{V}_{\text {OS }}$	Maximum Input (Note 9)	Offset Voltage			$\begin{aligned} & V_{C M}=0 V \\ & R_{S}=0, \\ & R_{L}=\infty \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & \pm 200 \\ & \pm 600 \end{aligned}$			$\begin{gathered} \pm 500 \\ \pm 1500 \end{gathered}$		$\begin{aligned} & \mu V \\ & \mu V \end{aligned}$
los	Maximum Input	Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, (Note 5)			± 100	$\begin{aligned} & \pm 400 \\ & \pm \mathbf{2 . 5} \end{aligned}$		± 100	$\begin{aligned} & \pm 400 \\ & \pm \mathbf{2 . 5} \end{aligned}$	pA nA		
I_{B}	Maximum Input Bias Current		$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, (Note 5)			200	26		200	26	pA nA		
$\mathrm{R}_{\text {IN }}$	Input Resistance		$T_{J}=25^{\circ} \mathrm{C}$		1011			1011			Ω		
V_{CM}	Input Common-Mode Voltage Range				+14/-12	± 11		+14/-12	± 11		V		
Avol	Minimum Large Signal Voltage Gain	Using Pin 12 Using Pin 14	$\begin{aligned} & V_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$		$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		V / mV V / mV		
Vo	Minimum Output Voltage Swing	Using Pin 12 Using Pin 14	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega \\ & R_{L}=600 \Omega \end{aligned}$		$\begin{gathered} \pm 12.5 \\ \pm 12 \end{gathered}$	$\begin{aligned} & \pm .12 \\ & \pm 11 \end{aligned}$		$\begin{gathered} \pm 12.5 \\ \pm 12 \end{gathered}$	$\begin{aligned} & \pm 12 \\ & \pm 11 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		
Isc	Output Short Circuit Current	MIN Using Pin 12 MAX Using Pin 12 MIN Using Pin 14	Pulse Test			$\begin{gathered} 15 \\ 45 \\ 100 \\ \hline \end{gathered}$			$\begin{gathered} 15 \\ 45 \\ 100 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$		
Ro	Output Resistance	Using Pin 12 Using Pin 14	Open Loop, DC Open Loop, DC		$\begin{aligned} & 75 \\ & 50 \end{aligned}$			$\begin{aligned} & 75 \\ & 50 \end{aligned}$			$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$		
CMRR	Minimum DC Common Mode Rejection Ratio		$-11 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+11 \mathrm{~V}$		100	90		100	80		dB		
PSRR	Minimum DC Power Supply Rejection Ratio		$\begin{aligned} & +10 \mathrm{~V} \leq \mathrm{V}+<+15 \mathrm{~V} \\ & -15 \mathrm{~V} \leq \mathrm{V}-<-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		100	90		100	80		dB		
Is	Maximum Supply Current		$\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		9	12		9	12		mA		

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are with respect to ground.
Note 3: Unless otherwise specified, the Absolute Maximum Negative Input Voltage is equal to the negative power supply voltage.
Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or 500 mW , whichever is less. $\theta_{J A}$ for the LF 401 D is typically $87^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature T_{J}. Due to limited production test time, input bias currents are measured at $T_{J}=25^{\circ} \mathrm{C}$. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation PD . Use of a heat sink is recommended when input bias current must be minimized.

Note 6: Typicals represent the most likely parametric norm.
Note 7: Guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 9: Tested and correlated to a 10 minute warm up period.
Note 10: Human body model, 100 pF discharged through a 1500Ω resistor.

Distortion vs. Frequency

AC Common-Mode Rejection

Gain Bandwidth
vs. Temperature

Equivalent Input
Noise Voltage

Common-Mode Input

 Voltage Range

TL/H/8839-4

Typical Performance Characteristics (Continued)

Typical Performance Characteristics (Continued)

Common Mode Voltage
Transfer Characteristic

Voltage Transfer Characteristic

Application Hints

The LF401 is a high－speed，low offset，low input bias current Bi－FET operational amplifier capable of settling to 0.01% of a 10 V output swing in less than 400 ns ．Input offset voltage at room temperature is less than $200 \mu \mathrm{~V}$ for LF401A．The rugged JFET inputs allow differential input voltages as high as 32 V without a large increase in input current．However， the inputs should never be driven to voltages lower than the negative supply，as this can result in input currents large enough to damage the device．To prevent this from occur－ ring when power is first applied，always turn the positive and negative power supplies on simultaneously，or turn the neg－ ative supply on first．
Exceeding the positive common－mode input range will not damage the device as long as the Absolute Maximum rat－ ings are not violated，but if both inputs exceed the positive common－mode range the output voltage will go high．Latch－ ing will not occur，however，and when the offending signal is removed the LF401 will recover quickly．
The nominal power supply voltage is $\pm 15 \mathrm{~V}$ ，but the LF401 will operate satisfactorily from $\pm 10 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$ ．The LF401 is functional down to $\pm 5 \mathrm{~V}$ ，but performance will be degraded at low supply voltages．（See Typical Performance curves．）

SETTLING TIME CONSIDERATIONS

The settling performance of any fast operational amplifier is highly dependent on the external components and circuit board layout．Capacitance between the amplifier summing junction and ground affects the closed－loop transfer func－ tion and should be minimized．The compensation capacitor C_{c} between the output and the inverting input should be carefully chosen to counteract the effect of the input capaci－ tance．Since input capacitance is made up of several stray capacitances that are difficult to predict，the compensation capacitor will generally have to be determined empirically for best settling time．A good starting point is around 10 pF for $A_{v}=-1$ ．
Settling time may be verified using a circuit similar to the one in Figure 1．The LF401 is connected for inverting opera－ tion，and the output voltage is summed with the input volt－ age step．When the LF401＇s output voltage is equal to the input voltage，the voltage on the gate of Q1 will be zero．Any voltage appearing at this point will represent an error．The FET source follower output is observed on an oscilloscope， and the settling time is equal to the time required for the error signal displayed on the oscilloscope to decay to less than one－half the necessary accuracy（see oscilloscope photos of＂Settling Time－Positive Output Swing＂and ＂Settling Time－Negative Output Swing＂）．For a 10V input signal，settling time to 0.01%（ 1 mV ）will occur when the displayed error is less than $1 / 2 \mathrm{mV}$ ．Since settling time is strongly dependent on slew rate，settling will be faster for smaller signal swings．The LF401＇s inverting slew rate is faster than its non－inverting slew rate，so settling will be faster for inverting applications，as well．
It is important to note that the oscilloscope input amplifier will be overdriven during a settling time measurement，so
the oscilloscope must be capable of recovering from over－ drive very quickly．Very few oscilloscopes are suitable for this sort of measurement．The signal generator used for set－ tling time testing must be able to drive 50Ω with a very clean $\pm 5 \mathrm{~V}$ square wave．For more information on measuring set－ tling time，see Application Note AN－428．

OUTPUT COMPENSATION

When operating at very low temperatures，a compensation network should be connected to the LF401＇s＂raw＂output pin．The $100 \Omega / 22 \mathrm{pF}$ network shown on the first page of this data sheet should be connected to pin 14 in applica－ tions where the junction temperature might go as low as $25^{\circ} \mathrm{C}$（roughly $0^{\circ} \mathrm{C}$ ambient when the LF401 is＂warmed up＇＇）．In applications where the device will be operating with a junction temperature down to $0^{\circ} \mathrm{C}$ ，the output RLC net－ work in Figure 1 should be used．This network will provide a small（about 20 ns ）improvement in settling time at higher temperatures，as well．

TL／H／8839－16
＋H．P．5082－2810
FIGURE 1．Simplified Settling Time Test Circuit（See Text）

TL／H／8839－17
FIGURE 2．Power Supply Bypassing（See Text）

SUPPLY BYPASSING

Power supply bypassing is extremely important for good high－speed performance．Ideally，multiple bypass capacitors as in Figure 2 should be used．A $10 \mu \mathrm{~F}$ tanatalum，a $2.2 \mu \mathrm{~F}$

Application Hints (Continued)

ceramic, and a $0.47 \mu \mathrm{~F}$ ceramic work well. All bypass capacitor leads should be very short. For best results, the ground leads of the capacitors should be separated to reduce the inductance to ground. A ground plane layout approach will give the best results. For simplicity, bypass capacitors have been omitted from some of the schematics in this data sheet, but they should always be used.
Pins 5 through 10 are used to trim the LF401's input offset voltage during the manufacturing process. Always leave pins 7 through 10 open, as signals applied to these pins will affect the amplifier output and can permanently degrade $V_{\text {os }}$. For fastest settling time to 0.01%, pins 5 and 6 should be bypassed to pin 4 with $0.1 \mu \mathrm{~F}$ capacitors; otherwise, the LF401 may take an additional 600 ns to settle. The bypass capacitors should be low-leakage film types; otherwise the offset voltage can be increased. Settling time to 0.1% will be unaffected by bypassing these pins, so they may be left unconnected in applications requiring less precision.

OUTPUT DRIVE AND CURRENT LIMIT

The LF401 can drive heavier resistive loads than most operational amplifiers. The output at pin 12 is internally currentlimited when the voltage drop across the 25Ω output resistor reaches about $0.55 \mathrm{~V}\left(\mathrm{l}_{\text {out }}=22 \mathrm{~mA}\right)$. When more output current is needed, pin 14 provides a means of increasing the maximum output current up to about 100 mA . A resistor may be connected from pin 12 to pin 14, paralleling the internal sense resistor and increasing the current limit threshold (Figure 3). Pins 12 and 14 may be shorted together to completely bypass the current limiting circuit. To avoid damaging the LF401, observe the power dissipation limitations mentioned in the Absolute Maximum Ratings and in Note 4.

TL/H/8839-18
FIGURE 3. Increasing the current limit using pin 14. Current limit is now determined by $\mathbf{R X}_{\mathrm{X}}$ in parallel with the internal 25Ω sense resistor.

The effective load impedance (including feedback resistance) should be kept above 500Ω for fastest settling. Load capacitance should also be minimized if good settling time is to be optimized. Large feedback resistors will make the circuit more susceptible to stray capacitance, so in highspeed applications keep the feedback resistors in the 1 k to $2 \mathrm{k} \Omega$ range wherever practical. Avoid the use of inductive feedback resistors (some wirewounds for example) as these will degrade settling time.

$V_{\text {os }}$ ADJUSTMENT

Offset voltage can be nulled using a 27 k resistor and a 10 k potentiometer connected to pins 1 and 11 as shown in Figure $4 a$. Bypassing the $\mathrm{V}_{\text {os }}$ adjust pins with $0.1 \mu \mathrm{~F}$ capacitors will help to avoid noise pickup. When not used for offset adjustment, pins 1 and 11 can often be left open, but to minimize the possibility of noise pickup the unused V_{Os} trim pins should be connected to ground or V^{-}.
In very critical applications where a manual adjustment is impractical, the LMC669 Auto Zero circuit may be used to reduce the effective input offset voltage to around $5 \mu \mathrm{~V}$ as in Figure 4b. The LF401 will perform better than slower amplifiers in an auto zero loop, because its fast settling capability keeps its summing node voltage more stable. Therefore, the LMC669 is able to more accurately sample the summing node voltage before making an offset correction.

INPUT BIAS CURRENT

The JFET input stage of the LF401 ensures low input bias current (200 pA maximum) when the die is at room temperature, but this current approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature. In applications that demand the lowest possible input bias current, a heat sink should be used with the LF401. "Slide on" heat sinks such as the AAVID 5602B can reduce the junction temperature by about $10^{\circ} \mathrm{C}$.

Application Hints (Continued)

TL/H/8839-19
FIGURE 4a. Vos Adjust Circuit

TL/H/8839-20
FIGURE 4b. Automatic Offset Adjustment Using LMC669

Typical Applications

High-Speed DAC with Voltage Output (See Figure 2 for Recommended Bypass Components)

LF411A/LF411 Low Offset, Low Drift JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

Typical Connection

TL/H/5655-1
Simplified Schematic

Ordering Information
LF411XYZ
X indicates electrical grade
\mathbf{Y} indicates temperature range
" M " for military
" C " for commercial
Z indicates package type
" H " or " N "
"

TL/H/5655-6

Features

Connection Diagrams

Note: Pin 4 connected to case. Order Number LF411AMH, LF411MH, LF411ACH or LF411CH See NS Package Number H08B

Top View Order Number LF411ACN or LF411CN See NS Package Number N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 8)

	LF411A	LF411
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 1)		
Output Short Circuit		$\pm 15 \mathrm{~V}$
\quad Duration	Continuous	Continuous

	H Package	N Package
Power Dissipation (Notes 2 and 9)	670 mW	670 mW
$\mathrm{T}_{\mathrm{j} \text { max }}$	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
$\theta_{\mathrm{j}} \mathrm{A}$	$162^{\circ} \mathrm{C} / \mathrm{W}$ (Still Air) $65^{\circ} \mathrm{C} / \mathrm{W}$ (400 LF/min Air Flow)	$120^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{j} \mathrm{C}$	$20^{\circ} \mathrm{C} / \mathrm{W}$	
Operating Temp. Range	(Note 3)	(Note 3)
Storage Temp. Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 sec .)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
ESD rating to be dete	termined.	

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions		LF411A			LF411			Units
				Min	Typ	Max	Min	Typ	Max	
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$,			0.3	0.5		0.8	2.0	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$			7	10		7	20 (Note 5)	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$V_{S}= \pm 15 \mathrm{~V}$ (Notes 4, 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		25	100		25	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			2			2	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			25			25	nA
I_{B}	Input Bias Current	$V_{S}= \pm 15 \mathrm{~V}$ (Notes 4, 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		50	200		50	200	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			4			4	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			50			50	nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			10^{12}			1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	200		25	200		V / mV
		Over Temperature		25	200		15	200		V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$		± 12	± 13.5		± 12	± 13.5		V
$V_{C M}$	Input Common-Mode Voltage Range			± 16	+19.5		± 11	+14.5		V
					-16.5			-11.5		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)		80	100		70	100		dB
I_{5}	Supply Current				1.8	2.8		1.8	3.4	mA

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	LF411A			LF411			Units
			Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	10	15		8	15		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	3	4		2.7	4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		25			25		$\mathrm{nV} / \sqrt{ } \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{ } \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j}} \mathrm{A}$.
Note 3: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " H " package only.
Note 4: Unless otherwise specified, the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the LF 411 A and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 411 . $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 5: The LF411A is 100% tested to this specification. The LF411 is sample tested to insure at least 90% of the units meet this specification.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{jA}} \mathrm{P}_{\mathrm{D}}$ where θ_{iA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice, from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF411 and from $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF411A.
Note 8: Refer to RETS 411AX for LF411AMH military specifications and to RETS 411X for LF411MH military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical Performance Characteristics

Pulse Response $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} 10 \mathrm{pF}$

Current Limit ($\mathrm{R}_{\mathrm{L}}=100 \Omega$)

TIME ($5 \mu \mathrm{~S} / \mathrm{DIV}$)

Application Hints

The LF411 series of internally trimmed JFET input op amps (BI-FET IITM) provide very low input offset voltage and guaranteed input offset voltage drift. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state.

Application Hints (Continued)

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The LF411 is biased by a zener reference which allows normal circuit operation on $\pm 4.5 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The LF411 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to $A C$ ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency, a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Applications

Ultra High Speed Current Booster

Typical Applications (Continued)

Single Supply Analog Switch with Buffered Output

Detailed Schematic

TL/H/5655-10

7
 National Semiconductor

LF412A/LF412 Low Offset, Low Drift Dual JFET Input Operational Amplifier

General Description

These devices are low cost, high speed, JFET input operational amplifiers with very low input offset voltage and guaranteed input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. LF412 dual is pin compatible with the LM1558, allowing designers to immediately upgrade the overall performance of existing designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input imped-

Features	
- Internally trimmed offset voltage	1 mV (max)
- Input offset voltage drift	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (max)
■ Low input bias current	50 pA
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Wide gain bandwidth	$3 \mathrm{MHz}(\mathrm{min})$
- High slew rate	$10 \mathrm{~V} / \mu \mathrm{s}$ (min)
- Low supply current	$1.8 \mathrm{~mA} /$ Amplifier
■ High input impedance	$10^{12} \Omega$
Low total harmonic distortion $A_{V}=10$, $R_{L}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \mathrm{BW}=20 \mathrm{~Hz}-20$	kHz 50.02%
- Low 1/f noise corner	50 Hz
- Fast settling time to 0.01\%	$2 \mu \mathrm{~s}$

Typical Connection

Simplified Schematic

Ordering Information

LF412XYZ
\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
"M" for military
"C" for commercial
Z indicates package type
"H" or "N"

Connection Diagrams

Note. Pin 4 connected to case. TOP VIEW

Order Number LF412AMH, LF412MH, LF412ACH or LF412CH See NS Package Number H08B

Dual-In-Line Package

TOP VIEW

TL/H/5656-1
Order Number LF412ACJ, LF412CJ, LF412ACN or LF412CN
See NS Package Number J08A or N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 9)

Supply Volt	LF412A	LF412	Power Dissipation (Note 10)	H Package (Note 3)	N Package 670 mW
Differential Input Voltage	$\pm 22 V$ $+38 V$	$\pm 18 \mathrm{~V}$ +30 V	T_{j} max	$150^{\circ} \mathrm{C}$	115 ${ }^{\circ} \mathrm{C}$
Differential input Voltage Input voltage Range	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\theta_{\mathrm{j}} \text { (Typical) }$	$152^{\circ} \mathrm{C} / \mathrm{W}$	$115^{\circ} \mathrm{C} / \mathrm{W}$
(Note 1)	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	Operating Temp. Range	(Note 4)	(Note 4)
Output Short Circuit Duration (Note 2)	Continuous	Continuous	Storage Temp. Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	
			Lead Temp. (Soldering, 10 sec .)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
			ESD rating to be determined		

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions		LF412A			LF412			Units
				Min	Typ	Max	Min	Typ	Max	
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}$			0.5	1.0		1.0	3.0	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ (No			7	10		7	$\begin{gathered} 20 \\ \text { (Note 6) } \end{gathered}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 5 \text { and } 7 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		25	100		25	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			2			2	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			25			25	nA
I_{B}	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 5 \text { and } 7 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		50	200		50	200	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			4			4	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			50			50	nA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			10^{12}			10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	200		25	200		V / mV
		Over Temperature		25	200		15	200		V/mV
V_{0}	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		± 12	± 13.5		± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range			± 16	+19.5		± 11	+14.5		V
					-16.5			-11.5		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$		80	100		70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 8)		80	100		70	100		dB
Is	Supply Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$			3.6	5.6		3.6	6.5	mA

AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	LF412A			LF412			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$		-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	15		8	15		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$	3	4		2.7	4		MHz
θ_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		25			25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1：Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage．
Note 2：Any of the amplifier outputs can be shorted to ground indefintely，however，more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded．
Note 3：For operating at elevated temperature，these devices must be derated based on a thermal resistance of $\theta_{j \mathrm{~A}}$ ．
Note 4：These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ ．The temperature range is designated by the position just before the package type in the device number． A ＂ C ＂indicates the commercial temperature range and an＂ M ＂ indicates the military temperature range．The military temperature range is available in＂ H ＂package only．In ali cases the maximum operating temperature is limited by internal junction temperature T_{j} max．
Note 5：Unless otherwise specified，the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the LF412A and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 412 ． $V_{O S}, I_{B}$ ，and $I_{O S}$ are measured at $V_{C M}=0$ ．
Note 6：The LF412A is 100% tested to this specification．The LF412 is sample tested on a per amplifier basis to insure at least 85% of the amplifiers meet this specification．
Note 7：The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature， T_{j} ．Due to limited production test time，the input bias currents measured are correlated to junction temperature．In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation，$P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient．Use of a heat sink is recommended if input bias current is to be kept to a minimum．
Note 8：Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice． $V_{S}= \pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ ．
Note 9：Refer to RETS412AX for LF412AMH military specifications and to RETS412X for LF412MH military specifications．
Note 10：Max．Power Dissipation is defined by the package characteristics．Operating the part near the Max．Power Dissipation may cause the part to operate outside guaranteed limits．

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Current Limit ($\mathrm{R}_{\mathrm{L}}=100 \Omega$)

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Application Hints

The LF412 series of JFET input dual op amps are internally trimmed (BI-FET IITM) providing very low input offset voltages and guaranteed input offset voltage drift. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state.

Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output, however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.

Application Hints（Continued）

Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 6.0 \mathrm{~V}$ power sup－ plies．Supply voltages less than these may result in lower gain bandwidth and slew rate．
The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range．If the amplifier is forced to drive heavier load currents，however，an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and neg－ ative swings．
Precautions should be taken to ensure that the power sup－ ply for the integrated circuit never becomes reversed in po－ larity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the result－ ing forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit．
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling．

As with most amplifiers，care should be taken with lead dress，component placement and supply decoupling in or－ der to ensure stability．For example，resistors from the out－ put to an input should be placed with the body close to the input to minimize＂pick－up＂and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground．
A feedback pole is created when the feedback around any amplifier is resistive．The parallel resistance and capaci－ tance from the input of the device（usually the inverting in－ put）to AC ground set the frequency of the pole．In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin． However，if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp．The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant．

Typical Application

Single Supply Sample and Hold

Detailed Schematic

TL/H/5656-9

7 National Semiconductor
 LF441A／LF441 Low Power JFET Input Operational Amplifier

General Description

The LF441A／441 low power operational amplifier provides many of the same AC characteristics as the industry stan－ dard LM741 while greatly improving the DC characteristics of the LM741．The amplifier has the same bandwidth，slew rate，and gain（ $10 \mathrm{k} \Omega$ load）as the LM741 and only draws one tenth the supply current of the LM741．In addition，the well matched high voltage JFET input devices of the LF441A／441 reduce the input bias and offset currents by a factor of 10,000 over the LM741．A combination of careful layout design and internal trimming guarantees very low in－ put offset voltage and voltage drift．The LF441A／441 also has a very low equivalent input noise voltage for a low pow－ er amplifier．
The LF441A／441 is pin compatible with the LM741，allowing an immediate 10 times reduction in power drain in many applications．The LF441A／441 should be used where low
power dissipation and good electrical characteristics are the major considerations．

Features

supply current of a LM74	$200 \mu \mathrm{~A}$（max）
－Low input bias current	50 pA （max）
－Low input offset voltage	0.5 mV （max）
－Low input offset voltage drift	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$（max）
－High gain bandwidth	1 MHz
－High slew rate	$1 \mathrm{~V} / \mu \mathrm{s}$
－Low noise voltage for low power	$35 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
－Low input noise current	$0.01 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
－High input impedance	$10^{12} \Omega$
■ High gain $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	50k（min）

$200 \mu \mathrm{~A}$（max）
50 pA （max） 0.5 mV （max）
$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$（max）
1 MHz
$35 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $0.01 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$ $10^{12} \Omega$
50 k （min）

Typical Connection

Ordering Information

LF441XYZ
X indicates electrical grade
\mathbf{Y} indicates temperature range
＂M＂for military，
＂ C ＂for commercial
Z indicates package type
＂H＂or＂N＂

Dual－In－Line Package

TL／H／9297－4
Top View
Order Number LF441ACN，LF441CJ， LF441CM or LF441CN
See NS Package Number J08A，M08A or N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

	LF441A	LF441
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$

Power Dissipation
(Notes 2 and 9)
$\mathrm{T}_{\mathrm{j} \text { max }}$
θ_{jA} (Typical)
Board Mount in still air Board Mount in 400 LF/ min air flow
$\theta_{\mathrm{j}} \mathrm{C}$
Operating Temp. Range
Storage Temp. Range Lead Temperature (Soldering, 10 seconds) θ_{j}
H Package
670 mW
$150^{\circ} \mathrm{C}$

$165^{\circ} \mathrm{C} / \mathrm{W}$
$65^{\circ} \mathrm{C} / \mathrm{W}$

$25^{\circ} \mathrm{C} / \mathrm{W}$
$($ Note 3)
$\mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

$25^{\circ} \mathrm{C}$

LF441A
LF441
Soldering Information Dual-In-Line Package Soldering (10 sec .)
Small Outline Package Vapor Phase (60 sec.) Infrared (15 sec.)

LF441A
LF441
Input Voltage Range (Note 1)
Output Short Circuit Duration

Continuous
Continuous

J Package
N Package
670 mW
$115^{\circ} \mathrm{C}$
$130^{\circ} \mathrm{C} / \mathrm{W}$
$185^{\circ} \mathrm{C} / \mathrm{W}$
(Note 3)

$$
-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}
$$

$$
260^{\circ} \mathrm{C}
$$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating to be determined.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions		LF441A			LF441			Units
				Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.3	0.5		1	5	mV
		Over Temperature							7.5	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$ (Note 5)			7	10		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 4 \text { and } 6 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			10				nA
I_{B}	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 4 \text { and } 6 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			1012			1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		50	100		25	100		V/mV
		Over Temperature		25			15			V/mV
V_{O}	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 12	± 13		± 12	± 13		V
V_{CM}	Input Common-Mode Voltage Range			± 16	+18	-17	± 11	+14	-12	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB

DC Electrical Characteristics (Note 4) (Continued)

Symbol	Parameter	Conditions	LF441A			LF441			Units
			Min	Typ	Max	Min	Typ	Max	
PSRR	Supply Voltage Rejection Ratio	(Note 7)	80	100		70	90		dB
Is	Supply Current			150	200		150	250	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	LF441A			LF441			Units
			Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		$\mathrm{V} / \mu \mathrm{S}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: For operating at elevated temperature, these devices must be derated based on a thermal resistance of θ_{jA}.
Note 3: The LF441A is available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$. The LF441A/441 is available in the commercial temperature range only. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " H " package only.
Note 4: Unless otherwise specified the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the LF 441 A and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 441 . $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 5: The LF441A is 100% tested to this specification.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, P_{D}. $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{jA}} \mathrm{P}_{\mathrm{D}}$ where θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. From $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF441 and from $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF441A.
Note 8: Refer to RETS441AX for LF441AMH military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical Performance Characteristics

Positive Common-Mode

 Input Voltage Limit

Input Bias Current

Negative Common-Mode Input Voltage Limit

Supply Current

TL/H/9297-5

Typical Performance Characteristics (Continued)

Gain Bandwidth

Undistorted Output Voltage Swing

Open Loop Frequency Response

Equivalent Input Noise Voltage

Typical Performance Characteristics（Continued）

TL／H／9297－7

Simplified Schematic

Pulse Response $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

TIME（ $0.5 \mu \mathrm{~S} / \mathrm{DIV})$

Pulse Response $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (Continued)

TIME ($0.5 \mu \mathrm{~S} / \mathrm{DIV})$
TL/H/9297-9

TIME (10μ S $/$ DIV)
TL/H/9297-10

TIME ($10 \mu \mathrm{~S} / \mathrm{DIV}$)

Application Hints

This device is a low power op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain, eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The amplifier is biased to allow normal circuit operation with power supplies of $\pm 3 \mathrm{~V}$. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifier will drive a $10 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket, as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because this amplifier is a JFET rather than MOSFET input op amp it does not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input to $A C$ ground) set the frequency of this pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency, of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency, a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

TL/H/9297-13

LF442A/LF442 Dual Low Power
 JFET Input Operational Amplifier

General Description

The LF442 dual low power operational amplifiers provide many of the same AC characteristics as the industry standard LM1458 while greatly improving the DC characteristics of the LM1458. The amplifiers have the same bandwidth, slew rate, and gain ($10 \mathrm{k} \Omega$ load) as the LM1458 and only draw one tenth the supply current of the LM1458. In addition the well matched high voltage JFET input devices of the LF442 reduce the input bias and offset currents by a factor of 10,000 over the LM1458. A combination of careful layout design and internal trimming guarantees very low input offset voltage and voltage drift. The LF442 also has a very low equivalent input noise voltage for a low power amplifier.
The LF442 is pin compatible with the LM1458 allowing an immediate 10 times reduction in power drain in many applications. The LF442 should be used where low power dissipation and good electrical characteristics are the major considerations.

Features

L Low input bias current	$400 \mu \mathrm{~A}(\max)$
Low input offset voltage	$50 \mathrm{pA}(\max)$
Low input offset voltage drift	$1 \mathrm{mV}(\max)$
High gain bandwidth	$10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}(\max)$
L High slew rate	1 MHz
Low noise voltage for low power	$1 \mathrm{~V} / \mu \mathrm{s}$
Low input noise current	$35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
High input impedance	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
High gain $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$10^{12} \Omega$

Typical Connection

Ordering Information
LF442XYZ
X indicates electrical grade
\mathbf{Y} indicates temperature range " M " for military
"C" for commercial
\mathbf{Z} indicates package type
"H" or " N "

Simplified Schematic

TL/H/9155-3

Connection Diagrams
Metal Can Package

TL/H/9155-2
Top View
Note: Pin 4 connected to case
Order Number LF442AMH, LF442ACH or LF442CH
See NS Package Number H08B

Dual-In-Line Package

TL/H/9155-4
Top View
Order Number LF442CJ, LF442ACN or LF442CN See NS Package Number J08A or N08E

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 9)

	LF442A	LF442
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage Range	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
\quad (Note 1)		
Output Short Circuit	Continuous	Continuous
\quad Duration (Note 2)		

	H Package	N Package
$\mathrm{T}_{\mathrm{j} \text { max }}$	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$
θ_{JA} (Typical)		
(Note 3)	$65^{\circ} \mathrm{C} / \mathrm{W}$	$114^{\circ} \mathrm{C} / \mathrm{W}$
(Note 4)	$165^{\circ} \mathrm{C} / \mathrm{W}$	$152^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} (Typical)	$21^{\circ} \mathrm{C} / \mathrm{W}$	
Operating Temperature	(Note 4)	(Note 4)
\quadRange		
Storage Temperature	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
\quad Range		
Lead Temperature	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
\quad (Soldering, 10 seconds)		
ESD rating to be determined.	\therefore	

DC Electrical Characteristics (Note 6)

Symbol	Parameter	Condlitions		LF442A			LF442			Units
				Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{R}_{S}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.5	1.0		1.0	5.0	mV
		Over Temperature							7.5	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$			7	10		7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$V_{S}= \pm 15 \mathrm{~V}$ (Notes 6 and 7)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			10				nA
I_{B}	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & \text { (Notes } 6 \text { and } 7 \text {) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			1012			1012		Ω
AVOL	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	200		25	200		V/mV
		Over Temperature		25	200		15	200		V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 12	± 13		± 12	± 13		V
$V_{\text {CM }}$	Input Common-Mode Voltage Range			± 16	$\begin{aligned} & +18 \\ & -17 \end{aligned}$		± 11	$\begin{aligned} & +14 \\ & -12 \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB
PSRR	Supply Voltage Rejection Ratio	(Note 8)		80	100		70	90		dB
Is	Supply Current				300	400		400	500	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 6)

Symbol	Parameter	Conditions	LF442A			LF442			Units
			Min	Typ	Max	Min	Typ	Max	
	Amplifier to Amplifier Coupling	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}-20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$		-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1		0.6	1		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 3: The value given is in 400 linear feet/min air flow.
Note 4: The value given is in static air.
Note 5: These devices are available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " H " package only.
Note 6: Unless otherwise specified, the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the LF442A and for $V_{S}= \pm 15 \mathrm{~V}$ for the LF 442 . $V_{O S}, I_{B}$, and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 7: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . T_{j}=T_{A}+\theta_{\mathrm{J}} P_{D}$ where θ_{J} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 8: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF442 and $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF442A.

Note 9: Refer to RETS442AX for LF442AMH military specifications and to RETS442X for LF442MH military specifications.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TL/H/9155-6

Pulse Response $R_{L}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

Small Signal Non-inverting

Large Signal Non-Inverting

Application Hints

This device is a dual low power op amp with internally trimmed input offset voltages and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased to allow normal circuit operation with power supplies of $\pm 3.0 \mathrm{~V}$. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifiers will drive a $10 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequenty there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Battery Powered Strip Chart Preamplifier

TIME CONSTANT

Typical Applications (Continued)

High Efficiency Crystal Oven Controller

- $T_{\text {control }}=75^{\circ} \mathrm{C}$
- A1's output represents the amplified difference between the LM335 temperature sensor and the crystal oven's temperature
- A2, a free running duty cycle modulator, drives the LM395 to complete a servo loop
- Switched mode operation yields high efficiency
- 1% metal film resistor

Conventional Log Amplifier

$E_{\text {OUT }}=-\left[\log 10\left(\frac{E_{\text {IN }}}{R_{\text {IN }}}\right)+5\right]$
$\mathrm{R}_{\mathrm{T}}=$ Tel Labs type Q81
Trim 5k for $10 \mu \mathrm{~A}$ through the 5 k -120k combination
*1\% film resistor

Typical Applications（Coninued）

Detailed Schumentic

LF444A/LF444 Quad Low Power JFET Input Operational Amplifier

General Description

The LF444 quad low power operational amplifier provides many of the same AC characteristics as the industry standard LM148 while greatly improving the DC characteristics of the LM148. The amplifier has the same bandwidth, slew rate, and gain ($10 \mathrm{k} \Omega$ load) as the LM148 and only draws one fourth the supply current of the LM148. In addition the well matched high voltage JFET input devices of the LF444 reduce the input bias and offset currents by a factor of 10,000 over the LM148. The LF444 also has a very low equivalent input noise voltage for a low power amplifier.
The LF444 is pin compatible with the LM148 allowing an immediate 4 times reduction in power drain in many applications. The LF444 should be used wherever low power dissipation and good electrical characteristics are the major considerations.

Features

- $1 / 4$ supply current of a LM148 $200 \mu \mathrm{~A} /$ Amplifier (max)
- Low input bias current 50 pA (max)
- High gain bandwidth 1 MHz
- High slew rate
$1 \mathrm{~V} / \mu \mathrm{s}$
- Low noise voltage for low power
- Low input noise current
$35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Low input noise current $\quad 0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
\square High input impedance $10^{12} \Omega$
- High gain $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \quad 50 \mathrm{k}(\mathrm{min})$

Simplified Schematic

Ordering Information
 LF444XYZ

\mathbf{X} indicates electrical grade
\mathbf{Y} indicates temperature range
"M" for military, "C" for commercial
Z indicates package type " D ", " M " or " N "

Connection Diagram

LF444AMD/LF444CD/LF444ACN/LF444CN Dual-In-Line Package

Top View
Order Number LF444AMD, LF444CD, LF444CJ, LF444CM, LF444CWM, LF444ACN or LF444CN See NS Package Number D14E, J14A, M14A, M14B or N14A

Absolute Maximum Ratings				
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.			Operating Temperature Range	LF444A/LF444 (Note 4)
	LF444A	LF444	Storage Temperature Ran	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 150^{\circ} \mathrm{C}$
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	ESD rating to be determin	
Differential Input Voltage	$\pm 38 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	Soldering Information Dual-In-Line Packages	
Input Voltage Range (Note 1)	$\pm 19 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	(Soldering, 10 sec .) Small Outline Package	$260^{\circ} \mathrm{C}$
Output Short Circuit Duration (Note 2)	Continuous	S Continuous	Vapor Phase (60 sec .) Infrared (15 sec.)	$\begin{aligned} & 215^{\circ} \mathrm{C} \\ & 220^{\circ} \mathrm{C} \end{aligned}$
Power Dissipation (Notes 3 and 9)	D Package 900 mW	N, WM Packages 670 mW	See AN-450 "Surface Mounting Methods and Their Effect on Product 'Reliability" for other methods of soldering surface mount devices.	
$\mathrm{T}_{\mathbf{j} \text { max }}$	$150^{\circ} \mathrm{C}$	$115^{\circ} \mathrm{C}$		
$\theta_{\mathrm{j}} \mathrm{A}$ (Typical)	$100^{\circ} \mathrm{C} / \mathrm{W}$	$85^{\circ} \mathrm{C} / \mathrm{W}$		

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions		LF444A			LF444			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2	5		3	10	mV
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$				6.5			12	mV
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$				8				mV
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 5,6) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5	25		5	50	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			1.5			1.5	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			10				nA
I_{B}	Input Bias Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V} \\ & (\text { Notes } 5,6) \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10	50		10	100	pA
			$\mathrm{T}_{\mathrm{j}}=70^{\circ} \mathrm{C}$			3			3	nA
			$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$			20				nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			1012			1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{O}= \pm 10 \mathrm{~V} \\ & R_{L}=10 \mathrm{k} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \end{aligned}$		50	100		25	100		V / mV
		Over Temperature		25			15			V / mV
V_{0}	Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		± 12	± 13		± 12	± 13		V
V_{CM}	Input Common-Mode Voltage Range			± 16	$\begin{aligned} & +18 \\ & -17 \\ & \hline \end{aligned}$		± 11	$\begin{aligned} & +14 \\ & -12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		80	100		70	95		dB
PSRR	Supply Voltage Rejection Ratio	(Note 7)		80	100		70	90		dB
I_{5}	Supply Current				0.6	0.8		0.8	1.0	mA

AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	LF444A			LF444			Units
			MAin	Typ	Max	Min	Typ	Max	
	Amplifier-to-Amplifier Coupling			-120			-120		dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1			1		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1			1		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		35			35		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 3: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{\mathrm{j} A}$.
Note 4: The LF444A is available in both the commercial temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and the military temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$. The LF444 is available in the commercial temperature range only. The temperature range is designated by the position just before the package type in the device number. A " C " indicates the commercial temperature range and an " M " indicates the military temperature range. The military temperature range is available in " D " package only.
Note 5: Unless otherwise specified the specifications apply over the full temperature range and for $V_{S}= \pm 20 \mathrm{~V}$ for the LF 444 A and for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LF 444 : $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$, and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 6: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to timited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF444 and from $\pm 20 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ for the LF444A.
Note 8: Refer to RETS444AX for LF444AMD military specifications.
Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical Performance Characteristics

Typical Performance Characterisťics (Continued)

Common-Mode
Rejection Ratio

Power Supply
Rejection Ratio

Typical Performance Characteristics（Continued）

TL／H／9156－5

Pulse Response $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

Small Signal Inverting

Large Signal Inverting

Small Signal Non－Inverting

				三				
\ldots	\cdots				，．．	\cdots	$\cdots \cdot \cdot$	
		\％		三		0		
$1+11$	＋11						H11	＋11＋
				\ddagger				
．．．		\ldots	．．．	寺…	\cdots	\ldots	．．．	
				表				

Large Signal Non－Inverting

Application Hints

This device is a quad low power op amp with JFET input devices (BI-FETTM). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased to allow normal circuit operation with power supplies of $\pm 3.0 \mathrm{~V}$. Supply voltages less than these may degrade the common-mode rejection and restrict the output voltage swing.

The amplifiers will drive a $10 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Application

Typical probe $=$ Ingold Electrodes \#465-35

Detailed Schematic

TL/H/9156-11

LF451 Wide-Bandwidth JFET-Input Operational Amplifier

General Description

The LF451 is a low-cost high-speed JFET-input operational amplifier with an internally trimmed input offset voltage (BIFET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF451 is pin compatible with the standard LM741, allowing designers to upgrade the overall performance of existing designs.
The LF451 may be used in such applications as high-speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input bias current, high

Features

- Internally trimmed offset voltage
5.0 mV (max)
- Low input bias current 50 pA (typ)
- Low input noise current
- Wide gain bandwidth $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ (typ)

■ High slew rate 4 MHz (typ)

- Low supply current
$13 \mathrm{~V} / \mu \mathrm{s}$ (typ)
- High input impedance
3.4 mA (max)
- Low total harmonic distortion $A_{V}=10, \quad<0.02 \%$ (typ)
$R_{L}=10 k, V_{O}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{f}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
- Low 1/f noise corne

50 Hz (typ)

- Fast settling time to 0.01%
$2 \mu \mathrm{~s}$ (typ) input impedance, high slew rate and wide bandwidth.

Connection Diagram

TL/H/9660-2

Order Number LF451CM
See NS Package Number M08A

Typical Connection

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
36V
Input Voltage Range
$\mathrm{V}-\leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}+$
Differential Input Voltage (Note 2)
$\pm 30 \mathrm{~V}$
Junction Temperature (TJ MAX)
$150^{\circ} \mathrm{C}$
Output Short Circuit Duration
Power Dissipation (Note 3)
Continuous
500 mW

DC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}^{-}=-15 \mathrm{~V}$. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LF451CM			Units
			Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
Vos	Maximum Input Offset Voltage	$\mathrm{R}_{S}=10 \mathrm{k} \Omega$, (Note 10)	0.3	5		mV
los	Maximum Input Offset Current	$\begin{array}{ll} \text { (Notes 9, 10) } & T_{J}=25^{\circ} \mathrm{C} \\ & T_{J}=70^{\circ} \mathrm{C} \end{array}$	25	100	2	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Maximum Input Bias Current	$\begin{array}{ll} \text { (Notes } 9,10) & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C} \end{array}$	50	200	4	pA nA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1012			Ω
AVOL	Minimum Large Signal Voltage Gain	$V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (Note 10)	200	50	25	V/mV
V_{0}	Minimum Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	± 13.5	± 12	± 12	V
V_{CM}	Minimum Input Common Mode Voltage Range		$\begin{array}{r} +14.5 \\ -11.5 \\ \hline \end{array}$	$\begin{aligned} & +11 \\ & -11 \\ & \hline \end{aligned}$	$\begin{array}{r} +11 \\ -11 \\ \hline \end{array}$	$\begin{aligned} & v \\ & v \end{aligned}$
CMRR	Minimum Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	100	80	80	dB
PSRR	Minimum Supply Voltage Rejection Ratio	(Note 11)	100	80	80	dB
Is	Maximum Supply Current			3.4	3.4	mA

AC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}^{-}=-15 \mathrm{~V}$. Bold-
face limits apply for $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX; }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LF451CM			Units
			Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
SR	Slew Rate	$A_{V}=+1$	13	8		$\mathrm{V} / \mu \mathrm{s}$
GBW	Minimum Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	4	2.7		MHz
e_{n}	Equivalent Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	25			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	0.01			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.
Note 2: When the input voltage exceeds the power supplies, the current should be limited to 1 mA .
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J} M A X, \theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J} M A X-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For guaranteed operation $T_{J \max }=125^{\circ} \mathrm{C}$. The typical thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of the LF451CM when board-mounted is $170^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices. Note 6: Typicals are at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.

Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design limits are guaranteed to National's AOQL, but not 100\% tested.
Note 9: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature T_{J}. Due to limited production test time, the input blas currents are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{J}=T_{A}+\theta_{J A} P_{D}$ where $\theta_{J A}$ is the thermal resistance from junction to amblent.
Note 10: $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}, \mathrm{AVOL}$, and lOs are measured at $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$.
Note 11: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Slew Rate

TL/H/9660-4

Pulse Response

 TL/H/9660-6

TIME (2 $\mu \mathrm{s} / \mathrm{DIV})$

Small Signal Non-Inverting

TIME ($0.2 \mu \mathrm{~s} / \mathrm{DIV})$
TL/H/9660-7

TIME ($2 \mu \mathrm{~s} / \mathrm{DIV}$)
TL/H/9660-9

Current Limit ($\mathrm{R}_{\mathrm{L}}=100 \Omega$)

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

Application Hints

The LF451CM is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will
cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit with the non-inverting input, or with both inputs, will force the output to a high state, potentially causing a reversal of phase to the output.
In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Application Hints (Continued)

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The LF451 is biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The LF451 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they are more resistant to ESD (see Absolute Maximum Ratings).
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the out-
put to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to $A C$ ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
The benefit of the S.O. package results from its very small size. It follows, however, that the die inside the S.O. package is less protected from external physical forces than a die in a standard DIP would be, because there is so much less plastic in the S.O. Therefore, not following certain precautions when board mounting the LF451CM can put mechanical stress on the die, lead frame, and/or bond wires. This can cause shifts in the LF451CM's parameters, even causing them to exceed limits specified in the Electrical Characteristics. For recommended practices in LF451CM surface mounting refer to Application Note AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" and to Section 6 "Surface Mount" found in any Rev. 1 Linear Databook volume.

Detailed Schematic

TL/H/9660-11

LF453 Wide-Bandwidth Dual JFET-Input Operational Amplifiers

General Description

The LF453 is a low-cost, high-speed, dual JFET-input operational amplifier with an internally trimmed input offset voltage (BI-FET II technology). The device requires a low supply current and yet the amplifiers maintain a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF453 is pin compatible with the standard LM1558, allowing designers to upgrade the overall performance of existing designs.
The LF453 may be used in such applications as high-speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input bias current, high input impedance, high slew rate and wide bandwidth.

Features

■ Internally trimmed offset voltage	5.0 mV (max)
■ Low input bias current	50 pA (typ)
■ Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ (typ)
■ Wide gain bandwidth	4 MHz (typ)
■ High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$ (typ)
■ Low supply current	6.5 mA (max)
■ High input impedance	1012Ω (typ)
■ Low total harmonic distortion	$<0.02 \%$ (typ)
$\mathrm{A}_{\mathrm{V}}=10, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$,	
$V_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{f}=20 \mathrm{Hz-20} \mathrm{kHz}$	
■ Low $1 / \mathrm{f}$ noise corner	50 Hz (typ)
Fast settling time to 0.01%	$2 \mu \mathrm{~s}$ (typ)

Typical Connection

TL/H/9710-1

Connection Diagram

Simplified Schematic

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Input Voltage Range
Differential Input Voltage (Note 2)
Junction Temperature ($\mathrm{T}_{\mathrm{J}} \mathrm{MAX}$)
Output Short Circuit Duration
$\mathrm{V}^{-} \leq \mathrm{V}_{\mathbb{I N}} \leq \mathrm{V}^{+}$
$\pm 30 \mathrm{~V}$
$150^{\circ} \mathrm{C}$

Power Dissipation (Note 3)
Continuous

ESD Susceptability (Note 4)

Soldering Information (Note 5) SO Package: Vapor Phase (60 sec .)
$215^{\circ} \mathrm{C}$ $220^{\circ} \mathrm{C}$

Operating Ratings (Note 1)

Temperature Range	$T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$
LF453CM	$0^{\circ} \mathrm{C} \leq T_{A}+70^{\circ} \mathrm{C}$
Junction Temperature $\left(T_{J \text { max }}\right)$	$125^{\circ} \mathrm{C}$
Supply Voltage $\left(V^{+}-\mathrm{V}^{-}\right)$	10 V to 32 V

DC Electrical Characteristics The following specifications apply for $\mathrm{V}+=+15 \mathrm{~V}$ and $\mathrm{V}-=-15 \mathrm{~V}$. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LF453CM			Units
			Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
V_{OS}	Maximum Input Offset Voltage	$\mathrm{R}_{S}=10 \mathrm{k} \Omega$, (Note 10)		5		mV
los	Maximum Input Offset Current	$\begin{aligned} \text { (Notes } 9,10) \mathrm{T}_{\mathrm{J}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{J}} & =70^{\circ} \mathrm{C} \end{aligned}$	25	100	2	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Maximum Input Bias Current	$\text { (Notes } 9,10) \mathrm{T}_{J}=25^{\circ} \mathrm{C}, T_{J}=70^{\circ} \mathrm{C}$	50	200	4	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
R_{IN}	Input Resistance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1012			Ω
AVOL	Minimum Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { (Note 10) } \end{aligned}$	200	50	25	V / mV
V_{0}	Minimum Output Voitage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	± 13.5	± 12	± 12	V
$\mathrm{V}_{\text {CM }}$	Minimum Input Common Mode Voltage Range		$\begin{array}{r} +14.5 \\ -11.5 \\ \hline \end{array}$	$\begin{array}{r} +11 \\ -11 \\ \hline \end{array}$	$\begin{array}{r} +11 \\ -11 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Minimum Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	100	80	80	dB
PSRR	Minimum Supply Voltage Rejection Ratio	(Note 11)	100	80	80	dB
Is	Maximum Supply Current			6.5	6.5	mA

AC Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$ and $\mathrm{V}-=-15 \mathrm{~V}$. Limits apply for $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	LF453CM			Units
			Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
SR	Slew Rate	$A_{V}=+1$	13	8		V/ $\mu \mathrm{s}$
GBW	Minimum Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	4	2.7		MHz
e_{n}	Equivalent Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	25			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	0.01			$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.
Note 2: When the input voltage exceeds the power supplies, the current should be limited to 1 mA .
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J} M A X, \Theta_{J A}$ and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J} M A X-T_{A}\right) / \Theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For guaranteed operation $T_{J \text { max }}=125^{\circ} \mathrm{C}$. The typical thermal resistance (Θ_{JA}) of the LF453CM when board-mounted is $160^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (section titled "Surface Mount") for other methods of soldering surface mount devices.
Note 6: Typicals are at $T_{J}=25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design limits are guaranteed to National's AOQL, but not 100% tested.
Note 9: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature T_{J}. Due to limited production test time, the input bias currents are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{J}=T_{A}+\Theta_{J A} P_{D}$ where $\Theta_{J A}$ is the thermal resistance from junction to ambient.
Note 10: $V_{O S}, I_{B}, A V O L$ and $l_{O S}$ are measured at $V_{C M}=O V$.
Note 11: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

Pulse Response

TL/H/9710-6

TL/H/9710-8

TIME ($0.2 \mu \mathrm{~S} / \mathrm{DIV}$)
TL/H/9710-7

Application Hints

These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit with the non-inverting input, or with both inputs, will force the output to a high state, potentially causing a reversal of phase to the output. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 5 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards
in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they are more resistant to ESD (see Absolute Maximum Ratings).
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
The benefit of the SO package results from its very small size. It follows, however, that the die inside the SO package is less protected from external physical forces than a die in a standard DIP would be, because there is so much less plastic in the SO. Therefore, not following certain precautions when board mounting the LF453CM can put mechanical stress on the die, lead frame, and/or bond wires. This can cause shifts in the LF453CM's parameters, even causing them to exceed limits specified in the Electrical Characteristics. For recommended practices in LF453CM surface mounting refer to Application Note AN450 "Surface Mounting Methods and Their Effect on Product Reliability" and to the section titled "Surface Mount" found in any Rev 1. Linear Databook volume.

TL/H/9710-11

National Semiconductor

LF13741

Monolithic JFET Input Operational Amplifier

General Description

The LF13741 is a 741 with BI-FETTM input followers on the same die. Familiar operating characteristics-those of a 741-with the added advantage of low input bias current make the LF13741 easy to use. Monolithic fabrication makes this "drop-in-replacement" operational amplifier very economical.

Applications in which the LF13741 excels are those which require low bias current, moderate speed and low cost. A few examples include high impedance transducer amplifiers, photocell amplifiers, buffers for high impedance, slow to moderate speed sources and buffers in sample-and-hold type systems where leakage from the hold capacitor node must be kept to a minimum.
Systems designers can take full advantage of their knowledge of the 741 when designing with the LF13741 to achieve extremely rapid "design times." The LF13741 can also be used in existing sockets to make the "error budget" for input bias and/or offset currents negligible and in many cases eliminate trimming. For higher speed and lower noise use the LF155, LF156, LF157 series of BI-FET operational amplifiers.

Features

- Low input bias current

50 pA
■ Input common-mode range to positive supply voltage

- Low input noise current
$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High input impedance
$5 \times 10^{11} \Omega$
- Familiar operating characteristics

Advantages

■ FET inputs-741 operating characteristics

- Low cost
- Ease of use
- Standard supplies
- Standard pin outs
- Non-rectifying input for RF environment
- Rapid "design time"

Applications

- Smoke detectors
- I to V converters
- High impedance buffers
- Low drift sample and hold circuits
- High input impedance, slow comparators
- Long time timers
- Low drift peak detectors
- Supply current monitors
- Low error budget systems

Simplified Schematic Typical Applications

All on one die.

TL/H/9296-1

Inexpensive Microprocessor D/A

TL/H/9296-2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
Operating Temperature Range
$\mathrm{T}_{\mathrm{j}(\mathrm{MAX})}$
Differential Input Voltage Input Voltage Range (Note 3)
Output Short Circuit Duration
Storage Temperature Range
$\pm 18 \mathrm{~V}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$100^{\circ} \mathrm{C}$
$\pm 30 \mathrm{~V}$
$\pm 16 \mathrm{~V}$
Continuous
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

	H Package	N Package
θ_{j} (Typical)		
(Note 1)	$70^{\circ} \mathrm{C} / \mathrm{W}$	$163^{\circ} \mathrm{C} / \mathrm{W}$
(Note 2)	$175^{\circ} \mathrm{C} / \mathrm{W}$	$218^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jC} (Typical)	$25^{\circ} \mathrm{C} / \mathrm{W}$	
Metal Package Lead Temperature (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$		
Plastic Package (Sold	ing, 4 sec .)	$260^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	15	mV
		Over Temperature			20	
	Voltage Offset Adjustment Range		10			mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}($ Notes 4, 5)		10	50	pA
		$\mathrm{T}_{\mathrm{j}} \leqslant 70^{\circ} \mathrm{C}$			2	nA
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}($ Notes 4,5)		50	200	pA
		$\mathrm{T}_{\mathrm{j}} \leqslant 70^{\circ} \mathrm{C}$		1.6	8	nA
R_{IN}	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		5×10^{11}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{O}}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	25	100		V / mV
		Over Temperature	15			V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13		V
V_{CM}	Input Common-Mode Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{gathered} +15.1 \\ -12 \end{gathered}$		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	77	96		dB
Is	Supply Current			2	4	mA

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, R_{S}=100 \Omega \\ & f=100 \mathrm{~Hz} \\ & f=1000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 50 \\ & 37 \end{aligned}$		$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Equivalent Input Noise Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C} \\ & f=100 \mathrm{~Hz} \\ & f=1000 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\frac{\mathrm{pA} / \sqrt{\mathrm{Hz}}}{\mathrm{pA} / \sqrt{\mathrm{Hz}}}$

Note 1: The value given is in 400 Linear Feet/Min air flow.
Note 2: The value given is in static air.
Note 3: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 4: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. V_{OS}, I_{B}, and l_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} . T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply Voltage Rejection Ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $V_{S}= \pm 10 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

Typical Performance Characteristics

Negative Common－Mode

Voltage Swing

Positive Common－Mode

Typical Performance Characteristics (Continued)

LF13741 Pulse Responses

Typical Performance Characteristics

LF13741 Pulse Responses (Continued)

Large Signal Non-Inverting

Pulse Response

TIME $10 \mu \mathrm{~s} / \mathrm{DIV}$
TL/H/9296-7

Application Hints

GENERAL CHARACTERISTICS

The LF13741 makes the job of converting from a bipolar to an FET input op amp easy. As a systems designer you are probably very familiar with the operating characteristics of a 741 op amp. In fact, many of you have used 741 s with FET input followers-that's just what the LF13741 is, but it's all on a single die

When you need a low cost, reliable, well known op amp with low input currents and moderate speed, use an LF13741.

DIFFERENTIAL INPUTS

You don't have to use clamps across the inputs for differential input voltages of less than 40V. The input JFETs of the LF13741, in addition to being well matched, have large reverse breakdown voltages from gate to source and drain.

POSITIVE INPUT COMMON-MODE VOLTAGE LIMIT

With the LF13741 (unlike the normal 741) you can take both inputs above the positive supply voltage by more than 0.1 V before the amplifier ceases to function. This feature enables you to use the LF13741 to monitor and/or limit the current from the same supply used to power it (see typical applications).
If you exceed the positive common-mode voltage limit on only one input, the output phase will remain correct. When you exceed the limit on both inputs, the output phase is unpredictable.

NEGATIVE INPUT COMMON-MODE VOLTAGE LIMIT

There are two negative input voltage ranges of interest:

1. The range between the negative common-mode voltage limit and the negative supply voltage.
2. Voltages which are more negative than the negative supply voltage.

Large Signal Inverting
 Pulse Response

TIME $10 \mu \mathrm{~s} / \mathrm{DIV}$
TL/H/9296-8

If you take only one of the inputs of the LF13741 into the first range, the output phase will remain correct. When you take both inputs into this range the output will go toward the positive supply voltage.
If you force either or both of the inputs into the second range, an internal diode will be turned "ON." Unless you externally limit the diode current to about 1 mA , the device will be destroyed. In either case, limited or unlimited input current, you cannot predict the output.

HANDLING

You do not have to take any special precautions in handling the LF13741. It has JFET, as opposed to fragile MOSFET, inputs.

APPLYING POWER

You should never: reverse the power supplies to the LF13741; plug a part in backwards in a powered socket or board; make the negative supply voltage more positive than an input voltage.
Any one of these supply conditions will forward bias an internal diode. If you have not externally limited the resulting current, the device will be destroyed.

LAYOUT

To ensure stability of response you should take care with lead dress, component placement and power supply decoupling. For example, the body of feedback resistors (from output to input pins) should be placed close to the inverting input pin. Noise "pickup" and capacitance to ground from the input pin will be minimized-effects which are usually desirable.

Because of the very low input bias currents of the LF13741, special care should be taken in printed circuit board layouts to prevent unnecessary leakage from the input nodes, (see Typical Applications).

Application Hints (Continued)

FEEDBACK POLE

You create a feedback pole when you place resistive feedback around an amplifier. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency (a distinct possibility when using FET op amps), you should place a lead capacitor from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant (Figure 1).

TL/H/9296-9
Parasitic input capacitance $\mathrm{C} 1 \cong$ (3 pF for LF13741 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C2 such that: R2C2 $\cong R 1 C 1$. FIGURE 1

Typical Applications (Continued)
Circuits Using Guard Rings to Prevent Leakage Currents Between Inputs and V-

Guarded Voltage Follower

TL/H/9296-10

TL/H/9296-12

Guarded Inverting Amplifier

PC Layout

Typical Applications (Conitued)
Guarded Instrumentation Amplifier

Bridge Amplifier

Typical Applications (Continued)

TL/H/9296-16

- With the output having a 10 k load resistor minimum pulse width to zero $\approx 800 \mu \mathrm{~s}$
- The capacitor on the output reduces the output switch glitch

Ultra-Low (or High) Duty Cycle Pulse Generator

TL/H/9296-18

- toutput high \approx R1C $\ell n \frac{4.8-2 V_{S}}{4.8-V_{S}}$
- toutput low \approx R2C $\ell n \frac{2 V_{S}-7.8}{V_{S}-7.8}$
where $V_{S}=V^{+}+\left|V^{-}\right|$
- Time $=\frac{C_{1}}{l_{1}} V_{\text {THRESHOLD }}$

TL/H/9296-17

- Output goes high on time out
- Reverse op amp inputs for output low on time out
- C1 low leakage capacitor

Typical Applications (Continued)

TL/H/9296-19

TL/H/9296-20

- $V_{\text {OUT }}$ switches high when $R_{S} I_{S}>V_{D}$

Low Drift Peak Detector

TL/H/9296-23
*Low leakage capacitor

Typical Applications (Continued)
Ultra-Low Drift Peak Detector

- By adding $D 1$ and $\mathrm{R}_{\mathrm{f}}, \mathrm{V}_{\mathrm{D} 1}=0$ during hold mode. Leakage of D 2 provided by feedback path through R_{f}.
-Leakage of circuit is I_{B} plus leakage of C_{h}.
-D3 clamps $V_{\text {OUT }} A 1$ to $V_{I N}-V_{D 3}$ to improve speed and to limit the reverse bias of D2.
\bullet Maximum input frequency should be $<1 / 2 \pi R_{f} C_{D 2}$, where $C_{D 2}$ is the shunt capacitance of $D 2$.

Comparator with Offset Adjust for Hi-Z Inputs

TL/H/9296-25

$$
V^{-}+3 V \leq V_{I N} \leq V^{+}+0.1 V
$$

Low Current Ammeter

IFULL SCALE	$\mathbf{R}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{B}}$
100 nA	1.5 M	1.5 M
500 nA	300 k	300 k
$1 \mu \mathrm{~A}$	300 k	0
$5 \mu \mathrm{~A}$	60 k	0
$10 \mu \mathrm{~A}$	30 k	0
$50 \mu \mathrm{~A}$	6 k	0
$100 \mu \mathrm{~A}$	3 k	0

National Semiconductor

LH0003/LH0003C
 Wide Bandwidth Operational Amplifier

General Description

The LH0003/LH0003C is a general purpose operational amplifier which features: slewing rate up to $70 \mathrm{~V} / \mu \mathrm{s}$, a gain bandwidth of up to 30 MHz , and high output currents.
The LHOOO3 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0003C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- Very low offset voltage

■ Large output swing

- High CMRR
- Good large signal
frequency response

Typically 0.4 mV $> \pm 10 \mathrm{~V}$ into 100Ω load

Typically $>90 \mathrm{~dB}$
50 kHz to 400 kHz depending on compensation

Schematic and Connection Diagrams

TL/H/5561-2
Top Vlew
Order Number LH0003H or LH0003CH See NS Package Number H10G

Typical Compensation
$\left.\begin{array}{|c|r|r|c|c|}\hline \text { CIrcult Gain } & \begin{array}{c}\mathbf{C}_{\mathbf{1}} \\ \mathbf{p F}\end{array} & \begin{array}{c}\mathbf{C}_{\mathbf{2}} \\ \mathbf{p F}\end{array} & \begin{array}{c}\text { Slew Rate } \\ \mathbf{R}_{\mathrm{L}}>\mathbf{2 0 0 \Omega}, \mathbf{V} / \boldsymbol{\mu 8 e c}\end{array} & \begin{array}{c}\text { Full Output Frequency } \\ \mathbf{R}_{\mathrm{L}}>\text { 200 } \boldsymbol{2} \text { VOUT }= \pm 10 \mathrm{~V}\end{array} \\ \hline \geq 40 & 0 & 0 & 70 & 400 \\ \geq 10 & 5 & 30 & 30 & 350 \\ \geq 5 & 15 & 30 & 15 & 250 \\ \geq 2 & 50 & 50 & 5 & 100 \\ \geq 1 & 90 & 90 & 2 & 50\end{array}\right\} \mathrm{kHz}$

Absolute Maximum Ratings

If Milltary/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications. (Note 3)
Supply Voltage
$\pm 20 \mathrm{~V}$
Power Dissipation See Curve
Differential Input Voltage $\pm 7 \mathrm{~V}$
Input Voltage
Equal to Supply

Electrical Characteristics (Notes 1 \& 2)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{R}_{\text {S }}<100 \Omega$		0.4	3.0	mV
Input Offset Current			0.02	0.2	$\mu \mathrm{A}$
Input Bias Current			0.4	2.0	$\mu \mathrm{A}$
Supply Current	$V_{S}= \pm 20 \mathrm{~V}$		1.2	3	mA
Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	20	70		V / mV
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	15	40		V / mV
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, R_{L}=100 \Omega$	± 10	± 12		V
Input Resistance			100		k Ω
Average Temperature Coefficient of Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega$		4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Bias Current			8		$n A /{ }^{\circ} \mathrm{C}$
CMRR	$\mathrm{R}_{\mathrm{S}}<100 \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	70	90		dB
PSRR	$\mathrm{R}_{\mathrm{S}}<100 \Omega, \mathrm{~V}_{S}= \pm 15 \mathrm{~V}, \Delta \mathrm{~V}=5 \mathrm{~V}$ to 20 V	70	90		dB
Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega, f=10 \mathrm{kHz} \text { to } 100 \mathrm{kHz} \\ & V_{S}= \pm 15 \mathrm{~V} \mathrm{dc} \end{aligned}$		1.8		$\mu \mathrm{Vrms}$

Note 1: These specifications apply for Pin 7 grounded, for $\pm 5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}< \pm 20 \mathrm{~V}$, with capacitor $\mathrm{C}_{1}=90 \mathrm{pF}$ from Pin 1 to Pin 10 and $\mathrm{C}_{2}=90 \mathrm{pF}$ from Pin 5 to ground, over the specified operating temperature range, unless otherwise specified.
Note 2: Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Note 3: Refer to RETS0003X for LH0003H military specifications.

Typical Performance Characteristics

LHOOO4/LHOOOAC Migh Voltage Operational Amplifier

General Description

The LH0004/LH0004C is a general purpose operational amplifier designed to operate from supply voltages up to $\pm 40 \mathrm{~V}$. The device dissipates extremely low quiescent power, typically 8 mW at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}$.
The LH0004's high gain and wide range of operating voltages make it ideal for applications requiring large output swing and low power dissipation:
The LH0004 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0004C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

- Low input offset current typically 20 nA for the LH0004 and 45 nA for the LH0004C
- Low input offset voltage typically 0.3 mV
- Frequency compensation with 2 small capacitors
\square Low power consumption 8 mW at $\pm 40 \mathrm{~V}$

Applications

- Precision high voltage power supply
- Resolver excitation
a Wideband high voltage amplifier
■ Transducer power supply

Features

- Capable of operation over the range of $\pm 5 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
[l Large output voltage typically $\pm 35 \mathrm{~V}$ for the LH0004 and $\pm 33 \mathrm{~V}$ for the LH0004C into a $2 \mathrm{k} \Omega$ load with $\pm 40 \mathrm{~V}$ supplies

Schematic and Connection Diagrams

TL/H/5559-2
Note: Pin 7 must be grounded or connected to a voltage at least 5 V more negative than the positive supply (Pin 9). Pin 7 may be connected to the negative supply; however, the standby current will be increased. A resistor may be inserted in series with Pin 7 to Pin 9. The value of the resistor should be a maximum of $100 \mathrm{k} \Omega$ per volt of potential between Pin 3 and Pin 9.

Order Number LH0004H or LH0004CH See NS Package Number H10G

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

(Note 2)

Supply Voltage, Continuous
$\pm 45 \mathrm{~V}$
Power Dissipation (see Curve)
Differential Input Voltage
Input Voltage

400 mW
$\pm 7 \mathrm{~V}$
Equal to Supply

Short Circuit Duration
3 sec Operating Temperature Range LH0004 LH0004C

Storage Temperature Range
Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
ESD rating to be determined.

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
260^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics (Note 1)

Parameter	Conditions	LH0004			LH0004C			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S} \leq 100 \Omega \end{aligned}$		0.3	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$		0.3	$\begin{aligned} & 1.5 \\ & 3.0 \\ & \hline \end{aligned}$	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	$\begin{aligned} & 100 \\ & 300 \end{aligned}$		30	$\begin{aligned} & 120 \\ & 300 \end{aligned}$	nA
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	$\begin{gathered} 20 \\ 100 \end{gathered}$		10	$\begin{gathered} 45 \\ 150 \end{gathered}$	nA
Positive Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 40 \mathrm{~V} \end{aligned}$		110	$\begin{aligned} & 150 \\ & 175 \\ & \hline \end{aligned}$		110	$\begin{aligned} & 150 \\ & 175 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
Negative Supply Current	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 40 \mathrm{~V} \end{aligned}$		80	$\begin{array}{r} 100 \\ 135 \\ \hline \end{array}$		80	$\begin{aligned} & 100 \\ & 135 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$
Voltage Gain	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, R_{L}=100 \mathrm{k}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{\text {OUT }}= \pm 30 \mathrm{~V} \end{aligned}$	30	60		30	60		V/mV
	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, R_{\mathrm{L}}=100 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 30 \mathrm{~V} \end{aligned}$	10			10			V/mV
Output Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		± 35	± 30		± 33	± 30	V
CMRR	$\begin{aligned} & V_{\mathrm{S}}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 33 \mathrm{~V} \end{aligned}$	70	90		70	90		dB
PSRR	$\begin{aligned} & V_{S}= \pm 40 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k} \\ & \Delta \mathrm{~V}=20 \mathrm{~V} \text { to } 40 \mathrm{~V} \end{aligned}$	70	90		70	90		dB
Average Temperature Coefficient Offset Voltage	$R_{S} \leq 100 \Omega$		4.0			4.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Offset Current			0.4			0.4		$n A /{ }^{\circ} \mathrm{C}$
Equivalent Input Noise Voltage	$\begin{aligned} & R_{S}=100 \Omega, V_{S}= \pm 40 \mathrm{~V} \\ & \mathrm{f}=500 \mathrm{~Hz} \text { to } 5 \mathrm{kHz}, T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3.0			3.0		$\mu \mathrm{Vrms}$

Note 1: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 40 \mathrm{~V}$, Pin 7 grounded, with capacitors $\mathrm{C} 1=39 \mathrm{pF}$ between Pin 1 and Pin 10, $\mathrm{C} 2=22 \mathrm{pF}$ between Pin 5 and ground, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0004, and $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH0004C unless otherwise specified.
Note 2: Refer to RETS0004X for LH0004H military specifications.

Typical Applications

Negative Supply Current

Open Loop Frequency Response

Positive Supply Current

Large Signal
Frequency Response

National Semiconductor

LH0020/LH0020C High Gain Operational Amplifier

General Description

The LH0020/LH0020C is a general purpose operational amplifier designed to source and sink 50 mA output currents. In addition to its high output capability, the LH0020/ LHOO20C exhibits excellent open loop gain, typically in excess of 100 dB . The parameters of the LH0020 are guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 22 \mathrm{~V}$, while those of the LH0020C are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$.
Output current capability, excellent input characteristics, and large open loop gain make the LH0020/LH0020C suitable for application in a wide variety of applications from precision DC power supplies to precision medium power comparator.

Features

- Low offset voltage typically 1.0 mV at $25^{\circ} \mathrm{C}$ over the entire common-mode voltage range
■ Low offset current typically 10 nA at $25^{\circ} \mathrm{C}$ for the LH0020 and 30 nA for the LH0020C
国 Offset voltage is adjustable to zero with a single potentiometer
■ $\pm 14 \mathrm{~V}, 50 \mathrm{~mA}$ output capability

Schematic and Connection Diagrams

TL/H/5554-2
Top View
Order Number LH0020G or LH0020CG
See NS Package Number G12B

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallablility and speciflcations. (Note 3)

Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation	1.5 W
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$

Output Short Circuit Duration	Continuous
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0020	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH0020	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	
ESD rating to be determined.	

Electrical Characteristics (Note 2) $T_{\text {min }} \leq T_{A} \leq T_{\text {max }}$ unless otherwise specified

Parameter	Conditions	LH0020			LH0020C			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temp.		$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temp.		10	$\begin{gathered} 50 \\ 100 \end{gathered}$		30	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temp.		60	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		200	$\begin{aligned} & 500 \\ & 800 \end{aligned}$	nA nA
Supply Current	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.5	5.0		3.6	6.0	mA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	1.0		0.3	1.0		$\mathrm{M} \Omega$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=300 \Omega, V_{O}= \pm 10 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{L}=300 \Omega, V_{O}= \pm 10 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	300		$\begin{aligned} & 50 \\ & 30 \end{aligned}$	150		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{L}=300 \Omega, T_{A}=25^{\circ} \mathrm{C}$ Over Temp.	$\begin{aligned} & 14.2 \\ & 14.0 \end{aligned}$	14.5		$\begin{aligned} & 14.0 \\ & 13.5 \end{aligned}$	14.2		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Short Circuit Current	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	130	25	120	140	mA
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 12			± 12			V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega$	90	96		90	96		dB
Power Supply Rejection Ratio	$R_{S} \leq 100 \Omega$	90	96		90	96		dB

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 22 \mathrm{~V}$ for the $\mathrm{LH} 0020, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$ for the LH 0020 C , pin 9 grounded, and a 5000 pF capacitor between pins 2 and 3 , unless otherwise specified.
Note 3: Refer to RETS0020G for LH0020G militiary specifications.

Typical Applications

LH0021/LH0021C 1.0 Amp Power Operational Amplifier LH0041/LH0041C 0.2 Amp Power Operational Amplifier

General Description

The LH0021/LH0021C and LH0041/LH0041C are general purpose operational amplifiers capable of delivering large output currents not usually associated with conventional IC Op Amps. The LH0021 wil provide output currents in excess of one ampere at voltage levels of $\pm 12 \mathrm{~V}$; the LH0041 delivers currents of 200 mA at voltage levels closely approaching the available power supplies. In addition, both the inputs and outputs are protected against overload. The devices are compensated with a single external capacitor and are free of any unusual oscillation or latch-up problems.

Features

- Output current
1.0 Amp (LH0021)
0.2 Amp (LH0041)
- Output voltage swing
- Wide full power bandwidth
- Low input offset
voltage and current
- Low standby power

100 mW at $\pm 15 \mathrm{~V}$

- High slew rate $3.0 \mathrm{~V} / \mu \mathrm{s}$
- High open loop gain

100 dB
The excellent input characteristics and high output capability of the LH0021 make it an ideal choice for power applications such as DC servos, capstan drivers, deflection yoke drivers, and programmable power supplies.
The LH0041 is particularly suited for applications such as torque driver for inertial guidance systems, diddle yoke driver for alpha-numeric CRT displays, cable drivers, and programmable power supplies for automatic test equipment.
The LH0021 is supplied in a 8-pin TO-3 package rated at 20 watts with suitable heatsink. The LH0041 is supplied in both 12-pin TO-8 (2.5 watts with clip on heatsink) and a power 8pin ceramic DIP (2 watts with suitable heatsink). The LH0021 and LH0041 are guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LHOO21C and LH0041C are guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Schematic and Connection Diagrams

TL/K/10115-1
"RSC external on " G " and " K " packages. RSC internal on " J " package. Offset Null connections available only on " G " package.

Top View
Order Number LH0041CJ See NS Package Number HY08A

TLL/K/10115-2
Top View
Order Number LH0021K or LH0021CK See NS Package Number K08A

TL/K/10115-3
Order Number LH0041G or LH0041CG See NS Package Number G12B

Absolute Maximum Ratings												
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.		Output Short Circuit Duration (Note 3) Operating Temperature Range					Continuous					
		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$										
		Operating Temperature Range LH0021/LH0041										
Supply Voltage	$\pm 18 \mathrm{~V}$				LH0021C/	H0041				$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Power Dissipation	See curves	Storage Temperature Range					$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$					
Differential Input Voltage	$\pm 30 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec.$)$					$300^{\circ} \mathrm{C}$					
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$											
Peak Output Current (Note 2)												
$\begin{array}{ll}\text { LH0021/LH0021C } & \text { 2.0 Amps } \\ \text { LH0041/LH0041C } & 0.5 \mathrm{Amps}\end{array}$												
DC Electrical Characteristics for LH0021/LH0021C (Note 4)												
Parameter	Conditions		Limits						Units			
			LH0021			LH0021C						
			Min	Typ	Max	Min	Typ	Max				
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \Omega, T_{C}= \\ & R_{S} \leq 100 \Omega \end{aligned}$			1.0	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		3.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$			
Voltage Drift with Temperature	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega$			3	25		5	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$			
Offset Voltage Drift with Time				5			5		$\mu \mathrm{V} /$ week			
Offset Voltage Change with Output Power				5	15		5	20	$\mu \mathrm{V} / \mathrm{watt}$			
Input Offset Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			30	$\begin{aligned} & 100 \\ & 300 \end{aligned}$		50	$\begin{array}{\|l\|} \hline 200 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$			
Offset Current Drift with Temperature				0.1	1.0		0.2	1.0	$n A /{ }^{\circ} \mathrm{C}$			
Offset Current Drift with Time				2			2		nA/week			
Input Bias Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			100	$\begin{array}{\|r} \hline 300 \\ 1.0 \\ \hline \end{array}$		200	$\begin{array}{\|c} \hline 500 \\ 1.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$			
Input Resistance	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$			
Input Capacitance				3			3		pF			
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega, \Delta \mathrm{~V}_{\mathrm{CM}}$		70	90		70	90		dB			
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$		± 12			± 12			V			
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega, \Delta V_{S}=$		80	96		70	90		dB			
Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{C}}=2 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$		$\begin{array}{r} 100 \\ 25 \\ \hline \end{array}$	200		$\begin{aligned} & 100 \\ & 20 \\ & \hline \end{aligned}$	200		V / mV V / mV			
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}= \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}= \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \pm 13.5 \\ & \pm 11.0 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 13 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$			
Output Short Circuit Current	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=$	$\mathrm{R}_{\text {SC }}=0.5 \Omega$	0.8	1.2	1.6	0.8	1.2	1.6	Amps			
Power Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}$			2.5	3.5		3.0	4.0	mA			
Power Consumption	$\mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}$			75	105		90	120	mW			

AC Electrical Characteristics for $L H 0021 / L H 0021 \mathrm{C}\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}\right)$

Slew Rate	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=100 \Omega$	0.8	3.0		1.0	3.0		$\mathrm{~V} / \mu \mathrm{s}$
Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		20			20		kHz
Small Signal Transient Response			0.3	1.0		0.3	1.5	$\mu \mathrm{~s}$
Small Signal Overshoot			5	20		10	30	$\%$
Settling Time (0.1\%)	$\Delta \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$		4			4		$\mu \mathrm{~s}$
Overload Recovery Time			3			3		$\mu \mathrm{~s}$
Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.2			0.2		$\%$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~B} . \mathrm{W} .=10 \mathrm{~Hz}$ to 10 kHz		5			5		$\mu \mathrm{~V} \mathrm{rms}$
Input Noise Current	$\mathrm{B} . \mathrm{W} .=10 \mathrm{~Hz}$ to 10 kHz		0.05			0.05		nA rms

Parameter	Conditions	Limits						Units
		LH0041			LH0041C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S} \leq 100 \Omega \end{aligned}$		1.0	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$		3.0	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Voltage Drift with Temperature	$\mathrm{R}_{S} \leq 100 \Omega$		3			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			5			5		$\mu \mathrm{V} /$ week
Offset Voltage Change with Output Power			15			15		$\mu \mathrm{V} /$ watt
Offset Voltage Adjustment Range	(Note 5)		20			20		mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	$\begin{array}{\|l\|} 100 \\ 300 \\ \hline \end{array}$		50	$\begin{array}{\|l\|} \hline 200 \\ 500 \\ \hline \end{array}$	nA nA
Offset Current Drift with Temperature			0.1	1.0		0.2	1.0	$n \mathrm{n} /{ }^{\circ} \mathrm{C}$
Offset Current Drift with Time			2			2		nA/week
Input Bias Current	$T_{A}=25^{\circ} \mathrm{C}$		100	$\begin{gathered} 300 \\ 1.0 \end{gathered}$		200	$\begin{gathered} 500 \\ 1.0 \\ \hline \end{gathered}$	nA $\mu \mathrm{A}$
Input Resistance	$T_{A}=25^{\circ} \mathrm{C}$	0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega, \Delta \mathrm{~V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		70	90		dB
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12			± 12			V
Power Supply Rejection Ratio	$R_{S} \leq 100 \Omega, \Delta V_{S}= \pm 10 \mathrm{~V}$	80	96		70	90		dB
Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{O}= \pm 10 \mathrm{~V} \\ & R_{L}=1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{O}= \pm 10 \mathrm{~V} \\ & R_{L}=100 \Omega \end{aligned}$	$\begin{array}{r} 100 \\ 25 \\ \hline \end{array}$	200		$\begin{aligned} & 100 \\ & 20 \\ & \hline \end{aligned}$	200		V / mV V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	± 13.0	± 14.0		± 13.0	± 14.0		V
Output Short Circuit Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)		200	300		200	300	mA
Power Supply Current	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		2.5	3.5		3.0	4.0	mA
Power Consumption	$\mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		75	105		90	120	mW

AC Electrical Characteristics for LH0041/LH0041C ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}\right)$

Slew Rate	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=100 \Omega$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		1.5	3.0		1.0	3.0
Power Bandwidth			20			20		kHz
Small Signal Transient Response			0.3	1.0		0.3	1.5	$\mu \mathrm{~s}$
Small Signal Overshoot	$\Delta \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$		5	20		10	30	$\%$
Settling Time (0.1\%)			4			4		$\mu \mathrm{~s}$
Overload Recovery Time	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$	3			3		$\mu \mathrm{~s}$	
Harmonic Distortion	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~B} . \mathrm{W} .=10 \mathrm{~Hz}$ to 10 kHz		5			5		$\mu \mathrm{~V} / \mathrm{rms}$
Input Noise Voltage	$\mathrm{B} . \mathrm{W} .=10 \mathrm{~Hz}$ to 10 kHz		0.05			0.05	nA rms	
Input Noise Current			0.2			0.2		$\%$

Note 1: Rating applies for supply voltages above $\pm 15 \mathrm{~V}$. For supplies less than $\pm 15 \mathrm{~V}$, rating is equal to supply voltage.
Note 2: Rating applies for LH0041G and LH0021K with R $=0 \Omega$.
Note 3: Rating applies as long as package power rating is not exceeded.
Note 4: Specifications apply for $V_{S}= \pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ for LH0021K and LH0041G, and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+85^{\circ} \mathrm{C}$ for LH0021CK,
LH0041CG and LH0041CJ unless otherwise specified. Typical values are for $25^{\circ} \mathrm{C}$ only.
Note 5: TO-8 "G" packages only.
Note 6: Rating applies for "J" DIP package and for TO-8 " G " package with $\mathrm{R}_{\mathrm{SC}}=3.3 \Omega$.

Typical Performance Characteristics

Short Circuit Current vs Temperature LH0021/LH0021C

TL/K/10115-5

Typical Applications

Programmable One Amp Power Supply

Typical Applications（Continued）

Typical Applications (Continued)

Programmable High Current Source/Sink

DC Servo Amplifier

Auxiliary Circuits

LH0021 Unity Gain Circuit with Short Circuit Limiting

LH0041G Unity Gain with Short Circuit Limiting

LH0041/LH0021 Offset Voltage Null Circuit (LH0041CJ Pin Connections Shown)*

Auxiliary Circuits (Continued)

LH0041G Offset Voltage Null Circuit*

TL/K/10115-17

negatve

TL/K/10115-19

TL/K/10115-18
Operation from Single Supplies

TL/K/10115-20
Operation from Non-Symmetrical Supplies
*For additional offset null circuit techniques see National Linear Applications Handbook.

National Semiconductor

LH0022/LH0022C High Performance FET Op Amp LH0042/LH0042C Low Cost FET Op Amp LH0052/LH0052C Precision FET Op Amp

General Description

The LH0022/LH0042/LH0052 are a family of FET input operational amplifiers with very closely matched input characteristics, very high input impedance, and ultra-low input currents with no compromise in noise, common mode rejection ratio, open loop gain, or slew rate. The internally laser nulled LH0052 offers $500 \mu \mathrm{~V}$ maximum offset and $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset drift. Input offset current is less than 500 femtoamps at room temperature and 500 pA maximum at $125^{\circ} \mathrm{C}$. The LH0022 and LH0042 are not internally nulled but offer comparable matching characteristics. All devices in the family are internally compensated and are free of latch-up and unusual oscillation problems. The devices may be offset nulled with a single 10k trimpot with negligible effect in CMRR.
The LH0022, LH0042 and LH0052 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0022C, LH0042C and LH0052C are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
The LH0022/LH0042/LH0052 family of IC op amps are intended to fulfill a wide variety of applications for process control, medical instrumentation, and other systems requiring very low input currents and tightly matched input offsets. The LHOO52 is particularly suited for long term high
accuracy integrators and high accuracy sample and hold buffer amplifiers. The LH0022 and LH0042 provide low cost high performance for such applications as electrometer and photocell amplification, pico-ammeters, and high input impedance buffers.
Special electrical parameter selection is available on special request.
For additional application information and information on other National operational amplifiers, see Available Linear Applications Literature.

Features

■ Low input offset current-500 femtoamps max (LH0052)
■ Low input offset drift-2 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ (LHOO52)
■ Low input offset voltage-100 $\mu \mathrm{V}$ typ

- High open loop gain-100 dB typ
- Excellent slew rate- $3.0 \mathrm{~V} / \mu \mathrm{s}$ typ
- Internal $6 \mathrm{~dB} /$ octave frequency compensation
- Pin compatible with standard IC op amps (TO-5 package)

Connection Diagrams

Order Number LH0042E See NS Package Number E20A

TL/K/5557-3
Top View
Order Number LH0022H, LH0022CH, LH0042H, LH0042CH, LH0052H or LH0052CH See NS Package Number H08D

Absolute Maximum Ratings

If Milltary/Aerospace speclfied devices are required,	Short Circuit Duration	Continuous	
please contact the National Semiconductor Sales	Operating Temperature Range		
Office/Dlstributors for avallability and specificatlons.	$\pm 22 \mathrm{~V}$	LH0022, LH0042, LH0052	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage	500 mW	Storage Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation (see Graph)	$\pm 15 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec.)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage (Note 1)	$\pm 30 \mathrm{~V}$		$300^{\circ} \mathrm{C}$
Differential Input Voltage (Note 2)	$\pm 0.5 \mathrm{~V}$		
Voltage Between Offset Null and V-			

DC Electrical Characteristics for LH0022/LH0022C (Note 3) $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}($ Max $)$

Parameter	Conditions	Limits						Units
		LH0022			LH0022C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		2.0	4.0		3.5	6.0	mV
	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			5.0			7.0	mV
Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			3			4		$\mu \mathrm{V} /$ week
Input Offset Current	(Note 4)		0.2	2.0		1.0	5.0	pA
				2.0			0.5	nA
Temperature Coefficient of Input Offset Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Offset Current Drift with Time			0.1			0.1		pA/week
Input Bias Current	(Note 4)		5	10		10	25	pA
				10			2.5	nA
Temperature Coefficient of Input Bias Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Differential Input Resistance			10^{12}			10^{12}		Ω
Common Mode Input Resistance			1012			1012		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 12	± 13.5		± 12	± 13.5		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	80	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	80	90		70	90		dB
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	100	200		75	160		V/mV
	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	50			50			V/mV
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	± 10	± 12.5		± 10	± 12		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 10			± 10			V
Output Current Swing	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10	± 15		± 10	± 15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			25			25		mA
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2.0	2.5		2.4	2.8	mA
Power Consumption	$V_{S}= \pm 15 \mathrm{~V}$			75			85	mW

DC Electrical Characteristics for LH0042/LH0042C (Note 3)

Parameter	Conditions	Limits						Units
		LH0042			LH0042C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		5.0	20		6.0	20	mV
Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			7.0			10		$\mu \mathrm{V} /$ week
Input Offset Current	(Note 4)		1.0	5.0		2.0	10	pA
Temperature Coefficient of Input Offset Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Offset Current Drift with Time			0.1			0.1		pA/week
Input Bias Current	(Note 4)		10	25		15	50	pA
Temperature Coefficient of Input Bias Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Differential Input Resistance			1012			1012		Ω
Common Mode Input Resistance			1012			1012		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range		± 12	± 13.5		± 12	± 13.5		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	70	86		70	80		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	70	86		70	86		dB
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{S}} \leq 2 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50	150		25	100		V / mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10	± 12.5		± 10	± 12		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10			± 10			V
Output Current Swing	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	± 10	± 15		± 10	± 15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			20			20		mA
Supply Current			2.5	3.5		2.8	4.0	mA
Power Consumption				105			120	mW

DC Electrical Characteristics for LH0052/LH0052C (Note 3)

Parameter	Conditions	Limits						Units
		LH0052			LH0052C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{S}}=+15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.1	1.0		0.4	2.0	mV
	$\mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			2.0			3.0	mV
Temperature Coefficient of Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			2.0			4.0		$\mu \mathrm{V} /$ week
Input Offset Current	(Note 4)		0.01	5.0		0.02	1.0	pA
				500			100	pA
Temperature Coefficient of Input Offset Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Offset Current Drift with Time			0.1			0.1		pA/week

DC Electrical Characteristics for LH0052/LH0052C (Note 3) (Continued)

Parameter	Conditions	Limits						Units
		LH0052			LH0052C			
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current	(Note 4)		0.5	2.5		1.0	5.0	pA
				2.5			0.5	nA
Temperature Coefficient of Input Bias Current		Doubles Every $10^{\circ} \mathrm{C}$			Doubles Every $10^{\circ} \mathrm{C}$			
Differential Input Resistance			1012			1012		Ω
Common Mode Input Resistance			10^{12}			1012		Ω
Input Capacitance			4.0			4.0		pF
Input Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 12	± 13.5		± 12	± 13.5		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	74	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$	74	90		70.	90		dB
Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	100	200		75	160		V / mV
	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	50			50			V / mV
Output Voltage Swing	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	± 10	± 12.5		± 10	± 12		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 10			± 10			V
Output Current Swing	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10	± 15		± 10	± 15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current			25			25		mA
Supply Current	$V_{S}= \pm 15 \mathrm{~V}$		3.0	3.5		3.0	3.8	mA
Power Consumption	$V_{S}= \pm 15 \mathrm{~V}$			105			114	mW

AC Electrical Characteristics for all amplifiers $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$

Parameter	Conditions	Limits						Units
		LH0022/42/52			LH0022C/42C/52C			
		Min	Typ	Max	Min	Typ	Max	
Slew Rate	Voltage Follower	1.5	3.0		1.0	3.0		$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	Voltage Follower		40			40		kHz
Small Signal Bandwidth			1.0			1.0		MHz
Rise Time			0.3	1.5		0.3	1.5	$\mu \mathrm{s}$
Overshoot			10	30		15	40	\%
Settling Time (0.1\%)	$\Delta \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$		4.5			4.5		$\mu \mathrm{s}$
Overload Recovery			4.0			4.0		$\mu \mathrm{s}$

AC Electrical Characteristics for all amplifiers $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$ (Continued)

Parameter	Conditions	Limits						Units
		LH0022/42/52			LH0022C/42C/52C			
		Min	Typ	Max	Min	Typ	Max	
Input Noise Voltage	$R_{S}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{~Hz}$		150			150		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=100 \mathrm{~Hz}$		55			55		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=1 \mathrm{kHz}$		35			35		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{kHz}$		30			30		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	$B W=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		12			12		μ Vrms
Input Noise Current	$\mathrm{BW}=10 \mathrm{~Hz}$ to 10 kHz		<0.1			<0.1		pArms

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: Rating applies for minimum source resistance of $10 \mathrm{k} \Omega$, for source resistances less than $10 \mathrm{k} \Omega$, maximum differential input voltage is $\pm 5 \mathrm{~V}$.
Note 3: Unless otherwise specified, these specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq+20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LH0022/42/52 and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+85^{\circ} \mathrm{C}$ for the LH0022C/42C/52C. Typical values are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Input currents are a strong function of temperature. Due to high speed testing they are specified at a junction temperature $\mathrm{T}_{j}=25^{\circ} \mathrm{C}$. Self heating will cause an increase in current in manual tests. $25^{\circ} \mathrm{C} \mathrm{spec}$ is guaranteed by testing at $125^{\circ} \mathrm{C}$.

Auxiliary Circuits (Shown for to-5 pin out)

Schematic Diagram

Typical Applications

TL/K/5557-8
Precision Voltage Comparator

TL/K/5557-9
Picoamp Amplifier for pH Meters and Radiation Detectors

TL/K/5557-10

Typical Applications (Continued)

TLLK/5557-11

Ultra Low Level Current Source

Typical Applications (Continued)

TL/K/5557-14

Typical Applications (Continuad)

TL/K/5557-16

Typical Performance Characteristics

*Noise voltage includes contribution from source resistance.

Typical Performance Characteristics (Continued)

Output Voltage Swing vs Load Resistance

Voltage Follower Large
Signal Response

Frequency Characteristics vs Supply Voltage

Output Resistance vs Frequency

Output Swing vs Supply Voltage

Output Voltage Swing vs Frequency

Frequency Characteristics vs Ambient Temperature

Open Loop Transfer Characteristics vs Frequency

TL/K/5557-19

LH0024/LH0024C High Slew Rate Operational Amplifier

General Description

The LH0024/LH0024C is a very wide bandwidth, high slew rate operational amplifier intended to fulfill a wide variety of high speed applications such as buffers to A to D and D to A converters and high speed comparators. The device exhibits useful gain in excess of 50 MHz making it possible to use in video applications requiring higher gain accuracy than is usually associated with such amplifiers.
The LH0024/LH0024C's combination of wide bandwidth and high slew rate make it an ideal choice for a variety of high speed applications including active filters, oscillators, and comparators as well as many high speed general purpose applications.

The LH0024 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, whereas the LH0024C is guaranteed $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

■ Very high slew rate-500 $\mathrm{V} / \mu \mathrm{s}$ at $\mathrm{A}_{\mathrm{V}}=+1$

- Wide small signal bandwidth- 70 MHz
- Wide large signal bandwidth- 15 MHz
- High output swing $- \pm 12 \mathrm{~V}$ into 1 k
- Offset null with single pot
- Low input offset-2 mV
- Pin compatible with standard IC op amps

Schematic and Connection Diagrams

Note: For heat sink use Thermalloy 2230-5 series.

Order Number LH0024H or LH0024CH
See NS Package Number H08B

Absolute Maximum Ratings		
If Military/Aerospace specified devices are required,	Operating Temperature Range	
please contact the National Semiconductor Sales	LH0024	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Office/Distributors for avallability and specifications.	LH0024C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
(Note 2)		Storage Temperature Range
Supply Voltage	$\pm 18 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec.)
Input Voltage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Differential Input Voltage	Equal to Supply	ESD rating to be determined.
Power Dissipation	$\pm 5 \mathrm{~V}$	

DC Electrical Characteristics (Note 1)

Parameter	Conditions	LH0024			LH0024C			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		2.0	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		5.0	$\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{S}=50 \Omega \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$		-20			-25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$		4.0	$\begin{aligned} & 15.0 \\ & 20.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	$\begin{aligned} & 30 \\ & 40 \end{aligned}$		18	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current			12.5	15		12.5	15	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{\mathrm{S}}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	5		$\begin{gathered} 3 \\ 2.5 \\ \hline \end{gathered}$	4		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12	± 13		± 12	± 13		V
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	± 13		$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \hline \end{aligned}$	± 13		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Slew Rate	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \\ & \mathrm{C}_{1}=\mathrm{C}_{2}=30 \mathrm{pF} \\ & A_{V}=+1, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	400	500		250	400		$\mathrm{V} / \mu \mathrm{s}$
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \Delta \mathrm{~V}_{\mathbb{I}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		60			60		dB
Power Supply Rejection Ratio	$\begin{aligned} & \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}, \\ & R_{\mathrm{S}}=50 \Omega \end{aligned}$		60			60		dB

Note 1: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH 0024 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH H 024 C .
Note 2: Refer to RETS0024H for LH0024H military specifications.
Frequency Compensation

TABLEI

Closed Loop Gain	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}}$
100	0	0	0
20	0	0	0
10	0	20 pF	1 pF
1	30 pF	30 pF	3 pF

Frequency Compensation Circuit

Typical Performance Characteristics

TL/K/5552-7

Applications Information

LAYOUT CONSIDERATIONS

The LH0024/LH0024C, like most high speed circuitry, is sensitive to layout and stray capacitance. Power supplies should be by-passed as near the device as is practicable with at least $0.01 \mu \mathrm{~F}$ disc type capacitors. Compensating capacitors should also be placed as close to device as possible.

COMPENSATION RECOMMENDATIONS

Compensation schemes recommended in Table 1 work well under typical conditions. However, poor layout and long lead lengths can degrade the performance of the LH0024 or cause the device to oscillate. Slight adjustments in the values for C1, C2, and C3 may be necessary for a given layout. In particular, when operating at a gain of $-1, \mathrm{C} 3$ may re-
quire adjustment in order to perfectly cancel the input capacitance of the device.
When operating the LH0024/LH0024C at a gain of +1 , the value of R1 should be at least $1 \mathbf{k} \Omega$.
The case of the LH0024 is electrically isolated from the circuit; hence, it may be advantageous to drive the case in order to minimize stray capacitances.

HEAT SINKING

The LH0024/LH0024C is specified for operation without the use of an explicit heat sink. However, internal power dissipation does cause a significant temperature rise. Improved offset voltage drift can be obtained by limiting the temperature rise with a clip-on heat sink such as the Thermalloy 2228B or equivalent.

Typical Applications

LH0032/LH0032A/LH0032C/LH0032AC Ultra Fast FET-Input Operational Amplifier

General Description

The LH0032/LH0032A is a high slew rate, high input impedance differential operational amplifier suitable for diverse application in fast signal handling. The high allowable differential input voltage, ease of output clamping, and high output drive capability particularly suit it for comparator applications. It may be used in applications normally reserved for video amplifiers allowing the use of operational gain setting and frequency response shaping into the megahertz region. The LH0032's wide bandwidth, high input impedance and high output capacity make it an ideal choice for applications such as summing amplifiers in high speed D to A converters, buffers in data acquisition systems and sample and hold circuits. Additional applications include high speed integrators and video amplifiers. The LH0032 and LH0032A are guaranteed for operation over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LH0032C and LH0032AC are guaranteed for $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- $500 \mathrm{~V} / \mu \mathrm{s}$ slew rate

■ 70 MHz bandwidth

- $10^{12} \Omega$ input impedance
- As low as 2 mV max input offset voltage
- FET input
- Offset null with single pot
- No compensation for gains above 50

■ Peak output current to 100 mA

Block Diagram

TL/K/5265-1

Absolute Maximum Ratings

Supply Voltage, V_{S}	$\pm 18 \mathrm{~V}$
Input Voltage, $\mathrm{V}_{\text {IN }}$	$\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$ or $\pm 2 \mathrm{~V}_{\mathrm{S}}$
Power Dissipation, P_{D}	
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5 W , derate $100^{\circ} \mathrm{C} / \mathrm{W}$ to $125^{\circ} \mathrm{C}$ (Note 1)
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	2.2 W , derate $70^{\circ} \mathrm{C} / \mathrm{W}$ to $125^{\circ} \mathrm{C}$ (Note 1)

Operating Temperature Range, T_{A}

LH0032G/AG/E	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0032CG/ACG	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Junction Temperature, TJ	$175^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		LH0032A			LH0032AC			LH0032			LH0032C			Units
				Min	Typ	Max										
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{V}_{\text {IN }}=0$	$\begin{aligned} & \mathrm{T}_{A}=\mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \text { (Note 3) } \end{aligned}$		1	$\begin{aligned} & 2 \\ & 5 \\ & \hline \end{aligned}$		2	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		2	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$		2	$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	mV
$\begin{gathered} \Delta \mathrm{V}_{\mathrm{OS}} / \\ \Delta \mathrm{T} \\ \hline \end{gathered}$	Average Offset Voltage Drift		(Note 4)		15	30		15	30		15	50		15	50	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current		$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Note 5) } \end{aligned}$			$\begin{array}{\|c\|} \hline 10 \\ 250 \\ 10 \\ \hline \end{array}$			30 500 3			$\begin{array}{\|c\|} \hline 25 \\ 250 \\ 25 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 50 \\ 500 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current		$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}(\text { Note } 3) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { (Note 5) } \end{aligned}$			10 1 1 25			150 5 10			$\begin{array}{\|c\|} \hline 100 \\ 1 \\ 50 \\ \hline \end{array}$			500 5 15	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
${ }^{*} \mathrm{~V}_{\text {INCM }}$	Input Voltage Range			± 10	± 12		V									
CMRR	Common Mode Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$		50	60		50	60		50	60		50	60		dB
Avol	Open-Loop Voltage	$\begin{aligned} & V_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	60	70		60	70		60	70		60	70		dB
	Gain	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega \\ & (\text { Note } 6) \end{aligned}$		57			57			57			57			
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		± 10	± 13.5		± 10	± 13		± 10	± 13.5		± 10	± 13		V
Is	Power Supply Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{IO}^{\mathrm{O}}=0(\text { Note } 5) \end{aligned}$			18	20		20	22		18	20		20	22	mA
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \Delta V_{S}=10 \mathrm{~V} \\ & (\pm 5 \text { to } \pm 15 \mathrm{~V}) \end{aligned}$		50	60		50	60		50	60		50	60		dB

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 7)

Symbol	Parameter		tions	Min	Typ	Max	Units
S_{R}	Slew Rate	$A_{V}=+1$	$\Delta V_{I N}=20 \mathrm{~V}$	350	500		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{t}_{\text {s }}$	Settling Time to 1\% of Final Value	$A_{V}=-1$,			100		
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1\% of Final Value				300		ns
t_{R}	Small Signal Rise Time	$A_{V}=+1, \Delta V_{I N}=1 \mathrm{~V}$			8	20	
t_{D}	Small Signal Delay Time				10	25	

Note 1. In order to limit maximum junction temperature to $+175^{\circ} \mathrm{C}$, it may be necessary to operate with VS $< \pm 15 \mathrm{~V}$ when T_{A} or T_{C} exceeds specific values depending on the P_{D} within the device package. Total P_{D} is the sum of quiescent and load-related dissipation. See applications notes AN-277, "Applications of Wide-Band Buffer Amplifiers" and AN-253, "High-Speed Operational-Amplifier Applications" for a discussion of load-related power dissipation.
Note 2. LH0032AG/G are 100% production tested as specified at $25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$. LH0032ACG/CG are 100% production tested at $25^{\circ} \mathrm{C}$ only. Specifications at temperature extremes are verified by sample testing, but these limits are not used to calculate outgoing quality level.
Note 3. Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high-speed automatic testing. Actual values at operating temperature will exceed the value at $T_{J}=25 \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient, and more under load conditions. Accordingly, $V_{O S}$ may change one to several mV , and I_{B} and I_{OS} will change significantly during warm-up. Refer to I_{B} and I_{OS} vs. temperature graph for expected values.
Note 4. LH0032AG/G are 100% production tested for this parameter. LH0032ACG/CG are sample tested only. Limits are not used to calculate outgoing quality levels. $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$ is the average value calculated from measurements at $25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}$.
Note 5. Measured in still air 7 minutes after application of power. Guaranteed thru correlated automatic pulse testing.
Note 6. Guaranteed thru correlated automatic pulse testing at $T_{J}=25^{\circ} \mathrm{C}$.
Note 7. Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.
*Guaranteed by CMRR test condition.

Connection Diagrams

TL/K/5265-23
Order Number LH0032G, LH0032AG, LH0032CG or LH0032ACG See NS Package Number G12B

TL/K/5265-25
Order Number LH0032E See NS Package Number E48B

Output Short Circuit Protection

Input Voltage Range and Output Voltage vs. Supply Voltage

Typical Applications

TL/K/5265-17

TL/K/5265-18

Non-Compensated Unity Gain Inverter

TL/K/5265-19
TL/K/5265-20

High Speed Sample and Hold

High Speed Current Mode MUX

Applications Information

POWER SUPPLY DECOUPLING

The LH0032/LH0032A, like most high speed circuits, is sensitive to layout and stray capacitance. Power supplies should be by passed as near to pins 10 and 12 as practicable with low inductance capacitors such as $0.01 \mu \mathrm{~F}$ disc ceramics. Compensation components should also be located close to the appropriate pins to minimize stray reactances.

INPUT CURRENT

Because the input divvices are FETs, the input bias current may be expected to double for each $11^{\circ} \mathrm{C}$ junction temperature rise. This characteristic is plotted in the typical performance characteristics graphs. The device will self-heat due to internal power dissipation after application of power thus raising the FET junction temperature $40-60^{\circ} \mathrm{C}$ above freeair ambient temperature when supplies are $\pm 15 \mathrm{~V}$. The de-

Applications Information (Continued)

vice temperature will stabilize within 5-10 minutes after application of power, and the input bias currents measured at that time will be indicative of normal operating currents. An additional rise would occur as power is delivered to a load due to additional internal power dissipation.
There is an additional effect on input bias current as the input voltage is changed. The effect, common to all FETs, is an avalanche-like increase in gate current as the FET gate-to-drain voltage is increased above a critical value depending on FET geometry and doping levels. This effect will be noted as the input voltage of the LH0032 is taken below ground potential when the supplies are $\pm 15 \mathrm{~V}$. All of the effects described here may be minimized by operating the device with $\mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$.
These effects are indicated in the typical performance curves.

INPUT CAPACITANCE

The input capacitance to the LH0032/LH0032C is typically 5 pF and thus may form a significant time constant with high value resistors. For optimum performance, the input capacitance to the inverting input should be compensated by a small capacitor across the feedback resistor. The value is
strongly dependent on layout and closed loop gain, but will typically be in the neighborhood of several picofarads.
In the non-inverting configuration, it may be advantageous to bootstrap the case and/or a guard conductor to the inverting input. This serves both to divert leakage currents away from the non-inverting input and to reduce the effective input capacitance. A unity gain follower so treated will have an input capacitance under a picofarad.

HEAT SINKING

While the LH0032/LH0032A is specified for operation without any explicit heat sink, internal power dissipation does cause a significant temperature rise. Improved bias current performance can thus be obtained by limiting this temperature rise with a small heat sink such as the Thermalloy No. 2241 or equivalent. The case of the device has no internal connection, so it may be electrically connected to the sink if this is advantageous. Be aware, however, that this will affect the stray capacitances to all pins and may thus require adjustment of circuit compensation values.
For additional applications information request Applicatlon Note AN-253.

LH0044 Series Precision Low Noise Operational Amplifiers

General Description

The LH0044 Series is a low noise，ultra－stable，high gain， precision operational amplifier family intended to replace ei－ ther chopper－stabilized monolithic or modular amplifiers． The devices are particularly suited for differential mode，in－ verting，and non－inverting mode applications requiring very low initial offset，low offset drift，very high gain，high CMRR， and high PSRR．In addition，the LH0044 Series＇low initial offset and offset drift eliminate costly and time consuming null adjustments at the systems level．The superior perform－ ance afforded by the LH0044 Series is made possible by advanced processing and testing techniques，as well as ac－ tive laser trim of critical metal film resistors to minimize off－ set voltage and drift．Unique construction eliminates thermal feedback effects．

The LH0044 Series is an excellent choice for a wide range of precision applications including strain gauge bridges， thermocouple amplifiers，and ultrastable reference ampli－
fers．The LH0044 is guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ，and the LH0044AC，LH0044B，and LH0044C are guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．The de－ vice is available in standard TO－5 op amp pin out and is compatible with LM108A，LM725，and LM741 type amplifi－ ers．

Features

四 Low input offset voltage
$25 \mu \mathrm{~V}$ max
－Excellent long－term stability $\pm 1 \mu \mathrm{~V} /$ month max
\square Low offset drift
$0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
四 Very low noise
$0.7 \mu \mathrm{Vp}-\mathrm{p} \max 0.1 \mathrm{~Hz}$ to 10 Hz
－High CMRR and PSRR
120 dB min
■ High open loop gain
© Wide common－mode range
120 dB min

Wide supply voltage range
$\pm 13 \mathrm{~V}$ min
$\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

Equivalent Circuit

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	Output Short-Circuit Duration	Continuous	
please contact the National Semiconductor Sales	Operating Temperature Range		
Office/Distributors for availability and specifications.	LHOO44	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
(Note 6)	$\pm 20 \mathrm{~V}$	LH0044AC, LH0044B, LH0044C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	600 mW	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	$\pm 1 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Differential Input Voltage (Note 4)	ESD rating to be determined.		
Input Voltage (Note 5)	$\pm 15 \mathrm{~V}$		

DC Electrical Characteristics (Note 1)

Parameter	Conditions	Limits						Units
		LH0044AC			LH0044/ LH0044B/LH0044C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ LH0044C Only		8	25		12	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ LH0044A and LH0044B Only			$\begin{aligned} & 55 \\ & 75 \end{aligned}$			$\begin{aligned} & 180 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu V \\ & \mu \mathrm{~V} \end{aligned}$
Average Input Offset Voltage Drift	$\mathrm{T}_{\text {Min }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {Max }}$ LH0044B Only		0.1	0.5		0.2	$\begin{aligned} & 1.3 \\ & 0.5 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Long-Term Stability	(Note 2)		0.2	1		0.3	2	$\mu \mathrm{V} /$ month
Input Noise Voltage (Note 3)	$\begin{aligned} & \mathrm{BW}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, \mathrm{R}_{\mathrm{S}}=50 \Omega \\ & \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega \text { Imbalance } \\ & \hline \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.9 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \vee p-p \\ & \mu \vee p-p \end{aligned}$
Thermal Feedback Coefficient			0.005			0.005		$\mu \mathrm{V} / \mathrm{mW}$
Open Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	120	145		114	140		dB
Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	120	145		114	140		dB
Power Supply Rejection Ratio	$\pm 3 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	120	145		114	140		dB
Input Voltage Range		± 13	± 13.8		± 12	± 13.5		V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13.7		± 12	± 13.5		V
Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {Max }} \\ & T_{\text {Min }} \leq T_{A}<25^{\circ} \mathrm{C} \end{aligned}$		1.0	$\begin{aligned} & 2.5 \\ & 5.0 \\ & \hline \end{aligned}$		1.5	$\begin{gathered} 5.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Average Input Offset Current Drift			5	40		15	80	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{Max}} \\ & \mathrm{~T}_{\text {Min }} \leq \mathrm{T}_{\mathrm{A}}<25^{\circ} \mathrm{C} \end{aligned}$		8.5	$\begin{array}{r} 15 \\ 50 \\ \hline \end{array}$		10	$\begin{gathered} 30 \\ 100 \\ \hline \end{gathered}$	nA nA
Average Input Bias Current Drift			50	300		100	600	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Differential Input Impedance		5	10		2.5	8		$\mathrm{M} \Omega$
Common Mode Input Impedance			2×10^{11}			2×10^{11}		Ω
Supply Current	$\mathrm{I}_{\mathrm{L}}=0$		0.9	3.0		1.0	4.0	mA
Power Dissipation			27	90		30	120	mW

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Parameter	Conditions	Typ	Units
Input Noise Voltage	$\begin{aligned} & R_{S}=1 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & R_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$	$\begin{gathered} 11 \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
Slew Rate	$A_{V}=+1, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	0.06	$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	$A_{V}=+1, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}}= \pm 10 \mathrm{~V}$	1	kHz
Overload Recovery Time	$A_{V}=+100, V_{\text {IN }}=-100 \mathrm{mV}, \Delta \mathrm{V}_{\mathrm{IN}}=200 \mathrm{mV}$	5	$\mu \mathrm{S}$
Small Signal Bandwidth	$A_{V}=+1, R_{L}=10 \mathrm{k} \Omega$	400	kHz
Small Signal Rise Time	$A_{V}=+1, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=10 \mathrm{mV}$	2.5	$\mu \mathrm{s}$
Overshoot	$A_{V}=+1, R_{L}=10 \mathrm{k} \Omega, V_{I N}=10 \mathrm{mV}, C_{L}=100 \mathrm{pF}$	10	\%

Note 1: All specifications apply for all device grades, at $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$, and from $\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {Max }}$ unless otherwise specified. $\mathrm{T}_{\text {Min }}$ is $-55^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {Max }}$ is $+125^{\circ} \mathrm{C}$ for the LH0044. $T_{\text {Min }}$ is $-25^{\circ} \mathrm{C}$ and $T_{\text {Max }}$ is $+85^{\circ} \mathrm{C}$ for the LH0044AC, LH0044B and LH0044C. Typicals are given for $T_{A}=25^{\circ} \mathrm{C}$.
Note 2: This parameter is not 100% tested; however, 90% of the devices are guaranteed to meet this specification after one month of operation and after initial turn-on stabilization.
Note 3: Noise is 100% tested on the LH0044AC and LH0044B only. 90% of the LH0044 and LH0044C devices are guaranteed to meet this specification.
Note 4: The inputs are shunted by back-to-back diodes for over-voltage protection. Excessive current will flow for differential input voltages in excess of $1 V$. Input current should be limited to less than 1 mA .
Note 5: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 6: Refer to RETS0044AH for LH0044AH military specifications and RETS 0044 H for LH0044H military specfifications.

Total Input Noise
Voltage vs Frequency

Input Bias Current vs CommonMode Input Voltage

Large Signal Voltage
Response

Power Supply Rejection Ratio vs Frequency

Supply Current vs Supply Voltage

Output Swing

Input Voltage Range

Open Loop Frequency Response

Large Signal Pulse Response

Applications Information

LOW DRIFT CONSIDERATIONS

Achieving ultra-low drift in practical applications requires strict attention to board layout, thermocouple effects, and input guarding. For specific recommendations refer to AN-63 and AN-79.
A point worth stressing with regard to low drift specifications is testing of the LH0044. Simply stated-it is virtually impossible to test the device using a thermoprobe or other form of local heating. A one degree centigrade temperature gradient can account for tens of microvolts of virtual offset (or drift). The test circuit of Figure 1 is recommended for use in a stabilized oven or continuously stirred oil bath with the entire circuit inside the oven or bath. Isothermal layout of the resistors is advised in order to minimize thermocouple induced EMF's.

OVER COMPENSATION

The LH0044 may be overcompensated in order to minimize noise bandwidth by paralleling the internal 100 pF capacitor with an external capacitor connected between pins 1 and 6. Unity gain frequency may be predicted by:

$$
f=\frac{4 \times 10^{-5}}{100 \mathrm{pF}+\mathrm{C}_{\mathrm{ext}} \mathrm{pF}}(\mathrm{~Hz})
$$

COMPENSATION

For closed loop gains in excess of 10, no external components are required for frequency stability. However, for gains of 10 or less, a $0.01 \mu \mathrm{~F}$ disc capacitor is recommended between pin $7\left(\mathrm{~V}^{+}\right)$and pin 8 (Comp). An improvement in ac PSRR will also be realized by use of the $0.01 \mu \mathrm{~F}$ capacitor.

OFFSET NULL

In general, further nulling of LH0044 is neither necessary nor recommended. For most applications the specified initial offset is sufficient.
However, for those applications requiring additional null, an obvious temptation might be to place a pot between pins 1 and 8 with the wiper returned to V^{+}. This technique will usually result in reduced gain and increased offset drift due to mismatch in the TCR of the pot and R1 and R2. The technique is, therefore, not generally recommended.
The recommended technique for offset nulling the LH0044 is shown in Figure 2. Null is accomplished in A_{2} and all errors are divided by the closed loop gain of the LH0044. Additional offset and drift incurred due to the use of A_{2} is less than $1 \mu \mathrm{~V} / \mathrm{V}$ for V^{+}and V - changes and $0.01 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift for the values shown in Figure 2.

TL/K/5551-4
FIGURE 1. LH0044 Temperature Test Circuit

FIGURE 2. LH0044 Null Technique

Buffered Output for Heavy Loads

X1000 Instrumentation Amp

Precision Dual Tracking Regulator

*Wire-wound for minimum drift.
Line and load regulation $\leq 0.005 \%$
Typical Applications (Continued)

Precision Instrumentation Amplifier

Overall Gain	Input Stage Gain	Output Stage Gain
X1	X1	X1
X2	X1	X2
X5	X1	X5
X10	X10	X1
X20	X10	X2
X50	X10	X5
X100	X100	X1
X200	X100	X2
X500	X100	X5
X995	X199	X5

Noise Test Circuit

Noise Test Circuit (Continued)

VERT: $200 \mathrm{nV} / \mathrm{DIV}$ HORIZ: 5 SEC/DIV

Connection Diagram

TL/K/5551-2
Top View
Case is electrically isolated
Note: Compensation is not normally required. However, for maximum stability, a $0.01 \mu \mathrm{~F}$ capacitor should be placed between pins 7 and 8 when device is used below closed loop gains of 10.

Order Number LH0044H, LH0044CH, LH0044ACH or LH0044BH See NS Package Number H08B

National Semiconductor

LH0045/LH0045C Two Wire Transmitter

General Description

The LH0045/LH0045C Two Wire Transmitters are linear integrated circuits designed to convert the voltage from a sensor to a current, and send it through to a receiver, utilizing the same simple twisted pair as the supply voltage.
The LH0045 and LH0045C contain an internal reference designed to power the sensor bridge, a sensitive input amplifier, and an output current source. The output current scale can be adjusted to match the industry standards of 4.0 mA to 20 mA or 10 mA to 50 mA .

Designed for use with various sensors, the LHOO45/ LH0045C will interface with thermocouples, strain gauges, or thermistors. The use of the power supply leads as the signal output eliminates two or three extra wires in remote signal applications. Also, current output minimizes susceptibility to voltage noise spikes and eliminates line drop problems.

The LH0045/LH0045C is intended to fulfill a wide variety of process control, instrumentation, and data acquisition applications. The LH0045 is guaranteed over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas the LH 0045 C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

- High sensitivity
$>10 \mu \mathrm{~A} / \mu \mathrm{V}$
- Low input offset voltage
1.0 mV
- Low input bias current
2.0 nA
- Single supply operation

10 V to 50 V

- Programmable bridge reference
5.0 V to 30 V (LH0045G)
- Non-interactive span and null adjust
- Over compensation capability
- Supply reversal protection

Equivalent Schematic

Absolute Maximum Ratings
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2)
Supply Voltage (L1 to common)
Input Current
Input Voltage (Either Input to Common)
Differential Input Voltage
$+20 \mathrm{~mA}$
0 V to $\mathrm{V}_{\text {REF }}$
$\pm 20 \mathrm{~V}$
Output Current (Either L1 or L2)
50 mA
Reference Output Current

Power Dissipation	
LH0045G	
Operating Temperature Range	
LH0045	
LH0045C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD rating to be determined.	$+260^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	Limits						Units
		LH0045			LH0045C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (V_{OS})	$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~mA} \end{aligned}$		0.7	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		2.0	$\begin{aligned} & 7.5 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Offset Voltage Temperature Coefficient ($\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$)	$\mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~mA}$		3.0			6.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current (l_{B})	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		1.5	$\begin{aligned} & 7.0 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Offset Current (los)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.05	$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$		0.2	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Open Loop Transconductance ($\mathrm{g}_{\mathrm{MOL}}$)	$\begin{aligned} & \Delta I_{\mathrm{S}}=4.0 \mathrm{~mA} \text { to } 20 \mathrm{~mA} \\ & \Delta I_{\mathrm{S}}=10 \mathrm{~mA} \text { to } 50 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 10^{6} \\ 2 \times 10^{6} \end{gathered}$	$\begin{gathered} 10^{7} \\ 2 \times 10^{7} \end{gathered}$		$\begin{gathered} 10^{6} \\ 2 \times 10^{6} \end{gathered}$	$\begin{gathered} 10^{7} \\ 2 \times 10^{7} \end{gathered}$		$\begin{aligned} & \mu \Omega \\ & \mu \Omega \end{aligned}$
Supply Voltage Range (V)	LH0045G Pins 5 and 6 Open	$\begin{gathered} 9.0 \\ 15 \end{gathered}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 15 \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Voltage Range ($\mathrm{V}_{\text {IN }}$)	LH0045G Pins 5 and 6 Open	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 3.3 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 3.3 \\ & 7.6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Open Loop Output Impedance (ROUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} \text { to } 45 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=4.0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		1.0			1.0		M Ω
Common Mode Rejection Ratio (CMRR)	$\begin{aligned} & \Delta \mathrm{V}_{\mathbb{I N}}=1.0 \mathrm{~V} \text { to } 3.3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} \end{aligned}$	0.1	0.05		0.1	0.05		mV/V
Power Supply Rejection Ratio (PSRR)	$\begin{aligned} & \Delta V_{S}=10 \mathrm{~V} \text { to } 45 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} \end{aligned}$	0.1	0.01		0.1	0.01		mV / V
Open Loop Supply Current (lsol)	$\mathrm{V}_{\mathrm{S}}=50 \mathrm{~V}$		2.0	3.0		2.0	3.0	mA
Reference Voltage Load Regulation ($\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{I}_{\text {REF }}$)	$\begin{aligned} & \Delta l_{\mathrm{REF}}=0 \mathrm{~mA} \text { to } 2.0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \end{aligned}$		0.05	0.2		0.05	0.2	\%
Reference Voltage Line Regulation ($\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{V}_{\mathrm{S}}$)	$\begin{aligned} & \Delta V_{S}=10 \mathrm{~V} \text { to } 45 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.3	0.5		0.3	0.7	mV/V
Reference Voltage Temperature Coefficient ($\Delta \mathrm{V}_{\text {REF }} / \Delta \mathrm{T}$)	$\mathrm{I}_{\text {REF }}=2.0 \mathrm{~mA}$		0.004			0.004		\%/ ${ }^{\circ} \mathrm{C}$
Reference Voltage (VEF)	$\begin{aligned} & l_{\text {REF }}=2.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{REF}}=2.0 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}, \\ & \text { LH0045G Pins } 5 \text { and } 6 \text { Open } \end{aligned}$	$\begin{aligned} & 4.3 \\ & 8.6 \end{aligned}$	$\begin{gathered} 5.1 \\ 10.3 \end{gathered}$	$\begin{aligned} & 5.9 \\ & 12 \end{aligned}$	$\begin{aligned} & 4.3 \\ & 8.6 \end{aligned}$	$\begin{gathered} 5.1 \\ 10.3 \end{gathered}$	$\begin{gathered} 5.9 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Electrical Characteristics (Note 1) (Continued)

Parameter	Conditions	Limits						Units
		LH0045			LH0045C			
		Min	Typ	Max	Min	Typ	Max	
Resistor R9	$\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	95	100	105	95	100	105	Ω
Average Temperature Coefficient of R9 (TCR9)	$\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA}$		50	300		50	300	PPM $/{ }^{\circ} \mathrm{C}$
Resistor R5	$\mathrm{I}_{\mathrm{S}}=1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	950	1000	1050	950	1000	1050	Ω
Average Temperature Coefficient of R5 (TCR 5)	$\mathrm{I}_{\mathrm{S}}=1.0 \mathrm{~mA}$		50	300		50	300	PPM $/{ }^{\circ} \mathrm{C}$
Input Resistance ($\mathrm{R}_{\text {IN }}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		50			50		$\mathrm{M} \Omega$

Note 1: Unless otherwise specified, these specifications apply for $+10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+50 \mathrm{~V}$, pin 5 shorted to pin 6 on the LH0045G, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0045 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH0045C.
Note 2: Refer to RETS 0045G for LH0045G military specifications.

Connection Diagram

TL/K/5556-2
Top View
*Note: Pin 5 is shorted to Pin 6 to obtain a
Nominal $+5.1 \mathrm{~V}, \mathrm{~V}_{\text {REF }}$. Left open $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}$.
The case is isolated from the circuit
for both to 3 and to 8 .
Order Number LH0045G or LH0045CG
See NS Package Number G12B

Typical Performance Characteristics

TL/K/5556-3

Typical Applications

For $1 \mu \mathrm{~A}$ Full Scale, $\mathrm{R}_{\mathbb{I}}=\mathrm{V}_{\mathbb{I}} / 1 \mu \mathrm{~A}=$ Source Impedance @ Pin 11
e.g., V_{IN} (Full Scale) $=10 \mathrm{mV}, \mathrm{R}_{\mathrm{IN}}=10 \mathrm{k}$

Bridge Impedance $=0.8 \mathrm{k}, \mathrm{R}=10 \mathrm{k}-0.8 \mathrm{k}=9.2 \mathrm{k}$

Resistance Bridge Input Transmitter

Typical Applications (Continued)
Electronic Temperature Sensor

TL/K/5556-6

Remote Sensing Digital Thermometer

TL/K/5556-7
*All voltages indicated by () are measured with respect to common, pin 3.

Instrumentation Amplifier Transmitter

TL/K/5556-8
*All voltages indicated by () are measured with respect to common, pin 3

Applications Information

CIRCUIT DESCRIPTION AND OPERATION

A simplified schematic of the LH0045/LH0045C is shown in Figure 1. Differential amplifier, A_{2} converts very low level signals to an output current via transistor Q1. Reference voltage diode D1 is used to supply voltage for operation of A_{2} and to bias an external bridge. Current source I_{1} minimizes fluctuation in the bridge reference voltage due to changes in V_{S}.
In normal operation, the LH0045/LH0045C is used in conjunction with an external bridge comprised of $\mathrm{R}_{\mathrm{B} 1}$ through R_{B4}. The bridge resistors in conjunction with bridge return resistor, R5, bias A_{2} in its linear region and sense the input signal; e.g. $\mathrm{R}_{\mathrm{B} 4}$ might be a strain sensitive resistor in a strain gauge bridge. R_{T} is adjusted to purposely unbalance the bridge for 4.0 mA output (null) for zero signal input. This is accomplished by forcing $2.5 \mu \mathrm{~A}$ more through $\mathrm{R}_{\mathrm{B} 3}$ than $\mathrm{R}_{\mathrm{B} 4}$.
The $2.5 \mu \mathrm{~A}$ imbalance causes a voltage rise of $(2.5 \mu \mathrm{~A}) \times$ (100Ω) or $250 \mu \mathrm{~V}$ at the top of $\mathrm{R}_{\text {B3 }}$. Terminal L2 may be viewed as the output of an op amp whose closed loop gain is approximately $R_{F} / R_{B 3}=1600$.
The $250 \mu \mathrm{~V}$ rise at the top of $\mathrm{R}_{\mathrm{B} 3}$ causes a voltage drop of (1600) $\times(250 \mu \mathrm{~V})$ or -0.4 V across R9. An output current, I_{s}, equal to $0.4 \mathrm{~V} /$ R9 or 4.0 mA is thus established in Q1. If $R_{B 4}$ is now decreased by 1.0Ω (due to application of a strain force), a -1.0 mV change in input voltage will result. This causes L2 to drop to -2.0 V . The output current would then be $2.0 \mathrm{~V} / 100 \Omega$ or 20 mA (Full Scale). If $\mathrm{R}_{\mathrm{B} 3}$ is a resistor of the same material as $\mathrm{R}_{\mathrm{B} 4}$ but not subjected to the strain, temperature drift effects will be equal in the two legs and will cancel.
In actual practice the loading effects of $R_{B 2}$ on the gain (span) and R_{F} on output current must be taken into account.

THERMAL CONSIDERATIONS

The power output transistor of the LH0045 is thermally isolated from the signal amplifier, A_{2}. Nevertheless, a change in the power dissipation will cause a change in the temperature of the package and thus may cause amplifier drift. These temperature excursions may be minimized by careful heat sinking to hold the case temperature equal to the ambient. With the TO-8 (G) package this is best accomplished by a clip-on heat sink such as the Thermalloy \#2240A or the Wakefield \#215-CB. The case is electrically isolated from the circuit.
In addition, the power change can be minimized by operating the device from relatively high supply voltages in series with a relatively high load resistance. When the signal forces the supply current higher, the voltage across the device will be reduced and the internal power dissipation kept nearly equal to the low current, high voltage condition.
For example, take the case of a 4.0 mA to 20 mA transmitter with a 24 V supply and a 100Ω load resistance. The power at 4.0 mA is $(23.6 \mathrm{~V}) \times(4.0 \mathrm{~mA})=94.4 \mathrm{~mW}$ while at full scale the power is $(22 \mathrm{~V}) \times(20 \mathrm{~mA})=440 \mathrm{~mW}$. The net change in power is 345 mW . This change in power will cause a change in temperature and thus a change in offset voltage of A_{2}.
If the optimum load resistance of 800Ω (from Figure 2) is used, the power at null is [24V - $(4.0 \mathrm{~mA}) \times(800 \Omega)$] $(4.0 \mathrm{~mA})=83 \mathrm{~mW}$. The power at full scale is [24V $(20 \mathrm{~mA}) \times(800 \Omega)](20 \mathrm{~mA})=160 \mathrm{~mW}$. The net change is 77 mW . This change is significantly less than without the resistor.

Applications Information (Continued)

If the supply voltage is increased to 48 V and the load resistance chosen to be the optimum value from Figure 2 (1.95k), then the power at null is [48V - $(4.0 \mathrm{~mA}) \times(1.95 \mathrm{k})$] $(4.0 \mathrm{~mA})=160.8 \mathrm{~mW}$ and the power at full scale is [48(20) $\times(1.95 \mathrm{k})](20 \mathrm{~mA})=180 \mathrm{~mW}$ for a net change of 19.2 mW .

TL/K/5556-10
FIGURE 2. Optimum Load Resistance vs Supply Voltage
Note that the optimized load resistance is actually the sum of the line resistance, receiver resistances and added external load resistance. However, in many applications the line resistance and receiver resistances are negligible compared to the added external load resistance and thus may be omitted in calculations.

AUXILIARY PINS

The LH0045 has several auxiliary pins designed to provide the user with enhanced flexibility and performance. The following is a discussion of possible uses for these pins.

Programmable VREF-Pins 5 and 6

The LH0045G provides pins 5 and 6 to allow the user to program the value of the reference voltage. The factory trimmed 10 V value is obtained by leaving 5 and 6 open. A short between 5 and 6 will program the reference to a nominal 5.1V.
A resistor or pot may be placed between pin 5 and common (pin 3) to obtain reference voltages between 10 V and 30 V or between pin 5 and pin 7 for reference voltages below 10 V . Increased reference voltage might be useful to extend the positive common mode range or to accommodate transducers requiring higher supply voltage. A plot of resistance between pin 5 and pin 3 versus $V_{\text {REF }}$ is given in the typical electrical characteristics section. $V_{\text {REF }}$ may be adjusted about its nominal value by arranging a pot from $V_{\text {REF }}$ to common and feeding a resistor from the wiper into pin 5 so that it may either inject or extract current. Lastly, pin 5 may be used as a nominal 1.7 V reference point, if care is taken not to unduly load it with either DC current or capacitance. Obviously, higher supply voltages must be used to obtain the higher reference values. The minimum supply voltage to reference voltage differential is about 4.0V.

Bridge Return

An applications resistor is provided in the LH0045 with a nominal value of $1.0 \mathrm{k} \Omega$. The primary application for the resistor is to maintain the minimum common mode input voltage (1.0 V) required by the signal amplifier, A_{2}. A typical input application might utilize a strain gauge or thermistor bridge where the resistance of the sensor is 100Ω. Since only 1.0 mA may be drawn from $\mathrm{V}_{\text {REF }}$, the $1.0 \mathrm{k} \Omega$ bridge return resistor is used to bias A_{2} in its linear region as shown in Figure 3.

TL/K/5556-11
FIGURE 3. Use of Bridge Return

Over Compensation-PIn 8

Over compensation of the signal amplifier, A_{2}, may be desirable in DC applications where the noise-bandwidth must be minimized. A capacitor should be placed between pin 8 and pin 3, common.
Typically,

$$
f_{3 \mathrm{db}}=\frac{1}{2 \pi R\left(C_{1}+C_{E X T}\right)}
$$

where:

$$
\mathrm{R}=400 \mathrm{M} \Omega
$$

C1 $=$ Internal Compensation Capacitor $=100 \mathrm{pF}$
$\mathrm{C}_{\mathrm{EXT}}=$ External (overcompensation) Capacitor

Input Guard-Pins 9 and 12

Pins 9 and 12 have no internal connection whatever and thus need not be used. In some critical low current applications there may be an advantage to running a guard conductor between the inputs and the adjacent pins to intercept stray leakage currents. Pins 9 and 12 may be connected to this guard to simplify the PC board layout and allow the guard to continue under the device. (See AN-63 for further discussion of guarding techniques.)

NULL AND SPAN ADJUSTMENTS

Most applications of the LH0045 will require potentiometers to trim the initial tolerances of the sensor, the external resistors and the LH0045 itself. The preferred adjustment proce-

Applications Information (Continued)

dure is to stimulate the sensor, alternating between two known values, such as zero and full scale. The span and null are adjusted by monitoring the output current on a chart recorder, meter, or oscilloscope. A full scale stimulus is applied to the sensor and the span potentiometer adjusted for the desired full scale. Then, to adjust the null, apply a zero percent signal to the sensor and adjust the null potentiometer for the desired zero percent current indication.
If it is impractical to cycle the sensor during the calibration procedure, the signal may be simulated electrically with two cautions: 1) the calibration signal must be floating and 2) the calibration thus achieved does not account for sensor inaccuracies and/or errors in the signal generator.

SENSOR SELECTION

Generally it is easiest to use an insulated sensor. If it is necessary to use a grounded sensor, the power supply must be isolated from chassis ground to avoid extraneous circulating currents.

DESIGN EXAMPLE

There are numerous circuit configurations that may be utilized with the LH0045. The following is intended as a general design example which may be extended to specific cases.

Circult Requirements

Output Characteristics
a. $0 \%=4.0 \mathrm{~mA}$ (NULL)
b. $100 \%=20 \mathrm{~mA}($ SPAN $=16 \mathrm{~mA})$
c. Supply Voltage $=24 \mathrm{~V}$

Input (Sensor) Characteristics
a. $V_{\text {IN }}=100 \mathrm{mV}$ (Full Scale)
b. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{mV}$ (Zero Scale)
c. Source Impedance $\leq 1.0 \Omega$

General Characteristics
a. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
b. Overall Accuracy $\leq 0.5 \%$

TL/K/5556-12
FIGURE 4. Design Example Circuit

Selection of $\mathbf{R F}_{\mathbf{F}}$

Input bias current to the LH0045C is guaranteed less than 10 nA . Furthermore, the change in I_{B} over the temperature range of interest is typically under 1.0 nA . If I_{2} SPAN is selected to be $1.0 \mu \mathrm{~A}\left(1000 \Delta l_{\mathrm{B}}\right)$ errors due to $\Delta \mathrm{I}_{\mathrm{B}} / \Delta \mathrm{T}$ will be less than 0.1%. For SPAN $=16 \mathrm{~mA}$.

$$
V_{\mathrm{SPAN}}=\Delta \mathrm{V}_{1}=-(16 \mathrm{~mA})(\mathrm{R9})=-1.6 \mathrm{~V}
$$

where R9 $=$ Internal Current Set Resistor $=100 \Omega$. For l_{2} SPAN $=1.0 \mu \mathrm{~A}$,

$$
\begin{aligned}
& R_{F}=\frac{V_{\text {SPAN }}}{l_{2} \text { SPAN }}=\frac{-1.6 \mathrm{~V}}{1.0 \mu \mathrm{~A}}=1.6 \mathrm{M} \\
& R_{F}=1.6 \mathrm{M} \Omega
\end{aligned}
$$

Note: For applications with DC gain (ratio of feedback and input resistance) less than 8 , it is recommended that a Schottky barrier diode be connected between pin 11 (cathode) and pin 3 (anode). This prevents the possibility of latch up resulting from the inverting input being forced beyond the amplifier supply voltage during power up.

Selection of $\mathbf{R}_{\mathbf{B} 1}$ and $\mathbf{R}_{\mathbf{B} 2}$

The minimum input common mode voltage, $\mathrm{V}_{\text {MIN }}$ required at the pin 10 input of A_{2} is 1.0 V . Furthermore, the maximum open loop supply current (IsoL) drawn by the LH0045 is 3.0 mA . That leaves $\mathrm{I}_{\mathrm{MIN}}=4.0 \mathrm{~mA}-3.0 \mathrm{~mA}=1.0 \mathrm{~mA}$ left to bias the bridge at null. Hence:

$$
R_{\mathrm{B} 2} \geq \frac{V_{\mathrm{MIN}}}{I_{\mathrm{MIN}}}=\frac{1.0 \mathrm{~V}}{1.0 \mathrm{~mA}}=1.0 \mathrm{k} \Omega
$$

And,

$$
\begin{aligned}
\frac{V_{\text {REF }} R_{B 2}}{R_{B 1}+R_{B 2}} & =1.0 \mathrm{~V} \\
R_{B 1} & =R_{B 2} \frac{V_{R E F}-1.0 \mathrm{~V}}{1.0 \mathrm{~V}} \\
& =1.0 \mathrm{k}(5.1-1.0)
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{B} 1} \cong 4.0 \mathrm{k} \Omega
$$

Alternatively, an LM113, 1.22V reference diode, or an op amp such as the LM108 may be used to bias the signal amplifier, A_{2}, as shown in Figure 5. These techniques have the advantage of lowering the impedance seen at pin 10.

Selection of Ros

ROS is selected to provide the null current of 4.0 mA , V_{1} NULL $=4.0 \mathrm{~mA} \times 100 \Omega=0.4 \mathrm{~V}$. From previous calculations we know that $\mathrm{V}_{\mathrm{MIN}}=1.0 \mathrm{~V}$. The voltage pin 11, V_{2} is:

$$
V_{2}=V_{M I N}+V_{O S} \cong V_{M I N}
$$

for $\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$
Hence, the current required to generate the null voltage, I_{2} NULL is:

$$
\begin{aligned}
& \mathrm{I}_{2} \mathrm{NULL}=\frac{\mathrm{V}_{\mathrm{MIN}}-\mathrm{V}_{1} \mathrm{NULL}}{R_{F}} \\
& =\frac{1.0 \mathrm{~V}-(-0.4 \mathrm{~V})}{1.6 \mathrm{M} \Omega}=0.875 \mu \mathrm{~A}
\end{aligned}
$$

This current must be provided by R_{OS} from $\mathrm{V}_{\mathrm{REF}}$; hence:

$$
R_{O S}=\frac{V_{\text {REF }}-V_{\text {MIN }}}{I_{2 ~ N U L L}}
$$

Applications Information (Continued)

TL/K/5556-14

TL/K/5556-13
FIGURE 5. Alternate Blasing Techniques

The nominal value for $V_{\text {REF }}$ is 5.1 V , therefore the nominal value for Ros is:

$$
\frac{5.1 \mathrm{~V}-1.0 \mathrm{~V}}{0.875 \mu \mathrm{~A}} \text { or }
$$

$$
\mathrm{R}_{\mathrm{OS}}=4.6 \mathrm{M} \Omega
$$

It should be noted however, that the variation of $\mathrm{V}_{\text {REF }}$ may be as high as 5.9 V or as low as 4.3 V . Furthermore, the tolerances of R9 (100 $), \mathrm{R}_{\mathrm{B} 1} . \mathrm{R}_{\mathrm{B} 2}$, and the input V_{OS} of A_{2} would predict values for R_{OS} as low as 3.98 M and as high as 5.43 M . The implication is that in the specific case, Ros should be implemented with a pot, of appropriate value, in order to accommodate the tolerances of $\mathrm{V}_{\mathrm{REF}}, \mathrm{R} 9, \mathrm{~V}_{\mathrm{OS}}$, $R_{B 1}, R_{B 2}$, etc.

Selection of R

SPAN is required to be 16 mA . From feedback theory and the gain equation we know:

$$
I_{S P A N}=V_{I N} \frac{R_{F}}{R} \times \frac{1}{R 9}
$$

where:

$$
\begin{aligned}
\therefore R & =\frac{\left(V_{I N}\right)\left(R_{F}\right)}{\left(I_{\text {SPAN }}(R 9)\right.} \\
R & =\frac{(100 \mathrm{mV})(1.6 \mathrm{M} \Omega)}{(16 \mathrm{~mA})(100 \Omega)} \\
R & =100 \mathrm{k} \Omega
\end{aligned}
$$

As before, uncertainties in device parameters might dictate that R_{F} be made a pot of appropriate value.

Summary of the Steps to Determine External Resistor Values

1. \quad Select $I_{\text {fULL }}$ scale $=I_{\text {NULL }}+I_{\text {SPAN }}$ for the desired application. (lNULL is frequently 4.0 mA and $I_{\text {FULL }}$ SCALE is frequently 20 mA .)

$$
\begin{aligned}
& \text { R = Total impedance in signal path between } \\
& \text { pin } 10 \text { and pin } 11 \\
& \text { R9 = Current setting resistor }=100 \Omega \\
& \mathrm{~V}_{\mathrm{IN}}=\text { Full scale input voltage }=100 \mathrm{mV}
\end{aligned}
$$

2. Select I_{2} SPAN so that it is large compared to $\Delta \mathrm{I}_{\mathrm{B}}$. $1000 \Delta I_{B}$ is a good value.
3. \quad Determine $\mathrm{V}_{\text {SPAN }}=\Delta \mathrm{V}_{2}=\left(I_{\text {SPAN }}\right)(\mathrm{R} 9)$.
4. Determine $R_{F}=\left(V_{\text {SPAN }} / I_{2}\right.$ SPAN $)$
5. Select

$$
\begin{aligned}
\mathrm{R}_{\mathrm{B} 2} & \geq \frac{\mathrm{V}_{\mathrm{MIN}}}{\mathrm{I}_{\mathrm{MIN}}} \\
\mathrm{R}_{\mathrm{B} 2} & \geq \frac{1 \mathrm{~V}}{\mathrm{I}_{\mathrm{NULL}}-\mathrm{I}_{\mathrm{SOL}}}
\end{aligned}
$$

Where:
$\mathrm{V}_{\mathrm{MIN}}=$ minimum common mode input voltage
$\mathrm{I}_{\mathrm{MIN}}=$ minimum available bridge current
$I_{\text {SOL }}=$ maximum open loop supply current
6. Determine

$$
R_{B 1}=R_{B 2} \frac{V_{\mathrm{REF}}-V_{\mathrm{MIN}}}{V_{\mathrm{MIN}}}
$$

7. \quad Determine V_{2} NULL $=1_{\text {NULL }}$ R9
8. Determine

$$
\mathrm{I}_{2} \mathrm{NULL}=\frac{\mathrm{V}_{\mathrm{MIN}}-\mathrm{V}_{2} \mathrm{NULL}}{\mathrm{R}_{\mathrm{F}}}
$$

9. Determine

$$
\mathrm{R}_{\mathrm{OS}}=\frac{\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{MIN}}}{\mathrm{l}_{2 \text { NULL }}}
$$

10. Determine

$$
R=\frac{\left(V_{I N}\right)\left(R_{F}\right)}{\left(I_{S P A N}\right)(R 9)}
$$

Where:
$\mathrm{V}_{\mathrm{IN}}=$ Sensor full scale output voltage

Applications Information (Continued)

ERROR BUDGET ANALYSIS

Errors Due to Change in $\mathbf{V}_{\text {REF }}\left(\Delta \mathbf{V}_{\text {REF }}\right)$

There are several factors which could cause a change in $V_{\text {REF }}$. First, as the ambient temperature changes, a $V_{\text {REF }}$ drift of $\pm 0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ might be expected. Secondly, supply voltage variations could cause a $0.5 \mathrm{mV} / \mathrm{V}$ change in $\mathrm{V}_{\mathrm{REF}}$. Lastly, self-heating due to power dissipation variations can cause drift of the reference.
An overall expression for change in $V_{\text {REF }}$ is:

Where:

$$
\begin{aligned}
& \theta= \text { Thermal resistance, either } \\
& \text { junction-to-ambient or junction- } \\
& \text { to-case }
\end{aligned}
$$

$\Delta P_{\text {DISS }}=$ Change in avg. power dissipation
$\Delta T_{A}=$ Change in ambient temperature
$\frac{\Delta V_{\text {REF }}}{\Delta T}=$ Reference voltage drift (in $\mathrm{mV} /{ }^{\circ} \mathrm{C}$)

$$
\frac{\Delta V_{\mathrm{REF}}}{\Delta \mathrm{~V}_{\mathrm{S}}}=\text { Line regulation of } \mathrm{V}_{\mathrm{REF}}
$$

Several steps may be taken to minimize the bracketed terms in the equation above. For example, operating the LH0045G with a heat sink reduces the thermal resistance from $\theta_{\mathrm{jA}}=83^{\circ} \mathrm{C} / \mathrm{W}$ to $\theta_{\mathrm{jC}}=60^{\circ} \mathrm{C} / \mathrm{W}$. The $\Delta \mathrm{P}_{\mathrm{DISS}}$ term may be significantly reduced using the power minimization technique described under "Thermal Considerations". For the design example, $\Delta \mathrm{P}_{\text {diss }}$ is reduced from 384 mW to $77 \mathrm{~mW}\left(\mathrm{R}_{\mathrm{L}}=800 \Omega\right)$. Evaluating the LH0045G with a heat sink and $R_{L}=800 \Omega$ yields.

$$
\begin{gathered}
\Delta \mathrm{V}_{\mathrm{REF}}=\left(\frac{60^{\circ} \mathrm{C}}{\mathrm{~W}}(0.077 \mathrm{~W})+75^{\circ} \mathrm{C}\right)\left(\frac{0.2 \mathrm{mV}}{{ }^{\circ} \mathrm{C}}\right) \\
+\frac{0.5 \mathrm{mV}}{\mathrm{~V}}(16 \mathrm{~V})
\end{gathered}
$$

$$
\Delta V_{\text {REF }}=24 \mathrm{mV}
$$

An expression for error in the output current due to $\Delta V_{\text {REF }}$ is:

$$
\frac{\Delta l_{\mathrm{S}}}{I_{\text {SPAN }}}(\%)=100 \frac{(\mathrm{~K})\left(\mathrm{R}_{\mathrm{OS}}\right)\left(\Delta V_{\text {REF }}\right)-(1-K)\left(\Delta V_{\text {REF }}\right)(\mathrm{RF})}{(R 9)\left(R_{\text {OS }}\right)\left(I_{\text {SPAN }}\right.}
$$

Where:

$$
\begin{aligned}
\Delta V_{\mathrm{REF}} & =\text { Total change in } \mathrm{V}_{\mathrm{REF}} \\
\mathrm{~K} & =\frac{\mathrm{R}_{\mathrm{B} 2}}{\mathrm{R}_{\mathrm{B} 1}+\mathrm{R}_{\mathrm{B} 2}} \\
\mathrm{R} 9 & =\text { Current set resistor } \\
\text { ISPAN } & =\text { Change in output current from } \\
& 0 \% \text { to } 100 \%
\end{aligned}
$$

For example, $\Delta \mathrm{V}_{\text {REF }}=24 \mathrm{mV}, \mathrm{K}=0.2, \mathrm{R9}=100 \Omega$, ISPAN $=16 \mathrm{~mA}$. Hence, a 0.12% worst case error might be expected in output currents due to $\Delta \mathrm{V}_{\text {REF }}$ effects.

Error Due to Vos Drift

One of the primary causes of error in I_{S} is caused by $V_{O S}$ drift. Drift may be induced either by self heating of the device or ambient temperature changes. The input offset voltage drift, $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$, is nominally $3.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ per millivolt of initial offset. An expression for the total temperature dependent drift is:

$$
\Delta \mathrm{V}_{\mathrm{OS}}=\left[(\theta)\left(\Delta \mathrm{P}_{\mathrm{DISS}}\right)+\Delta \mathrm{T}_{\mathrm{A}}\right] \frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}
$$

Where:

$$
\left.\begin{array}{rl}
\theta= & \text { Thermal resistance either junction- } \\
& \text { to-ambient or junction-to-case }
\end{array}\right\}
$$

The bracketed term may be minimized by heat sinking and using the power minimization technique described under "Thermal Considerations". For the LH0045G design example, $\Delta V_{\text {OS }}=0.352 \mathrm{mV}$ under ambient conditions and 0.263 mV using a heat sink and $\mathrm{R}_{\mathrm{L}}=800 \Omega$.

The error in output current due to $\Delta \mathrm{V}_{\mathrm{OS}}$ is:

$$
\begin{aligned}
\frac{\Delta I_{\text {S }}}{I_{\text {SPAN }}}(\text { in } \%) & =100 \times \frac{\Delta V_{\text {OS }}}{V_{I N}(F U L L S C A L E)} \\
& =100 \times \frac{R_{F}}{(R)(R 9)\left(I_{\text {SPAN }}\right)}
\end{aligned}
$$

For the design example, $\Delta \mathrm{V}_{\mathrm{OS}}=0.263 \mathrm{mV}, \mathrm{V}_{\mathrm{IN}}$ (Full Scale) $=100 \mathrm{mV}$. Hence, $0.26 \mathrm{mV} \div 100 \mathrm{mV}$ or 0.26% worst case error could be expected in output current effects.

Errors Due to Changes in R9

The temperature coefficient of R9 (TCR) will produce errors in the output current. Changes in R9 may be caused by selfheating of the device or by ambient temperature changes.

$$
\frac{\Delta I_{\mathrm{S}}}{I_{\mathrm{SPAN}}}(\text { in } \%)=100 \frac{\Delta \mathrm{R9}}{\Delta T}\left(\theta \mathrm{P}_{\mathrm{DISS}}+\Delta T_{\mathrm{A}}\right)
$$

Where:
$\theta \quad=$ Thermal resistance either from junction-to-ambient or junction-tocase
$\Delta \mathrm{P}_{\text {DISS }}=$ Change in average power dissipation

Applications Information (Conitiveod)

$$
\frac{\Delta \mathrm{R} 9}{\Delta T}=\mathrm{TCR} \text { of } \mathrm{R} 9
$$

$\Delta T_{A}=$ Change in ambient temperature

Using the LH0045G design example, $\Delta \mathrm{R} 9 / \Delta \mathrm{T}=$ $0.03 \% /{ }^{\circ} \mathrm{C}$, hence a 3.2% worst case error in output current might be expected for operation without a heat sink over the temperature range.
Heat sinking the device and using $R_{L}=800 \Omega$, reduces $\Delta l_{\text {S }} / I_{\text {SPAN }}$ to 2.3%.
The error analysis indicates that the internal current set resistor, R9, is inadequate to satisfy high accuracy design criterion. In these instances, an external 100Ω resistor should be substituted for R9.
Obviously, the TCR of the resistor should be low. Metal film or wire-wound resistors are the best choice offering TCR's less than $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ versus $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical drift for R9.

External Causes of Error

The components external to the LH0045 are also critical in determining errors. Specifically, the composition of resistors $\mathrm{R}_{\mathrm{B} 1}, \mathrm{R}_{\mathrm{OS}}, \mathrm{R}_{\mathrm{F}}, \mathrm{R}$, etc. in the design example will influence both drift and long term stability.
In particular, resistors and potentiometers of wire wound construction are recommended. Also, metal-film resistors with low TCR ($\leq 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) may be used for fixed resistor applications.

Error Analysis Summary

The overall errors attributable to the LH0045 may be minimized using heat sinking, and utilization of an external load resistor. Although R_{L} reduces the compliance of the circuit, its use is generally advisable in precision applications. External components should be selected for low TCR and long term stability.
The design example errors, using an external 100Ω wire wound resistor for R9 equal:

SOCKETS AND HEAT SINKS

Mounting sockets, test sockets and heat sinks are available for the G package.

The following or their equivalents are recommended:

Sockets:

$$
\begin{array}{ll}
\text { G - 12-Lead TO-8: } & \text { Barnes Corp. \#MGX-12 } \\
& \text { Textool \#212-100-323 }
\end{array}
$$

Heat Sinks:

G - 12-Lead TO-8: Thermalloy \# 2240A
Wakefield \#215-CB

Definition of Terms

Input Offset Voltage, $V_{O S}$: The voltage which must be applied between the input terminals through equal resistances to obtain 4.0 mA of supply (output) current.
Input Bias Current, I_{B} : The average of the two input currents.
Input Offset Current, los: The difference in the current into the two input terminals when the supply (output) current is 4.0 mA .

Input Resistance, $\mathbf{R}_{\mathbf{I N}}$: The ratio of the change in input voltage to the change in input current at either input with the other input connected to $1.0 \mathrm{~V}_{\mathrm{DC}}$.
Open Loop Transconductance, gmol $_{\text {: }}$ The ratio of the supply (output) current SPAN to the input voltage required to produce that SPAN.
Open Loop Output Resistance, Rout: The ratio of a specified supply (output) voltage change to the resulting change in supply (output) current at the specified current level.
Common Mode Rejection Ratio, CMRR: The ratio of the change in input offset voltage to the peak-to-peak input voltage range.
Power Supply Rejection Ratio, PSRR: The ratio of the change in input offset voltage to the change in supply (output) voltage producing it.
Input Voltage Range, $\mathbf{V}_{\mathbf{I N}}$: The range of voltages on the input terminals for which the device operates within specifications.
Open Loop Supply Current, Is: The supply current required with the signal amplifier A_{2} biased off (inverting input positive, non-inverting input negative) and no load on the $V_{\text {REF }}$ terminal.
This represents a measure of the minimum low end signal current.
Reference Voltage Line Regulation, $\Delta \mathbf{V}_{\mathbf{R E F}} / \Delta \mathbf{V}_{\mathbf{S}}$: The ratio of the change in $V_{\text {REF }}$ to the peak-to-peak change in supply (output) voltage producing it.
Reference Voltage Load Regulaion, $\Delta \mathbf{V}_{\text {REF }} / \Delta \mathbf{I}_{\text {REF }}$: The change in $V_{\text {REF }}$ for a stipulated change in IREF.

General Description

The LH0061/LH0061C is a wide band, high speed, operational amplifier capable of supplying currents in excess of 0.5 ampere at voltage levels of $\pm 12 \mathrm{~V}$. Output short circuit protection is set by external resistors, and compensation is accomplished with a single external capacitor. With a suitable heat sink the device is rated at 20 W .
The wide bandwidth and high output power capabilities of the LH0061/LH0061C make it ideal for such applications as AC servos, deflection yoke drivers, capstan drivers, and audio amplifiers. The LH0061 is guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the LH 0061 C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

■ Output current	0.5 A
■ Wide large signal bandwidth	1 MHz
■ High slew rate	$70 \mathrm{~V} / \mu \mathrm{s}$
■ Low standby power	240 mW
■ Low input current	300 nA Max

Schematic and Connection Diagrams

TO-3 Package

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)
Supply Voltage
Power Dissipation Differential Input Current (Note 2)
Input Voltage (Note 3)

Peak Output Current
2A
Output Short Circuit Duration (Note 4) Continuous
Operating Temperature Range

LH0061	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0061C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$260^{\circ} \mathrm{C}$
ESD rating to be determined.	

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $260^{\circ} \mathrm{C}$
ESD rating to be determined.

DC Electrical Characteristics (Note 1)

Parameter	Conditions	Limits						Units
		LH0061			LH0061C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 10 \mathrm{k} \Omega, T_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		1.0	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		3.0	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	mV mV
Voltage Drift with Temperature	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Change with Output Power			5			5		$\mu \mathrm{V} /$ watt
Input Offset Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		30	$\begin{aligned} & 100 \\ & 300 \end{aligned}$		50	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	nA nA
Offset Current Drift with Temperature			1			1		$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		100	$\begin{array}{r} 300 \\ 1.0 \end{array}$		200	$\begin{array}{r} 500 \\ 1.0 \end{array}$	nA $\mu \mathrm{A}$
Input Resistance	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \Delta \mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		60	80		dB
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 11			± 11			V
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \Delta \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$	70	80		50	70		dB
Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=20 \Omega \end{aligned}$	50 5	100		$\begin{array}{r} 25 \\ 2.5 \end{array}$	50		V / mV V/mV
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \Omega$	± 10	± 12		± 10	± 12		V
Output Short Circuit Current	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SC}}=1.0 \Omega$		600			600		mA
Power Supply Current	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		7	10		10	15	mA
Power Consumption	$\mathrm{V}_{\text {S }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$		210	300		300	450	mW

AC Electrical Characteristics ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}$)								
Parameter	Conditions	Limits						Units
		LH0061			LH0061C			
		Min	Typ	Max	Min	Typ	Max	
Slew Rate	$A_{V}=+1, R_{L}=100 \Omega$	25	70		25	70		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$R_{L}=100 \Omega$		1			1		MHz
Small Signal Transient Response			30			30		ns
Small Signal Overshoot			5	20		10	30	\%
Settling Time (0.1\%)	$\Delta V_{\text {IN }}=10 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$		0.8			0.8		$\mu \mathrm{s}$
Overload Recovery Time			1			1		$\mu \mathrm{s}$
Harmonic Distortion	$f=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.2			0.2		\%

Note 1: Specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}$, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+125^{\circ} \mathrm{C}$ for the LH 0061 K and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+85^{\circ} \mathrm{C}$ for the LH0061CK. Typical values are for $T_{C}=25^{\circ} \mathrm{C}$.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Excessive current will flow if a differential voltage in excess of 1V is applied between the inputs without limiting resistors.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Rating applies as long as package power rating is not exceeded.
Note 5: Refer to RETS0061K for LH0061K military specifications.

Typical Performance Characteristics

Typical Applications

7 National Semiconductor
 LH0062/LH0062C High Speed FET Operational Amplifier

General Description

The LH0062/LH0062C is a precision, high speed FEXT input operational amplifier with more than an order of magnitude improvement in slew rate and bandwidth over conventional FET IC op amps. In addition it features very closely matched input characteristics, very high input impedance, and ultra low input currents with no compromise in noise, common mode rejection ratio or open loop gain. The device has internal unity gain frequency compensation, thus assuring stability in all normal applications. This considerably simplifies its application, since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feedforward compensation will boost the slew rate to over 120 $\mathrm{V} / \mu \mathrm{s}$ and almost double the bandwidth. (See LB-2, LB-14, and LB-17 for discussions of the application of feed-forward techniques). Over-compensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under $1 \mu \mathrm{~s}$. In addition it is free of latch-up and may be simply offset nulled with negligible effect on offset drift or CMRR.

The LH0062 is designed for applications requiring wide bandwidth, high slew rate and fast settling time while at the same time demanding the high input impedance and low input currents characteristic of FET inputs. Thus it is particularly suited for such applications as video amplifiers, sample/hold circuits, high speed integrators, and buffers for A/D conversion and multiplex system. The LH0062 is specified for the full military temperature range of -55° to $+125^{\circ} \mathrm{C}$ while the LH0062C is specified to operate over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- High slew rate
$70 \mathrm{~V} / \mu \mathrm{s}$
- Wide bandwidth

15 MHz

- Settling time (0.1%)
$1 \mu \mathrm{~s}$
- Low input offset voltage

2 mV

- Low input offset current 1 pA
- Wide supply range $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Internal $6 \mathrm{~dB} /$ octave frequency compensation
- Pin compatible with std IC op amps (TO-5 pkg)

Schematic Diagram

Absolute Maximum Ratings			
If Military/Aerospace specified devices are required,	Short Circuit Duration	Continuous	
please contact the National Semiconductor Sales	Operating Temperature		
Office/Distributors for availability and specifications.	LH0062	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
(Note 5)	$\pm 20 \mathrm{~V}$	LH0062C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage	500 mW	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (see graph)	$\pm 5 \mathrm{~V}$	ESD rating to be determined.	$260^{\circ} \mathrm{C}$
Input Voltage (Note 1)	$\pm 30 \mathrm{~V}$		
Differential Input Voltage (Note 2)			

DC Electrical Characteristics (Note 3)

Parameter	Conditions	Limits						Units
		LH0062			LH0062C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega \end{aligned}$		2	$\begin{aligned} & 5 \\ & 7 \\ & \hline \end{aligned}$		10	$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		25			25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			4			5		$\mu \mathrm{V} /$ week
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$		1	$\begin{gathered} 5 \\ 0.2 \\ \hline \end{gathered}$	pA nA
Temperature Coefficient of Input Offset Current		Doubles every $10^{\circ} \mathrm{C}$			Doubles every $10^{\circ} \mathrm{C}$			
Offset Current Drift with Time			0.1			0.1		pA/week
Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 4) } \\ & \hline \end{aligned}$		5	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$		10	$\begin{aligned} & 65 \\ & 2 \\ & \hline \end{aligned}$	pA nA
Temperature Coefficient of Input Bias Current		Doubles every $10^{\circ} \mathrm{C}$			Doubles every $10^{\circ} \mathrm{C}$			
Differential Input Resistance			1012			1012		Ω
Common Mode Input Resistance			1012			1012		Ω
Input Capacitance			4			4		pF
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 10	± 12		± 10	± 12		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	80	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\text {S }} \leq \pm 15 \mathrm{~V}$	80	90		70	90		dB
Large Signal Voltage Gain	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V} \\ & R_{L}=2 \mathrm{k} \Omega, V_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	50 25	200		25 25	160		V/mV V / mV
Output Voltage Swing	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}, \\ & V_{S}= \pm 15 \mathrm{~V} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	± 13		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	13		V V
Output Current Swing	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$	± 10	± 15		± 10	± 15		mA
Output Resistance			75			75		Ω
Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25			25		mA
Supply Current	$V_{S}= \pm 15 \mathrm{~V}$		5	8		7	12	mA
Power Consumption	$V_{S}= \pm 15 \mathrm{~V}$			240			360	mW

AC Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$

Parameter	Conditions	Limits						Units
		LH0062			LH0062C			
		Min	Typ	Max	Min	Typ	Max	
Slew Rate	Voltage Follower	50	70		50	70		$\mathrm{V} / \mu \mathrm{s}$
Large Signal Bandwidth	Voltage Follower		2			2		MHz
Small Signal Bandwidth			15			15		MHz
Rise Time			25			25		ns
Overshoot			10			15		\%
Settling Time (0.1\%)	$\Delta V_{\text {IN }}=10 \mathrm{~V}$		1			1		$\mu \mathrm{s}$
Overload Recovery			0.9			0.9		$\mu \mathrm{s}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=10 \mathrm{~Hz}$		150			150		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{o}}=100 \mathrm{~Hz}$		55			55		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{0}=1 \mathrm{kHz}$		35			35		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{O}}=10 \mathrm{kHz}$		30			30		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Voltage	$\mathrm{BW}=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		12			12		$\mu \mathrm{Vrms}$
Input Noise Current	$\mathrm{BW}=10 \mathrm{~Hz}$ to 10 kHz		<0.1			<0.1		pArms

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: Inputs are protected from excessive voltages by back-to-back diodes. Input currents should be limited to 1 mA .
Note 3: Unless otherwise specified, these specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LH 0062 and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LH0062C. Typical values are given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Power supplies should be bypassed with $0.1 \mu \mathrm{~F}$ ceramic capacitors.
Note 4: Input currents are a strong function of temperature. Due to high speed testing they are specified at a junction temperature $\mathrm{T}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, self heating will cause an increase in current in manual tests. $25^{\circ} \mathrm{C}$ spec is guaranteed by testing at $125^{\circ} \mathrm{C}$.
Note 5: Refer to RETS0062X for LH0062D and LH0062H military specifications.

Connection Diagrams

TL/K/6862-2
Top View
Order Number LH0062H or LH0062CH
See NS Package Number H08D

Dual-In-Line Package

Order Number LH0062D or LH0062CD
See NS Package Number D14E

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Auxiliary Circuits

Feedforward Compensation for Greater Inverting Slew Rate \dagger
†Slew rate typically $150 \mathrm{~V} / \mu \mathrm{s}$. *Balance circuit necessary for increased slew.

Compensation for Minimum Settling \dagger Time

TL/K/6862-8

Overcompensation

TL/K/6862-10

Offset Balancing

TL/K/6862-7

Isolating Large Capacitive Loads

TL/K/6862-9

Boosting Output Drive to $\pm 100 \mathrm{~mA}$

TL/K/6862-11

Typical Applications*

Fast Voltage Follower

TL/K/6862-12

Fast Summing Amplifier

TL/K/6862-13

Differential Amplifier

Typical Applications* (Continued)

High Speed Subtractor

TL/K/6862-15
Fast Precision Voltage Comparator

TL/K/6862-16
Wide Range AC Voltmeter

Typical Applications* (Continued)

Video DC Restoring Amplifier

TL/K/6862-18
High Speed Positive Peak Detector

TL/K/6862-19
Precision Integrator

Precision Wide Range Current to Period Converter

National Semiconductor

LH0082 Optical Communication Receiver／Amplifier

General Description

The LH0082 is a general purpose，low－noise，fiber－optic re－ ceiver，which may also be used as a fast current to voltage converter，or as a high speed voltage amplifier．The circuit includes a wide－bandwidth FET－input amplifier，a 2.4 V refer－ ence，a comparator with hysteresis，and all the necessary resistors and capacitors for feedback and coupling，all inte－ grated in a hermetic dual－in－line package．The large gain－ bandwidth of the preamp enables fast response even with high capacitance photodiodes．A separate analog output permits the reception of analog signals to 20 MHz via a fiber－optic link．The internal comparator converts a low level analog signal to a CMOS／TTL compatible logic signal at data rates up to $5 \mathrm{Mbits} / \mathrm{s}$ NRZ．The LH0082 can be used with an external comparator at data rates to $40 \mathrm{Mbits} / \mathrm{s}$ ．

Features

a Single 4.5 V to 12 V supply
a 600 MHz unity gain bandwidth
■ Low noise
Low edge jitter
© $<10^{-9}$ bit error rate
－Low input bias current
－Pin selectable sensitivity：$-45 \mathrm{dBm} /-35 \mathrm{dBm} *$
■ CMOS／TTL compatibility
（⿴囗大 Can be used with photodiodes，PIN photodiodes，pho－ totransistors，avalanche photodiodes，and photomultipli－ ers
－Hermetic dual－in－line metal package
－Highly versatile building block
－$>21 \mathrm{~dB}$ dynamic range

Applications

－Data terminals
© Secure communication
－Peripheral control／communication
© Video transmission
© Wideband amplifier
－High speed current to voltage converter
＠Fiber－optic repeater
－Video amplifier
四 Industrial machine control
＊Assumes 0．5 A／W PIN diode input

Schematic Diagrams

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications. (Note 1)

Supply Voltage	+15 V
Power Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5 W
Junction Temperature	$150^{\circ} \mathrm{C}$

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range (Note 2)	
LH0082CD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Input Current	$\pm 10 \mathrm{~mA}$
ESD Susceptibility	TBD

Electrical Characteristics Preamplifie: Power supply voltage $=+5 \mathrm{~V}_{\mathrm{DC}}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see Figure 1

Symbol	Parameter	Min	Typ	Max	Units
I_{B}	Input Bias Current		100	250	pA
C_{IN}	Input Capacitance			5	pF
A_{V}	Voltage Gain	50	90		$\mathrm{~V} / \mathrm{V}$
$\mathrm{f}_{3 \mathrm{~dB}}$	-3 dB Frequency		18		MHz
V_{Q}	Output Quiescent Voltage	1.9	2.1	2.6	V
$\Delta \mathrm{~V}_{\mathrm{Q}} / \Delta \mathrm{T}$	Output Quiescent Voltage Drift with Temperature		-6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Z_{O}	Open Loop Output Impedance at 1 MHz		30		Ω
$\mathrm{~V}_{\mathrm{O}}$	Output Noise (10 Hz to 10 MHz)		300		$\mu \mathrm{VRMS}$
	Output Swing (No Load)	3.5	4.0		$\mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
Transimpedance: Low Sensitivity High Sensitivity	90	100	110	$\mathrm{k} \Omega$	

Electrical Characteristics Comparator/Reference: Power supply voltage $=+5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see Figure 2

Symbol	Parameter	Min	Typ	Max	Units
R_{IN}	Comparator Input Resistance (to Reference)	0.90	1	1.10	k Ω
$\mathrm{V}_{\text {HYST }}$	Hysteresis Voltage Positive Negative	$\begin{aligned} & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 6.9 \end{aligned}$	$\begin{gathered} 11.4 \\ 8.8 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Ro	Output Pull-up Resistor	0.90	1	1.10	$\mathrm{k} \Omega$
V_{R}	Reference Voltage	2.2	2.4	2.6	V
$\Delta V_{R} / \Delta T$	Reference Voltage Drift with Temperature		-2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\mathrm{O}}\left(\mathrm{V}_{\text {REF }}\right)$	Reference Voltage Output Resistance		15		Ω
V_{OL}	$(1 \mathrm{OL}=3.2 \mathrm{~mA})$		0.3	0.5	V
V OH	$(\mathrm{IOH}=-1 \mathrm{~mA})$	3.8	4		V
TPD	$\left(\mathrm{V}_{\text {IN }}=30 \mathrm{mV}, \mathrm{V}_{\text {OD }}=15 \mathrm{mV}\right)$		160		ns
T_{R}	($\mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$)		80		ns
T_{F}	($C_{L}=3 \mathrm{pF}$)		60		ns
Is	Supply Current: Output High Output Low	$\begin{aligned} & 4.5 \\ & 9.5 \end{aligned}$	$\begin{gathered} 8 \\ 13 \end{gathered}$	$\begin{aligned} & 17 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

Electrical Characteristics Fiber-Optic Receiver: Photodiode responsivity is assumed to be $0.5 \mathrm{~A} / \mathrm{W}$, capacitance of 10 pF at 2.5 V reverse bias, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

Symbol	Parameter	Min	Typ	Max	Units
	High Sensitivity: $R_{F}=1 \mathrm{M} \Omega$, (see Figure 3) Input Power for 10^{-9} BER (Bit Rate $=500$ kbit NRZ)		200		nW
$t_{\text {r }}, t_{f}$	Analog Output Rise or Fall Time Maximum Data Rate, NRZ, Digital Output		$\begin{aligned} & 1.5 \\ & 650 \end{aligned}$		$\mu \mathrm{S}$ kbit/s
P_{N}	Noise Equivalent Power		1		nW
i_{N}	Equivalent Input Noise Current (10 Hz to 10 MHz)		300		pA RMS
	$\begin{aligned} & \text { Low Sensitivity: } \mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega \text {, } \\ & \text { (see Figure 4) } \\ & \text { Input Power for } 10^{-9} \mathrm{BER} \\ & \text { (Bit Rate }=2 \text { Mbit NRZ) } \end{aligned}$		800		nW
$t_{\text {f }}, t_{f}$	Analog Output Rise or Fall Time Maximum Data Rate, NRZ, Digital Output		50		ns Mbit/s
P_{N}	Noise Equivalent Power		10		nW
in_{N}	Equivalent Input Noise Current (10 Hz to 10 MHz)		3		nA RMS
Is	Total Supply Current (High or Low Sensitivity)		35		mA

Note 1: Refer to RETS0082D for LH0082D/883 and LH0082D-MIL specifications.
Note 2: For military temperature range, see RETS0082D.

DIGITAL EDGE JITTER

A potential problem in digital transmission systems is "edge jitter'. Jitter is related to the system rise time and receiver noise and can be approximated by the following equation:
$\underset{\text { jitter }}{\text { RMS edge }}=\frac{\text { System rise time }(10 \%-90 \%)}{(\mathrm{p} / \mathrm{psignalvoltage} \div \mathrm{RMSnoise}} \begin{gathered}\text { voltage in receiver })\end{gathered}$

For a 5 Mbits/s NRZ operation using a 0.5 A/W PIN diode, the LH0082 requires a $2 \mu \mathrm{~W}$ peak optical power. This translates to 120 mV peak-to-peak signal voltage. Following through this equation the RMS edge jitter of the LH0082 is inconsequential at approximately $0.1 \mu \mathrm{~s}$.

Fiber-Optic Receiver Preamp Response
$R_{F}=100 \mathrm{k} \Omega$
Photodiode capacitance $=10 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Preamp Voltage Mode Pulse Response

Small Signal

Time ($10 \mathrm{~ns} / \mathrm{div}$)
TL/H/9325-6

Input ($10 \mathrm{mV} / \mathrm{div}$)

Output (200 mV/div)

Large Signal

Typical Performance Characteristics

TL/H/9325-9

Applications Information

The gain-bandwidth of the LH0082 preamp is nearly 2 GHz , thus good bypassing of the supply voltage is necessary; a $3.3 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.01 \mu \mathrm{~F}$ ceramic disc is recommended, placed as close as possible to the device pins.
Careful shielding of pins 2, 13 and 14 is necessary if the LH0082 is used in a high noise environment. Minimize stray capacitance to pin 14 from ground, V_{CC} or pin 3 to avoid slowing overall circuit response. Choose the lowest capac-
(Continued)
itance photodiode possible for the application. When using phototransistors, only the collector-base junction should be used for fastest response. Additional sensitivity may be gained by using a phototransistor in the transistor mode, although this will result in slower circuit response, and poor DC stability due to beta multiplication of the dark current of the phototransistor. Avoid capacitive loading at the output of the comparator to achieve maximum data rates.
Avalanche photodiodes can be used for improved sensitivity and speed. Overall speed is limited by the internal comparator. Use of an external comparator such as the LM160 will enable the full speed capability to be realized. This requires the use of an additional power supply, see Figure 5.
For operations at higher data rates, Figure 5 shows the use of an external comparator to enable speeds to 50 Mbit NRZ. Figure 6, 7 and 8 demonstrate interfacing techniques to avalanche photodiodes and phototransistors.
With a few additional components, the LH0082 can be used as a repeater as shown in Figure 9. Interfacing to a micro-computer-bus, (Figure 10), is also easy when the LH0082 is teamed with an INS8250 Asynchronous Communications Element. This provides a full duplex link capable of bit rates to 56 kbits/s NRZ.
Analog data can be sent along a fiber-optic cable via digital means, (Figure 11). Low temperature drift can be obtained in the analog mode, by using the circuit shown in Figure 12.

TL/H/9325-10
FIGURE 1. Preamp Test Circuit

TL/H/9325-11
FIGURE 2. Comparator Test Circuit

TL/H/9325-12
FIGURE 3. Fiber-Optic Receiver, Basic High Sensitivity: 150 nW, 400 kbps NRZ

Applications Information (Continued)

FIGURE 4. Fiber-Optic Receiver, Basic Low Sensitivity: $2 \mu \mathrm{~W}, \mathbf{5}$ Mbit, NRZ

Applications Information (Continued)

FIGURE 5. High Speed-Low Sensitivity Recelver

Applications Information (Continued)

TL/H/9325-15
FIGURE 6. Connection to Avalanche Photodiode

TL/H/9325-16
FIGURE 7. Connection to Phototransistor-High Sensitivity, Low Speed

Applications Information (Continued)

TL/H/9325-17
FIGURE 8. Connection to Phototransistor-Low Sensitivity, High Speed Receiver

TL/H/9325-18
FIGURE 9. Fiber-Optic Link Repeater

Applications Information (Continued)

FIGURE 10. Optical Link to Microbus

Applications Information (Continued)

FIGURE 11. Analog Data Link Using V/F and F/V

Applications Information (Continued)

TL/H/9325-21
FIGURE 12. Low Temperature Drift Analog Receiver
Connection Diagram

LH0086/LH0086C

Digitally-Programmable-Gain Amplifier

General Description

The LH0086 is a self-contained, high-accuracy, digitally-pro-grammable-gain amplifier. It consists of a FET-input operational amplifier, a precision resistor ladder, and a digitallyprogrammable switch network. A three-bit TTL-compatible digital input selects accurate gain settings of $1,2,5,10,20$, 50,100 , or 200.
The LH0086 exhibits low offset voltage, high input impedance, fast settling, high power supply rejection ratio, and excellent gain accuracy and gain non-linearity.
The LH0086 is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LH0086C is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Both devices are hermetically sealed in a 14-lead dual-inline metal package.

Features

- 0.01% maximum gain accuracy at gain=1
- 0.005% typical gain non-linearity
- $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical gain drift
- $100^{10} \Omega$ input impedance
$\square 80 \mathrm{~dB}$ minimum PSRR.
- TTL-compatible digital inputs
- $2 \mu \mathrm{~s}$ settling to 0.01%

Applications

- Data acquisition systems
- Auto range DVMs
- Adaptive servo loops

Simplified Schematic and Connection Diagrams

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)

V $_{\text {S }}$	Supply Voltage (Note 1)	$\pm 18 \mathrm{~V}$
$\mathrm{~V}_{\text {IN }}$	Analog Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
$\mathrm{~V}_{\text {IL(H) }}$	Digital Input Voltage	$-4 \mathrm{~V},+\mathrm{V}_{\mathrm{S}}$
PD	Power Dissipation	500 mW
	Output Short Circuit Duration	Continuous

$\mathrm{T}_{\mathrm{A}} \quad$ Operating Temperature Range:

LH0086	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0086C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
torage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ead Temperature	
(Soldering, 10 seconds)	$+300^{\circ} \mathrm{C}$

ESD rating to be determined.

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$, Pin 10 connected to Pin 11, Pin 5 connected to Pin 6 (Non-inverting)

Note 1: Improper supply power-on sequence may damage the device. See Power Supply Connection Section under Applications Information.
Note 2: for supply voltages less than $\pm 15 \mathrm{~V}$ the maximum input voltage is equal to the supply voltage.
Note 3: Due to short production test time, these parameters are specified at junction temperature, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. In normal operation the junction temperature rises above the ambient temperature, T_{A}, as a result of the internal power dissipation, $P D . T_{J}=T_{A}+\theta_{J A} \times P D$ where $\theta_{J A}$ is the thermal resistance from junction to ambient (typically $65^{\circ} \mathrm{C} / \mathrm{W}$).
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in junction temperature.
Note 5: Refer to RETS0086D for LH0086D military specifications.

DC Electrical Characteristics (Continued)

$V_{S}= \pm 15 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$, Pin 10 connected to Pin 11, Pin 5 connected to Pin 6 (Non-inverting).

Symbol	Parameter	Conditions		LH0086			LH0086C			Units
				Min	Typ	Max	Min	Typ	Max	
Isc	Output Short-Circuit Current		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 5	± 18	± 40	± 5	± 18	± 40	mA
				± 2		± 40	± 2		± 40	
Ro	Output Resistance	$A_{\text {VCL }}=1$			0.05			0.05		Ω
$\mathrm{V}_{\text {IL }}$	Digital "0" Input Voltage					0.7			0.7	V
V_{IH}	Digital "1" Input Voltage			2.0			2.0			
IIL	Digital "0' Input Current	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$			1.5	4.0		1.5	4.0	$\mu \mathrm{A}$
l_{H}	Digital "1" Input Current	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$			0.01			0.01		
V_{S}	Supply Voltage Range			± 8.0		± 18	± 8.0		± 18	V
$\mathrm{IS}^{(+)}$	Positive Supply Current	$V_{S}= \pm 18 \mathrm{~V}$			8.5	15.5		8.5	15.5	mA
$\mathrm{IS}^{(-)}$	Negative Supply Current				-4.5	-8.5		-4.5	-8.5	

AC Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Pin 10 connected to Pin 11, Pin 5 connected to Pin 6 (Non-Inverting)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
BW	Small Signal Bandwidth	$-3 \mathrm{~dB}$	$A_{V}=1$		3000		kHz
			$A_{V}=50$		60		
			$A_{V}=200$		15		
		-1%	$A_{V}=1$		425		
			$A_{V}=50$		8.5		
			$A_{V}=200$		2		
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$			159		kHz
SR	Slew Rate				10		$\mathrm{V} / \mu \mathrm{s}$
ts	Settling Time (Figure 7) 0.01\%	$\Delta V_{O}=20 \mathrm{~V}$	$A_{V}=1$		2.5		$\mu \mathrm{s}$ $\mu \mathrm{s}$
			$A_{V}=50$		20		
			$\mathrm{A}_{\mathrm{V}}=200$		75		
ts	Settling Time After Gain Change				10		
$\overline{\mathbf{e}}_{\mathrm{N}}$	Equivalent Input Noise Voltage (Figure 6) Equivalent Input Noise Current	$\begin{aligned} & R_{S}=100 \Omega \\ & A_{V}=100 \end{aligned}$	$\mathrm{BW}=0.1-10 \mathrm{~Hz}$		3		$\mu \mathrm{Vp}$-p
			$\mathrm{f}=1 \mathrm{kHz}$		25		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
\bar{i}_{N}					0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

TL/K/5657-2

Wideband Noise

TL/K/5657-3
$R_{S}=50 \Omega$. Bandwidth $=0.1 \mathrm{~Hz}$ to 10 Hz
$1 \mu \mathrm{~V} /$ division Vertical, 5 seconds/division Horizontal
$R_{S}=50 \Omega$. Bandwidth $=10 \mathrm{~Hz}$ to 10 kHz
$5 \mu \mathrm{~V} /$ division Vertical, $1 \mathrm{~ms} /$ division Horizontal

Applications Information

Theory of Operation

The LH0086 is a digitally programmable gain amplifier with 3 -bit digital gain control. It contains a FET-input operational amplifier, a precision resistor ladder, and a digitally programmable switch network.
The LH0086 was designed for use in a non-inverting configuration, thus the following discussion covers the LH0086 as used as a non-inverting amplifier. The gain of the LH0086 is given by the familiar gain equation of a non-inverting amplifier.

$$
A_{V}=1+\frac{R_{F}}{R_{S}}
$$

Each gain step is set by the ratio of the ladder resistors. The resistor ladder is constructed with high stability, low temper-ature-coefficient resistors precision laser-trimmed to the required values. FET switches are used to select the desired ratio. Since the FET switches are in series with the operational amplifier input, their "on resistance" and temperature drift do not degrade amplifier accuracy. The FET switches are selected by a 1 of 8 decoder, by applying the proper logic levels at digital inputs D0, D1, and D2. The gains are set as given in Table I.

TABLE I. Gain-Control Codes

Gain	D2	D1	D0
1	0	0	0
2	0	0	1
5	0	1	0
10	0	1	1
20	1	0	0
50	1	0	1
100	1	1	0
200	1	1	1

Power Supply Connection

Proper power supply connections are shown in Figure 1. The power supplies should be bypassed to ground as close as possible to device supply pins. For most applications, the bypass capacitor should be $0.1 \mu \mathrm{~F}$.

*GERMANIUM OR SCHOTTKY

Care must be taken in the power-on sequence. The LH0086 may suffer irreversible damage if the V^{+}supply is applied prior to the powering on of the V^{-}supply. In most applications using dual-tracking supplies and with the device supply pins adequately bypassed, this will not present a problem. If this cannot be guaranteed, a germanium or Schottky protection diode should be connected between the digital ground pin and the V^{-}pin as shown in Figure 1.

Grounding Considerations

Care should be taken in the connection of digital and analog grounds. Digital switching currents can introduce noise on the analog ground pin. If possible, both grounds should go to a ground plane beneath the device, otherwise each ground should be run separately to a single point ground. The idea is to keep digital current from passing through the analog ground line. If long ground leads are used, diode clamps should be placed as close to the device as possible (Figure 1).

Programmable Attenuator

The LH0086 may be used as a programmable attenuator when connected as in Figure 2. The accuracy of this attenuator will be typically 0.1%.

Note: Max. $\mathrm{V}_{\mathrm{IN}}= \pm 11$ Volts.

TL/K/5657-5
FIGURE 2. Programmable Attenuator

FIGURE 1. Power Supply and Ground Connections

TABLE II. Attenuator Codes

D2	D1	D0	Attenuation
0	0	0	1
0	0	1	2
0	1	0	5
0	1	1	10
1	0	0	20
1	0	1	50
1	1	0	100
1	1	1	200

Inverting Mode

The LH0086 may be used in the inverting mode, however, there are several design considerations.

1. Input resistance is low at high gains (see gain chart for input resistance at each gain).
2. Each gain step gets a one subtracted from the non-inverting gain. (See inverting gain chart for available gains.)
3. The first gain step (digital code of 000) cannot be used because the output will remain at virtual ground regardless of the input.

FIGURE 3. LH0086 Inverting Gain Configuration

TABLE III. Inverting Gain Chart

D2	D1	D0	$G_{\text {ain }}$	$\mathbf{R}_{\text {IN }}(\Omega)$
0	0	0	$A_{V}=0$	30 k
0	0	1	$A_{V}=1$	15 k
0	1	0	$A_{V}=4$	$6 k$
0	1	1	$A_{V}=9$	3 k
1	0	0	$A_{V}=19$	1.5 k
1	0	1	$A_{V}=49$	600
1	1	0	$A_{V}=99$	300
1	1	1	$A_{V}=199$	150

Remote Output Sense

The VOUT sense pin of the LH0086 should be connected at the load in order to eliminate errors due to lead resistance. In any case the output sense and output force must be tied together at some point. See Figure 4.

FIGURE 4. Remote Output Sense FIGURE 5. Offset Adjustment

FIGURE 6. Noise Measurement Circuit

TL/K/5657-6

FIGURE 7. Settling Time Test Circuit

Definition of Terms

Vos Offset Voltage: The voltage that must be applied to force the output to 0 volts.

IB Input Bias Current: The current into Pin 7 with the device connected in the non-inverting configuration.
$R_{\text {IN }} \quad$ Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
$\mathrm{V}_{\mathrm{IN}} \quad$ Input Voltage Range: The voltage range for which the device is operational.

PSRR Power Supply Rejection Ratio: The ratio of the specified change in supply voltage to the change in input offset voltage over this range.

Av Voltage Gain: The ratio of output voltage change to the input voltage change producing it.

Gain Error: The deviation in percent between the ideal voltage gain and the value obtained when the device is configured for that gain.

Gain Non-Linearity: The deviation of the gain from a straight line drawn through the end-points expressed as a percent of full scale (10 V for operation with $\pm 15 \mathrm{~V}$ supplies). For testing purposes it is the difference between positive swing gain (0 V to 10 V) and average gain (-10 V to 10 V) or between negative swing gain (0 V to -10 V) and average gain.
$V_{0} \quad$ Output Voltage Swing: The peak output voltage swing referenced to ground into specified load.
$I_{O(S C)}$ Output Short-Circuit Current: The current supplied by the device with the output connected directly to ground.
$\mathbf{R o}_{\mathbf{0}} \quad$ Closed Loop Output Resistance: The ratio of change in output voltage to change to output current at a specific gain.
$\mathbf{V}_{\mathbf{S}}$
Supply Voltage Range: The supply voltage range for which the device is operational.

Is

PD Power Dissipation: The power dissipated in the device with no load and with the analog as well as the digital inputs at 0 V .

VIH Digital "1" Input Voltage: Minimum voltage required at the digital input to guarantee a high logic state.

VIL Digital "0" Input Voltage: The current into a digital input at specified logic level.
$\Delta \mathbf{V}_{\text {OS }} / \Delta \mathbf{T}$ Average Input Offset Voltage Drift: The ratio of input offset voltage change from $25^{\circ} \mathrm{C}$ to either temperature extreme divided by the temperature range.
$\Delta A_{v} / \Delta T$ Average Gain Temperature Coefficient: The ratio in gain from $25^{\circ} \mathrm{C}$ to either temperature extreme divided by the temperature range.

PBW Power Bandwidth: Maximum frequency for which the output swing is a large signal sinewave without noticeable distortion.

SR Slew Rate: The internally limited rate of change in output voltage with a large amplitude step function applied at the input.
ts
Settling Time: The time between the initiation of an input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

Gain Switching Time: The time between the initiation of a gain logic change and the time when the final gain switches are closed. It includes overdrive recovery time, but not settling to final value.
\mathbf{e}_{N}
Equivalent Input Noise Voltage: The rms or peak noise voltage referred to the input (RTI) over a specified frequency band.

Equivalent Input Noise Current: The rms or peak noise current referred to the input (RTI) over a specified frequency band.

\checkmark National Semiconductor LH0101/LH0101C, LH0101A/LH0101AC Power Operational Amplifier

General Description

The LH0101 is a wideband power operational amplifier featuring FET inputs, internal compensation, virtually no crossover distortion, and rapid settling time. These features make the LH0101 an ideal choice for DC or AC servo amplifiers, deflection yoke drives, programmable power supplies, and disk head positioner amplifiers. The LH0101 is packaged in an 8 pin TO-3 hermetic package, rated at 60 watts with a suitable heat sink.

Features

- 5 Amp peak, 2 Amp continuous output current
- 300 kHz power bandwidth
- 850 mW standby power ($\pm 15 \mathrm{~V}$ supplies)
- 300 pA input bias current
- $10 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Virtually no crossover distortion
- $2 \mu \mathrm{~s}$ settling time to 0.01%
- 5 MHz gain bandwidth

Schematic and Connection Diagrams

Top View
Order Numbers LH0101K, LH0101CK, LH0101AK or LH0101ACK
See NS Package Number K08A
TL/K/5558-1

Note: Electrically connected internally, no connection should be made to pin.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)
Supply Voltage, $\mathrm{V}_{\mathrm{S}} \quad \pm 22 \mathrm{~V}$
Power Dissipation at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{D}}$
Derate linearly at $25^{\circ} \mathrm{C} / \mathrm{W}$ to zero at $150^{\circ} \mathrm{C}$,
Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \quad 62 \mathrm{~W}$
Derate linearly at $2^{\circ} \mathrm{C} / \mathrm{W}$ to zero at $150^{\circ} \mathrm{C}$
Differential Input Voltage, V_{IN}
$\pm 40 \mathrm{~V}$ but $< \pm \mathrm{V}_{\mathrm{S}}$
Input Voltage Range, V_{CM}
$\pm 20 \mathrm{~V}$ but $< \pm \mathrm{V}_{\mathrm{S}}$

Peak Output Current (50 ms pulse), $\mathrm{l}_{\mathrm{O}(\mathrm{PK})}$
5A
Output Short Circuit Duration (within rated power dissipation, $\left.R_{S C}=0.35 \Omega, T_{A}=25^{\circ} \mathrm{C}\right)$

Continuous
Operating Temperature Range, T_{A}

> LH0101AC, LH0101C
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH0101A, LH0101
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, TSTG $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, $\mathrm{T}_{J} \quad 150^{\circ} \mathrm{C}$
Lead Temperature (Soldering <10 sec.) $260^{\circ} \mathrm{C}$
ESD rating to be determined.

Thermal Resistance-
See Typical Performance Characteristics

DC Electrical Characteristics (Note 1) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions			LH0101AC LH0101A			LH0101C LH0101			Units
					Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage					1	3		5	10	mV
		$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$					7			15	
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{P}_{\mathrm{D}}$	Change in Input Offset Voltage with Dissipated Power	(Note 2)				150			300		$\mu \mathrm{V} / \mathrm{W}$
$\Delta V_{\text {OS }} / \Delta T$	Change in Input Offset Voltage with Temperature	$\mathrm{V}_{\mathrm{CM}}=0$				10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IB_{B}	Input Bias Current						300			1000	pA
			$\mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$	LH0101C/AC			60			60	nA
				LH0101/A			300			1000	
los	Input Offset Current						75			250	pA
			$\mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	LH0101C/AC			15			15	nA
				LH0101/A			75			250	
AVOL	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=10 \Omega$			50	200		50	200		V/mV
V_{0}	Output Voltage Swing	$\begin{aligned} & R_{S C}=0 \\ & A_{V}=+1 \end{aligned}$ Note 3	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		± 12	± 12.5		± 12	± 12.5		V
			$\begin{array}{\|l\|} \hline R_{L}=10 \Omega \\ \hline R_{I}=5 \Omega \\ \hline \end{array}$		± 11.25	± 11.6		± 11.25	± 11.6		
					± 10.5	± 11		± 10.5	± 11		
CMRR	Common Mode Rejection Ratio	$\Delta V_{I N}= \pm 10 \mathrm{~V}$			85	100		85	100		dB
PSRR	Power Supply Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			85	100		85	100		
Is	Quiescent Supply Current					28	35		28	35	mA

AC Electrical Characteristics (Note 1), $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		$\begin{aligned} & \text { LH0101 } \\ & \text { LH0101A } \end{aligned}$			LH0101C LH0101AC			Units
				Min	Typ	Max	Min	Typ	Max	
e_{n}	Equivalent Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$			25			25		$n V \sqrt{H z}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$f=1 \mathrm{MHz}$			3.0			3.0		pF
	Power Bandwidth, -3 dB	$R_{L}=10 \Omega$	$A_{V}=+1$		300			300		kHz
SR	Slew Rate			$\begin{gathered} 7.5 \\ \text { (Note 4) } \\ \hline \end{gathered}$	10		.	10		$\mathrm{V} / \mu \mathrm{s}$
t_{r}, t_{f}	Small Signal Rise or Fall Time				200			200		ns
	Small Signal Overshoot				10			10		\%
GBW	Gain-Bandwidth Product	$R_{L}=\infty$		$\begin{gathered} 4.0 \\ \text { (Note 4) } \\ \hline \end{gathered}$	5.0			5.0		MHz
$\mathrm{t}_{\text {s }}$	Large Signal Settling Time to 0.01\%				2.0			2.0		$\mu \mathrm{S}$
THD	Total Harmonic Distortion	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=10 \Omega \end{aligned}$			0.008			0.008		\%

Note 1: Specification is at $T_{A}=25^{\circ} \mathrm{C}$. Actual values at operating temperature may differ from the $T_{A}=25^{\circ} \mathrm{C}$ value. When supply voltages are $\pm 15 \mathrm{~V}$, quiescent operating junction temperature will rise approximately $20^{\circ} \mathrm{C}$ without heat sinking. Accordingly, V_{OS} may change 0.5 mV and I_{B} and los will change significantly during warm-ups. Refer to the I_{B} vs. temperature and power dissipation graphs for expected values. Power supply voltage is $\pm 15 \mathrm{~V}$. Temperature tests are made only at extremes.
Note 2: Change in offset voltage with dissipated power is due entirely to average device temperature rise and not to differential thermal feedback effects. Test is performed without any heat sink.
Note 3: At light loads, the output swing may be limited by the second stage rather than the output stage. See the application section under "Output swing enhancement" for hints on how to obtain extended operation.
Note 4: These parameters are sample tested to 10% LTPD.
Note 5: Refer to RETS0101AK for the LH0101AK military specifications and RETS0101K for the LH0101K military specifications.

Typical Performance Characteristics

Power Supply Rejection
Ratio vs. Frequency

Output Voltage Swing
vs. Frequency

Settling Time

CHANGE IN OUTPUT VOLTAGE FROM ZERO VOLTS

Quiescent Power Supply
Current

VS, POWER SUPPLY VOLTAGE (V)

Input Common-Mode Voltage Range

Common-Mode Rejection Ratio vs. Frequency

Total Harmonic
Distortion vs. Frequency

Typical Performance Characteristics (Continued)

Output Voltage Swing vs.

RL, LOAD RESISTANCE (Ω)

10, OUTPUT CURRENT (mA)

Open-Loop Output Resistance vs. Frequency

frequency (Hz)

Short Circuit Current

Small Signal Pulse Response (No Load)

Large Signal Pulse Response ($\mathbf{R}_{\mathrm{L}}=10 \Omega$)

Application Hints

Input Voltages

The LH0101 operational amplifier contains JFET input devices which exhibit high reverse breakdown voltages from gate to source or drain. This eliminates the need for input clamp diodes, so that high differential input voltages may be applied without a large increase in input current. However, neither input voltage should be allowed to exceed the negative supply as the resultant high current flow may destroy the unit.
Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
These amplifiers will operate with the common-mode input voltage equal to the positive supply. In fact, the commonmode voltage may exceed the positive supply by approximately 100 mV , independent of supply voltage and over the full operating temperature range. The positive supply may therefore be used as a reference on an input as, for example, in a supply current monitor and/or limiter.
With the LH0101 there is a temptation to remove the bias current compensation resistor normally used on the non-inverting input of a summing amplifier. Direct connection of the inputs to ground or a low-impedance voltage source is not recommended with supply voltages greater than 3 V . The potential problem involves loss of one supply which can cause excessive current in the second supply. Destruction of the IC could result if the current to the inputs of the device is not limited to less than 100 mA or if there is much more than $1 \mu \mathrm{~F}$ bypass on the supply buss.
Although difficulties can be largely avoided by installing clamp diodes across the supply lines on every PC board, a conservative design would include enough resistance in the input lead to limit current to 10 mA if the input lead is pulled to either supply by internal currents. This precaution is by no means limited to the LH0101.

Layout Considerations

When working with circuitry capable of resolving pico-ampere level signals, leakage currents in circuitry external to the op amp can significantly degrade performance. High quality insulation is a must (Kel-F and Teflon rate high). Proper cleaning of all insulating surfaces to remove fluxes and other residues is also required. This includes the IC package as well as sockets and printed circuit boards. When operating in high humidity environments or near $0^{\circ} \mathrm{C}$, some form of surface coating may be necessary to provide a moisture barrier.
The effects of board leakage can be minimized by encircling the input circuitry with a conductive guard ring operated at a potential close to that of the inputs.

Electrostatic shielding of high impedance circuitry is advisable.
Error voltages can also be generated in the external circuitry. Thermocouples formed between dissimilar metals can cause hundreds of microvolts of error in the presence of temperature gradients.
Since the LH0101 can deliver large output currents, careful attention should be paid to power supply, power supply bypassing and load currents. Incorrect grounding of signal inputs and load can cause significant errors.
Every attempt should be made to achieve a single point ground system as shown in the figure below.

TL/K/5558-7
FIGURE 1. Single-Point Grounding
Bypass capacitor C_{BX} should be used if the lead lengths of bypass capacitors C_{B} are long. If a single point ground system is not possible, keep signal, load, and power supply from intermingling as much as possible. For further information on proper grounding techniques refer to "Grounding and Shielding Techniques in Instrumentation" by Morrison, and "Noise Reduction Techniques in Electronic Systems" by Ott (both published by John Wiley and Sons).
Leads or PC board traces to the supply pins, short-circuit current limit pins, and the output pin must be substantial enough to handle the high currents that the LH0101 is capable of producing.

Short Circuit Current Limiting

Should current limiting of the output not be necessary, SC+ should be shorted to $\mathrm{V}+$ and SC - should be shorted to $\mathrm{V}-$. Remember that the short circuit current limit is dependent upon the total resistance seen between the supply and current limit pins. This total resistance includes the desired resistor plus leads, PC Board traces, and solder joints.* Assuming a zero TCR current limit resistor, typical temperature coefficient of the short circuit will be approximately $.3 \%$.
*Short circuit current will be limited to approximately $\frac{0.6}{\text { RSC }}$.

Application Hints (Continued)

Thermal Resistance

The thermal resistance between two points of a conductive system is expressed as:

$$
\theta_{12}=\frac{T_{1}-T_{2}}{P_{D}}{ }^{\circ} / / \mathrm{W}
$$

where subscript order indicates the direction of heat flow. A simplified heat transfer circuit for a cased semiconductor and heat sink system is shown in the figure below.
The circuit is valid only if the system is in thermal equilibrium (constant heat flow) and there are, indeed, single specific temperatures T_{J}, T_{C} and T_{S} (no temperature distribution in junction, case, or heat sink). Nevertheless, this is a reasonable approximation of actual performance.

TL/K/5558-8

FIGURE 2. Semiconductor-Heat Sink Thermal Circuit
The junction-to-case thermal resistance θ_{JC} specified in the data sheet depends upon the material and size of the package, die size and thickness, and quality of the die bond to the case or lead frame. The case-to-heat sink thermal resistance $\theta_{\text {CS }}$ depends on the mounting of the device to the heat sink and upon the area and quality of the contact surface. Typical θ_{CS} for a TO-3 package is 0.5 to $0.7^{\circ} \mathrm{C} / \mathrm{W}$, and 0.3 to $0.5^{\circ} \mathrm{C} / \mathrm{W}$ using silicone grease.

The heat sink to ambient thermal resistance $\theta_{\text {SA }}$ depends on the quality of the heat sink and the ambient conditions.
Cooling is normally required to maintain the worst case operating junction temperature T_{J} of the device below the specified maximum value $T_{J(M A X)}$. T_{J} can be calculated from known operating conditions. Rewriting the above equation, we find:

$$
\begin{aligned}
& \theta_{\mathrm{JA}}=\frac{T_{J}-T_{A}}{P_{D}}{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& T_{J}=T_{A}+P_{D} \theta_{J A}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Where: $\mathrm{PD}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\text {OUT }}\right)$ lout $+|\mathrm{V}+-(\mathrm{V}-)|_{\mathrm{l}_{\mathrm{Q}}}$ for a DC Signal
$\theta_{\mathrm{JA}}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}$ and $\mathrm{V}_{\mathrm{S}}=$ Supply Voltage θ_{JC} for the LH0101 is about $2^{\circ} \mathrm{C} / \mathrm{W}$.

Stability and Compensation

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input device (usually the inverting input) to ac
ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time consistant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
Some inductive loads may cause output stage oscillation. A $.01 \mu \mathrm{~F}$ ceramic capacitor in series with a 10Ω resistor from the output to ground will usually remedy this situation.

TL/K/5558-9
FIGURE 3. Driving Inductive Loads
Capacitive loads may be compensated for by traditional techniques. (See "Operational Amplifiers: Theory and Practice" by Roberge, published by Wiley):

TL/K/5558-10
FIGURE 4. $\mathbf{R}_{\mathbf{C}}$ and $\mathrm{C}_{\mathbf{C}}$ Selected to Compensate for Capacitive Load
A similar but alternative technique may be used for the LH0101:

TL/K/5558-11
FIGURE 5. Alternate Compensation for Capacitive Load

Application Hints (Continued)

Output Swing Enhancement

When the feedback pin is connected directly to the output, the output voltage swing is limited by the driver stage and not by output saturation. Output swing can be increased as shown by taking gain in the output stage as shown in High Power Voltage Follower with Swing Enhancement below. Whenever gain is taken in the output stage, as in swing enhancement, either the output stage, or the entire op amp must be appropriately compensated to account for the additional loop gain.

Output Resistance

The open loop output resistance of the LH0101 is a function of the load current. No load output resistance is approximately 10Ω. This decreases to under on Ω for load currents exceeding 100 mA .

Typical Applications

See AN261 for more information.

FIGURE 6. High Power Voltage Follower

TL/K/5558-13
FIGURE 7. High Power Voltage Follower with Swing Enhancement

TL/K/5558-14
FIGURE 8. Restricting Outputs to Positive Voltages Only
Following is a partial list of sockets and heat dissipators for use with the LH0101. National assumes no responsibility for their quality or availability.
8-Lead TO-3 Hardware

SOCKETS

Keystone 4626 or 4627
Robinson Nugent 0002011
Azimuth 6028 (test socket)

HEAT SINKS

Thermalloy 2266B ($35^{\circ} \mathrm{C} / \mathrm{W}$)
IERC LAIC3B4CB
IERC HP1-TO3-33CB ($7^{\circ} \mathrm{C} / \mathrm{W}$)
AAVID 5791B
MICA WASHERS
Keystone 4658

AAVID Engineering
30 Cook Court
Laconla, New Hampshire 03246
Azimuth Electronics
2377 S. El Camino Real
San Clemente, CA 92572
IERC
135 W. Magnolia Blvd.
Burbank, CA 91502

Keystone Electronics Corp.
49 Bleecker St.
New York, NY 10012
Robinson Nugent Inc.
800 E. 8th St.
New Albany, IN 47150
Thermalloy
P.O. Box 34829

Dallas, TX 75234

TL/K/5558-15
FIGURE 9. Generating a Split Supply from a Single Voltage Supply

TL/K/5558-16
FIGURE 10. Power DAC

TL/K/5558-17
FIGURE 11. Bridge Audio Amplifier

Typical Applications (Continued)

FIGURE 12. $\pm \mathbf{5}$ to $\pm \mathbf{3 5}$ Power Source or Sink

TL/K/5558-19
FIGURE 13. Remote Loudspeaker via Infrared Link

General Description

The LH2101A series of dual operational amplifiers are two LM101A type op amps in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two singles. For additional information, see the LM101A data sheet and National's Linear Application Handbook.
The LH2101A is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2201A is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature
range. The LH2301A is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Low offset voltage
a Low offset current
- Guaranteed drift characteristics
© Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{S}$ as a summing amplifier

Connection Diagram

Order Number LH2101AD, LH2201AD or LH2301AD
See NS Package Number D16C

Absolute Maximum Ratings

If Milltary/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	$\pm 22 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$

Output Short-Circuit Duration
Operating Temperature Range

LH2101A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH2201A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH2301A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
orage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ad Temperature	
(Soldering, 10 Sec.)	$300^{\circ} \mathrm{C}$

 LH2201A \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
 \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
 Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature
(Soldering, 10 Sec .)
$300^{\circ} \mathrm{C}$

Electrical Characteristics Each Side (Note 3)

Parameter	Conditions	Limits			Units
		LH2101A	LH2201A	LH2301A	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	2.0	2.0	7.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	10	50	$n A$ Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	75	75	250	nA Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	1.5	0.5	$\mathrm{M} \Omega$ Min
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S} \pm 20 \mathrm{~V}$	3.0	3.3	3.0	mA Max
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}} \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	50	25	V/mV Min
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	3.0	3.0	10	mV Max
Average Temperature Coefficient of Input Offset Voltage		15	15	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		20	20	70	nA Max
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$n A /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		100	100	300	$n A$ Max
Supply Curent	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	2.5	2.5		mA Max
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 2 \mathrm{k} \Omega \end{aligned}$	25	25	15	V/mV Min
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \\ & \hline \end{aligned}$	V Min
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	± 15	± 15	± 12	V Min
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	80	80	70	dB Min
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}}<50 \mathrm{k} \Omega$	80	80	70	dB Min

Note 1: The maximum junction temperature of the LH2101A is $150^{\circ} \mathrm{C}$, while that of the LH2201A is $100^{\circ} \mathrm{C}$. For operating temperatures of devices in the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16^{-}$-inch-thick epoxy glass board with 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LH2201A, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$. For the LH2301A these specifications apply for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, and $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+15 \mathrm{~V}$. Supply current and input voltage range are specified as $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ for the LH2301A. $\mathrm{C}_{1}=30 \mathrm{pF}$ unless otherwise specified.

Auxiliary Circuits

Inverting Amplifier with Balancing Circuit

TL/K/10118-2
\dagger May be zero or equal to parallel combination of R1 and R2 for minimum offset.

Alternate Balancing Circuit

TL/K/10118-3

Single Pole Compensation

$C_{1} \geq \frac{R_{1} C_{S}}{R_{1}+R_{2}}$
$\mathrm{C}_{\mathrm{S}}=30 \mathrm{pF}$

Two Pole Compensation

$\mathrm{C}_{\mathrm{S}}=30 \mathrm{pF}$
$\mathrm{C} 2=10 \mathrm{C} 1$

TL/K/10118-5

Feedforward Compensation

$$
\mathrm{C} 2=\frac{1}{2 \pi f_{0} R 2}
$$

$\mathrm{f}_{\mathrm{o}}=3 \mathrm{MHz}$

LH2108/LH2208/LH2308,

LH2108A/LH2208A/LH2308A Dual Super Beta Operational Amplifiers

General Description

The LH2108A/LH2208A/LH2308A and LH2108/LH2208/ LH2308 series of dual operational amplifiers are two LM108A or LM108 type op amps in a single hermetic package. Featuring all the same performance characteristics of the single device, these duals also offer closer thermal tracking, lower weight, reduced insertion cost, and smaller size than two single devices. For additional information see the LM108A or LM108 data sheet and National's Linear Application Handbook
The LH2108A/LH2108 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2208A/LH2208 is specified for operation over the
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH2308A/ LH2308 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Low offset current	50 pA
- Low offset voltage	0.7 mV
- Low offset voltage LH2108A	0.3 mV
\quad LH2108	0.7 mV
- Wide input voltage range	$\pm 15 \mathrm{~V}$
- Wide operating supply range	$\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

Connection Diagram

Order Number LH2108AD, LH2208AD, LH2208AD, LH2308AD, LH2108D, LH2208D, or LH2308D See NS Package Number D16C

Auxiliary Circuits

Standard Compensation Circuit

TL/K/10117-2

Alternate* Frequency Compensation

Feedback Compensation

TL/K/10117-4

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3) $\pm 15 \mathrm{~V}$

Output Short Circuit Duration	Continuous
Operating Temperature Range	
LH2108A/LH2108	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH2208A/LH2208	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH2308A/LH2308	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics Each Side (Note 4)

Parameter	Conditions	Limits			Units
		LH2108	LH2208	LH2308	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	2.0	7.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.2	0.2	1.0	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	2.0	7.0	nA Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	30	10	$\mathrm{M} \Omega$ Min
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \end{aligned}$	50	50	25	V/mV Min
Input Offset Voltage		3.0	3.0	10	mV Max
Average Temperature Coefficient of Input Offset Current		15	15	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		0.4	0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current		2.5	2.5	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		3.0	3.0	10	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	0.4	0.4		mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \end{aligned}$	25	25	15	V/mV Min
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13	± 13	V Min
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5	± 13.5	± 14	$V \mathrm{Min}$
Common Mode Rejection Ratio		85	85	80	dB Min
Supply Voltage Rejection Ratio		80	80	80	dB Min

Electrical Characteristics Each Side (Note 4)

Parameter	Conditions	Limits			Units
		LH2108A	LH2208A	LH2308A	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5	0.5	0.5	mV Max
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.2	0.2	1.0	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	2.0	7.0	nA Max
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	30	10	$\mathrm{M} \Omega$ Min
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.6	0.6	0.8	mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \end{aligned}$	80	80	80	V/mV Min

Electrical Characteristics Each Side (Note 4) (Continued)

Parameter	Conditions	Limits			Units
		LH2108A	LH2208A	LH2308A	
Input Offset Voltage		1.0	1.0	0.73	mV Max
Average Temperature Coefficient of Input Offset Voltage		5	5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Current		0.4	0.4	1.5	nA Max
Average Temperature Coefficient of Input Offset Current		2.5	2.5	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ Max
Input Bias Current		3.0	3.0	10	nA Max
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	0.4	0.4		mA Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}>10 \mathrm{k} \Omega \end{aligned}$	40	40	60	V/mV Min
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 13	± 13	V Min
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5	± 13.5	± 14	V Min
Common Mode Rejection Ratio		96	96	96	dB Min
Supply Voltage Rejection Ratio		96	96	96	dB Min

Note 1: The maximum junction temperature of the LH2108A/LH2108 is $150^{\circ} \mathrm{C}$, while that of the LH2208A/LH2208 is $100^{\circ} \mathrm{C}$ and that of the LH2308A/LH2308 is $85^{\circ} \mathrm{C}$. For operating devices in the flat package at elevated temperatures, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16^{-\mathrm{inch}}$ thick epoxy glass board with 0.03 -inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of IV is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LH2208A/LH2208, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ and with the $\mathrm{LH} 2308 \mathrm{~A} / \mathrm{LH} 2308$ for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$.

LH4101/LH4101C Wideband High Current Operational Amplifier

General Description

The LH4101 is a high slew rate, FET input, wideband operational amplifier designed for applications that require an op amp to provide up to 200 mA peak and 100 mA continuous output current. This feature eliminates the need for a buffer to provide the additional current drive not available with most wideband op amps.

Designed for use with minimum external circuitry, the LH4101 provides internal compensation for unity gain stability and all the gain set resistors for most popular gain settings, as well as internal supply bypass capacitors. These features minimize the circuit's sensitivity to external layout conditions. These features are provided in a 24 pin hermetic dual in-line package.

Features

- 45 MHz bandwidth
- 1012Ω input impedance
- Pin strappable gain settings of $1,2,3,4,-1,-2,-3$
- Unity gain stable
- Internal supply bypassing
- 100 mA continuous output current
- 24 pin hermetic DIP
- Directly drives 50Ω loads

The LH4101's wide bandwidth, programmable gain settings, and high output current make it an ideal choice for fast buffering applications such as video distribution. It is also appropriate for use in summing amplifiers, sample and hold circuits, and high speed integrators.

Block and Connection Diagrams

Order Number LH4101D or LH4101CD
See NS Package Number D24D

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, V_{S}
$\pm 17 \mathrm{~V}$
Power Dissipation, at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{PD}_{\mathrm{D}} \quad 2 \mathrm{~W}$
$\pm V_{S}$
Steady State Output Current, IO $\quad \pm 100 \mathrm{~mA}$
Operating Temperature Range, T_{A}

LH4101CD
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH4101D
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, TSTG
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, $\mathrm{T}_{\mathrm{J}} \quad 175^{\circ} \mathrm{C}$
Lead Temperature (Soldering < 10 sec .)
ESD rating to be determined

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Typ	Max	Units
Vos	Input Offset Voltage	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (Note 1)			$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Average Offset Voltage Drift				25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		$\begin{aligned} & T_{A}=T_{J}=25^{\circ} \mathrm{C} \text { (Note 1) } \\ & T_{A}=T_{J}=T_{\max } \end{aligned}$			$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
los	Input Offset Current		$\begin{aligned} & T_{A}=T_{J}=25^{\circ} C \text { (Note 1) } \\ & T_{A}=T_{J}=T_{\max } \end{aligned}$			$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	pA nA
CMRR	Common Mode Rejection Ratio	$\Delta V_{I N}= \pm 10 \mathrm{~V}$		50	60		dB
PSRR	Power Supply Rejection Ratio	$\Delta V_{S}= \pm 10 \mathrm{~V}$		50	60		dB
Avol	Open-Loop Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, f=1 \mathrm{kHz} \\ & V_{O}= \pm 5 \mathrm{~V}, R_{L}=50 \Omega, f=1 \mathrm{kHz}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 60 \\ & 57 \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & 62 \\ & \hline \end{aligned}$		dB dB
Vo	Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathbb{N}}= \pm 5.5 \mathrm{~V}, R_{\mathrm{L}}=50 \Omega, T_{J}=25^{\circ} \mathrm{C} \text { (Note 2) } \end{aligned}$		$\begin{gathered} \pm 10 \\ \pm 5 \end{gathered}$	± 13.5		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$			25	40	mA
e-3	Gain Error $A_{V}=-3$	$V_{I N}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$			0.8	2	\%
$\theta-1$	Gain Error $A_{V}=-1$				0.8	2	\%

Note 1: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at $T_{J}=25^{\circ} \mathrm{C}$.
Note 2: The output swing is limited by the maximum output current of $\pm 100 \mathrm{~mA}$ when $R_{L}=50 \Omega$. When the LH4101 is operated at elevated temperature (such as $125^{\circ} \mathrm{C}$, some form of heatsinking or forced air cooling is required. The quiescent power with V_{S} of $\pm 15 \mathrm{~V}$ is 1.2 W max, whereas the package can only handle 750 mW without a heatsink at $125^{\circ} \mathrm{C}$.

AC Electrical Characteristics $A_{V}=+1, R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise speciified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
S_{R}	Slew Rate	$\mathrm{V}_{\mathbb{I N}}= \pm 5 \mathrm{~V}$	200	250		$\mathrm{~V} / \mu \mathrm{s}$
$\mathrm{f}_{-3 \mathrm{~dB}}$	Small Signal Bandwidth	$\mathrm{V}_{\mathbb{I N}}=100 \mathrm{mVrms}$		45		MHz
ts	Settling Time to 1%	$\Delta \mathrm{~V}_{\mathbb{I N}}=10 \mathrm{~V}$		140		ns
	Settling Time to 0.1%			300	ns	
t_{r}	Small Signal Rise Time	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V}$ to +100 mV		10	ns	

Applications Information

Power Supply Bypassing

The LH4101 will perform well in most circuit boards even without external supply bypassing; however, it is recommended that some bulk bypassing be provided. One $10 \mu \mathrm{~F}$ electrolytic on each supply is recommended. Proximity to the device pins is not critical, but the bypass will be most effective if located within an inch of the part.

Input Capacitance

The input capacitance to the LH4101 is typically 5 pF and for source impedances greater than 100Ω, the input time constant should be considered.

Gain Settings

The LH4101 provides internal gain set resistors for most popular gain settings. A chart is provided to assist in determining the proper pins to connect to achieve these gains. The internal gain resistors are trimmed and matched to insure the gain accuracy to 0.8% typically. The LH4101 can operate at other gain settings, but the user must supply additional gain set resistors external to the part.

Frequency Response ($A_{V}=+1$ Closed Loop)

Frequency Response (Open Loop)

Offset Null

Gain	Connect	Pln Number	Comment
+1	$\begin{aligned} & V_{\text {out }} \text { to } S 1 \\ & V_{\text {out }} \text { to } S 2 \end{aligned}$	18 to 15 18 to 16	For all positive gains, the input is $\mathrm{V}_{\mathrm{in}(+)}$, pin 12.
+2	$V_{\text {out }}$ to $S 2$ and S1 to GND	18 to 16 15 to 19	
+3	$V_{\text {out }}$ to 33 and S2 to $\mathrm{V}_{\text {in(}}(-)$ and S1 to GND	18 to 17 16 to 13 15 to 19	
+4	$V_{\text {out }}$ to S3 and S1 to GND	18 to 17 15 to 19	
-1	S 2 to $\mathrm{V}_{\text {out }}$	16 to 18	For all negative gains, input is $S 1$, pin 15. Also, $\mathrm{V}_{\text {in }(+),}$, pin 12, MUST BE CONNECTED TO GROUND.
-2	$V_{\text {in }(-)} \text { to } S 2$ and $\text { S3 to } V_{\text {out }}$	$\begin{aligned} & 13 \text { to } 16 \\ & 17 \text { to } 18 \end{aligned}$	
-3	S3 to $\mathrm{V}_{\text {out }}$	17 to 18	

Typical Applications

Unity Gain Follower

The LH4101 can be used as a unity gain follower to provide output current to drive 50Ω or 75Ω coax cable directly. By shorting pins 15, 16 and 18, a follower circuit is configured as seen in Figure 1a. This configuration features a band-
width greater than 40 MHz with an input signal of $1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and greater than 16 MHz with a $5 \mathrm{~V}_{\mathrm{p} \text {-p }}$ input signal. This is all achieved without any external components. Figures $1 b$ and $1 c$ show the small and large signal pulse responses, respectively.

TL/K/8543-5
FIGURE 1a. Unity Gain Follower

FIGURE 1b

Non－Inverting Amplifier

To configure the LH4101 as a non－inverting amplifier with a gain of 4 ，short pins 17 to 18 and 15 to 19 ，as shown in Figure 2a．Again，no external components are necessary． This configuration provides a bandwidth of 25 MHz with an
input sine wave of $1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and a bandwidth of 10 MHz with an input of $5 \mathrm{~V}_{\mathrm{p} \text {－p }}$ while providing 100 mA of output current． This eliminates the need of an additional buffer in the circuit to provide the output current to drive large loads．Figures $2 b$ and $2 c$ show the small and large signal pulse responses， respectively．

TL／K／8543－8
FIGURE 2a．Non－Inverter with Gain of +4

Differential Amplifier

To configure the LH4101 as a differential amplifier，two ad－ ditional $1 \mathrm{k} \Omega$ resistors are required．Figure 3 shows this con－

Small Signal Pulse Response

FIGURE 2c
figuration，where $V_{0}=V_{1}-V_{2}$ ．The gain accuracy of this circuit is dependent upon the gain accuracy of the additional $1 \mathrm{k} \Omega$ resistors．

National
PRELIMINARY
Semiconductor
LH4104/LH4104C Fast Settling High Current Operational Amplifier

General Description

The LH4104 is a fast settling high current Bi-Fet op amp designed for applications that require a fast settling time of 500 ns to 0.01% and 100 mA continuous output current. The high output current eliminates the need for a buffer to provide the additional current drive not available in most operational amplifiers. The operational amplifier also features a gain bandwidth product of 18 MHz and a slew rate of $40 \mathrm{~V} / \mu \mathrm{s}$.
Designed for use with minimum external circuitry, the LH4104 provides internal compensation for unity gain stability as well as internal supply bypass capacitors. These features minimize the circuit's sensitivity to external layout conditions.

Features

■ 500 ns settling time to 0.01% for a 10 V step

- 100 mA continuous output current
- 18 MHz gain bandwidth product
- Internal supply bypassing
- Unity gain stable

Applications

- Cable Drivers
- High Speed Ramp Generators
- DAC Output Amplifiers
- Fast Buffers
- Sample and Holds
- Fast Integrators

Schematic Diagram

Pinout shown for metal can package (for molded package in parenthesis)
TL/K/8840-1
*On metal can package (G) pins \#2 and \#8 are internally connected. The case is electrically isolated. The molded package (N) does not have ground connections or bypass capacitors.

Connection Diagrams

Metal Can Package

TL/K/8840-2
Top View
Order Number LH4104CG or LH4104G
See NS Package Number H12B

16-Lead Molded Dual-In-Line Package (\mathbf{N})

Top View

Order Number LH4104CN See NS Package Number N16A

Absolute Maximum Ratings			
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Differential Input Voltage, V_{IN} Input Voltage Range, V_{CM}	$\begin{gathered} \pm 30 \mathrm{~V} \text { but } \leq \pm 2 \mathrm{~V}_{\mathrm{s}} \\ \pm 18 \mathrm{~V} \text { but } \leq \pm \mathrm{V}_{\mathrm{s}} \end{gathered}$
		Operating Temperature Range, T_{A}	
Supply Voltage, $\mathrm{V}_{\text {S }}$	$\pm 18 \mathrm{~V}$	LH4104	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Steady State Output Current, I_{0}	100 mA	LH4104C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation (See Curves)		Storage Temperature Range, T STG	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, LH4104G, LH4104CG	1.5W	Maximum Junction Temperature, T_{j}	$150^{\circ} \mathrm{C}$
C $=25^{\circ} \mathrm{C}, \mathrm{LH} 4104 \mathrm{CH} \mathrm{CN}, \mathrm{LH} 4104 \mathrm{CG}$	1.56 W 2.5 W	Lead Temperature (Soldering < 10 sec .)	$300^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{LH} 4104 \mathrm{G}, \mathrm{LH} 4104 \mathrm{CG}$	2.5W	ESD rating is to be determined.	

DC Electrical Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=225^{\circ} \mathrm{C}$ unless otherwise noted (Note 1)

Symbol	Parameter	Conditions	LH4104C			Units (Max Unless Otherwise Stated)
			Typ	Tested Limit (Note 2)		
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	2	5	10	mV
$\mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	20			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, (Note 4) $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	200	600		pA
					250	nA
los	Input Offset Current	$\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	20	400		pA
					200	nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1011			Ω
Avol	Large Signal Voltage Gain	$R_{L}=100 \Omega$	106	87		dB (Min)
		$R_{L}=1 \mathrm{k} \Omega$	106	87	80	
V_{0}	Output Voltage Swing	$R_{L}=100 \Omega$ (Note 5)		± 10		V (Min)
		$R_{L}=1 \mathrm{k} \Omega$	± 13	± 10	± 10	
$V_{C M}$	Input Common Mode Range		± 12	± 11	± 10	V (Min)
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}=-11 \mathrm{~V}$ to +11V	100	80	70	dB (Min)
PSRR	Power Supply Rejection Ratio	$V_{C C}= \pm 10 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	100	80	70	dB (Min)
Is	Supply Current		20	25		mA

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions	LH4104C			Units (Max Unless Otherwise Stated)
			Typ		Design Limit (Note 3)	
ts	Settling Time to 0.01\%	$A_{V}=-1, V_{I N}=-5 \mathrm{~V}$ to $+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	500	800		ns
S_{R}	Slew Rate	$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$ to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	40		32	$\mathrm{V} / \mu \mathrm{s}$ (min)
GBW	Gain Bandwidth Product		18			MHz
t_{r}	Small Signal Rise Time	$A_{V}=1, R_{L}=100 \Omega$	10		20	ns

DC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Notes 1 and 6)

Symbol	Parameter	Conditions	LH4104			Units (Max Unless Otherwise Stated)
			Typ	Tested Limit (Note 2)		
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	2	10		mV
$\mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	20			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, (Note 4) $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	200	600		pA
				350		nA
los	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	20	400		pA
				250		nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1011			Ω
Avol	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	106	87		dB (Min)
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	106	87		
				80		
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=100 \Omega$ (Note 5)		± 10		V (Min)
		$R_{L}=1 \mathrm{k} \Omega$	± 13	± 10		
V_{CM}	Input Common Mode Range		± 12	± 10		V (Min)
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {IN }}-11 \mathrm{~V}$ to +11V	100	80		dB (Min)
				70		
PSRR	Power Supply Rejection Ratio	$V_{C C}= \pm 10 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	100	80		dB (Min)
				70		
Is	Supply Current		20	25		mA

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions	LH4104			Units (Max Unless Otherwise Stated)
			Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
t_{S}	Settling Time to 0.01\%	$A_{V}=-1, V_{I N}=-5 V$ to $+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	500	800		ns
S_{R}	Slew Rate	$V_{I N}=-10 \mathrm{~V}$ to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	40		32	$\mathrm{V} / \mu \mathrm{s}$ (min)
GBW	Gain Bandwidth Product		18			MHz
t_{r}	Small Signal Rise Time	$A_{V}=1, R_{L}=100 \Omega$	10		20	ns

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4104 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4104 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Note 2: Tested limits are guaranteed and 100% production tested.
Note 3: Design limits are guaranteed (but not production tested).
Note 4: Specifications is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $T_{j}=25^{\circ} \mathrm{C}$.
Note 5: The output swing is limited by the maximum output current of $\pm 100 \mathrm{~mA}$ when $R_{L}=100 \Omega$.
Note 6: When the LH4104 is operated at elevated temperture (such as $125^{\circ} \mathrm{C}$), some form of heat sinking or forced air cooling is required. The quiescent power with $V_{C C}$ of $\pm 15 \mathrm{~V}$ is 750 mW , whereas the package can only handle 500 mW without a heatsink at $125^{\circ} \mathrm{C}$.

TL/K/8840-5

Settling Signal

TL/K/8840-3
currents vary with temperature and input voltage range. I_{B} will normally double with each $11^{\circ} \mathrm{C}$ rise in junction temperature.

LAYOUT PRECAUTIONS

Grounding and circuit layout are extremely important in preserving the settling time of the LH4104. It is important to use single point ground returns for inputs, loads, and feedback components and to keep the returns short. Compensation components should be located close to the appropriate pins to minimize stray reactances. Keep the system's digital signals (or any other signals with fast rise times) separated from the amplifier. If such signals are too close to the amplifier, they can couple capacitively to the amplifier's inputs, resulting in undesirable signals at the output.

PRESERVING AND VERIFYING THE LH4104'S FAST SETTLING TIME

To realize optimum settling performance in circuits using the LH4104, both the design and layout must be meticulous. Application note AN-428, "Preserving and Verifying the

Applications Information (Continued)

LF400's Fast Settling Time', explains the required design and measurement techniques. Although this application note was written for the LF400, it suggests good guidelines and is directly applicable to the LH4104. Only the sections covering supply bypassing and output load limitations should be ignored. This is because the LH4104 has internal bypassing capacitors and substantially greater output drive current than the LF400. The suggested circuits require only small and straightforward modifications; even the printed circuit board layout can be easily modified to accept the footprint of the LH4104 without impacting setting time.

PROTECTION SCHEMES FOR THE LH4104

The LH4104 has similar input characteristics of National Semiconductor's BI-FETTM family of operational amplifiers. As such, designing with this part requires that several precautions are observed which are uncharacteristic of other op amps. Application Note AN-447 covers these caveats in greater detail for the whole product family. (The LH4104's input stage shares its topology with the LF400.)

NEVER LEAVE AN INPUT UNATTENDEDI

If an input to the LH4104 is left open circuited (or connected to an analog multiplexer in a high impedance state), the input bias current will be drawn from the very small parasitic input capacitance (<10 pF). This capacitor will rapidly charge up to the power supply rail at a rate of $\mathrm{dv} / \mathrm{dt}=$ $\mathrm{I}_{\mathrm{BIAS}} / \mathrm{C}_{\mathrm{IN}}$. Since the LH4104 is a capable of large output currents and has no internal current limiting, it will easily be destroyed by excessive power dissipation if such an input condition exists while driving a low impedance load (e.g. 50Ω).
To avoid this condition in circuits where the LH4104 is buffering the FET switch of an analog multiplexer, one must connect a resistor between the input and ground to provide a bias current path. This will invariably degrade the effective input impedance of the device, so a large resistor is desirable.
For example, selecting a $1 \mathrm{M} \Omega$ resistor will result in a harmless 25 mV output signal during the "deselected" state (for the worst case bias current of 25 nA). Increasing this resistor will increase the output signal for the deselected" state; decreasing it will reduce this signal while degrading the input impedance. Depending on the user's circuit specifications, a compromise must be selected. This resistor will not introduce an increase in the effective offset voltage during the "selected" state because the input is driven by a low impedance source.

POWER SUPPLY SEQUENCING

Adding the clamp diodes shown in Figure 1 not only protects the inputs from transients when the circuit is operating, but protects them as power is being applied to the circuit. Because the parasitic transistor apears when the input voltage is less than the negative supply, applying the positive supply or input voltage before the negative supply is applied can cause this problem. For this reason, it is always recom-
mended that the negative supply be turned on first, if the supplies can be turned on independently.

Also, even if the input stage is well protected with clamp diodes and current limiting, the inputs should not be allowed to be heavily unbalanced (for example, one input at ground and the other at the rail) for extended periods of time (for example, many hours). The long-term effects of an unbalanced differential pair are increased offset voltage and offset current.

TL/K/8840-13
FIGURE 1. Clamping Inputs of Op Amp

Vos ADJUSTMENT

Offset voltage can be nulled using a 56 K resistor and a 25 K potentiometer connected to pins 3 and 7 as shown in Figure 3. Bypassing the V_{OS} adjust pins with $0.1 \mu \mathrm{~F}$ capacitors will help to avoid noise pickup. When not used for offset adjustment, pins 3 and 7 can often be left open, but to minimize the possibility of noise pickup the unused V_{OS} trim pins should be connected to ground or V^{-}.

Test Circuit for Pulse Response

TL/K/8840-6
FIGURE 2*

Typical Applications

TL/K/8840-8
FIGURE 3. Offset Null*

TL/K/8840-10
FIGURE 5. Unity Gain Follower*

TL/K/8840-9
FIGURE 4. Using Resistor Current Limiting*

TL/K/8840-11
FIGURE 6. 10X Buffer Ampilifier*

LH4105/LH4105C Precision Fast Settling High Current Operational Amplifier

General Description

The LH4105 is a fast settling high current Bi-Fet op amp designed for applications that require a fast settling time of 500 ns to 0.01% and 100 mA continuous output current. The high output current eliminates the need for a buffer to provide the additional current drive not available in most operational amplifiers. The operational amplifier also features a gain bandwidth product of 18 MHz and a slew rate of $40 \mathrm{~V} / \mu \mathrm{s}$.
Designed for use with minimum external circuitry, the LH4105 provides internal compensation for unity gain stability as well as internal supply bypass capacitors. These features minimize the circuit's sensitivity to external layout conditions.

Features

- $500 \mu \mathrm{~V}$ offset voltage
- 500 ns settling time to 0.01% for a 10 V step
- 100 mA continuous output current
- Internal supply bypassing
- Unity gain stable

Applications

- Cable Drivers
- High Speed Ramp Generators
- DAC Output Amplifiers
- Fast Buffers
- Sample and Holds
- Fast Integrators

Schematic Diagram

TL/K/9159-1
Pins \#2 \& \#8 are internally connected. Case is electrically isolated. Pins 3 and 8 are used internally, do not connect to these pins

Connection Diagram

Metal Can Package

Note: 2 and 8 are internally connected. Case is electrically isolated. Pins 3 and 8 are used internally. Do not connect to these pins.
Order Number LH4105G or LH4105CG
See NS Package Number G12B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage, V_{S}	$\pm 18 \mathrm{~V}$
Steady State Output Current, I_{0}	100 mA
Power Dissipation at, P_{D}	
$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, derate linearly at $100^{\circ} \mathrm{C} / \mathrm{W}$	2.5 W
$\mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, derate linearly at $50^{\circ} \mathrm{C} / \mathrm{W}$	1.5 W

Differential Input Voltage, $V_{\text {IN }}$	$\pm 30 \mathrm{~V}$ but $\leq \pm 2 \mathrm{~V}_{\mathrm{S}}$
Input Voltage Range, V_{CM}	$\pm 18 \mathrm{~V}$ but $\leq \pm \mathrm{V}_{\mathrm{S}}$
Operating Temperature Range, T_{A}	
LH4105	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH4105C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, T_{j}	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering <10 sec.)	$300^{\circ} \mathrm{C}$
ESD rating is to be determined.	

Differential Input Voltage, V_{IN}
$\pm 30 \mathrm{~V}$ but $\leq \pm 2 \mathrm{~V}_{\mathrm{s}}$ $\pm 18 \mathrm{~V}$ but $\leq \pm \mathrm{V}_{\mathrm{S}}$
Operating Temperature Range, T_{A}
LH4105
$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temperature (Soldering < 10 sec .)

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Note 1)

Symbol	Parameter	Conditions	LH4105C			Units (Max Unless Otherwise Stated)
			Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	0.2	0.5	2	mV
$V_{\text {OS }} / \Delta T$	Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	20			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, (Note 4) $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	200	600		pA
					250	nA
los	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	20	400		pA
					200	nA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1011			Ω
Avol	Large Signal Voltage Gain	$R_{L}=100 \Omega$	106	87		dB (Min)
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	106	87	80	
Vo	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=100 \Omega$ (Note 5)		± 10		V (Min)
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	± 13	± 10	± 10	
V_{CM}	Input Common Mode Range		± 12	± 11	± 10	$V(\mathrm{Min})$
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}=-11 \mathrm{~V}$ to +11 V	100	80	70	dB (Min)
PSRR	Power Supply Rejection Ratio	$V_{C C}= \pm 10 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	100	80	70	dB (Min)
Is	Supply Current		20	25		mA

AC Electrical Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions	LH4105C			Units (Max Unless Otherwise Stated)
			Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
ts	Settling Time to 0.01\%	$A_{V}=-1, V_{I N}=-5 \mathrm{~V}$ to $+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	500	800		ns
S_{R}	Slew Rate	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$ to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	40		32	$\mathrm{V} / \mu \mathrm{s}$ (min)
GBW	Gain Bandwidth Product		18			MHz
t_{r}	Small Signal Rise Time	$A_{V}=1, R_{L}=100 \Omega$	10		20	ns

				LH4105		Unit
Symbol	Parameter	Conditions	Typ	Tested Limit (Note 2)	Design Limit (Note 3)	(Max Unless Otherwise Stated)
V_{0}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	0.2	2		mV
$\mathrm{V}_{\text {OS } / \Delta T}$	Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=50 \Omega$	20			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, (Note 4) $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	200	600		pA
				350		nA
los	Input Offset Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	20	400		pA
				250		nA
RIN	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	1011			Ω
Avol	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	106	87		dB (Min)
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	106	87		
				80		
vo	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=100 \Omega$ (Note 5)		± 10		V (Min)
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$.	± 13	± 10		
$\mathrm{V}_{\text {CM }}$	Input Common Mode Range		± 12	± 10		V (Min)
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {IN }}-11 \mathrm{~V}$ to +11 V	100	80		dB (Min)
				70		
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{CC}}= \pm 10 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	100	80		dB (Min)
				70		
Is	Supply Current		20	25		mA

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions	LH4105			Units (Max Unless Otherwise Stated)
			Typ	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 2) } \\ & \hline \end{aligned}$	Design Limit (Note 3)	
ts	Settling Time to 0.01\%	$A_{V}=-1, V_{I N}=-5 \mathrm{~V}$ to $+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	500	800		ns
S_{R}	Slew Rate	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}$ to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	40		32	$\mathrm{V} / \mu \mathrm{s}(\mathrm{min})$
GBW	Gain Bandwidth Product		18			MHz
tr_{r}	Small Signal Rise Time	$A_{V}=1, R_{L}=100 \Omega$	10		20	ns

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4105 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4105 is
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Note 2: Tested limits are guaranteed and 100% production tested.
Note 3: Design limits are guaranteed (but not production tested). These limits are not used to calculate outgoing quality levels.
Note 4: Specifications is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed
value at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Note 5: The output swing is limited by the maximum output current of $\pm 100 \mathrm{~mA}$ when $\mathrm{R}_{\mathrm{L}}=100 \Omega$.
Note 6: When the LH4105 is operated at elevated temperture (such as $125^{\circ} \mathrm{C}$), some form of heat sinking or forced air cooling is required. The quiescent power
with V_{CC} of $\pm 15 \mathrm{~V}$ is 750 mW , whereas the package can only handle 500 mW without a heatsink at $125^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Settling Signal

TL/K/9159-3

Applications Information

POWER SUPPLY BYPASSING

The LH4105 will perform well in most circuit boards even without external supply bypassing; however it is recommended that some bulk bypassing be provided to maintain optimum settling time. A $0.1 \mu \mathrm{~F}$ disc ceramic capacitor and $1 \mu \mathrm{~F}$ tantalum capacitor on each supply is recommended. Place the bypass capacitors close to the amplifiers supply pins.

COMPENSATION

To minimize the effects of input capacitance at the LH4105's inverting input and any additional layout capacitance, an external compensation capacitor must be used. The compensation capacitor (C1) used in Figure 2 (Test Circuit Section) is typically 66 pF . The optimum value for the compensation capacitor depends on the application circuit and the board layout.

INPUT BIAS CURRENT

The input devices are JFETs, and will normally have input bias (I_{B}) currents in the tens of picoamps. However, these currents vary with temperature and input voltage range. I_{B} will normally double with each $11^{\circ} \mathrm{C}$ rise in junction temperature.

LAYOUT PRECAUTIONS

Grounding and circuit layout are extremely important in preserving the settling time of the LH4105. It is important to use single point ground returns for inputs, loads, and feedback components and to keep the returns short. Compensation components should be located close to the appropriate pins to minimize stray reactances. Keep the system's digital signals (or any other signals with fast rise times) separated from the amplifier. If such signals are too close to the amplifier, they can couple capacitively to the amplifier's inputs, resulting in undesirable signals at the output.

PRESERVING AND VERIFYING THE LH4104'S FAST SETTLING TIME

To realize optimum settling performance in circuits using the LH4105, both the design and layout must be meticulous. Application note AN-428, "Preserving and Verifying the LF400's Fast Settling Time", explains the required design and measurement techniques. Although this application note was written for the LF400, it suggests good guidelines and is directly applicable to the LH4105. Only the sections covering supply bypassing and output load limitations should be ignored. This is because the LH4105 has internal bypassing capacitors and substantially greater output drive current than the LF400. The suggested circuits require only small and straightforward modifications; even the printed circuit board layout can be easily modified to accept the footprint of the LH4105 without impacting settling time. In addition, bypassing offset adjust pins 3 and 7 with $0.1 \mu \mathrm{~F}$ capacitors will minimize noise pickup and preserve the settling time.

PROTECTION SCHEMES FOR THE LH4104

The LH4105 has similar input characteristics of National Semiconductor's BI-FETTM family of operational amplifiers. As such, designing with this part requires that several precautions are observed which are uncharacteristic of other op amps. Application Note AN-447 covers these caveats in greater detail for the whole product family. (The LH4105's input stage shares its topology with the LF400.)

NEVER LEAVE AN INPUT UNATTENDED

If an input to the LH4105 is left open circuited (or connected to an analog multiplexer in a high impedance state), the input bias current will be drawn from the very small parasitic input capacitance ($<10 \mathrm{pF}$). This capacitor will rapidly charge up to the power supply rail at a rate of $\mathrm{dv} / \mathrm{dt}=$ $\mathrm{I}_{\mathrm{BIAS}} / \mathrm{C}_{\mathrm{IN}}$. Since the LH4105 is capable of large output currents and has no internal current limiting, it will easily be destroyed by excessive power dissipation if such an input condition exists while driving a low impedance load (e.g. 50Ω).
To avoid this condition in circuits where the LH4105 is buffering the FET switch of an analog multiplexer, one must connect a resistor between the input and ground to provide a bias current path. This will invariably degrade the effective input impedance of the device, so a large resistor is desirable.
For example, selecting a $1 \mathrm{M} \Omega$ resistor will result in a harmless 25 mV output signal during the "deselected" state (for the worst case bias current of 25 nA). Increasing this resistor will increase the output signal for the deselected state; decreasing it will reduce this signal while degrading the input impedance. Depending on the user's circuit specifications, a compromise must be selected. This resistor will not introduce an increase in the effective offset voltage during the "selected" state because the input is driven by a low impedance source.

POWER SUPPLY SEQUENCING

Adding the clamp diodes shown in Figure 1 not only protects the inputs from transients when the circuit is operating, but protects them as power is being applied to the circuit. Because the parasitic transistor appears when the input voltage is less than the negative supply, applying the positive supply or input voltage before the negative supply is applied can damage the device. For this reason, it is always recommended that the negative supply be turned on first, if the supplies can be turned on independently.
Also, even if the input stage is well protected with clamp diodes and current limiting, the inputs should not be allowed to be heavily unbalanced (for example, one input at ground and the other at the rail) for extended periods of time (for example, many hours). The long-term effects of an unbalanced differential pair are increased offset voltage and offset current.

TL/K/9159-6

FIGURE 1. Clamping Inputs of Op Amp

Test Circuit for Pulse Response

FIGURE 2

Typical Applications

TL/K/9159-8
FIGURE 3. Using Resistor Current Limiting

TL/K/9159-10

TL/K/9159-9
FIGURE 4. Unity Gain Follower

TL/K/9159-11
FIGURE 6. Unity Gain Inverter

LH4106/LH4106C \pm 5V High Speed Operational Amplifier

General Description

The LH4106 is a wideband op amp designed to operate with $\pm 5 \mathrm{~V}$ power supplies. It features a 30 MHz bandwidth and can drive 50 or 75Ω loads directly at slew rates in excess of $170 \mathrm{~V} / \mu \mathrm{s}$.
It is intended to fulfill a wide range of applications; such as, precision cable drivers, buffers in high speed data acquisition systems, and high speed peak detectors.

Features

- Operates from V_{s} of $\pm 5 \mathrm{~V}$
- Unity gain stable
- Very high slew rate- $170 \mathrm{~V} / \mu \mathrm{s}$
- Wide small signal bandwidth- 32 MHz
- Low supply current- 16 mA
- Drives 50 or 75Ω directly

Applications

- Flash A/D input buffers
- Video amplifier
- High speed summing amplifiers
- Pulse amplifiers
- Precision cable drivers

Block Diagram

TL/K/9317-10

Connection Diagrams

TL/K/9317-13
Order Number LH4106CN See NS Package Number N16A

TL/K/9317-1
Top View
TO-5 Metal Can Package (H)
Order Number LH4106CH or LH4106H See NS Package Number H10F

Absolute Maximum Ratings		
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.	Operating Temperature Range, T_{A} LH4106 LH4106C	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$
Supply Voltage, $\mathrm{V}_{\text {S }} \quad \pm 7.5 \mathrm{~V}$	Storage Temperature Range, TSTG	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Steady State Output Current, lo 40 mA	Maximum Junction Temperature, T_{j}	$150^{\circ} \mathrm{C}$
Power Dissipation, PD_{D}.	Lead Temperature (Soldering <10 sec.)	$300^{\circ} \mathrm{C}$
(See Curve) 600 mW	ESD Rating	$\pm 700 \mathrm{~V}$
Differential Input Voltage, $\mathrm{V}_{\text {IN }}$ ($\mathrm{V}_{\text {S }}$	(100 pF in series with 1500 ohms)	
Input Voltage Range, $\mathrm{V}_{\mathrm{CM}} \quad(\mathrm{V}+-0.7 \mathrm{~V})$ to ($\mathrm{V}--7 \mathrm{~V}$)		

DC Electrical Characteristics

$V_{S}= \pm 5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega$ unless otherwise noted (Note 1)

Symbol	Parameter	Conditions		LH4106C			Units (Max Unless Otherwise Stated)
				Typ	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 2) } \end{aligned}$		
Vos	Input Offset Voltage	$V_{I N}=0 \mathrm{~V}$		5	15		mV
VoS/AT	Offset Voltage Drift			10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 4)		2	6		$\mu \mathrm{A}$
los	Input Offset Current	(Note 4)		150	1200		nA
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$A_{V}=+1 @ 10 \mathrm{MHz}$		1.5			pF
$\mathrm{R}_{\text {IN }}$	Input Resistance			325			$\mathrm{k} \Omega$
Avol	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }} \cong \pm 2 \mathrm{~V}$		65	60		dB (Min)
V_{O}	Output Voltage Swing	$R_{L}=100 \Omega$	$+\mathrm{V}_{0}$	+3	+2		V (Min)
			$-V_{0}$	-2.6	-2		
V_{CM}	Input Common Mode Range	See CMRR			$\begin{aligned} & +V_{S}-1.5 \\ & -V_{S}+2.0 \\ & \hline \end{aligned}$		V (Min)
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{I N}=-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+3.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$		90	70		db (Min)
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{OC}}= \pm 3 \mathrm{~V} \text { to } \pm 6 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$		80	70		dB (Min)
Is	Supply Current	No Load		16	20		mA

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega$ unless otherwise noted (Note 1)

Symbol	Parameter	Conditions	LH4106			Units (Max Unless Otherwise Stated)
			Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
Vos	Input Offset Voltage	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	5	20		mV
$\mathrm{V}_{\text {OS/AT }}$	Offset Voltage Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 4)	2	6		$\mu \mathrm{A}$
los	Input Offset Current	(Note 4)	150	1500		nA
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$A_{V}=+1 @ 10 \mathrm{MHz}$	1.5			pF
$\mathrm{R}_{\text {IN }}$	Input Resistance		325			$\mathrm{k} \Omega$
AVOL	Large Signal Voltage Gain	$R_{L}=1 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }} \cong \pm 2 \mathrm{~V}$	65	60		dB (Min)

DC Electrical Characteristics

$V_{S}= \pm 5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, R_{S}=50 \Omega, R_{L}=100 \Omega$ unless otherwise noted (Note 1) (Continued)

Symbol	Parameter	Conditions		LH4106			Units (Max Unless Otherwise Stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
V_{0}	Output Voltage Swing	$R_{L}=100 \Omega$	$+\mathrm{V}_{0}$	+3	+2		V (Min)
			$-V_{0}$	-2.6	-2		
V_{CM}	Input Common Mode Range	See CMRR			$\begin{aligned} & +V_{S}-1.5 \\ & -V_{S}+2.0 \\ & \hline \end{aligned}$		
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+3.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$		90	70		db (Min)
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & V_{O C}= \pm 3 \mathrm{~V} \text { to } \pm 6 \mathrm{~V}, \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$		80	70		
Is	Supply Current	No Load		16	20		mA

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega$ unless otherwise noted (Note 1)

Symbol	Parameter	Conditions	LH4106/LH4106C			Units (Max Unless Otherwise Stated)
			Typ	Tested Limit (Note 2)	$\begin{aligned} & \text { Design } \\ & \text { Limit } \\ & \text { (Note 3) } \end{aligned}$	
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1\%		120			ns
SR	Slew Rate	$\mathrm{V}_{0}= \pm 2 \mathrm{~V}$	170	120		$\mathrm{V} / \mu \mathrm{s}$ (Min)
tr_{r}	Small Signal Rise Time	$A_{V}=1, V_{O}= \pm 0.1 \mathrm{~V}$	11			ns
	Power Bandwidth	(Note 6)	7			MHz
	Differential Gain	NTSC, $A_{V}=+4$	<0.1			\%
	Differential Phase	NTSC, $A_{V}=+4$	0.1			degrees
	GBWP		34			MHz
	Phase Margin		60			degrees
	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$	15			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	1.5			$\mathrm{pa} / \sqrt{\mathrm{Hz}}$
SSBW	Small Signal Bandwidth	(Note 7)	32			MHz

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4106 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4106 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Note 2: Tested limits are guaranteed and 100\% production tested.
Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature or temperature range. These limits are not used to calculate outgoing quality level.
Note 4: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature may exceed value at $T_{j}=25^{\circ} \mathrm{C}$.
Note 5: When the LH4106 is operated at elevated temperature (such as 125°), some form of heatsinking or forced air cooling is required. The quiescent power with $V_{S}= \pm 5 \mathrm{~V}$ is 160 mW , whereas, the package is only rated to 170 mW without a heatsink at $125^{\circ} \mathrm{C}$.
Note 6: Power bandwidth is calculated from slew rate measurement using BW = Slew Rate/ $2 \pi \mathrm{~V}$ Peak.
Note 7: Calculated from t_{r} using $\mathrm{SSBW}=0.35 / \mathrm{t}_{\mathrm{r}}$.

Typical Performance Characteristics

$T O P=I N P U T$

BOTTOM = OUTPUT $\mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega$

TL/K/9317-3

Typical Applications

TL/K/9317-5

Large Signal Pulse Response

TL/K/9317-7
FIGURE 1. Unity Gain Follower with Offset Adjust

TL/K/9317-8
FIGURE 2. 10X Buffer Amplifier

FIGURE 3. Unity Gain Inverter

AC Test Circuit

Circuit Schematic

TL/K/9317-14

Pin numbers in circle denote pin connections for the dual-in-line package.

General Description

The LH4117 is a FET－input wideband amplifier optimized for high speed，low gain applications．It is an ideal alternative to low precision open loop buffers and conventional operation－ al amplifiers．It features a closed loop -3 dB unity gain bandwidth in excess of 150 MHz ．Unlike conventional op－ amps，the bandwidth is relatively independent of closed loop gain between 1 and 20．A high current output stage is also incorporated，allowing the LH4117 to drive 50Ω termi－ nated lines directly．It is an ideal choice for video distribu－ tion，flash converter input buffering and ATE pin drivers．

Features

－ 150 MHz bandwidth
■ 9 ns settling time to 0.2%

■ 3.3 ns rise and fall times
－Output current to 200 mA
－FET－input，low bias current
－ $2500 \mathrm{~V} / \mu \mathrm{S}$ slew rate （ 100Ω load）
－$\pm 0.3 \mathrm{~dB}$ gain flatness （ $\mathrm{A}_{\mathrm{V}}=20$ ）

Applications

■ Unity gain buffers
－Low gain op amp
－High speed peak detectors
－Video amplifier

LH4117 Simplified Schematic

TL／K／9348－1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, (V)
$\pm 18 \mathrm{~V}$
Power Dissipation, (PD_{D}) See Graph

Input Voltage Range, (V_{CM})
Operating Temperature Range, $\left(T_{A}\right)$

LH4117CD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH4117D	$-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, (T_{j})	$175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, $<10 \mathrm{sec}$.)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, R_{S}=50 \Omega, R_{L}=100 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted. (Note 1)

Symbol	Parameter	Conditions	LH4117D			Units (Max Unless Otherwise Noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
Vos	Input Offset Voltage	$\begin{aligned} & V_{I N}=0 V, T_{A}= \\ & T_{j}=25^{\circ} \mathrm{C} \text { (Note 4) } \end{aligned}$	15	$\begin{aligned} & 20 \\ & 25 \end{aligned}$		mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Offset Voltage Drift	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	100			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Non-Inverting Input Bias Current	$\begin{aligned} & T_{A}=T_{j}=25^{\circ} \mathrm{C} \\ & \text { Pin } 4 \text { (Note 4) } \end{aligned}$	0.2	$\begin{array}{r} 2 \\ 5 \end{array}$		nA
V_{0}	Output Voltage Swing	$R_{L}=100 \Omega$		± 11		V (Min)
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \Delta V_{S}= \pm 10 \mathrm{~V} \\ & \text { to } \pm 15 \mathrm{~V} \end{aligned}$	70	$\begin{aligned} & 60 \\ & 50 \\ & \hline \end{aligned}$		dB (Min)
lo	Peak Output Current	$\begin{aligned} & T_{A}=T_{j}=25^{\circ} \mathrm{C} \\ & \text { (Note 5) } \end{aligned}$	200			mA
Is	Supply Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		45		mA
P_{D}	Quiescent Power Dissipation	(Note 5)		1.35		W

DC Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, R_{S}=50 \Omega, R_{L}=100 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted. (Note 1)

Symbol	Parameter	Conditions	LH4117CD			Units (Max Unless Otherwise Noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
Vos	Input Offset Voltage	$\begin{aligned} & V_{I N}=0 V \\ & T_{A}=T_{j}=25^{\circ} \mathrm{C} \text { (Note 4) } \end{aligned}$	15	20	25	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Offset Voltage Drift		100			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Non-Inverting Input Bias Current	$\begin{aligned} & T_{A}=T_{i}=25^{\circ} \mathrm{C} \\ & \text { Pin 4 (Note 4) } \end{aligned}$	0.2	2	5	nA
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		± 11	± 11	V (Min)
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \Delta V_{S}= \pm 10 \mathrm{~V} \\ & \text { to } \pm 15 \mathrm{~V} \end{aligned}$	70	50		dB (Min)
10	Peak Output Current	$T_{A}=T_{j}=25^{\circ} \mathrm{C}$ (Note 5)	200			mA
Is	Supply Current			45		mA
P_{D}	Quiescent Power Dissipation	(Note 5)		1.35		W

AC Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, R_{S}=50 \Omega, R_{L}=100 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted. (Note 1)

Symbol	Parameter	Conditions	LH4117D/LH4117CD			Units (Max Unless Otherwise Noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
t_{r}	Small Signal Rise Time	$\begin{aligned} & V_{O}=5 V, A_{V}=+20 \\ & 10 \%-90 \% \end{aligned}$	3			ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.2\%	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$	9			ns
$\mathrm{f}_{-3 \mathrm{~dB}}$	Small Signal Bandwidth	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{VPp}, \mathrm{A}_{\mathrm{V}}=20$	150	100		MHz (Min)
$\mathrm{f}_{-3 \mathrm{~dB}}$	Large Signal Bandwidth	$\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{PP}}, A_{V}=20$	70	40		MHz
	-1 dB Gain Compression	$V_{O}, f=50 \mathrm{MHz}, A_{V}=+20$	20			VPP
SR	Slew Rate	$\begin{aligned} & V_{I N}= \pm 1 \mathrm{~V}, A_{V}=+20 \\ & V_{O}=10 \%-90 \%, V_{O}= \pm 4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2500 \\ & 6000 \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
	Harmonic Distortion	Second Order, $\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{PP}}, 20 \mathrm{MHz}$	-50			dB
	Gain Flatness	$\begin{aligned} & V_{I N}=100 \mathrm{mV} \\ & f=D C \text { to } 50 \mathrm{MHz} \\ & f=+20 \\ & f=D C \text { to } 70 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.9 \end{aligned}$			dB
	Differential Gain	(Note 6)	0.01			dB
	Differential Phase	(Note 6)	0.01			deg

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4117 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4117 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Note 2: Tested limits are guaranteed and 100\% production tested.
Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature or temperature range. These limits are not used to calculate outgoing quality level.
Note 4: Specifications is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$.
Note 5: When the LH4117 is operated at elevated tempcrature (such as $125^{\circ} \mathrm{C}$), some form of heat sinking of forced air cooling is required. The quiescent power with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ is 1.2 W , whereas the package can only handle 660 mW without a heatsink at $125^{\circ} \mathrm{C}$.
Note 6: Differential gain and phase were measured at video levels ($0 \mathrm{mV}-750 \mathrm{mV}$) between 15.7 kHz and 3.58 MHz . The actual values are smaller than 0.01 dB and 0.01 deg, but could not be accurately measured with existing equipment.

Connection Diagram

AC Test Circuit

TL/K/9348-3
The 22Ω resistors in the supply line are for limiting the short circuit current.
For a gain of 20 select $R_{G}=52 \Omega$.
Slew rate measurement is done with $R_{G}=56 \Omega, \Delta V_{I N}= \pm 1 \mathrm{~V}$ Step with 1 ns rise time.

Typical Performance Characteristics

*For details see application section.

Typical Applications

TL/K/9348-8
FIGURE 1. Unity Gain Buffer

FIGURE 2. Amplifier

FIGURE 3. Driving Capacitive Loads

Typical Applications (Continued)

FIGURE 4. Offset Adjust

Application Hints

The two inputs of the LH4117 are radically different. While the non-inverting input is the gate of a FET, the inverting input is low impedance.
The graph "Closed Loop Response, Uncompensated" shows gain vs. frequency using only the internal feedback resistor. This performance can be considerably improved by choice of RF and peaking (See graph "Closed Loop Response, Peaked")

$$
\begin{aligned}
& A_{V}=1+\frac{R_{F^{*}}}{R_{G}} \\
& R_{F^{*}}=\frac{1500 \times R_{F}}{1500+R_{F}}
\end{aligned}
$$

TL/K/9348-12
FIGURE 5. LH4117 as Amplifier with Compensation Elements
Guidelines for Compensation

$\mathbf{A}_{\mathbf{V}}$ (Nom. Gain)	$\mathbf{R}_{\mathbf{F}}$ Ω	$\mathbf{R}_{\mathbf{F}}{ }^{*}$ Ω	$\mathbf{R}_{\mathbf{G}}$ Ω	$\mathbf{C}_{\mathbf{P}}$ $\mathbf{p F}$	$\mathbf{R}_{\mathbf{S}}$ Ω
1	-	1.5 k	-	-	140
2	3 k	1 k	1 k	-	-
5	3 k	1 k	165	1.2	-
10	3 k	1 k	110	3.9	-
50	3 k	1 k	20	25	-
100	750	500	5	100	-

The maximum peaking for the above values was +1 dB . For $A_{V}=1$, the input resistor R_{S} corrects for excessive peaking.

LH4118/LH4118A/LH4118C Low Gain Wide Band RF Amplifier

General Description

The LH4118 is a wideband amplifier optimized for high speed, low gain applications. It is an ideal alternative to low precision amplifiers. It features a closed loop -3 dB unity gain bandwidth in excess of 200 MHz . Unlike conventional op-amps, the bandwidth is relatively independent of closed loop gain between 1 and 5. A high current output stage is also incorporated, allowing the LH4118 to drive 50Ω terminated lines directly. It is an ideal choice for video distribution, flash converter input buffering and ATE pin driver.

Features

- 250 MHz bandwidth
- 15 ns settling time to 0.1%
- 2.5 ns rise and fall times
- Output current to 100 mA
- 2 mV offset voltage
- $2500 \mathrm{~V} / \mu \mathrm{s}$ slew rate (100Ω load)
$\pm 0.5 \mathrm{~dB}$ gain flatness ($\mathrm{AV}=5$)

Applications

- Unity gain buffers
- Low gain op amp
- High speed peak detectors
- Video amplifier
- Flash converter driver

Simplified Schematic

TL/K/9768-1
*Pins 2 and 7 can also be left disconnected (floating)
**The built-in 150Ω can be used as feedback resistor for $A_{V}=1$. For details see applications section.

Absolute Maximum Ratings

If Milltary/Aerospace specifled devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallability and specifications.
Supply Voltage, $V_{S} \quad \pm 18 \mathrm{~V}$
Power Dissipation, PD (See Graph)
1.65W

125 mA
Output Current
Non-Inverting Input Voltage Range,
V_{CM} (For $\mathrm{V}_{\mathrm{S}} \leq+15 \mathrm{~V}$) (Note 1)

Operating Temperature Range, T_{A}

LH4118CG	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH4118G, LH4118AG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, TSTG	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, T_{J}	$175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, <10 sec.)	$300^{\circ} \mathrm{C}$
ESD Tolerance (Note 2)	650 V

DC Electrical Characteristics

Unless otherwise noted, $R_{S}=50 \Omega, T_{A}=T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$ (Notes 3, 4)

Symbol	Parameter	Conditions	LH4118AG			Units (Max Unless Otherwise Noted)
			Typlcal	Tested LImit (Note 5)	$\begin{aligned} & \text { Design } \\ & \text { LImit } \\ & \text { (Note 6) } \end{aligned}$	
Vos	Non-Inverting Input Offset Voltage	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	± 2	$\begin{aligned} & \pm 2 \\ & \pm 5 \end{aligned}$		mV
$\frac{\Delta \mathrm{V}_{\text {OS }}}{\Delta \mathrm{T}}$	Offset Voltage Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Non-Inverting Input Bias Current		± 5	$\begin{aligned} & \pm 25 \\ & \pm \mathbf{3 0} \end{aligned}$		$\mu \mathrm{A}$
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	± 13	$\begin{gathered} \pm 11 \\ \pm 10.5 \end{gathered}$		V (Min)
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=\infty$	± 14	$\begin{gathered} \pm 12 \\ \pm 11.5 \end{gathered}$		V (Min)
10	Output Current Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Note 7)		± 100		mA (Min)
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{\mathrm{IN}}=-11 \mathrm{~V} \text { to }+11 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \end{aligned}$	54	50		dB (Min)
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \pm \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V} \text { to } 15 \mathrm{~V} \\ & \Delta \mathrm{~V}=6 \mathrm{~V} \end{aligned}$	72	62		dB (Min)
Is	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	20	25		mA
P_{D}	Quiescent Power Dissipation	(Note 7)	600	750		mW
$\mathrm{C}_{\text {IN }}$	Input Capacitance		1.5			pF

Connection Diagram

TL/K/9768-2
Top View
*Pins 2 and 7 can also be left disconnected (floating)
**The built-in 150Ω can be used as feedback resistor for $A_{V}=1$. For details see applications section.
Order Number LH4118G, LH4118AG or LH4118CG
See NS Package Number H12B

DC Electrical Characteristics Unless otherwise noted, $\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{C}}=$						
Symbol	Parameter	Conditions	LH4118G			Units (Max Unless Otherwlse Noted)
			Typlcal	Tested Limit (Note 5)	Design Limit (Note 6)	
$\mathrm{V}_{\text {OS }}$	Non-Inverting Input Offset Voltags	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	± 2	± 5		mV
$\frac{\Delta V_{\text {OS }}}{\Delta T}$	Offset Voltage Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Non-Inverting Input Bias Current		± 5	$\begin{aligned} & \pm 25 \\ & \pm \mathbf{3 0} \end{aligned}$		$\mu \mathrm{A}$
V_{0}	Output Voltage Swing	$R_{L}=500 \Omega$	± 13	$\begin{gathered} \pm 11 \\ \pm \mathbf{1 0 . 5} \end{gathered}$		$\begin{gathered} \text { V } \\ (\mathrm{Min}) \end{gathered}$
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=\infty$	± 14	$\begin{gathered} \pm 12 \\ \pm \mathbf{1 1 . 5} \\ \hline \end{gathered}$		V (Min)
10	Output Current Swing	$R_{L}=50 \Omega$ (Note 7)		± 100		mA (Min)
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-11 \mathrm{~V} \text { to }+11 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \end{aligned}$	54	50		dB (Min)
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \pm V_{S}=9 V \text { to } 15 \mathrm{~V} \\ & \Delta V=6 \mathrm{~V} \end{aligned}$	72	62		dB (Min)
Is	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	20	25		mA
P_{D}	Quiescent Power Dissipation	(Note 7)	600	750		mW
$\mathrm{C}_{\text {IN }}$	Input Capacitance		1.5			pF

DC Electrical Characteristics

Unless otherwise noted, $R_{S}=50 \Omega, T_{A}=T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$ (Notes 3, 4)

Symbol	Parameter	Conditions	LH418CG			Units (Max Unless Otherwise Noted)
			Typical	Tested Limit (Note 5)		
$\mathrm{V}_{\text {OS }}$	Non-Inverting Input Offset Voltage	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	± 2	± 5	± 5	mV
$\frac{\Delta V_{\text {OS }}}{\Delta T}$	Offset Voltage Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Non-Inverting Input Bias Current		± 5	± 25	± 30	$\mu \mathrm{A}$
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	± 13	± 11	± 10.5	V
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=\infty$	± 14	± 12	± 11.5	V (Min)
lo	Output Current Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ (Note 7)		± 100	± 100	mA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=-11 \mathrm{~V} \text { to }+11 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 18 \mathrm{~V} \end{aligned}$	54	50	50	dB
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \pm V_{S}=9 V \text { to } 15 V \\ & \Delta V=6 V \end{aligned}$	72	62	62	dB
I_{S}	Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	20	25	25	mA
P_{D}	Quiescent Power Dissipation	(Note 7)	600	750	750	mW
C_{IN}	Input Capacitance		1.5			pF

AC Electrical Characteristics

Unless otherwise noted, $A v=+2, R_{S}=50 \Omega, R_{L}=100 \Omega, V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions		LH4118CG, LH4118AG and LH4118G			Units (Max Unless Otherwise Noted)
				Typical	Tested Limit	Design Limit	
$\begin{gathered} \text { SSBW } \\ -3 \mathrm{~dB} \end{gathered}$	Small Signal Bandwidth	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{VP}_{\text {P-P }}$		250	200		MHz (Min)
PBW -3 dB	Power Bandwidth	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}_{\mathrm{P}_{-P}}$		68	55		MHz (Min)
GF	Gain Flatness	$\begin{aligned} & V_{\text {OUT }}= \\ & 0.2 V_{\text {P-P }} \end{aligned}$	$0.5 \mathrm{MHz},-50 \mathrm{MHz}$	± 0.3			dB (Max)
			$0.5 \mathrm{MHz},-100 \mathrm{MHz}$	-1.0			
SR	Slew Rate LH4118AG LH4118G LH4118CG	$\begin{aligned} & V_{\text {OUT }}=15 V_{\text {P-P }} \\ & 20 \%-80 \% \end{aligned}$			$\begin{aligned} & 2400 \\ & 2000 \\ & 1800 \end{aligned}$		$\mathrm{V} / \mu \mathrm{S}$ (Min)
t_{r}	Rise Time	$\begin{aligned} & V_{\text {OUT }}=10 V_{P-P} \\ & 10 \%-90 \% \end{aligned}$		2.5			ns
$V_{G C}$	-1 dB Gain Compression	$\mathrm{f}=50 \mathrm{MHz}$		23.5			dBm
e_{n}	Input Noise Voltage	$\begin{aligned} & A_{V}=5, R_{S}=50 \Omega \\ & f=10 \mathrm{MHz} \end{aligned}$		1.3			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
HD_{2}	Second Harmonic Distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{OC}}=1.27 \mathrm{~V}-\mathrm{P} \\ & \mathrm{~F}_{\mathrm{C}}=14 \mathrm{MHz} \end{aligned}$		-58			dBc
HD_{3}	Third Harmonic Distortion	$\begin{aligned} & \mathrm{V}_{\mathrm{OC}}=1.27 \mathrm{~V} P-\mathrm{P} \\ & \mathrm{~F}_{\mathrm{C}}=14 \mathrm{MHz} \end{aligned}$		-40			dBc
$\mathrm{t}_{\text {s }}$	Settling Time	$\begin{aligned} & A_{V}=-1 \\ & V_{I N}=+5 V_{P-P} \text { to } 0.1 \% \end{aligned}$		15			ns
$\begin{aligned} & \text { LVBW } \\ & -3 \mathrm{~dB} \end{aligned}$	Low Supply Voltage Bandwidth	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \end{aligned}$		230			MHz
LVSR	Low Supply Voltage Slew Rate	$\begin{aligned} & V_{S}= \pm 5 V, V_{\text {OUT }}=5 V_{P-P} \\ & 20 \%-80 \% \end{aligned}$		1400			$\mathrm{V} / \mu \mathrm{s}$
DG	Differential Gain	$\begin{aligned} & V_{I N}= \pm 4 V_{D C} \\ & 0.4 V_{P-P} A C \\ & f=4 \mathrm{MHz} \end{aligned}$		<0.01			dB
PL	Phase Linearity	$\begin{aligned} & V_{I N}= \pm 4 V_{D C} \\ & 0.4 V_{P-P} A C, f=4 \mathrm{MHz} \end{aligned}$		<0.1			DEG

Note 1: The input signal should be within the supply rails. Also, the input signal as well as the output signal should not be more than 30V from any supply voltage. Note 2: The average voltage that the weakest pin combinations can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.
Note 3: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4118 CG is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, for LH 4118 G and LH4118AG it is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: Specifications are at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $T_{J}=25^{\circ} \mathrm{C}$.
Note 5: Tested limits are guaranteed and $\mathbf{1 0 0 \%}$ production tested.
Note 6: Design limits are guaranteed (but not production tested) over the indicated temperature or temperature range. These limits are not used to calculate outgoing quality level.
Note 7: When the LH4118 is operated at elevated temperature (such as $125^{\circ} \mathrm{C}$), some form of heat sinking or forced air cooling is required. The quiescent power with $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ is 750 mW , whereas the package can only handle 550 mW without a heatsink at $125^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Typical Performance Characteristics（Continued）

Pulse Response

TIME（ $20 \mathrm{~ns} /$ div）

Applications Information

LAYOUT

Breadboards should have a solid ground plane and short point－to－point wiring．Do not use wirewrap boards or tech－ niques．PC boards should have short connections and as much ground plane as possible．
The inputs（Pins 4，5 \＆6）should have low capacitance and， therefore，the ground plane should be taken out around these pins．The body of RG should be close to Pin 5 for the same reason．
It is best to have a layout without sockets，but sockets with short pins and receptacles do not degrade the performance much．
Input and output should be led by coax or microstrip if the distances are more than a few inches to avoid impedance shifts and resulting reflections．
Power supplies need to be bypassed with $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ as close as $0.15^{\prime \prime}$ to the pins and additional $1 \mu \mathrm{~F}$ tantalum a maximum 1＂distant．Please make sure that the return cur－ rent from the ground end of R_{L} does not flow across the input：the grounding point of R_{L} should be close to the grounding points of the power supply bypass capacitors．On the LH4118，this comes almost natural because of the lay－ out of the pins．
The direct non－inverting input on pin 4，if used，should not see impedances of less than 100Ω ．
The built－in feedback resistor（pin 8）is limited to a maximum dissipation of 150 mW ．It can be used for unity gain and for higher gains at lower amplitudes．

This circuit lets the $V_{O S}$ between non－inverting input（pin 6） and output（pin 11）be adjusted．For $R_{G}=15 \Omega$ the range of adjustment is $\pm 11 \mathrm{mV}$ ，for higher R_{G} proportionately more． For higher R_{G} it is recommended to increase R_{2} to de－ crease the range and make trimming less sensitive．
There is also an offset between inverting and non－inverting input which cannot be trimmed out．

Typical Applications

FIGURE 1．Bootstrapped Fiber Optic Receiver

FIGURE 2．Fiber Optic Transmitter

TL／K／9768－8
FIGURE 3．Non－Inverting Gain CIrcuit

TL／K／9768－9
R_{i} is selected so that $R_{l} \| R_{G}$ matches the line impedance（e．g．， 50Ω ）
FIGURE 4．Inverting Gain Circuit

FIGURE 5. Current Limiting Using Resistor

$$
\mathrm{Q} 1=\mathrm{Q} 2=2 \mathrm{~N} 2905
$$

$\mathrm{Q} 3=\mathrm{Q} 4=2 \mathrm{~N} 2219$

TL/K/9768-11

The current cutoff is set to $I=\frac{V B E}{R}=\frac{600 \mathrm{mV}}{10 \Omega}=60 \mathrm{~mA}$. Higher current peaks are sustained by the $0.01 \mu \mathrm{~F}$ Capacitors.
FIGURE 6. Current Limiting Using Transistor Current Source

Typical Applications (Continued)

TL/K/9768-12
A series resistor between 5Ω and 50Ω helps to stabilize capacitive loads. There is, however, a corresponding drop in bandwidth.

Evaluation Board

Components

OUTPUT
LH4118 DEMO BOARD

INPUT

Top Vlew
Input and output connections are made through BNC connectors. When the indicated cut-outs are made, the connectors can be placed in-line. As an alternative, Amphenol No. 31-4758 connectors can be used soldered upright into the board.
R1 is the termination resistor of the input line. It is mounted on the bottom of the board, with one side soldered flat to the center of the input strip-line.

Schematic Diagram

TL/K/9768-16

The LH4118 can be soldered directly into the board or Holetight pins can be used (Augat part No. 8134-HC-5P2). These pins need plated through holes with a finished inner diameter of 41 ± 2 Mil. For $A_{V}=1$ the built-in $R_{F}(150 \Omega)$ can be utilized by bridging the trace between pins 8 and 11. In this case no external R_{F} should be used.

National Semiconductor

LH4124C High Slew Rate Operational Amplifier

General Description

The LH4124C is a very wide bandwidth，high slew rate oper－ ational amplifier intended to fulfill a wide variety of high speed applications such as buffers for A／D and D／A con－ verters and high speed comparators．The device exhibits useful gain in excess of 50 MHz making it possible to use in video applications requiring higher gain accuracy than is usually associated with such amplifiers．
The LH4124C＇s combination of wide bandwidth and high slew rate make it an ideal choice for a variety of high speed applications including active filters，oscillators，and compar－ ators as well as many high speed general purpose applica－ tions．
The LH4124C is guaranteed over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．

Features

■ Very high slew rate $\quad 500 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{Av}=+1$
（ Wide small signal bandwidth 70 MHz
－Wide large signal bandwidth
15 MHz
－High output swing－$\pm 12 \mathrm{~V}$ into 1 k
－Offset null with single pot
－Low input offset
2 mV

Applications

－Flash A／D input buffer
－Video amplifier
－High frequency oscillator
－Active filter

Schematic and Connection Diagrams

Order Number LH4124CN See NS Package Number N16A

Absolute Maximum Ratings

If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for availability and specifications．
Supply Voltage
$\pm 18 \mathrm{~V}$
Input Voltage
Equal to Supply
Differential Input Voltage $\pm 5 \mathrm{~V}$

DC Electrical Characteristics（Notes 1，2）

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\begin{aligned} & R_{S}=50 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S}=50 \Omega \end{aligned}$		5.0	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{S}=50 \Omega \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.0	$\begin{array}{r} 15.0 \\ 20.0 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		18	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current	No Load		12.5	15	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	$\begin{gathered} 3 \\ 2.5 \end{gathered}$	4		V / mV V / mV
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 12	± 13		V
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \hline \end{aligned}$	± 13		$\begin{aligned} & v \\ & v \end{aligned}$
Slew Rate	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & C_{1}=C_{2}=30 \mathrm{pF} \\ & A_{V}=+1, T_{A}=25^{\circ} \mathrm{C} \text { (Note } 3 \text {) } \end{aligned}$	250	400		$\mathrm{V} / \mu \mathrm{s}$
Common Mode Rejection Ratio	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{S}}=50 \Omega \end{aligned}$		60		dB
Power Supply Rejection Ratio	$\begin{aligned} & \pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V} \\ & R_{S}=50 \Omega \end{aligned}$		60		dB

Note 1：These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ ．
Note 2：LH4124C is 100% production tested at $25^{\circ} \mathrm{C}$ only．Specifications at temperature extremes are verified by sample testing．These limits are not used to calculate outgoing quality level．
Note 3：Not $\mathbf{1 0 0 \%}$ production tested，verified by sample testing only．Limits are not used to calculate outgoing quality level．

Frequency Compensation

TABLE I

Closed Loop Gain	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}}$
100	0	0	0
20	0	0	0
10	0	20 pF	1 pF
1	30 pF	30 pF	3 pF

Frequency Compensation Circult

Typical Performance Characteristics

Applications Information

1．0 Layout Considerations

The LH4124C，like most high speed circuitry，is sensitive to layout and stray capacitance．Power supplies should be by－ passed as close to the device as possible with at least $0.01 \mu \mathrm{~F}$ ceramic capacitor．Compensating capacitors should also be placed as close to the device as possible．

TL／K／10031－7

2．0 Compensation Recommendations

Compensation schemes recommended in Table I work well under typical conditions．However，poor layout and long lead lengths can degrade the performance of the LH4124C or cause the device to oscillate．Slight adjustments in the values for C1，C2 and C3 may be necessary for a given layout．In particular，when operating at a gain of -1, C3 may require adjustment in order to perfectly cancel the input ca－ pacitance of the device．
When operating the LH4124C at a gain of +1 ，the value of R1 should be at least $1 \mathrm{k} \Omega$ ．

3.0 Heat Sinking

The LH4124C is specified for operation without the use of an explicit heat sink. However, internal power dissipation does cause a significant temperature rise. Improved offset voltage drift can be obtained by limiting the temperature rise with a clip-on heat sink.

Typical Applications

Video Amplifier

TL/K/10031-4

LH4141C

0．2 Amp Power Operational Amplifier

General Description

The LH4141C is a general purpose operational amplifier ca－ pable of delivering large output currents not usually associ－ ated with conventional IC Op Amps．The LH4141C delivers currents of 200 mA at voltage levels closely approaching the available power supplies．In addition，both the inputs and outputs are protected against overload．The devices are compensated with a single external capacitor and are free of any unusual oscillation or latch－up problems．
The LH4141C is particularly suited for applications such as torque driver for inertial guidance systems，diddle yoke driv－ er for alpha－numeric CRT displays，cable drivers，and pro－ grammable power supplies for automatic test equipment．

Features

■ Output current	0.2 Amp
Output voltage swing	$\pm 14 \mathrm{~V}$ into 100Ω
Wide full power bandwidth	15 kHz
■ Low standby power	100 mW at $\pm 15 \mathrm{~V}$
■ Low input offset voltage	
and current	1 mV and 20 nA
■ High slew rate	$3.0 \mathrm{~V} / \mu \mathrm{s}$
■ High open loop gain	100 dB

Applications

－Yoke driver
－Programmable power supplies
－Cable driver
－Servo amplifier

Schematic and Connection Diagrams

Order Number LH4141CN See NS Package Number N16A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation	See Curves
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$

Peak Output Current (Note 2)	0.5 Amp
Output Short Circuit Duration	Continuous
(Note 3)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics (Notes $4 \& 5$)

Parameter	Conditions	Limits			Units
		Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & R_{S} \leq 100 \Omega \end{aligned}$		3.0	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Voltage Drift with Temperature	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega$		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift with Time			5		$\mu \mathrm{V} /$ Week
Offset Voltage Change with Output Power			15		$\mu \mathrm{V} / \mathrm{W}$
Offset Voltage Adjustment Range			20		mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		50	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Offset Current Drift with Temperature			0.2	1.0	$n A /{ }^{\circ} \mathrm{C}$
Offset Current Drift with Time		.	2		nA/Week
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200	$\begin{aligned} & 500 \\ & 1.0 \\ & \hline \end{aligned}$	nA $\mu \mathrm{A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	1.0		$\mathrm{M} \Omega$
Input Capacitance			3		pF
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega, \Delta \mathrm{~V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	70	90		dB
Input Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 12			V
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \Omega, \Delta \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$	70	90		dB
Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \\ & \hline \end{aligned}$	200		V / mV V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	± 13.0	± 14.0		V
Output Short Circuit Current	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 6) } \end{aligned}$		200	300	mA
Power Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		3.0	4.0	mA
Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		90	120	mW

AC Electrical Characteristics $\left(\right.$ Note 7), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{C}}=3000 \mathrm{pF}$

Parameter	Conditions	Limits			Units
		Min	Typ	Max	
Slew Rate	$A_{V}=+1, R_{L}=100 \Omega$	1.0	3.0		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$R_{L}=100 \Omega$		20		kHz
Small Signal Transient Response			0.3	1.5	$\mu \mathrm{s}$
Small Signal Overshoot			10	30	\%
Settling Time (0.1\%)	$\Delta V_{I N}=10 \mathrm{~V}, A_{V}=+1$		4		$\mu \mathrm{S}$
Overload Recovery Time			3		$\mu \mathrm{s}$
Harmonic Distortion	$f=1 \mathrm{kHz}, \mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W}$		0.2		\%
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$, B.W. $=10 \mathrm{~Hz}$ to 10 kHz		5		$\mu \mathrm{V}$ (rms)
Input Noise Current	B.W. $=10 \mathrm{~Hz}$ to 10 kHz		0.05		$n A(r m s)$

Note 1: Rating applies for supply voltages above $\pm 15 \mathrm{~V}$. For supplies less than $\pm 15 \mathrm{~V}$, rating is equal to supply voltage.
Note 2: Rating applies for R $=0 \Omega$.
Note 3: Rating applies as long as package power dissipation rating is not exceeded.
Note 4: Specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$, and $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq+85^{\circ} \mathrm{C}$ unless otherwise specified. Typical values are for $25^{\circ} \mathrm{C}$ only.
Note 5: LH4141C is 100% production tested at $25^{\circ} \mathrm{C}$ only, specifications at temperature extremes are verified by sample testing but these limits are not used to calculate outgoing quality level.
Note 6: Rating applies for RSC $=3.3 \Omega$.
Note 7: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.

Typical Performance Characteristics

Voltage Follower Pulse Response

Input Bias Current

Open Loop Frequency Response

No Load Supply Current

Voltage Gain

Typical Performance Characteristics (Continued)

Typical Applications
Dual Tracking One Amp Power Supply

TL/K/10009-5

Two Way Intercom

Typical Applications (Continued)

Programmable High Current Source/Sink

Unity Gain Circuit with Short Circuit Limiting

TL/K/10009-9

Power Comparator

Offset Voltage Null Circuit*

TL/K/10009-10

Typical Applications（Continued）

TL／K／10009－12
Operation from Non－Symmetrical Supplies

TL／K／10009－13
For additional offset null circuit techniques see National Linear Applications Handbook．

National

LH4161A/LH4161/LH4161C High Speed Operational Amplifier

General Description

The LH4161 high-speed amplifier exhibits an excellent speed-power product in delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 50 MHz unity gain stability with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's new VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high-speed performance without the need for complex and expensive dielectric isolation.
In addition, they are precision laser trimmed to guarantee low offset voltage.

Features

- High slew rate
- High unity gain freq
- Low supply current
- Fast settling
- Low differential gain
- Low differential phase
- Wide supply range
- Stable with unlimited capacitive load
- Well behaved, easy to apply
- Low offset voltage $\pm 1 \mathrm{mV}$
- Pin compatible with LM6161

Applications

- Low differential gain and phase amplifier
- Fast pulse amplifier
- High frequency filters and oscillators

Connection Diagrams

TL/K/9767-1

Top View
Order Number LH4161AH, LH4161H or LH4161CH See NS Package Number H10F

TL/K/9767-2
Top View
Order Number LH4161AJ, LH4161J or LH4161CJ See NS Package Number J08A

AC Electrical Characteristics (Notes 3\&7)

Parameter	Conditions	Typ	LH4161A		LH4161		LH4161C		Units
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)			Design Limit (Note 5)	
Gain-Bandwidth Product	$@ \mathrm{~F}=20 \mathrm{MHz}$	50	40		40		35		MHz
	Supply $= \pm 5 \mathrm{~V}$	35							Min
Slew Rate	$A_{V}=+1$ (Note 10)	300	225		225		200		$\mathrm{V} / \mu \mathrm{s}$ Min
	Supply $= \pm 5 \mathrm{~V}$	200							$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{VPP}$	4.5							MHz
Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step to } 0.1 \% \\ & \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	120							ns
Phase Margin		45							Deg
Differential Gain	NTSC, $A_{V}=+4$	<0.1							\%
Differential Phase	NTSC, $A_{V}=+4$	0.1							Deg
Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$	15							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	1.5							$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The typical junction-to-ambient thermal resistance of the cerdip (J) package is $125^{\circ} \mathrm{C} / \mathrm{W}$, and the $\mathrm{TO}-5(\mathrm{H})$ package is $155^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into a printed circuit board.

Note 3: Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$ with supply voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$. Boldface limits apply over the range listed under "Operating Temperature Range" with $T_{A}=T_{J}$ in the "Absolute Maximum Ratings" section.
Note 4: Guaranteed and 100% production tested. These limits are used to calculate outgoing AQL levels.
Note 5: Guaranteed but not 100% production tested. These limits are not used to calculate outgoing AQL levels.
Note 6: For single supply operation, the following conditions apply: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$.
Note 7: $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$.
Note 8: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially $V_{O S}$, los and Noise).
Note 9: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.
Note 10: $\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$ step. For supply $= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$ step.
Note 11: Voltage Gain is the total output swing (20 V) divided by the input signal required to produce that swing.

Typical Performance Characteristics $R_{L}=10 \mathrm{kand} T_{A}=25^{\circ} \mathrm{Cunless}$ othewise specified

Blas Current vs Common-Mode Voltage

Common-Mode Input Saturation Voltage

Voltage Gain vs Load Resistance

TL/K/9767-4

Typical AC Characteristics

Gain \& Phase; $A_{V}=+100$

TL/K/9767-8
$0.1 \mu \mathrm{~F}$ ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional 2.2 to $10 \mu \mathrm{~F}$ of tantalum may be required for extra noise reduction.
Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling from one pin, input or lead to another, and can cause circuit gain to unintentionally vary with frequency.
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

Typical Applications

Modulator with Differential-to-Single-Ended Converter

LH4162A/LH4162/LH4162C Dual High Speed Operational Amplifier

General Description

The LH4162 high-speed amplifier exhibits an excellent speed-power product in delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 50 MHz unity gain stability with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's new VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high-speed performance without the need for complex and expensive dielectric isolation.
In addition, they are precision laser trimmed to guarantee low offset voltage.

Features

- High slew rate
- High unity gain frequency
- Low supply current
- Fast settling
- Low differential gain
- Low differential phase
0.1\%
- Wide supply range
4.75 V to 32 V
- Stable with unlimited capacitive load
- Well behaved, easy to apply

■ Low offset voltage $\pm 1 \mathrm{mV}$

Applications

- Low differential gain and phase video amplifiers
- Fast pulse amplifiers
- High frequency filters and oscillators

Connection Diagrams

TL/K/9769-1
Top View
Order Number LH4162AH, LH4162H or LH4162CH See NS Package Number H10F

TL/K/9769-2
Top View
Order Number LH4162AJ, LH4162J or LH4162CJ See NS Package Number J16A

AC Electrical Characteristics (Notes 3 \& 7)

Parameter	Conditions	Typ	LH4162A		LH4162		LH4162C		Units
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)		Design Limit (Note 5)	
Gain-Bandwidth Product	$@ \mathrm{~F}=20 \mathrm{MHz}$	50	40		40		35		MHz Min
	$\mathrm{V}+= \pm 5 \mathrm{~V}$	35							MHz
Slew Rate	$A_{V}=+1$ (Note 10)	300	225		225		200		$\mathrm{V} / \mu \mathrm{s}$ Min
	$\mathrm{V}+= \pm 5 \mathrm{~V}$	200							$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{VPP}$	4.5							MHz
Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step to } 0.1 \% \\ & A_{V}=-1, R_{L}=2 \mathrm{k} \Omega \end{aligned}$	120							ns
Phase Margin		45	3						Deg
Differential Gain	NTSC, $A_{V}=+4$	<0.1							\%
Differential Phase	NTSC, $A_{V}=+4$	0.1							Deg
Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$	15							$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	1.5							$\mathrm{pA} / \sqrt{ } \mathrm{HZ}$

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The typical junction-to-ambient thermal resistance of the cerdip (J) package is $85^{\circ} \mathrm{C} / \mathrm{W}$, and the $\mathrm{TO}-5(\mathrm{H})$ package is $155^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into a printed circuit board.
Note 3: Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$ with supply voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$. Boldface limits apply over the range listed under "Operating Temperature Range" with $T_{A}=T_{J}$ in the "Absolute Maximum Ratings" section.
Note 4: Guaranteed and 100% production tested. These limits are used to calculate outgoing AQL levels.
Note 5: Guaranteed but not 100% production tested. These limits are not used to calculate outgoing AQL levels.
Note 6: For single supply operation, the following conditions apply: $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$.
Note 7: $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$.
Note 8: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially VOS, loS and Noise).
Note 9: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.
Note 10: $\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$ step. For supply $= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}$ step.
Note 11: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.

Typical Performance Characteristics $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Frequency Response,
$A_{V}=+1$ (Follower)

Frequency Response,
$\mathrm{A}_{\mathrm{V}}=-1$

Typical Performance Characteristics (Continued)

Voltage Gain vs

Typical Performance Characteristics (Continued)

Typical AC Characteristics

Step Response; $\mathrm{A}_{\mathbf{V}}=\mathbf{+ 1}$

TL/K/9769-8

TL/K/9769-5

Application Hints

The LH4162 has been compensated for unity-gain operation. Since this compensation involved adding emitter-degeneration resistors in the op amp's input stage, the openloop gain was reduced as the stability increased. Gain error due to reduced $A_{\text {VOL }}$ is most apparent at high gains.
The LH4162 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (especially in low-gain circuits). However, load capacitance on the LH4162 effectively increases its compensation capacitance, thus slowing the op amp's response and reducing its bandwidth.
Power supply bypassing is not as critical for the LH4162 as it is for other op amps in its speed class. However, bypassing will improve the stability and transient response of the LH4162 and is recommended for every design. $0.01 \mu \mathrm{~F}$ to
$0.1 \mu \mathrm{~F}$ ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ of tantalum may be required for extra noise reduction.
Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling from one pin, input or lead to another, and can cause circuit gain to unintentionally vary with frequency.
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

Typical Applications

$\dagger 1 \%$ tolerance
*Matching determines filter precision

Typical Applications (Continued)

Full Wave Rectifler

LH4200 General Purpose GaAs FET Amplifier

General Description

This is a general purpose low noise, AC coupled, high frequency amplifier useful for applications from 500 KHz to 1 GHz . It features a Gallium Arsenide input stage for high frequency performance and bipolar second and third stages for low output impedance. Series feedback may be provided for gain stabilization and input impedance improvement. A control input is available to vary the open loop gain of the amplifier making it useful for AGC and mixer applications.

Features

- High gain
- Wide AGC range

38 dB at 100 MHz 60 dB at 100 MHz
$\begin{array}{lr}\text { - High input impedance } & 1 \mathrm{M} \Omega \\ \text { - Low noise figure } & 3 \mathrm{~dB}, 50 \Omega\end{array}$

Applications

- Voltage Controlled Amplifiers
- Feedback Stabilized Amplifiers
- Mixer-Amplifiers
- HF-UHF Oscillators
- Video Diode Receivers
- Fiber Optics

Simplified Schematic

High Frequency Amplifier

FEEDBACK
TL/K/9330-1

Connection Diagrams

TL/K/9330-9
Top View
Order Number LH4200CD
See NS Package Number D24D

TL/K/9330-10
Top View
Order Number LH4200G See NS Package Number G12B

Note: Unspecified pins are No Connection.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V_{CC}, $\mathrm{V}_{\mathrm{CC} 2}$)
12 V
Power Dissipation (P_{D}) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
980 mW
Output Current (lo) 40 mA
Voltage
Input 1
+1.4 to -4 V
Input 2
+2.5 to -4 V

Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH4200C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH4200G	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range ($T_{\text {STG }}$)	$150^{\circ} \mathrm{C}$
Maximum Junction Temperature (T_{J})	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering <10 sec.)	150 V
ESD Tolerance (Note 1)	

DC Electrical Characteristics

Unless otherwise specified. $V_{C C}=V_{C O}=10 \mathrm{~V}, R_{S}=50 \Omega, R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ (Note 4)

Symbol	Description	Conditions	Typ	Tested Limit (Note 2)	Design Limit (Note 3)	Units
V_{10}	Output Bias Voltage		5		4.5	$V(\mathrm{Min})$
V_{3}	FET Source Bias	$\mathrm{V}_{\mathrm{IN} 1}=\mathrm{V}_{\mathrm{IN} 2}=0 \mathrm{~V}$	0.6	0.5	0.4	$\mathrm{~V}(\mathrm{Min})$
V_{0}	Output Voltage Swing	100 kHz	3			$V_{\mathrm{P}-\mathrm{P}}$
I_{S}	Supply Current		45	70		$\mathrm{~mA}(\mathrm{Max})$
$\mathrm{Z}_{\mathbb{N}}$	Input Impedance		1 Meg	200 k		$\Omega(\mathrm{Min})$

AC Electrical Characteristics

Unless otherwise specified. $\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)

Symbol	Description	Conditions	Typ	Tested Limit (Note 2)	Design Limit (Note 3)	Units
S21	Power Gain (Note 4)	$\begin{aligned} & 10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=+1.5 \mathrm{~V} \end{aligned}$	50	42		dB
		$\begin{aligned} & 100 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=+1.5 \mathrm{~V} \end{aligned}$	37	30		dB
		$\begin{aligned} & 500 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=+1.5 \mathrm{~V} \end{aligned}$	18	14		dB
		$\begin{aligned} & 1000 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{IN} 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN} 2}=+1.5 \mathrm{~V} \end{aligned}$	3			dB
P_{1}	Power Output @1 dB Compression	10 MHz	15	12		dBm
		100 MHz	14	10		dBm
		500 MHz	6	4		dBm
		1000 MHz	1			dBm
	AGC Range	$100 \mathrm{MHz}, \mathrm{V}_{\mathrm{G} 2}=-2 \mathrm{~V}$	60			dB
NF	Noise Figure	$10-500 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=50$	3			dB
		$\mathrm{R}_{\mathrm{S}}=800$	2			dB

Note 1: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 2: Tested limits are guaranteed and 100\% tested in production.
Note 3: Design limits are guaranteed (but not 100% production tested) over indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels. Boldface limits are guaranteed over full temperature range.
Note 4: These measurements are taken with the LH4200 open loop.

General Information

The LH4200 is useful for a variety of RF, VHF, and UHF applications including feedback, AGC amplifiers, and signal sources. The amplifier is internally bypassed for good high frequency performance, but should be bypassed externally with a large ($10 \mu \mathrm{~F}$ aluminum electrolytic or better) capacitor to prevent low frequency stability (oscillation) problems.
The amplifier has three inputs: Two high impedance gates for signal input, and a low impedance source for series mode Feedback (Pin 3).
Normally, Input 1 is used as the signal input while Input 2 is used to control the gain of the amplifier for those applications using Automatic Gain Control (AGC). Gain control ranges of over 60 dB are possible to 100 MHz . Input 2 is biased at +1.5 V for maximum gain and -2 V for minimum gain. Input 2 and Feedback (Pin 3) are normally bypassed with $0.01 \mu \mathrm{~F}$ capacitors for maximim gain.
The second gate, Input 2 may be used as a second isolated input for small signal operation. The open loop gain from this input is approximately 6 dB less than from Input 1.
The LH4200 may be used as a feedback amplifier, in which case, the third input, Feedback, is connected to the output with a suitable resistor to set the overall power gain. In this manner, voltage series feedback is used to establish the
power gain and increase input impedance. A typical connection is shown along with the feedback components needed to achieve several different gain settings. (See Figure 5.)
The performance of the LH4200 degrades from ideal above 250 MHz as indicated by the S parameters. The input impedance decreases and is capacitive while the output impedance increases and is inductive. For maximum performance in the 250 MHz to 900 MHz area, some performance improvement can be obtained with suitable matching networks.

LH4200 TYPICAL S PARAMETERS

$V_{C C 1}=V_{C C 2}=10 \mathrm{~V}, \mathrm{~V}_{\text {Input } 2}=1.5 \mathrm{~V}$

Frequency	S11		S21		S12	S22	
MHz	Mag	Ang	dB	Ang	dB	Mag	Ang
10	0.96	-0.5	50	-49	-48	0.99	181
100	0.97	-15	36	-130	-45	0.93	152
250	0.86	-32	26	150	-43	0.93	115
500	0.64	-62	18	39	-40	0.82	73
750	0.41	-105	10	70	-33	0.7	52
1000	0.23	168	3.5	-160	-37	0.71	42

TL/K/9330-2
Note: Pinout shown for D24D package.
Ferrite Bead
Stackpole 570257
RF, R, A: HP8505A Network Analyzer Connections
FIGURE 1. S21 Measurement Circuit

General Information (Continued)

FIGURE 2. Applications Board

Note: Pinout shown for D24D package.

FIGURE 3. VHF-UHF Oscillator

General Information (Continued)

The LH4200 may be used as a Colpitts Oscillator to above 500 MHz (see Figure 3). It is stable and features load isolation and will provide +15 dBm to a 50Ω load. Capacitors C2 and C3 provide feedback from source to gate of the input GaAs FET. The resonator network, L1-C4, is coupled to the active device through C1. Approximate values suitable for beginning design are:

Frequency	$\mathbf{C 1}$	$\mathbf{C 2}$	$\mathbf{C 3}$	$\mathbf{L 1}$
$\mathbf{M H z}$	$\mathbf{p F}$	$\mathbf{p F}$	$\mathbf{p F}$	$\mathbf{n H}$
$75-150$	5	30	60	150
$150-300$	3	6	10	100
$300-500$	1.5	3	6	50

TL/K/9330-5
Note: Pinout shown for D24D package.
FIGURE 5. Feedback Amplifier

Gain	Bandwidth	R	C
30 dB	150 MHz	1.5 k	$9-30 \mathrm{pF}$
25 dB	300 MHz	860Ω	$2-8 \mathrm{pF}$
20 dB	500 MHz	430Ω	$<1 \mathrm{pF}$

TL/K/9330-6
Note: Pinout shown for D24D package.
FIGURE 6. Video Diode Receiver (Opto or RF)

LH4200 Video Diode Receiver

The LH4200 may be used for crystal video receiver applications (see Figure 6). Crystal video receivers, although much less sensitive than their superhetrodyne counterparts, offer the advantage of simplicity. Typical applications include receivers for radar beacons, missile guidance, fuze activation and countermeasures; as well as signal monitoring and power leveling detectors.
This circuit shows two LH4200 amplifiers cascaded to provide a gain of 60 dB with a bandwidth of over 100 MHz . Series mode feedback provides high input impedance over the operating frequency range and low noise figure from
high source impedances. Measured noise figure is 7 dB from a 50Ω source and less than 4 dB from a $1 \mathrm{k} \Omega$ source.

AGC Application

This circuit provides a constant RF output signal level over a broad range of input signal levels (see Figure 7). Diode D1 provides a DC signal proportional to the RF output level. This signal is compared to a reference voltage at the input to the LM358, which in turn controls the voltage at Input 2, controlling the gain of the LH4200.

TL/K/9330-7
Note 1: Pinout shown for D24D package.
Note 2: All capacitance values are in microfarads.
FIGURE 7. AGC Application

LH4200 Performance Characteristics

Feedback Amplifier Performance

National Semiconductor

LM10/LM 10B(L)/LM10C(L) Operational Amplifier and Voltage Reference

General Description

The LM10 series are monolithic linear ICs consisting of a precision reference, an adjustable reference buffer and an independent, high quality op amp.
The unit can operate from a total supply voltage as low as 1.1 V or as high as 40 V , drawing only $270 \mu \mathrm{~A}$. A complementary output stage swings within 15 mV of the supply terminals or will deliver $\pm 20 \mathrm{~mA}$ output current with $\pm 0.4 \mathrm{~V}$ saturation. Reference output can be as low as 200 mV . Some other characteristics of the LM10 are

- input-offset voltage
2.0 mV (max)
- input-offset current
- input-bias current
0.7 nA (max)
- reference regulation
- offset-voltage drift 20 nA (max)
- reference drift
$2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
$0.002 \% /{ }^{\circ} \mathrm{C}$

The circuit is recommended for portable equipment and is completely specified for operation from a single power cell. In contrast, high output-drive capability, both voltage and current, along with thermal overload protection, suggest it in demanding general-purpose applications.
The device is capable of operating in a floating mode, independent of fixed supplies. It can function as a remote comparator, signal conditioner, SCR controller or transmitter for analog signals, delivering the processed signal on the same line used to supply power. It is also suited for operation in a wide range of voltage- and current-regulator applications, from low voltages to several hundred volts, providing greater precision than existing ICs.
This series is available in the three standard temperature ranges, with the commercial part having relaxed limits. In addition, a low-voltage specification (suffix " L ") is available in the limited temperature ranges at a cost savings.

Connection and Functional Diagrams

TL/H/5652-1
Order Number LM10H, LM10BH, LM10CH, LM10BLH or LM10CLH See NS Package Number H08A

Small Outline Package (M)

TL/H/5652-17
Order Number LM10CWM or LM10CLWM See NS Package Number M14B

TL/H/5652-15
Order Number LM10CN or LM10CLN See NS Package Number N08E


```
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for avallability and specifications.
(Note 7)
Total Supply Voltage
Differential Input Voltage (note 1)
Power Dissipation (note 2)
Output Short-circuit Duration (note 3)
LM10/LM10B/LM10C LM10BL/LM10CL
    45V 7V
    \pm40V }\pm7\textrm{V
        internally limited
        continuous
Storage-Temp. Range
    -55 ' C to +150 %
Lead Temp. (Soldering, 10 seconds)
    Metal Can
    300
Lead Temp. (Soldering, }10\mathrm{ seconds) DIP
260}\mp@subsup{}{}{\circ}\textrm{C
    Vapor Phase (60 seconds)
215}\mp@subsup{}{}{\circ}\textrm{C
    Infrared (15 seconds)
220}\mp@subsup{}{}{\circ}\textrm{C
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating is to be determined.
```


Electrical Characteristics

$T_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{J} \leq \mathrm{T}_{\text {MAX }}$ (note 4) (Boldface type refers to limits over temperature range)

Parameter	Conditions	LM10/LM10B			LM10C			Units
		Min	Typ	Max	Min	Typ	Max	
Input offset voltage			0.3	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		0.5	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input offset current (note 5)			0.25	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$		0.4	$\begin{aligned} & 2.0 \\ & \mathbf{3 . 0} \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
Input bias current			10	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		12	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input resistance		$\begin{aligned} & 250 \\ & 150 \end{aligned}$	500		$\begin{aligned} & 150 \\ & 115 \end{aligned}$	400		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Large signal voltage gain	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \\ & \mathrm{~V}_{\text {OUT }}= \pm 19.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 19.4 \mathrm{~V} \\ & \mathrm{l}_{\text {OUT }}= \pm 20 \mathrm{~mA}(\pm \mathbf{1 5} \mathbf{~ m A}) \\ & V_{S}= \pm 0.6 \mathrm{~V}(\mathbf{0 . 6 5 V}), l_{\mathrm{OUT}}= \pm 2 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}= \pm 0.4 \mathrm{~V}(\pm \mathbf{0 . 3 V}), \mathbf{V}_{\mathbf{C M}}=-\mathbf{0 . 4 V} \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 80 \\ & 50 \\ & 20 \\ & 1.5 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & 130 \\ & 3.0 \end{aligned}$		$\begin{gathered} 80 \\ 50 \\ 25 \\ 15 \\ 1.0 \\ 0.75 \end{gathered}$	$\begin{aligned} & 400 \\ & 130 \\ & 3.0 \end{aligned}$		V / mV V / mV
Shunt gain (note 6)	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\text {OUT }} \leq 40 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1.1 \mathrm{k} \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 5 \mathrm{~mA} \\ & 1.5 \mathrm{~V} \leq \mathrm{V}+\leq 40 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=250 \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{l}_{\text {OUT }} \leq 20 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 14 \\ & 6 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 33 \\ & 25 \end{aligned}$		$\begin{aligned} & 10 \\ & 6 \\ & 6 \\ & 4 \end{aligned}$	33 25		V / mV V / mV V / mV V / mV
Common-mode rejection	$\begin{aligned} & -20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 19.15 \mathrm{~V}(19 \mathrm{~V}) \\ & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 93 \\ & 87 \end{aligned}$	102		$\begin{aligned} & 90 \\ & 87 \end{aligned}$	102		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply-voltage rejection	$\begin{aligned} & -0.2 \mathrm{~V} \geq \mathrm{V}-\geq-39 \mathrm{~V} \\ & \mathrm{~V}^{+}=1.0 \mathrm{~V}(1.1 \mathrm{~V}) \\ & 1.0 \mathrm{~V}(1.1 \mathrm{~V}) \leq \mathrm{V}+\leq 39.8 \mathrm{~V} \\ & V^{-}=-0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 90 \\ & 84 \\ & 96 \\ & 90 \end{aligned}$	$\begin{aligned} & 96 \\ & 106 \end{aligned}$		$\begin{aligned} & 87 \\ & \mathbf{8 4} \\ & 93 \\ & \mathbf{9 0} \end{aligned}$	$\begin{gathered} 96 \\ 106 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Offset voltage drift			2.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset current drift			2.0			5.0		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Bias current drift	$\mathrm{T}_{\mathrm{C}}<100^{\circ} \mathrm{C}$		60			90		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Line regulation	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V} \\ & 0 \leq I_{\text {REF }} \leq 1.0 \mathrm{~mA}, \mathrm{~V}_{\text {REF }}=200 \mathrm{mV} \end{aligned}$		0.001	$\begin{aligned} & 0.003 \\ & 0.006 \end{aligned}$		0.001	$\begin{aligned} & 0.008 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Load regulation	$\begin{aligned} & 0 \leq I_{\mathrm{REF}} \leq 1.0 \mathrm{~mA} \\ & \mathrm{~V}+-\mathrm{V}_{\mathrm{REF}} \geq 1.0 \mathrm{~V}(\mathbf{1 . 1} \mathbf{V}) \end{aligned}$		0.01	$\begin{gathered} 0.1 \\ 0.15 \end{gathered}$		0.01	$\begin{aligned} & 0.15 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$

Electrical Characteristics
$T_{J}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\mathrm{MAX}}$, (note 4) (Boldface type refers to limits over temperature range) (Continued)

Parameter	Conditions	LM10/LM10B			LM10C			Units
		Min	Typ	Max	Min	Typ	Max	
Amplifier gain	$0.2 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 35 \mathrm{~V}$	$\begin{aligned} & 50 \\ & 23 \end{aligned}$	75		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	70		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Feedback sense voltage		$\begin{aligned} & 195 \\ & 194 \end{aligned}$	200	$\begin{array}{r} 205 \\ 206 \\ \hline \end{array}$	$\begin{aligned} & 190 \\ & 189 \\ & \hline \end{aligned}$	200	$\begin{aligned} & 210 \\ & 211 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Feedback current			20	$\begin{aligned} & 50 \\ & 65 \end{aligned}$		22	$\begin{aligned} & 75 \\ & \mathbf{9 0} \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Reference drift			0.002			0.003		\%/ ${ }^{\circ} \mathrm{C}$
Supply current			270	$\begin{aligned} & 400 \\ & \mathbf{5 0 0} \end{aligned}$		300	$\begin{gathered} 500 \\ 570 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Supply current change	$1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{S} \leq 40 \mathrm{~V}$		15	75		15	75	$\mu \mathrm{A}$

Parameter	Conditions	LM10BL			LM10CL			Units
		Min	Typ	Max	Min	Typ	Max	
Input offset voltage			0.3	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		0.5	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input offset current (note 5)			0.1	$\begin{aligned} & 0.7 \\ & 1.5 \end{aligned}$		0.2	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input bias current			10	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		12	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input resistance		$\begin{aligned} & 250 \\ & 150 \end{aligned}$	500		$\begin{aligned} & 150 \\ & 115 \end{aligned}$	400		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Large signal voltage gain		$\begin{gathered} 60 \\ 40 \\ 10 \\ \mathbf{4} \\ 1.5 \\ \mathbf{0 . 5} \\ \hline \end{gathered}$	$\begin{aligned} & 300 \\ & 25 \\ & 3.0 \end{aligned}$		$\begin{gathered} 40 \\ 25 \\ 5 \\ 3 \\ 1.0 \\ \mathbf{0 . 7 5} \end{gathered}$	$\begin{aligned} & 300 \\ & 25 \\ & 3.0 \end{aligned}$		V / mV V / mV
Shunt gain (note 6)	$\begin{aligned} & 1.5 \mathrm{~V} \leq \mathrm{V}+\leq 6.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & 0.1 \mathrm{~mA} \leq \mathrm{I}_{\text {OUT }} \leq 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 8 \\ & 4 \\ & \hline \end{aligned}$	30		$\begin{array}{r} 6 \\ 4 \\ \hline \end{array}$	30		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Common-mode rejection	$\begin{aligned} & -3.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2.4 \mathrm{~V}(\mathbf{2 . 2 5 V}) \\ & \mathrm{V}_{\mathrm{S}}= \pm 3.25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 89 \\ & 83 \end{aligned}$	102		$\begin{aligned} & 80 \\ & 74 \end{aligned}$	102		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply-voltage rejection	$\begin{aligned} & -0.2 \mathrm{~V} \geq \mathrm{V}-\geq-5.4 \mathrm{~V} \\ & \mathrm{~V}^{+}=1.0 \mathrm{~V}(1.2 \mathrm{~V}) \\ & 1.0 \mathrm{~V}(\mathbf{1 . 1 V}) \leq \mathrm{V}^{+} \leq 6.3 \mathrm{~V} \\ & \mathrm{~V}^{-}=0.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 94 \\ & 88 \end{aligned}$	$\begin{gathered} 96 \\ 106 \end{gathered}$		$\begin{aligned} & 80 \\ & 74 \\ & 80 \\ & 74 \end{aligned}$	$\begin{gathered} 96 \\ 106 \end{gathered}$		dB dB dB dB
Offset voltage drift			2.0			5.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset current drift			2.0			5.0		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Bias current drift			60			90		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Line regulation	$\begin{aligned} & 1.2 \mathrm{~V}(1.3 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{S}} \leq 6.5 \mathrm{~V} \\ & 0 \leq \mathrm{I}_{\mathrm{REF}} \leq 0.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{REF}}=200 \mathrm{mV} \end{aligned}$		0.001	$\begin{aligned} & 0.01 \\ & \mathbf{0 . 0 2} \\ & \hline \end{aligned}$		0.001	$\begin{aligned} & 0.02 \\ & \mathbf{0 . 0 3} \\ & \hline \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Load regulation	$\begin{aligned} & 0 \leq I_{R E F} \leq 0.5 \mathrm{~mA} \\ & \mathrm{~V}+-V_{\text {REF }} \geq 1.0 \mathrm{~V}(\mathbf{1 . 1} \mathbf{V}) \end{aligned}$		0.01	$\begin{gathered} 0.1 \\ \mathbf{0 . 1 5} \end{gathered}$		0.01	$\begin{aligned} & 0.15 \\ & 0.2 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Amplifier gain	$0.2 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	70		$\begin{aligned} & 20 \\ & 15 \end{aligned}$	70		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$

Electrical Characteristics

$\mathrm{T}_{\mathbf{J}}=25^{\circ} \mathrm{C}, \mathbf{T}_{\text {miN }} \leq \mathbf{T}_{\mathbf{J}} \leq \mathbf{T}_{\text {mAX }}$, (note 4) (Boldface type refers to limits over temperature range) (Continued)

Parameter	Conditions	LM10BL			LM10CL			Units
		Min	Typ	Max	Min	Typ	Max	
Feedback sense voltage		$\begin{aligned} & 195 \\ & 194 \end{aligned}$	200	$\begin{aligned} & 205 \\ & 206 \end{aligned}$	$\begin{gathered} 190 \\ 189 \\ \hline \end{gathered}$	200	$\begin{array}{r} 210 \\ 211 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Feedback current			20	$\begin{aligned} & 50 \\ & 65 \end{aligned}$		22	$\begin{aligned} & 75 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Reference drift			0.002			0.003		\%/ ${ }^{\circ} \mathrm{C}$
Supply current	-		260	$\begin{aligned} & 400 \\ & \mathbf{5 0 0} \end{aligned}$		280	$\begin{gathered} 500 \\ \mathbf{5 7 0} \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$

Note 1: The Input voltage can exceed the supply voltages provided that the voltage from the input to any other terminal does not exceed the maximum differential input voltage and excess dissipation is accounted for when $\mathrm{V}_{1 \mathrm{~N}}<\mathrm{V}-$.
Note 2: The maximum, operating-junction temperature is $150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,100^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{~B}(\mathrm{~L})$ and $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{C}(\mathrm{L})$. At elevated temperatures, devices must be derated based on package thermal resistance.
Note 3: Internal thermal limiting prevents excessive heating that could result in sudden failure, but the IC can be subjected to accelerated stress with a shorted output and worst-case conditions.
Note 4: These specifications apply for $\mathrm{V}-\leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}+-0.85 \mathrm{~V}(1.0 \mathrm{~V}), 1.2 \mathrm{~V}(1.3 \mathrm{~V})<\mathrm{V}_{S} \leq \mathrm{V}_{\mathrm{MAX}}, V_{R E F}=0.2 \mathrm{~V}$ and $0 \leq I_{R E F} \leq 1.0 \mathrm{~mA}$, unless otherwise specified: $\mathrm{V}_{\mathrm{MAX}}=40 \mathrm{~V}$ for the standard part and 6.5 V for the low voltage part. Normal typeface indicates $25^{\circ} \mathrm{C}$ limits. Boldface type indicates IImits and altered test conditions for full-temperature-range operation; this is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10,-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{~B}(\mathrm{~L})$ and $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the $\mathrm{LM} 10 \mathrm{C}(\mathrm{L})$. The specifications do not include the effects of thermal gradients ($\tau_{1} \cong 20 \mathrm{~ms}$), die heating ($\tau_{2} \cong 0.2 \mathrm{~s}$) or package heating. Gradient effects are small and tend to offset the electrical error (see curves).

Note 5: For $T_{J}>90^{\circ} \mathrm{C}$, l_{OS} may exceed 1.5 nA for $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}$. With $T_{J}=125^{\circ} \mathrm{C}$ and $V^{-} \leq V_{C M} \leq V^{-}+0.1 V$, $I_{O S} \leq 5 n A$.
Note 6: This defines operation in floating applications such as the bootstrapped regulator or two-wire transmitter. Output is connected to the $V+$ terminal of the $I C$ and input common mode is referred to V^{-}(see typical applications). Effect of larger output-voltage swings with higher load resistance can be accounted for by adding the positive-supply rejection error.
Note 7: Refer to RETS10X for LM10H military specifications.

Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.

Input offset current: The difference in the currents at the input terminals when the unloaded output is in the linear region.
Input blas current: The absolute value of the average of the two input currents.

Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.

Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.

Shunt gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it with the output tied to the $\mathrm{V}+$ terminal of the IC. The load and power source are connected between the V^{+}and V - terminals, and input common-mode is referred to the V - terminal.

Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.

Supply-voltage rejection: The ratio of the specified sup-ply-voltage change to the change in offset voltage between the extremes.

Line regulation: The average change in reference output voltage over the specified supply voltage range.

Load regulation: The change in reference output voltage from no load to that load specified.

Feedback sense voltage: The voltage, referred to V^{-}, on the reference feedback terminal while operating in regulation.

Reference amplifier gain: The ratio of the specified reference output change to the change in feedback sense voltage required to produce it.

Feedback current: The absolute value of the current at the feedback terminal when operating in regulation.

Supply current: The current required from the power source to operate the amplifier and reference with their outputs unloaded and operating in the linear range.

Typical Performance Characteristics (Op Amp)

Common Mode Limits

Typical Performance Characteristics (Op Amp) (Continued)

Typical Performance Characteristics (Op Amp)

(Continued)

TL/H/5652-4

Typical Performance Characteristics (Reference)

TOTAL SUPPLY VOLTAGE

TL/H/5652-5

Typical Applications ${ }^{\dagger \dagger}$ (Pin numbers are for devices in 8 -pin packages)

Op Amp Offset Adjustment

Standard

Limited Range

Limited Range With Boosted Reference

Positive Regulators ${ }^{\dagger}$

Best Regulation

Zero Output

TL/H/5652-6
†Use only electrolytic output capacitors.
${ }^{\dagger} \dagger$ Circuit descriptions available in application note AN-211.

Typical Applications ${ }^{\dagger \dagger}$ (Pin numbers are for devices in 8 -pin packages) (Continued)

Current Regulator

Negative Regulator

Precision Regulator

Laboratory Power Supply

\dagger †Circuit descriptions available in application note AN-211.

Typical Applications ${ }^{\dagger \dagger}$ (Pin numbers are for devices in 8 -pin packages) (Continued)

${ }^{*} 800^{\circ} \mathrm{C}$ Threshold Is Established By Connecting Balance To VREF.

Light Level Sensor

*Provides Hysteresis

Remote Thermocouple Amplifier

$\dagger \dagger$ Circuit descriptions available in application note AN-211.

Typical Applications ${ }^{\dagger} \dagger$ (Pin numbers are for devices in 8 -pin packages) (Continued) Transmitter for Bridge Sensor

Precision Thermocouple Transmitter

*Gain Trim

Typical Applications ${ }^{\dagger} \dagger$ (Pin numbers are for devices in 8 -pin packages) (Continued)

Thermocouple Transmitter

Battery-level Indicator

Single-cell Voltage Monitor

Logarithmic Light Sensor

Battery-threshold Indicator

Double-ended Voltage Monitor

Flash Rate Increases Above 6 V and Below 15 V
${ }^{\dagger} \dagger$ Circuit descriptions available in application note AN-211.

Typical Applications ${ }^{\dagger} \dagger$ (Pin numbers are for devices in 8 -pin packages) (Continued)

Light Meter

Microphone Amplifier

Typical Applications ${ }^{\dagger \dagger}$ (Pin numbers are for devices in 8 -pin packages) (Continued)

Light-level Controller

${ }^{\dagger} \dagger$ Circuit descriptions available in application note AN-211.

Application Hints

With heavy amplifier loading to V^{-}, resistance drops in the V^{-}lead can adversely affect reference regulation. Lead resistance can approach 1Ω. Therefore, the common to the reference circuitry should be connected as close as possible to the package.

LM10/LM10B(L)/LM10C(L)

LM11/LM11C/LM11CL Operational Amplifiers

General Description

The LM11 is a precision dc amplifier combining the best features of existing bipolar and FET op amps. It is similar to the LM108A, except that input currents have been reduced by more than a factor of ten. Offset voltage and drift have also been approved.
Compared to FETs, the device provides inherently lower offset voltage and offset voltage drift, along with at least an order of magnitude better long-term stability. Low frequency noise is also somewhat reduced. Bias current is significantly lower even under laboratory conditions, and its low drift makes compensation practical. Offset current is almost unmeasureable. Although not as fast as FETs, it does have a much lower power drain. This low dissipation has the added advantage of eliminating warm up time in critical applications.
Typical characteristics for $25^{\circ} \mathrm{C}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$ are:

- offset voltage: $100 \mu \mathrm{~V}(200 \mu \mathrm{~V})$
- bias current: 25 pA (65 pA)
- offset current: $0.5 \mathrm{pA}(3 \mathrm{pA})$
- temperature drift: $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- long-term stability: $10 \mu \mathrm{~V} /$ year

The LM11 is internally compensated, but external compensation can be added for improved frequency stability, particularly with capacitive loads. Offset voltage balancing is also provided, with the balance range determined by a low-resistance potentiometer.
Otherwise, the device is the electrical equivalent of the LM108, except that the negative common-mode limit is 0.6 V less, performance is specified down to $\pm 2.5 \mathrm{~V}$ and the guaranteed output drive has been increased to $\pm 2 \mathrm{~mA}$. The input noise is somewhat higher, but amplifier noise is obscured by resistor noise with higher source resistances.
This monolithic IC has obviously applications as electrometer amplifiers, charge integrators, analog memories, low frequency active filters or for frequency shaping in slow servo loops. It can be substituted for existing circuits to provide improved performance or eliminate trimming operations. The greater precision can also be used to extend the dynamic range of logarithmic amplifiers, light meters and solidstate particle detectors.
The LM11 is manufactured with standard bipolar processing using super-gain transistors.

Connection Diagrams

Metal Can*

TL/H/5653-1
Top View
Order Number LM11H, LM11CH or LM11CLH See NS Package H08C
*Case connected to V -

Mini-DIP

TL/H/5653-31
Top View
Order Number LM11CN or LM11CLN See NS Package N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)
Total Supply Voltage 40V
Input Current (Note 1)

Power Dissipation (Note 2)	500 mW
Output Short-Circuit Duration (Note 3)	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	
\quad (DIP)	$260^{\circ} \mathrm{C}$
(Metal Can)	$300^{\circ} \mathrm{C}$
ESD Tolerance	
\quad (RZAP $\left.=1.5 \mathrm{k}, \mathrm{C}_{\text {ZAP }}=100 \mathrm{pF}\right)$	1500 V

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{J}} \leq \mathrm{T}_{\text {max }}$ (Note 4) (Boldface type refers to limits over temperature range.)

Parameter	Conditions	LM11		LM11C		LM11CL		Units
		Typ	Lim	Typ	Lim	Typ	Lim	
Input Offset Voltage	(Note 4)	0.1	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	0.2	$\begin{aligned} & 0.6 \\ & 0.8 \\ & \hline \end{aligned}$	0.5	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$m V$ mV
Input Offset Current	(Note 4)	0.5	$\begin{aligned} & 10 \\ & 30 \end{aligned}$	1	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	4	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	pA pA
Input Bias Current	(Note 4)	25	$\begin{gathered} 50 \\ \mathbf{1 5 0} \end{gathered}$	40	$\begin{aligned} & 100 \\ & 150 \end{aligned}$	70	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	pA pA
Input Resistance	(Note 4)	1011		1011		1011		Ω
Offset Voltage Drift	(Note 4)	1	3	2	5	3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Offset Current Drift	(Note 4)	20		10		50		$\mathrm{fA}^{\circ}{ }^{\circ} \mathrm{C}$
Bias Current Drift	(Note 4)	0.5	1.5	0.8	3	1.4		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S} \pm 15 \mathrm{~V}, \text { loUT }= \pm 2 \mathrm{~mA} \\ & V_{\text {OUT }}= \pm 12 \mathrm{~V}(\pm 11.5 \mathrm{~V}) \\ & V_{S}= \pm 15 \mathrm{~V}, \mathrm{l}_{\mathrm{OUT}}= \pm 0.5 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }} \pm 12 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 1200 \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 250 \\ 100 \end{gathered}$	$\begin{gathered} 300 \\ 1200 \end{gathered}$	$\begin{gathered} 100 \\ 50 \\ 250 \\ 100 \end{gathered}$	$\begin{aligned} & 300 \\ & 800 \end{aligned}$	$\begin{aligned} & 25 \\ & \mathbf{1 5} \\ & 50 \\ & \mathbf{3 0} \end{aligned}$	V / mV V / mV V / mV V / mV
Common-Mode Rejection	$\begin{aligned} & -13 \mathrm{~V}(-12.5 \mathrm{~V}) \leq \mathrm{V}_{\mathrm{CM}} \leq 14 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	130	$\begin{aligned} & 110 \\ & 100 \\ & \hline \end{aligned}$	130	$\begin{aligned} & 110 \\ & 100 \\ & \hline \end{aligned}$	110	$\begin{aligned} & 96 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Power Supply Rejection Ratio	$\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$	118	$\begin{aligned} & 100 \\ & 96 \\ & \hline \end{aligned}$	118	$\begin{aligned} & 100 \\ & 96 \\ & \hline \end{aligned}$	100	$\begin{aligned} & 84 \\ & 80 \\ & \hline \end{aligned}$	dB dB
Supply Current	(Note 4)	0.3	$\begin{aligned} & 0.6 \\ & 0.8 \\ & \hline \end{aligned}$	0.3	$\begin{gathered} 0.8 \\ 1 \\ \hline \end{gathered}$	0.3	$\begin{gathered} 0.8 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Short-Circuit Current	$\mathrm{T}_{J}=150^{\circ} \mathrm{C}$		± 15					mA

Note 1: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used. In addition, a $2 \mathrm{k} \Omega$ minimum resistance in each input is advised to avoid possible latch up initiated by supply reversals.
Note 2: The maximum operating-junction temperature is $150^{\circ} \mathrm{C}$ for the LM 11 and $85^{\circ} \mathrm{C}$ for the $\mathrm{LM} 11 \mathrm{C}(\mathrm{L})$. Devices must be derated at $150^{\circ} \mathrm{C} / \mathrm{W}$ for the metal can and $155^{\circ} \mathrm{C} / \mathrm{W}$ for the plastic DIP. The metal can has a thermal resistance of $45^{\circ} \mathrm{C} / \mathrm{W}$ for the junction to case if a heat sink is used.
Note 3: Current limiting protects the output when it is shorted to ground or any voltage less than the supplies. With continuous overloads, package dissipation must be taken into account and heat sinking provided when necessary.
Note 4: These specifications apply for $\mathrm{V}^{-}+2 \mathrm{~V}(\mathbf{2 . 5 V}) \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-1 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$, unless otherwise specified. Normal typeface indicates $25^{\circ} \mathrm{C}$ limits. Boldface type indicates limits for full-temperature range operation. This is $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$ for the LM 11 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 70^{\circ} \mathrm{C}$ for the LM11C(L).
Note 5: Refer to RETS11X for LM11 military specifications.

Typical Characteristics

Offset: Single Source Resistor

Drift: Single Source

Typical Characteristics (Continued)

Application Hints

When working with circuitry capable of resolving picoampere level signals, leakage currents in circuitry external to the op amp can significantly degrade performance. High quality insulation is a must (Kel-F and Teflon rate high). Proper cleaning of all insulating surfaces to remove fluxes and other residues is also required. This includes the IC package as well as sockets and printed circuit boards. When operating in high humidity environments or near $0^{\circ} \mathrm{C}$, some form of surface coating may be necessary to provide a moisture barrier.
The effects of board leakage can be minimized by encircling the input circuitry with a conductive guard ring operated at a potential close to that of the inputs. For critical applications, dual-in-line packages are available that include input guard pins.
Electrostatic shielding of high impedance circuitry is advisable.

Error voltages can also be generated in the external circuitry . Thermocouples formed between dissimilar metals can cause hundreds of microvolts of error in the presence of temperature gradients. The most troublesome thermocouples are the junction of the IC package and the printed circuit board ($35 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ for copper-kovar) and internal resis-
tor connections. Problems can be avoided by keeping low level circuitry away from heat generating elements. Mounting the IC directly to the PC board while keeping package leads short and the input leads close together can also help.
With the LM11 there is a temptation to remove the bias-cur-rent-compensation resistor normally used on the noninverting input of a summing amplifier. Direct connection of the inputs to ground or a low-impedance voltage source is not recommended with supply voltages greater than about 3 V . The potential problem involves reversal of one supply which can cause excessive current in the second supply. Destruction of the IC could result if the output current of the second supply is not limited to about 100 mA or if there is much more than $1 \mu \mathrm{~F}$ bypass on the supply buss.

Just disconnecting one supply will generally involve reversal because of loading to the other supply both within the IC and in external circuitry. Although difficulties can be largely avoided by installing clamp diodes across the supply lines on every PC board, a conservative design would include enough resistance in the input lead to limit current to 10 mA if the input lead is pulled to either supply by internal currents. This precaution is by no means limited to the LM11.

Application Hints (Continued)

Input Guarding

Input guarding can drastically reduce surface leakage. Layout for metal can is shown here. Guarding both sides of board is required. Bulk leakage reduction is less and depends on guard ring width.

BOTTOM VIEW
TL/H/5653-4
Guard ring is connected to low impedance point at same potential as sensitive input leads. Connections for various op amp configurations are here.

TL/H/5653-7

Input Protection

Current is limited by R2 even when input is connected to voltage source outside common mode range. If one supply reverses, current is controlled by R1. These resistors do not affect normal operation.

TL/H/5653-5
Input resistor controls current when input exceeds supply voltages, when power for op amp is turned off or when output is shorted.

TL/H/5653-6

Balancing And Over-Compensation

Over-compensation will improve stability with capacitive loading (see curves). Offset voltage adjustment range is determined by balance potentiometer resistance as indicated in the table.

min. adj range	$\quad \mathbf{R}$
$\pm 4 \mathrm{mV}$	$100 \mathrm{k} \Omega$
± 2	10 k
± 0.8	3 k
± 0.4	1 k

Application Hints (Continued)

Resistance Multiplication

Equivalent feedback resistance is 10 G Ω, but only standard resistors are used. Even though the offset voltage is multiplied by 100, output offset is actually reduced because error is dependent on offset current rather than bias current. Voltage on summing junction is less than 5 mV .

TL/H/5653-9

Follower input resistance is $1 \mathrm{G} \Omega$. With the input open, offset voltage is multiplied by 100, but the added error is not great because the op amp offset is low.

TL/H/5653-11

This circuit multiplies RC time constant to 1000 seconds and provides low output impedance.

TL/H/5653-13

$$
\begin{aligned}
& \pi=\frac{R 1 C}{R 3}(R 2+R 3) \\
& \Delta V_{\text {OUT }}=\frac{R 1+R 3}{R 3}\left(l_{B} R 2+V_{\text {OS }}\right)
\end{aligned}
$$

A high-input-impedance ac amplifier for a piezoelectric transducer. Input resistance of $880 \mathrm{M} \Omega$ and gain of 10 is obtained.

$$
R_{I N}=R 1\left(1+\frac{R 2}{R 3}\right) A_{V}=\frac{R 2+R 3+R 4}{R 2+R 3}
$$

Cable Bootstrapping

Bootstrapping input shield for a follower reduces cable capacitance, leakage and spurious voltages from cable flexing. Instability can be avoided with small capacitor on input.

TL/H/5653-12

With summing amplifier, summing node is at virtual ground so input shield is best grounded. Small feedback capacitor insures stability.

TL/H/5653-14

Application Hints (Continued)

Differential Amplifiers

This differential amplifier handles high input voltages. Resistor mismatches and stray capacitors should be balanced out for best common-mode rejection.

Two op-amp instrumentation amplifier has poor ac common mode rejection. This can be improved at the expense of differential bandwidth with C 2 .

High gain differential instrumentation amplifier includes input guarding, cable bootstrapping and bias current compensation. Differential bandwidth is reduced by C 1 which also makes common-mode rejection less dependent on matching of input amplifiers.

** ac CMRR
TL/H/5653-16
For moderate-gain instrumentation amplifiers, input amplifiers can be connected as followers. This simplifies circuitry, but A3 must also have low drift.

Application Hints（Continued）

Bias Current Compensation

Precise bias current compensation for use with unregulated supplies．Reference voltage is available for other circuitry．

This circuit shows how bias current compensation can be used on a voltage follower．

TL／H／5653－18

Voltmeter

High input impedance millivoltmeter．Input current is proportional to input voltage，about 10 pA at full scale．Reference could be used to make direct reading linear ohmmeter．

[^12]

TL／H／5653－19

Application Hints (Continued)

Ammeter

Current meter ranges from 100 pA to 3 mA full scale. Voltage across input is $100 \mu \mathrm{~V}$ at lower ranges rising to 3 mV at 3 mA . Buffers on op amp are to remove ambiguity with high-current overload. Output can also drive DVM or DPM.

Current Source

Precision current source has $10 \mu \mathrm{~A}$ to 10 mA ranges with output compliance of 30 V to -5 V . Output current is fully adjustable on each range with a calibrated, ten-turn potentiometer. Error light indicates saturation.

Application Hints (Continued)

Fast Amplifiers

These inverters have bias current and offset voltage of LM11 along with speed of the FET op amps. Open loop gain is about 140 dB and settling time to 1 mV about $8 \mu \mathrm{~S}$. Over-load-recovery delay can be eliminated by direct coupling the FET amplifier to summing node.

TL/H/5653-22
This $100 \times$ amplifier has small and large signal bandwidth of 1 MHz . The LM11 greatly reduces offset voltage, bias current and gain error. Eliminating long recovery delay for greater than 100% overload requires direct coupling of A2 to input.

TL/H/5653-24

Follower has $10 \mu \mathrm{~S}$ setting to 1 mV , but signal repetition frequency should not exceed 10 kHz if the FET amplifier is ac coupled to input. The circuit does not behave well if com-mon-mode range is exceeded.

TL/H/5653-23

Heater Control

Proportional control crystal oven heater uses lead/lag compensation for fast settling. Time constant is changed with R4 and compensating resistor R5. If Q2 is inside oven, a regulated supply is recommended for $0.1^{\circ} \mathrm{C}$ control.

TL/H/5653-25

[^13]
Application Hints (Continued)

Leakage Isolation

Switch leakage in this sample and hold does not reach storage capacitor.

*Polystyrene or Teflon
\dagger Required if protectedgate switch is used

A peak detector designed for extended hold. Leakage currents of peak-detecting diodes and reset switch are absorbed before reaching storage capacitor.
$300 \mu \mathrm{~S}$ min single pulse
$200 \mu \mathrm{~S}$ min repetitive pulse
300 Hz max sine wave error $<5 \mathrm{mV}$

Reset is provided for this integrater and switch leakage is isolated from the summing junction. Greater precision can be provided if bias-current compensation is included.

Standard-Cell Buffer

Battery powered buffer amplifier for standard cell has negligible loading and disconnects cell for low supply voltage or overload on output. Indicator diode extinguishes as disconnect circuitry is activated.

*Cannot have gate protection diode; $\mathrm{V}_{\text {TH }}>\mathrm{V}_{\text {OUT }}$

Application Hints（Continued）

Logarithmic Amplifiers

Unusual frequency compensation gives this logarithmic converter a $100 \mu \mathrm{~s}$ ，time constant from 1 mA down to $100 \mu \mathrm{~A}$ ，increas－ ing from $200 \mu \mathrm{~s}$ to 200 ms from 10 nA to 10 pA ．Optional bias current compensation can give 10 pA resolution from $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ ．Scale factor is $1 \mathrm{~V} /$ decade and temperature compensated．

Light meter has eight－decade range．Bias current compensation can give input current resolution of better than $\pm 2 \mathrm{pA}$ over $15^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ．

TL／H／5653－29

Schematic Diagram

TL/H/5653-30

Definition of Terms

Input offset voltage: That voltage which must be applied between the input terminals to bias the unloaded output in the linear region.
Input offset current: The difference in the currents at the input terminals when the output is unloaded in the linear region.
Input blas current: The absolute value of the average of the two input currents.
Input resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Large signal voltage gain: The ratio of the specified output voltage swing to the change in differential input voltage required to produce it.

Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.
Temperature drift: The change of a parameter measured at $25^{\circ} \mathrm{C}$ and either temperature extreme divided by the temperature change.
Power Supply Rejection Ratio: The ratio of the specified supply-voltage change (either or both supplies) to the change in offset voltage between the extremes.
Supply current: The current required from the power source to operate the amplifier with the output unloaded and operating in the linear range.

LM12 (L/C/CL) 150W Operational Amplifier

General Description

The LM12 is a power op amp capable of driving $\pm 35 \mathrm{~V}$ at $\pm 10 \mathrm{~A}$ while operating from $\pm 40 \mathrm{~V}$ supplies. The monolithic IC can deliver 150 W of sine wave power into a 4Ω load with 0.01% distortion. Power bandwidth is 60 kHz . Further, a peak dissipation capability of 800 W allows it to handle reactive loads such as transducers, actuators or small motors without derating. Important features include:

- input protection
- controlled turn on
- thermal limiting
- overvoltage shutdown
- output-current limiting
- dynamic safe-area protection

The IC delivers $\pm 10 \mathrm{~A}$ output current at any output voltage yet is completely protected against overloads, including shorts to the supplies. The dynamic safe-area protection is provided by instantaneous peak-temperature limiting within the power transistor array.
The turn-on characteristics are controlled by keeping the output open-circuited until the total supply voltage reaches 14 V . The output is also opened as the case temperature
exceeds $150^{\circ} \mathrm{C}$ or as the supply voltage approaches the $\mathrm{BV}_{\text {CEO }}$ of the output transistors. The IC withstands overvoltages to 100 V .
This monolithic op amp is compensated for unity-gain feedback, with a small-signal bandwidth of 700 kHz . Slew rate is $9 \mathrm{~V} / \mu \mathrm{s}$, even as a follower. Distortion and capacitive-load stability rival that of the best designs using complementary output transistors. Further, the IC withstands large differential input voltages and is well behaved should the commonmode range be exceeded.
The LM12 establishes that monolithic ICs can deliver considerable output power without resorting to complex switching schemes. Devices can be paralleled or bridged for even greater output capability. Applications include operational power supplies, high-voltage regulators, high-quality audio amplifiers, tape-head positioners, x-y plotters or other ser-vo-control systems.
The LM12 is supplied in a four-lead, TO-3 package with V^{-} on the case. A gold-eutectic die-attach to a molybdenum interface is used to avoid thermal fatigue problems. Two voltage grades are available; both are specified for either military or commercial temperature range.

Connection Diagram

v^{-}(CASE)
TL/H/8704-1

Order Number LM12K, LM12CK or LM12CLK See NS Package Number K04A

Typical Application*

TL/H/8704-2
*Low distortion (0.01%) audio amplifier

Absolute Maximum Ratings
If Milltary/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
$\begin{array}{llr}\text { Total Supply Voltage } & \text { LM12/LM12C } & \text { 100V } \\ & \text { LM12L/LM12CL } & 80 \mathrm{~V} \\ \text { Input Voltage } & & \text { Note 1 } \\ \text { Output Current } & & \text { Internally Limited }\end{array}$

Junction Temperature
Storage Temperature Range Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$ ESD Rating to be Determined.
Operating Ratings
Total Supply Voltage LM12/LM12C
LM12L/LM12CL

Note 2 $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

15 V to 80 V 15 V to 60 V

Electrical Characteristics (Note 3)

Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	LM12 LM12L	LM12C LM12CL	Units
			Limits	Limits	
Input Offset Voltage	$\begin{aligned} & \pm 10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 0.5 \mathrm{~V}_{\mathrm{MAX}} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \end{aligned}$	2	7/15	15/20	mV (max)
Input Bias Current	$\mathrm{V}^{-}+4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-2 \mathrm{~V}$	0.15	0.3/1.0	0.7/1.0	$\mu \mathrm{A}$ (max)
Input Offset Current	$\mathrm{V}^{-}+4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-2 \mathrm{~V}$	0.03	0.1/0.3	0.2/0.3	$\mu \mathrm{A}$ (max)
Common Mode Rejection	$\mathrm{V}^{-}+4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-2 \mathrm{~V}$	86	75/70	70/65	dB (min)
Power Supply Rejection	$\begin{aligned} & \mathrm{V}^{+}=0.5 \mathrm{~V}_{\mathrm{MAX}}, \\ & -6 \mathrm{~V} \geq \mathrm{V}^{-} \geq-0.5 \mathrm{~V}_{\text {MAX }} \\ & \mathrm{V}^{-}=-0.5 \mathrm{~V}_{\text {MAX }} \\ & 6 \mathrm{~V} \leq \mathrm{V}^{+} \leq 0.5 \mathrm{~V}_{\text {MAX }} \end{aligned}$	$\begin{gathered} 90 \\ 110 \end{gathered}$	$\begin{aligned} & 75 / 70 \\ & 80 / 75 \end{aligned}$	70/65 75/70	$\begin{aligned} & d B(\min) \\ & d B(\min) \end{aligned}$
Output Saturation Threshold	$\begin{aligned} & \mathrm{t}_{\mathrm{ON}}=1 \mathrm{~ms}, \\ & \Delta \mathrm{~V}_{\text {IN }}=5(10) \mathrm{mV}, \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned}$	$\begin{gathered} 1.8 \\ 4 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 2.2 / 2.5 \\ 5 / 7 \\ 8 \end{gathered}$	$\begin{gathered} 2.2 / 2.5 \\ 5 / 7 \end{gathered}$	V (max) V (max) V (max)
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{t} O N=2 \mathrm{~ms}, \\ & \mathrm{~V}_{\mathrm{SAT}}=2 \mathrm{~V}, \mathrm{IOUT}=0 \\ & \mathrm{~V}_{\mathrm{SAT}}=8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ \hline \end{gathered}$	$\begin{array}{r} 50 / 30 \\ 20 / 15 \\ \hline \end{array}$	$\begin{aligned} & 30 / 20 \\ & 15 / 10 \\ & \hline \end{aligned}$	V / mV (min) V / mV (min)
Thermal Gradient Feedback	$\mathrm{P}_{\text {DISS }}=50 \mathrm{~W}, \mathrm{t}_{\text {ON }}=65 \mathrm{~ms}$	30	50	100	$\mu \mathrm{V} / \mathrm{W}$ (max)
Output-Current Limit	$\begin{aligned} & \mathrm{t}_{\mathrm{ON}}=10 \mathrm{~ms}, \mathrm{~V}_{\mathrm{DISS}}=10 \mathrm{~V} \\ & \mathrm{t}_{\mathrm{ON}}=100 \mathrm{~ms}, \mathrm{~V}_{\text {DISS }}=58 \mathrm{~V} \end{aligned}$ LM12/LM12C $\mathrm{t}_{\mathrm{ON}}=100 \mathrm{~ms}, \mathrm{~V}_{\text {DISS }}=78 \mathrm{~V}$	13 1.5 1.5 0.7	16 $1.0 / 0.6$ 1.7 $0.6 / 0.4$	16 $0.9 / 0.6$ 1.7 $0.5 / 0.35$	A (max) $A(\min)$ A (max) A (min)
Power Dissipation Rating	$\begin{aligned} \mathrm{t}_{\mathrm{ON}}=100 \mathrm{~ms}, \mathrm{~V}_{\text {DISS }} & =20 \mathrm{~V} \\ \mathrm{~V}_{\text {DISS }} & =58 \mathrm{~V} \end{aligned}$	$\begin{gathered} 100 \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & 90 / 40 \\ & 58 / 35 \end{aligned}$	$\begin{aligned} & 80 / 55 \\ & 52 / 35 \end{aligned}$	W (min) W (min)
DC Thermal Resistance	$($ Note 4) $V_{\text {DISS }}=20 \mathrm{~V}$ $V_{\text {DISS }}=58 \mathrm{~V}$	$\begin{aligned} & 2.3 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.6 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.5 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$ (max) ${ }^{\circ} \mathrm{C} / \mathrm{W}$ (max)
AC Thermal Resistance	(Note 4)	1.6	1.9	2.1	${ }^{\circ} \mathrm{C} / \mathrm{W}(\max)$
Supply Current	$\mathrm{V}_{\text {OUT }}=0, \mathrm{l}_{\text {OUT }}=0$	60	80/90	120/140	mA (max)

[^14]
Output-Transistor Ratings (guaranteed) ${ }^{\dagger}$

Pulse Thermal Resistance

TL/H/8704-3
\dagger LM12/LM12L. The power ratings of the LM12C/LM12CL are 10 -percent less at 20 V and 15 -percent less at 60 V , with a corresponding increase in thermal resistance and decrease in safe area current.

Typical Performance Characteristics

TL/H/8704-4

Typical Performance Characteristics (Continued)

Supply Current

Supply Current

Application Information

GENERAL

Twenty five years ago the operational amplifier was a specialized design tool used primarily for analog computation. However, the availability of low cost IC op amps in the late 1960's prompted their use in rather mundane applications, replacing a few discrete components. Once a few basic principles are mastered, op amps can be used to give exceptionally good results in a wide range of applications while minimizing both cost and design effort.
The availability of a monolithic power op amp now promises to extend these advantages to high-power designs. Some conventional applications are given here to illustrate op amp design principles as they relate to power circuitry. The inevitable fall in prices, as the economies of volume production are realized, will prompt their use in applications that might now seem trivial. Replacing single power transistors with an op amp will become economical because of improved performance, simplification of attendant circuitry, vastly improved fault protection, greater reliability and the reduction of design time.
Power op amps introduce new factors into the design equation. With current transients above 10A, both the inductance and resistance of wire interconnects become important in a number of ways. Further, power ratings are a crucial factor in determining performance. But the power capability of the IC cannot be realized unless it is properly mounted to an adequate heat sink. Thus, thermal design is of major importance with power op amps.
This application summary starts off by identifying the origin of strange problems observed while using the LM12 in a wide variety of designs with all sorts of fault conditions. A few simple precautions will eliminate these problems. One would do well to read the section on supply bypassing, lead inductance, output clamp diodes, ground loops and reactive loading before doing any experimentation. Should there be problems with erratic operation, blowouts, excessive distortion or oscillation, another look at these sections is in order.
The management and protection circuitry can also affect operation. Should the total supply voltage exceed ratings or drop below 15-20V, the op amp shuts off completely. Case temperatures above $150^{\circ} \mathrm{C}$ also cause shut down until the temperature drops to $145^{\circ} \mathrm{C}$. This may take several seconds, depending on the thermal system. Activation of the dynamic safe-area protection causes both the main feedback loop to lose control and a reduction in output power, with possible oscillations. In ac applications, the dynamic protection will cause waveform distortion. Since the LM12 is well protected against thermal overloads, the suggestions for determining power dissipation and heat sink requirements are presented last.

SUPPLY BYPASSING

All op amps should have their supply leads bypassed with low-inductance capacitors having short leads and located close to the package terminals to avoid spurious oscillation problems. Power op amps require larger bypass capacitors. The LM12 is stable with good-quality electrolytic bypass capacitors greater than $20 \mu \mathrm{~F}$. Other considerations may require larger capacitors.

The current in the supply leads is a rectified component of the load current. If adequate bypassing is not provided, this distorted signal can be fed back into internal circuitry. Low distortion at high frequencies requires that the supplies be bypassed with $470 \mu \mathrm{~F}$ or more, at the package terminals.

LEAD INDUCTANCE

With ordinary op amps, lead-inductance problems are usually restricted to supply bypassing. Power op amps are also sensitive to inductance in the output lead, particularly with heavy capacitive loading. Feedback to the input should be taken directly from the output terminal, minimizing common inductance with the load. Sensing to a remote load must be accompanied by a high-frequency feedback path directly from the output terminal. Lead inductance can also cause voltage surges on the supplies. With long leads to the power source, energy stored in the lead inductance when the output is shorted can be dumped back into the supply bypass capacitors when the short is removed. The magnitude of this transient is reduced by increasing the size of the bypass capacitor near the IC. With $20 \mu \mathrm{~F}$ local bypass, these voltage surges are important only if the lead length exceeds a couple feet ($>1 \mu \mathrm{H}$ lead inductance). Twisting together the supply and ground leads minimizes the effect.

GROUND LOOPS

With fast, high-current circuitry, all sorts of problems can arise from improper grounding. In general, difficulties can be avoided by returning all grounds separately to a common point. Sometimes this is impractical. When compromising, special attention should be paid to the ground returns for the supply bypasses, load and input signal. Ground planes also help to provide proper grounding.
Many problems unrelated to system performance can be traced to the grounding of line-operated test equipment used for system checkout. Hidden paths are particularly difficult to sort out when several pieces of test equipment are used but can be minimized by using current probes or the new isolated oscilloscope pre-amplifiers. Eliminating any direct ground connection between the signal generator and the oscilloscope synchronization input solves one common problem.

OUTPUT CLAMP DIODES

When a push-pull amplifier goes into power limit while driving an inductive load, the stored energy in the load inductance can drive the output outside the supplies. Although the LM12 has internal clamp diodes that can handle several amperes for a few milliseconds, extreme conditions can cause destruction of the IC. The internal clamp diodes are imperfect in that about half the clamp current flows into the supply to which the output is clamped while the other half flows across the supplies. Therefore, the use of external diodes to clamp the output to the power supplies is strongly recommended. This is particularly important with higher supply voltages.
Experience has demonstrated that hard-wire shorting the output to the supplies can induce random failures if these external clamp diodes are not used and the supply voltages are above $\pm 20 \mathrm{~V}$. Therefore it is prudent to use output-

Application Information (Continued)

clamp diodes even when the load is not particularly inductive. This also applies to experimental setups in that blowouts have been observed when diodes were not used. In packaged equipment, it may be possible to eliminate these diodes, providing that fault conditions can be controlled.

TL/H/8704-6
Heat sinking of the clamp diodes is usually unimportant in that they only clamp current transients. Forward drop with 15A fault transients is of greater concern. Usually, these transients die out rapidly. The clamp to the negative supply can have somewhat reduced effectiveness under worst case conditions should the forward drop exceed 1.0V. Mounting this diode to the power op amp heat sink improves the situation. Although the need has only been demonstrated with some motor loads, including a third diode (D3 above) will eliminate any concern about the clamp diodes. This diode, however, must be capable of dissipating continuous power as determined by the negative supply current of the op amp.

REACTIVE LOADING

The LM12 is normally stable with resistive, inductive or smaller capacitive loads. Larger capacitive loads interact with the open-loop output resistance (about 1Ω) to reduce the phase margin of the feedback loop, ultimately causing oscillation. The critical capacitance depends upon the feedback applied around the amplifier; a unity-gain follower can handle about $0.01 \mu \mathrm{~F}$, while more than $1 \mu \mathrm{~F}$ does not cause problems if the loop gain is ten. With loop gains greater than unity, a speedup capacitor across the feedback resistor will aid stability. In all cases, the op amp will behave predictably only if the supplies are properly bypassed, ground loops are controlled and high-frequency feedback is derived directly from the output terminal, as recommended earlier.
So-called capacitive loads are not always capacitive. A high-Q capacitor in combination with long leads can present a series-resonant load to the op amp. In practice, this is not usually a problem; but the situation should be kept in mind.

TL/H/8704-7
Large capacitive loads (including series-resonant) can be accommodated by isolating the feedback amplifier from the load as shown above. The inductor gives low output impedance at lower frequencies while providing an isolating impedance at high frequencies. The resistor kills the Q of series resonant circuits formed by capacitive loads. A low inductance, carbon-composition resistor is recommended. Optimum values of L and R depend upon the feedback gain
and expected nature of the load, but are not critical. A $4 \mu \mathrm{H}$ inductor is obtained with 14 turns of number 18 wire, close spaced, around a one-inch-diameter form.

TL/H/8704-8
The LM12 can be made stable for all loads with a large capacitor on the output, as shown above. This compensation gives the lowest possible closed-loop output impedance at high frequencies and the best load-transient response. It is appropriate for such applications as voltage regulators.
A feedback capacitor, C_{1}, is connected directly to the output pin of the IC. The output capacitor, C_{2}, is connected at the output terminal with short leads. Single-point grounding to avoid dc and ac ground loops is advised.
The impedance, Z_{1}, is the wire connecting the op amp output to the load capacitor. About 3 -inches of number-18 wire $(70 \mathrm{nH})$ gives good stability and 18 -inches $(400 \mathrm{nH})$ begins to degrade load-transient response. The minimum load capacitance is $47 \mu \mathrm{~F}$, if a solid-tantalum capacitor with an equivalent series resistance (ESR) of 0.1Ω is used. Electrolytic capacitors work as well, although capacitance may have to be increased to $200 \mu \mathrm{~F}$ to bring ESR below 0.1Ω.
Loop stability is not the only concern when op amps are operated with reactive loads. With time-varying signals, power dissipation can also increase markedly. This is particularly true with the combination of capacitive loads and high-frequency excitation.

INPUT COMPENSATION

The LM12 is prone to low-amplitude oscillation bursts coming out of saturation if the high-frequency loop gain is near unity. The voltage follower connection is most susceptible. This glitching can be eliminated at the expense of small-signal bandwidth using input compensation. Input compensation can also be used in combination with LR load isolation to improve capacitive load stability.

TL/H/8704-9
An example of a voltage follower with input compensation is shown here. The $\mathrm{R}_{2} \mathrm{C}_{2}$ combination across the input works with R_{1} to reduce feedback at high frequencies without greatly affecting response below 100 kHz . A lead capacitor, C_{1}, improves phase margin at the unity-gain crossover frequency. Proper operation requires that the output impedance of the circuitry driving the follower be well under $1 \mathrm{k} \Omega$ at frequencies up to a few hundred kilohertz.

TL/H/8704-10
Extending input compensation to the integrator connection is shown here. Both the follower and this integrator will handle $1 \mu \mathrm{~F}$ capacitive loading without LR output isolation.

CURRENT DRIVE

TL/H/8704-11
This circuit provides an output current proportional to the input voltage. Current drive is sometimes preferred for servo motors because it aids in stabilizing the servo loop by reducing phase lag caused by motor inductance. In applications requiring high output resistance, such as operational power supplies running in the current mode, matching of the feedback resistors to 0.01% is required. Alternately, an adjustable resistor can be used for trimming.

PARALLEL OPERATION

TL/H/8704-12
Output drive beyond the capability of one power amplifier can be provided as shown here. The power op amps are wired as followers and connected in parallel with the outputs coupled through equalization resistors. A standard, high-voltage op amp is used to provide voltage gain. Overall feedback compensates for the voltage dropped across the equalization resistors.
With parallel operation, there may be an increase in unloaded supply current related to the offset voltage across the
equalization resistors. More output buffers, with individual equalization resistors, may be added to meet even higher drive requirements.

TL/H/8704-13
This connection allows increased output capability without requiring a separate control amplifier. The output buffer, A_{2}, provides load current through R_{5} equal to that supplied by the main amplifier, A_{1}, through R_{4}. Again, more output buffers can be added.
Current sharing among paralleled amplifiers can be affected by gain error as the power-bandwidth limit is approached. In the first circuit, the operating current increase will depend upon the matching of high-frequency characteristics. In the second circuit, however, the entire input error of A_{2} appears across R_{4} and R_{5}. The supply current increase can cause power limiting to be activated as the slew limit is approached. This will not damage the LM12. It can be avoided in both cases by connecting A_{1} as an inverting amplifier and restricting bandwidth with C_{1}.

SINGLE-SUPPLY OPERATION

TL/H/8704-14
Although op amps are usually operated from dual supplies, single-supply operation is practical. This bridge amplifier supplies bi-directional current drive to a servo motor while operating from a single positive supply. The output is easily converted to voltage drive by shorting R_{6} and connecting R_{7} to the output of A_{2}, rather than A_{1}.
Either input may be grounded, with bi-directional drive provided to the other. It is also possible to connect one input to a positive reference, with the input signal varying about this voltage. If the reference voltage is above $5 \mathrm{~V}, \mathrm{R}_{2}$ and R_{3} are not required.

Application Information (Continued)
HIGH VOLTAGE AMPLIFIERS

TL/H/8704-15
The voltage swing delivered to the load can be doubled by using the bridge connection shown here. Output clamping to the supplies can be provided by using a bridge-rectifier assembly.

TL/H/8704-16
One limitation of the standard bridge connection is that the load cannot be returned to ground. This can be circumvented by operating the bridge with floating supplies, as shown above. For single-ended drive, either input can be grounded.

TL/H/8704-17
This circuit shows how two amplifiers can be cascaded to double output swing. The advantage over the bridge is that the output can be increased with any number of stages, although separate supplies are required for each.

TL/H/8704-18
Discrete transistors can be used to increase output drive to $\pm 90 \mathrm{~V}$ at $\pm 10 \mathrm{~A}$ as shown above. With proper thermal design, the IC will provide safe-area protection for the external transistors. Voltage gain is about thirty.

Application Information (Continued)

OPERATIONAL POWER SUPPLY

TL/H/8704-19
External current limit can be provided for a power op amp as shown above. The positive and negative current limits can be set precisely and independently. Fast response is assured by D_{1} and D_{2}. Adjustment range can be set down to zero with potentiometers R_{3} and R_{7}. Alternately, the limit can be programmed from a voltage supplied to R_{2} and R_{6}. This is the set up required for an operational power supply or voltage-programmable power source.

SERVO AMPLIFIERS

When making servo systems with a power op amp, there is a temptation to use it for frequency shaping to stabilize the servo loop. Sometimes this works; other times there are better ways; and occasionally it just doesn't fly. Usually it's a matter of how quickly and to what accuracy the servo must stabilize.

TL/H/8704-20
This motor/tachometer servo gives an output speed proportional to input voltage. A low-level op amp is used for frequency shaping while the power op amp provides current drive to the motor. Current drive eliminates loop phase shift due to motor inductance and makes high-performance servos easier to stabilize.

TL/H/8704-21
This position servo uses an op amp to develop the rate signal electrically instead of using a tachometer. In high-performance servos, rate signals must be developed with large error signals well beyond saturation of the motor drive. Using a separate op amp with a feedback clamp allows the rate signal to be developed properly with position errors more than an order of magnitude beyond the loop-saturation level as long as the photodiode sensors are positioned with this in mind.

Application Information (Continued)

VOLTAGE REGULATORS

TL./H/8704-22
An op amp can be used as a positive or negative regulator. Unlike most regulators, it can sink current to absorb energy dumped back into the output. This positive regulator has a $0-70 \mathrm{~V}$ output range.

Dual supplies are not required to use an op amp as a voltage regulator if zero output is not required. This 4 V to 70 V regulator operates from a single supply. Should the op amp not be able to absorb enough energy to control an overvoltage condition, a SCR will crowbar the output.

REMOTE SENSING

TL/H/8704-24
Remote sensing as shown above allows the op amp to correct for dc drops in cables connecting the load. Even so, cable drop will affect transient response. Degradation can be minimized by using twisted, heavy-gauge wires on the output line. Normally, common and one input are connected together at the sending end.

AUDIO AMPLIFIERS

TL/H/8704-25
A power amplifier suitable for use in high-quality audio equipment is shown above. Harmonic distortion is about 0.01 -percent. Intermodulation distortion ($60 \mathrm{~Hz} / 7 \mathrm{kHz}, 4: 1$) measured 0.015 -percent. Transient response and saturation recovery are clean, and the $9 \mathrm{~V} / \mu \mathrm{s}$ slew rate of the LM12 virtually eliminates transient intermodulation distortion. Using separate amplifiers to drive low- and high-frequency speakers gets rid of high-level crossover networks and attenuators. Further, it prevents clipping on the low-frequency channel from distorting the high frequencies.

Application Information (Continued)

DETERMINING MAXIMUM DISSIPATION

It is a simple matter to establish power requirements for an op amp driving a resistive load at frequencies well below 10 Hz . Maximum dissipation occurs when the output is at one-half the supply voltage with high-line conditions. The individual output transistors must be rated to handle this power continuously at the maximum expected case temperature. The power rating is limited by the maximum junction temperature as determined by

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{C}}+\mathrm{P}_{\mathrm{DISS}} \theta_{\mathrm{JC}}
$$

where T_{C} is the case temperature as measured at the center of the package bottom, PDISS is the maximum power dissipation and θ_{JC} is the thermal resistance at the operating voltage of the output transistor. Recommended maximum junction temperatures are $200^{\circ} \mathrm{C}$ within the power transistor and $150^{\circ} \mathrm{C}$ for the control circuitry.
If there is ripple on the supply bus, it is valid to use the average value in worst-case calculations as long as the peak rating of the power transistor is not exceeded at the ripple peak. With 120 Hz ripple, this is 1.5 times the continuous power rating.
Dissipation requirements are not so easily established with time varying output signals, especially with reactive loads. Both peak and continuous dissipation ratings must be taken into account, and these depend on the signal waveform as well as load characteristics.
With a sine wave output, analysis is fairly straightforward. With supply voltages of $\pm \mathrm{V}_{\mathrm{S}}$, the maximum average power dissipation of both output transistors is

$$
\mathrm{P}_{\mathrm{MAX}}=\frac{2 \mathrm{~V}_{\mathrm{S}}^{2}}{\pi^{2} Z_{\mathrm{L}} \cos \theta}, \quad \theta<40^{\circ}
$$

and

$$
\mathrm{P}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{S}^{2}}}{2 \mathrm{Z}_{\mathrm{L}}}\left[\frac{4}{\pi}-\cos \theta\right], \quad \theta \geq 40^{\circ}
$$

where Z_{L} is the magnitude of the load impedance and θ its phase angle. Maximum average dissipation occurs below maximum output swing for $\theta<40^{\circ}$.

TL/H/8704-26
The instantaneous power dissipation over the conducting half cycle of one output transistor is shown here. Power dissipation is near zero on the other half cycle. The output level is that resulting in maximum peak and average dissipation. Plots are given for a resistive and a series RL load. The latter is representative of a 4Ω loudspeaker operating below resonance and would be the worst case condition in most
audio applications. The peak dissipation of each transistor is about four times average. In ac applications, power capability is often limited by the peak ratings of the power transistor. The pulse thermal resistance of the LM12 is specified for constant power pulse duration. Establishing an exact equivalency between constant-power pulses and those encountered in practice is not easy. However, for sine waves, reasonable estimates can be made at any frequency by assuming a constant power pulse amplitude given by:

$$
\mathrm{P}_{\mathrm{PK}} \cong \frac{\mathrm{~V}_{S^{2}}}{2 Z_{\mathrm{L}}}[1-\cos (\phi-\theta)]
$$

where $\phi=60^{\circ}$ and θ is the absolute value of the phase angle of Z_{L}. Equivalent pulse width is $\mathrm{t}_{\mathrm{ON}} \cong 0.4 \tau$ for $\theta=0$ and $\mathrm{tON} \cong 0.2 \tau$ for $\theta \geq 20^{\circ}$, where τ is the period of the output waveform.

DISSIPATION DRIVING MOTORS

A motor with a locked rotor looks like an inductance in series with a resistance, for purposes of determining driver dissipation. With slow-response servos, the maximum signal amplitude at frequencies where motor inductance is significant can be so small that motor inductance does not have to be taken into account. If this is the case, the motor can be treated as a simple, resistive load as long as the rotor speed is low enough that the back emf is small by comparison to the supply voltage of the driver transistor.
A permanent-magnet motor can build up a back emf that is equal to the output swing of the op amp driving it. Reversing this motor from full speed requires the output drive transistor to operate, initially, along a loadline based upon the motor resistance and total supply voltage. Worst case, this loadline will have to be within the continuous dissipation rating of the drive transistor; but system dynamics may permit taking advantage of the higher pulse ratings. Motor inductance can cause added stress if system response is fast.
Shunt- and series-wound motors can generate back emf's that are considerably more than the total supply voltage, resulting in even higher peak dissipation than a permanentmagnet motor having the same locked-rotor resistance.

VOLTAGE REGULATOR DISSIPATION

The pass transistor dissipation of a voltage regulator is easily determined in the operating mode. Maximum continuous dissipation occurs with high line voltage and maximum load current. As discussed earlier, ripple voltage can be averaged if peak ratings are not exceeded; however, a higher average voltage will be required to insure that the pass transistor does not saturate at the ripple minimum.
Conditions during start-up can be more complex. If the input voltage increases slowly such that the regulator does not go into current limit charging output capacitance, there are no problems. If not, load capacitance and load characteristics must be taken into account. This is also the case if automatic restart is required in recovering from overloads.
Automatic restart or start-up with fast-rising input voltages cannot be guaranteed unless the continuous dissipation rating of the pass transistor is adequate to supply the load current continuously at all voltages below the regulated output voltage. In this regard, the LM12 performs much better than IC regulators using foldback current limit, especially with high-line input voltage above 20 V .

Application Information (Continued)

POWER LIMITING

TL/H/8704-27
Should the power ratings of the LM12 be exceeded, dynamic safe-area protection is activated. Waveforms with this power limiting are shown for the LM12 driving $\pm 36 \mathrm{~V}$ at 40 Hz into 4Ω in series with $24 \mathrm{mH}\left(\theta=45^{\circ}\right)$. With an inductive load, the output clamps to the supplies in power limit, as above. With resistive loads, the output voltage drops in limit. Behavior with more complex RCL loads is between these extremes.
Secondary thermal limit is activated should the case temperature exceed $150^{\circ} \mathrm{C}$. This thermal limit shuts down the IC completely (open output) until the case temperature drops to about $145^{\circ} \mathrm{C}$. Recovery may take several seconds.

POWER SUPPLIES

Power op amps do not require regulated supplies. However, the worst-case output power is determined by the low-line supply voltage in the ripple trough. The worst-case power dissipation is established by the average supply voltage with high-line conditions. The loss in power output that can be guaranteed is the square of the ratio of these two voltages. Relatively simple off-line switching power supplies can provide voltage conversion, line isolation and 5-percent regulation while reducing size and weight.
The regulation against ripple and line variations can provide a substantial increase in the power output that can be guaranteed under worst-case conditions. In addition, switching power supplies can convert low-voltage power sources such as automotive batteries up to regulated, dual, highvoltage supplies optimized for powering power op amps.

HEAT SINKING

A semiconductor manufacturer has no control over heat sink design. Temperature rating can only be based upon
case temperature as measured at the center of the package bottom. With power pulses of longer duration than 100 ms , case temperature is almost entirely dependent on heat sink design and the mounting of the IC to the heat sink.

TL/H/8704-28
The design of heat sink is beyond the scope of this work. Convection-cooled heat sinks are available commercially, and their manufacturers should be consulted for ratings. The preceding figure is a rough guide for temperature rise as a function of fin area (both sides) available for convection cooling.
Proper mounting of the IC is required to minimize the thermal drop between the package and the heat sink. The heat sink must also have enough metal under the package to conduct heat from the center of the package bottom to the fins without excessive temperature drop.
A thermal grease such as Wakefield type 120 or Thermalloy Thermacote should be used when mounting the package to the heat sink. Without this compound, thermal resistance will be no better than $0.5^{\circ} \mathrm{C} / \mathrm{W}$, and probably much worse. With the compound, thermal resistance will be $0.2^{\circ} \mathrm{C} / \mathrm{W}$ or less, assuming under 0.005 inch combined flatness runout for the package and heat sink. Proper torquing of the mounting bolts is important. Four to six inch-pounds is recommended.
Should it be necessary to isolate V^{-}from the heat sink, an insulating washer is required. Hard washers like berylium oxide, anodized aluminum and mica require the use of thermal compound on both faces. Two-mil mica washers are most common, giving about $0.4^{\circ} \mathrm{C} / \mathrm{W}$ interface resistance with the compound. Silicone-rubber washers are also available. A $0.5^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance is claimed without thermal compound. Experience has shown that these rubber washers deteriorate and must be replaced should the IC be dismounted.

Definition of Terms

Input offset voltage: The absolute value of the voltage between the input terminals with the output voltage and current at zero.
Input bias current: The absolute value of the average of the two input currents with the output voltage and current at zero.

Input offset current: The absolute value of the difference in the two input currents with the output voltage and current at zero.
Common-mode rejection: The ratio of the input voltage range to the change in offset voltage between the extremes.
Supply-voltage rejection: The ratio of the specified sup-ply-voltage change to the change in offset voltage between the extremes.
Output saturation threshold: The output swing limit for a specified input drive beyond that required for zero output. It is measured with respect to the supply to which the output is swinging.
Large signal voltage gain: The ratio of the output voltage swing to the differential input voltage required to drive the output from zero to either swing limit. The output swing limit is the supply voltage less a specified quasi-saturation voltage. A pulse of short enough duration to minimize thermal effects is used as a measurement signal.

Thermal gradient feedback: The input offset voltage change caused by thermal gradients generated by heating of the output transistors, but not the package. This effect is delayed by several milliseconds and results in increased gain error below 100 Hz .
Output-current limit: The output current with a fixed output voltage and a large input overdrive. The limiting current drops with time once the protection circuitry is activated.
Power dissipation rating: The power that can be dissipated for a specified time interval without activating the protection circuitry. For time intervals in excess of 100 ms , dissipation capability is determined by heat sinking of the IC package rather than by the IC itself.
Thermal resistance: The peak, junction-temperature rise, per unit of internal power dissipation, above the case temperature as measured at the center of the package bottom. The dc thermal resistance applies when one output transistor is operating continuously. The ac thermal resistance applies with the output transistors conducting alternately at a high enough frequency that the peak capability of neither transistor is exceeded.
Supply current: The current required from the power source to operate the amplifier with the output voltage and current at zero.

Equivalent Schematic (excluding active protection circuitry)

TL/H/8704-29

2

National Semiconductor

LM101A/LM201A/LM301A Operational Amplifiers

General Description

The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature (LM101A/LM201A)
- Input current 100 nA maximum over temperature (LM101A/LM201A)
- Offset current 20 nA maximum over temperature (LM101A/LM201A)
- Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
日 Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amplifier
This amplifier offers many features which make its application nearly foolproof: overload protection on the input and
output, no latch-up when the common mode range is exceeded, and freedom from oscillations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.
In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and a drift at a lower cost.
The LM101A is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM201A from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the $L M 301 \mathrm{~A}$ from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Schematic** and Connection Diagrams (Top View)

TL/H/7752-2
Note: Pin 4 connected to case.
Order Number LM101AH, LM201AH or LM301AH See NS Package Number H08C

TL/H/7752-3
Order Number LM101AJ-14 See NS Package Number J14A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM101A/LM201A	LM301A
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 2)	Continuous	Continuous
Operating Ambient Temp. Range	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{LM} 101 \mathrm{~A}) \\ & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\mathrm{LM} 201 \mathrm{~A}) \end{aligned}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TJ Max		
H-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
N-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
J-Package	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
M-Package		
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
H-Package (Still Air)	500 mW	300 mW
(400 LF/Min Air Flow)	1200 mW	700 mW
N-Package	900 mW	500 mW
J-Package	1000 mW	650 mW
M-Package		
Thermal Resistance (Typical) $\theta_{\mathrm{j} \mathrm{A}}$		
H-Package (Still Air)	$165^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
(400 LF/Min Air Flow)	$67^{\circ} \mathrm{C} / \mathrm{W}$	$67^{\circ} \mathrm{C} / \mathrm{W}$
N Package	$135^{\circ} \mathrm{C} / \mathrm{W}$	$135^{\circ} \mathrm{C} / \mathrm{W}$
J-Package	$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{CmW}$
M-Package		
(Typical) θ_{jc}		
H-Package	$25^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)		
Metal Can or Ceramic	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Plastic	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
ESD Tolerance (Note 5)	2000V	2000V

Electrical Characteristics ${ }_{(N o t e ~ 3) ~} T_{A}=T_{J}$

Parameter	Conditions		LM101A/LM201A			LM301A			Units
			MIn	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.5	10		3.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			30	75		70	250	nA
Input Resistance	$T_{A}=25^{\circ} \mathrm{C}$		1.5	4.0		0.5	2.0		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{S}= \pm 20 \mathrm{~V}$		1.8	3.0				mA
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$					1.8	3.0	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$		50	160		25	160		V/mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$				3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current					20			70	nA
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq 25^{\circ} \mathrm{C} \end{aligned}$			0.01	0.1		0.01	0.3	$n A /{ }^{\circ} \mathrm{C}$
				0.02	0.2		0.02	0.6	$n A /{ }^{\circ} \mathrm{C}$

Electrical Characteristics ${ }_{(\text {Note } 3)} \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$ (Continued)

Parameter	Conditions		LM101A/LM201A			LM301A			Units
			Min	Typ	Max	Min	Typ	Max	
Input Bias Current					0.1			0.3	$\mu \mathrm{A}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$			1.2	2.5				mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \\ & R_{L} \geq 2 k \end{aligned}$		25			15			V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		± 15						V
	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			$\pm 15,-13$		± 12	+15, -13		V
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		80	96		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		80	96		70	96		dB

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $75^{\circ} \mathrm{C}$ for $\mathrm{LM} 101 \mathrm{~A} / \mathrm{LM} 201 \mathrm{~A}$, and $70^{\circ} \mathrm{C}$ and $55^{\circ} \mathrm{C}$ respectively for LM301A.
Note 3: Unless otherwise specified, these specifications apply for $\mathrm{C}_{1}=30 \mathrm{pF}, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}(\mathrm{LM} 101 \mathrm{~A}), \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}(\mathrm{LM201A}), \pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM301A).
Note 4: Refer to RETS101AX for LM101A military specifications.
Note 5: Human body model, 100 pF discharged through $1.5 \mathrm{k} \Omega$.
Guaranteed Performance Characteristics Lm101A/Lm201A

TL/H/7752-5

Guaranteed Performance Characteristics Lмзо1А

TL/H/7752-6

Typical Performance Characteristics

Input Current,

Maximum Power Dissipation

Typical Performance Characteristics for Various Compensation Circuits**

TL/H/7752-9

Voltage Follower Pulse Response

TL/H/7752-11

Two Pole Compensation

TL/H/7752-14
Voltage Follower Pulse

TL/H/7752-15

Feedforward Compensation

TL/H/7752-18

TL/H/7752-19

[^15]Typical Applications**

Integrator with Blas Current Compensation

TL/H/7752-25
*Adjust for zero integrator drift. Current drift typically $0.1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

TL/H/7752-24
**Pin connections shown are for 8-pin packages.

Protecting Against Gross Fault Conditions

Compensating for Stray Input Capacitances or Large Feedback Resistor

Isolating Large Capacitive Loads

TL/H/7752-28

Although the LM101A is designed for trouble free operation, experience has indicated that it is wise to observe certain precautions given below to protect the devices from abnormal operating conditions. It might be pointed out that the advice given here is applicable to practically any IC op amp, although the exact reason why may differ with different devices.
When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak instantaneous output current of the source to something less than 100 mA . This is especially important when the inputs go outside a piece of equipment where they could accidentally be connected to high voltage sources. Large capacitors on the input (greater than $0.1 \mu \mathrm{~F}$) should be treated as a low source impedance and isolated with a resistor. Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned off, so the isolation is usually needed.
The output circuitry is protected against damage from shorts to ground. However, when the amplifier output is connected to a test point, it should be isolated by a limiting resistor, as test points frequently get shorted to bad places. Further, when the amplifer drives a load external to the equipment, it is also advisable to use some sort of limiting resistance to preclude mishaps.

Precautions should be taken to insure that the power supplies for the integrated circuit never become reversedeven under transient conditions. With reverse voltages greater than IV, the IC will conduct excessive current, fusing internal aluminum interconnects. If there is a possibility of this happening, clamp diodes with a high peak current rating should be installed on the supply lines. Reversal of the voltage between V^{+}and V - will always cause a problem, although reversals with respect to ground may also give difficulties in many circuits.
The minimum values given for the frequency compensation capacitor are stable only for source resistances less than $10 \mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads.
Although the LM101A is relatively unaffected by supply bypassing, this cannot be ignored altogether. Generally it is necessary to bypass the supplies to ground at least once on every circuit card, and more bypass points may be required if more than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each amplifier with low inductance capacitors because of the higher frequencies involved.

[^16]
Typical Applications** (Continued)

Standard Compensation and Offset Balancing Circuit

Fast Summing Amplifier

TL/H/7752-30

TL/H/7752-29

Bilateral Current Source

TL/H/7752-32

Fast AC/DC Converter*

TL/H/7752-33
**Pin connections shown are for 8-pin packages.

Typical Applications** (Continued)

Integrator with Bias Current Compensation

Voltage Comparator for Driving RTL Logic or High Current Driver

Low Frequency Square Wave Generator

Typical Applications** (Continued)

Low Drift Sample and Hold

*Polycarbonate-dielectric capacitor

TL/H/7752-38

LM107/LM207/LM307 Operational Amplifiers

General Description

The LM107 series are complete, general purpose operational amplifiers, with the necessary frequency compensation built into the chip. Advanced processing techniques make the input currents a factor of ten lower than industry standards like the 709. Yet, they are a direct, plug-in replacement for the 709, LM101A and 741.
The LM107 series offers the features of the LM101A, which makes its application nearly foolproof. In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform genera-
tors. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and drift at a lower cost.
The LM107 is guaranteed over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range, the LM 207 from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM307 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Offset voltage 3 mV maximum over temperature - Input current 100 nA maximum over temperature
- Offset current 20 nA maximum over temperature
- Guaranteed drift characteristics

Connection Diagrams

TL/H/7757-2
Note: Pin 4 connected to case.
Top View
Order Number LM107H, LM207H or LM307H See NS Package Number H08C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 4)

	LM107/LM207	LM307			
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$			
Power Dissipation (Note 1)	500 mW	500 mW		TMIN	TMAX
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	LM107	$-55^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	LM207	$-25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
Output Short Circuit Duration	Continuous	Continuous	LM307	$0^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Operating Temperature Range (T_{A})			ESD rating to be determined.		
(LM107)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
(LM207)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Lead Temperature (Soldering, 10 sec)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$			

Electrical Characteristics (Note 3)

Parameter	Conditions	LM107/LM207			LM307			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	10		3.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	75		70	250	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	4.0		0.5	2.0		$\mathrm{M} \Omega$
Supply Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		1.8	3.0		1.8	3.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		25	160		V/mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$			3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				20			70	nA
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.2 \end{gathered}$		$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.6 \end{aligned}$	$n A /{ }^{\circ} \mathrm{C}$ $n A /{ }^{\circ} \mathrm{C}$
Input Bias Current				100			300	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$		1.2	2.5				mA

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM107/LM207			LM307			Units
		Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			15			V / mV
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Voltage Range	$\begin{aligned} & V_{S}= \pm 20 \mathrm{~V} \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$	± 15	$\begin{array}{r} +15 \\ -13 \\ \hline \end{array}$		± 12	$\begin{aligned} & +15 \\ & -13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Common Mode Rejection Ratio	$\mathrm{R}_{S} \leq 50 \mathrm{k} \Omega$	80	96		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k} \Omega$	80	96		70	96		dB

Note 1: The maximum junction temperature of the LM107 is $150^{\circ} \mathrm{C}$, and the LM207/LM307 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $30^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LM 107 or $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}+85^{\circ} \mathrm{C}$ for the LM 207 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+70^{\circ} \mathrm{C}$ and $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ for the LM307 unless otherwise specified.
Note 4: Refer to RETS107X for LM107H and LM107J military specifications.
Schematic Diagram*

Guaranteed Performance Characteristics LM107/LM207

SUPPLY VOLTAGE ($\pm \mathbf{V}$)

Guaranteed Performance Characteristics Lм307

SUPPLY VOLTAGE $(\pm V)$

SUPPLY VOLTAGE (\pm V)

SUPPLY VOLTAGE (\pm V)

TL/H/7757-5
Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Typical Applications**

Typical Applications** (Continued)

**Pin connections shown are for metal can.

LM108/LM208/LM308 Operational Amplifiers

General Description

The LM108 series are precision operational amplifiers having specifications a factor of ten better than FET amplifiers over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
The devices operate with supply voltages from $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary.
The low current error of the LM108 series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from $10 \mathrm{M} \Omega$ source resistances,
introducing less error than devices like the 709 with $10 \mathrm{k} \Omega$ sources. Integrators with drifts less than $500 \mu \mathrm{~V} / \mathrm{sec}$ and analog time delays in excess of one hour can be made using capacitors no larger than $1 \mu \mathrm{~F}$.
The LM108 is guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM208 from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM308 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

© Maximum input bias current of 3.0 nA over temperature
m Offset current less than 400 pA over temperature
\square Supply current of only $300 \mu \mathrm{~A}$, even in saturation ■ Guaranteed drift characteristics

Compensation Circuits

Standard Compensation Circuit

TL/H/7758-1
**Bandwidth and slew rate are proportional to 1/Cf

Alternate* Frequency Compensation

TL/H/7758-2
*Improves rejection of power supply noise by a factor of ten.
**Bandwidth and slew rate are proportional to $1 / \mathrm{C}_{\mathrm{s}}$

Feedforward Compensation

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 5)

	LM108/LM208	LM308
Supply Voltage	$\pm 20 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW	500 mW
Differential Input Current (Note 2)	$\pm 10 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short-Circuit Duration	Continuous	Continuous
Operating Temperature Range (LM108)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
(LM208)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)		
DIP	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
H Package Lead Temp (Soldering 10 seconds)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Soldering Information		
Dual-In-Line Package		
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$	
Small Outline Package		
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices. ESD Tolerance (Note 6)

2000V

Electrical Characteristics (Note 4)

Parameter	Condition	LM108/LM208			LM308			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.05	0.2		0.2	1	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.0		1.5	7	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	70		10	40		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	0.6		0.3	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	50	300		25	300		V/mV
Input Offset Voltage				3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				0.4			1.5	nA
Average Temperature Coefficient of Input Offset Current			0.5	2.5		2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				3.0			10	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$.	0.15	0.4				mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	25			15			V/mV
Output Voltage Swing	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 14		± 13	± 14		V

Electrical Characteristics (Note 4) (Continued)

Parameter	Condition	LM108/LM208			LM308			Units
		Min	Typ	Max	Min	Typ	Max	
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 13.5			± 14			V
Common Mode Rejection Ratio		85	100		80	100	dB	
Supply Voltage Rejection Ratio		80	96		80	96	dB	

Note 1: The maximum junction temperature of the LM108 is $150^{\circ} \mathrm{C}$, for the $\mathrm{LM} 208,100^{\circ} \mathrm{C}$ and for the $\mathrm{LM} 308,85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq+20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM208, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$, and for the LM 308 they are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$.
Note 5: Refer to RETS108X for LM108 military specifications.
Note 6: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Schematic Diagram

TL/H/7758-8

Typical Performance Characteristics LM108/LM208

Typical Performance Characteristics Lмзов

Typical Applications

Sample and Hold

High Speed Amplifier with Low Drift and Low Input Current

Typical Applications (Continued)

Fast \dagger Summing Amplifier

Connection Diagrams

TL/H/7758-13
Order Number LM108H, LM208H or LM308H
*Package is connected to Pin 4 (V-)
*Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed circuit board layout.

Metal Can Package
COMP 2

v^{-}

See NS Package Number H08C

TL/H/7758-15
Top View
Order Number LM108J-8, LM208J-8, LM308J-8, LM308M or LM308N
See NS Package Number J08A, MO8A or NO8E

LM108A/LM208A/LM308A Operational Amplifiers

General Description

The LM108/LM108A series are precision operational amplifiers having specifications about a factor of ten better than FET amplifiers over their operating temperature range. In addition to low input currents, these devices have extremely low offset voltage, making it possible to eliminate offset adjustments, in most cases, and obtain performance approaching chopper stabilized amplifiers.
The devices operate with supply voltages from $\pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ and have sufficient supply rejection to use unregulated supplies. Although the circuit is interchangeable with and uses the same compensation as the LM101A, an alternate compensation scheme can be used to make it particularly insensitive to power supply noise and to make supply bypass capacitors unnecessary.
The low current error of the LM108A series makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from $10 \mathrm{M} \Omega$ source resistances,
introducing less error than devices like the 709 with $10 \mathrm{k} \Omega$ sources. Integrators with drifts less than $500 \mu \mathrm{~V} / \mathrm{sec}$ and analog time delays in excess of one hour can be made using capacitors no larger than $1 \mu \mathrm{~F}$.
The LM208A is identical to the LM108A, except that the LM208A has its performance guaranteed over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range, instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LM308A devices have slightly-relaxed specifications and performances over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Offset voltage guaranteed less than 0.5 mV
- Maximum input bias current of 3.0 nA over temperature
. Offset current less than 400 pA over temperature
- Supply current of only $300 \mu \mathrm{~A}$, even in saturation
- Guaranteed $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift

Compensation Circuits

TL/H/7759-2
**Bandwidth and slew rate are proportional to $1 / C_{f}$.

**Bandwidth and slew rate are proportional to $1 / \mathrm{C}_{\mathrm{s}}$.

Feedforward Compensation

LM108A/LM208A Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 5)

Supply Voltage

$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
500 mW
$\pm 10 \mathrm{~mA}$
$\pm 15 \mathrm{~V}$
Continuous
Operating Free Air Temperature Range

LM108A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM208A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	0.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.05	0.2	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.0	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	70		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	0.6	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	80	300		V/mV
Input Offset Voltage				1.0	mV
Average Temperature Coefficient of Input Offset Voltage			1.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				0.4	nA
Average Temperature Coefficient of Input Offset Current			0.5	2.5	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				3.0	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		0.15	0.4	mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	40			V/mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 14		V
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 13.5			V
Common Mode Rejection Ratio		96	110		dB
Supply Voltage Rejection Ratio		96	110		dB

Note 1: The maximum junction temperature of the LM108A is $150^{\circ} \mathrm{C}$, while that of the LM208A is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM208A, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$.
Note 5: Refer to RETS108AX for LM108AH and LM108AJ-8 military specifications.
Note 6: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM308A Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage

$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)
Differential Input Current (Note 2)
500 mW
$\pm 10 \mathrm{~mA}$

Output Short-Circuit Duration
Continuous
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
H-Package Lead Temperature
(Soldering, 10 sec.)
$300^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 sec.) (DIP)
$260^{\circ} \mathrm{C}$
Soldering Information
Dual-In-Line Package
Soldering (10 sec.)
$260^{\circ} \mathrm{C}$
Small Outline Package
Vapor phase (60 sec .)
$215^{\circ} \mathrm{C}$ Infrared (15 sec.)
$220^{\circ} \mathrm{C}$
See An-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating to be determined.

Electrical Characteristics (Note 4)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	0.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2	1	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	7	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	40		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		0.3	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	80	300		V/mV
Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega$			0.73	mV
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega$		2.0	5.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				1.5	nA
Average Temperature Coefficient of Input Offset Current			2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current			.	10	nA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	60			V/mV
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 14		V
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 14			V
Common Mode Rejection Ratio		96	110		dB
Supply Voltage Rejection Ratio		96	110		dB

Note 1: The maximum junction temperature of the LM308A is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, unless otherwise specified.

Typical Applications

Application Hints

A very low drift amplifier poses some uncommon application and testing problems. Many sources of error can cause the apparent circuit drift to be much higher than would be predicted.
Thermocouple effects caused by temperature gradient across dissimilar metals are perhaps the worst offenders. Only a few degrees gradient can cause hundreds of microvolts of error. The two places this shows up, generally, are the package-to-printed circuit board interface and temperature gradients across resistors. Keeping package leads short and the two input leads close together helps greatly.
Resistor choice as well as physical placement is important for minimizing thermocouple effects. Carbon, oxide film and some metal film resistors can cause large thermocouple errors. Wirewound resistors of evanohm or manganin are best since they only generate about $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referenced to copper. Of course, keeping the resistor ends at the same temperature is important. Generally, shielding a low drift stage electrically and thermally will yield good results.

Resistors can cause other errors besides gradient generated voltages. If the gain setting resistors do not track with temperature a gain error will result. For example, a gain of 1000 amplifier with a constant 10 mV input will have a 10 V output. If the resistors mistrack by 0.5% over the operating temperature range, the error at the output is 50 mV . Referred to input, this is a $50 \mu \mathrm{~V}$ error. All of the gain fixing resistor should be the same material.
Testing low drift amplifiers is also difficult. Standard drift testing technique such as heating the device in an oven and having the leads available through a connector, thermoprobe, or the soldering iron method-do not work. Thermal gradients cause much greater errors than the amplifier drift. Coupling microvolt signal through connectors is especially bad since the temperature difference across the connector can be $50^{\circ} \mathrm{C}$ or more. The device under test along with the gain setting resistor should be isothermal.

Schematic Diagram

Connection Diagrams

TL/H/7759-7
Pin 4 is connected to the case.
**Unused pin (no internal connection) to allow for input anti-leakage guard ring on printed circuit board layout.

Order Number LM108AH, LM208AH or LM208AH See NS Package Number H08C

TL/H/7759-8
Top View
Order Number LM108AJ-8, LM208AJ-8, LM308AJ-8, LM308AM or LM308AN
See NS Package Number J08A, M08A or N08E

LM112／LM212／LM312 Operational Amplifiers

General Description

The LM112 series are micropower operational amplifiers with very low offset－voltage and input－current errors－at least a factor of ten better than FET amplifiers over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range．Similar to the LM108 series，that also use supergain transistors，they differ in that they include internal frequency compensation and have pro－ visions for offset adjustment with a single potentiometer．
These amplifiers will operate on supply voltages of $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ ，drawing a quiescent current of only $300 \mu \mathrm{~A}$ ．Per－ formance is not appreciably affected over this range of volt－ ages，so operation from unregulated power sources is easily accomplished．They can also be run from a single supply like the 5 V used for digital circuits．
The LM112 series are the first IC amplifiers to improve reli－ ability by including overvoltage protection for the MOS com－ pensation capacitor．Without this feature，IC＇s have been
known to suffer catastrophic failure caused by short－dura－ tion overvoltage spikes on the supplies．Un！ike other inter－ nally－compensated IC amplifiers，it is possible to overcom－ pensate with an external capacitor to increase stability mar－ gin．
The LM212 is identical to the LM112，except that the LM212 has its performance guaranteed over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．The LM312 is guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range．

Features

－Maximum input bias current of 3 nA over temperature
－Offset current less than 400 pA over temperature
Low noise
－Guaranteed drift specifications

Connection Diagram

v^{-}
Top View
Order Number LM112H，LM212H，or LM312H
See NS Package Number H08C

Auxiliary Circuits

TL／H／7751－2

Overcompensation for Greater Stability Margin

TL／H／7751－3
Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 5)
Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
LM112
LM212
Storage Temperature Range
Lead Temperature (Soldering, 10 sec .)

LM112/LM212	LM312
$\pm 20 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
500 mW	500 mW
$\pm 10 \mathrm{~mA}$	$\pm 10 \mathrm{~mA}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Continuous	Continuous

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD rating to be determined.

Electrical Characteristics (Note 4)

Parameter	Conditions	LM112/LM212			LM312			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7	2.0		2.0	7.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.05	0.2		0.2	1	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.0		1.5	7	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	70		10	40		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.3	0.6		0.3	0.8	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	50	300		25	300		V/mV
Input Offset Voltage				3.0			10	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current				0.4			1.5	nA
Average Temperature Coefficient of Input Offset Current			0.5	2.5		2.0	10	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current				3.0			10	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		0.15	0.4				mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \end{aligned}$	25			15			V / mV
Output Voltage Swing	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 13	± 14		± 13	± 14		V
Input Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 13.5			± 14			V
Common-Mode Rejection Ratio		85	100		80	100		dB
Supply Voltage Rejection Ratio		80	96		80	96		dB

Note 1: The maximum junction temperature of the LM112 is $150^{\circ} \mathrm{C}, \mathrm{LM} 212$ is $100^{\circ} \mathrm{C}$ and LM312 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (LM112), $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (LM212), $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM312) unless otherwise noted.
Note 5: Refer to RETS112X for LM112H military specifications.

Typical Performance Characteristics LM112/LM212

TL/H/7751-5

Typical Performance Characteristics Lм312

LM118／LM218／LM318 Operational Amplifiers

General Description

The LM118 series are precision high speed operational am－ plifiers designed for applications requiring wide bandwidth and high slew rate．They feature a factor of ten increase in speed over general purpose devices without sacrificing DC performance．
The LM118 series has internal unity gain frequency com－ pensation．This considerably simplifies its application since no external components are necessary for operation．How－ ever，unlike most internally compensated amplifiers，exter－ nal frequency compensation may be added for optimum performance．For inverting applications，feedforward com－ pensation will boost the slew rate to over $150 \mathrm{~V} / \mu \mathrm{s}$ and al－ most double the bandwidth．Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed．Further，a single capacitor can be added to reduce the 0.1% settling time to under $1 \mu \mathrm{~s}$ ．
The high speed and fast settling time of these op amps make them useful in A／D converters，oscillators，active fil－
ters，sample and hold circuits，or general purpose amplifiers． These devices are easy to apply and offer an order of mag－ nitude better AC performance than industry standards such as the LM709．
The LM218 is identical to the LM118 except that the LM218 has its performance specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ tem－ perature range．The LM318 is specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ．

Features

■ 15 MHz small signal bandwidth
a Guaranteed $50 \mathrm{~V} / \mu \mathrm{s}$ slew rate
a Maximum bias current of 250 nA
－Operates from supplies of $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
－Internal frequency compensation
⿴囗 Input and output overload protected
a Pin compatible with general purpose op amps

Connection Diagrams

Operating Temperature Range

LM118	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM218	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM318	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)

Hermetic Package	$300^{\circ} \mathrm{C}$
Plastic Package	$260^{\circ} \mathrm{C}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 sec.)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 7)
2000V

Electrical Characteristics (Note 4)

Parameter	Conditions	LM118/LM218			LM318			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	4		4	10	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6	50		30	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		120	250		150	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1	3		0.5	3		$\mathrm{M} \Omega$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	8		5	10	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	200		25	200		V/mV
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1$ (Note 5)	50	70		50	70		$V / \mu \mathrm{s}$
Small Signal Bandwidth	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		15			15		MHz
Input Offset Voltage				6			15	mV
Input Offset Current				100			300	nA
Input Bias Current				500			750	nA
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		4.5	7				mA
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			20			V / mV
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12	± 13		± 12	± 13		V
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11.5			± 11.5			V
Common-Mode Rejection Ratio		80	100		70	100		dB
Supply Voltage Rejection Ratio		70	80		65	80		dB

Note 1: The maximum junction temperature of the LM118 is $150^{\circ} \mathrm{C}$, the LM218 is $110^{\circ} \mathrm{C}$, and the LM318 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.

Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}(\mathrm{LM} 118),-25^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}(\mathrm{LM} 218)$, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (LM318). Also, power supplies must be bypassed with $0.1 \mu \mathrm{~F}$ disc capacitors.
Note 5: Slew rate is tested with $V_{S}= \pm 15 \mathrm{~V}$. The LM118 is in a unity-gain non-inverting configuration. $\mathrm{V}_{\mathbb{I N}}$ is stepped from -7.5 V to +7.5 V and vice versa. The slew rates between -5.0 V and +5.0 V and vice versa are tested and guaranteed to exceed $50 \mathrm{~V} / \mu \mathrm{s}$.
Note 6: Refer to RETS118X for LM118H and LM118J-8 military specifications.
Note 7: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics LM118, LM218

Closed Loop Output

Typical Performance Characteristics LM118, LM218 (Continued)
Large Signal Frequency
Response

Voltage Follower Pulse Response

TL/H/7766-5
Typical Performance Characteristics LM318

Auxiliary Circuits

Feedforward Compensation for Greater Inverting Slew Rate \dagger

Compensation for Minimum Settling \dagger Time

TL/H/7766-9

TL/H/7766-11

Typical Applications

Integrator or Slow Inverter

*Do not hard-wire as integrator or slow inverter; insert a $10 \mathrm{k}-5 \mathrm{pF}$ network in series with the input, to prevent oscillation.

Typical Applications (Continued)

Fast Sample and Hold

TL/H/7766-18

D/A Converter Using Ladder Network

Fast Summing Amplifier with Low Input Current

TL/H/7766-21

TL/H/7766-23

Schematic Diagram

π
 National Semiconductor

LM124/LM224/LM324, LM124A/LM224A/LM324A, LM2902 Low Power Quad Operational Amplifiers

General Description

The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 V_{D C}$ power supplies.

Unique Characteristics

m In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.

Advantages

- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and VOUT also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Internally frequency compensated for unity gain
- Large DC voltage gain 100 dB
- Wide bandwidth (unity gain) 1 MHz (temperature compensated)
- Wide power supply range: Single supply
$3 V_{D C}$ to $32 V_{D C}$ or dual supplies $\pm 1.5 V_{D C}$ to $\pm 16 V_{D C}$
- Very low supply current drain ($700 \mu \mathrm{~A}$) -essentially independent of supply voltage
- Low input biasing current $45 \mathrm{nA}_{D C}$ (temperature compensated)
- Low input offset voltage
$2 m V_{D C}$ and offset current
$5 n A_{D C}$
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
■ Large output voltage swing $0 V_{D C}$ to $V^{+}-1.5 V_{D C}$

Connection Diagram

Dual-In-Line Package

Top View
Order Number LM124J, LM124AJ, LM224J, LM224AJ, LM324J, LM324AJ, LM324M, LM324AM, LM2902M, LM324N, LM324AN or LM2902N See NS Package Number J14A, M14A or N14A

Schematic Diagram (Each Amplifier)

TL/H/9299-2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 9)

	$\begin{aligned} & \text { LM124/LM224/LM324 } \\ & \text { LM124A/LM224A/LM324A } \end{aligned}$	LM2902
Supply Voltage, V^{+}	$32 \mathrm{~V}_{D C}$ or $\pm 16 \mathrm{~V}_{D C}$	$26 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 13 \mathrm{~V}_{\mathrm{DC}}$
Differential Input Voltage	32 V VC	$26 V_{D C}$
Input Voltage	$-0.3 V_{D C}$ to $+32 V_{D C}$	$-0.3 V_{D C}$ to $+26 V_{D C}$
Input Current $\left(\mathrm{V}_{\mathbb{N}}<-0.3 \mathrm{~V}_{\mathrm{DC}}\right)(\text { Note } 3)$	50 mA	50 mA
Power Dissipation (Note 1)		
Molded DIP	1130 mW	1130 mW
Cavity DIP	1260 mW	1260 mW
Small Outline Package	800 mW	800 mW
Output Short-Circuit to GND (One Amplifier) (Note 2)		
Operating Temperature Range		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM324/LM324A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
LM224/LM224A	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
LM124/LM124A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 10) 250V
250V

Electrical Characteristics $\mathrm{v}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}$, (Note 4), unless otherwise stated

Parameter	Conditions	LM124A		LM224A		LM324A		LM124/LM224		LM324		LM2902		Units
		Min Typ	Max											
Input Offset Voltage	(Note 5) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 1	± 2	± 1	± 3	± 2	± 3	± 2	± 5	± 2	± 7	± 2	± 7	$\mathrm{m} \mathrm{V}_{\mathrm{DC}}$
Input Bias Current (Note 6)	$\begin{aligned} & \operatorname{lN(+)} \text { or } \ln (-), V_{C M}=0 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	20	50	40	80	45	100	45	150	45	250	45	250	$n A_{D C}$
Input Offset Current	$\begin{aligned} & \operatorname{lin}(+)-\operatorname{IIN}_{\mathrm{IN}(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	± 2	± 10	± 2	± 15	± 5	± 30	± 3	± 30	± 5	± 50	± 5	± 50	nADC
Input Common-Mode Voltage Range (Note 7)	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}},\left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}_{\mathrm{DC}}\right), \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	0	$\mathrm{V}^{+}-1.5$	$V_{D C}$										
Supply Current	Over Full Temperature Range $R_{L}=\infty$ On All Op Amps $\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2902 \mathrm{~V}^{+}=26 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 1.5 \\ 0.7 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 0.7 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 0.7 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 0.7 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 1.2 \\ \hline \end{gathered}$	$m A_{D C}$
Large Signal Voltage Gain	$\begin{aligned} & V^{+}=15 V_{D C}, R_{L} \geq 2 \mathrm{k} \Omega, \\ & \left(V_{O}=1 V_{D C} \text { to } 11 V_{D C}\right), T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	50100		50100		25100		50100		25100		25100		V / mV
Common-Mode Rejection Ratio	$\begin{aligned} & D C, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V} \mathrm{DC}, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$70 \quad 85$		$70 \quad 85$		6585		$70 \quad 85$		6585		$50 \quad 70$		dB
Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{DC}, \mathrm{~V}^{+}=5 \mathrm{~V}_{\mathrm{DC}} \text { to } 30 \mathrm{~V}_{\mathrm{DC}} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=5 \mathrm{~V}_{\mathrm{DC}} \text { to } 26 \mathrm{~V}_{\mathrm{DC}}\right), \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	65100		65100		65100		65100		65100		50100		dB

Electrical Characteristics $\mathrm{v}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}$ (Note 4) unless otherwise stated (Continued)

Parameter		Conditions	LM124A			LM224A			LM324A			LM124/LM224			LM324			LM2902			Units	
			in Typ	Max	Min	Typ	Max															
Amplifier-to-Amplifier Coupling (Note 8)			$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred) } \end{aligned}$	-120			-120			-120			-120			-120			-120			dB
Output Current	Source	$\begin{aligned} & V_{V_{N}}^{+}=1 \mathrm{~V}_{D C}, \mathrm{~V}_{I N}-=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		$20 \quad 40$		20	40			40		20	40		20	40		20	40		$m A_{D C}$	
	Sink	$\begin{aligned} & V_{I N^{-}=1} \mathrm{~V}_{D C}, V_{I N}+=0 V_{D C}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, T_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		1020			20			20			20		10	20			20			
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \mathrm{VC}_{\mathrm{DC}}, T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		250		12	50			50		12	50		12	50			50		$\mu A_{D C}$	
Short Circuit to Ground		(Note 2) $\mathrm{V}^{+}=15 \mathrm{~V} \mathrm{VC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	60		40	60		40	60		40	60		40	60		40	60	$m A_{D C}$	
Input Offset Voltage		(Note 5)			± 4			± 4			± 5			± 7			± 9			± 10	$\mathrm{mV}^{\text {DC }}$	
Input Offset Voltage Drift		$\mathrm{R}_{\text {S }}=0 \Omega$			± 20			± 20			± 30		± 7			± 7			± 7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Offset Current		$\operatorname{IN}(+)-\ln (-), \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			± 30			± 30			± 75			± 100			± 150		± 45	± 200	$n A_{D C}$	
Input Offset Current Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$		± 10	± 200		± 10	± 200		± 10	± 200		± 10			± 10			± 10		PA ${ }_{\text {dC }} /{ }^{\circ} \mathrm{C}$	
Input Bias Current		$\ln (+)$ or $\ln (-)$		40	100		40	100		40	200			300		40	500		40	500	$n A_{D C}$	
Input Common-Mode Voltage Range (Note 7)		$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V}_{\mathrm{DC}} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$		0	$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	$V_{D C}$													
Large Signal Voltage Gain		$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \\ & \left(\mathrm{~V}_{\mathrm{O}} \text { Swing }=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}}\right) \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	25			25			15			25			15			15			V/mV	
Output Voltage Swing	V_{OH}	$\mathrm{V}^{+}=+30 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	26			26			26			26			26			22			$V_{D C}$	
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$		$27 \quad 28$		$27 \quad 28$				28		27	28			28		$23 \quad 24$				
	V_{OL}	$\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$		5	20		5	20		5	20		5	20		5	20		5	100	mV DC	

Electrical Characteristics $\mathrm{v}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}$ (Note 4) unless otherwise stated (Continued)

Parameter		Conditions		LM124A			LM224A			LM324A			LM124/LM224			LM324			LM2902			Units		
		Min	Typ	Max																				
Output Current	Source			$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{IN}^{+}}=+1 \mathrm{~V}_{\mathrm{DC}}, \\ \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \\ \hline \end{array}$	10	20		10	20		10	20		10	20		10	20		10	20		$m A_{D C}$
	Sink	$\begin{array}{\|l\|} \mathrm{V}_{\mathrm{IN}^{-}}=+1 \mathrm{~V}_{\mathrm{DC}} \\ \mathrm{~V}_{\mathrm{IN}} \\ =0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \end{array}$	10		15		5	8		5	8		5	8		5	8		5	8				

 where possible, to allow the amplifier to saturate of to reduce the power which is dissipated in the integrated circuit.

 specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the LM 2902 specifications are limited to $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$.
Note 5: $V_{O} \cong 1.4 V_{D C}, R_{S}=0 \Omega$ with V^{+}from $5 V_{D C}$ to $30 V_{D C}$; and over the full input common-mode range ($0 V_{D C}$ to $V^{+}-1.5 V_{D C}$) at $25^{\circ} \mathrm{C}$; for $L M 2902, V^{+}$from $5 V_{D C}$ to $26 V_{D C}$
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
 inputs can go to $+32 \mathrm{~V}_{\mathrm{DC}}$ without damage ($+26 \mathrm{~V}_{\mathrm{DC}}$ for LM 2902), independent of the magnitude of V^{+}.
 Note 9: Refer to RETS124AX for LM124A military specifications and refer to RETS124X for LM124 military specifications.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics (LM2902 only)

Input Current

Voltage Gain

TL/H/9299-4

Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \mathrm{~V}_{\mathrm{DC}}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down to a minimum supply voltage of $2.3 \mathrm{~V}_{\mathrm{DC}}$.
The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14). Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than $\mathrm{V}+$ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode with a resistor to the IC input terminal can be used.
To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.
For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion.

Where the load is directly coupled, as in dc applications, there is no crossover distortion.

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.
The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $3 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.
The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $\mathrm{V}^{+} / 2$) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications $\left(v^{+}=5.0 \mathrm{v}_{\mathrm{DC}}\right)$

TL/H/9299-5

DC Summing Amplifier
$\left(V_{\text {IN'S }} \geq 0 V_{D C}\right.$ and $\left.V_{O} \geq V_{D C}\right)$

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/9299-10

$$
I_{2}=\left(\frac{R 1}{R 2}\right) I_{1}
$$

Lamp Driver

TL/H/9299-11

Driving TTL

TL/H/9299-13

TL/H/9299-14

TL/H/9299-15

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/9299-17

High Compliance Current Sink

Low Drift Peak Detector

TL/H/9299-19

Comparator with Hysteresis

TL/H/9299-20

Ground Referencing a Differential Input Signal

*Wide control voltage range: $0 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{C}} \leq 2\left(\mathrm{~V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}\right)$

Photo Voltaic-Cell Amplifier

TL/H/9299-23

TL/H/9299-24

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

DC Coupled Low-Pass RC Active Filter

High Input Z, DC Differential Amplifier

For $\frac{R 1}{R 2}=\frac{R 4}{R 3}$ (CMRR depends on this resistor ratio match)
TL/H/9299-27
$V_{O}=1+\frac{R 4}{R 3}\left(V_{2}-V_{1}\right)$
As shown: $V_{O}=2\left(V_{2}-V_{1}\right)$

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)
High Input Z Adjustable-Gain DC Instrumentation Amplifier

TL/H/9299-28

$$
V_{O}=1+\frac{2 R 1}{R 2}\left(V_{2}-V_{1}\right)
$$

As shown $V_{O}=101\left(V_{2}-V_{1}\right)$

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

LM143/LM343 High Voltage Operational Amplifier

General Description

The LM143 is a general purpose high voltage operational amplifier featuring operation to $\pm 40 \mathrm{~V}$, complete input overvoltage protection up to $\pm 40 \mathrm{~V}$ and input currents comparable to those of other super- β op amps. Increased slew rate, together with higher common-mode and supply rejection, insure improved performance at high supply voltages. Operating characteristics, in particular supply current, slew rate and gain, are virtually independent of supply voltage and temperature. Furthermore, gain is unaffected by output loading at high supply voltages due to thermal symmetry on the die. The LM143 is pin compatible with general purpose op amps and has offset null capability.
Application areas include those of general purpose op amps, but can be extended to higher voltages and higher output power when externally boosted. For example, when used in audio power applications, the LM143 provides a power bandwidth that covers the entire audio spectrum. In addition, the LM143 can be reliably operated in environments with large overvoltage spikes on the power supplies, where other internally-compensated op amps would suffer catastrophic failure.
The LM343 is similar to the LM143 for applications in less severe supply voltage and temperature environments.

Features

- Wide supply voltage range $\pm 4.0 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
- Large output voltage swing $\pm 37 \mathrm{~V}$
- Wide input common-mode range $\pm 38 \mathrm{~V}$
- Input overvoltage protection Full $\pm 40 \mathrm{~V}$
- Supply current is virtually independent of supply voltage and temperature

Unique Characteristics

■ Low input bias current 8.0 nA
■ Low input offset current 1.0 nA
■ High slew rate-essentially independent of temperature and supply voltage
$2.5 \mathrm{~V} / \mu \mathrm{s}$

- High voltage gain-virtually independent of resistive loading, temperature, and supply voltage 100 k min
- Internally compensated for unity gain
- Output short circuit protection
- Pin compatible with general purpose op amps

Order Number LM143H or LM343H See NS Package Number H08C

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 4)

	LM143	LM343
Supply Voltage	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Power Dissipation (Note 1)	680 mW	680 mW
Differential Input Voltage (Note 2)	80 V	68 V
Input Voltage (Note 2)	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output Short Circuit Duration	5 seconds	5 seconds
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Parameter	Condlitions	LM143			LM343			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	8.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	10	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.0	20		8.0	40	nA
Supply Voltage Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	100		10	200	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k} \Omega$	22	25		20	25		V
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{L} \geq 100 \mathrm{k} \Omega \end{aligned}$	100k	180k		70k	180k		V/V
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	90		70	90		dB
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 24	± 26		± 22	± 26		V
Supply Current (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0		2.0	5.0	mA
Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20			20		mA
Slew Rate	$T_{A}=25^{\circ} \mathrm{C}, A_{V}=1$		2.5			2.5		$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}, \mathrm{JT}}=40 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & R_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{THD} \leq 1 \% \end{aligned}$		20k			20k		Hz
Unity Gain Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0M			1.0M		Hz
Input Offset Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\operatorname{Max} \\ & \mathrm{T}_{\mathrm{A}}=\operatorname{Min} \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 10 \\ & 10 \end{aligned}$	mV
Input Offset Current	$\begin{aligned} & T_{A}=M a x \\ & T_{A}=M i n \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	nA
Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\operatorname{Max} \\ & \mathrm{T}_{\mathrm{A}}=\operatorname{Min} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 16 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$		$\begin{gathered} 5.0 \\ 16 \\ \hline \end{gathered}$	$\begin{aligned} & 55 \\ & 55 \\ & \hline \end{aligned}$	nA
Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 100 \mathrm{k} \Omega, T_{A}=\operatorname{Max} \\ & R_{L} \geq 100 \mathrm{k} \Omega, T_{A}=\operatorname{Min} \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \mathrm{k} \\ & 50 \mathrm{k} \\ & \hline \end{aligned}$	150k 220k		$\begin{aligned} & 50 \mathrm{k} \\ & 50 \mathrm{k} \end{aligned}$	150k 220k		V/V
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\operatorname{Max} \\ & \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=\operatorname{Min} \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \\ & \hline \end{aligned}$		20 20	$\begin{array}{r} 26 \\ 25 \\ \hline \end{array}$		V

Note 1: Absolute maximum ratings are not necessarily concurrent, and care must be taken not to exceed the maximum junction temperature of the LM143 (150 ${ }^{\circ} \mathrm{C}$) or the LM343 $\left(100^{\circ} \mathrm{C}\right)$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $155^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltage less than $\pm 40 \mathrm{~V}$ for the LM143 and less than $\pm 34 \mathrm{~V}$ for the LM343, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 28 \mathrm{~V}$. For $L M 143, T_{A}=\max =125^{\circ} \mathrm{C}$ and $T_{A}=\min =-55^{\circ} \mathrm{C}$. For $L M 343, T_{A}=\max =70^{\circ} \mathrm{C}$ and $T_{A}=\min =$
$0^{\circ} \mathrm{C}$.
Note 4: Refer to RETS143X for LM143H and LM1536H military specifications.
Note 5: The maximum supply currents are guaranteed at $V_{S}= \pm 40 \mathrm{~V}$ for the LM143 and $V_{S}= \pm 34 \mathrm{~V}$ for the LM343.

шелбе! э!

Typical Performance Characteristics

Supply Current

Voltage Follower Pulse Response

Large Signal Frequency Response

Typical Performance Characteristics (Continued)

Application Hints (See AN-127)

The LM143 is designed for trouble free operation at any supply voltage up to and including the guaranteed maximum of $\pm 40 \mathrm{~V}$. Input overvoltage protection, both common-mode and differential, is 100% tested and guaranteed at the maximum supply voltage. Furthermore, all possible high voltage destructive modes during supply voltage turn-on have been eliminated by design. As with most IC op amps, however, certain precautions should be observed to insure that the LM143 remains virtually blow-out proof.
Although output short circuits to ground or either supply can be sustained indefinitely at lower supply voltages, these short circuits should be of limited duration when operating at higher supply voltages. Units can be destroyed by any combination of high ambient temperature, high supply voltages, and high power dissipation which results in excessive die temperature. This is also true when driving low impedance or reactive loads or loads that can revert to low impedance; for example, the LM143 can drive most general purpose op amps outside of the maximum input voltage range, causing heavy current to flow and possibly destroying both devices.
Precautions should be taken to insure that the power supplies never become reversed in polarity-even under transient conditions. With reverse voltage, the IC will conduct excessive current, fusing the internal aluminum interconnects. Voltage reversal between the power supplies will almost always result in a destroyed unit.

In high voltage applications which are sensitive to very low input currents, special precautions should be exercised. For example, with high source resistances, care should be taken to prevent the magnitude of the PC board leakage currents, although quite small, from approaching those of the op amp input currents. These leakage currents become larger at $125^{\circ} \mathrm{C}$ and are made worse by high supply voltages. To prevent this, PC boards should be properly cleaned and coated to prevent contamination and to provide protection from condensed water vapor when operating below $0^{\circ} \mathrm{C}$. A guard ring is also recommended to significantly reduce leakage currents from the op amp input pins to the adjacent high voltage pins in the standard op amp pin connection as shown in Figure 1. Figures 2, 3 and 4 show how the guard ring is connected for the three most common op amp configurations.
Finally, caution should be exercised in high voltage applications as electrical shock hazards are present. Since the negative supply is connected to the case, users may inadvertantly contact voltages equal to those across the power supplies.
The LM143 can be used as a plug-in replacement in most general purpose op amp applications. The circuits presented in the following section emphasize those applications which take advantage of the unique high voltage abilities of the LM143.

Application Hints (See AN-127) (Continued)

TL/H/7783-5
Bottom View
FIGURE 1. Printed Circuit Layout for Input Guarding with TO-5 Package

TL/H/7783-7
FIGURE 3. Guarded Non-Inverting Amplifier

TL/H/7783-6
FIGURE 2. Guarded Voltage Follower

TL/H/7783-8
FIGURE 4. Guarded Inverting Amplifier

Typical Applications \ddagger (For more detail see AN-127)

$$
130 \text { Vp-p } \text { Drive Across a Floating Load }
$$

TL/H/7783-9

TL/H/7783-10
*R2 may be adjustable to trim the gain.
**R7 may be adjusted to compensate for the resistance tolerance of R4-R7 for best CMR.

Typical Applications 韦 (Continued) (For more detail see AN-127)

90W Audio Power Amplifier with Safe Area Protection

**Adjust R6 to set $\mathrm{I}_{\mathrm{Q}}=100 \mathrm{~mA}$
TL/H/7783-12

Typical Applications $⿻ ⿳ 一 一 𠃌 丨$

\ddagger The 38 V supplies allow for a 5% voltage tolerance．All resistors are $1 / 2$ watt，except as noted．

LM144/LM344 High Voltage, High Slew Rate Operational Amplifier

General Description

The LM144 is a general purpose high voltage, uncompensated operational amplifier featuring operation to $\pm 36 \mathrm{~V}$, complete input overvoltage protection up to the supply voltages and input currents comparable to those of other superβ op amps. Increased slew rate, together with high com-mon-mode and supply rejection, insure excellent performance at high supply voltages. Operating characteristics, in particular supply current, slew rate and gain, are virtually independent of supply voltage and temperature. Furthermore, due to thermal symmetry on the die, gain is unaffected by output loading at high supply voltages.
With the unique advantages of low input current, high gain, and high slew rate, the LM144 can increase accuracy and useful frequency range in many existing applications. For example, the LM144 is a plug-in replacement for the LM101A, as well as other general purpose op amps.
The LM144 can be compensated with a single capacitor, thus giving the user the ability to optimize ac parameters to suit the application. For example, in applications such as audio power amplifiers, the LM144 with a gain of 10 can provide a $\pm 30 \mathrm{~V}$ output swing, a slew rate of approximately $30 \mathrm{~V} / \mu \mathrm{s}$, and a 120 kHz full power bandwidth.

In applications where capacitive loads or cables must be driven, the LM144 can be overcompensated for increased stability.
The LM344 is similar to the LM144 for applications in less severe supply voltage and temperature environments.

Features

- External compensation provides large power bandwidth ($A_{V} \geq 10$)

120 kHz

- Wide operating voltage range $\pm 4.0 \mathrm{~V}$ to $\pm 36 \mathrm{~V}$
- Large output voltage swing $\pm 30 \mathrm{~V}$
- Wide input common-mode range
- Input overvoltage protection
- Electrical characteristics independent of supply voltage and temperature

Unique Characteristics

- Low input bias current	8.0 nA
Low input offset current	1.0 nA
- High slew rate $\left(\mathrm{A}_{\mathrm{V}} \geq 10\right)$	$30 \mathrm{~V} / \mu \mathrm{s}$
- High voltage gain	100 k min
- Offset voltage null capability	

Typical Application

Large Power Bandwidth, Current Boosted Audio Line Driver

TL/H/7784-1

Absolute Maximum Ratings (These ratings are not concurrent)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
(Note 4)

	LM144	LM344
Supply Voltage	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Power Dissipation (Note 1)	680 mW	680 mW
Differential Input Voltage (Note 2)	80 V	68 V
Input Voltage (Note 2)	$\pm 40 \mathrm{~V}$	$\pm 34 \mathrm{~V}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output Short Circuit Duration	5 seconds	5 seconds
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
ESD rating to be determined.		

Electrical Characteristics (Note 3)

Parameter	Conditions	LM144			LM344			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	8.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	10	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8.0	20		8.0	40	nA
Supply Voltage Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	100		10	200	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 5 \mathrm{k} \Omega$	22	25		20	25		V
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}} \geq 100 \mathrm{k} \Omega \end{aligned}$	100k	180k		70k	180k		V/V
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	90		70	90		dB
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	24	26		22	26		V
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0		2.0	5.0	mA
Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20			20		mA
Slew Rate	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, A_{V}=1 \\ & T_{A}=25^{\circ} \mathrm{C}, A_{V}=10, C 1=3 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 30 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
Power Bandwidth	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OUT}}=40 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & R_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{THD} \leq 1 \%, \mathrm{~A}_{\mathrm{V}}=1 \end{aligned}$		20k			20k		Hz
Unity Gain Frequency	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0M			1.0M		Hz
Input Offset Voltage	$\begin{aligned} T_{A} & =M a x \\ T_{A} & =\operatorname{Min} \end{aligned}$			$\begin{array}{r} 6.0 \\ 6.0 \\ \hline \end{array}$			$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$
Input Offset Current	$\begin{aligned} & T_{A}=\operatorname{Max} \\ & T_{A}=\operatorname{Min} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 14 \\ 14 \\ \hline \end{array}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\operatorname{Max} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{Min} \end{aligned}$		$\begin{array}{r} 5.0 \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$		$\begin{array}{r} 5.0 \\ 16 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 100 \mathrm{k} \Omega, T_{A}=\operatorname{Max} \\ & R_{L} \geq 100 \mathrm{k} \Omega, T_{A}=\operatorname{Min} \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \mathrm{k} \\ 50 \mathrm{k} \\ \hline \end{array}$	$\begin{aligned} & 150 \mathrm{k} \\ & 220 \mathrm{k} \end{aligned}$		$\begin{aligned} & 50 \mathrm{k} \\ & 50 \mathrm{k} \end{aligned}$	$\begin{aligned} & 150 \mathrm{k} \\ & 220 \mathrm{k} \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{A}=\operatorname{Max} \\ & R_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega, \mathrm{~T}_{A}=\operatorname{Min} \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 26 \\ & 25 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Note 1: The maximum junction temperature of the LM144 is $150^{\circ} \mathrm{C}$, while that of the LM344 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltage less than $\pm 40 \mathrm{~V}$ for the LM144 and less than $\pm 34 \mathrm{~V}$ for the LM 344 , the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 28 \mathrm{~V}$. For the $\mathrm{LM} 144, \mathrm{~T}_{\mathrm{A}}=\max =125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=\min =-55^{\circ} \mathrm{C}$. For the $\mathrm{LM} 344, \mathrm{~T}_{\mathrm{A}}=\max =70^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{A}}=$
$\min =0^{\circ} \mathrm{C}$.
Note 4: Refer to RETS144X for LM144H specifications.

Typical Performance Characteristics（Continued）

Application Hints (See Also AN-127)

The LM144 is designed for trouble-free operation at any supply voltage up to a maximum of $\pm 40 \mathrm{~V}$. Input overvoltage protection, both common-mode and differential, is 100% tested and guaranteed at the maximum supply voltage. Furthermore, all possible high voltage destructive modes during supply voltage turn-on have been eliminated by design. As with most IC op amps, however, certain precautions should be observed to insure that the LM144 remains virtually blow-out proof.
Although output short circuits to ground or either supply can be sustained indefinitely for supply voltages, below $\pm 18 \mathrm{~V}$, these short circuits should be of limited duration when operating at higher supply voltages. Units can be destroyed by any combination of high ambient temperature, high supply voltages, and high power dissipation which results in excessive die temperature. This is also true when driving low impedance or reactive loads or loads that can revert to low impedance; for example, the LM144 can drive most general purpose op amps outside of their maximum input voltage range, causing heavy current to flow and possibly destroying both devices.
Precautions should be taken to insure that the power supplies never become reversed in polarity-even under transient conditions. With reverse voltage, the IC will conduct excessive current, fusing the internal aluminum interconnects. Voltage reversal between the power supplies will almost always result in a destroyed unit.
In high voltage applications which are sensitive to very low input currents, special precautions should be exercised.

For example, with high source resistances, care should be taken to prevent the magnitude of the PC board leakage currents, although quite small, from approaching those of the op amp input currents. These leakage currents become larger at $125^{\circ} \mathrm{C}$ and are made worse by high supply voltages. To prevent this, PC boards should be properly cleaned and coated to prevent contamination and to provide protection from condensed water vapor when operating below $0^{\circ} \mathrm{C}$. A guard ring is also recommended to significantly reduce leakage currents from the op amp input pins to the adjacent high voltge pins in the standard op amp pin connection as shown in Figure 1. Figures 2, 3 and 4 show how the guard ring is connected for the three most common op amp configurations.
The minimum values given for the frequency compensation capacitor are stable only for source resistances less than 10 $\mathrm{k} \Omega$, stray capacitances on the summing junction less than 5 pF and capacitive loads smaller than 100 pF . If any of these conditions are not met, it becomes necessary to overcompensate the amplifier with a larger compensation capacitor. Alternately, lead capacitors can be used in the feedback network to negate the effect of stray capacitance and large feedback resistors or an RC network can be added to isolate capacitive loads. See Figures 5, 6 and 7.
Finally, caution should be exercised in high voltage applications as electrical shock hazards are present. Since the negative supply is connected to the case, users may inadvertantly contact voltages equal to those across the power supplies.

$R 1=R_{\text {SOURCE }}$
TL/H/7784-6
FIGURE 2. Guarded Voltage Follower

TL/H/7784-8
FIGURE 4. Guarded Inverting Amplifier

Application Hints (Continued)

FIGURE 5. Single Pole Compensation

FIGURE 7. Compensating For Stray Input Capacitances or Large Feedback Resistor

TL/H/7784-13
FIGURE 9. Balancing Circuit

TL/H/7784-10
FIGURE 6. Isolating Large Capacitive Loads

FIGURE 8. Protecting Against Gross Fault Conditions

Connection Diagram

TL/H/7784-14
Top View
Pin 4 is connected to case
Order Number LM144H or LM344H See NS Package Number H08C

Schematic Diagram

TL/H/7784-2

LM146／LM246／LM346 Programmable Quad Operational Amplifiers

General Description

The LM146 series of quad op amps consists of four inde－ pendent，high gain，internally compensated，low power，pro－ grammable amplifiers．Two external resistors（ $\mathrm{R}_{\mathrm{SET}}$ ）allow the user to program the gain bandwidth product，slew rate， supply current，input bias current，input offset current and input noise．For example，the user can trade－off supply cur－ rent for bandwidth or optimize noise figure for a given source resistance．In a similar way，other amplifier charac－ teristics can be tailored to the application．Except for the two programming pins at the end of the package，the LM146 pin－out is the same as the LM124 and LM148．

Features（ISET $=10 \mu \mathrm{~A}$ ）
－Programmable electrical characteristics
－Battery－powered operation
－Low supply current
$350 \mu \mathrm{~A} /$ amplifier
－Guaranteed gain bandwidth product 0.8 MHz min
－Large DC voltage gain 120 dB
－Low noise voltage $28 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
－Wide power supply range
$\pm 1.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
－Class $A B$ output stage－no crossover distortion
－Ideal pin out for Biquad active filters
－Input bias currents are temperature compensated

Connection Diagram（Dual－In－Line Package，Top View）

TL／H／5654－1 Order Number LM146J，LM246J，LM346J， LM346M or LM346N
See NS Package Number J16A，M16A or N16A

PROGRAMMING EQUATIONS

Total Supply Current $=1.4 \mathrm{~mA}\left(I_{\text {SET }} / 10 \mu \mathrm{~A}\right)$
Gain Bandwidth Product $=1 \mathrm{MHz}\left(\mathrm{I}_{\mathrm{SET}} / 10 \mu \mathrm{~A}\right)$
Slew Rate $=0.4 / \mu \mathrm{S}\left(\mathrm{ISET}^{\prime} / 10 \mu \mathrm{~A}\right)$
Input Bias Current $\cong 50 \mathrm{nA}\left(\mathrm{I}_{\mathrm{SET}} / 10 \mu \mathrm{~A}\right)$
$I_{\text {SET }}=$ Current into pin 8 ，pin 9 （see schematic－
diagram）
$\mathrm{I}_{\mathrm{SET}}=\frac{\mathrm{V}^{+}-\mathrm{V}^{-}-0.6 \mathrm{~V}}{\mathrm{R}_{\mathrm{SET}}}$

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 5)

	LM146	LM246	LM346
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage (Note 1)	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
CM Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	900 mW	500 mW	500 mW
Output Short-Circuit Duration (Note 3)	Continuous	Continuous	Continuous
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Thermal Resistance ($\boldsymbol{\theta}_{\mathrm{j} \mathrm{A}}$), (Note 2)			
Cavity DIP (J) Pd	900 mW	900 mW	900 mW
$\theta_{j A}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$
Small Outline (M) $\boldsymbol{\theta}_{\mathrm{j}} \mathrm{A}$			$115^{\circ} \mathrm{C} / \mathrm{W}$
Molded DIP (N) Pd			500 mW
$\theta_{j} \mathrm{~A}$			$90^{\circ} \mathrm{C} / \mathrm{W}$
Soldering Information			
Dual-In-Line Package			
Soldering (10 seconds)	$+260^{\circ} \mathrm{C}$	$+260^{\circ} \mathrm{C}$	$+260^{\circ} \mathrm{C}$
Small Outline Package			
Vapor Phase (60 seconds)	$+215^{\circ} \mathrm{C}$	$+215^{\circ} \mathrm{C}$	$+215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$+220^{\circ} \mathrm{C}$	$+220^{\circ} \mathrm{C}$	$+220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating is to be determined.
DC Electrical Characteristics ($\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$, Note 4)

Parameter	Conditions	LM146			LM246/LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	5		0.5	6	mV
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	20		2	100	nA
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		50	100		50	250	nA
Supply Current (4 Op Amps)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.4	2.0		1.4	2.5	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	100	1000		50	1000		V / mV
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 13.5	± 14		± 13.5	± 14		V
CM Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		70	100		dB
Power Supply Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		74	100		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 12	± 14		± 12	± 14		V
Short-Circuit	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5	20	35	5	20	35	mA
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	1.2		0.5	1.2		MHz
Phase Margin	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60			60		Deg
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.4			0.4		$\mathrm{V} / \mu \mathrm{s}$
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		28			28		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Channel Separation	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega, \Delta V_{O U T}=0 \mathrm{~V} \text { to } \\ & \pm 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		120			120		dB
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0			1.0		$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0			2.0		pF
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega$		0.5	6		0.5	7.5	mV
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		2	25		2	100	nA
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		50	100		50	250	nA
Supply Current (4 Op Amps)			1.7	2.2		1.7	2.5	mA
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \Delta \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	50	1000		25	1000		V / mV

DC Electrical Characteristics（Continued）$\left(V_{S}= \pm 15 \mathrm{~V}, I_{\text {SET }}=10 \mu \mathrm{~A}\right)$

Parameter	Conditions	LM146			LM246／LM346			Units
			Min	Typ	Max	Min	Typ	
Input CM Range		± 13.5	± 14		± 13.5	± 14		V
CM Rejection Ratio	$R_{\mathrm{S}} \leq 50 \Omega$	70	100		70	100		dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega$	76	100		74	100		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V

DC Electrical Characteristic $\left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{SET}}=1 \mu \mathrm{~A}\right)$

Parameter	Conditions	LM146			LM246／LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5	20		7.5	100	nA
Supply Current（4 Op Amps）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		140	250		140	300	$\mu \mathrm{A}$
Gain Bandwidth Product	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	80	100		50	100		kHz

DC Electrical Characteristics $\left({ }^{(} / \mathrm{S}= \pm 1.5 \mathrm{~V}, \mathrm{I}_{\text {Set }}=10 \mu \mathrm{~A}\right)$

Parameter	Conditions	LM146			LM246／LM346			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.5	5		0.5	7	mV
Input CM Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.7			± 0.7			V
CM Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80			80		dB
Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 0.6			± 0.6			V

Note 1：For supply voltages less than $\pm 15 \mathrm{~V}$ ，the absolute maximum input voltage is equal to the supply voltage．
Note 2：The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $T_{j M A X}, \theta_{j A}$ ，and the ambient temperature， T_{A} ．The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{d M A X}$ ，whichever is less．
Note 3：Any of the amplifier outputs can be shorted to ground indefinitely；however，more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded．
Note 4：These specifications apply over the absolute maximum operating temperature range unless otherwise noted．
Note 5：Refer to RETS146X for LM146J military specifications．

Typical Performance Characteristics

Typical Performance Characteristics

Power Supply Rejection Ratio vs ISET

Input Bias Current vs Input Common-Mode Voltage

Supply Current vs Temperature

TL/H/5654-4

Typical Performance Characteristics（Continued）

Voltage Follower Transient Response

Transient Response Test Circuit

Application Hints

Avoid reversing the power supply polarity; the device will fail.
Common-Mode Input Voltage: The negative commonmode voltage limit is one diode drop above the negative supply voltage. Exceeding this limit on either input will result in an output phase reversal. The positive common-mode limit is typically 1 V below the positive supply voltage. No output phase reversal will occur if this limit is exceeded by either input.
Output Voltage Swing vs $\mathbf{I}_{\text {SET: }}$ For a desired output voltage swing the value of the minimum load depends on the positive and negative output current capability of the op amp. The maximum available positive output current, ($\mathrm{I}_{\mathrm{CL}+}$), of the device increases with $\mathrm{I}_{\text {SET }}$ whereas the negative output current (l_{CL}) is independent of ISET. Figure 1 illustrates the above.

TL/H/5654-7
FIGURE 1. Output Current Limit vs ISET

Input Capacitance: The input capacitance, $\mathrm{C}_{\mathbb{N}}$, of the LM146 is approximately 2 pF ; any stray capacitance, C_{S}, (due to external circuit circuit layout) will add to C_{IN}. When resistive or active feedback is applied, an additional pole is added to the open loop frequency response of the device. For instance with resistive feedback (Figure 2), this pole occurs at $1 / 2 \pi(R 1 \| R 2)\left(C_{I N}+C_{S}\right)$. Make sure that this pole occurs at least 2 octaves beyond the expected -3 dB frequency corner of the closed loop gain of the amplifier; if not, place a lead capacitor in the feedback such that the time constant of this capacitor and the resistance it parallels is equal to the $R_{l}\left(C_{S}+C_{I N}\right)$, where R_{l} is the input resistance of the circuit.

TL/H/5654-9
FIGURE 2

Temperature Effect on the GBW: The GBW (gain bandwidth product), of the LM146 is directly proportional to ISET and inversely proportional to the absolute temperature. When using resistors to set the bias current, ISET, of the device, the GBW product will decrease with increasing temperature. Compensation can be provided by creating an $I_{\text {SET }}$ current directly proportional to temperature (see typical applications).

Isolation Between Amplifiers: The LM146 die is isothermally layed out such that crosstalk between all 4 amplifiers is in excess of -105 dB (DC). Optimum isolation (better than -110 dB) occurs between amplifiers A and D, B and C; that is, if amplifier A dissipates power on its output stage, amplifier D is the one which will be affected the least, and vice versa. Same argument holds for amplifiers B and C.
LM146 Typical Performance Summary: The LM146 typical behaviour is shown in Figure 3. The device is fully predictable. As the set current, I ${ }_{\text {SET }}$, increases, the speed, the bias current, and the supply current increase while the noise power decreases proportionally and the $V_{O S}$ remains constant. The usable GBW range of the op amp is 10 kHz to $3.5-4 \mathrm{MHz}$.

TL/H/5654-8
FIGURE 3. LM146 Typical Characteristics

Low Power Supply Operation: The quad op amp operates down to $\pm 1.3 \mathrm{~V}$ supply. Also, since the internal circuitry is biased through programmable current sources, no degradation of the device speed will occur.

Speed vs Power Consumption: LM146 vs LM4250 (single programmable). Through Figure 4, we observe that the LM146's power consumption has been optimized for GBW products above 200 kHz , whereas the LM4250 will reach a GBW of no more than 300 kHz . For GBW products below 200 kHz , the LM4250 will consume less power.

TL/H/5654-10
FIGURE 4. LM146 vs LM4250

Typical Applications

Dual Supply or Negative Supply Biasing

$$
I_{S E T} \cong \frac{|V-|-0.6 V}{R_{S E T}}
$$

Current Source Biasing with Temperature Compensation

$$
\mathrm{I}_{\mathrm{SET}}=\frac{67.7 \mathrm{mV}}{\mathrm{R}_{\mathrm{SET}}}
$$

- The LM334 provides an ISET directly proportional to absolute temperature. This cancels the slight GBW product Temperature coefficient of the LM346.

Single (Positive) Supply Biasing

$$
\mathrm{I}_{\mathrm{SET}} \cong \frac{\mathrm{~V}+-0.6 \mathrm{~V}}{\mathrm{R}_{\mathrm{SET}}}
$$

Biasing all 4 Amplifiers with Single Current Source

TL/H/5654-11

$$
\frac{\mathrm{I}_{\mathrm{SET} 1}}{\mathrm{I}_{\mathrm{SET} 2}}=\frac{\mathrm{R} 2}{\mathrm{R} 1}, \mathrm{I}_{\mathrm{SET} 1}+\mathrm{I}_{\mathrm{SET} 2}=\frac{67.7 \mathrm{mV}}{\mathrm{R}_{\mathrm{SET}}}
$$

- For ISET1 $^{\cong} I_{\text {SET2 }}$ resistors R1 and R2 are not required if a slight error between the 2 set currents can be tolerated. If not, then use R1 = R2 to create a 100 mV drop across these resistors.

Active Filters Applications

Basic (Non-Inverting "State Variable") Active Filter Building Block

TL/H/5654-12

- The LM146 quad programmable op amp is especially suited for active filters because of their adequate GBW product and low power consumption.
Circuit synthesis equations (for circuit analysis equations, consult with the LM148 data sheet).
Need to know desired:
$\mathrm{f}_{0}=$ center frequency measured at the BP output
$Q_{0}=$ quality factor measured at the BP output
$H_{0}=$ gain at the output of interest (BP or HP or LP or all of them)
- Relation between different gains: $H_{o(B P)}=0.316 \times Q_{0} \times H_{o(L P) ;} H_{0(L P)}=10 \times H_{0(H P)}$
- $\mathrm{R} \times \mathrm{C}=\frac{5.033 \times 10^{-2}}{\mathrm{f}_{\mathrm{o}}}(\mathrm{sec})$
- For BP output: $R_{Q}=\left(\frac{3.478 Q_{0}-H_{0(B P)}}{10^{5}}-\frac{H_{0(B P)}}{10^{5} \times 3.748 \times Q_{0}}\right)^{-1} ; R_{I N}=\frac{\left(\frac{3.478 Q_{0}}{H_{0(B P)}}-1\right)}{\frac{1}{R Q}+10^{-5}}$
- For HP ouput: $R_{Q}=\frac{1.1 \times 10^{5}}{3.478 Q_{0}\left(1.1-H_{0(H P)}\right)-H_{0(H P)}} ; R_{I N}=\frac{\frac{1.1}{H_{0(H P)}}-1}{\frac{1}{R Q}+10^{-5}}$

Note. All resistor values are given in ohms.

- For LP output: $R_{Q}=\frac{11 \times 10^{5}}{3.478 Q_{0}\left(11-H_{O(L P)}\right)-H_{O(L P)}} ; R_{I N}=\frac{\frac{11}{H_{O}(L P)}-1}{\frac{1}{R Q}+10^{-5}}$
- For BR (notch) output: Use the 4th amplifier of the LM146 to sum the LP and HP outputs of the basic filter.

$$
\sqrt{\frac{R_{H}}{R_{L}}}=0.316 \frac{f_{\text {notch }}}{f_{o}}
$$

Determine R_{F} according to the desired gains: $\left.H_{0(B R)}\right|_{f \ll f_{\text {notch }}}=\frac{R_{F}}{R_{L}} H_{0(L P)},\left.H_{o(B R)}\right|_{f \gg f_{\text {notch }}}=\frac{R_{F}}{R_{H}} H_{0(H P)}$

- Where to use amplifier C : Examine the above gain relations and determine the dynamics of the filter. Do not allow slew rate limiting in any output ($V_{H P}$, $V_{B P}$, $\left.V_{L P}\right)$, that is:

$$
V_{I N(\text { peak })}<63.66 \times 10^{3} \times \frac{I_{\text {SET }}}{10 \mu \mathrm{~A}} \times \frac{1}{f_{0} \times H_{0}} \text { (Volts) }
$$

If necessary, use amplifier C , biased at higher ISET, where you get the largest output swing.
Deviation from Theoretical Predictions: Due to the finite GBW products of the op amps the f_{0}, Q_{0} will be slightly different from the theoretical predictions.
$f_{\text {real }} \cong \frac{f_{0}}{1+\frac{2 f_{0}}{G B W}}, Q_{\text {real }} \cong \frac{Q_{0}}{1-\frac{3.2 f_{0} \times Q_{0}}{G B W}}$

Active Filters Applications (Continued)

A Simple-to-Design BP, LP Filter Building Block

TL/H/5654-14

- If resistive biasing is used to set the LM346 performance, the Q_{0} of this filter building block is nearly insensitive to the op amp's GBW product temperature drift; it has also better noise performance than the state variable filter.

Circuit Synthesis Equations

$H_{o(B P)}=Q_{0} H_{O(L P)} ; R \times C=\frac{0.159}{f_{0}} ; R_{Q}=Q_{O} \times R ; R_{I N}=\frac{R_{Q}}{H_{O(B P)}}=\frac{R}{H_{o(L P)}}$

- For the eventual use of amplifier C , see comments on the previous page.

A 3-Amplifier Notch Filter (or Elliptic Filter Building Block)

Circuit Synthesis Equations

$R \times C=\frac{0.159}{f_{0}} ; R_{0}=Q_{0} \times R ; R_{I N}=\frac{0.159 \times f_{0}}{r^{\prime} \times f^{2} \text { notch }}$
$\left.H_{o(B R)}\right|_{f \ll f_{\text {notch }}}=\left.\frac{R}{R_{I N}} H_{o(B R)}\right|_{f \gg f_{\text {notch }}}=\frac{C^{\prime}}{C}$
\bullet For nothing but a notch output: $\mathrm{R}_{\mathbb{N}}=\mathrm{R}, \mathrm{C}^{\prime}=\mathrm{C}$.

Active Filters Applications (Continued)

Capacitorless Active Filters (Basic Circuit)

TL/H/5654-16

- This is a BP, LP, BR filter. The filter characteristics are created by using the tunable frequency response of the LM346.
- Limitations: $Q_{0}<10, f_{0} \times Q_{0}<1.5 \mathrm{MHz}$, output voltage should not exceed $\operatorname{Vpeak}($ out $) \leq \frac{63.66 \times 10^{3}}{f_{0}} \times \frac{\operatorname{lSET}(\mu A)}{10 \mu \mathrm{~A}}$
\bullet Design equations: $a=\frac{R 6+R 5}{R 6}, b=\frac{R 2}{R 1+R 2}, c=\frac{R 3}{R 3+R 4}, d=\frac{R 7}{R 8+R 7}, \theta=\frac{R 10}{R(+R 10}, f_{O(B P)}=f_{u} \sqrt{\frac{b}{a}}, H_{0(B P)}=a \times c, H_{o(L P)}=\frac{c}{b}, Q_{0}=\sqrt{a \times b}$
$f_{O(B R)}=f_{o(B P),}\left(1-\frac{c}{b}\right) \cong f_{0(B P)}(C \ll 1)$ provided that $d=H_{o(B P)} \times e, H_{O(B R)}=\frac{R 10}{R 9}$.
- Advantage: $f_{0} Q_{0}, H_{0}$ can be independently adjusted; that is, the filter is extremely easy to tune.
- Tuning procedure (ex. BP tuning)

1. Pick up a convenient value for $b ;(b<1)$
2. Adjust Q_{0} through R5
3. Adjust $\mathrm{H}_{\mathrm{o}(\mathrm{BP})}$ through R4
4. Adjust f_{0} through R $_{\text {SET }}$. This adjusts the unity gain frequency (f_{u}) of the op amp.

A 4th Order Butterworth Low Pass Capacitorless Filter

TL/H/5654-17
$E x: f_{c}=20 \mathrm{kHz}, H_{0}$ (gain of the filter) $=1, Q_{01}=0.541, Q_{02}=1.306$.

- Since for this filter the GBW product of all 4 amplifiers has been designed to be the same ($\sim 1 \mathrm{MHz}$) only one current source can be used to bias the circuit. Fine tuning can be further accomplished through R_{b}.

Miscellaneous Applications

A Unity Gain Follower with Bias Current Reduction

Circuit Shutdown

- For better performance, use a matched NPN pair.
- By pulling the SET pin(s) to V - the op amp(s) shuts down and its output goes to a high impedance state. According to this property, the LM346 can be used as a very low speed analog switch.

Voice Activated Switch and Amplifier

Miscellaneous Applications (Continued)
X10 Micropower Instrumentation Amplifier with Buffered Input Guarding

LM148／LM149 Series Quad 741 Op Amp

LM148／LM248／LM348 Quad 741 Op Amps LM149／LM249／LM349 Wide Band Decompensated（Av（MIN）$=5$ ）

General Description

The LM148 series is a true quad 741．It consists of four independent，high gain，internally compensated，low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational amplifier．In addition the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp．Other features include input off－ set currents and input bias current which are much less than those of a standard 741．Also，excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize ther－ mal coupling．The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater．
The LM148 can be used anywhere multiple 741 or 1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required．

Features
（141 op amp operating characteristics
n Low supply current drain $0.6 \mathrm{~mA} /$ Amplifier
－Class $A B$ output stage－no crossover distortion
田 Pin compatible with the LM124

国 Low input offset voltage	1 mV
四 Low input offset current	4 nA
－Low input bias current	30 nA
■ Gain bandwidth product	
LM148（unity gain）	1．0 MHz
LM149（ $\mathrm{A}_{\mathrm{V}} \geq 5$ ）	4 MHz
凹 High degree of isolation between amplifiers	120 dB
－Overload protection for inputs and outputs	

Schematic Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 4)

	LM148/LM149
Supply Voltage	$\pm 22 \mathrm{~V}$
Differential Input Voltage	$\pm 44 \mathrm{~V}$
Output Short Circuit Duration (Note 1)	Continuous

Power Dissipation (P_{d} at $25^{\circ} \mathrm{C}$) and
Thermal Resistance $\left(\theta_{\mathrm{j}} \mathrm{A}\right)$, (Note 2)

Molded DIP (N) P_{d}	-	-	750 mW
θ_{jA}	-	-	$100^{\circ} \mathrm{C} / \mathrm{W}$
Cavity DIP (J) P_{d}	1100 mW	800 mW	700 mW
$\theta_{\text {JA }}$	$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{j} M \mathrm{X}}$)	$150^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) Ceramic	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) Plastic			$260^{\circ} \mathrm{C}$
Soldering Information			
Dual-In-Line Package			
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Small Outline Package			
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 5) 500V 500V 500V

Electrical Characteristics (Note 3)

Parameter	Conditions	LM148/LM149			LM248/LM249			LM348/LM349			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0		1.0	6.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	25		4	50		4	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	100		30	200		30	200	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.8	2.5		0.8	2.5		0.8	2.5		$\mathrm{M} \Omega$
Supply Current All Amplifiers	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		2.4	3.6		2.4	4.5		2.4	4.5	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	50	160		25	160		25	160		V/mV
Amplifier to Amplifier Coupling	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}$ (Input Referred) See Crosstalk Test Circuit		-120			-120			-120		dB
Small Signal Bandwidth	$\begin{gathered} \text { LM148 Series } \\ T_{A}=25^{\circ} \mathrm{C} \\ \text { LM149 Series } \end{gathered}$		$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$		MHz MHz
Phase Margin	$\begin{gathered} \text { LM148 Series }\left(A_{V}=1\right) \\ T_{A}=25^{\circ} \mathrm{C} \\ \text { LM149 Series }\left(A_{V}=5\right) \end{gathered}$		$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$			$\begin{aligned} & 60 \\ & 60 \\ & \hline \end{aligned}$			60 60		degrees degrees
Slew Rate	$\begin{aligned} & \text { LM148 Series }\left(A_{V}=1\right) \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \text { LM149 Series }\left(A_{V}=5\right) \end{aligned}$		$\begin{aligned} & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 2.0 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		25			25			25		mA
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0			7.5			7.5	mV
Input Offset Current				75			125			100	nA
Input Bias Current				325			500			400	nA

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM148/LM149			LM248/LM249			LM348/LM349			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & R_{\mathrm{L}}>2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	25			15			15			V/mV
Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 12			± 12			± 12			V
Common-Mode Rejection Ratio	$\mathrm{RS}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		70	90		dB
Supply Voltage Rejection	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	77	96		77	96		77	96		dB

Note 1: Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dicated by $\mathrm{T}_{\mathrm{jMAX}}, \theta_{\mathrm{jA}}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{d}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} C P_{d M A X}$, whichever is less.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range ($T_{L} \leq T_{A} \leq T_{H}$) unless otherwise noted.
Note 4: Refer to RETS 148X for LM148 military specifications.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Cross Talk Test Circuit

TL/H/7786-6

TL/H/7786-7

$V_{S}= \pm 15 \mathrm{~V}$
back connection) and the capacitance to reduce the phase shift resulting from the capacitive loading.
The output current of each amplifier in the package is limited. Short circuits from an output to either ground or the power supplies will not destroy the unit. However, if multiple output shorts occur simultaneously, the time duration should be short to prevent the unit from being destroyed as a result of excessive power dissipation in the IC chip.
As with most amplifiers, care should be taken lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pickup" and maximize the frequency of the feedback pole which capacitance from the input to ground creates.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Performance Characteristics

Common-Mode Rejection Ratio

Typical Performance Characteristics (Continued)

Typical Applications-LM148

One Decade Low Distortion Sinewave Generator

$\mathrm{f}_{\mathrm{MAX}}=5 \mathrm{kHz}, \mathrm{THD} \leq 0.03 \%$
$\mathrm{R} 1=100 \mathrm{k}$ pot. $\mathrm{C} 1=0.0047 \mu \mathrm{~F}, \mathrm{C} 2=0.01 \mu \mathrm{~F}, \mathrm{C} 3=0.1 \mu \mathrm{~F}, \mathrm{R} 2=\mathrm{R} 6=\mathrm{R} 7=1 \mathrm{M}$,
$R 3=5.1 \mathrm{k}, \mathrm{R} 4=12 \Omega, \mathrm{R} 5=240 \Omega, \mathrm{Q}=\mathrm{NS} 5102, \mathrm{D} \dagger=1 \mathrm{~N} 914, \mathrm{D} 2=3.6 \mathrm{~V}$ avalanche
diode (ex. LM103), $V_{S}= \pm 15 \mathrm{~V}$
A simpler version with some distortion degradation at high frequencies can be made by using A1 as a simple inverting amplifier, and by putting back to back zeners in the feedback loop of A3.

Low Cost Instrumentation Amplifier

$V_{\text {OUT }}=2\left(\frac{2 R}{R 1}+1\right), V_{S}-3 V \leq V_{\text {INCM }} \leq V_{S}{ }^{+}-3 V$,
$V_{S}= \pm 15 \mathrm{~V}$
$R=R 2$, trim R2 to boost CMRR

Typical Applications-LM148 (Continued)
Low Drift Peak Detector with Bias Current Compensation

Universal State-Variable Filter

$\frac{V_{(s)}}{V_{\operatorname{lN}(\mathrm{s})}}=\frac{N_{(s)}}{D_{(s)}}, D(s)=S^{2}+\frac{S \omega_{0}}{Q}+\omega_{0}{ }^{2}$
TL/H/7786-11
$N_{H P(s)}=s^{2} H_{O H P}, N_{B P(s)}=\frac{-s \omega_{0} H_{O B P}}{Q} N_{L P}=\omega_{0}{ }^{2} H_{O L P}$.
$f_{0}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 5}} \sqrt{\frac{1}{t 1 t 2}}, t_{i}=R_{j} C_{i}, Q=\left(\frac{1+R 4|R 3+R 4| R 0}{1+R 6 \mid R 5}\right)\left(\frac{R 6}{R 5} \frac{t_{1}}{t_{2}}\right)^{1 / 2}$
$f_{\text {NOTCH }}=\frac{1}{2 \pi}\left(\frac{R_{H}}{R_{L} t_{1} t_{2}}\right)^{1 / 2}, H_{O H P}=\frac{1+\mathrm{R}_{6} \mid \mathrm{R} 5}{1+\mathrm{R}_{3}|\mathrm{R} 0+\mathrm{R} 3| \mathrm{R} 4}, \mathrm{H}_{\mathrm{OBP}}=\frac{1+\mathrm{R} 4|\mathrm{R} 3+\mathrm{R} 4| \mathrm{R} 0}{1+\mathrm{R} 3|\mathrm{R} 0+\mathrm{R} 3| \mathrm{R} 4}$
$H_{\text {OLP }}=\frac{1+\mathrm{R} 5 \mid \mathrm{R} 6}{1+\mathrm{R} 3|\mathrm{RO}+\mathrm{R} 3| \mathrm{R} 4}$

Typical Applications-LM148 (Continued)
A 1 kHz 4 Pole Butterworth

TL/H/7786-12
Use general equations, and tune each section separately
$Q_{1 \text { stSECTION }}=0.541, Q_{\text {2ndSECTION }}=1.306$
The response should have 0 dB peaking

A 3 Amplifier Bi-Quad Notch Filter

TL/H/7786-13

$$
Q=\sqrt{\frac{R 8}{R 7}} \times \frac{R 1 C 1}{\sqrt{R 3 C 2 R 2 C 1}}, f_{0}=\frac{1}{2 \pi} \sqrt{\frac{R 8}{R 7}} \times \frac{1}{\sqrt{R 2 R 3 C 1 C 2}}, f_{N O T C H}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 3 R 5 R 7 C 1 C 2}}
$$

Necessary condition for notch: $\frac{1}{\mathrm{R} 6}=\frac{\mathrm{R} 1}{\mathrm{R} 4 \mathrm{R} 7}$
$E x: f_{N O T C H}=3 \mathrm{kHz}, Q=5, R 1=270 \mathrm{k}, \mathrm{R} 2=\mathrm{R} 3=20 \mathrm{k}, \mathrm{R} 4=27 \mathrm{k}, \mathrm{R} 5=20 \mathrm{k}, \mathrm{R} 6=\mathrm{R} 8=10 \mathrm{k}, \mathrm{R} 7=100 \mathrm{k}, \mathrm{C} 1=\mathrm{C} 2=0.001 \mu \mathrm{~F}$
Better noise performance than the state-space approach.

Typical Applications-LM148 (Continued)

TL/H/7786-14
$f_{C}=1 \mathrm{kHz}, \mathrm{f}_{\mathrm{S}}=2 \mathrm{kHz}, \mathrm{f}_{\mathrm{p}}=0.543, \mathrm{f}_{\mathrm{Z}}=2.14, \mathrm{Q}=0.841, \mathrm{f}^{\prime} \mathrm{P}=0.987, \mathrm{f}^{\prime} \mathrm{z}=4.92, \mathrm{Q}^{\prime}=4.403$, normalized to ripple BW
$f_{P}=\frac{1}{2 \pi} \sqrt{\frac{R 6}{R 5}} \times \frac{1}{t}, f_{Z}=\frac{1}{2 \pi} \sqrt{\frac{R_{H}}{R_{L}}} \times \frac{1}{t}, Q=\left(\frac{1+R 4|R 3+R 4| R 0}{1+R 6 \mid R 5}\right) \times \sqrt{\frac{R 6}{R 5}}, Q^{\prime}=\sqrt{\frac{R^{\prime} 6}{R 5}} \frac{1+R^{\prime} 4 \mid R^{\prime} 0}{1+R^{\prime} 6\left|R^{\prime} 5+R^{\prime} 6\right| R_{P}}$
$R_{P}=\frac{R_{H} R_{L}}{R_{H}+R_{L}}$
Use the BP outputs to tune Q, Q^{\prime}, tune the 2 sections separately
$R 1=R 2=92.6 \mathrm{k}, \mathrm{R} 3=\mathrm{R} 4=\mathrm{R} 5=100 \mathrm{k}, \mathrm{R} 6=10 \mathrm{k}, \mathrm{R} 0=107.8 \mathrm{k}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}, \mathrm{R}_{\mathrm{H}}=155.1 \mathrm{k}$,
$R^{\prime} 1=R^{\prime} 2=50.9 \mathrm{k}, R^{\prime} 4=R^{\prime} 5=100 \mathrm{k}, R^{\prime} 6=10 \mathrm{k}, R^{\prime} 0=5.78 \mathrm{k}, R_{L}^{\prime}=100 \mathrm{k}, R^{\prime} \mathrm{H}=248.12 \mathrm{k}, R^{\prime} f=100 \mathrm{k}$. All capacitors are $0.001 \mu \mathrm{~F}$.

Typical Applications-LM149

Minimum Gain to Insure LM149 Stability

TL/H/7786-16
$A_{C L(S)}=\frac{V_{O U T}}{V_{I N}}=\frac{-4}{\left(1+\frac{5}{A_{O L(S)}}\right)} \cong-4$
$\left.V_{O}\right|_{V_{I N}=0} \cong \pm 5 V_{O S}$
Power BW $=40 \mathrm{kHz}$
Small Signal BW $=$ G BW/5

The LM149 as a Unity Gain Inverter

TL/H/7786-17

$$
\begin{aligned}
& A_{C L(s)}=\frac{V_{O U T}}{V_{I N}}=\left(\frac{-1}{1+\frac{6}{A_{O L(s)}}}\right) \cong-1 \\
& \left.V_{\mathrm{O}}\right|_{V_{I N}=0} \cong \pm 5 \mathrm{~V}_{\mathrm{OS}} \\
& \text { Small Signal } \mathrm{BW}=\mathrm{G} \mathrm{BW} / 5
\end{aligned}
$$

TL/H/7786-18
For stability purposes: $R 7=R 6 / 4,10 R 6=R 5, C_{C}=10 C$
$f_{O}=\frac{1}{2 \pi} \sqrt{\frac{R 5}{R 6}} \times \frac{1}{R C}, Q=\frac{R_{Q}}{R} \sqrt{\frac{R 5}{R 6}}, H_{B P}=\frac{R_{Q}}{R_{I N}}$
$f^{\prime}($ max $), Q_{\text {MAX }}=20 \mathrm{kHz}, 10$
Better Q sensitivity with respect to open loop gain variations than the state variable filter.
R7, C_{C} added for compensation

Typical Applications-LM149 (Continued)

Active Tone Control with Full Output Swing (No Slew Limiting at 20 kHz)

Triangular Squarewave Generator

$f=\frac{K \times V_{I N}}{8 V^{+} C 1 R 1}, K=R 2 / R^{\prime} 2, \frac{2 V_{1}}{K} \leq 25 \mathrm{~V}, V^{+}=V^{-}, V_{S}= \pm 15 \mathrm{~V}$
Use LM125 for $\pm 15 \mathrm{~V}$ supply
The circuit can be used as a low frequency V/F for process control.
Q1, Q3: KE4393, Q2, Q4: P1087E, D1-D4 = 1 N914

Connection Diagram

Order Number LM148J, LM248J, LM348J, LM149J, LM249J, LM349J, LM348M, LM348N or LM349N See NS Package Number J14A, M14A or N14A

LM158/LM258/LM358, LM158A/LM258A/LM358A, LM2904 Low Power Dual Operational Amplifiers

General Description

The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional ± 15 $V_{D C}$ power supplies.

Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.
- The unity gain cross frequency is temperature compensated.
- The input bias current is also temperature compensated.
- Allows directly sensing near GND and $\mathrm{V}_{\text {OUT }}$ also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation
- Pin-out same as LM1558/LM1458 dual operational amplifier

Features

- Internally frequency compensated for unity gain
- Large dc voltage gain 100 dB
. Wide bandwidth (unity gain) 1 MHz (temperature compensated)
- Wide power supply range: Single supply
$3 V_{D C}$ to $32 V_{D C}$ or dual supplies $\pm 1.5 V_{D C}$ to $\pm 16 V_{D C}$
- Very low supply current drain ($500 \mu \mathrm{~A}$)-essentially independent of supply voltage
- Low input biasing current $45 n A_{D C}$ (temperature compensated)
■ Low input offset voltage 2 mV DC and offset current $5 \mathrm{nA}_{D C}$
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing $\quad 0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$

Advantages

- Eliminates need for dual supplies
- Two internally compensated op amps in a single package

Connection Diagrams (Top Views)

TL/H/7787-1
Order Number LM158AH, LM158H, LM258AH,
LM258H, LM358AH or LM358H
See NS Package Number H08C

TL/H/7787-2
Order Number LM158J, LM158AJ or LM358J See NS Package Number J08A
Order Number LM358M, LM358AM or LM2904M
See NS Package Number M08A
Order Number LM358AN, LM358N or LM2904N
See NS Package Number N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 9)

LM158/LM258/LM358 LM158A/LM258A/LM358A

Supply Voltage, ${ }^{+}+$
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1) Molded DIP (LM358N) Metal Can (LM158H/ LM258H/LM358H)
Small Outline Package
Output Short-Circuit to GND (One Amplifier) (Note 2) $\mathrm{V}+\leq 15 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input Current $\left(\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{DC}}\right)$
(Note 3)
$32 V_{D C}$ or $\pm 16 V_{D C}$ $32 V_{D C}$
$-0.3 V_{D C}$ to $+32 V_{D C} \quad-0.3 V_{D C}$ to $+26 V_{D C}$
830 mW
550 mW
530 mW

Continuous
50 mA

LM2904
$26 V_{D C}$ or $\pm 13 V_{D C}$
$26 V_{D C}$

830 mW

530 mW

LM158/LM258/LM358 LM158A/LM258A/LM358A LM2904

Operating Temperature Range

LM358	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM258	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
LM158	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Storage Temperature Range Lead Temperature, DIP (Soldering, 10 seconds)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature, Metal Can (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$

olderin
Dual-In-Line Package

Soldering (10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$

Small Outline Package
Vapor Phase (60 seconds)
$215^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$ Infrared (15 seconds)

See AN-450 "Surface Mounting Methods and Their Effect on Product
Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 10) 250V 250V

Electrical Characteristics $\mathrm{v}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}$, unless otherwise stated

Parameter	Conditions	LM158A		LM258A		LM358A		LM158/LM258		LM358		LM2904		Units
		Min Typ	Max											
Input Offset Voltage	(Note 5), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 1	± 2	± 1	± 3	± 2	± 3	± 2	± 5	± 2	± 7	± 2	± 7	$m V_{D C}$
Input Bias Current	$\begin{aligned} & \operatorname{liN}(+)^{\text {or }} \mathrm{I}_{\mathrm{IN}(-)}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \text { (Note 6) } \end{aligned}$	20	50	40	80	45	100	45	150	45	250	45	250	$n A_{D C}$
Input Offset Current	$\mathrm{I}_{\mathrm{N}(+)}-\mathrm{I}_{\mathrm{IN}(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 2	± 10	± 2	± 15	± 5	± 30	± 3	± 30	± 5	± 50	± 5	± 50	$n A_{D C}$
Input Common-Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}$, (Note 7) $\left(\mathrm{LM} 2904, \mathrm{~V}^{+}=26 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0	$\mathrm{V}^{+}-1.5$	0	$V^{+}-1.5$	0	$V^{+}-1.5$	0	$V^{+}-1.5$	0	$\mathrm{V}+$-1.5	0	$\mathrm{V}^{+}-1.5$	$V_{D C}$
Supply Current	Over Full Temperature Range $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on All Op Amps } \\ & \mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2904 \mathrm{~V}^{+}=26 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$	$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$	$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$	$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$	$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$	$\begin{gathered} 1 \\ 0.5 \end{gathered}$	$\begin{gathered} 2 \\ 1.2 \end{gathered}$	$\begin{aligned} & m A_{D C} \\ & m A_{D C} \end{aligned}$

Electrical Characteristics (Continued) $\mathrm{V}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}$, Note 4 , unless otherwise stated

Parameter	Conditions	LM158A			LM258A			LM358A			LM158/LM258			LM358			LM2904			Units
		Min	Typ	Max																
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \text { (For } \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{DC}} \\ & \text { to } 11 \mathrm{~V}_{\mathrm{DC}} \text {) } \\ & \hline \end{aligned}$	50	100		50	100		25	100		50	100		25	100		25	100		V/mV
Common-Mode Rejection Ratio	$\begin{array}{\|l\|} \hline D C, T_{A}=25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}} \\ \hline \end{array}$	70	85		70	85		65	85		85	85		65	85		50	70		dB
Power Supply Rejection Ratio	$D C, V^{+}=5 V_{D C}$ to $30 V_{D C}$ (LM2904, $\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}$ to $\left.26 \mathrm{~V}_{\mathrm{DC}}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	65	100		65	100		65	100		65	100		65	100		50	100		dB
Amplifier-to-Amplifier Coupling	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred), (Note 8) } \end{aligned}$		-120			-120			-120			-120			-120			-120		dB
Output Current Source	$\begin{array}{\|l\|} \hline \mathrm{VIN}^{+}+1 \mathrm{~V}_{\mathrm{DC}}, \\ \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}_{\mathrm{DC}}, \\ \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \\ \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline \end{array}$	20	40		20	40		20	40		20	40		20	40		20	40		$\mathrm{mA}_{\text {DC }}$
Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, T_{A}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}} \\ & \hline \end{aligned}$	10	20			20			20			20		10	20		10	20		$m A_{D C}$
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}}=1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V}_{\mathrm{DC}} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		50			50			50			50		12	50		12	50		$\mu A_{D C}$
Short Circuit to Ground	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { (Note 2), } \\ & \mathrm{V}+=15 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		40	60		40	60		40	60		40	60		40	60		40	60	$m A_{D C}$
Input Offset Voltage	(Note 5)			± 4			± 4			± 5			± 7			± 9			± 10	$\mathrm{m} \mathrm{V}_{\mathrm{DC}}$
Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		7	15			15			20		7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\ln (+)-\ln (-)$			± 30			± 30			± 75			± 100			± 150		± 45	± 200	$n A_{D C}$
Input Offset Current Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		10	200		10	200		10	300		10			10			10		$\mathrm{PA}_{\text {DC }} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\ln (+)$ or $\operatorname{lin}(-)$		40	100		40	100		40	200		40	300		40	500		40	500	$n A_{D C}$

Electrical Characteristics (Continued) $\mathrm{V}^{+}=+5.0 \mathrm{~V}_{\mathrm{DC}}$, Note 4 , unless otherwise stated

Parameter	Conditions	LM158A			LM258A			LM358A			LM158/LM258			LM358			LM2904			Units
		Min	Typ	Max																
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}},(\text { (Note 7) } \\ & \left(\mathrm{LM} 2904, \mathrm{~V}^{+}=26 \mathrm{~V}_{\mathrm{DC}}\right) \\ & \hline \end{aligned}$	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}+-2$	0	($\mathrm{V}^{+}-2$	0		$\mathrm{V}+-2$	0		$\mathrm{V}+-2$	0		$\mathrm{V}^{+}-2$	$V_{D C}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \\ & \left.\mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}}\right) \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	25			25			15			25			15			15			V/mV
Output Voltage Swing V_{OH} V_{OL}	$\begin{aligned} & \mathrm{V}+=+30 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \left(\mathrm{LM} 2904, \mathrm{~V}^{+}=26 \mathrm{~V}_{\mathrm{DC}}\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		28 5	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	28 5	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	28 5	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 28 \\ 5 \\ \hline \end{gathered}$	20	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{gathered} 28 \\ 5 \\ \hline \end{gathered}$	20	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	24 5	100	$\begin{gathered} V_{D C} \\ V_{D C} \\ m V_{D C} \\ \hline \end{gathered}$
Output Current Source Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{IN}}+1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{IN}} \\ & \mathrm{~V}^{+}=+1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}^{+}}=0 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		20 15		10 5	20 8		10 5	20 8		10 5	20 8		10 5	20 8		10 5	20 8		$m A_{D C}$ $m A_{D C}$

 possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.

 specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, and the LM 2904 specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}_{\mathrm{DC}}, R_{S}=0 \Omega$ with V^{+}from $5 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$; and over the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}$) at $25^{\circ} \mathrm{C}$. For $\mathrm{LM} 2904, \mathrm{~V}+$ from $5 \mathrm{~V}_{\mathrm{DC}}$ to $26 \mathrm{~V}_{\mathrm{DC}}$ -
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
 inputs can go to $+32 \mathrm{~V}_{\mathrm{DC}}$ without damage ($+26 \mathrm{~V}_{\mathrm{DC}}$ for LM 2904), independent of the magnitude of V^{+}.

Note 9: Refer to RETS158AX for LM158A military specifications and to RETS158X for LM158 military specifications.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Common-Mode
Rejection Ratio

Large Signal Frequency Response

Typical Performance Characteristics (Continued) (LM2902 only)

Application Hints

The LM158 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \mathrm{~V}_{\mathrm{DC}}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down to a minimum supply voltage of $2.3 \mathrm{~V}_{\mathrm{DC}}$.
Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Large differential input voltages can be easily accomodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative. more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode with a resistor to the IC input terminal can be used.
To reduce the power supply current drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.
For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion. Where the load is directly coupled, as in dc applications, there is no crossover distortion.

TL/H/7787-5

Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accomodated using the worst-case non-inverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.
The bias network of the LM158 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of $3 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive function temperatures. Putting direct short-circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels, if not properly protected with external dissipation limiting resistors in series with the output leads of the amplifiers. The larger value of output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures (see typical performance characteristics) than a standard IC op amp.
The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference of $\mathrm{V}+/ 2$) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Typical Single-Supply Applications $\left(v^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Non-Inverting DC Gain (OV Input = OV Output)

DC Summing Amplifier
$\left(V_{I_{N} S} \geq 0 V_{D C}\right.$ and $\left.V_{O} \geq 0 V_{D C}\right)$

Where: $v_{0}=v_{1}+v_{2}+v_{3}+v_{4}$
$\left(V_{1}+V_{2}\right) \geq\left(V_{3}+V_{4}\right)$ to keep $V_{O}>0 V_{D C}$
"BI-QUAD" RC Active Bandpass Filter

TL/H/7787-10

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Fixed Current Sources

TL/H/7787-15

TL/H/7787-17

Lamp Driver

TL/H/7787-14

TL/H/7787-16

Typical Single-Supply Applications ($\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}$ (Continued)

Low Drift Peak Detector

TL/H/7787-20

High Compliance Current Sink

Comparator with Hysteresis

Typical Single-Supply Applications $\left(v^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Voltage Controlled Oscillator (VCO)

TL/H/7787-23
*WIDE CONTROL VOLTAGE RANGE: $0 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{C}} \leq 2\left(\mathrm{~V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}\right)$

Ground Referencing a Differential Input Signal

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/7787-26
DC Coupled Low-Pass RC Active Filter

TL/H/7787-27
Bandpass Active Filter

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

High Input Z, DC Differential Amplifier

High Input Z Adjustable-Gain DC Instrumentation Amplifier

If $\mathrm{R} 1=\mathrm{R} 5$ \& R3 $=\mathrm{R} 4=\mathrm{R} 6=\mathrm{R} 7$ (CMRR depends on match)

$$
V_{O}=1+\frac{2 R 1}{R 2}\left(V_{2}-V_{1}\right)
$$

$$
\text { As shown } V_{O}=101\left(V_{2}-V_{1}\right)
$$

Typical Single-Supply Applications $\left(v^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)
Using Symmetrical Amplifiers to Reduce Input Current (General Concept)

Schematic Diagram (Each Amplifier)

National Semiconductor

LM392/LM2924

Low Power Operational Amplifier/Voltage Comparator

General Description

The LM392 series consists of 2 independent building block circuits. One is a high gain, internally frequency compensated operational amplifier, and the other is a precision voltage comparator. Both the operational amplifier and the voltage comparator have been specifically designed to operate from a single power supply over a wide range of voltages. Both circuits have input stages which will common-mode input down to ground when operating from a single power supply. Operation from split power supplies is also possible and the low power supply current is independent of the magnitude of the supply voltage.
Application areas include transducer amplifier with pulse shaper, DC gain block with level detector, VCO, as well as all conventional operational amplifier or voltage comparator circuits. Both circuits can be operated directly from the standard $5 \mathrm{~V}_{\mathrm{DC}}$ power supply voltage used in digital systems, and the output of the comparator will interface directly with either TTL or CMOS logic. In addition, the low power drain makes the LM392 extremely useful in the design of portable equipment.

Advantages

- Eliminates need for dual power supplies
- An internally compensated op amp and a precision comparator in the same package
- Allows sensing at or near ground
- Power drain suitable for battery operation
- Pin-out is the same as both the LM358 dual op amp and the LM393 dual comparator

Features

- Wide power supply voltage range Single supply

3 V to 32 V Dual supply $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
■ Low supply current drain-essentially independent of supply voltage $600 \mu \mathrm{~A}$

- Low input biasing current 50 nA

■ Low input offset voltage 2 mV

- Low input offset current 5 nA
a Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage

ADDITIONAL OP AMP FEATURES

m Internally frequency compensated for unity gain

- Large DC voltage gain 100 dB

- Large output voltage swing $\quad 0 \mathrm{~V}$ to $\mathrm{V}+-1.5 \mathrm{~V}$

ADDITIONAL COMPARATOR FEATURES

- Low output saturation voltage $\quad 250 \mathrm{mV}$ at 4 mA
m Output voltage compatible with all types of logic systems

Connection Diagram (Top View)

TL/H/7793-1
Order Number LM2924J
See NS Package Number J08A
Order Number LM392M
See NS Package Number M08A
Order Number LM392N or LM2924N
See NS Package Number N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	LM392	LM2924
Supply Voltage, V^{+}	32 V or $\pm 16 \mathrm{~V}$	26 V or $\pm 13 \mathrm{~V}$
Differential Input Voltage	32 V	26 V
Input Voltage	-0.3 V to +32 V	-0.3 V to +26 V
Power Dissipation (Note 1)		
Molded DIP (LM392N, LM2924N)	820 mW	820 mW
Small Outline Package	530 mW	530 mW
Output Short-Circuit to Ground (Note 2)	Continuous	Continuous
Input Current ($\left.\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{DC}}\right)($ Note 3)	50 mA	50 mA
Operating Temperature Range LM392	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
ESD rating to be determined.		
Soldering Information		
Dual-in-Line Package		
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
Small Outline Package		
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}\right.$; specifications apply to both amplifiers unless otherwise stated)
(Note 4)

Parameter	Conditions	LM392			LM2924			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},($ Note 5)		± 2	± 5		± 2	± 7	mV
Input Bias Current	$\begin{aligned} & \operatorname{IN}(+) \text { or } \operatorname{IN}(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { (Note } 6), \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \end{aligned}$		50	250		50	250	nA
Input Offset Current	$\underline{I N}(+)-\operatorname{IN}(-), \mathrm{T}_{A}=25^{\circ} \mathrm{C}$		± 5	± 50		± 5	± 50	nA
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & (\text { Note } 7)(\mathrm{LM} 2924, \\ & \left.\mathrm{V}^{+}=26 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$	0		$\mathrm{V}+-1.5$	0		$\mathrm{V}+-1.5$	V
Supply Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}, \\ & \left(\mathrm{LM} 2924, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$		1	2		1	2	mA
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=5 \mathrm{~V}$		0.5	1		0.5	1	mA
Amplifier-to-Amplifier Coupling	$\mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz},$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Input Referred, (Note 8)		-100			-100		dB
Input Offset Voltage	(Note 5)			± 7			± 7	mV
Input Bias Current	$\mathrm{IN}(+)$ or $\mathrm{IN}(-)$			400			500	nA
Input Offset Current	$\mathrm{IN}(+)-\operatorname{IN}(-)$			150			200	nA
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}},(\text { (Note } 7) \\ & \left(\mathrm{LM} 2924, \mathrm{~V}^{+}=26 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$	0		$\mathrm{V}+$-2	0		$\mathrm{V}+$-2	V
Differential Input Voltage	Keep All V_{IN} 's $\geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if Used), (Note 9)			32			26	V
OP AMP ONLY								
Large Signal Voltage Gain	$\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{0}$ swing $=$ $1 \mathrm{~V}_{\mathrm{DC}}$ to $11 \mathrm{~V}_{\mathrm{DC}}$, $R_{L}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	25	100		25	100		V/mV

Electrical Characteristics ($\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}$; specifications apply to both amplifiers unless otherwise stated)
(Note 4) (Continued)

Parameter	Conditions	LM392			LM2924			Units
		Min	Typ	Max	Min	Typ	Max	
OP AMP ONLY								
Output Voltage Swing	$\begin{aligned} & R_{L}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}, \\ & \left(\mathrm{LM} 2924, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right) \end{aligned}$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}+-1.5$	V
Common-Mode Rejection Ratio	$\mathrm{DC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=$ $0 V_{D C}$ to $V^{+}-1.5 V_{D C}$	65	70		50	70		dB
Power Supply Rejection Ratio	$\mathrm{DC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	65	100		50	100		dB
Output Current Source	$V_{\operatorname{IN}(+)}=1 V_{D C}$, $\mathrm{V}_{\operatorname{IN}(-)}=0 \mathrm{~V}_{\mathrm{DC}}$, $V^{+}=15 V_{D C}, V_{o}=$ $2 V_{D C}, T_{A}=25^{\circ} \mathrm{C}$	20	40		20	40		mA
Output Current Sink	$V_{V_{N(-)}}=1 V_{D C}$, $V_{\operatorname{IN}(+)}=0 V_{D C}$ $V^{+}=15 V_{D C}, V^{\circ}=$ $2 V_{D C}, T_{A}=25^{\circ} \mathrm{C}$	10	20		10	20		mA
	$V_{\operatorname{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}$, $V_{I N(+)}=0 V_{D C}$, $V^{+}=15 V_{D C}, V_{0}=$ $200 \mathrm{mV}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	12	50		12	50		$\mu \mathrm{A}$
Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$		10			10		$\mathrm{pA}_{\text {DC }} /{ }^{\circ} \mathrm{C}$
COMPARATOR ONLY								
Voltage Gain	$\begin{aligned} & R_{L} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{D C}, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	50	200		25	100		V/mV
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{TTL} \text { Logic Swing, } \\ & \mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		300			300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C},(\text { Note } 10) \end{aligned}$		1.3			1.5		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & V_{I N(-)}=1 V_{D C}, \\ & V_{I N(+)}=0 V_{D C}, \\ & V_{0} \geq 1.5 V_{D C}, T_{A}=25^{\circ} C \end{aligned}$	6	16		6	16		mA
Saturation Voltage	$\begin{aligned} & V_{\operatorname{IN(-)}} \geq 1 V_{D C}, \\ & V_{I N(+)}=0, \\ & I_{\text {SINK }} \leq 4 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		250	400			400	mV
	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)} \geq 1 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~V}_{\text {IN }(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \\ & \hline \end{aligned}$			700			700	mV
Output Leakage Current	$\begin{aligned} & V_{1 N(-)}=0, \\ & V_{I N(+)} \geq 1 V_{D C}, \\ & V_{0}=5 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		0.1			0.1		nA
	$\begin{aligned} & V_{\operatorname{IN(-)}}=0, \\ & V_{I N(+)} \geq 1 V_{D C}, \\ & V_{0}=30 V_{D C} \end{aligned}$			1.0			1.0	$\mu \mathrm{A}$

Note 1: For operating at temperatures above $25^{\circ} \mathrm{C}$, the LM392 and the LM2924 must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $122^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air ambient. The dissipation is the total of both amplifiersuse external resistors, where possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
Note 2: Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA for the op amp and 30 mA for the comparator independent of the magnitude of $\mathrm{V}+$. At values of supply voltage in excess of 15 V , continuous short circuits can exceed the power dissipation ratings and cause eventual destruction.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the $\mathrm{V}+$ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V (at $25^{\circ} \mathrm{C}$).

Note 4: These specifications apply for $\mathrm{V}^{+}=5 \mathrm{~V}$, unless otherwise stated. For the LM 392 , temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ and the LM2924 temperature specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
Note 5: At output switch point, $V_{O} \cong 1.4 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega$ with $\mathrm{V}+$ from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}+-1.5 \mathrm{~V}$).
Note 6: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 7: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to 32 V without damage (26 V for LM2924).
Note 8: Due to proximity of external components, insure that coupling is not originating via the stray capacitance between these external parts. This typically can be detected as this type of capacitive increases at higher frequencies.
Note 9: Positive excursions of input voltage may exceed the power supply level. As long as the other input voltage remains within the common-mode range, the comparator will provide a proper output state. The input voltage to the op amp should not exceed the power supply level. The input voltage state must not be less than -0.3 V (or 0.3 V below the magnitude of the negative power supply, if used) on either amplifier.
Note 10: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained.

Schematic Diagram

TL/H/7793-2

Application Hints

Please refer to the application hints section of the LM193 and the LM158 datasheets.

National Semiconductor

LM359 Dual, High Speed, Programmable, Current Mode (Norton) Amplifiers

General Description

The LM359 consists of two current differencing (Norton) input amplifiers. Design emphasis has been placed on obtaining high frequency performance and providing user programmable amplifier operating characteristics. Each amplifier is broadbanded to provide a high gain bandwidth product, fast slew rate and stable operation ior an inverting closed loop gain of 10 or greater. Pins for additional external frequency compensation are provided. The amplifiers are designed to operate from a single supply and can accommodate input common-mode voltages greater than the supply.

Applications

- General purpose video amplifiers
- High frequency, high Q active filters
- Photo-diode amplifiers
- Wide frequency range waveform generation circuits
- All LM3900 AC applications work to much higher frequencies

Features

- User programmable gain bandwidth product, slew rate, input bias current, output stage biasing current and total device power dissipation
- High gain bandwidth product ($I_{\text {SET }}=0.5 \mathrm{~mA}$) 400 MHz for $A_{V}=10$ to 100 30 MHz for $A_{V}=1$
- High slew rate ($\mathrm{ISET}=0.5 \mathrm{~mA}$) $60 \mathrm{~V} / \mu \mathrm{s}$ for $\mathrm{A}_{\mathrm{V}}=10$ to 100 $30 \mathrm{~V} / \mu \mathrm{s}$ for $\mathrm{A}_{\mathrm{V}}=1$
- Current differencing inputs allow high common-mode input voltages
- Operates from a single 5 V to 22 V supply
- Large inverting amplifier output swing, 2 mV to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$
■ Low spot noise, $6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, for $\mathrm{f}>1 \mathrm{kHz}$

Typical Application

- $A_{V}=20 \mathrm{~dB}$
- -3 dB bandwidth $=2.5 \mathrm{~Hz}$ to 25 MHz
- Differential phase error $<1^{\circ}$ at 3.58 MHz
- Differential gain error $<0.5 \%$ at 3.58 MHz

Connection Diagram

Order Number LM359J, LM359M or LM359N
See NS Package Number J14A, M14A or N14A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage

Power Dissipation (Note 1)

J Package	1 W
N Package	750 mW
Maximum T_{J}	
J Package	$+150^{\circ} \mathrm{C}$
N Package	$+125^{\circ} \mathrm{C}$

N Package

J Package
$\theta_{\mathrm{jA}} \quad 147^{\circ} \mathrm{C} / \mathrm{W}$ still air $110^{\circ} \mathrm{C} / \mathrm{W}$ with 400 linear feet/min air flow

N Package

Input Currents, $I_{I N}(+)$ or $I_{I N}(-)$	$10 \mathrm{~mA}_{\text {DC }}$
Set Currents, ISET(IN) or ISET(OUT)	$2 \mathrm{~mA}_{\text {DC }}$
Operating Temperature Range	
LM359	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Soldering Information	
\quad Dual-In-Line Package	
\quad Soldering (10 sec.)	$260^{\circ} \mathrm{C}$
Small Outline Package	
\quad Vapor Phase $(60$ sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating to be determined.
$\theta_{\mathrm{jA}} \quad 100^{\circ} \mathrm{C} / \mathrm{W}$ still air $75^{\circ} \mathrm{C} / \mathrm{W}$ with 400 linear feet/min air flow

Electrical Characteristics $\mathrm{I}_{\text {SET }(1 \mathrm{~N})}=\mathrm{I}_{\text {SET (OUT) }}=0.5 \mathrm{~mA}, \mathrm{~V}_{\text {supply }}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Parameter	Conditions	LM359			Units
		Min	Typ	Max	
Open Loop Voltage Gain	$\begin{aligned} & V_{\text {supply }}=12 \mathrm{~V}, R_{L}=1 \mathrm{k}, \mathrm{f}=100 \mathrm{~Hz} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$	62	$\begin{aligned} & 72 \\ & 68 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Bandwidth Unity Gain	$\mathrm{R}_{\mathrm{IN}}=1 \mathrm{k} \Omega, \mathrm{C}_{\text {comp }}=10 \mathrm{pF}$	15	30		MHz
Gain Bandwidth Product Gain of 10 to 100	$\mathrm{R}_{\mathrm{IN}}=50 \Omega$ to 200Ω	200	400		MHz
Slew Rate Unity Gain Gain of 10 to 100	$\begin{aligned} & R_{I N}=1 \mathrm{k} \Omega, C_{c o m p}=10 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{IN}}<200 \Omega \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \hline \end{aligned}$
Amplifier to Amplifier Coupling	$f=100 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		-80		dB
Mirror Gain (Note 2)	at $2 \mathrm{~mA} \mathrm{I}_{\mathrm{IN}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} \mathrm{I}_{\mathrm{N}}(+)$, $\mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A}$ Over Temp. at $20 \mu \mathrm{~A} \mathrm{I}_{\mathrm{I}}(+), \mathrm{I}_{\mathrm{SET}}=5 \mu \mathrm{~A}$ Over Temp.	$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} / \mu \mathrm{A} \\ & \mu \mathrm{~A} / \mu \mathrm{A} \\ & \mu \mathrm{~A} / \mu \mathrm{A} \end{aligned}$
Δ Mirror Gain (Note 2)	at $20 \mu \mathrm{~A}$ to $0.2 \mathrm{~mA} \mathrm{I}_{\mathrm{IN}}(+$) Over Temp, $\mathrm{ISET}=5 \mu \mathrm{~A}$		3	5	\%
Input Bias Current	Inverting Input, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temp.		8	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Resistance ($\beta \mathrm{re}$)	Inverting Input		2.5		k Ω
Output Resistance	$\mathrm{l}_{\text {OUT }}=15 \mathrm{~mA} \mathrm{rms} \mathrm{f}=,1 \mathrm{MHz}$		3.5		Ω
Output Voltage Swing Vout High Vout Low	$\begin{aligned} & R_{L}=600 \Omega \\ & I_{N}(-) \text { and } \operatorname{liN}_{N}(+) \text { Grounded } \\ & I_{I N}(-)=100 \mu A, I_{I N}(+)=0 \end{aligned}$	9.5	$\begin{gathered} 10.3 \\ 2 \\ \hline \end{gathered}$	50	$\begin{gathered} \mathrm{V} \\ \mathrm{mV} \end{gathered}$
Output Currents Source Sink (Linear Region) Sink (Overdriven)	$\begin{aligned} & \operatorname{liN}_{\mathbb{N}}(-) \text { and } \mathrm{I}_{\mathrm{N}}(+) \text { Grounded, } \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~V}_{\text {comp }}-0.5 \mathrm{~V}=\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{N}}(+)=0 \\ & \operatorname{liN}_{\mathrm{I}}(-)=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{N}}(+)=0, \\ & V_{\text {OUT }} \text { Force }=1 \mathrm{~V} \end{aligned}$	16 1.5	$\begin{gathered} 40 \\ 4.7 \\ 3 \end{gathered}$		mA mA mA
Supply Current	Non-Inverting Input Grounded, $\mathrm{R}_{\mathrm{L}}=\infty$		18.5	22	mA
Power Supply Rejection (Note 3)	$f=120 \mathrm{~Hz}, \mathrm{l}_{\mathrm{N}}(+)$ Grounded	40	50		dB

[^17]

Typical Performance Characteristics

Note: Shaded area refers to LM359

Note: Shaded area refers to LM359

Note: Shaded area refers to LM359

Typical Performance Characteristics (Continued)

Application Hints

The LM359 consists of two wide bandwidth, decompensated current differencing (Norton) amplifiers. Although similar in operation to the original LM3900, design emphasis for these amplifiers has been placed on obtaining much higher frequency performance as illustrated in Figure 1.
This significant improvement in frequency response is the result of using a common-emitter/common-base (cascode) gain stage which is typical in many discrete and integrated video and RF circuit designs. Another versatile aspect of these amplifiers is the ability to externally program many internal amplifier parameters to suit the requirements of a wide variety of applications in which this type of amplifier can be used.

TL/H/7788-6

FIGURE 1

Application Hints (Continued)

DC BIASING

The LM359 is intended for single supply voltage operation which requires DC biasing of the output. The current mirror circuitry which provides the non-inverting input for the amplifier also facilitates DC biasing the output. The basic operation of this current mirror is that the current (both $D C$ and AC) flowing into the non-inverting input will force an equal amount of current to flow into the inverting input. The mirror gain $\left(A_{1}\right)$ specification is the measure of how closely these two currents match. For more details see National Application Note AN-72.
DC biasing of the output is accomplished by establishing a reference $D C$ current into the $(+)$ input, $\mathrm{I}_{\mathrm{N}}(+)$, and requiring the output to provide the $(-)$ input current. This forces the output DC level to be whatever value necessary (within the output voltage swing of the amplifier) to provide this DC reference current, Figure 2.

$V_{D(D C)}=V_{B E}(-)+I_{F B} R_{f}$
TL/H/7788-7
$\mathrm{I}_{\mathrm{FB}}=\mathrm{l}_{\mathrm{IN}}(+) \mathrm{A}_{\mathrm{I}}+\mathrm{l}_{\mathrm{b}}(-)$
$\mathrm{I}_{\mathbb{N}}(+)=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{BE}}(+)}{\mathrm{R}_{\mathrm{b}}}$
$l_{b}(-)$ is the inverting input bias current

FIGURE 2

The $D C$ input voltage at each input is a transistor $V_{B E}$ ($\cong 0.6 \mathrm{~V}_{\mathrm{DC}}$) and must be considered for DC biasing. For most applications, the supply voltage, V^{+}, is suitable and convenient for establishing $\mathrm{liN}_{\mathrm{N}}(+$). The inverting input bias current, $\mathrm{I}_{\mathrm{b}}(-)$, is a direct function of the programmable input stage current (see current programmability section) and to obtain predictable output DC biasing set $\mathrm{I}_{\mathrm{N}}(+) \geq 10 \mathrm{l}_{\mathrm{b}}(-)$. The following figures illustrate typical biasing schemes for AC amplifiers using the LM359:

FIGURE 3. Biasing an Inverting AC Amplifier

FIGURE 4. Biasing a Non-Inverting AC Amplifier

$V_{O(D C)}=V_{B E}(-)\left(1+\frac{R_{f}}{R_{B}}\right)+I_{b}(-) R_{f}$
TL/H/7788-10

FIGURE 5. $n V_{B E}$ Biasing

The $n V_{B E}$ biasing configuration is most useful for low noise applications where a reduced input impedance can be accommodated (see typical applications section).

OPERATING CURRENT PROGRAMMABILITY (ISET)

The input bias current, slew rate, gain bandwidth product, output drive capability and total device power consumption of both amplifiers can be simultaneously controlled and optimized via the two programming pins $I_{S E T(O U T)}$ and $I_{S E T(I N)}$.

ISET(OUT)

The output set current (ISET(OUT) is equal to the amount of current sourced from pin 1 and establishes the class A biasing current for the Darlington emitter follower output stage. Using a single resistor from pin 1 to ground, as shown in Figure 6, this current is equal to:

$I_{\text {SET(OUT) }}=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\text {SET(OUT) }}+500 \Omega}$

TL/H/7788-11
FIGURE 6. Establishing the Output Set Current

Application Hints (Continued)

The output set current can be adjusted to optimize the amount of current the output of the amplifier can sink to drive load capacitance and for loads connected to V^{+}. The maximum output sinking current is approximately 10 times ISETIOUTT. This set current is best used to reduce the total device supply current if the amplifiers are not required to drive small load impedances.

ISETIN $^{\text {IN }}$

The input set current $I_{\text {SET }}(\mathbb{N})$ is equal to the current flowing into pin 8 . A resistor from pin 8 to V^{+}sets this current to be:

$$
\operatorname{ISET}(I N)=\frac{V^{+}-V_{B E}}{R_{S E T}(I N)+500 \Omega}
$$

TL/H/7788-12
FIGURE 7. Establishing the Input Set Current
$I_{S E T}(\mathbb{N})$ is most significant in controlling the AC characteristics of the LM359 as it directly sets the total input stage current of the amplifiers which determines the maximum slew rate, the frequency of the open loop dominant pole, the input resistance of the $(-)$ input and the biasing current $\mathrm{I}_{\mathrm{b}}(-)$. All of these parameters are significant in wide band amplifier design. The input stage current is approximately 3 times $I_{S E T(I N)}$ and by using this relationship the following first order approximations for these AC parameters are:

$$
\begin{align*}
& \mathrm{S}_{\mathrm{r}(\mathrm{MAX})}=\text { max slew rate } \cong \frac{3 \mathrm{I}_{\mathrm{SET}(\mathrm{IN})}\left(10^{-6}\right)}{\mathrm{C}_{\mathrm{COmp}}}(\mathrm{~V} / \mu \mathrm{s}) \\
& \begin{array}{c}
\text { frequency of } \\
\text { dominant pole }
\end{array} \frac{3 \mathrm{I}_{\mathrm{SET}(\mathrm{IN})}}{2 \pi \mathrm{C}_{\operatorname{comp}} A_{\mathrm{VOL}}(0.026 \mathrm{~V})}(\mathrm{Hz}) \\
& \text { input resistance }=\beta \mathrm{re} \cong \frac{150(0.026 \mathrm{~V})}{3 \mathrm{I}_{\operatorname{SET}(\mathrm{IN})}(\Omega)}
\end{align*}
$$

where $\mathrm{C}_{\text {comp }}$ is the total capacitance from the compensation pin (pin 3 or pin 13) to ground, Avol is the low frequency open loop voltage gain in V/V and an ambient tempera-
ture of $25^{\circ} \mathrm{C}$ is assumed $\left(\mathrm{KT} / \mathrm{q}=26 \mathrm{mV}\right.$ and $\left.\beta_{\mathrm{typ}}=150\right)$. ${ }^{\operatorname{ISET}(\mathbb{I N})}$ also controls the DC input bias current by the expression:

$$
\mathrm{l}_{\mathrm{b}}(-)=\frac{3 \mathrm{I}_{\mathrm{SET}}}{\beta} \cong \frac{\mathrm{I}_{\mathrm{SET}}}{50} \text { for NPN } \beta=150
$$

which is important for DC biasing considerations.
The total device supply current (for both amplifiers) is also a direct function of the set currents and can be approximated by:

$$
I_{\text {supply }} \cong 27 \times I_{\text {SET(OUT })}+11 \times I_{\text {SET }(I N)}
$$

with each set current programmed by individual resistors.

PROGRAMMING WITH A SINGLE RESISTOR

Operating current programming may also be accomplished using only one resistor by letting ISET(IN) equal ISET(OUT). The programming current is now referred to as ISET and it is created by connecting a resistor from pin 1 to pin 8 (Figure 8).

TL/H/7788-13
$I_{\text {SET }}(\mathbb{N})=I_{\text {SET }}$ (OUT) $=I_{\text {SET }}$
FIGURE 8. Single Resistor Programming of ISET
This configuration does not affect any of the internal set current dependent parameters differently than previously discussed except the total supply current which is now equal to:

$$
I_{\text {supply }} \cong 37 \times I_{\text {SET }}
$$

Care must be taken when using resistors to program the set current to prevent significantly increasing the supply voltage above the value used to determine the set current. This would cause an increase in total supply current due to the resulting increase in set current and the maximum device power dissipation could be exceeded. The set resistor value(s) should be adjusted for the new supply voltage.

Application Hints (Continued)

One method to avoid this is to use an adjustable current source which has voltage compliance to generate the set current as shown in Figure 9.

FIGURE 9. Current Source Programming of ISET
This circuit allows ISET to remain constant over the entire supply voltage range of the LM359 which also improves power supply ripple rejection as illustrated in the Typical Performance Characteristics. It should be noted, however, that the current through the LM334 as shown will change linearly with temperature but this can be compensated for (see LM334 data sheet).
Pin 1 must never be shorted to ground or pin 8 never shorted to V^{+}without limiting the current to 2 mA or less to prevent catastrophic device failure.

CONSIDERATIONS FOR HIGH FREQUENCY OPERATION

The LM359 is intended for use in relatively high frequency applications and many factors external to the amplifier itself must be considered. Minimization of stray capacitances and their effect on circuit operation are the primary requirements. The following list contains some general guidelines to help accomplish this end:

1. Keep the leads of all external components as short as possible.
2. Place components conducting signal current from the output of an amplifier away from that amplifier's non-inverting input.
3. Use reasonably low value resistances for gain setting and biasing.
4. Use of a ground plane is helpful in providing a shielding effect between the inputs and from input to output. Avoid using vector boards.
5. Use a single-point ground and single-point supply distribution to minimize crosstalk. Always connect the two grounds (one from each amplifier) together.
6. Avoid use of long wires (> 2 ") but if necessary, use shielded wire.
7. Bypass the supply close to the device with a low inductance, low value capacitor (typically a $0.01 \mu \mathrm{~F}$ ceramic) to create a good high frequency ground. If long supply leads are unavoidable, a small resistor ($\sim 10 \Omega$) in series with the bypass capacitor may be needed and using shielded wire for the supply leads is also recommended.

COMPENSATION

The LM359 is internally compensated for stability with closed loop inverting gains of 10 or more. For an inverting gain of less than 10 and all non-inverting amplifiers (the amplifier always has 100% negative current feedback regardless of the gain in the non-inverting configuration) some external frequency compensation is required because the stray capacitance to ground from the (-) input and the feedback resistor add additional lagging phase within the feedback loop. The value of the input capacitance will typically be in the range of 6 pF to 10 pF for a reasonably constructed circuit board. When using a feedback resistance of $30 \mathrm{k} \Omega$ or less, the best method of compensation, without sacrificing slew rate, is to add a lead capacitor in parallel with the feedback resistor with a value on the order of 1 pF to 5 pF as shown in Figure 10.

TL/H/7788-15
FIGURE 10. Best Method of Compensation
Another method of compensation is to increase the effective value of the internal compensation capacitor by adding capacitance from the COMP pin of an amplifier to ground. An external 20 pF capacitor will generally compensate for all gain settings but will also reduce the gain bandwidth product and the slew rate. These same results can also be obtained by reducing $I_{S E T}(\mathbb{I N})$ if the full capabilities of the amplifier are not required. This method is termed over-compensation.
Another area of concern from a stability standpoint is that of capacitive loading. The amplifier will generally drive capacitive loads up to 100 pF without oscillation problems. Any larger C loads can be isolated from the output as shown in Figure 11. Over-compensation of the amplifier can also be used if the corresponding reduction of the GBW product can be afforded.

TL/H/7788-16
FIGURE 11. Isolating Large Capacitive Loads

Application Hints (Continued)

In most applications using the LM359, the input signal will be AC coupled so as not to affect the DC biasing of the amplifier. This gives rise to another subtlety of high frequency circuits which is the effective series inductance (ESL) of the coupling capacitor which creates an increase in the impedance of the capacitor at high frequencies and can cause an unexpected gain reduction. Low ESL capacitors like solid tantalum for large values of C and ceramic for smaller values are recommended. A parallel combination of the two types is even better for gain accuracy over a wide frequency range.

AMPLIFIER DESIGN EXAMPLES

The ability of the LM359 to provide gain at frequencies higher than most monolithic amplifiers can provide makes it most useful as a basic broadband amplification stage. The design of standard inverting and non-inverting amplifiers, though different than standard op amp design due to the current differencing inputs, also entail subtle design differences between the two types of amplifiers. These differences will be best illustrated by design examples. For these examples a practical video amplifier with a passband of 8 Hz to 10 MHz and a gain of 20 dB will be used. It will be assumed that the input will come from a 75Ω source and proper signal termination will be considered. The supply voltage is $12 \mathrm{~V}_{\mathrm{DC}}$ and single resistor programming of the operating current, ISET, will be used for simplicity.

AN INVERTING VIDEO AMPLIFIER

1. Basic circuit configuration:

TL/H/7788-17
2. Determine the required ISET from the characteristic curves for gain bandwidth product.

$$
\mathrm{GBW}_{\mathrm{MIN}}=10 \times 10 \mathrm{MHz}=100 \mathrm{MHz}
$$

For a flat response to 10 MHz a closed loop response to two octaves above $10 \mathrm{MHz}(40 \mathrm{MHz})$ will be sufficient.
Actual GBW $=10 \times 40 \mathrm{MHz}=400 \mathrm{MHz}$
$I_{\text {SET }}$ required $=0.5 \mathrm{~mA}$
$R_{S E T}=\frac{V^{+}-2 V_{B E}}{I_{S E T}}-1 \mathrm{k} \Omega=\frac{10.8 \mathrm{~V}}{0.5 \mathrm{~mA}}-1 \mathrm{k} \Omega=20.6 \mathrm{k} \Omega$
3. Determine maximum value for R_{f} to provide stable $D C$ biasing

$$
\mathrm{I}_{\mathrm{f}(\mathrm{MIN})} \geq 10 \times \frac{3 \mathrm{I}_{\mathrm{SET}}}{\beta}=\underset{\text { feedback current }}{100 \mu \mathrm{~A} \text { minimum } \mathrm{DC}}
$$

Optimum output DC level for maximum symmetrical swing without clipping is:

$$
\begin{aligned}
V_{O D C(\text { opt })} & =\frac{V_{O(M A X)}-V_{O(M I N)}}{2}+V_{O(M I N)} \\
& \approx \frac{\left(\mathrm{V}^{+}-3 V_{B E}\right)-2 \mathrm{mV}}{2} \\
V_{O D C(\text { opt })} & \cong \frac{12-1.8 \mathrm{~V}}{2}=\frac{10.2 \mathrm{~V}}{2}=5.1 \mathrm{~V}_{\mathrm{DC}}
\end{aligned}
$$

$\mathrm{R}_{\mathrm{f}(\mathrm{MAX})}$ can now be found:
$R_{f(M A X)}=\frac{V_{o D C(o p t)}-V_{B E}(-)}{\mathrm{I}_{f(\mathrm{MIN})}}=\frac{5.1 \mathrm{~V}-0.6 \mathrm{~V}}{100 \mu \mathrm{~A}}=45 \mathrm{k} \Omega$ This value should not be exceeded for predictable DC biasing.
4. Select R_{s} to be large enough so as not to appreciably load the input termination resistance:

$$
\mathrm{R}_{\mathrm{S}} \geq 750 \Omega \text { Let } \mathrm{R}_{\mathrm{s}}=750 \Omega
$$

5. Select R_{f} for appropriate gain:

$$
A_{V}=-\frac{R_{f}}{R_{s}} \mathrm{so} ; R_{f}=10 R_{s}=7.5 \mathrm{k} \Omega
$$

$7.5 \mathrm{k} \Omega$ is less than the calculated $\mathrm{R}_{\mathrm{f}(\mathrm{MAX})}$ so DC predictability is insured.
6. Since $R_{f}=7.5 \mathrm{k}$, for the output to be biased to $5.1 \mathrm{~V}_{\mathrm{DC}}$, the reference current $\mathrm{I}_{\mathrm{I}}(+)$ must be:

$$
\mathrm{I}_{\mathrm{N}}(+)=\frac{5.1 \mathrm{~V}-\mathrm{V}_{\mathrm{BE}}(-)}{\mathrm{R}_{\mathrm{f}}}=\frac{5.1 \mathrm{~V}-0.6 \mathrm{~V}}{7.5 \mathrm{k} \Omega}=600 \mu \mathrm{~A}
$$

Now R_{b} can be found by:

$$
\mathrm{R}_{\mathrm{b}}=\frac{\mathrm{V}^{+}-\mathrm{V}_{\mathrm{BE}}(+)}{\mathrm{l}_{\mathrm{IN}}(+)}=\frac{12-0.6}{600 \mu \mathrm{~A}}=19 \mathrm{k} \Omega
$$

7. Select C_{i} to provide the proper gain for the 8 Hz minimum input frequency:

$$
\mathrm{C}_{\mathrm{i}} \geq \frac{1}{2 \pi \mathrm{R}_{\mathrm{s}}\left(\mathrm{f}_{\text {low }}\right)}=\frac{1}{2 \pi(750 \Omega)(8 \mathrm{~Hz})}=26 \mu \mathrm{~F}
$$

A larger value of C_{i} will allow a flat frequency response down to 8 Hz and a $0.01 \mu \mathrm{~F}$ ceramic capacitor in parallel with C_{i} will maintain high frequency gain accuracy.
8. Test for peaking of the frequency response and add a feedback "lead" capacitor to compensate if necessary.

Application Hints (Continued)

Final Circuit Using Standard 5\% Tolerance Resistor Values:

TL/H/7788-18

A NON-INVERTING VIDEO AMPLIFIER

For this case several design considerations must be dealt with.

- The output voltage (AC and DC) is strictly a function of the size of the feedback resistor and the sum of $A C$ and DC "mirror current" flowing into the (+) input.
- The amplifier always has 100% current feedback so external compensation is required. Add a small ($1 \mathrm{pF}-5 \mathrm{pF}$) feedback capacitance to leave the amplifier's open loop response and slew rate unaffected.
- To prevent saturating the mirror stage the total AC and $D C$ current flowing into the amplifier's (+) input should be less than 2 mA .
- The output's maximum negative swing is one diode above ground due to the V_{BE} diode clamp at the (-) input.

DESIGN EXAMPLE:

$\mathrm{e}_{\mathrm{IN}}=50 \mathrm{mV}(\mathrm{MAX}), \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$ (MAX), desired circuit $B W=20 \mathrm{MHz}, A_{V}=20 \mathrm{~dB}$, driving source impedance $=$ $75 \Omega, \mathrm{~V}^{+}=12 \mathrm{~V}$.

1. Basic circuit configuration:

TL/H/7788-20
2. Select $I_{\text {SET }}$ to provide adequate amplifier bandwidth so that the closed loop bandwidth will be determined by R_{f} and C_{f}. To do this, the set current should program an amplifier open loop gain of at least 20 dB at the desired closed loop bandwidth of the circuit. For this example, an ISET of 0.5 mA will provide 26 dB of open loop gain at 20 MHz which will be sufficient. Using single resistor programming for ISET:

$$
\mathrm{R}_{\mathrm{SET}}=\frac{\mathrm{V}^{+}-2 \mathrm{~V}_{\mathrm{BE}}}{\mathrm{I}_{\mathrm{SET}}}-1 \mathrm{k} \Omega=20.6 \mathrm{k} \Omega
$$

3. Since the closed loop bandwidth will be determined by

$$
R_{f} \text { and } C_{f}\left(f-3 d B=\frac{1}{2 \pi R_{f} C_{f}}\right)
$$

Application Hints (Continued)

to obtain a 20 MHz bandwidth, both R_{f} and C_{f} should be kept small. It can be assumed that C_{f} can be in the range of 1 pF to 5 pF for carefully constructed circuit boards to insure stability and allow a flat frequency response. This will limit the value of R_{f} to be within the range of:

$$
\begin{aligned}
& \frac{1}{2 \pi 5 \mathrm{pF} 20 \mathrm{MHz}} \leq \mathrm{R}_{\mathrm{f}} \leq \frac{1}{2 \pi 1 \mathrm{pF} \mathrm{20} \mathrm{MHz}} \\
& \text { or } 1.6 \mathrm{k} \Omega \leq \mathrm{R}_{\mathrm{f}} \leq 7.96 \mathrm{k} \Omega
\end{aligned}
$$

Also, for a closed loop gain of $+10, R_{f}$ must be 10 times $R_{s}+r_{e}$ where r_{e} is the mirror diode resistance.
4. So as not to appreciably load the 75Ω input termination resistance the value of $\left(R_{s}+r_{e}\right)$ is set to 750Ω.
5. For $A_{v}=10 ; R_{f}$ is set to $7.5 \mathrm{k} \Omega$.
6. The optimum output DC level for symmetrical AC swing is:

$$
\begin{aligned}
V_{o D C}(\mathrm{opt}) & =\frac{V_{\mathrm{O}(\mathrm{MAX})}-V_{\mathrm{O}(\mathrm{MIN})}}{2}+V_{o(M I N)} \\
& =\frac{(12-1.8) \mathrm{V}-0.6 \mathrm{~V}}{2}+0.6 \mathrm{~V}=5.4 \mathrm{~V}_{\mathrm{DC}}
\end{aligned}
$$

7. The DC feedback current must be:

$$
\begin{aligned}
I_{\text {FB }} & =\frac{V_{o D C(o p t)}-V_{B E}(-)}{R_{f}}=\frac{5.4 V-0.6 \mathrm{~V}}{7.5 \mathrm{k}} \\
& =640 \mu \mathrm{~A}=I_{I N}(+)
\end{aligned}
$$

DC biasing predictability will be insured because $640 \mu \mathrm{~A}$ is greater than the minimum of $I_{\mathrm{SET}} / 5$ or $100 \mu \mathrm{~A}$.

For gain accuracy the total AC and DC mirror current should be less than 2 mA . For this example the maximum AC mirror current will be;

$$
\frac{ \pm e_{\text {in peak }}}{R_{\mathrm{s}}+\mathrm{r}_{\mathrm{e}}}=\frac{ \pm 50 \mathrm{mV}}{750 \Omega}= \pm 66 \mu \mathrm{~A}
$$

therefore the total mirror current range will be $574 \mu \mathrm{~A}$ to $706 \mu \mathrm{~A}$ which will insure gain accuracy.
8. R_{b} can now be found:

$$
R_{b}=\frac{V^{+}-V_{\mathrm{BE}}(+)}{I_{\mathrm{IN}}(+)}=\frac{12-0.6}{640 \mu \mathrm{~A}}=17.8 \mathrm{k} \Omega
$$

9. Since $R_{S}+r_{e}$ will be 750Ω and r_{e} is fixed by the DC mirror current to be:

$$
r_{e}=\frac{\mathrm{KT}}{\mathrm{q} \ln (+)}=\frac{26 \mathrm{mV}}{640 \mu \mathrm{~A}} \cong 40 \Omega \text { at } 25^{\circ} \mathrm{C}
$$

R_{s} must be $750 \Omega-40 \Omega$ or 710Ω which can be a 680Ω resistor in series with a 30Ω resistor which are standard 5% tolerance resistor values.
10. As a final design step, C_{i} must be selected to pass the lower passband frequency corner of 8 Hz for this example.
$\mathrm{C}_{\mathrm{i}}=\frac{1}{2 \pi\left(\mathrm{R}_{\mathrm{S}}+\mathrm{r}_{\mathrm{e}}\right) \mathrm{f}_{\text {low }}}=\frac{1}{2 \pi(750 \Omega)(8 \mathrm{~Hz})}=26.5 \mu \mathrm{~F}$
A larger value may be used and a $0.01 \mu \mathrm{~F}$ ceramic capacitor in parallel with C_{i} will maintain high frequency gain accuracy.

Final Circuit Using Standard 5\% Tolerance Resistor Values

TL/H/7788-21

Application Hints (Continued)

Circuit Performance

GENERAL PRECAUTIONS

The LM359 is designed primarily for single supply operation but split supplies may be used if the negative supply voltage is well regulated as the amplifiers have no negative supply rejection.
The total device power dissipation must always be kept in mind when selecting an operating supply voltage, the programming current, ISET, and the load resistance, particularly when DC coupling the output to a succeeding stage. To prevent damaging the current mirror input diode, the mirror current should always be limited to 10 mA , or less, which is important if the input is susceptible to high voltage transients. The voltage at any of the inputs must not be forced more negative than -0.7 V without limiting the current to 10 mA .
The supply voltage must never be reversed to the device; however, plugging the device into a socket backwards would then connect the positive supply voltage to the pin that has no internal connection (pin 5) which may prevent inadvertent device failure

Typical Applications

DC Coupled Inputs

- Eliminates the need for an input coupling capacitor
- Input DC level must be stable and can exceed the supply voltage of the LM359 provided that maximum input currents are not exceeded.

TL/H/7788-25

Typical Input Referred Noise Performance

TL/H/7788-27

TL/H/7788-26

- R1 and C2 provide additional filtering of the negative biasing supply

TL/H/7788-28

- FET input voltage mode op amp
- For $A_{V}=+1 ; B W=40 \mathrm{MHz}, \mathrm{S}_{\mathrm{r}}=60 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=51 \mathrm{pF}$
- For $A_{V}=+11 ; B W=24 \mathrm{MHz}, \mathrm{S}_{\mathrm{r}}=130 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}$
- For $\mathrm{A}_{\mathrm{V}}=+100 ; \mathrm{BW}=4.5 \mathrm{MHz}, \mathrm{S}_{\mathrm{r}}=150 \mathrm{~V} / \mu \mathrm{s} ; \mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}$
- V_{OS} is typically $<25 \mathrm{mV} ; 100 \Omega$ potentiometer allows a V_{OS} adjust range of $\approx \pm 200 \mathrm{mV}$
- Inputs must be DC biased for single supply operation

Typical Applications (Continued)
Photo Diode Amplifier

D1 ~ RCA N-Type Silicon P-I-N Photodiode

- Frequency response of greater than 10 MHz
- If slow rise and fall times can be tolerated the gate on the output can be removed. In this case the rise and the fall time of the LM359 is 40 ns .
- $T_{\text {PDL }}=45 \mathrm{~ns}, T_{\text {PDH }}=50 \mathrm{~ns}-\mathrm{T}^{2} \mathrm{~L}$ output

Balanced Line Driver

TL/H/7788-30
For $\mathrm{V}_{0} 1=\mathrm{V}_{0} 2=\frac{\mathrm{V}^{+}}{2}, \frac{\mathrm{R} 3}{\mathrm{R} 2}=\frac{\mathrm{V}^{+}-2 \phi}{2\left(\mathrm{~V}^{+}-\phi\right)}, \frac{\mathrm{R} 6}{\mathrm{R} 5}=\frac{\mathrm{V}^{+}-2 \phi}{\phi}$ where $\phi \approx 0.6 \mathrm{~V}$
$\mathrm{A}_{\mathrm{V}}=\frac{\mathrm{R} 3}{\mathrm{R} 1}\left(\frac{\mathrm{R} 6}{\mathrm{R} 4}+1\right)$

- $1 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth with gain of 10 and 0 dbm into 600Ω
- 0.3% distortion at full bandwidth; reduced to 0.05% with bandwidth of 10 kHz
- Will drive $\mathrm{C}_{\mathrm{L}}=1500 \mathrm{pF}$ with no additional compensation, $\pm 0.01 \mu \mathrm{~F}$ with $\mathrm{C}_{\mathrm{comp}}=180 \mathrm{pF}$
- 70 dB signal to noise ratio at 0 dbm into $600 \Omega, 10 \mathrm{kHz}$ bandwidth

Typical Applications (Continued)

Difference Amplifier

$V_{O(D C)}=\frac{R 4}{R 3}\left(V^{+}-\phi\right)$ where $\phi=0.6 \mathrm{~V}$
TL/H/7788-31
$A_{V}=\frac{R 4}{R 1}$ for R1 = R2
*CMRR is adjusted for max at expected CM input signal
$R 6 \approx \frac{\mathrm{R} 5}{5}$, for R5 $=100 \mathrm{k} \Omega$

- Wide bandwidth
- 70 dB CMRR typ
- Wide CM input voltage range

Voltage Controlled Oscillator

TL/H/7788-32

$$
f_{0}=\frac{V_{I N}-\phi}{4 C \Delta V R 1}
$$

$$
\text { where: R2 }=2 R 1
$$

$$
\phi=\text { amplifier input voltage }=0.6 \mathrm{~V}
$$

$$
\Delta V=\text { DM7414 hysteresis, typ } 1 V
$$

- 5 MHz operation
- T2L output

Typical Applications (Continued)

Squarewave Generator

TL/H/7788-34
$f=1 \mathrm{MHz}$
Output is TTL compatible
Frequency is adjusted by $R 1$ \& $C(R 1 \ll R 2)$

Pulse Generator

Output is TTL compatible
Duty cycle is adjusted by R1 Frequency is adjusted by C
$f=1 \mathrm{MHz}$
Duty cycle $=20 \%$
TL/H/7788-36

Typical Applications (Continued)

High Performance 2 Amplifier Biquad Filter(s)

TL/H/7788-35

- The high speed of the LM359 allows the center frequency Q_{0} product of the filter to be: $\mathrm{f}_{\mathrm{O}} \times \mathrm{Q}_{\mathrm{o}} \leq 5 \mathrm{MHz}$
- The above filter(s) maintains performance over wide temperature range
- One half of LM359 acts as a true non-inverting integrator so only 2 amplifiers (instead of 3 or 4) are needed for the biquad filter structure

| DC Biasing Equations for $V_{\mathbf{O 1 (D C)}} \cong \mathbf{V}_{\mathbf{O 2}(\mathrm{DC})} \cong \mathbf{V}^{+} / \mathbf{2}$ |
| :--- | :--- |
| Type I $\frac{2 V_{I N(D C)}}{V^{+}\left(R_{i 2}\right)}+\frac{1}{R}+\frac{1}{R_{Q}}=\frac{2}{R_{b}} ; R 1=2 R$
 Type II $\frac{1}{R}+\frac{1}{R_{Q}}=\frac{2}{R_{b}} ; R 1=2 R$
 Type III $\frac{1}{R}+\frac{1}{R_{Q}}=\frac{2}{R_{b}} ; \frac{1}{R 1}=\frac{V_{I N(D C)}}{V^{+}\left(R_{i 1}\right)}+\frac{1}{2 R}$ |

Analysis and Design Equations

Type	V_{01}	V_{02}	C_{i}	$\mathbf{R}_{\mathbf{i} 2}$	\mathbf{R}_{11}	f_{0}	\mathbf{Q}_{0}	f_{Z} (notch)	$\mathrm{H}_{0}(\mathrm{LP})$	$H_{0(B P)}$	$\mathrm{H}_{0}(\mathrm{HP})$	$H_{0(B R)}$
I	BP	LP	0	$\mathrm{R}_{\mathrm{i} 2}$	∞	$1 / 2 \pi \mathrm{RC}$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}$	-	$\mathrm{R} / \mathrm{R}_{\mathrm{i} 2}$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}_{\mathrm{i} 2}$	-	-
II	HP	BP	C_{i}	∞	∞	$1 / 2 \pi \mathrm{RC}$	R_{Q} / R	-	-	$\mathrm{R}_{\mathrm{Q}} \mathrm{C}_{\mathrm{i}} / \mathrm{RC}$	$\mathrm{C}_{\mathrm{i}} / \mathrm{C}$	-
III	Notch/ BR	-	C_{i}	∞	$\mathrm{R}_{\mathrm{i} 1}$	$1 / 2 \pi \mathrm{RC}$	$\mathrm{R}_{\mathrm{Q}} / \mathrm{R}$	$1 / 2 \pi \sqrt{R R_{i} C^{\prime}}$	-	-	-	$\left.\mathrm{H}_{0}\right\|_{\mathrm{f} \rightarrow \infty} ^{=\mathrm{C}_{i} / \mathrm{C}}$
												$\left.H_{0}\right\|_{\mathfrak{f} \rightarrow 0}=C / R_{i}$

行

National Semiconductor

LM604A/LM604 4 Channel Mux-Amp

General Description

The LM604 Mux-Amp is an op-amp with four selectable differential inputs, combining the functions of a multiplexer with an op-amp. The LM604 can select, buffer, and amplify one of four different input signals, providing a complete system for multiplexing analog signals. It also has the unique Bi-State output which allows two or more Mux-Amps to be connected together at their outputs to increase the number of multiplexed channels. Channel selection and the Bi -State output are controlled by internal logic that interfaces directly to a microprocessor. Besides these unique features, the LM604 has excellent AC and DC op-amp specifications and is internally compensated.
Applications include signal multiplexing and linear circuits that are controlled by digital signals (i.e., programmable gain blocks, filters, and other op-amp circuits).

Features

- Multiplexes four differential input channels to a single op-amp
■ Easy to interface to microprocessor, or operates "stand alone"
- Bi-State output: Operates in two states, Active and Disabled. When disabled, it becomes a high impedance.
- Wide operating voltage range single supply

4 V to 32 V split supply $\pm 2 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$

- Wide input common mode range $\quad V-$ to $V^{+}-1 V$
- Fast channel to channel switching time $5 \mu \mathrm{~s}$
- Output will drive a 600Ω load

Block Diagram

Channel Selection

\mathbf{A}	\mathbf{B}	$\overline{\mathbf{W R}}$	$\overline{\mathbf{C S}}$	Channel
0	0	0	0	1
0	1	0	0	2
1	0	0	0	3
1	1	0	0	4
X	X	X	1	Unchanged
X	X	1	X	Unchanged

Bi-State Output Control

$\overline{\text { EN }}$	$\overline{\mathbf{W R}}$	$\overline{\mathbf{C S}}$	Output State
0	0	0	Enabled
1	0	0	Disabled, High Z
X	X	1	Unchanged
X	1	X	Unchanged

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage

Differential Input Voltage
Input Voltage Range
Output Short Circuit to Gnd
ESD Tolerance ($\mathrm{C}_{\text {ZAP }}=120 \mathrm{pF}$,
$R_{\text {ZAP }}=1500 \Omega$)
Lead Temperature (Soldering, 5 sec .)
Storage Temperature Range

36 V or $\pm 18 \mathrm{~V}$
\pm Supply Voltage
\pm Supply Voltage
Continuous (Note 1)
$2,000 \mathrm{~V}$
$300^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Operating Ambient Temperature Range LM604AM
LM604I
LM604AC, LM604C
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
J Pkg. M Pkg. N Pkg.
Power Dissipation (Note 2) $1,600 \mathrm{~mW} 1,500 \mathrm{~mW} 1,900 \mathrm{~mW}$
TJMAX $\quad 150^{\circ} \mathrm{C} \quad 150^{\circ} \mathrm{C} \quad 150^{\circ} \mathrm{C}$
θ_{JA} (Typical, $\quad 75^{\circ} \mathrm{C} / \mathrm{W} \quad 83^{\circ} \mathrm{C} / \mathrm{W} \quad 65^{\circ} \mathrm{C} / \mathrm{W}$

DC Electrical Characteristics $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Note 3)

Parameter	Conditions		Typical	LM604AM		LM604I		LM604AC LM604C		Units (Limit)	
			Tested Limit (Note 4)	Design Limit (Note 5)	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)			
Input Offset Voltage (V_{OS})	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$	LM604 LM604A		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.0 \end{aligned}$		3.0	5.0	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ (\mathrm{Max}) \end{gathered}$
$V_{\text {OS }}$ Temperature Drift			5.5							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Offset Current (los)			2	$\begin{array}{r} 10 \\ 12 \\ \hline \end{array}$		10	12	10	12	nA (Max)	
Ios Temperature Drift			10							$\mathrm{pA} /{ }^{\circ} \mathrm{C}$	
Input Bias Current (I_{B})		LM604 LM604A	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \end{aligned}$		80	100	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	$\begin{gathered} 100 \\ 60 \end{gathered}$	nA (Max)	
I_{B} Temperature Drift			55							$\mathrm{pA} /{ }^{\circ} \mathrm{C}$	
Input Common Mode Voltage Range		Upper Limit Lower Limit	$\begin{gathered} 14.0 \\ -15.0 \end{gathered}$	$\begin{gathered} 13.5 \\ 13.0 \\ -15.0 \\ -15.0 \\ \hline \end{gathered}$		$\begin{gathered} \hline 13.5 \\ -15.0 \end{gathered}$	$\begin{gathered} 13.0 \\ -15.0 \end{gathered}$	13.5 -15.0	$\begin{gathered} 13.0 \\ -15.0 \end{gathered}$	$\begin{gathered} V \\ (\mathrm{Min}) \\ V \\ (\mathrm{Max}) \\ \hline \end{gathered}$	
Input Resistance			1.0							$\operatorname{Meg} \Omega$	
Output Voltage Swing	$R_{L}=10 k \Omega$ Upper Limit Lower Limit $R_{L}=600 \Omega$ Upper Limit Lower Limit		13.4	$\begin{aligned} & 13.0 \\ & 12.5 \end{aligned}$		13.0	12.5	13.0	12.5	$\begin{gathered} \text { V } \\ (\mathrm{Min}) \end{gathered}$	
			-14.2	$\begin{gathered} -13.8 \\ -13.3 \end{gathered}$		-13.8	-13.3	-13.8	-13.3	$\begin{gathered} V \\ (\mathrm{Max}) \end{gathered}$	
			12.7	$\begin{aligned} & 12.3 \\ & 10.0 \end{aligned}$		12.3	10.0	12.3	10.0	$\begin{gathered} \text { V } \\ (\mathrm{Min}) \end{gathered}$	
			-12.6	$\begin{array}{r} -12.2 \\ -11.7 \end{array}$		-12.2	-11.7	-12.2	-11.7	$\begin{gathered} V \\ (M a x) \end{gathered}$	
Large Signal Voltage Gain	$\begin{array}{r} V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ R_{\mathrm{L}}=600 \Omega \end{array}$		200	$\begin{aligned} & 50 \\ & 25 \end{aligned}$		50	25	50	25	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & (\mathrm{Min}) \end{aligned}$	
			200	$\begin{aligned} & 50 \\ & \mathbf{2 5} \end{aligned}$		50	25	50	25		
Common Mode Rejection Ratio	$V_{\mathrm{CM}}=-15.0 \mathrm{~V} \text { to } 13.5 \mathrm{~V}$		100	$\begin{aligned} & 80 \\ & 70 \end{aligned}$		80	70	80	70	$\begin{gathered} \mathrm{dB} \\ (\mathrm{Min}) \end{gathered}$	

DC Electrical Characteristics $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ ((ote 3)									
Parameter	Conditions	Typical	LM604AM		LM604I		LM604AC LM604C		Units (Limit)
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	
Power Supply Rejection Ratio	$\mathrm{V}_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}$ to $\pm 16.0 \mathrm{~V}$	100	$\begin{aligned} & 80 \\ & 70 \end{aligned}$		80	70	80	70	$\begin{gathered} \mathrm{dB} \\ (\mathrm{Min}) \end{gathered}$
Output Short Circuit Current		± 35	$\begin{aligned} & \pm 50 \\ & \pm \mathbf{6 0} \end{aligned}$		± 50	± 60	± 50	± 60	$\begin{gathered} \mathrm{mA} \\ (\mathrm{Max}) \end{gathered}$
Output Leakage Current	$\mathrm{V}_{\text {OUT }}=-13.5 \mathrm{~V}$ to 13.0 V Bi-State Output Disabled	4.0	$\begin{gathered} 10.0 \\ 20.0 \end{gathered}$		10.0	20.0	10.0	20.0	$\begin{gathered} \mu \mathrm{A} \\ (\mathrm{Max}) \\ \hline \end{gathered}$
Output Capacitance	Bi-State Output Disabled See Figure 1	10							pF
Supply Current		7.0	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$		9.0	10.0	9.0	10.0	$\begin{gathered} \mathrm{mA} \\ \text { (Max) } \end{gathered}$

AC Electrical Characteristics $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Note 3)

Parameter	Conditions	Typical	LM604AM		LM604I		LM604AC LM604C		Units (Limit)
						Design Limit (Note 5)	Tested Limit (Note 4)		
Slew Rate	$A_{V}=1, R_{L}=2 \mathrm{k} \Omega$	3.0	$\begin{aligned} & 2.0 \\ & \mathbf{1 . 5} \end{aligned}$		2.0	1.5	2.0	1.5	$\mathrm{V} / \mu \mathrm{s}$ (Min)
Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	7.0	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$		6.0	3.0	6.0	3.0	MHz (Min)
Unity Gain Frequency		3.0		2.5		2.5		2.5	MHz (Min)
Phase Margin	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	50							Degrees
Settling Time to 0.1% of Final Value	$\begin{aligned} & A_{V}=-1, V_{\text {OUT }}=-5.0 \mathrm{~V} \text { to } 5.0 \mathrm{~V} \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$	4.0							$\mu \mathrm{S}$
Channel Switching Time	See Figure 2 tsw1 tsw2	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	6.5	5.5	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	5.5	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\underset{(\operatorname{Max})}{\mu \mathrm{S}}$
Channel to Channel Isolation	$\begin{aligned} & R_{S}=10 \mathrm{k} \Omega, \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=10.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$	100							dB
Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	20							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	0.3							$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Mux-Amp Enable Time	See Figure 3 $t_{E N 1}$ $t_{E N 2}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	5.5	4.0	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	4.0	5.0 5.5	$\mu \mathrm{S}$ (Max)
Mux-Amp Disable Time (tDIS)	See Figure 3	1.0	$\begin{aligned} & 2.0 \\ & \mathbf{3 . 0} \\ & \hline \end{aligned}$		2.0	3.0	2.0	3.0	$\begin{gathered} \mu \mathrm{S} \\ (\mathrm{Max}) \end{gathered}$

DC Electrical Characteristics $\mathrm{V}_{\text {SUPPLY }}=5 \mathrm{~V}$ (Note 3)

FIGURE 1. Output Capacitance Test

Digital Input Electrical Characteristics $\mathrm{V}_{\text {sUPPLY }}= \pm 15 \mathrm{~V}$ (Note 6)

Parameter	Conditions	Typical	LM604AM		LM604I		LM604AC LM604C		Units (Limit)
			Tested Limit (Note 4)	Design Limit (Note 5)		Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	
$\mathrm{V}_{\text {INHI }}$			$\begin{aligned} & 1.8 \\ & \mathbf{2 . 0} \\ & \hline \end{aligned}$		1.8	2.0	1.8	2.0	$\begin{gathered} \text { V } \\ (\mathrm{Min}) \end{gathered}$
VINLO			$\begin{aligned} & 1.0 \\ & 0.8 \end{aligned}$		1.0	0.8	1.0	0.8	$\begin{gathered} V \\ (\mathrm{Max}) \end{gathered}$
IINHI			$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$		5.0	10.0	5.0	10.0	$\begin{gathered} \mu \mathrm{A} \\ (\mathrm{Max}) \\ \hline \end{gathered}$
IINLO			$\begin{gathered} 5.0 \\ 10.0 \\ \hline \end{gathered}$		5.0	10.0	5.0	10.0	$\begin{gathered} \mu \mathrm{A} \\ (\mathrm{Max}) \\ \hline \end{gathered}$
Minimum Pulse Width for WR \& CS				100		100	-	100	$\begin{gathered} \mathrm{ns} \\ \text { (Min) } \end{gathered}$
Minimum Set-Up Time (t_{S})	See Figures 3 and 5			100		100		100	$\begin{gathered} \mathrm{ns} \\ (\mathrm{Min}) \end{gathered}$
Minimum Hold Time (t_{H})	See Figures 3 and 5			50		50		50	$\begin{gathered} \mathrm{ns} \\ \text { (Min) } \end{gathered}$
Input Capacitance		5							pF

Note 1: Applies to both single and split supply operation. Continuous short circuit operation can result in exceeding the maximum allowed junction temperature.
Note 2: When operating at $T_{A}>25^{\circ} \mathrm{C}$, the maximum power dissipation must be derated based on θ_{JA}.
Note 3: Unless specified otherwise, all limits are guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$, and $R_{\mathrm{L}}>1 \mathrm{Meg} \Omega$. Boldface limits apply at $0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 70^{\circ} \mathrm{C}$ for LM604AC and LM604C, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$ for LM604I, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} 125^{\circ} \mathrm{C}$ for LM604AM.
Note 4: Guaranteed and 100\% production tested.
Note 5: Guaranteed but not 100% production tested. These numbers are not used to calculate outgoing quality levels.
Note 6: Unless specified otherwise, all units are guaranteed at $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the junction temperature extremes specified in note 3. Input voltage levels are with respect to digital ground (pin 4) which must be at least 4.0 V below V^{+}.

Switching from Channel 1 to 2 with Channel Select preset to $\overline{\mathrm{A}} \mathrm{B}$ before $\overline{\mathrm{WR}}=$ 0 . This test applies to all channels.

TL/H/9131-8

TL/H/9131-5
FIGURE 2. Channel Switching Time Test

FIGURE 3. Bi-State Output Enable and Disable Time Test

Typical Performance Characteristics (Note 7)

Undistorted Output Voltage Swing vs Frequency

Input Bias Current vs Temperature

Power Supply Rejection
Ratio vs Frequency

Distortion vs Frequency

Upper Common-Mode Voltage Limit vs Positive Supply Voltage

Output Impedance vs Frequency

Equivalent Input Noise Voltage vs Frequency

TL/H/9131-6

Typical Performance Characteristics (Note 7)

Note 7: Unless specified otherwise, $T_{A}=T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{Meg}$.

Connection Diagrams

FIGURE 4

Timing Diagrams

FIGURE 5. Channel Switching Timing Diagram

Functional Description

inPut Channel selection

The LM604 contains four differential input channels that are selected one at a time. An input is selected by writing its binary code to pins A and B when $\overline{C S}$ and $\overline{W R}$ are a logic 0 , see block diagram. The LM604 always has one of its inputs selected. In order to isolate all four channels from the output, the Bi -State output can be disabled.
Figure 5 illustrates how the LM604 switches from one channel to another. The switching begins on the falling edge of $\overline{W R}$ if A and B are valid before $\overline{W R}$ is a logic 0 , or when A and B become valid while $\overline{W R}$ is a logic 0 . In either case, the channel switching time (tsw2) remains the same. If a channel is to remain selected, its binary code must be valid during the rising edge of $\overline{W R}$ as specified by t_{S} and t_{H}.
Channel switching time is specified by t_{SW} and t_{SW} as shown in Figure 2. t_{SW} is the time it takes the output to first reach its new value, and tsw2 is the time it takes the output to settle to within 0.1% of its new value. Clearly, t_{sw} is a more useful parameter for specifying switching time, but it is difficult to test on a production basis. Therefore, $\mathrm{t}_{\mathrm{SW}} 1$ is tested and this allows tsw2 to be guaranteed. Channel switching time will vary as a function of how far the output swings to reach its new value. This is shown in Figure 6 where t_{SW} 2 is plotted as a function of output voltage swing ($\Delta V_{\text {OUT }}$).

TL/H/9131-12
$\Delta \mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OUT }}$ (Selected Channel) $-\mathrm{V}_{\text {OUT }}$ (Previous Channel) FIGURE 6. tsw2 vs $\Delta V_{\text {OUT }}$

BI-STATE OUTPUT

The Bi-State output can be either enabled (on) or disabled (off). When disabled, the output becomes a high impedance load that can be driven by another output stage. This allows several Mux-Amps to be connected together at their outputs by having only one output enabled at one time. Thus, several Mux-Amps can be in parallel to the same output to increase the number of multiplexed channels. The Bi-State output is controlled by $\overline{\mathrm{EN}}$ when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ are a logic 0 , see block diagram.
When the output is disabled and driven by another output, it behaves like a small capacitive load with a few microamps of leakage current. The data sheet specifies this with the
parameters "Output Capacitance" and "Output Leakage Current". Both parameters vary with temperature, as shown in Figure 7.

TL/H/9131-14
Figure 7. Ileakage and Cout vs Temperature
Figure 8 illustrates switching between two Mux-Amps that are connected in parallel to the same output. Switching begins on the falling edge of $\overline{W R}$ if the $\overline{E N}$ signals are correctly set before $\overline{W R}$ is a logic 0 , or when the $\overline{E N}$ signals become valid while $\overline{\mathrm{WR}}$ is a logic 0 . The Bi -State output takes less time to become disabled than it does to become enabled, and this insures the outputs are switched in a "break before make" method. If an in output is to remain enabled or disabled after $\overline{W R}$ becomes a logic $1, \overline{E N}$ must be valid during the rising edge of $\overline{W R}$ as specified by t_{s} and t_{H}. Note that when a Mux-Amp has its output enabled, the binary code for the selected input channel must also be written.
Bi-State output enable time ($\mathrm{t}_{\text {EN1 }}$ and $\mathrm{t}_{\mathrm{EN} 2}$) and disable time ($\mathrm{t}_{\mathrm{DIS}}$) are defined in Figure 3. $\mathrm{t}_{\text {EN } 1}$ is the time it takes the output to first reach its enabled value ($\mathrm{V}_{E N}$), and $\mathrm{t}_{\mathrm{EN} 2}$ is the time it takes the output to settle to within 0.1% of V_{EN}. As with channel switching time, $\mathrm{t}_{\mathrm{EN} 1}$ is a tested parameter that allows $t_{E N 2}$ to be guaranteed. $t_{\text {DIS }}$ is the time it takes the output to become a high impedance. Output enable time will vary according to how far the output swings from $V_{\text {DIS }}$ to V_{EN}, and this is plotted in Figure 9.

Functional Description (Continued)

TL/H/9131-15
FIGURE 8. Timing Diagram for Switching Bi-State Outputs

TL/H/9131-16
$\Delta V_{\text {OUT }}=V_{E N}-V_{\text {DIS }}$

DIGITAL CONTROL
As mentioned in the previous sections, the input channels and Bi -State output are controlled by logic levels on pins A , B, and EN. There are two ways to apply logic levels to these pins. 1) Hardwire $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ directly to digital ground so that the LM604 operates in a "stand alone" mode. This allows input logic levels to directly control the LM604. 2) Write digital signals to A, B, and $\overline{\mathrm{EN}}$ as shown in the timing diagrams of Figures 5 and 8. This method is used when the LM604 interfaces to a microprocessor. Note that $\overline{\mathrm{CS}}$ and WR can occur simultaneously, so set-up and hold times are not required for $\overline{\mathrm{CS}}$. Also, notice that $\overline{\mathrm{WR}}$ must remain a logic 1 during the hold time period.
Input logic levels are referenced to a 1.4 V threshold voltage, making the LM604 compatible with TTL and CMOS logic. This threshold voltage is referenced to digital ground. The voltage level of digital ground can be as low as V^{-}(pin 15) and as high as 4 V below $\mathrm{V}+$ (pin 5).

Application Hints

USING MULTIPLE FEEDBACK LOOPS

Each input channel of the LM604 is used as a single opamp with its own feedback loop. Two examples of this are circuits with multiple inverting gain channels and non-inverting gain channels (Figure 10). These circuits have multiple feedback loops connected to the same output with one feedback loop connected to a selected channel and the others connected to "off" channels. The feedback loop of the selected channel determines the gain of these circuits. The off channel feedback loops affect these circuits in two ways. 1) They create an additional load at the output. 2) Feedback loops for inverting gain channels provide feedthrough paths from the inputs of the off channels to the output.
In Figure 10, the loading affect of multiple feedback loops is given in terms of current flowing through the feedback loops
 tion of $\mathrm{V}_{\text {OUT }}$ and the resistance of the feedback loops. In circuits with inverting gain channels, I_{F} is different for each channel selected because it is also a function of the off channel input voltages. This additional loading must be accounted for when designing Mux-Amp circuits. Otherwise, the output load resistance will be less than anticipated.

TL/H/9131-19

Channel	V_{0}
1	$V_{1}\left(1+\frac{R 7}{R 8}\right)$
2	$\mathrm{~V} 2\left(1+\frac{R 5}{\mathrm{R} 6}\right)$
3	$\mathrm{~V}_{3}\left(1+\frac{\mathrm{R} 3}{\mathrm{R} 4}\right)$
4	$\mathrm{~V}_{4}\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)$
$\mathrm{I}_{\mathrm{F}}=\mathrm{V}_{0}\left(\frac{1}{\mathrm{R} 1+\mathrm{R} 2}+\frac{1}{\mathrm{R} 3+\mathrm{R} 4}+\frac{1}{\mathrm{R} 5+\mathrm{R} 6}+\frac{1}{\mathrm{R} 7+\mathrm{R} 8}\right)$	

Multiple Non-Inverting Gain Channels

Figure 11 illustrates feedthrough in an off inverting gain channel. Feedthrough occurs because the feedback resistors and the Mux-Amp output impedance (r_{0}) form a voltage divider. This divider allows a portion of the off channel's input signal to appear at the output. The amount of signal that feeds through depends on the ratio of output impedance to feedback loop resistance. Output impedance varies according to Mux-Amp gain (gain of the selected channel) and the frequency of the feedthrough signal. This variation must be considered when calculating feedthrough, and it is plotted in the "Typical Device Characteristics" section.

FIGURE 11. Inverting Gain Channel Feedthrough

TL/H/9131-18

Channel	V_{0}	I_{F}
1	$-V_{1}\left(\frac{R 2}{R 1}\right)$	$\frac{V_{0}}{R 2}+\frac{V_{0}-V 2}{R 3+R 4}+\frac{V_{0}-V 3}{R 5+R 6}+\frac{V_{0}-V 4}{R 7+R 8}$
2	$-V 2\left(\frac{R 4}{R 3}\right)$	$\frac{V_{0}}{R 4}+\frac{V_{0}-V_{1}}{R 1+R 2}+\frac{V_{0}-V 3}{R 5+R 6}+\frac{V_{0}-V 4}{R 7+R 8}$
3	$-V 3\left(\frac{R 6}{R 5}\right)$	$\frac{V_{0}}{R 6}+\frac{V_{0}-V 1}{R 1+R 2}+\frac{V_{0}-V 2}{R 3+R 4}+\frac{V_{0}-V 4}{R 7+R 8}$
4	$-V_{4}\left(\frac{R 8}{R 7}\right)$	$\frac{V_{0}}{R 8}+\frac{V_{0}-V 1}{R 1+R 2}+\frac{V_{0}-V 2}{R 3+R 4}+\frac{V_{0}-V 3}{R 5+R 6}$

Multiple Inverting Gain Channels

Application Hints (Continued)
 INPUT CHARGE INJECTION

When the Mux-Amp switches channels, charge is injected from the inputs of the selected and previous channels, see Figure 12. This causes a positive error voltage at the input of the selected channel and a negative voltage at the previous channel. The amplitude of this error voltage equals $Q_{I N J} / C_{\mathbb{N}}$, where $C_{I N}$ is the total capacitance at the input and $Q_{I N J}$ is the charge injected. As plotted in Figure 13, $Q_{I N J}$ increases proportionally with the difference in voltage between a channel's input common mode voltage and the negative supply. The RC time constant of $\mathrm{C}_{\mathbb{I N}}$ times resistance seen from the input will determine how long the error voltage remains at the input.

TL/H/9131-20
FIGURE 12. Error Voltage From Input Charge Injection

FIGURE 13. $Q_{I N J}$ vs $V_{C M}-V^{-}$

MAXIMUM OUTPUT LOAD CONDITIONS

The Mux-Amp is guaranteed to drive a 600Ω load as specified over its entire operating range. Reducing the load resistance below this value may cause the output to current
limit. It may also cause the junction temperature limit to be exceeded when operating the part near its maximum ambient temperature.
The Mux-Amp is unconditionally stable with as much as 500 pF connected from the output to ground. If the output is required to drive a larger capacitive load, the Mux-Amp may need to operate with at least a gain of 10. Otherwise, it may become unstable when sinking current.

DIGITAL FEEDTHROUGH

When interfacing the Mux-Amp to a microprocessor, pins A, $\mathrm{B}, \overline{\mathrm{EN}}$, and $\overline{\mathrm{WR}}$ are connected to an address bus where high frequency digital signals are present. The fast edges of these signals can propagate into the Mux-Amp's analog signal path, causing fast transients to appear at the output. To avoid this problem, the following precautions should be taken.

1) Analog and digital ground must be kept separate. They can only be connected together back at the power supply or supply bus.
2) Bypass capacitors should have low inductance to prevent noise spikes on the voltage supply pins. A ceramic disc capacitor of $0.1 \mu \mathrm{~F}$ is usually sufficient.
3) All lead lengths should be kept short to prevent them from picking up digital signals.
By using these rules, digital signals can be attenuated at the input channels by typically 100 dB .
Lab measurements have shown a minimum digital feedthrough signal of 2 mV occurs at the output even when the best layout precautions are taken. This is fine for many applications, but to completely eliminate digital feedthrough, any signals coming directly from the bus must be sent to the Mux-Amp via a Tri-State buffer, see Figure 14. This isolates the Mux-Amp's digital pins from the address bus to prevent pin to pin feedthrough. CS can be used to enable the TriState buffers when signals are sent to the Mux-Amp from the address bus.

TL/H/9131-22
FIGURE 14. Isolating Mux-Amp from Address Bus by Using a Tri-State Buffer

Typical Applications

Mux-Amp				Mux-Amp		
A						
A	B	$\overline{\text { EN }}$	A	B	$\overline{\text { EN }}$	
0	0	0	X	X		
0	1	0	X	X	1	V 1
1	0	0	X	X	1	V 2
1	1	0	X	X	1	V 3
X	X	1	0	0	0	V 4
X	X	1	0	1	0	V 6
X	X	$\mathbf{1}$	1	0	0	V 7
X	X	1	1	1	0	V 8

Programmable Bandpass Filter: Each channel has a 2 kHz bandwidth and a gain of 1 at the center frequency

General Description

The LM607 series of precision operational amplifiers are trimmed at wafer sort to extremely low values of offset voltage. Advanced circuit design and testing techniques allow guaranteed drift specifications as low as $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ with offsets as low as $25 \mu \mathrm{~V}$.
Other input parameters are equally impressive. The typical open loop voltage gain of 5 Million yields extremely low error in high-gain applications. CMRR and PSRR are typically 140 dB .
Using Super-Beta transistors in the front end enables the LM607 to operate at high input stage current while maintaining low values of input bias current (1nA typ.) This gives the part its low input voltage noise: $6.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$.

High operating currents also help give the LM607 its high gain-bandwidth product of 1.8 MHz and slew rate of $0.7 \mathrm{~V} / \mu \mathrm{s}$. Despite its higher speed, the LM607 draws less supply current than OP-07 and OP-77 types: only 1 mA at $\pm 15 \mathrm{~V}$ supplies.

Features

Low $\mathrm{V}_{\text {OS }}$	LM607A:	$25 \mu \mathrm{~V}$ max
Low drift	LM607A:	$0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
■ Drift 100\% tested: A and B grades		
- High gain	LM607A:	5 million min
- High CMRR	LM607A:	124 dB min
- High PSRR	LM607A:	120 dB min
- Low noise		$6.5 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 1 \mathrm{kHz}$
		$7.2 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 10 Hz
- High speed		1.8 MHz gain-bandwidth $0.7 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Low supply current		1 mA
- Wide input common mode range		$\pm 13.5 \mathrm{~V}$
- Wide supply range		$\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Overcompensation		Allows driving high C_{L}

Connection Diagrams

TO-99 Metal Package

Top View

TL/H/8787-11

Ordering Information

Package	Temperature Range		NSC Drawing
	Military	Commercial	
TO-99	LM607AMH LM607BMH	LM607ACH LM607BCH LM607CH	H08C
8-Pin Cerdip	LM607AMJ LM607BMJ	LM607ACJ LM607BCJ LM607CJ	J08A
8-Pin Molded DIP		LM607ACN LM607BCN LM607CN	N08E

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Differential Input Overdrive Current (Note 7) $\pm 25 \mathrm{~mA}$
Supply Voltage
Input Voltage
Output Short Circuit to Gnd
Power Dissipation (Note 9)
Maximum Junction Temperture 44 V

Supply Voltage
Continuous 500 mW
$150^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
ESD Tolerance	
$\mathrm{C}_{\text {ZAP }}=100 \mathrm{pF}$	2000 V
$\mathrm{R}_{\text {ZAP }}=1.5 \mathrm{k} \Omega$	

Operating Rating

Temperature Range (Note 9) LM607AM/LM607BM

$$
-55^{\circ} \mathrm{C} \leq T_{J} \leq+125^{\circ} \mathrm{C}
$$

$$
0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}
$$

Electrical Characteristics All limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{C M}=0, \mathrm{~V}_{\mathrm{O}}=0$, and $\pm 15 \mathrm{~V}$ supplies unless otherwise specified. Boldface limits apply at operating temperature extremes.

Parameter	Conditions	Typ	LM607AM		LM607BM		Units
			Tested Limit (Note 5)	Design Limit (Note 6)		Design Limit (Note 6)	
Input Offset Voltage	(Note 2)	15	$\begin{aligned} & 25 \\ & \mathbf{8 0} \end{aligned}$		$\begin{gathered} 60 \\ \mathbf{1 2 0} \\ \hline \end{gathered}$		$\mu \mathrm{V}$ Max
Input Offset Voltage Drift	(Note 3)	0.2	0.3		0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Voltage Long Term Stability	(Note 4)	0.2					$\mu \mathrm{V} / \mathrm{mo}$ Max
Input Bias Current		1	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		$\begin{aligned} & 3 \\ & 6 \end{aligned}$		nA Max
Input Offset Current		0.5	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		$\begin{array}{r} 2.8 \\ 5.6 \end{array}$		nA Max
Input Noise Voltage	0.1 to 10 Hz	0.2		0.5		0.5	$\mu \vee \mathrm{p}-\mathrm{p}$ Max
Input Noise Voltage Density	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 7.2 \\ & 6.6 \\ & 6.5 \\ & \hline \end{aligned}$	18 8	10	18 8	10	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ Max
Input Noise Current	0.1 to 10 Hz	14					pA p-p Max
Input Noise Current Density	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.14 \\ & 0.12 \end{aligned}$					$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{Max} \end{aligned}$
Input Resistance	Differential Mode Common Mode	$\begin{gathered} 2 \\ 100 \\ \hline \end{gathered}$					$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{G} \Omega \\ & \hline \end{aligned}$
Input Voltage Range		± 13.5	$\begin{gathered} \pm 13 \\ \pm 12.5 \end{gathered}$		$\begin{gathered} \pm 13 \\ \pm 12.5 \end{gathered}$		$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
Common-Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 13 \mathrm{~V} \\ & V_{C M}= \pm 12.5 \mathrm{~V} \\ & \hline \end{aligned}$	140	$\begin{aligned} & 124 \\ & 120 \end{aligned}$		$\begin{aligned} & 116 \\ & 112 \end{aligned}$		$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$
Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \text { (Note 8) } \end{aligned}$	140	$\begin{aligned} & 120 \\ & 117 \\ & \hline \end{aligned}$		$\begin{gathered} 114 \\ 112 \end{gathered}$		$\begin{aligned} & \text { dB } \\ & \text { Min } \end{aligned}$
Large-Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V} \\ & R_{L} \geq 2 \mathrm{k} \Omega \\ & R_{L} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 10000 \\ & 5000 \end{aligned}$	\qquad		$\begin{gathered} 2000 \\ 1500 \\ 1000 \end{gathered}$		V / mV Min

Electrical Characteristics (Continued)

Parameter	Conditions	Typ	LM607AM		LM607BM		Units
			Tested Limit (Note 5)	Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \end{aligned}$	± 13.8	$\begin{gathered} \pm 13 \\ \pm 12.5 \\ \pm 12.5 \\ \hline \end{gathered}$		$\begin{gathered} \pm 13 \\ \pm 12.5 \\ \pm 12.5 \end{gathered}$		$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
Slew Rate		0.7		0.4		0.4	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	1.8		1.0		1.0	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{Min} \end{aligned}$
Open-Loop Output Resistance		50					Ω
Supply Current		1	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$		mA Max
Offset Adjust Range		1.5					mV

Electrical Characteristics All limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0$, and $\pm 15 \mathrm{~V}$ supplies unless otherwise specified. Boldface limits apply at operating temperature extremes.

Parameter	Conditions	Typ	LM607AC		LM607BC		LM607C		Units
			Tested Limit (Note 5)	Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	
Input Offset Voltage	(Note 2)	15	$\begin{aligned} & 25 \\ & 40 \end{aligned}$		$\begin{aligned} & 60 \\ & 90 \end{aligned}$		150	250	$\begin{gathered} \mu V \\ \operatorname{Max} \end{gathered}$
Input Offset Voltage Drift	(Note 3)	0.2	0.3		0.6			2.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Voltage Long Term Stability	(Note 4)	0.2							$\mu \mathrm{V} / \mathrm{mo}$ Max
Input Bias Current		1	2	4	3	6	10	14	$\begin{gathered} \text { nA } \\ \text { Max } \end{gathered}$
Input Offset Current		0.5	2	4	2.8	5.6	6	10	nA Max
Input Noise Voltage	0.1 to 10 Hz	0.2		0.5		0.5		0.5	$\mu \vee$ p-p Max
Input Voltage Noise Density	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 7.2 \\ & 6.6 \\ & 6.5 \\ & \hline \end{aligned}$	18 8	10	18 8	10	$\begin{array}{r} 20 \\ 11.5 \\ \hline \end{array}$	13.5	$\begin{gathered} \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \operatorname{Max} \end{gathered}$
Input Noise Current	0.1 to 10 Hz	14							pA p-p Max
Input Noise Current Density	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.14 \\ & 0.12 \\ & \hline \end{aligned}$							$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{Max} \end{aligned}$
Input Resistance	Differential Mode Common Mode	$\begin{gathered} 2 \\ 100 \\ \hline \end{gathered}$							$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{G} \Omega \\ & \hline \end{aligned}$
Input Voltage Range		± 13.5	± 13	± 12.5	± 13	± 12.5	± 13	± 12.5	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \\ \hline \end{gathered}$
Common-Mode Rejection Ratio	$\begin{aligned} & V_{\mathrm{CM}}= \pm 13 \mathrm{~V} \\ & \mathbf{v}_{\mathrm{CM}}= \pm \mathbf{1 2 . 5} \mathrm{V} \end{aligned}$	140	124	120	116	112	110	108	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \\ \hline \end{gathered}$
Power Supply Rejection Ratio	$\begin{aligned} & V_{S}= \pm 3 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \text { (Note 8) } \end{aligned}$	140	120	117	114	112	110	108	dB Min

Electrical Characteristics (Continued)

Parameter	Conditions	Typ	LM607AC		LM607BC		LM607C		Units
								Design Limit (Note 6)	
Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{gathered} 10000 \\ 5000 \\ \hline \end{gathered}$	$\begin{aligned} & 5000 \\ & 1500 \\ & \hline \end{aligned}$	2000	$\begin{aligned} & 2000 \\ & 1000 \\ & \hline \end{aligned}$	1500	$\begin{aligned} & 1500 \\ & 1000 \\ & \hline \end{aligned}$	1000	V / mV Min
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega \\ & R_{L} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	± 13.8	$\begin{gathered} \pm 13 \\ \pm 12.5 \\ \hline \end{gathered}$	± 12.5	$\begin{gathered} \pm 13 \\ \pm 12.5 \end{gathered}$	± 12.5	$\begin{gathered} \pm 12.5 \\ \pm 12 \end{gathered}$	± 12	$\begin{gathered} V \\ M i n \end{gathered}$
Slew Rate		0.7		0.4		0.4		0.4	$\mathrm{V} / \mu \mathrm{s}$ Min
Gain-Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	1.8		1.0		1.0		1.0	MHz Min
Open-Loop Output Resistance		50							Ω
Supply Current		1	1.5	2.0	1.5	2.0	1.8	2.2	mA Max
Offset Adjust Range		1.5							mV

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Input offset voltage for A and B grades is tested and guaranteed with the device fully warmed up. See Figure 1 in the Application Hints for test circuit. Warmup drift is typically $3 \mu \mathrm{~V}$ settling out in 5 minutes. The LM607C offset voltage is measured by automated test equipment within 200 ms of applying power.
Note 3: Input offset voltage drift is defined as $\left[\mathrm{V}_{\mathrm{OS}}\left(70^{\circ} \mathrm{C}\right)-\mathrm{V}_{\mathrm{OS}}\left(-5^{\circ} \mathrm{C}\right)\right] / 75^{\circ} \mathrm{C}$ for the commercial temperature range. For the military temperature range, the input offset voltage drift is measured from room temperature to both extremes: both $\left[V_{\mathrm{OS}}\left(25^{\circ} \mathrm{C}\right)-V_{\mathrm{OS}}\left(-55^{\circ} \mathrm{C}\right)\right] / 80^{\circ} \mathrm{C}$ and $\left[V_{\mathrm{OS}}\left(125^{\circ} \mathrm{C}\right)-\mathrm{V}_{\mathrm{OS}}\left(25^{\circ} \mathrm{C}\right)\right] / 100^{\circ} \mathrm{C}$.
Note 4: Input offset voltage long term stability refers to the average trend line of $V_{\mathrm{OS}} \mathrm{vs}$. time over extended periods of time after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 days are typically $2 \mu \mathrm{~V}$.
Note 5: Guaranteed and 100% production tested.
Note 6: Limits at temperature extremes are guaranteed via correlation using Standard Statistical Quality Control (SQC) Methods. All limits are to be used to calculate Average Outgoing Quality Level (AOQL).
Note 7: Inputs are protected by back-to-back diodes to prevent zener breakdown of the input transistors. Series limiting resistors have not been included since they degrade noise performance. Excessive current may flow if a differential voltage in excess of 0.7 V is applied.
Note 8: Power Supply Rejection Ratio is tested by moving both power supplies together from their minimum to maximum values.
Note 9: Typical thermal resistance of the molded package is $95^{\circ} \mathrm{C} / \mathrm{W}$ junction-to-ambient. Typical thermal resistance of the metal can package is $150^{\circ} \mathrm{C} / \mathrm{W}$ junction-to-ambient and $17^{\circ} \mathrm{C} / \mathrm{W}$ junction-to-case.
Note 10: These units selected to illustrate the type of variations that may be encountered. (This note refers to particular curves within the Typical Performance Characteristics.)

Typical Performance Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ unless otherwise indicated

Input Offset Current of
4 Representative Units vs Temperature (Note 10)

Open-Loop Gain vs Supply Voltage

Input Common-Mode

Gain-Bandwidth Product, Phase Margin vs Temperature

TL/H/8787-12

Typical Performance Characteristics (Continued)

TIME ($10 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME (500 ns/DIV)

Application Hints

OFFSET VOLTAGE

Offset voltage of the LM607 is internally trimmed to a very low value. The data sheet V_{OS} specification applies at $\mathrm{T}_{\mathrm{J}}=$ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ and $\pm 15 \mathrm{~V}$ supplies. For other conditions, temperature drift, common-mode rejection and power-supply rejection errors must be taken into account.
Although the LM607C is specified as $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, the $3 \mu \mathrm{~V}$ typical warmup drift is a small fraction of its $100 \mu \mathrm{~V}$ max offset. For the $25 \mu \mathrm{~V}$ LM607A and $50 \mu \mathrm{~V}$ LM607B grades, the offset voltage is measured fully warmed up with the circuit of Figure 1 approximately 5 minutes after applying power.
To measure $V_{O S}$ with high accuracy, gain must be taken right at the device as shown, otherwise the offset voltage would get swamped out by noise and thermoelectric voltages. Thermocouples occur in the devices, the IC socket and the resistor across the device inputs (R2), all of which must be held isothermal. Usually best results are obtained by placing the circuit in a box or chamber to minimized airflow and employing a long thermal soak time. R2 should be mounted symmetrically with respect to potential thermal gradients: e.g. not perpendicular to the board but instead parallel to the board and the device socket. In addition, R2 should have low thermal EMF. Cermet or nichrome metal film types are acceptable; avoid tin-oxide resistors.

TL/H/8787-3

FIGURE 1. Offset Voltage Test Circuit

OFFSET NULLING

This is usually not required on the LM607 family since its offset voltage is internally trimmed. An offset adjust range of approximately $\pm 1.5 \mathrm{mV}$ is available using a single 10 or 20 $\mathrm{k} \Omega$ potentiometer as shown in Figure 2. With these values, the adjustment is relatively linear over the entire range. If a $100 \mathrm{k} \Omega$ potentiometer is used, the adjustment becomes very coarse at the extremes (above $700 \mu \mathrm{~V}$) but fine in the center, which makes it easier to precisely null the offset. For even more sensitivity, employ a pot in conjunction with two fixed resistors. For example the circuit of Figure 3 has an adjustment range of $\pm 150 \mu \mathrm{~V}$.

TL/H/8787-4
FIGURE 2. Offset Adjust Circuit

TL/H/8787-5
FIGURE 3. Improved Sensitivity Offset Adjust
Because adjusting the offset voltage of an LM607 will alter its offset voltage temperature drift, caution is advised. Every $100 \mu \mathrm{~V}$ of offset will produce a $0.33 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift component. For this reason the offset adjust potentiometer should not be used to null out a sensor offset if system temperature drift is important; rather a stable voltage reference must be added to the sensor voltage. Offset voltage drift is guaranteed by design for the LM607C either with or without external nulling. The higher precision A and B grades are 100% drift tested and guaranteed without nulling only.

OVERCOMPENSATION

Without any external compensation, the LM607 is stable at unity gain and up to 750 pF load capacitance. It has a slew rate of $0.7 \mathrm{~V} / \mu \mathrm{s}$ and a gain-bandwidth product of 1.8 MHz . If desired, the amplifier may be overcompensated by adding external components as shown in Figure 4. This increases maximum capacitive loading to $0.01 \mu \mathrm{~F}$ while decreasing slew rate to $0.13 \mathrm{~V} / \mu \mathrm{s}$ and bandwidth to 200 kHz . If overcompensation is not desired, pin 5 should be left open.

TL/H/8787-6
FIGURE 4. Overcompensation

NOISE

The LM607 achieves lower voltage noise than the OP-07 primarily by operating at higher input stage current. Its superbeta input transistors and trimmed bias-current compensation prevent the bias current from increasing. When measuring spot noise, a circuit as shown in Figure 5 is recommended. The DUT runs at a gain of 100 will not roll off until approximately 15 kHz . Another gain of 100 amplifier following brings total DUT-input-referred gain up to 10,000 to minimize sensitivity to $E M I$ in the environment. When measuring spot noise at 100 Hz , it is recommended that the bandwidth be 20 Hz or less to minimize pickup of 120 Hz , the second harmonic of line frequency.

TL/H/8787-7
FIGURE 5. Spot Noise Test Circuit

Application Hints (Continued)

The circuit used to measure peak-to-peak noise in the 0.1 to 10 Hz range is shown in Figure 6. The device should be warmed up for about 2 minutes and shielded from air currents to minimize warmup drift and thermoelectric voltages. The test time should be limited to only 10 seconds, as this limits noise contributions below 0.1 Hz , in addition to the single zero rolloff. The measuring equipment must be flat beyond this bandwidth. DC coupling must be employed to ensure this. Certain types of $X-Y$ plotters may not be usable because of severe rolloff above a few Hz .

FIGURE 6. 0.1 to 10 Hz Noise Test Circuit

Input Overdrive

The LM607's input-protection diodes prevent zener breakdown of the input transistors and the ensuing degradation of input DC parameters. Current limiting resistors have not been included as they would degrade input noise voltage. Input current should be limited to $\pm 25 \mathrm{~mA}$ to avoid potential damage to the IC metallization.
In voltage follower applications, large input voltage steps may be coupled directly to the op amp's output via the protection diodes. If the input and feedback resistances are low in value, the output stage may be driven temporarily into current limit. The resulting output waveform exhibits an initial fast step when the diodes are conducting followed by a slight glitch as the amplifier comes out of current limit before true slewing is observed. For best results, use input and feedback resistors of $2 \mathrm{k} \Omega$ each in parallel with 30 pF capacitors. The capacitors eliminate input and feedback poles which respectively cause signal rolloff and instabilities.

LM611A／LM611

Operational Amplifier and Adjustable Reference

General Description

The operational amplifier is a versatile common－mode－to－ the－negative－supply（＂single－supply＂）type similar to the LM124 series，but with improved slew rate，improved power bandwidth，reduced cross－over distortion，and low supply current even while driven beyond swing limits．Lateral PNP input transistors enable low input currents for large differen－ tial input voltages and swings above V^{+}．
The voltage reference is a three－terminal shunt－type band－ gap similar to the adjustable LM185 series，but with im－ proved voltage accuracy to $\pm 0.4 \%$ accuracy by wafer trim． Two resistors program the reference from 1.24 V to 6.3 V ． The reference features operation over a current range of $16 \mu \mathrm{~A}$ to 20 mA ，low dynamic impedance，broad capacitive load range，and cathode terminal voltage ranging from a diode－drop below V －to above V^{+}．
As a member of National＇s new Super－Block ${ }^{T M}$ family，the LM611 is a space－saving monolithic alternative to a multi－ chip solution，offering a high level of integration without sac－ rificing performance．

Connection Diagrams

TL／H／9221－1
Top View
See NS Package Number J08A or N08E

Top View
See NS Package Number M14A M Narrow（0．15＂）

Features（Guaranteed over temperature and supply）
OP AMP
－Low operating current $300 \mu \mathrm{~A}$（op amp） $16 \mu \mathrm{~A}$（ref）
－Large supply voltage range
4 V to 36 V
－Large output swing（10k load）（ $\mathrm{V}^{-}+1 \mathrm{~V}$ ）to $\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)$
－Input common－mode range includes V^{-}to（ $\mathrm{V}^{+}-1.4 \mathrm{~V}$ ）
－Wide input differential voltage $\pm 36 \mathrm{~V}$

REFERENCE

－Adjustable output voltage
1.2 V to 6.3 V
－Tight initial tolerance available $\pm 0.4 \%$
－Tolerant of load capacitance 0 to ∞

Applications

－Power supplies
－Signal conditioning

Order Number

Prime Military

LM611MJ
$\left(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\right)$
tested at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$
drift tested at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$
Prime Industrial
LM611AIN
$\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$
tested at $+25^{\circ} \mathrm{C}$
drift tested at $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$
Industrial
LM611IN
$\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\right)$
LM611IM
tested at $+25^{\circ} \mathrm{C}$
Commercial
LM611CN
$\left(0 \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right)$
LM611CM
tested at $+25^{\circ} \mathrm{C}$
Packages
J
N
M
Hermetic Dual－In－Line
Plastic Dual－In－Line
Plastic Surface Mount Narrow（ $0.15^{\prime \prime}$ ）

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage on any Pin Except Cathode Pin (referred to V^{-}pin) (Note 1)
$-0.3 \mathrm{~V}(\mathrm{Min})$
Military and Industrial 36 V
Commercial 32 V
Current through any Input Pin \& Cathode Pin $\quad \pm 20 \mathrm{~mA}$
Differential Input Voltage
Military and Industrial $\pm 36 \mathrm{~V}$
Commercial
Short Circuit Duration, Op Amp (Note 2)
Storage Temperature Range
Maximum Junction Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{O}$

Operating Junction Temperature Range $T_{\text {MIN }}$ to $T_{\text {MAX }}$

LM611M
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM611I
LM611C
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Soldering Information	
Dual-In-Line Package	
\quad Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Package Thermal Resistance (Note 3)

Hermetic DIP J08	$105^{\circ} \mathrm{C} / \mathrm{W}$
Molded DIP N08	$100^{\circ} \mathrm{C} / \mathrm{W}$
Molded SO M14 Narrow	$150^{\circ} \mathrm{C} / \mathrm{W}$
ESD Tolerance (Note 4)	
$120 \mathrm{pF}, 1.5 \mathrm{k} \Omega$	$\pm 1 \mathrm{kV}$
$200 \mathrm{pF},<1 \Omega$	$\pm 250 \mathrm{~V}$

Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, any package, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boidface type apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.

Parameter	Conditions		LM611M		LM611AI, LM611I		LM611C		Units
			$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 6) } \end{aligned}$	Design Limit (Note 7)	Tested Limit (Note 6)	Design Limit (Note 7)	Tested Limit (Note 6)	Design Limit (Note 7)	
Total Supply Current	$\mathrm{V}+$ Current, $\mathrm{R}_{\text {LOAD }}=\infty$, $4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V}$ Over T_{J} Range (Commercial 32V)	$\begin{aligned} & 210 \\ & 221 \end{aligned}$	$\begin{aligned} & 300 \\ & 320 \end{aligned}$		300	320	350	370	$\mu \mathrm{A}$ max $\mu A \max$
Supply Voltage Range	Meets Total Supply Current, and See V_{R} Change with V+ Change Test	$\begin{aligned} & 2.2 \\ & \mathbf{2 . 9} \end{aligned}$	$\begin{gathered} 2.8 \\ \mathbf{3} \end{gathered}$		2.8	3	2.8	3	V min V min
		$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 37 \\ & 36 \end{aligned}$		36	36	32	32	V max V max

OPERATIONAL AMPLIFIERS

Vos Over Supply	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V} \\ & \left(4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 32 \mathrm{~V} \text { Commercial }\right) \end{aligned}$	$\begin{array}{r} \pm 1.5 \\ \pm \mathbf{2 . 0} \end{array}$	$\begin{array}{r} \pm 3.5 \\ \pm \mathbf{5 . 0} \end{array}$	± 3.5	± 6.0	± 5.0	± 7.0	$m V$ max $m V$ max
VOS Over $V_{C M}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & \left(\mathrm{V}^{+}-1.4 \mathrm{~V}\right), \mathrm{V}^{+}=30 \mathrm{~V} \end{aligned}$	$\begin{array}{r} \pm 1.0 \\ \pm 1.5 \end{array}$	$\begin{array}{r} \pm 3.5 \\ \pm \mathbf{5 . 0} \end{array}$	± 3.5	± 6.0	± 5.0	± 7.0	mV max mV max
Average VOS Drift	(Note 8)	± 15	± 25	± 30				$\max _{\mu \mathrm{V} /{ }^{\circ} \mathrm{C}}$
Input Bias Current		$\begin{array}{r} -10 \\ -11 \end{array}$	$\begin{aligned} & \pm 20 \\ & \pm \mathbf{2 5} \end{aligned}$	± 25	± 30	± 35	± 40	nA max nA max
Input Offset Current	$\mathrm{l}_{\mathrm{OS}}=\mathrm{I}_{\mathrm{B}_{+} \mathrm{IN}}-\mathrm{I}_{\mathrm{B}-\mathrm{IN}}$	$\begin{gathered} \pm 0.2 \\ \pm \mathbf{0 . 3} \end{gathered}$	$\begin{aligned} & \pm 4 \\ & \pm 4 \end{aligned}$	± 4	± 5	± 4	± 5	nA max nA max
Average los Drift		± 4						$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Resistance	Differential: Common-Mode:	$\begin{aligned} & 1800 \\ & 3800 \end{aligned}$						$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$

Electrical Characteristics

These specifications apply for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, any package, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX. }}$. (Continued)

Parameter	Conditions		LM611M		LM611AI, LM611I		LM611C		Units
			Tested Limit (Note 6)		Tested Limit (Note 6)	Design Limit (Note 7)	Tested Limit (Note 6)		
Input Cap.	C-to-GND, Non-Inverting Input of Follower	5.7							pF
Voltage Noise	100 Hz , Input Referred	74							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Current Noise	100 Hz Bias Current Noise	58							$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
Common -Mode Reject Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.4 \mathrm{~V}\right) \\ & \mathrm{CMRR}=20 \log \left\{\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right\} \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & 85 \\ & \mathbf{8 0} \end{aligned}$		80	75	75	70	dB min dB min
Power Supply Reject Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \\ & \mathrm{PSRR}=20 \log \left\{\Delta \mathrm{~V}+/ \Delta \mathrm{V}_{\mathrm{OS}}\right\} \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 85 \\ & 80 \end{aligned}$		80	75	75	70	dB min dB min
Voltage Gain, Open Loop	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}+=30 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 25 \mathrm{~V}, \text { Open-Loop } \\ & A_{\mathrm{V}}=\left\|\Delta \mathrm{V}_{\text {OUT }} / \Delta \mathrm{V}_{\text {INDIFF }}\right\| \end{aligned}$	$\begin{gathered} 500 \\ 50 \end{gathered}$	$\begin{aligned} & 100 \\ & 40 \end{aligned}$		100	40	94	40	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
Slew Rate	$\mathrm{V}+=30 \mathrm{~V},($ Note 9)	$\begin{gathered} \pm 0.70 \\ \pm \mathbf{0 . 6 5} \end{gathered}$	$\begin{gathered} \pm 0.55 \\ \pm \mathbf{0 . 4 5} \end{gathered}$		± 0.55	± 0.45	± 0.50	± 0.45	$\begin{gathered} \mathrm{V} / \mu \mathrm{S} \\ \mathrm{~min} \end{gathered}$
Gain-Bandwidth	$\begin{aligned} & \text { Closed Loop Gain }=-1000, \\ & -3 \mathrm{~dB} \text { Frequency } \times \text { Gain, } \\ & C_{L}=50 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.52 \end{aligned}$							MHz
Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND} \\ & \mathrm{~V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { Commercial }) \end{aligned}$	$\left\|\begin{array}{c} v^{+}-1.4 \\ v^{+}-1.6 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & v^{+}-1.6 \\ & v^{-}-1.8 \end{aligned}\right.$		$V^{+}-1.7$	V+-1.9	$V^{+}-1.8$	V+ - 1.9	$\begin{aligned} & V_{\text {min }} \\ & V_{\text {min }} \end{aligned}$
Output Voltage Swing Low	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}+ \\ & \mathrm{V}^{+}=36 \mathrm{~V} \text { (32V Commercial) } \end{aligned}$	$\left\|\begin{array}{l} \mathbf{v}^{-}+0.8 \\ \mathbf{v}^{-}+0.9 \end{array}\right\|$	$\left\|\begin{array}{l} v^{-}+0.90 \\ \mathbf{v}^{-}+\mathbf{1 . 0} \end{array}\right\|$		$\mathrm{V}^{-}+0.90$	$\mathbf{v}-+1.0$	$\mathrm{V}^{-}+0.95$	$\mathrm{V}^{-}+1.0$	\vee max V max
lout Source	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}+-2.5 \mathrm{~V}, \mathrm{~V}_{+\mathbb{N}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathbb{N}}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -25 \\ & -15 \end{aligned}$	$\begin{aligned} & -20 \\ & -13 \end{aligned}$		-20	-13	-16	-13	mA max mA max
lout Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=1.6 \mathrm{~V}, \mathrm{~V}_{+\mathbb{I N}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathbb{N}}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{8} \end{gathered}$		14	11	13	11	mA min mA min
ShortCircuit	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{+\mathbb{I N}}=3 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathbb{I N}}=2 \mathrm{~V}, \text { Source: } \end{aligned}$	$\begin{aligned} & -30 \\ & -40 \end{aligned}$	$\begin{aligned} & -37 \\ & -46 \end{aligned}$		-40	-48	-43	-50	mA min mA min
Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{+\mathbb{I N}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathbb{I N}}=3 \mathrm{~V}, \text { Sink: } \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$		60	80	70	90	mA max mA max

Electrical Characteristics

These specifications apply for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, any package, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. (Continued)

	Conditions		LM611M		LM611AI, LM611]		LM611C		Units
Parameter				Design Limit (Note 7)	Tested Limit (Note 6)	Design Limit (Note 7)	Tested Limit (Note 6)	Design Limit (Note 7)	

VOLTAGE REFERENCE (Note 10)

Reference Voltage		1.244			$\begin{gathered} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \end{gathered}$		$\begin{aligned} & 1.2191 \\ & 1.2689 \\ & (\pm .2 \%) \\ & \hline \end{aligned}$		V min V max
Average Temp. Drift	(Note 11) LM611AI:	10	20		20	80		150	PPM $/{ }^{\circ} \mathrm{C}$ max
Average Time Drift	$\begin{aligned} & \mathrm{T}_{J}=40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 400 \\ 1000 \end{gathered}$							PPM/ kHr PPM/ kHr
Hysteresis	$\begin{aligned} & \text { Hyst }=\left(V_{r o}{ }^{\prime}-\mathrm{Vro}\right) / \Delta \mathrm{T}_{\mathrm{J}} \\ & \text { (Note 12) } \end{aligned}$	± 3.2							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}]}-\mathrm{V}_{\mathrm{R}[16 \mu \mathrm{~A}]}$	$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$		± 1	± 1.1	± 1	± 1.1	mV max $m V$ max
	$\begin{aligned} & \mathrm{V}_{\mathrm{R}[10 \mathrm{~mA}]}-\mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}]} \\ & \text { (Note 13) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		5	5.5	5	5.5	$m V$ max $m V$ max
Resistance	$\left.\Delta \mathrm{V}_{\mathrm{R}[10} \rightarrow 0.1 \mathrm{~mA}\right] / 9.9 \mathrm{~mA}:$ $\Delta \mathrm{V}_{\mathrm{R}}[100 \rightarrow 16 \mu \mathrm{~A}] / 84 \mu \mathrm{~A}:$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$		$\begin{gathered} 0.51 \\ 12 \end{gathered}$		$\begin{gathered} 0.56 \\ 13 \end{gathered}$		$\begin{gathered} 0.56 \\ 13 \end{gathered}$	Ω max Ω max
V_{R} Change with High V_{RO}	$\left.\left.\mathrm{V}_{\mathrm{R}[\mathrm{Vro}}=\mathrm{V} r\right]-\mathrm{V}_{\mathrm{R}[\mathrm{Vro}}=6.3 \mathrm{~V}\right]$ \{5.06V between Anode and FEEDBACK	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$		7	10	7	10	$m V$ max $m V$ max
V_{R} Change with V^{+} Change	$\begin{aligned} & \left.\mathrm{V}_{\mathrm{R}\left[\mathrm{~V}^{+}=5 \mathrm{~V}\right]}-\mathrm{V}_{\mathrm{R}[\mathrm{~V}}+=36 \mathrm{~V}\right] \\ & \left(\mathrm{V}^{+}=32 \mathrm{~V} \text { Commercial }\right) \end{aligned}$	$\begin{aligned} & -0.1 \\ & -0.1 \end{aligned}$	$\begin{gathered} \pm 1.2 \\ \pm 1.2 \end{gathered}$		± 1.2	± 1.3	± 1.2	± 1.3	$m V$ max $m V$ max
	$\left.\mathrm{V}_{\mathrm{R}\left[\mathrm{V}^{+}=5 \mathrm{~V}\right]}-\mathrm{V}_{\mathrm{R}\left[\mathrm{V}^{+}\right.}=3 \mathrm{~V}\right]$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$		± 1	± 1.5	± 1	± 1.5	$m V$ max $m V$ max
V_{R} Change with $V_{\text {ANODE }}$ Change	$\begin{aligned} & \mathrm{V}^{+}=\mathrm{V}^{+} \mathrm{MAX}^{2} \\ & \Delta \mathrm{~V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}}\left(@ \mathrm{~V}_{\text {ANODE }}=\right. \\ & \mathrm{V}^{-}=\mathrm{GND}^{2}-\mathrm{V}_{\mathrm{R}} \\ & \left(@ \mathrm{~V}_{\text {ANODE }}=\mathrm{V}^{+}-1.0 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 0.7 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 5.0 \end{aligned}$		1.5	4.0	1.6	3.0	mV max mV max
FEED- BACK Bias Current	$\mathrm{I}_{\mathrm{FB}} ; \mathrm{V}_{\text {ANODE }} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{array}{r} -22 \\ -29 \end{array}$	$\begin{aligned} & -35 \\ & -40 \end{aligned}$		-35	-40	-50	-55	nA min nA min
V_{R} Noise	10 Hz to $10,000 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{RO}}=\mathrm{V}_{\mathrm{R}}$	30							$\mu \mathrm{V}_{\text {RMS }}$

Electrical Characteristics Notes

Note 1: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltage on all pins. When any pin is pulled a diode drop below V^{-}, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 2: Simultaneous short-circuit of op amp and reference while using high voltage supplies may force junction temperature above maximum, and thus should not be continuous.
Note 3: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{j A}$. The given thermal resistances are worst-case for packages in sockets in still air. Nominal θ_{jA} are $95^{\circ} \mathrm{C} / \mathrm{W}$ for LM611 in J package, $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N package, $135^{\circ} \mathrm{C} / \mathrm{W}$ for the M package, for packages soldered to copper-clad board with dissipation from one op amp or reference power transistor.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typcial values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; values in boldface type apply to the military temperature range. These values represent the most likely parametric norm.
Note 6: Tested limits are guaranteed and 100\% tested.
Note 7: Design limits are guaranteed via correlation, but are not 100% tested.
Note 8: Offset voltage drift is calculated from the measurement of the offset voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift is $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$, where $\Delta \mathrm{V}_{\mathrm{OS}}$ is the lowest value subtracted from the highest, and $\Delta \mathrm{T}$ is the temperature range.
Note 9: Slew rate is measured with the op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5 V to 25 V , and the output voltage transition is sampled at 10 V and 20 V . For falling slew rate, the input voltage is driven from 25 V to 5 V , and the output voltage transition is sampled at 20 V and 10 V .
Note 10: V_{ro} is the Cathode-to-Anode voltage (1.2V to 6.3 V) and V_{r} is the Cathode-to-FEEDBACK voltage (1.2V).
Note 11: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in ppm $/{ }^{\circ} \mathrm{C}$, is $10^{6} \bullet \Delta V_{R} / V_{R\left[25^{\circ} C\right]}^{\bullet} \Delta T_{J}$, where ΔV_{R} is the lowest value subtracted from the highest, $V_{R\left[25^{\circ} \mathrm{C}\right]}$ is the value at $25^{\circ} \mathrm{C}$, and ΔT_{J} is the temperature range.
Note 12: Hysteresis is $\Delta V_{R O} / \Delta T_{J}$, where $\Delta V_{R O}$ is the change in $V_{R O}$ caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference, its junction temperature should be cycled in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 13: Low contact resistance is required for accurate measurement.

Simplified Schematic Diagrams

TL/H/9221-3

TL/H/9221-4

Typical Performance Characteristics (Reference)

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Reference Voltage vs Current and Temperature

Reference Voltage vs
Reference Current

Reference Voltage vs Current and Temperature
 REFERENCE CURRENT (A)

Reference Noise Voltage vs Frequency

Accelerated Reference Voltage Drift vs Time

Reference Voltage vs Reference Current

TL/H/9221-5
Feedback Current vs
Feedback-to-Anode Voltage

Reference Small-Signal Resistance vs Frequency

TL/H/9221-6

Typical Performance Characteristics (Reference) (Continued)
$T_{J}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Typical Performance Characteristics (Op Amps)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Typical Performance Characteristics (Op Amps) (Continued)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Typical Performance Characteristics (Op Amps) (Continued)
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}-\mathrm{Q}$ GND $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+/ 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Power Supply Current vs Power Supply Voltage

JUNCTION TEMPERATURE (${ }^{\circ}$)

Positive Power Supply Voltage Rejection Ratio

Input Offset Current vs
Junction Temperature

JUNCTION TEMPERATURE ${ }^{\circ} \mathrm{C}$)

Negative Power Supply Voltage Rejection Ratio

Input Bias Current vs Junction Temperature
 JUNCTION TEMPERATURE (${ }^{\circ} \mathrm{C}$)

TL/H/9221-11

Typical Performance Distributions

Average $V_{\text {Os }}$ Drift Commercial Temperature Range

Typical Performance Distributions (Continued)

Voltage Reference Broad-Band
Noise Distribution

Industrial Temperature Range

Average los Drift
Commercial Temperature Range

Op Amp Current Noise Distribution

TL/H/9221-13

Application Information

voltage reference

Reference Biasing

The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_{r} flowing in the 'forward' direction there is the familiar diode transfer function. I_{r} flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The applied voltage to the cathode may range from a diode drop below V^{-}to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7 V . A 6.3 V reference with $\mathrm{V}^{+}=3 \mathrm{~V}$ is allowed.

TL/H/9221-14
FIGURE 1. Voltages Associated with Reference (Current Source I_{r} is External)
The reference equivalent circuit reveals how V_{r} is held at the constant 1.2 V by feedback, and how the FEEDBACK pin passes little current.
To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the refer-
ence voltage. Varying that voltage, and so varying I_{r}, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate I_{r}.

TL/H/9221-15
FIGURE 2. Reference Equivalent Circuit

TL/H/9221-16
FIGURE 3. 1.2V Reference

Application Information (Continued)

Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range curve for capacitance val-ues-from $20 \mu \mathrm{~A}$ to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering.

Adjustable Reference

The FEEDBACK pin allows the reference output voltage, $\mathrm{V}_{\text {ro }}$, to vary from 1.24 V to 6.3 V . The reference attempts to hold V_{r} at 1.24 V . If V_{r} is above 1.24 V , the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then $V_{r o}=V_{r}=1.24 \mathrm{~V}$. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76 V for $\mathrm{V}_{\mathrm{ro}}=5 \mathrm{~V}$. Connecting a resistor across the constant V_{r} generates a current I=R1/Vr flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76 V is generated from FEEDBACK to Anode with R2=3.76/I. Keep I greater than one thousand times larger than FEEDBACK bias current for $<0.1 \%$ error- $1 \geq 32 \mu \mathrm{~A}$ for the military grade over the military temperature range ($1 \geq 5.5 \mu \mathrm{~A}$ for a 1% untrimmed error for a commercial part.)

TL/H/9221-17
FIGURE 4. Thevenin Equivalent of Reference with 5V Output

TL/H/9221-18

$$
\begin{gathered}
\mathrm{R} 1=\mathrm{Vr} / \mathrm{l}=1.24 / 32 \mu=39 \mathrm{k} \\
\mathrm{R} 2=\mathrm{R} 1\{(\mathrm{Vro} / \mathrm{Vr})-1\}=39 \mathrm{k}\{(5 / 1.24)-1)\}=118 \mathrm{k}
\end{gathered}
$$

FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5 V
Understanding that V_{r} is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V_{r} temperature coefficients may be synthesized.

TL/H/9221-19
FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) if R2 has Negative TC

TL/H/9221-20
FIGURE 7. Output Voltage has Positive TC if R1 has Negative TC

TL/H/9221-21
FIGURE 8. Diode in Series with R1 Causes Voltage Across R1 and R2 to be Proportional to Absolute Temperature (PTAT)
Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized.

TL/H/9221-22

$$
\mathrm{I}=\mathrm{Vr} / \mathrm{R} 1=1.24 / \mathrm{R} 1
$$

FIGURE 9. Current Source is Programmed by R1

TL/H/9221-23
FIGURE 10. Proportional-to-AbsoluteTemperature Current Source

TL/H/9221-24
FIGURE 11. Negative - TC Current Source

Hysteresis

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary-always check the data sheet for any given device. Do not assume that no specification means no hysteresis.

OPERATIONAL AMPLIFIER

The amp or the reference may be biased in any way with no effect on the other, except when a substrate diode conducts (see Guaranteed Electrical Characteristics Note 1). The amp may have inputs outside the common-mode range, may be operated as a comparator, or have all terminals floating with no effect on the reference (tying inverting input
to output and non-inverting input to V^{-}on unused amp is preferred). Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided.

Op Amp Output Stage

The op amp, like the LM124 series, has a flexible and relatively wide-swing output stage. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability:

1) Output Swing: Unloaded, the $42 \mu \mathrm{~A}$ pull-down will bring the output within 300 mV of V^{-}over the military temperature range. If more than $42 \mu \mathrm{~A}$ is required, a resistor from output to V^{-}will help. Swing across any load may be improved slightly if the load can be tied to V^{+}, at the cost of poorer sinking open-loop voltage gain.
2) Cross-over Distortion: The LM611 has lower cross-over distortion (a $1 \mathrm{~V}_{\mathrm{BE}}$ deadband versus $3 \mathrm{~V}_{\mathrm{BE}}$ for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion.
3) Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN r_{e} until the output resistance is that of the current limit $25 \Omega .200 \mathrm{pF}$ may then be driven without oscillation.

Op Amp Input Stage

The lateral PNP input transistors, unlike most op amps, have $\mathrm{BV}_{\mathrm{EBO}}$ equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.

Typical Applications

For typical applications, refer to the LM124 Op Amp and LM185 Adjustable Reference datasheets.

LM613A/LM613
 Dual Operational Amplifiers, Dual Comparators, and Adjustable Reference

General Description

The operational amplifiers are a versatile common-mode-to-the-negative-supply ("single supply") type similar to the LM124 series, but with improved slew rate, improved power bandwidth, reduced cross-over distortion, and low supply current even when driven beyond output swing limits. The comparators are also a common-mode-to-the-negative-supply type, similar to the LM139 series. The op amps and comparators have lateral PNP input transistors which enable low input currents for large differential input voltages and swings above V^{+}.
The voltage reference is a three-terminal shunt-type bandgap similar to the adjustable LM185 series, but with anode committed to the V^{-}terminal and improved voltage accuracy to $\pm 0.4 \%$. Two resistors program the reference from 1.24 V to 6.3 V . The reference features operation over a shunt current range of $16 \mu \mathrm{~A}$ to 20 mA , low dynamic impedance, broad capacitive load range, and cathode terminal voltage ranging from a diode-drop below V^{-}to above V^{+}. As a member of National's new Super-BlockTM family, the LM613 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Features (Guaranteed over temperature \& supply)
OP AMPS AND COMPARATORS
国 Low operating current
$1000 \mu \mathrm{~A}$
(op amps \& comparators)
$16 \mu \mathrm{~A}$ (reference)

- Large supply voltage range 4 V to 36 V
- Large output swing ($10 \mathrm{k} \Omega$ load)
$\left(V^{-}+1 V\right)$ to $\left(V^{+}-1.8 V\right)$
■ Input common-mode range $\quad \mathrm{V}^{-}$to $\left(\mathrm{V}^{+}-1.4 \mathrm{~V}\right)$
- Wide differential input voltage
$\pm 36 \mathrm{~V}$
REFERENCE
- Adjustable output voltage 1.2V to 6.3 V
- Tight initial tolerance available $\pm 0.4 \%$
- Tolerant of load capacitance

Applications

- Power supplies
- Signal conditioning

Connection Diagram

TL/H/9226-1
Top View
Order Number LM613IJ, LM613MJ, LM613CWM, LM613IWM, LM613AIN, LM613CN or LM613IN See NS Package Number J16A, M16B or N16A

Order Number

Prime Military

LM613MJ
Tested at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$
Drift tested at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$
Prime Industrial
LM613AIN
Tested at $25^{\circ} \mathrm{C}$
Drift tested at $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$

Industrial	LM613IN
Tested at $+25^{\circ} \mathrm{C}$	LM613IJ
	LM613IWM
Commercial	LM613CN
Tested at $+25^{\circ} \mathrm{C}$	LM613CWM

Packages

J
N
WM

Hermetic Dual-In-Line
Plastic Dual-In-Line Plastic Surface Mount Wide (0.3")

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Voltage on Any Pin Except Cathode Pin (referred to V - pin) (Note 2)
$\begin{array}{lr}\text { (Note 3) } & -0.3 \mathrm{~V}(\mathrm{Min}) \\ \text { LM613M, LM613AI, LM613I } & 36 \mathrm{~V} \\ \text { LM613C } & 32 \mathrm{~V} \\ \text { Current through Any Input Pin \& Cathode Pin } & \pm 20 \mathrm{~mA} \\ \text { Differential Input Voltage } & \\ \text { LM613M, LM613AI, LM613I } & \pm 36 \mathrm{~V} \\ \text { LM613C } & \pm 32 \mathrm{~V} \\ \text { Short Circuit Duration, Op Amp (Note 4) } & \text { Continuous } \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Maximum Junction Temperature } & 150^{\circ} \mathrm{C}\end{array}$

Soldering Information
J, N Packages
Soldering (10 seconds)
$260^{\circ} \mathrm{C}$
WM Package Vapor Phase (60 seconds)
$215^{\circ} \mathrm{C}$ Infrared (15 seconds) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Thermal Resistance, Junction-to-Ambient (Note 5)

LM613MJ, LM613IJ	$100^{\circ} \mathrm{C} / \mathrm{W}$
LM613AIN, LM613IN, LM613CN	$95^{\circ} \mathrm{C} / \mathrm{W}$
LM613IWM, LM613CWM	$144^{\circ} \mathrm{C} / \mathrm{W}$
ESD Tolerance (Note 6)	$\pm 1 \mathrm{kV}$

Operating Junction Temperature Range $T_{\text {MIN }}$ to $T_{\text {MAX }}$

LM613M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM613I	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM613C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Characteristics These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=\mathrm{V}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2$, $I_{R}=100 \mu A$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} C$; limits in boldface type apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 7) } \end{gathered}$	LM613M		LM613AI, LM613I		LM613C		Units
			Tested Limit (Note 8)	Design Limit (Note 9)	Tested Limit (Note 8)	Design Limit (Note 9)	Tested Limit (Note 8)	Design Limit (Note 9)	
Total Supply Current	V^{+}Current, $\mathrm{R}_{\text {LOAD }}=\infty$, $4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V}$ (32V for LM613C)	$\begin{aligned} & 450 \\ & 550 \end{aligned}$	$\begin{gathered} 900 \\ \mathbf{1 0 0 0} \end{gathered}$		940	1000	1000	1070	$\mu \mathrm{A}$ (Max) $\mu \mathrm{A}$ (Max)
Supply Voltage Range	Total Supply Current Specification is Met	$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$		2.8	3	2.8	3	V (Min) V (Min)
		$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$		36	36	32	32	V (Max) V (Max)

OPERATIONAL AMPLIFIERS

Offset Voltage	$\begin{aligned} & 4 V \leq V^{+} \leq 36 V \\ & (32 V \text { for } L M 613 C) \end{aligned}$	$\begin{array}{r} \pm 1.5 \\ \pm 2.0 \end{array}$	$\begin{array}{r} \pm 3.5 \\ \pm \mathbf{5 . 0} \end{array}$	± 3.5	± 6.0	± 5.0	± 7.0	mV (Max) mV (Max)
Offset Voltage over V_{CM}	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.4 \mathrm{~V}\right), \\ & \mathrm{V}^{+}=30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm \mathbf{1 . 5} \end{aligned}$	$\begin{array}{r} \pm 3.5 \\ \pm \mathbf{5 . 0} \end{array}$	± 3.5	± 6.0	± 5.0	± 7.0	mV (Max) mV (Max)
Average Offset Voltage Drift	LM613M and LM613AI Op Amp 3 Only, (Note 10)	15	25	30				$\begin{gathered} \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ \text { (Max) } \end{gathered}$
Input Bias Current		$\begin{array}{r} -10 \\ -11 \end{array}$	$\begin{aligned} & \pm 20 \\ & \pm 25 \end{aligned}$	± 25	± 30	± 35	± 40	nA (Max) nA (Max)
Input Offset Current		$\begin{gathered} \pm 0.2 \\ \pm 0.3 \end{gathered}$	$\begin{aligned} & \pm 4 \\ & \pm 4 \end{aligned}$	± 4	± 5	± 4	± 5	nA (Max) nA (Max)
Average Offset Current Drift		± 4						$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Resistance		>1000						$\mathrm{M} \Omega$
Input Capacitance	Differential Non-Inv. Input to GND	$\begin{gathered} 0.6 \\ 6 \\ \hline \end{gathered}$						$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Electrical Characteristics These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2$, $I_{R}=100 \mu A$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. (Continued)

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 7) } \end{gathered}$	L.M613M		LM613AI, LM613I		LM613C		Units
			Tested Limit (Note 8)	Design Limit (Note 9)	Tested Limit (Note 8)	Design Limit (Note 9)	Tested Limit (Note 8)	Design Limit (Note 9)	
OPERATIONAL AMPLIFIERS (Continued)									
Voltage Noise	$\mathrm{f}=100 \mathrm{~Hz}$	74							$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Current Noise	$f=100 \mathrm{~Hz}$	58							$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.4 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & 85 \\ & 80 \end{aligned}$		80	75	75	70	$\begin{aligned} & \text { dB (Min) } \\ & \text { dB (Min) } \end{aligned}$
Power Supply Rejection Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2 \end{aligned}$	$\begin{aligned} & 100 \\ & 90 \end{aligned}$	$\begin{aligned} & 85 \\ & 80 \end{aligned}$		80	75	75	70	$\begin{aligned} & \mathrm{dB} \text { (Min) } \\ & \mathrm{dB} \text { (Min) } \\ & \hline \end{aligned}$
Voltage Gain, Open Loop	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \\ & \mathrm{~V}^{+}=30 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{OUT}} \leq 25 \mathrm{~V} \end{aligned}$	500 50	$\begin{aligned} & 100 \\ & 40 \end{aligned}$		100	40	94	40	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & (\mathrm{Min}) \end{aligned}$
Slew Rate	$\mathrm{V}^{+}=30 \mathrm{~V}$ (Note 11)	$\begin{gathered} \pm 0.70 \\ \pm \mathbf{0 . 6 5} \end{gathered}$	$\begin{gathered} \pm 0.55 \\ \pm \mathbf{0 . 4 5} \end{gathered}$		± 0.55	± 0.45	± 0.50	± 0.45	$\mathrm{V} / \mu \mathrm{s}$ (Min)
Gain-Bandwidth Product	$C_{L}=50 \mathrm{pF}$	$\begin{aligned} & 0.8 \\ & 0.5 \end{aligned}$							$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Output Voltage Swing	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } G N D, \\ & V^{+}=36 \mathrm{~V} \\ & (32 \mathrm{~V} \text { for } \mathrm{LM} 613 C) \end{aligned}$	\|$v^{+}-1.4$ $\mathbf{v}^{+}-1.6$	$\left\lvert\, \begin{aligned} & v^{+}-1.6 \\ & \mathbf{v}^{+}-1.8 \end{aligned}\right.$		$v^{+}-1.7$	$\mathbf{v}^{+}-1.9$	$\mathrm{v}^{+}-1.8$	$\mathbf{v}^{+}-1.9$	$\begin{aligned} & V(\text { Min }) \\ & V(\text { Min }) \end{aligned}$
	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+}, \\ & \mathrm{V}^{+}=36 \mathrm{~V} \\ & (32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}) \end{aligned}$	$\left\|\begin{array}{c} \mathbf{v}^{-}+0.8 \\ \mathbf{v}^{-}+\mathbf{0 . 9} \end{array}\right\|$	$\left\|\begin{array}{l} v^{-}+0.90 \\ \mathbf{v}^{-}+\mathbf{1 . 0} \end{array}\right\|$		$\mathrm{V}^{-}+0.90$	$\left\|\mathbf{v}^{-}+1.0\right\|$	$\mathrm{V}^{-}+0.95$	$\mathbf{v}^{-}+1.0$	$\begin{aligned} & V(\text { Max }) \\ & V(\text { Max }) \end{aligned}$
Output Current (Sourcing)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}-2.5 \mathrm{~V}, \\ & \mathrm{~V}_{+\mathbb{N}}=0 \mathrm{~V} \\ & \mathrm{~V}_{-\mathbb{N}}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{array}{r} -25 \\ -15 \end{array}$	$\begin{array}{r} -20 \\ -13 \end{array}$		-20	-13	-16	-13	$\begin{aligned} & \mathrm{mA}(\text { Max }) \\ & \mathrm{mA}(\text { Max }) \end{aligned}$
(Sinking)	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=1.6 \mathrm{~V}, \\ & \mathrm{~V}_{+\mathbb{N}}=0 \mathrm{~V} \\ & \mathrm{~V}_{-\mathbb{I N}}=-0.3 \mathrm{~V} \end{aligned}$	17 9	$\begin{gathered} 15 \\ 8 \end{gathered}$		14	11	13	11	mA (Min) mA (Min)
Output ShortCircuit Current (Sourcing) (Sinking)	$\begin{aligned} & V_{\text {OUT }}=0 V \\ & V_{+I N}=3 V \\ & V_{-I N}=2 V \end{aligned}$	$\begin{array}{r} -30 \\ -40 \end{array}$	$\begin{aligned} & -37 \\ & -46 \end{aligned}$		-40	-48	-43	-50	$\mathrm{mA}(\mathrm{Min})$ mA (Min)
	$\begin{aligned} & V_{\text {OUT }}=5 V \\ & V_{+I N}=2 V \\ & V_{-I N}=3 V \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$		60	80	70	90	$\begin{aligned} & \mathrm{mA}(\text { Max) } \\ & \mathrm{mA}(M a x) \end{aligned}$
COMPARATORS									
Offset Voltage	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V} \\ & (32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}), \\ & \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega \end{aligned}$	$\begin{array}{r} \pm 1.0 \\ \pm 2.0 \end{array}$	$\begin{array}{r} \pm 2.5 \\ \pm 4.0 \end{array}$		± 3.0	± 6.0	± 5.0	± 7.0	$\begin{aligned} & \mathrm{mV} \text { (Max) } \\ & \mathrm{mV} \text { (Max) } \end{aligned}$
Offset Voltage over V_{CM}	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}}\left(\mathrm{~V}^{+}-1.4 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega \end{aligned}$	$\begin{array}{r} \pm 1.0 \\ \pm 1.5 \end{array}$	$\begin{array}{r} \pm 2.5 \\ \pm 4.0 \end{array}$		± 3.0	± 6.0	± 5.0	± 7.0	$\begin{array}{\|l\|l} \mathrm{mV} \text { (Max) } \\ \mathrm{mV} \text { (Max) } \end{array}$
Average Offset Voltage Drift		15							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ (Max)
Input Bias Current		$\begin{array}{r} -5 \\ -8 \end{array}$	$\begin{gathered} \pm 20 \\ \pm 25 \end{gathered}$		± 25	± 30	± 35	± 40	nA (Max) nA (Max)

Electrical Characteristics These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2$, $I_{R}=100 \mu A$, FEEDBACK pin shorted to GND, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. (Continued)

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 7) } \end{gathered}$	LM613M		LM613AI, LM613I		LM613C		Units
			$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 8) } \\ & \hline \end{aligned}$	Design Limit (Note 9)	Tested Limit (Note 8)			Design Limit (Note 9)	
COMPARATORS (Continued)									
Input Offset Current		$\begin{aligned} & \pm 0.2 \\ & \pm \mathbf{0 . 3} \end{aligned}$	$\begin{aligned} & \pm 4 \\ & \pm 4 \end{aligned}$		± 4	± 5	± 4	± 5	nA (Max) nA (Max)
Voltage Gain	$R_{L}=10 \mathrm{k} \Omega$ to 36 V (32V for LM613C), $2 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 27 \mathrm{~V}$	$\begin{aligned} & 500 \\ & 100 \end{aligned}$							$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{+} \mathbb{N N}=1.4 \mathrm{~V}, \\ & \mathrm{~V}_{-} \mathbb{N}=\mathrm{TTL} \text { Swing, } \\ & \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$							$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{+\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 13 \end{aligned}$	$\begin{gathered} 12 \\ 8 \end{gathered}$		10	8	10	8	mA (Min) mA (Min)
	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	$\begin{array}{r} 2.8 \\ 2.4 \\ \hline \end{array}$	$\begin{aligned} & 1.0 \\ & \mathbf{0 . 8} \\ & \hline \end{aligned}$		1.0	0.5	0.8	0.5	mA (Min) mA (Min)
Output Leakage Current	$\begin{aligned} & V_{+\mathbb{N}}=1 V, \\ & V_{-\mathbb{N}}=0 V \\ & V_{\text {OUT }}=36 V \\ & (32 V \text { for } L M 613 C) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		10		10		$\mu \mathrm{A}$ (Max) $\mu \mathrm{A}$ (Max)

VOLTAGE REFERENCE (Note 12)

Reference Voltage		1.244					$\begin{aligned} & 1.2191 \\ & 1.2689 \\ & (\pm 2 \%) \\ & \hline \end{aligned}$		V (Min) V (Max)
Average Temp. Drift	(Note 13) LM613AI	10	20		20	80		150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Max)
Average Time Drift	$\begin{aligned} & T_{J}=40^{\circ} \mathrm{C} \\ & T_{J}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} 400 \\ 1000 \\ \hline \end{gathered}$							ppm/kH ppm/kH
Hysteresis	(Note 14)	± 3.2							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{R} Change with Current	$\mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}]}-\mathrm{V}_{\mathrm{R}}[16 \mu \mathrm{~A}]$	$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$		± 1	± 1.1	± 1	± 1.1	$m V(M a x)$ mV (Max)
	$\begin{aligned} & \mathrm{V}_{\mathrm{R}[10 \mathrm{~mA}]}-\mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}]} \\ & \text { (Note 15) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		5	5.5	5	5.5	mV (Max) mV (Max)
Resistance	$\begin{aligned} & \Delta V_{R[10 \rightarrow 0.1 ~ m A]} / 9.9 \mathrm{~mA} \\ & \left.\Delta V_{\mathrm{R}[100} \rightarrow 16 \mu \mathrm{~A}\right] / 84 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$		$\begin{gathered} 0.51 \\ 12 \end{gathered}$		$\begin{gathered} 0.56 \\ 13 \end{gathered}$		$\begin{gathered} 0.56 \\ 13 \end{gathered}$	$\begin{aligned} & \Omega \text { (Max) } \\ & \Omega \text { (Max) } \end{aligned}$
V_{R} Change with High VRO	$\left.\mathrm{V}_{\mathrm{R}[\mathrm{Vro}}=\mathrm{V}_{\mathrm{r}]}-\mathrm{V}_{\mathrm{R}[\mathrm{Vro}}=6.3 \mathrm{~V}\right]$ (5.06V between Anode and FEEDBACK)	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$		7	10	7	10	mV (Max) mV (Max)
V_{R} Change with V^{+}Change	$\begin{aligned} & \mathrm{V}_{\mathrm{R}[\mathrm{~V}+=5 \mathrm{~V}]}-\mathrm{V}_{\mathrm{R}[\mathrm{~V}+=36 \mathrm{~V}]} \\ & \left(\mathrm{V}^{+}=32 \mathrm{~V} \text { for } \mathrm{LM} 613 \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{gathered} \pm 1.2 \\ \pm 1.2 \end{gathered}$		± 1.2	± 1.3	± 1.2	± 1.3	$m V(M a x)$ mV (Max)
	$\mathrm{V}_{\mathrm{R}}[\mathrm{V}+=5 \mathrm{~V}]-\mathrm{V}_{\mathrm{R}}[\mathrm{V}+=3 \mathrm{~V}]$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$		± 1	± 1.5	± 1	± 1.5	$m V$ (Max) mV (Max)
FEEDBACK Bias Current	$\mathrm{V}_{\text {ANODE }} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & -22 \\ & -29 \end{aligned}$	$\begin{array}{r} -35 \\ -40 \end{array}$		-35	-40	-50	-55	nA (Min) nA (Min)
Voltage Noise	$\begin{aligned} & \mathrm{BW}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{RO}}=\mathrm{V}_{\mathrm{R}} \end{aligned}$	30							$\mu \mathrm{V}_{\text {RMS }}$

Electrical Characteristics (Continued)

Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage above V^{+}is allowed. As long as one input pin voltage remains inside the common-mode range, the comparator will deliver the correct output. Note 3: More accurately, it is excessive current flow, with resulting excess heating, that limits the voltages on all pins. When any pin is pulled a diode drop below V^{-}, a parasitic NPN transistor turns ON. No latch-up will occur as long as the current through that pin remains below the Maximum Rating. Operation is undefined and unpredictable when any parasitic diode or transistor is conducting.
Note 4: Simultaneous short-circuit of multiple op amps or comparators while using high supply voltages may force junction temperature above maximum, and thus should not be continuous.
Note 5: Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{J A}$. The given thermal resistances are worst-case for packages in sockets in still air. Nominal $\theta_{J A}$ are $85^{\circ} \mathrm{C} / \mathrm{W}$ for LM613 in J package, $80^{\circ} \mathrm{C} / \mathrm{W}$ for the N package, and $135^{\circ} \mathrm{C} / \mathrm{W}$ for the WM package, for packages soldered to copper-clad board with dissipation from one op amp, comparator, or reference output transistor.
Note 6: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 7: Typical values in standard typeface are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$; values in boldface type apply to the military temperature range. These values represent the most likely parametric norm.
Note 8: Tested limits are guaranteed and 100% tested.
Note 9: Design limits are guaranteed via correllation, but are not 100% tested.
Note 10: Offset voltage drift is calculated from the measurement of the offset voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift is $\Delta V_{O S} / \Delta T$, where $\Delta V_{O S}$ is the lowest value subtracted from the highest, and ΔT is the temperature range.
Note 11: Slew rate is measured with the op amp in a voltage follower configuration. For rising slew rate, the input voltage is driven from 5 V to 25 V , and the output voltage transition is sampled at 10 V and 20 V . For falling slew rate, the input voltage is driven from 25 V to 5 V , and the output voltage transistion is sampled at 20 V and 10 V .
Note 12: V_{RO} is the Cathode-to-Anode voltage (i.e. the reference output voltage, 1.2 V to 6.3 V). V_{R} is the Cathode-to-FEEDBACK voltage (nominally 1.2 V).
Note 13: Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes. The drift, in ppm $/{ }^{\circ} \mathrm{C}$, is

Note 14: Hysteresis is $\Delta V_{R O} / \Delta T_{J}$, where $\Delta V_{R O}$ is the change in $V_{R O}$ caused by a change in T_{J}, after the reference has been "dehysterized". To dehysterize the reference, its junction temperature should be cycled in the following pattern, spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$.
Note 15: Low contact resistance is required for accurate measurement.

Simplified Schematic Diagrams

TL/H/9226-3

T1/4

Typical Performance Characteristics (Reference)

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Typical Performance Characteristics (Reference) (Continued)

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Typical Performance Characteristics (Op Amps)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Junction temperature (c)
TL/H/9226-7

Typical Performance Characteristics (Op Amps) (Continued)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Follower Small-Signal Frequency Response

TL/H/9226-8

Typical Performance Characteristics (Op Amps) (Continued)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Typical Performance Characteristics (Comparators)

TL/H/9226-10

TL/H/9226-11

Typical Performance Characteristics (Comparators) (Continued)

TL/H/9226-12

TL/H/9226-14

TL/H/9226-16

Comparator
Response Times-Inverting
Input, Negative Transition

TL/H/9226-13

Comparator
Response Times-Non-Inverting Input, Negative Transition

TL/H/9226-15

Typical Performance Characteristics (Comparators) (Continued)

TL/H/9226-18

Typical Performance Distributions

TL/H/9226-19

TL/H/9226-21

TL/H/9226-23

Typical Performance Distributions (Continued)

Average los Drift Commercial Temperature Range

TL/H/9226-25

Op Amp Voltage Noise Distribution

TL/H/9226-27

Op Amp Current
Noise Distribution

TL/H/9226-28

Application Information

 VOLTAGE REFERENCE
Reference Biasing

The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_{r} flowing in the "forward" direction there is the familiar diode transfer function. I_{r} flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may swing from a diode drop below V^{-}to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7 V . A 6.3 V reference with $\mathrm{V}^{+}=$ 3 V is allowed.

TL/H/9226-29
FIGURE 1. Voltage Associated with Reference (current source I_{r} is external)

Application Information (Continued)

The reference equivalent circuit reveals how V_{r} is held at the constant 1.2 V by feedback, and how the FEEDBACK pin passes little current.
To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying I_{r}, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate $I_{\text {r }}$.

TL/H/9226-30
FIGURE 2. Reference Equivalent Circuit

TL/H/9226-31
FIGURE 3. 1.2V Reference
Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from $20 \mu \mathrm{~A}$ to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering.

Adjustable Reference

The FEEDBACK pin allows the reference output voltage, $\mathrm{V}_{\text {ro }}$, to vary from 1.24 V to 6.3 V . The reference attempts to hold V_{r} at 1.24 V . If V_{r} is above 1.24 V , the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then $V_{r o}=V_{r}=1.24 \mathrm{~V}$. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76 V for $\mathrm{V}_{\mathrm{ro}}=5 \mathrm{~V}$. Connecting a resistor across the constaint V_{r} generates a current $I=R 1 / V_{r}$ flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76 V is generated from FEEDBACK to Ancde with R2=3.76/I. Keep I greater than one thousand times larger than FEEDBACK bias current for $<0.1 \%$ error- $1 \geq 32 \mu \mathrm{~A}$ for the military grade over the military temperature range ($I \geq 5.5 \mu \mathrm{~A}$ for a 1% untrimmed error for a commercial part).

TL/H/9226-32
FIGURE 4. Thevenin Equivalent of Reference with 5V Output

TL/H/9226-33
$R 1=V r / I=1.24 / 32 \mu=39 k$
$R 2=R 1\{(V r o / V r)-1\}=39 k\{(5 / 1.24)-1)\}=118 k$

FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5 V

Understanding that V_{r} is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V_{r} temperature coefficients may be synthesized.

TL/H/9226-34
FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) if R2 has Negative TC

Application Information (Continued)

TL/H/9226-35
FIGURE 7. Output Voltage has Positive TC if R1 has Negative TC

TL/H/9226-36
FIGURE 8. Diode in Series with R1 Causes Voltage Across R1 and R2 to be Proportional to Absolute Temperature (PTAT)
Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized.

TL/H/9226-37

$\mathrm{I}=\mathrm{Vr} / \mathrm{R} 1=1.24 / \mathrm{R} 1$

FIGURE 9. Current Source is Programmed by R1

TL/H/9226-38
FIGURE 10. Proportional-to-Absolute-Temperature Current Source

TL/H/9226-39
FIGURE 11. Negative-TC Current Source

Reference Hysteresis

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products varyalways check the data sheet for any given device. Do not assume that no specification means no hysteresis.

OPERATIONAL AMPLIFIERS AND COMPARATORS

Any amp, comparator, or the reference may be biased in any way with no effect on the other sections of the LM613, except when a substrate diode conducts (see Electrical Characteristics Note 1). For example, one amp input may be outside the common-mode range, another amp may be operating as a comparator, and all other sections may have all terminals floating with no effect on the others. Tying inverting input to output and non-inverting input to V^{-}on unused amps is preferred. Unused comparators should have non-inverting input and output tied to V^{+}, and inverting input tied to V^{-}. Choosing operating point that cause oscillation, such as driving too large a capacitive load, is best avoided.

Op Amp Output Stage

These op amps, like the LM124 series, have flexible and relatively wide-swing output stages. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability:

1) Output Swing: Unloaded, the $42 \mu \mathrm{~A}$ pull-down will bring the output within 300 mV of V^{-}over the military temperature range. If more than $42 \mu \mathrm{~A}$ is required, a resistor from output to V^{-}will help. Swing across any load may be improved slightly if the load can be tied to V^{+}, at the cost of poorer sinking open-loop voltage gain.

Application Information (Continued)

2) Cross-Over Distortion: The LM613 has lower cross-over distortion (a $1 \mathrm{~V}_{\mathrm{BE}}$ deadband versus $3 \mathrm{~V}_{\mathrm{BE}}$ for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion.
3) Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN r_{e} until the output resistance is that of the current limit $25 \Omega .200 \mathrm{pF}$ may then be driven without oscillation.

Comparator Output Stage

The comparators, like the LM139 series, have open-collector output stages. A pull-up resistor must be added from each output pin to a positive voltage for the output transistor to switch properly. When the output transistor is OFF, the output voltage will be this external positive voltage.

For the output voltage to be under the TTL-low voltage threshold when the output transistor is ON, the output current must be less than 8 mA (over temperature). This impacts the minimum value of pull-up resistor.
The offset voltage may increase when the output voltage is low and the output current is less than $30 \mu \mathrm{~A}$. Thus, for best accuracy, the pull-up resistor value should be low enough to allow the output transistor to sink more than $30 \mu \mathrm{~A}$.

Op Amp and Comparator Input Stage

The lateral PNP input transistors, unlike those of most op amps, have $\mathrm{BV}_{\text {EBO }}$ equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.

Typical Applications

For typical applications, refer to the LM124 Op Amp, LM139 Comparator, and LM185 Adjustable Reference datasheets.

National
Semiconductor

LM614A/LM614 Quad Operational Amplifiers and Adjustable Reference

General Description

The quad operational amplifiers are a versatile common-mode-to-the-negative-supply ("single supply") type similar to the LM124 series, but with improved slew rate, improved power bandwidth, reduced cross-over distortion, and low supply current even while driven beyond swing limits. Lateral PNP input transistors enable low input currents for large differential input voltages and swings above V^{+}.
The voltage reference is a three-terminal shunt-type bandgap similar to the adjustable LM185 series, but with anode committed to the V^{-}terminal and improved voltage accuracy to $\pm 0.4 \%$. Two resistors program the reference from 1.24 V to 6.3 V . The reference features operation over a shunt current range of $16 \mu \mathrm{~A}$ to 20 mA , low dynamic impedance, broad capacitive load range, and cathode terminal voltage ranging from a diode-drop below V^{-}to above V^{+}. As a member of National's new Super-BlockTM family, the LM614 is a space-saving monolithic alternative to a multichip solution, offering a high level of integration without sacrificing performance.

Connection Diagram

TL/H/9326-1

Top View

Order Number LM614IJ, LM614MJ, LM614CWM, LM614IWM, LM614AIN, LM614CN or LM614IN See NS Package Number J16A, M16B or N16A
w,

Features (Guaranteed over temperature \& supply)
Op Amps
■ Low operating current $250 \mu \mathrm{~A}$ (per op amp)
$16 \mu \mathrm{~A}$ (reference)

- Large supply voltage range

4 V to 36 V

- Large output swing

$$
\text { (10k load) } \quad\left(\mathrm{V}^{-}+1 \mathrm{~V}\right) \text { to }\left(\mathrm{V}^{+}-1.8 \mathrm{~V}\right)
$$

■ Input common-mode includes $\quad \mathrm{V}^{-}$to $\left(\mathrm{V}^{+}-1.4 \mathrm{~V}\right)$
\square Wide input differential voltage $\pm 36 \mathrm{~V}$

- Standard quad op amp pin-out

Reference

- Adjustable output voltage 1.2 V to 6.3 V
- Tight initial tolerance available $\pm 0.4 \%$
- Tolerant of load capacitance

0 to ∞

Applications

- Power supplies
- Signal conditioning

Order Number

Prime Military LM614MJ
Tested at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$
Drift tested at $-55^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$
Prime Industrial
LM614AIN
Tested at $+25^{\circ} \mathrm{C}$
Drift tested at $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}$

Industrial	LM614IN
Tested at $+25^{\circ} \mathrm{C}$	LM614IJ
	LM614IWM
Commerical	LM614CN
Tested at $+25^{\circ} \mathrm{C}$	LM614CWM
Packages	
J	Hermetic Dual-In-Line
N	Plastic Dual-In-Line
WM	Plastic Surface Mount Wide $\left(0.3^{\prime \prime}\right)$

Absolute Maximum Ratings	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Voltage on Any Pin except Cathode Pin	
(referred to V-pin)	
(Note 1)	-0.3 V (Min)
Military and Industrial	36 V
Commercial	32 V
Current through Any Input Pin	
and Cathode Pin	$\pm 20 \mathrm{~mA}$
Differential Input Voltage	
Military and Industrial	$\pm 36 \mathrm{~V}$
Commercial	$\pm 32 \mathrm{~V}$
Short Circuit Duration, Op Amp (Note 2)	Continuous
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T Min to $\mathrm{T}_{\mathrm{Max}}$
LM614M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM614I	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM614C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Soldering Information Dual-In-Line Package (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
\quad Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Package Thermal Resistance (Note 3)	
Hermetic DIP J16	$100^{\circ} \mathrm{C} / \mathrm{W}$
Molded DIP N16	$95^{\circ} \mathrm{C} / \mathrm{W}$
Molded SO M16 Wide	$140^{\circ} \mathrm{C} / \mathrm{W}$
ESD Tolerance (Note 4)	
$120 \mathrm{pF}, 1.5 \mathrm{k} \Omega$	$\pm 1 \mathrm{kV}$
$200 \mathrm{pF},<1 \Omega$	$\pm 250 \mathrm{~V}$

Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.

Electrical Characteristics

These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, any package, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply for $\mathbf{T}_{\text {Min }}$ to $\mathbf{T}_{\text {Max }}$

Parameter	Conditions		LM614M		LM614AI, LM614I		LM614C		Units
			Tested Limit (Note 6)	Design Limit (Note 7)	Tested Limit (Note 6)	Design Limit (Note 7)	Tested Limit (Note 6)	Design Limit (Note 7)	
Total Supply Current	V^{+}Current, RLOAD $=\infty$, $4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V}$ Over T_{J} Range (Commercial 32V)	$\begin{aligned} & 450 \\ & \mathbf{5 5 0} \end{aligned}$	$\begin{gathered} 900 \\ \mathbf{1 0 0 0} \end{gathered}$		940	1000	1000	1070	$\mu \mathrm{A}$ max $\mu A \max$
Supply Voltage	Meets Total Supply Current, and See V_{R} Change with V^{+}Change Test	$\begin{aligned} & 2.2 \\ & 2.9 \end{aligned}$	$\begin{gathered} 2.8 \\ 3 \end{gathered}$		2.8	3	2.8	3	V min V min
Range		$\begin{aligned} & 46 \\ & 43 \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$		36	36	32	32	$V_{\text {max }}$ $V_{\text {max }}$

OPERATIONAL AMPLIFIERS

VOS Over Supply	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 36 \mathrm{~V} \\ & \left(4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 32 \mathrm{~V} \text { Commercial }\right) \end{aligned}$	$\begin{array}{r} \pm 1.5 \\ \pm \mathbf{2 . 0} \end{array}$	$\begin{array}{r} \pm 3.5 \\ \pm 5.0 \end{array}$	± 3.5	± 6.0	± 5.0	± 7.0	$m V$ max $m V \max$
V_{OS} Over $V_{C M}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { through } \mathrm{V}_{\mathrm{CM}}= \\ & \left(\mathrm{V}^{+}-1.4 \mathrm{~V}\right), \mathrm{V}^{+}=30 \mathrm{~V} \end{aligned}$	$\begin{array}{r} \pm 1.0 \\ \pm 1.5 \end{array}$	$\begin{array}{r} \pm 3.5 \\ \pm 5.0 \end{array}$	± 3.5	± 6.0	± 5.0	± 7.0	$m V$ max $m V$ max
Average VOS Drift	LM614M \& AI, Op Amp 3 Only (Note 8)	15	25	30				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ max
Input Bias Current	$\mathrm{I}_{\mathrm{B}_{+} \mathrm{IN}}$ and $\mathrm{I}_{\mathrm{B}_{-} \mathrm{IN}}$	$\begin{array}{r} -10 \\ -11 \end{array}$	$\begin{aligned} & \pm 20 \\ & \pm 25 \end{aligned}$	± 25	± 30	± 35	± 40	nA max nA max
Input Offset Current	$\mathrm{los}=\mathrm{I}_{\mathrm{B}+\mathrm{IN}}-\mathrm{I}_{\mathrm{B}-\mathrm{IN}}$	$\begin{gathered} \pm 0.2 \\ \pm 0.3 \end{gathered}$	$\begin{aligned} & \pm 4 \\ & \pm 4 \end{aligned}$	± 4	± 5	± 4	± 5	nA max nA max
Average los Drift		± 4						$\mathrm{pA} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics (Continued) These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, any package, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply for $\mathrm{T}_{\text {Min }}$ to $\mathbf{T}_{\text {Max }}$.									
Parameter	Conditions	$\begin{gathered} \text { Typ- } \\ \text { ical } \\ \text { (Note 5) } \end{gathered}$	LM614M		LM614AI, LM614I		LM614C		Units
Input Resist- ance	Differential: Common-Mode:	$\begin{aligned} & 1800 \\ & 3800 \end{aligned}$							$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
Input Cap.	C-to-GND, Non-Inverting Input of Follower	5.7							pF
Voltage Noise	100 Hz , Input Referred	74							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Current Noise	100 Hz Bias Current Noise	58							fA $/ \sqrt{\text { Hz }}$
Common -Mode Reject Ratio	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}, \\ & \mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}^{+}-1.4 \mathrm{~V}\right) \\ & \mathrm{CMRR}=20 \log \left\{\Delta \mathrm{~V}_{\mathrm{CM}} / \Delta \mathrm{V}_{\mathrm{OS}}\right\} \end{aligned}$	$\begin{aligned} & 95 \\ & 90 \end{aligned}$	$\begin{aligned} & 85 \\ & \mathbf{8 0} \end{aligned}$		80	75	75	70	dB min dB min
Power Supply Reject Ratio	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}^{+} \leq 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \\ & \mathrm{PSRR}=20 \log \left\{\Delta \mathrm{~V}^{+} / \Delta \mathrm{V}_{\mathrm{OS}}\right\} \end{aligned}$	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 85 \\ & 80 \end{aligned}$		80	75	75	70	dB min dB min
Voltage Gain, Open Loop	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \mathrm{GND}, \mathrm{~V}^{+}=30 \mathrm{~V}, \\ & 5 \mathrm{~V} \leq V_{\text {OUT }} \leq 25 \mathrm{~V}, \text { Open-Loop } \\ & A_{V}=\left\|\Delta V_{\text {OUT }} / \Delta V_{\text {INDIFF }}\right\| \end{aligned}$	$\begin{aligned} & 500 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & 40 \end{aligned}$		100	40	94	40	V / mV min
Slew Rate	$\mathrm{V}^{+}=30 \mathrm{~V}($ Note 9)	$\begin{gathered} \pm 0.70 \\ \pm \mathbf{0 . 6 5} \end{gathered}$	$\begin{gathered} \pm 0.55 \\ \pm \mathbf{0 . 4 5} \end{gathered}$		± 0.55	± 0.45	± 0.50	± 0.45	$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mathrm{~min} \end{gathered}$
Gain-Bandwidth	$\begin{aligned} & \text { Closed Loop Gain }=-1000, \\ & -3 \mathrm{~dB} \text { Frequency } \times \text { Gain, } \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{gathered} 0.79 \\ \mathbf{0 . 5 2} \end{gathered}$							MHz
Output Voltage Swing High	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to GND } \\ & \mathrm{V}^{+}=36 \mathrm{~V} \text { (32V Commercial) } \end{aligned}$		\|$v^{+}-1.6$ $\mathbf{v}^{-}-1.8$		$\mathrm{v}^{+}-1.7$	$\mathbf{v}^{+}-1.9$	$\mathrm{v}^{+}-1.8$	$\mathbf{v}^{+}-1.9$	V min V min
Output Voltage Swing Low	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}^{+} \\ & \mathrm{V}^{+}=36 \mathrm{~V}(32 \mathrm{~V} \text { Commercial }) \end{aligned}$	$\left\|\begin{array}{c} v^{-}+0.8 \\ \mathbf{v}^{-}+0.9 \end{array}\right\|$	$\left\|\begin{array}{l} \mathbf{v}^{-}+0.90 \\ \mathbf{v}^{-}+\mathbf{1 . 0} \end{array}\right\|$		$\mathrm{V}^{-}+0.90$	$\mathbf{v}^{-}+1.0$	$\mathrm{V}^{-}+0.95$	$\mathbf{v}^{-}+1.0$	V max V max
lout Source	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}^{+}-2.5 \mathrm{~V}, \mathrm{~V}_{+\mathbb{I N}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=-0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -25 \\ & -15 \end{aligned}$	$\begin{aligned} & -20 \\ & -13 \end{aligned}$		-20	-13	-16	-13	mA max mA max

Electrical Characteristics (Continued)
These specifications apply for $\mathrm{V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$, FEEDBACK pin shorted to GND, any package, unless otherwise specified. Limits in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$; limits in boldface type apply for $\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {Max }}$.

Parameter	Conditions	$\begin{aligned} & \text { Typ- } \\ & \text { ical } \\ & \text { (Note 6) } \end{aligned}$	LM614M		LM614AI, LM614I		LM614C		Units
			Tested Limit (Note 7)	Design Limit (Note 8)	Tested Limit (Note 7)	Design Limit (Note 8)	Tested Limit (Note 7)		
Iout Sink	$\begin{aligned} & V_{\text {OUT }}=1.6 \mathrm{~V}, \mathrm{~V}_{+\mathrm{IN}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathrm{IN}}=0.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 17 \\ 9 \end{gathered}$	$\begin{gathered} 15 \\ 8 \end{gathered}$		14	11	13	11	mA min mA min
Short- Circuit Current	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{+\mathbb{I N}}=3 \mathrm{~V}, \\ & V_{-\mathbb{N}}=2 \mathrm{~V}, \text { Source: } \end{aligned}$	$\begin{array}{r} -30 \\ -40 \end{array}$	$\begin{aligned} & -37 \\ & -46 \end{aligned}$		-40	-48	-43	-50	mA min mA min
	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{+\mathbb{I N}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{-\mathbb{I N}}=3 \mathrm{~V}, \text { Sink: } \end{aligned}$	$\begin{array}{r} 30 \\ 32 \\ \hline \end{array}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$		60	80	70	90	mA max mA max

VOLTAGE REFERENCE (Note 10)

Reference Voltage		1.244	$\begin{gathered} 1.2390 \\ 1.2490 \\ (\pm 0.4 \%) \end{gathered}$		$\begin{gathered} 1.2365 \\ 1.2515 \\ (\pm 0.6 \%) \end{gathered}$		$\begin{aligned} & 1.2191 \\ & 1.2689 \\ & (\pm 2 \%) \end{aligned}$		$\begin{aligned} & V_{\text {min }} \\ & V_{\text {max }} \end{aligned}$
Average Temp. Drift	(Note 11) LM614AI	10	20		20	80		150	PPM/C max
Average Time Drift	$\begin{aligned} & \mathrm{T}_{J}=40^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=150^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 400 \\ & 1000 \end{aligned}$							$\begin{gathered} \mathrm{PPM} / \\ \mathrm{kHr} \\ \mathrm{PPM} / \\ \mathrm{kHr} \end{gathered}$
Hysteresis	$\begin{aligned} & \text { Hyst }=\left(V r o^{\prime}-\mathrm{Vro}\right) / \Delta \mathrm{T}_{\mathrm{J}} \\ & \text { (Note 12) } \end{aligned}$	± 3.2							$\mu \mathrm{V} / \mathrm{C}$
V_{R} Change	$\mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}]}-\mathrm{V}_{\mathrm{R}[16 \mu \mathrm{~A}]}$	$\begin{aligned} & 0.05 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$		± 1	± 1.1	± 1	± 1.1	$m V$ max mV max
with Current	$\begin{aligned} & \mathrm{V}_{\mathrm{R}[10 \mathrm{~mA}]}-\mathrm{V}_{\mathrm{R}[100 \mu \mathrm{~A}]} \\ & \text { (Note 13) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$		5	5.5	5	5.5	mV max $m V$ max
Resistance	$\left.\Delta \mathrm{V}_{\mathrm{R}[10} \rightarrow 0.1 \mathrm{~mA}\right] / 9.9 \mathrm{~mA}:$ $\left.\Delta V_{R[100} \rightarrow 16 \mu \mathrm{~A}\right] / 84 \mu \mathrm{~A}:$	$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$		$\begin{gathered} 0.51 \\ 12 \\ \hline \end{gathered}$		$\begin{gathered} 0.56 \\ 13 \end{gathered}$		$\begin{gathered} 0.56 \\ 13 \end{gathered}$	$\begin{aligned} & \Omega \text { max } \\ & \Omega \text { max } \end{aligned}$
V_{R} Change with High V_{RO}	$\left.\left.\mathrm{V}_{\mathrm{R}[\mathrm{Vro}}=\mathrm{V}_{\mathrm{r}}\right]-\mathrm{V}_{\mathrm{R}\left[\mathrm{VrO}_{0}\right.}=6.3 \mathrm{~V}\right]$ \{5.06V between Anode and FEEDBACK	$\begin{aligned} & 2.5 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$		7	10	7	10	$m V$ max $m V$ max
V_{R} Change	$\begin{aligned} & \left.\mathrm{V}_{\mathrm{R}\left[\mathrm{~V}^{+}=5 \mathrm{~V}\right]}-\mathrm{V}_{\mathrm{R}[\mathrm{~V}}+=36 \mathrm{~V}\right] \\ & \left(\mathrm{V}^{+}=32 \mathrm{~V} \text { Commercial }\right) \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{gathered} \pm 1.2 \\ \pm 1.2 \end{gathered}$		± 1.2	± 1.3	± 1.2	± 1.3	$m V$ max mV max
v^{+} Change	$\left.\mathrm{V}_{\mathrm{R}[\mathrm{V}}+=5 \mathrm{~V}\right]-\mathrm{V}_{\mathrm{R}\left[\mathrm{V}^{+}=3 \mathrm{~V}\right]}$	$\begin{aligned} & 0.01 \\ & \mathbf{0 . 0 1} \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$		± 1	± 1.5	± 1	± 1.5	mV max mV max
FEED- BACK Bias Current	$\mathrm{I}_{\mathrm{FB}} ; \mathrm{V}_{\mathrm{ANODE}} \leq \mathrm{V}_{\mathrm{FB}} \leq 5.06 \mathrm{~V}$	$\begin{aligned} & -22 \\ & -29 \end{aligned}$	$\begin{aligned} & -35 \\ & -40 \end{aligned}$		-35	-40	-50	-55	nA min $n A \min$
V_{R} Noise	10 Hz to $10,000 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{RO}}=\mathrm{V}_{\mathrm{R}}$	30							$\mu \mathrm{V}$ RMS

Electrical Characteristics Notes

Note 1：More accurately，it is excessive current flow，with resulting excess heating，that limits the voltage on all pins．When any pin is pulled a diode drop below $\mathrm{V}-$ ， a parasitic NPN transistor turns ON．No latch－up will occur as long as the current through that pin remains below the Maximum Rating．Operation is undefined and unpredictable when any parasitic diode or transistor is conducting．
Note 2：Simultaneous short－circuit of multiple op amps and reference while using high supply voltages may force junction temperature above maximum，and thus should not be continuous．
Note 3：Junction temperature may be calculated using $T_{J}=T_{A}+P_{D} \theta_{j A}$ ．The given thermal resistances are worst－case for packages in sockets in still air．Nominal $\theta_{j \mathrm{~A}}$ are $85^{\circ} \mathrm{C} / \mathrm{W}$ for LM614 in J package， $80^{\circ} \mathrm{C} / \mathrm{W}$ for the N package，and $110^{\circ} \mathrm{C} / \mathrm{W}$ for the WM package，for packages soldered to copper－clad board with dissipation from one op amp or reference output transistor

Note 4：Human body model， 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor．
Note 5：Typical values in standard typeface are for $T_{J}=25^{\circ} \mathrm{C}$ ；values in boldface type apply to the military temperature range．These values represent the most likely parametric norm．
Note 6：Tested limits are guaranteed and 100% tested．
Note 7：Design limits are guaranteed via correlation，but are not 100% tested．
Note 8：Offset voltage drift is calculated from the measurement of the offset voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes．The drift is $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$ ，where $\Delta \mathrm{V}_{\text {OS }}$ is the lowest value subtracted from the highest，and ΔT is the temperature range．
Note 9：Slew rate is measured with the op amp in a voltage follower configuration．For rising slew rate，the input voltage is driven from 5 V to 25 V ，and the output voltage transition is sampled at 10 V and 20 V ．For falling slew rate，the input voltage is driven from 25 V to 5 V ，and the output voltage transition is sampled at 20 V and 10 V ．
Note 10： V_{ro} is the Cathode－to－Anode voltage（i．e．the reference output voltage， 1.2 V to 6.3 V ）． V_{r} is the Cathode－to－FEEDBACK voltage（nominally 1.2 V ）．
Note 11：Average reference drift is calculated from the measurement of the reference voltage at $25^{\circ} \mathrm{C}$ and at the temperature extremes．The drift，in ppm $/{ }^{\circ} \mathrm{C}$ ，is $106 . \Delta V_{R} / V_{R}\left[25^{\circ} \mathrm{C}\right]{ }^{\bullet} \Delta T_{J}$ ，where $\Delta \mathrm{V}_{\mathrm{R}}$ is the lowest value subtracted from the highest， $\mathrm{V}_{\mathrm{R}\left[25^{\circ} \mathrm{C}\right]}$ is the value at $25^{\circ} \mathrm{C}$ ，and $\Delta \mathrm{T}_{\mathrm{J}}$ is the temperature range．
Note 12：Hysteresis is $\Delta V_{R O} / \Delta T_{J}$ ，where $\Delta V_{R O}$ is the change in $V_{R O}$ caused by a change in T_{J} ，after the reference has been＂dehysterized＂．To dehysterize the reference，its junction temperature should be cycled in the following pattern，spiraling in toward $25^{\circ} \mathrm{C}: 25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ ．

Note 13：Low contact resistance is required for accurate measurement．

Simplified Schematic Diagrams

Op Amp

TL／H／9326－2

Typical Performance Characteristics (Reference)

$T_{J}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

FEEDBACK Current vs FEEDBACK-to-Anode Voltage

Reference Voltage vs Current and Temperature

REFERENCE CURRENT (A)

Reference AC Stability Range

Reference Noise Voltage

Typical Performance Characteristics (Reference) (Continued)
$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, FEEDBACK pin shorted to $\mathrm{V}^{-}=0 \mathrm{~V}$, unless otherwise noted

Reference Step Response
for $100 \mu \mathrm{~A} \sim 10 \mathrm{~mA}$ Current Step

TIME ($\mu \mathrm{s}$)

Reference Voltage Change with Supply Voltage Step

TL/H/9326-8

Typical Performance Characteristics (Op Amps)

$V^{+}=5 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}+/ 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}+12, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Slew Rate vs Temperature and Output Sink Current

Vos vs Junction Temperature on 9 Representative Units
 Junction temperature (c)

Input Bias Current vs Common-Mode Voltage

Typical Performance Characteristics（Op Amps）（Continued）
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\text {OUT }}=\mathrm{v}^{+} / 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ，unless otherwise noted

Op Amp Current Noise vs Frequency

Typical Performance Characteristics (Op Amps) (Continued)

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}^{+} / 2, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}^{+} / 2, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise noted

JUNCTION TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$
Input Offset Current vs Junction Temperature

TL/H/9326-24

TL/H/9326-7

TL/H/9326-22
Input Bias Current vs Junction Temperature

Typical Performance Distributions

Average V_{OS} Drift Military Temperature Range

Average $\mathrm{V}_{\text {Os }}$ Drift Commercial Temperature Range

TL／H／9326－31

Average los Drift Industrial Temperature Range

TL／H／9326－30

Average los Drift Military Temperature Range

TL／H／9326－32

Average los Drift
Commercial Temperature Range

TL／H／9326－34

Typical Performance Distributions (Continued)

Op Amp Voltage Noise Distribution

Op Amp Current Noise Distribution

Application Information

VOLTAGE REFERENCE

Reference Biasing

The voltage reference is of a shunt regulator topology that models as a simple zener diode. With current I_{r} flowing in the 'forward' direction there is the familiar diode transfer function. I_{r} flowing in the reverse direction forces the reference voltage to be developed from cathode to anode. The cathode may swing from a diode drop below V^{-}to the reference voltage or to the avalanche voltage of the parallel protection diode, nominally 7 V . A 6.3 V reference with $\mathrm{V}^{+}=$ 3 V is allowed.

TL/H/9326-9
FIGURE 1. Voltages Associated with Reference (Current Source $\mathrm{I}_{\mathbf{r}}$ is External)
The reference equivalent circuit reveals how V_{r} is held at the constant 1.2 V by feedback, and how the FEEDBACK pin passes little current.
To generate the required reverse current, typically a resistor is connected from a supply voltage higher than the reference voltage. Varying that voltage, and so varying I_{r}, has small effect with the equivalent series resistance of less than an ohm at the higher currents. Alternatively, an active current source, such as the LM134 series, may generate I_{r}. Capacitors in parallel with the reference are allowed. See the Reference AC Stability Range typical curve for capacitance values-from $20 \mu \mathrm{~A}$ to 3 mA any capacitor value is stable. With the reference's wide stability range with resistive and capacitive loads, a wide range of RC filter values will perform noise filtering.

TL/H/9326-10
FIGURE 2. Reference Equivalent Circuit

TL/H/9326-11
FIGURE 3. 1.2V Reference

Adjustable Reference

The FEEDBACK pin allows the reference output voltage, $\mathrm{V}_{\text {ro }}$, to vary from 1.24 V to 6.3 V . The reference attempts to hold V_{r} at 1.24 V . If V_{r} is above 1.24 V , the reference will conduct current from Cathode to Anode; FEEDBACK current always remains low. If FEEDBACK is connected to Anode, then $V_{r o}=V_{r}=1.24 \mathrm{~V}$. For higher voltages FEEDBACK is held at a constant voltage above Anode-say 3.76 V for $\mathrm{V}_{\mathrm{ro}}=5 \mathrm{~V}$. Connecting a resistor across the constaint V_{r} generates a current I $=R 1 / V_{r}$ flowing from Cathode into FEEDBACK node. A Thevenin equivalent 3.76 V is generated from FEEDBACK to Anode with R2=3.76/I. Keep I

Application Information (Continued)

greater than one thousand times larger than FEEDBACK bias current for $<0.1 \%$ error- $\mathrm{I} \geq 32 \mu \mathrm{~A}$ for the military grade over the military temperature range ($1 \geq 5.5 \mu \mathrm{~A}$ for a 1% untrimmed error for a commercial part.)

TL/H/9326-12
FIGURE 4. Thevenin Equivalent of Reference with 5V Output

TL/H/9326-13

$$
\mathrm{R} 1=\mathrm{Vr} / \mathrm{I}=1.24 / 32 \mu=39 \mathrm{k}
$$

$R 2=R 1\{(\mathrm{Vro} / \mathrm{Vr})-1\}=39 k\{(5 / 1.24)-1)\}=118 \mathrm{k}$ FIGURE 5. Resistors R1 and R2 Program Reference Output Voltage to be 5 V
Understanding that V_{r} is fixed and that voltage sources, resistors, and capacitors may be tied to the FEEDBACK pin, a range of V_{r} temperature coefficients may be synthesized.

TL/H/9326-14
FIGURE 6. Output Voltage has Negative Temperature Coefficient (TC) if R2 has Negative TC

TL/H/9326-15
FIGURE 7. Output Voltage has Positive TC if R1 has Negative TC

TL/H/9326-16
FIGURE 8. Diode in Series with R1 Causes Voltage across R1 and R2 to be Proportional to Absolute Temperature (PTAT)
Connecting a resistor across Cathode-to-FEEDBACK creates a 0 TC current source, but a range of TCs may be synthesized.

TL/H/9326-17

$$
I=V r / R 1=1.24 / R 1
$$

FIGURE 9. Current Source is Programmed by R1

Application Information (Continued)

TL/H/9326-18
FIGURE 10. Proportional-to-Absolute-Temperature Current Source

TL/H/9326-19
FIGURE 11. Negative-TC Current Source

Hysteresis

The reference voltage depends, slightly, on the thermal history of the die. Competitive micro-power products vary-always check the data sheet for any given device. Do not assume that no specification means no hysteresis.

OPERATIONAL AMPLIFIERS

Any amp or the reference may be biased in any way with no effect on the other amps or reference, except when a substrate diode conducts (see Guaranteed Electrical Characteristics Note 1). One amp input may be outside the com-
mon-mode range, another amp may be operated as a comparator, another with all terminals floating with no effect on the others (tying inverting input to output and non-inverting input to V^{-}on unused amps is preferred). Choosing operating points that cause oscillation, such as driving too large a capacitive load, is best avoided.

OP Amp Output Stage

These op amps, like their LM124 series, have flexible and relatively wide-swing output stages. There are simple rules to optimize output swing, reduce cross-over distortion, and optimize capacitive drive capability:

1) Output Swing: Unloaded, the $42 \mu \mathrm{~A}$ pull-down will bring the output within 300 mV of V^{-}over the military temperature range. If more than $42 \mu \mathrm{~A}$ is required, a resistor from output to V^{-}will help. Swing across any load may be improved slightly if the load can be tied to V^{+}, at the cost of poorer sinking open-loop voltage gain
2) Cross-over Distortion: The LM614 has lower cross-over distortion (a $1 \mathrm{~V}_{\mathrm{BE}}$ deadband versus $3 \mathrm{~V}_{\mathrm{BE}}$ for the LM124), and increased slew rate as shown in the characteristic curves. A resistor pull-up or pull-down will force class-A operation with only the PNP or NPN output transistor conducting, eliminating cross-over distortion
3) Capacitive Drive: Limited by the output pole caused by the output resistance driving capacitive loads, a pulldown resistor conducting 1 mA or more reduces the output stage NPN r_{e} until the output resistance is that of the current limit 25Ω. 200 pF may then be driven without oscillation.

OP Amp Input Stage

The lateral PNP input transistors, unlike most op amps, have $B V_{E B O}$ equal to the absolute maximum supply voltage. Also, they have no diode clamps to the positive supply nor across the inputs. These features make the inputs look like high impedances to input sources producing large differential and common-mode voltages.

Typical Applications

For typical applications, refer to the LM124 Op Amp and LM185 Adjustable Reference datasheets.

National Semiconductor

LM627/LM637

Precision Operational Amplifiers

General Description

The LM627/LM637 series feature extremely low noise and excellent precision along with high speed. Voltage noise is a low $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ in the flat band and rises to only $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 10 Hz . The A grades offer guaranteed specifications of $25 \mu \mathrm{~V}$ offset voltage and $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift, and their guaranteed 126 dB CMRR, 120 dB PSRR and voltage gain of 5 Million ensure an ultra-low $V_{O S}$ under all conditions.
The unity-gain stable LM627 is nearly twice as fast as the OP-27 with a slew rate of $4.5 \mathrm{~V} / \mu \mathrm{s}$ and a 14 MHz gainbandwidth product. Stable at gains of 5 or more, the decompensated LM637 is considerably faster.
Other enhancements of the LM627/LM637 include a guaranteed 600Ω load drive capability over temperature: $\pm 10 \mathrm{~V}$ output swing at voltage gains over one million. Bias current has been reduced to 10 nA for the A and B grades and 25 nA for the C grade. Furthermore the LM627 may be overcompensated to allow it to drive capacitive loads up to 2000 pF while maintaining its superb dc specs.

Features

- Low Noise
- Low V_{OS}
$3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 1 kHz $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}} @ 10 \mathrm{~Hz}$ $25 \mu \mathrm{~V}$ Max
- Low Drift
$0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
- Offset Drift 100\% Tested (A and B grades)
- Noise Voltage 100% Tested (A and B grades)
- High Gain

5 Million Min

- High CMRR 126 dB Min
- High PSRR 120 dB Min
- High Speed

LM627:
14 MHz Gain-Bandwidth $4.5 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
LM637:
65 MHz Gain-Bandwidth $14 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
. Guaranteed 600Ω drive over temperature

- Wide Power Supply Range
$\pm 3.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
■ Overcompensation Pin
Allows driving high C_{L}

Connection Diagrams

Metal Can Package

TL/H/9212-1
Top View

Ordering Information

LM627			
TO-99	LM627AMH LM627BMH	LM627ACH LM627BCH LM627CH	H08C
8-Pin Cerdip	LM627AMJ LM627BMJ	LM627ACJ LM627BCJ LM627CJ	J08A
8-Pin Molded DIP		LM627ACN LM627BCN	N08E

DIP Packages

TL/H/9212-2

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Differential Input Overdrive Current (Note 7) $\pm 25 \mathrm{~mA}$
Supply Voltage 44V
Input Voltage
Output Short Circuit to Gnd
Power Dissipation (Note 8)

Molded DIP	1300 mW
Ceramic DIP	1190 mW
Metal Can	830 mW

Supply Voltage
Continuous

1300 mW
1190 mW
830 mW

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 5 sec.)	$260^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
ESD Rating	3 kV
C $_{\text {ZAP }}=100 \mathrm{pF}$, R $_{\text {ZAP }}=1.5 \mathrm{k} \Omega$	

Operating Ratings

Temperature Range (Note 8)

$$
-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}
$$

$\begin{array}{lr}\mathrm{AM} \text { and } \mathrm{BM} \text { grades } & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C} \\ \mathrm{AC}, \mathrm{BC} \text {, and } \mathrm{C} \text { grades } & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}\end{array}$

$$
-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}
$$

Electrical Characteristics All limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0$ and $\pm 15 \mathrm{~V}$ supplies unless otherwise specified. Boldface limits apply at operating temperature extremes.

Parameter	Conditions	Typ	LM627AM LM637AM		$\begin{aligned} & \text { LM627BM } \\ & \text { LM637BM } \end{aligned}$		Units
			Tested Limit (Note 5)	Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	
Input Offset Voltage	(Note 2)	15	$\begin{aligned} & 25 \\ & \mathbf{5 5} \end{aligned}$		$\begin{gathered} 50 \\ 110 \\ \hline \end{gathered}$		$\mu \mathrm{V}$ Max
Input Offset Voltage Drift	(Note 3)	0.2	0.3		0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Voltage Long Term Stability	(Note 4)	0.2					$\mu \mathrm{V} / \mathrm{mo}$ Max
Input Bias Current		3	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$		nA Max
Input Offset Current		2	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$		nA Max
Input Noise Voltage	0.1 to 10 Hz	0.08		0.18		0.18	$\mu \vee \mathrm{p}-\mathrm{p}$ Max
Input Noise Voltage Density	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=30 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & 3.8 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 4.5 \\ & 3.8 \end{aligned}$		$\begin{gathered} \mathrm{nV} / \sqrt{H z} \\ \mathrm{Max} \end{gathered}$
Input Noise Current Density	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=30 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.0 \\ & 0.4 \end{aligned}$					$\begin{gathered} \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ \mathrm{Max} \end{gathered}$
Input Resistance	Common-Mode	20					G Ω
Input Voltage Range		± 12	$\begin{gathered} \pm 11.5 \\ \pm \mathbf{1 0 . 5} \end{gathered}$		$\begin{aligned} & \pm 11.5 \\ & 10.5 \end{aligned}$		$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
Common-Mode Rejection Ratio	$\begin{aligned} & V_{\mathrm{CM}}= \pm 11.5 \mathrm{~V} \\ & \mathbf{V}_{\mathbf{C M}}= \pm \mathbf{1 0 . 5 V} \end{aligned}$	140	$\begin{aligned} & 126 \\ & 120 \end{aligned}$		$\begin{aligned} & 126 \\ & 120 \end{aligned}$		dB Min
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 3.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	140	$\begin{array}{r} 120 \\ \mathbf{1 1 7} \\ \hline \end{array}$		$\begin{aligned} & 120 \\ & 117 \\ & \hline \end{aligned}$		dB Min
Large-Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 12 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & V_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 600 \Omega \end{aligned}$	$\begin{aligned} & 10000 \\ & 7000 \\ & 6000 \end{aligned}$	5000 3000 4000 2000 3000 1500		5000 2000 3500 1500 2000 1000		$\begin{gathered} \text { V/mV } \\ \text { Min } \end{gathered}$

Electrical Characteristics
(Continued)

Parameter	Conditions	Typ	$\begin{aligned} & \text { LM627AM } \\ & \text { LM637AM } \end{aligned}$		LM627BM LM637BM		Units
			Tested Limit (Note 5)	Design Limit (Note 6)		Design Limit (Note 6)	
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 2 k \Omega \\ & R_{L} \geq 600 \Omega \end{aligned}$	$\begin{aligned} & \pm 13.8 \\ & \pm 12.5 \end{aligned}$	$\begin{gathered} \pm 13 \\ \pm \mathbf{1 2 . 5} \\ \pm 11 \\ \pm \mathbf{1 0 . 5} \end{gathered}$		$\begin{gathered} \pm 13 \\ \pm \mathbf{1 2 . 5} \\ \pm 11 \\ \pm \mathbf{1 0 . 5} \end{gathered}$		$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
Slew Rate	$\begin{aligned} & \mathrm{LM} 627 \\ & \mathrm{LM} 637 \\ & R_{L}=2 k \end{aligned}$	$\begin{array}{r} 4.5 \\ 14 \end{array}$		$\begin{gathered} 3 \\ 10 \\ \hline \end{gathered}$		$\begin{gathered} 3 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
Gain-Bandwidth Product	$\operatorname{LM627}_{\mathrm{LM} 637} f=10 \mathrm{kHz}$	$\begin{array}{r} 14 \\ 65 \\ \hline \end{array}$		$\begin{array}{r} 10 \\ 45 \\ \hline \end{array}$		$\begin{aligned} & 10 \\ & 45 \\ & \hline \end{aligned}$	MHz Min
Output Resistance	Open Loop	50					Ω
Supply Current		3	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{array}{r} 4.5 \\ 5.5 \end{array}$		mA Max
Offset Adjust Range	$R_{p} \geq 10 \mathrm{k} \Omega$	± 2					mV

Electrical Characteristics All limits guaranteed for $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0, \mathrm{~V}_{\mathrm{O}}=0$ and $\pm 15 \mathrm{~V}$ supplies unless otherwise specified. Boldface limits apply at operating temperature extremes.

Parameter	Conditions	Typ	LM627AC LM637AC		LM627BC LM637BC		LM627C LM637C		Units
			Tested Limit (Note 5)	Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	
Input Offset Voltage	(Note 2)	15	$\begin{aligned} & 25 \\ & 50 \end{aligned}$		$\begin{gathered} 50 \\ 110 \end{gathered}$		100	210	$\mu \mathrm{V}$ Max
Input Offset Voltage Drift	(Note 3)	0.2	0.6		1.0			1.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Max
Input Offset Voltage Long Term Stability	(Note 4)	0.2							$\mu \mathrm{V} / \mathrm{mo}$ Max
Input Bias Current		3	10	20	10	20	25	50	nA Max
Input Offset Current		2	10	20	10	20	25	50	nA Max
Input Noise Voltage	0.1 to 10 Hz	0.08		0.18		0.18		0.25	$\mu \vee$ p-p Max
Input Voltage Noise Density	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=30 \mathrm{~Hz} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & 3.8 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 4.5 \\ & 3.8 \end{aligned}$			$\begin{aligned} & 8.0 \\ & 5.6 \\ & 4.5 \end{aligned}$	$\begin{gathered} \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ \mathrm{Max} \end{gathered}$
Input Noise Current Density	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=30 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.0 \\ & 0.4 \end{aligned}$							$\begin{gathered} \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ \mathrm{Max} \end{gathered}$
Input Resistance	Common Mode	20							$\mathrm{G} \Omega$
Input Voltage Range		± 12	± 11.5	± 11	± 11.5	± 11	± 11.5	± 11	$\begin{gathered} \mathrm{V} \\ \mathrm{Min} \end{gathered}$
Common-Mode Rejection Ratio	$\begin{aligned} & V_{\mathrm{CM}}= \pm 11.5 \mathrm{~V} \\ & \mathbf{V}_{\mathrm{CM}}= \pm \mathbf{1 1 V} \end{aligned}$	140	126	120	126	120	120	116	dB Min
Power Supply Rejection Ratio	$V_{S}= \pm 3.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	140	120	117	120	117	110	108	$\begin{gathered} \mathrm{dB} \\ \mathrm{Min} \end{gathered}$

Electrical Characteristics (Continued)

Parameter	Conditions	Typ	LM627AC LM637AC		LM627BC LM637BC		LM627C LM637C		Units
			Tested Limit (Note 5)	Design Limit (Note 6)		Design Limit (Note 6)	Tested Limit (Note 5)	Design Limit (Note 6)	
Large-Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 12 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 600 \Omega \end{aligned}$	$\begin{aligned} & 10000 \\ & 7000 \\ & 6000 \end{aligned}$	$\begin{aligned} & 5000 \\ & \\ & 4000 \\ & 3000 \end{aligned}$	3000 2500 2000	$\begin{aligned} & 5000 \\ & \\ & 3500 \\ & 2000 \end{aligned}$	3000 2000 1500	$\begin{aligned} & 4000 \\ & 2500 \\ & 1500 \end{aligned}$	$\begin{aligned} & 2500 \\ & 1500 \\ & 1000 \end{aligned}$	$\begin{aligned} & \text { V/mV } \\ & \text { Min } \end{aligned}$
Output Voltage Swing	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega \\ & R_{L} \geq 600 \Omega \end{aligned}$	$\begin{aligned} & \pm 13.8 \\ & \pm 12.5 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 11 \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 10.5 \end{aligned}$	$\begin{aligned} & \pm 13 \\ & \pm 11 \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 10.5 \end{aligned}$	$\begin{gathered} \pm 13 \\ \pm 10.5 \end{gathered}$	$\begin{gathered} \pm 12.5 \\ \pm 10 \end{gathered}$	$\begin{gathered} \text { V } \\ \text { Min } \end{gathered}$
Slew Rate	${ }_{\mathrm{LM}}^{\mathrm{LM} 627} \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{gathered} 4.5 \\ 14 \end{gathered}$		$\begin{gathered} 3 \\ 10 \end{gathered}$		$\begin{gathered} 3 \\ 10 \end{gathered}$		$\begin{gathered} 3 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
Gain-Bandwidth Product	$\operatorname{LM627}_{\operatorname{LM} 637}^{f}=10 \mathrm{kHz}$	$\begin{aligned} & 14 \\ & 65 \end{aligned}$		$\begin{aligned} & 10 \\ & 45 \end{aligned}$		$\begin{aligned} & 10 \\ & 45 \end{aligned}$		$\begin{aligned} & 10 \\ & 45 \end{aligned}$	MHz Min
Output Resistance	Open Loop	50							Ω
Supply Current		3	4.5	5	4.5	5	4.8	5.2	mA Max
Offset Adjust Range	$\mathrm{RP}_{\mathrm{P}} \geq 10 \mathrm{k} \Omega$	± 2							mV

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 2: Input offset voltage for A and B grades is tested and guaranteed with the device fully warmed up. See Figure 1 in the Application Hints for test circuit. Warmup drift is typically $5 \mu \mathrm{~V}$ settling out in 5 minutes. The LM627C/LM637C offset voltage is measured by automated test equipment within 200 ms of applying power.
Note 3: Input offset voltage drift is defined as $\left(V_{O S}\left(85^{\circ} \mathrm{C}\right)-V_{O S}\left(-25^{\circ} \mathrm{C}\right)\right) / 110^{\circ} \mathrm{C}$ for the industrial temperature range. For the military temperature range, the input offset voltage drift is measured from room temperature to both extremes: both $\left(\mathrm{V}_{\mathrm{OS}}\left(25^{\circ} \mathrm{C}\right)-\mathrm{V}_{\mathrm{OS}}\left(-55^{\circ} \mathrm{C}\right)\right) / 80^{\circ} \mathrm{C}$ and $\left(\mathrm{V}_{\mathrm{OS}}\left(125^{\circ} \mathrm{C}\right)-\mathrm{V}_{\mathrm{OS}}\left(25^{\circ} \mathrm{C}\right)\right) / 100^{\circ} \mathrm{C}$.
Note 4: Input offset voltage long term stability refers to the average trend line of $V_{O S}$ vs. time over extended periods of time after the first 30 days of operation. Excluding the initial hour of operation, changes in $\mathrm{V}_{\text {OS }}$ during the first 30 days are typically $2 \mu \mathrm{~V}$.
Note 5: Guaranteed and 100% production tested. These limits are used to calculate outgoing quality levels.
Note 6: Guaranteed but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 7: Inputs are protected by back-to-back diodes to prevent zener breakdown of the input transistors. Series limiting resistors have not been included since they degrade noise performance. Excessive current may flow if a differential voitage in excess of 0.7 V is applied.
Note 8: For operation above $25^{\circ} \mathrm{C}$, the maximum power dissipation specification must be derated. Typical junction-to-ambient thermal resistance of the molded DIP and the ceramic DIP are $95^{\circ} \mathrm{C} / \mathrm{W}$ and $105^{\circ} \mathrm{C} / \mathrm{W}$ respectively. The metal can package has a typical junction-to-ambient thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ and a typical junction-to-case thermal resistance of $17^{\circ} \mathrm{C} / \mathrm{W}$.
Note 9: These units selected to illustrate the types of variations that may be encountered. (This note refers to particular curves within the Typical Performance Characteristics.)

Typical DC Performance Characteristics (LM627, Lм637)

$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ unless othewise indicated.

Typical Noise Characteristics (LM627, LM637)
$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Noise Voltage vs Frequency

Noise Current vs Frequency

Typical AC Performance Characteristics (LM627)
 $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$

TIME ($5 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($500 \mathrm{~ns} / \mathrm{DIV}$)

Typical AC Performance Characteristics (LM637)

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$

Gain-Bandwidth Product,

TL/H/9212-14

Power Supply Rejection Ratio vs Frequency

TL/H/9212-15

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

TIME ($200 \mathrm{~ns} /$ DIV)
TL/H/9212-17

Application Hints

OFFSET VOLTAGE

Offset voltage of the LM627/637 is internally trimmed to a very low value. The data sheet V_{OS} specification applies at $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$ and $\pm 15 \mathrm{~V}$ supplies. For other temperatures, common-mode voltages, and supply voltages, temperature drift, common-mode rejection and power-supply rejection errors must be taken into account.
Since the LM627/LM637C offset voltage is measured within 200 ms of applying power, the $5 \mu \mathrm{~V}$ typical warmup drift is not accounted for in the measurement. Fortunately, the warmup drift is a small fraction of its $100 \mu \mathrm{~V}$ max offset. For the $25 \mu \mathrm{~V}$ A and $50 \mu \mathrm{~V}$ B grades, the offset voltage is measured with the circuit of Figure 1 approximately 5 minutes after applying power.
To measure $V_{\text {OS }}$ with high accuracy, $\mathrm{V}_{\text {OS }}$ must be amplified right at the device as shown; otherwise the offset voltage can be obscured by noise and thermoelectric voltages. Thermocouples occur in the devices, the IC socket and the resistor across the device inputs (R2), all of which must be held isothermal. Usually best results are obtained by placing the circuit in a box or chamber to minimize airflow and employing a long thermal soak time. R2 should be mounted symmetrically with respect to potential thermal gradients: e.g. not perpendicular to the board but instead parallel to the board and the device socket. In addition, R2 should have low thermal EMF. Cermet or nichrome metal film types are acceptable; avoid tin-oxide resistors.

TL/H/9212-3
FIGURE 1. Offset Voltage Test Circuit

OFFSET NULLING

This is usually not required on the LM627/637 family since its offset voltage is internally trimmed. An offset adjust range of approximately $\pm 2 \mathrm{mV}$ is available using a single 10 or $20 \mathrm{k} \Omega$ potentiometer as shown in Figure 2. With these values, the adjustment is relatively linear over the entire range. If a $100 \mathrm{k} \Omega$ potentiomer is used, the adjustment becomes very coarse at the extremes (above $700 \mu \mathrm{~V}$) but fine in the center, which makes it easier to precisely null the offset. For even more sensitivity, employ a pot in conjunction with two fixed resistors. The circuit of Figure 3, which uses this technique, has an adjustment range of $\pm 200 \mu \mathrm{~V}$. Because adjusting the offset voltage of an LM627/637 will alter its offset voltage temperature drift, caution is advised.

TL/H/9212-4
FIGURE 2. Offset Adjust Circuit

TL/H/9212-5

FIGURE 3. Improved Sensitivity Offset Adjust

Every $100 \mu \mathrm{~V}$ of offset will produce a $0.33 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift component. For this reason the offset adjust potentiometer should not be used to null out a sensor offset if system temperature drift is important; rather a stable voltage reference must be added to the sensor voltage. Offset voltage drift is guaranteed by design for the LM627C either with or without external nulling. The higher precision A and B grades are 100% drift tested and guaranteed without nulling only.

OVERCOMPENSATION

Without any external compensation, the LM627 is stable at unity gain and up to 500 pF load capacitance. It has a slew rate of $4.5 \mathrm{~V} / \mu \mathrm{s}$ and a gain-bandwidth product of 14 MHz . If desired, the amplifier may be overcompensated by adding external components as shown in Figure 4. This increases maximum capacitive loading to 2000 pF while decreasing slew rate to $1.5 \mathrm{~V} / \mu \mathrm{s}$ and bandwidth to 1.5 MHz . If overcompensation of the LM627 (or the LM637) is not desired, pin 5 should be left open.

TL/H/9212-6
FIGURE 4. Overcompensation

NOISE

When measuring spot noise voltage, a circuit as shown in Figure 5 is recommended. The DUT running at a gain of 100 will not roll off until approximately 140 kHz . Adding the second gain of 100 amplifier brings total DUT-input-referred gain up to 10,000 , which minimizes to minimize sensitivity to EMI in the environment. When measuring spot noise at 30 Hz , it is recommended that the spectrum analyzer bandwidth be 20 Hz or less to minimize pickup at line frequency.

TL/H/9212-7
FIGURE 5. Spot Noise Test Circuit

Application Hints (Continued)

The circuit used to measure peak-to-peak noise voltage in the 0.1 to 10 Hz range is shown in Figure 6. The device should be warmed up for about 2 minutes and shielded from air currents to minimize warmup drift and thermoelectric voltages. The test time should be limited to only $10 \mathrm{sec}-$ onds, as this limits noise contributions below 0.1 Hz , as does the single zero rolloff. The measuring equipment must be flat down to 0.1 Hz . DC coupling must be employed to ensure this. Certain types of $X-Y$ plotters may not be usable because of severe rolloff above a few Hz .

TL/H/9212-8
figure 6. 0.1 Hz to 10 Hz Noise Test Circuit

LM675 Power Operational Amplifier

General Description

The LM675 is a monolithic power operational amplifier featuring wide bandwidth and low input offset voltage, making it equally suitable for $A C$ and DC applications.
The LM675 is capable of delivering output currents in excess of 3 amps , operating at supply voltages of up to 60 V . The device overload protection consists of both internal current limiting and thermal shutdown. The amplifier is also internally compensated for gains of 10 or greater.

Features

- 3A current capability
- Avo typicaly 90 dB
- 5.5 MHz gain bandwidth product
- $8 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Wide power bandwidth 70 kHz
- 1 mV typical offset voltage
- Short circuit protection
- Thermal protection with parole circuit (100% tested)
- $16 \mathrm{~V}-60 \mathrm{~V}$ supply range
- Wide common mode range
- Internal output protection diodes
- 90 dB ripple rejection
- Plastic power package TO-220

Applications

- High performance power op amp
- Bridge amplifiers
- Motor speed controls
- Servo amplifiers
- Instrument systems

Typical Applications

Non-Inverting Amplifier

TL/H/6739-2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$\pm 30 \mathrm{~V}$
Input Voltage

Operating Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Junction Temperature $150^{\circ} \mathrm{C}$
Power Dissipation (Note 1) 30W Lead Temperature (Soldering, 10 seconds) $260^{\circ} \mathrm{C}$ ESD rating to be determined.

Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Typical	Tested Limit	Units
Supply Current	$\mathrm{POUT}^{\prime}=0 \mathrm{~W}$	18	$50(\mathrm{max})$	mA
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	$10(\mathrm{max})$	mV
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	0.2	$2(\mathrm{max})$	$\mu \mathrm{A}$
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	50	$500(\mathrm{max})$	nA
Open Loop Gain	$\mathrm{R}_{\mathrm{L}}=\infty \Omega$	90	$70(\mathrm{~min})$	dB
PSRR	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	90	$70(\mathrm{~min})$	dB
CMRR	$\mathrm{V}_{\mathrm{IN}}= \pm 20 \mathrm{~V}$	90	$70(\mathrm{~min})$	dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	± 21	$\pm 18(\mathrm{~min})$	V
Offset Voltage Drift Versus Temperature	$\mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega$	25		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Offset Voltage Drift Versus Output Power		25		$\mu \mathrm{~V} / \mathrm{W}$
Output Power	$\mathrm{THD}=1 \%, \mathrm{fO}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega$	25	20	W
Gain Bandwidth Product	$\mathrm{f}_{\mathrm{O}}=20 \mathrm{kHz}, \mathrm{AVCL}=1000$	5.5		MHz
Max Slew Rate		8		$\mathrm{~V} / \mu \mathrm{s}$
Input Common Mode Range		± 22	$\pm 20(\mathrm{~min})$	V

Note 1: Assumes T_{A} equal to $70^{\circ} \mathrm{C}$. For operation at higher tab temperatures, the LM 675 must be derated based on a maximum junction temperature of $150^{\circ} \mathrm{C}$.
Typical Applications (Continued)

Generating a Split Supply From a Single Supply

$$
V_{S}= \pm 8 \mathrm{~V} \rightarrow \pm 30 \mathrm{~V}
$$

TL/H/6739-3

Typical Performance Characteristics

TL/H/6739-4

Application Hints

STABILITY

The LM675 is designed to be stable when operated at a closed-loop gain of 10 or greater, but, as with any other high-current amplifier, the LM675 can be made to oscillate under certain conditions. These usually involve printed circuit board layout or output/input coupling.
When designing a printed circuit board layout, it is important to return the load ground, the output compensation ground, and the low level (feedback and input) grounds to the circuit board ground point through separate paths. Otherwise, large currents flowing along a ground conductor will generate voltages on the conductor which can effectively act as signals at the input, resulting in high frequency oscillation or excessive distortion. It is advisable to keep the output compensation components and the $0.1 \mu \mathrm{~F}$ supply decoupling capacitors as close as possible to the LM675 to reduce the effects of PCB trace resistance and inductance. For the same reason, the ground return paths for these components should be as short as possible.
Occasionally, current in the output leads (which function as antennas) can be coupled through the air to the amplifier input, resulting in high-frequency oscillation. This normally happens when the source impedance is high or the input leads are long. The problem can be eliminated by placing a small capacitor (on the order of 50 pF to 500 pF) across the circuit input.
Most power amplifiers do not drive highly capacitive loads well, and the LM675 is no exception. If the output of the LM675 is connected directly to a capacitor with no series resistance, the square wave response will exhibit ringing if the capacitance is greater than about $0.1 \mu \mathrm{~F}$. The amplifier can typically drive load capacitances up to $2 \mu \mathrm{~F}$ or so without oscillating, but this is not recommended. If highly capacitive loads are expected, a resistor (at least 1Ω) should be placed in series with the output of the LM675. A method commonly employed to protect amplifiers from low impedances at high frequencies is to couple to the load through a 10Ω resistor in parallel with a $5 \mu \mathrm{H}$ inductor.

CURRENT LIMIT AND SAFE OPERATING AREA (SOA) PROTECTION

A power amplifier's output transistors can be damaged by excessive applied voltage, current flow, or power dissipation. The voltage applied to the amplifier is limited by the design of the external power supply, while the maximum current passed by the output devices is usually limited by internal circuitry to some fixed value. Short-term power dissipation is usually not limited in monolithic operational power amplifiers, and this can be a problem when driving reactive loads, which may draw large currents while high voltages appear on the output transistors. The LM675 not only limits current to around 4A, but also reduces the value of the limit current when an output transistor has a high voltage across it.
When driving nonlinear reactive loads such as motors or loudspeakers with built-in protection relays, there is a possibility that an amplifier output will be connected to a load whose terminal voltage may attempt to swing beyond the power supply voltages applied to the amplifier. This can cause degradation of the output transistors or catastrophic failure of the whole circuit. The standard protection for this
type of failure mechanism is a pair of diodes connected between the output of the amplifier and the supply rails. These are part of the internal circuitry of the LM675, and needn't be added externally when standard reactive loads are driven.

THERMAL PROTECTION

The LM675 has a sophisticated thermal protection scheme to prevent long-term thermal stress to the device. When the temperature on the die reaches $170^{\circ} \mathrm{C}$, the LM675 shuts down. It starts operating again when the die temperature drops to about $145^{\circ} \mathrm{C}$, but if the temperature again begins to rise, shutdown will occur at only $150^{\circ} \mathrm{C}$. Therefore, the device is allowed to heat up to a relatively high temperature if the fault condition is temporary, but a sustained fault will limit the maximum die temperature to a lower value. This greatly reduces the stresses imposed on the IC by thermal cycling, which in turn improves its reliability under sustained fault conditions. This circuitry is 100% tested without a heat sink.
Since the die temperature is directly dependent upon the heat sink, the heat sink should be chosen for thermal resistance low enough that thermal shutdown will not be reached during normal operaton. Using the best heat sink possible within the cost and space constraints of the system will improve the long-term reliability of any power semiconductor.

POWER DISSIPATION AND HEAT SINKING

The LM675 should always be operated with a heat sink, even though at idle worst case power dissipation will be only $1.8 \mathrm{~W}(30 \mathrm{~mA} \times 60 \mathrm{~V})$ which corresponds to a rise in die temperature of $97^{\circ} \mathrm{C}$ above ambient assuming $\theta_{\mathrm{jA}}=54^{\circ} \mathrm{C} / \mathrm{W}$ for a TO-220 package. This in itself will not cause the thermal protectioncircuitrytoshutdowntheamplifierwhenoperatingat roomtemperature, butamere 0.9 W of additional powerdissipation will shut the amplifier down since T_{J} will then increase from $122^{\circ} \mathrm{C}\left(97^{\circ} \mathrm{C}+25^{\circ} \mathrm{C}\right)$ to $170^{\circ} \mathrm{C}$.
In order to determine the appropriate heat sink for a given application, the power dissipation of the LM675 in that application must be known. When the load is resistive, the maximum average power that the IC will be required to dissipate is approximately:

$$
\mathrm{P}_{\mathrm{D}(\mathrm{MAX})} \approx \frac{\mathrm{V}_{\mathrm{S}^{2}}}{2 \pi^{2} \mathrm{R}_{\mathrm{L}}}+\mathrm{P}_{\mathrm{Q}}
$$

where V_{S} is the total power supply voltage across the LM675, R_{L} is the load resistance and P_{Q} is the quiescent power dissipation of the amplifier. The above equation is only an approximation which assumes an "ideal" class B output stage and constant power dissipation in all other parts of the circuit. As an example, if the LM675 is operated on a 50 V power supply with a resistive load of 8Ω, it can develop up to 19 W of internal power dissipation. If the die temperature is to remain below $150^{\circ} \mathrm{C}$ for ambient temperatures up to $70^{\circ} \mathrm{C}$, the total junction-to-ambient thermal resistance must be less than

$$
\frac{150^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{19 \mathrm{~W}}=4.2^{\circ} \mathrm{C} / \mathrm{W}
$$

Using $\theta_{\mathrm{JC}}=2^{\circ} \mathrm{C} / \mathrm{W}$, the sum of the case-to-heat sink interface thermal resistance and the heat-sink-to-ambient

Application Hints (Continued)

thermal resistance must be less than $2.2^{\circ} \mathrm{C} / \mathrm{W}$. The case-to-heat-sink thermal resistance of the TO-220 package varies with the mounting method used. A metal-to-metal interface will be about $1^{\circ} \mathrm{C} / \mathrm{W}$ if lubricated, and about $1.2^{\circ} \mathrm{C} / \mathrm{W}$ if dry. If a mica insulator is used, the thermal resistance will be about $1.6^{\circ} \mathrm{C} / \mathrm{W}$ lubricated and $3.4^{\circ} \mathrm{C} / \mathrm{W}$ dry. For this example, we assume a lubricated mica insulator between the LM675 and the heat sink. The heat sink thermal resistance must then be less than

$$
4.2^{\circ} \mathrm{C} / \mathrm{W}-2^{\circ} \mathrm{C} / \mathrm{W}-1.6^{\circ} \mathrm{C} / \mathrm{W}=0.6^{\circ} \mathrm{C} / \mathrm{W} .
$$

This is a rather large heat sink and may not be practical in some applications. If a smaller heat sink is required for reasons of size or cost, there are two alternatives. The maximum ambient operating temperature can be restricted to $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, resulting in a $1.6^{\circ} \mathrm{C} / \mathrm{W}$ heat sink, or the heat
sink can be isolated from the chassis so the mica washer is not needed. This will change the required heat sink to a $1.2^{\circ} \mathrm{C} / \mathrm{W}$ unit if the case-to-heat-sink interface is lubricated. The thermal requirements can become more difficult when an amplifier is driving a reactive load. For a given magnitude of load impedance, a higher degree of reactance will cause a higher level of power dissipation within the amplifier. As a general rule, the power dissipation of an amplifier driving a 60° reactive load will be roughly that of the same amplifier driving the resistive part of that load. For example, some reactive loads may at some frequency have an impedance with a magnitude of 8Ω and a phase angle of 60°. The real part of this load will then be $8 \Omega \times \cos 60^{\circ}$ or 4Ω, and the amplifier power dissipation will roughly follow the curve of power dissipation with a 4Ω load.

Typical Applications (Continued)

Servo Motor Control

TL/H/6739-8

High Current Source/Sink

7 National Semiconductor
 LM725/LM725A/LM725C Operational Amplifier

General Description

The LM725/LM725A/LM725C are operational amplifiers featuring superior performance in applications where low noise, low drift, and accurate closed-loop gain are required. With high common mode rejection and offset null capability, it is especially suited for low level instrumentation applications over a wide supply voltage range.
The LM725A has tightened electrical performance with higher input accuracy and like the LM725, is guaranteed over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM725C has slightly relaxed specifications and has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Features

- High open loop gain

3,000,000

- Low input voltage drift
- High common mode rejection
- Low input noise current
- Low input offset current
$0.15 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- High input voltage range
- Wide power supply range
$\pm 3 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Offset null capability
- Output short circuit protection

Connection Diagrams and Ordering Information

Metal Can Package

TL/H/10474-1
Order Number LM725H, LM725AH or LM725CH
See NS Package Number H08C

Dual-In-Line Package

TL/H/10474-2
Order Number LM725CN See NS Package Number N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$\pm 22 \mathrm{~V}$
Internal Power Dissipation (Note 1) 500 mW
Differential Input Voltage $\pm 5 \mathrm{~V}$
Input Voltage (Note 2) $\pm 22 \mathrm{~V}$

Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 Sec.$)$			$260^{\circ} \mathrm{C}$
Maximum Junction Temperature			$150^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\text {A(MIN) }}$		$\mathrm{T}_{\text {A(MAX) }}$
LM725	$-55^{\circ} \mathrm{C}$	to	$+125^{\circ} \mathrm{C}$
LM725A	$-55^{\circ} \mathrm{C}$	to	$+125^{\circ} \mathrm{C}$
LM725C	$0^{\circ} \mathrm{C}$	to	$+70^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Parameter	Conditions	LM725A			LM725			LM725C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Without External Trim)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$			0.5		0.5	1.0		0.5	2.5	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		2.0	20		2.0	35	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		42	80		42	100		42	125	nA
Input Noise Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 15 \\ & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$			$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$			$\begin{gathered} 1.0 \\ 0.3 \\ 0.15 \end{gathered}$		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5			1.5			1.5		$\mathrm{M} \Omega$
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 13.5	± 14		± 13.5	± 14		± 13.5	± 14		V
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \end{aligned}$	1000	3000		1000	3000		250	3000		V/mV
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	120			110	120		94	120		dB
Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \end{aligned}$		2.0	5.0		2.0	10		2.0	35	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12.5 \\ & \pm 12.0 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 13.5 \\ & \pm 13.5 \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	105		80	105		80	150	mW
Input Offset Voltage (Without External Trim)	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$			0.7			1.5			3.5	mV
Average Input Offset Voltage Drift (Without External Trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$			2.0		2.0	5.0		2.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Input Offset Voltage Drift (With External Trim)	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		0.6	1.0		0.6			0.6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{A}=T_{M A X} \\ & T_{A}=T_{\text {MIN }} \end{aligned}$		$\begin{aligned} & 1.2 \\ & 7.5 \end{aligned}$	$\begin{gathered} 4.0 \\ 18.0 \end{gathered}$		$\begin{aligned} & 1.2 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Average Input Offset Current Drift			35	90		35	150		10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$		$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{gathered} 70 \\ 180 \end{gathered}$		$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$			$\begin{aligned} & 125 \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM725A			LM725			LM725C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \end{aligned}$	$\begin{array}{r} 1,000,000 \\ 500,000 \\ \hline \end{array}$			$\begin{aligned} & 1,000,000 \\ & 250,000 \end{aligned}$			125,000 125,000			$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
Common-Mode Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$	110			100				115		dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			8.0			20		20		$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 12			± 10			± 10			V

Note 1: Derate at $150^{\circ} \mathrm{C} / \mathrm{W}$ for operation at ambient temperatures above $75^{\circ} \mathrm{C}$.
Note 2: For supply voltages less than $\pm 22 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $\mathrm{V}_{\mathbf{S}}= \pm 15 \mathrm{~V}$ unless otherwise specified.

Schematic Diagram

Typical Performance Characteristics

Stabilization Time of Input Offset Voltage from Power Turn-On

Typical Performance Characteristics (Continued)

Note 1: Performance is shown using recommended compensation networks.

Transient Response Test Circuit

Auxiliary Circuits

Typical Applications

DC Gains $=10,000 ; 1,000 ; 100 ;$ and 10
Bandwidth $=$ Determined by value of C1

$\frac{R 2}{R 5}=\frac{R 6}{R 7}$ for best $C M R$
$R 1=R 4$
$R 2=R 5$
Gain $=\frac{R 6}{R 2}+\left(\frac{2 R 1}{R 3}\right)$
$D C$ Gain $=1000$
$\pm 100 \mathrm{~V}$ Common Mode Range Differential Amplifier

TL/H/10474-11

Bandwidth = DC to 540 Hz
Equivalent Input Noise $=0.24 \mu \mathrm{~V}_{\text {rms }}$

Note 1: Indicates $\pm 1 \%$ metal film resistors recommended for temperature stability.

Typical Applications (Continued)

$\frac{\mathrm{R} 1}{\mathrm{R} 6}=\frac{\mathrm{R} 3}{\mathrm{R} 4}$ for best CMRR
$\mathrm{R} 3=\mathrm{R} 4$
$R 1=R 6=10 R 3$
Gain $=\frac{R 6}{R 7}$

LM741／LM741A／LM741C／LM741E Operational Amplifier

General Description

The LM741 series are general purpose operational amplifi－ ers which feature improved performance over industry stan－ dards like the LM709．They are direct，plug－in replacements for the 709C，LM201，MC1439 and 748 in most applications． The amplifiers offer many features which make their appli－ cation nearly foolproof：overload protection on the input and
output，no latch－up when the common mode range is ex－ ceeded，as well as freedom from oscillations．
The LM741C／LM741E are identical to the LM741／LM741A except that the LM741C／LM741E have their performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range，in－ stead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．

Schematic and Connection Diagrams（Top Views）

TL／H／9341－1

Metal Can Package

TL／H／9341－2
Order Number LM741H，LM741AH， LM741CH or LM741EH
See NS Package Number H08C

Dual－In－Line or S．O．Package

TL／H／9341－3
Order Number LM741J，LM741AJ，LM741CJ，
LM741CM，LM741CN or LM741EN
See NS Package Number J08A，M08A or N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 5)

	LM741A	LM741E	LM741	LM741C
Supply Voltage	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 22 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Junction Temperature	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Soldering Information				
N-Package (10 seconds) J- or H-Package (10 seconds) $260^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
M-Package			$300^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$
\quad Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 6)
400 V
400 V
400 V
400 V

Electrical Characteristics (Note 3)

Parameter	Conditions	LM741A/LM741E			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & R_{S} \leq 10 \mathrm{k} \Omega \\ & R_{S} \leq 50 \Omega \\ & \hline \end{aligned}$		0.8	3.0		1.0	5.0		2.0	6.0	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{AMAX}} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \\ & \hline \end{aligned}$			4.0			6.0			7.5	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Input Offset Voltage Drift				15							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage Adjustment Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V}$	± 10				± 15			± 15		mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	30		20	200		20	200	nA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {AMAX }}$			70		85	500			300	nA
Average Input Offset Current Drift				0.5							$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30	80		80	500		80	500	nA
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}$			0.210			1.5			0.8	$\mu \mathrm{A}$
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 20 \mathrm{~V}$	1.0	6.0		0.3	2.0		0.3	2.0		$\mathrm{M} \Omega$
	$\begin{aligned} & T_{\text {AMIN }} \leq T_{A} \leq T_{\text {AMAX }} \\ & V_{S}= \pm 20 \mathrm{~V} \end{aligned}$	0.5									$\mathrm{M} \Omega$
Input Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							± 12	± 13		V
	$\mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {AMAX }}$				± 12	± 13					V
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$	50			50	200		20	200		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }}, \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}= \pm 2 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 10 \\ & \hline \end{aligned}$			25			15			V / mV V / mV V / mV

Electrical Characteristics（Note 3）（Continued）

Parameter	Conditions	LM741A／LM741E			LM741			LM741C			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Output Voltage Swing	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ \hline \end{array}$	$\begin{aligned} & \pm 16 \\ & \pm 15 \end{aligned}$									$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$				$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 14 \\ & \pm 13 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Short Circuit Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {AMAX }} \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$	25	$\begin{aligned} & 35 \\ & 40 \\ & \hline \end{aligned}$		25			25		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Common－Mode Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\mathrm{AMIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{AMAX}} \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega, \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V} \\ & \hline \end{aligned}$	80	95		70	90		70	90		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Supply Voltage Rejection Ratio	$\begin{aligned} & \mathrm{T}_{\text {AMIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{AMAX}} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{S}} \leq 50 \Omega \\ & \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega \end{aligned}$	86	96		77	96		77	96		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Transient Response Rise Time Overshoot	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，Unity Gain		$\begin{gathered} 0.25 \\ 6.0 \end{gathered}$	$\begin{aligned} & 0.8 \\ & 20 \end{aligned}$		$\begin{gathered} 0.3 \\ 5 \end{gathered}$			$\begin{gathered} 0.3 \\ 5 \end{gathered}$		$\begin{aligned} & \mu \mathrm{S} \\ & \% \end{aligned}$
Bandwidth（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.437	1.5								MHz
Slew Rate	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，Unity Gain	0.3	0.7			0.5			0.5		$\mathrm{V} / \mu \mathrm{s}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					1.7	2.8		1.7	2.8	mA
Power Consumption	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$		80	150		50	85		50	85	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
LM741A	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{AMAX}} \end{aligned}$			$\begin{aligned} & 165 \\ & 135 \end{aligned}$							$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
LM741E	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{AMIN}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{AMAX}} \end{aligned}$			$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$							$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
LM741	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {AMIN }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {AMAX }} \end{aligned}$					$\begin{aligned} & 60 \\ & 45 \end{aligned}$	$\begin{gathered} 100 \\ 75 \end{gathered}$				$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Note 1：For operation at elevated temperatures，these devices must be derated based on thermal resistance，and T_{j} max．（listed under＂Absolute Maximum
Ratings＇）．$T_{j}=T_{A}+\left(\theta_{j A} P_{D}\right)$ ．

Thermal Resistance	Cerdip（J）	DIP（N）	HO8（H）	SO－8（M）
$\boldsymbol{\theta}_{\mathrm{j} \text { A }}$（Junction to Ambient）	$100^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$170^{\circ} \mathrm{C} / \mathrm{W}$	$195^{\circ} \mathrm{C} / \mathrm{W}$
$\boldsymbol{\theta}_{\mathrm{j} \mathrm{C}}$（Junction to Case）	N／A	N／A	$25^{\circ} \mathrm{C} / \mathrm{W}$	N / A

Note 2：For supply voltages less than $\pm 15 \mathrm{~V}$ ，the absolute maximum input voltage is equal to the supply voltage．
Note 3：Unless otherwise specified，these specifications apply for $V_{S}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$（LM741／LM741A）．For the LM741C／LM741E，these specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ ．
Note 4：Calculated value from：BW $(\mathrm{MHz})=0.35 /$ Rise $\operatorname{Time}(\mu \mathrm{s})$ ．
Note 5：For military specifications see RETS741X for LM741 and RETS741AX for LM741A．
Note 6：Human body model， $1.5 \mathrm{k} \Omega$ in series with 100 pF ．

LM759/LM77000

 Power Operational Amplifiers
General Description

The LM759 and LM77000 are high performance operational amplifiers that feature high output current capability. The LM759 is capable of providing 325 mA and the LM77000 providing 250 mA . Both amplifiers feature small signal characteristics that are better than the LM741. The amplifiers are designed to operate from a single or dual power supply with an input common mode range that includes the negative supply. The high gain and high output power provide superior performance. Internal current limiting, thermal shutdown, and safe area compensation are employed making the LM759 and LM77000 essentially indestructible.

Features

- Output current LM759-325 mA minimum LM77000-250 mA minimum
- Internal short circuit current limiting
- Internal thermal overload protection
- Internal output transistors safe-area protection
- Input common mode voltage range includes ground or negative supply

Applications

- Voltage regulators
- Audio amplifiers
- Servo amplifiers
- Power drivers

Connection Diagrams and Ordering Information

TL/H/10075-2
Top View
Order Number LM759CP or LM77000CP See NS Package Number P04A

TL/H/10075-1
Lead 4 connected to case.
Top View
Order Number LM759MH or LM759CH
See NS Package Number H08C

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range

Metal Can
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Internal Power Dissipation (Note 1)
Supply Voltage
$\pm 18 \mathrm{~V}$
Differential Input Voltage 30V
Input Voltage (note 2) $\pm 15 \mathrm{~V}$

Operating Junction Temperature Range
Military (LM759M)
Commercial (LM759C, LM77000C)
Lead Temperature
Metal Can (soldering, 60 sec)
Plastic Package (soldering, 10 sec)
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
$265^{\circ} \mathrm{C}$

LM759

Electrical Characteristics $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
V_{10}	Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	3.0	mV
10	Input Offset Current				5.0	30	nA
I_{B}	Input Bias Current				50	150	nA
Z_{1}	Input Impedance			0.25	1.5		$\mathrm{M} \Omega$
ICC	Supply Current				12	18	mA
$\mathrm{V}_{\text {IR }}$	Input Voltage Range			$\mathrm{V}^{+}-2 \mathrm{~V}$ to V^{-}	$\mathrm{V}^{+}-2 \mathrm{~V}$ to V^{-}		V
los	Output Short Circuit Current		$\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\|=30 \mathrm{~V}$		± 200		mA
IOPEAK	Peak Output Current		$3.0 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\| \leq 10 \mathrm{~V}$	± 325	± 500		mA
Avs	Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	50	200		V / mV
TR	Transient Response	Rise Time	$R_{L}=50 \Omega, A_{V}=1.0$		300		ns
		Overshoot			5.0		\%
SR	Slew Rate		$R_{L}=50 \Omega, A_{V}=1.0$		0.6		$\mathrm{V} / \mu \mathrm{s}$
BW	Bandwidth		$A_{V}=1.0$		1.0		MHz
The following specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+150^{\circ} \mathrm{C}$							
V_{10}	Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			4.5	mV
10	Input Offset Current					60	nA
$\mathrm{IIB}^{\text {B }}$	Input Bias Current					300	nA
CMRR	Common Mode Rejection Ratio		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		dB
PSRR	Power Supply Rejection Ratio		$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$	80	100		dB
Avs	Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	200		V / mV
$\mathrm{V}_{\text {OP }}$	Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 10	± 12.5		V

LM759C
Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
V_{10}	Input Offset Voltage		$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		1.0	6.0	mV
l_{10}	Input Offset Current				5.0	50	nA
I_{B}	Input Bias Current				50	250	nA
Z_{1}	Input Impedance			0.25	1.5		$\mathrm{M} \Omega$
ICC	Supply Current				12	18	mA
V_{IR}	Input Voltage Range			$\mathrm{V}^{+}-2 \mathrm{~V}$ to V^{-}	$\mathrm{V}^{+}-2 \mathrm{~V}$ to V^{-}		V
los	Output Short Circuit Current		$\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\|=30 \mathrm{~V}$		± 200		mA
IOPEAK	Peak Output Current		$3.0 \mathrm{~V} \leq\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\| \leq 10 \mathrm{~V}$	± 325	± 500		mA
Avs	Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	200		V / mV
TR	Transient Response	Rise Time	$R_{L}=50 \Omega, A_{V}=1.0$		300		ns
		Overshoot			10		\%
SR	Slew Rate		$R_{L}=50 \Omega, A_{V}=1.0$		0.5		$\mathrm{V} / \mu \mathrm{s}$
BW	Bandwidth		$A_{V}=1.0$		1.0		MHz

The following specifications apply for $0^{\circ} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$

$\mathrm{V}_{1 \mathrm{O}}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			7.5	mV
I_{IO}	Input Offset Current				100	nA
I_{IB}	Input Bias Current				400	nA
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		dB
$\mathrm{~A}_{\mathrm{VS}}$	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	200	$\mathrm{~V} / \mathrm{mV}$	
V_{OP}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 10	± 12.5	V	

Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
V_{10}	Input Offset Voltage		$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		1.0	8.0	mV
10	Input Offset Current				5.0	50	nA
I_{IB}	Input Bias Current				50	250	nA
Z_{1}	Input Impedance			0.25	1.5		$\mathrm{M} \Omega$
ICC	Supply Current				12	18	mA
$\mathrm{V}_{\text {IR }}$	Input Voltage Range			+13 to V^{-}	+13 to V^{-}		\checkmark
los	Output Short Circuit Current		$\left\|\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{O}}\right\|=30 \mathrm{~V}$		± 200		mA
IOPEAK	Peak Output Current		$3.0 \mathrm{~V} \leq\left\|\mathrm{V}_{C C}-\mathrm{V}_{\mathrm{O}}\right\| \leq 10 \mathrm{~V}$	± 250	± 400		mA
Avs	Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	200		V / mV
TR	Transient Response	Rise Time	$R_{L}=50 \Omega, A_{V}=1.0$		300		ns
		Overshoot			10		\%
SR	Slew Rate		$R_{L}=50 \Omega, A_{V}=1.0$		0.5		$\mathrm{V} / \mu \mathrm{s}$
BW	Bandwidth		$A_{V}=1.0$		1.0		MHz

The following specifications apply for $0^{\circ} \leq T_{J} \leq+125^{\circ} \mathrm{C}$

V_{10}	Input Offset VoItage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			10	mV
I_{IO}	Input Offset Current				100	nA
I_{IB}	Input Bias Current				400	nA
CMR	Common Mode Rejection	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	100		dB
$\mathrm{~A}_{\text {VS }}$	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	200		$\mathrm{~V} / \mathrm{mV}$
$\mathrm{V}_{\text {OP }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 10	± 12.5		V

Note 1: Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, use the thermal resistance values which follow the Equivalent Circuit Schematic.
Note 2: For a supply voltage less than 30 V between V^{+}and V^{-}, the absolute maximum input voltage is equal to the supply voltage.

Note: All resistor values in ohms.

Package	$\begin{gathered} \text { Typ } \\ \theta \mathrm{JC} \\ { }^{\circ} \mathbf{C} / \mathrm{W} \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \theta_{\mathrm{JC}} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	$\begin{gathered} \text { Typ } \\ \theta_{\text {JA }} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \theta_{\text {JA }} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Plastic Package (P)	8.0	12	75	80
Metal Can (H)	30	40	120	150

$$
\begin{aligned}
P_{\mathrm{D} \text { Max }} & =\frac{T_{J M a x}-T_{A}}{\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}} \text { or } \\
& =\frac{T_{J M a x}-T_{A}}{\theta_{\mathrm{JA}}} \text { (without a heat sink) } \\
\theta_{\mathrm{CA}} & =\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}
\end{aligned}
$$

Solving T_{J} :
$T_{J}=T_{A}+P_{D}\left(\theta_{J C}+\theta_{C A}\right)$ or
$=T_{A}+P_{D} \theta_{J A}$ (without a heat sink)
Where:
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$P_{D}=$ Power Dissipation
$\theta_{\mathrm{JA}}=$ Junction to ambient thermal resistance
$\theta_{J C}=$ Junction to case thermal resistance
$\theta_{\mathrm{CA}}=$ Case to ambient thermal resistance
$\theta_{\mathrm{CS}}=$ Case to heat sink thermal resistance
$\theta_{\text {SA }}=$ Heat sink to ambient thermal resistance

Mounting Hints

Metal Can Package (LM759CH/LM759MH)

The LM759 in the 8-Lead TO-99 metal can package must be used with a heat sink. With $\pm 15 \mathrm{~V}$ power supplies, the LM759 can dissipate up to 540 mW in its quiescent (no load) state. This would result in a $100^{\circ} \mathrm{C}$ rise in chip temperature to $125^{\circ} \mathrm{C}$ (assuming a $25^{\circ} \mathrm{C}$ ambient temperature). In order to avoid this problem, it is advisable to use either a slip on or stud mount heat sink with this package. If a stud mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the case of the LM759 is internally connected to the negative power supply terminal.
Plastic Package (LM759CP/LM77000CP)
The LM759CP and LM77000CP are designed to be attached by the tab to a heat sink. This heat sink can be either one of the many heat sinks which are commercially available, a piece of metal such as the equipment chassis, or a suitable amount of copper foil as on a double sided PC board. The important thing to remember is that the negative power supply connection to the op amp must be made through the tab. Furthermore, adequate heat sinking must be provided to keep the chip temperature below $125^{\circ} \mathrm{C}$ under worst case load and ambient temperature conditions.

Output Voltage vs

 Load Resistance

Voltage Follower Large Signal Pulse Response

Output Voltage
vs Frequency

Voltage Follower Transient Response

Peak Output Current vs Output Voltage

TL/H/10075-4

Applications

TL/H/10075-5

Audio Applications

Low Cost Phono Amplifier

TL/H/10075-9
Features:
Circuit Simplicity
1 Watt of Audio Output
Duplex operation with only one two-wire cable as interconnect.
Note 1: All resistor values in ohms.

Applications (Continued)

High Slew Rate Power Op Amp/Audio Amp

Features:

High Slew Rate $9 \mathrm{~V} / \mu \mathrm{s}$
High 3 dB Power Bandwidth 85 kHz 18 Watts Output Power into an 8Ω load.
Low Distortion- $0.2 \%, 10 \mathrm{Vrms}, 1 \mathrm{kHz}$ into 8Ω
Design Consideration
$A_{V} \geq 10$

Servo Applications

TL/H/10075-11

Features:

Gain of 10
Use of LM759 Means Simple Inexpensive Circuit
Design Considerations:
325 mA Max Output Current

Features:

Circuit Simplicity
One Chip Means Excellent Reliability
Design Considerations
$10 \leq 325 \mathrm{~mA}$
Note 1: All resistor values in ohms.

Regulator Applications

Adjustable Dual Tracking Regulator

Features:
Wide Output Voltage Range ($\pm 2.2 \mathrm{~V}$ to $\pm 30 \mathrm{~V}$)
Excellent Load Regulation $\Delta \mathrm{V}_{\mathrm{O}}< \pm 5 \mathrm{mV}$ for $\Delta \mathrm{l}_{\mathrm{O}}= \pm 0.2 \mathrm{~A}$
Excellent Line Regulation $\Delta \mathrm{V}_{\mathrm{O}}< \pm 2 \mathrm{mV}$ for $\Delta \mathrm{V}_{\mathrm{I}}=10 \mathrm{~V}$
Note 1: All resistor values in ohms.

Features:
Excellent Load and Line Regulation
Excellent Temperature Coefficient-Depends
Largely on Tempco of the Reference Zener
Note 1: All resistor values in ohms.

LM776

Multi－Purpose Programmable Operational Amplifier

General Description

The LM776 Programmable Operational Amplifier is con－ structed using the Planar Epitaxial process．High input im－ pedance，low supply currents，and low input noise over a wide range of operating supply voltages coupled with pro－ grammable electrical characteristics result in an extremely versatile amplifier for use in high accuracy，low power con－ sumption analog applications．Input noise voltage and cur－ rent，power consumption，and input current can be opti－ mized by a single resistor or current source that sets the chip quiescent current for nano watt power consumption or for characteristics similar to the LM741．Internal frequency compensation，absence of latch up，high slew rate and short circuit current protection assure ease of use in long time integrators，active filters，and sample and hold circuits．

Connection Diagrams

8－Lead Metal Package

Top View
Lead 4 connected to case．

8－Lead DIP

TL／H／10073－2

Top View

Features

－Micropower consumption
四 $\pm 1.2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ operation
－No frequency compensation required
－Low input bias currents
－Wide programming range
■ High slew rate
－Low noise
－Short circuit protection
－Offset null capability
－No latch up

Applications

（ Battery－powered instrumentation
© High－gain amp
四 Filters
圆 Sample－and－Hold

Ordering Information

Device Code	Package Code	Package Description
LM776H	H08A	Metal
LM776CH	H08A	Metal
LM776CN	N08E	Molded DIP

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature Range

Metal Can
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating Temperature Range
Extended (LM776M)
Commercial (LM776C)

Lead Temperature
Metal Can (Soldering, 60 sec .)
Molded DIP (Soldering, 10 sec .)
Internal Power Dissipation (Notes 1, 2)
8L-Metal Can
8L-Molded DIP

Supply Voltage $\pm 18 \mathrm{~V}$
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage (Note 3)
$\pm 15 \mathrm{~V}$
Voltage Between Offset Null and V -
$\pm 0.5 \mathrm{~V}$
Output Short Circuit Duration (Note 4) Indefinite $500 \mu \mathrm{~A}$
ISET $^{(M a x i m u m ~ C u r r e n t ~ a t ~ I S E T) ~}$
$\mathrm{V}_{\text {SET }}$ (Maximum Voltage to Ground at $I_{\text {SET }}$)
$\left(\mathrm{V}^{+}-2.0 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{SET}} \leq \mathrm{V}^{+}$
ESD Tolerance (to be determined)

LM776

Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	$\mathrm{I}_{\text {SET }}=1.5 \mu \mathrm{~A}$			$\mathrm{I}_{\text {SET }}=15 \mu \mathrm{~A}$			Units	
			Min	Typ	Max	Min	Typ	Max			
V_{10}	Input Offset Voltage			$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		2.0	5.0		2.0	5.0	mV
V_{10} adj	Input Offset Voltage Adjustment Range				9.0			18		mV	
I_{10}	Input Offset Current				0.7	3.0		2.0	15	nA	
I_{IB}	Input Bias Current				2.0	7.5		15	50	nA	
Z_{1}	Input Impedance				50			5.0		$\mathrm{M} \Omega$	
ICC	Supply Current				20	25		160	180	$\mu \mathrm{A}$	
P_{c}	Power Consumption					0.75			5.4	mW	
los	Output Short Circuit Current				3.0			12		mA	
Avs	Large Signal Voltage Gain		$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega$	200	400					V/mV	
			$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$				100	400			
$\mathrm{V}_{\text {OP }}$	Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=75 \mathrm{k} \Omega$	± 12	± 14					V	
			$\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega$				± 10	± 13			
TR	Transient Response	Rise Time	$\begin{aligned} & V_{I}=20 \mathrm{mV}, R_{L}=5.0 \mathrm{k} \Omega, \\ & C_{L}=100 \mathrm{pF}, A_{V}=1.0 \end{aligned}$		1.6			0.35		$\mu \mathrm{S}$	
		Overshoot			0			10		\%	
SR	Slew Rate		$\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{A}_{V}=1.0$		0.1			0.8		$\mathrm{V} / \mu \mathrm{s}$	
The following specifications apply $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$											
V_{10}	Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0			6.0	mV	
10	Input Offset Current		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			5.0			15	nA	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			10			40		
$I_{1 B}$	Input Bias Current		$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			7.5			50	nA	
			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			20			120		
lc	Supply Current					30			200	$\mu \mathrm{A}$	
P_{c}	Power Consumption					0.9			6.0	mW	
CMR	Common Mode Rejection		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB	
$\mathrm{V}_{\text {IR }}$	Input Voltage Range			± 10			± 10			V	
PSRR	Power Supply Rejection Ratio		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		25	150		25	150	$\mu \mathrm{V} / \mathrm{V}$	
Avs	Large Signal Voltage Gain		$\mathrm{V}_{\mathrm{O}}=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega$	100			75			V / mV	
$\mathrm{V}_{\text {OP }}$	Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=75 \mathrm{k} \Omega$	± 10			± 10			V	

LM776

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 3.0 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	$\mathrm{I}_{\text {SET }}=1.5 \mu \mathrm{~A}$			$\mathrm{I}_{\text {SET }}=15 \mu \mathrm{~A}$			Units	
			Min	Typ	Max	Min	Typ	Max			
V_{10}	Input Offset Voltage			$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		2.0	5.0		2.0	5.0	mV
$\mathrm{V}_{\text {IO }}$ adj	Input Offset Voltage Adjustment Range				9.0			18		mV	
10	Input Offset Current				0.7	3.0		2.0	15	nA	
$\mathrm{IIB}^{\text {B }}$	Input Bias Current				2.0	7.5		15	50	nA	
Z_{1}	Input Impedance				50			5.0		$\mathrm{M} \Omega$	
ICC	Supply Current				13	20		130	160	$\mu \mathrm{A}$	
P_{c}	Power Consumption				78	120		780	960	$\mu \mathrm{W}$	
los	Output Short Circuit Current				3.0			5.0		mA	
Avs	Large Signal Voltage Gain		$\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega$	50	200					/mV	
			$\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$				50	200			
TR	Transient Response	Rise Time	$\begin{aligned} & V_{I}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \\ & C_{\mathrm{L}}=100 \mathrm{pF}, A_{V}=1.0 \end{aligned}$		3.0			0.6		$\mu \mathrm{s}$	
		Overshoot			0			5		\%	
SR	Slew Rate		$\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{A}_{V}=1.0$		0.03			0.35		$\mathrm{V} / \mu \mathrm{s}$	

The following specifications apply $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

V_{10}	Input Offset Voltage	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$			6.0			6.0	mV
10	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			5.0			15	nA
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			10			40	
IB	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$			7.5			50	nA
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			20			120	
I_{CC}	Supply Current				25			180	$\mu \mathrm{A}$
P_{c}	Power Consumption				150			1080	$\mu \mathrm{W}$
CMR	Common Mode Rejection	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$	70	86		70	86		dB
V_{IR}	Input Voltage Range		± 1.0			± 1.0			V
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		25	150		25	150	$\mu \mathrm{V} / \mathrm{V}$
Avs	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega$	25						V / mV
		$\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$				25			
V_{OP}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=75 \mathrm{k} \Omega$	± 2.0	± 2.4					V
		$\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega$				± 1.9	± 2.1		

Note 1: $\mathrm{T}_{\mathrm{J} \text { Max }}=150^{\circ} \mathrm{C}$ for the Molded DIP, and $175^{\circ} \mathrm{C}$ for the Metal Can.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the $8 \mathrm{~L}-\mathrm{Metal}$ Can at $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the $8 \mathrm{~L}-\mathrm{Molded} \mathrm{DIP}$ at $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Short Circuit may be to ground or either supply. Rating applies to $125^{\circ} \mathrm{C}$ case temperature or $75^{\circ} \mathrm{C}$ ambient temperature for ISET $\leq 30 \mu \mathrm{~A}$.

LM776C
Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	$\mathrm{I}_{\text {SET }}=1.5 \mu \mathrm{~A}$			$\mathrm{I}_{\text {SET }}=15 \mu \mathrm{~A}$			Units	
			Min	Typ	Max	Min	Typ	Max			
V_{10}	Input Offset Voltage			$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		2.0	6.0		2.0	6.0	mV
V_{10} adj	Input Offset Voltage Adjustment Range				9.0			18		mV	
10	Input Offset Current				0.7	6.0		2.0	25	nA	
IIB	Input Bias Current				2.0	10		15	50	nA	
Z_{1}	Input Impedance				50			5.0		$\mathrm{M} \Omega$	
I_{CC}	Supply Current				20	30		160	190	$\mu \mathrm{A}$	
P_{c}	Power Consumption					0.9			5.7	mW	
los	Output Short Circuit Current				3.0			12		mA	
Avs	Large Signal Voltage Gain		$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega$	50	400					V / mV	
			$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$				50	400			
V_{OP}	Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=75 \mathrm{k} \Omega$	± 12	± 14					V	
			$\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega$				± 10	± 13			
TR	Transient Response	Rise Time	$\begin{aligned} & V_{1}=20 \mathrm{mV}, R_{L} \geq 5.0 \mathrm{k} \Omega, \\ & C_{L}=100 \mathrm{pF}, A_{V}=1.0 \end{aligned}$		1.6			0.35		$\mu \mathrm{s}$	
		Overshoot			0			10		\%	
SR	Slew Rate		$\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=1.0$		0.1			0.8		$\mathrm{V} / \mu \mathrm{s}$	

The following specifications apply $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

V_{10}	Input Offset Voltage	$\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega$			7.5			7.5	mV
10	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			6.0			25	nA
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			10			40	
1 IB	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			10			50	nA
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			20			100	
ICC	Supply Current				35			200	$\mu \mathrm{A}$
P_{C}	Power Consumption				1.05			6.0	mW
CMR	Common Mode Rejection	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
$\mathrm{V}_{\text {IR }}$	Input Voltage Range		± 10			± 10			V
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		25	200		25	200	$\mu \mathrm{V} / \mathrm{V}$
Avs	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega$	50			50			V / mV
V_{OP}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=75 \mathrm{k} \Omega$	± 10			± 10			V

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 3.0 \mathrm{v}$, unless otherwise specified

Symbol	Parameter		Conditions	$\mathrm{I}_{\text {SET }}=1.5 \mu \mathrm{~A}$			$\mathrm{I}_{\text {SET }}=15 \mu \mathrm{~A}$			Units	
			Min	Typ	Max	Min	Typ	Max			
V_{10}	Input Offset Voltage			$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$		2.0	6.0		2.0	6.0	mV
V_{10} adj	Input Offset Voltage Adjustment Range				9.0			18		mV	
10	Input Offset Current				0.7	6.0		2.0	25	nA	
l_{IB}	Input Bias Current				2.0	10		15	50	nA	
Z_{1}	Input Impedance				50			5.0		$\mathrm{M} \Omega$	
ICC	Supply Current				13	20		130	170	$\mu \mathrm{A}$	
P_{C}	Power Consumption				78	120		780	1020	$\mu \mathrm{W}$	
los	Output Short Circuit Current				3.0			5.0		mA	
Avs	Large Signal Voltage Gain		$\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega$	25	200					V/mV	
			$\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$				25	200			
TR	Transient Response	Rise Time	$\begin{aligned} & V_{1}=20 \mathrm{mV}, R_{L} \geq 5.0 \mathrm{k} \Omega \\ & C_{L}=100 \mathrm{pF}, A_{V}=1.0 \end{aligned}$		3.0			0.6		$\mu \mathrm{s}$	
		Overshoot			0			5		\%	
SR	Slew Rate		$\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega, \mathrm{A}_{V}=1.0$		0.03			0.35		$\mathrm{V} / \mu \mathrm{s}$	

The following specifications apply $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

V_{10}	Input Offset Voltage	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$			7.5			7.5	mV
10	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			6.0			25	nA
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			10			40	
$I_{\text {IB }}$	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			10			50	nA
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$			20			100	
ICC	Supply Current				25			180	$\mu \mathrm{A}$
P_{C}	Power Consumption				150			1080	$\mu \mathrm{W}$
CMR	Common Mode Rejection	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	86		70	86		dB
$\mathrm{V}_{\text {IR }}$	Input Voltage Range		± 1.0			± 1.0			V
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		25	200		25	200	$\mu \mathrm{V} / \mathrm{V}$
Avs	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 75 \mathrm{k} \Omega$	25						V / mV
		$\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 5.0 \mathrm{k} \Omega$				25			
V_{OP}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=75 \mathrm{k} \Omega$	± 2.0	± 2.4					V
		$\mathrm{R}_{\mathrm{L}}=5.0 \mathrm{k} \Omega$				± 2.0	± 2.1		

Equivalent Circuit

Typical Performance Characteristics for LNM776 and LM1776C

Typical Performance Characteristics for LM776 and LM776C (Continued)

Applications Information

Quiescent Current Setting Resistor
(SET $^{\text {to }}{ }^{-}$)

$\mathbf{V}_{\mathbf{S}}$	ISET	
	$\mathbf{1 . 5 \mu \mathbf { A }}$	$15 \mu \mathrm{~A}$
$\pm 1.5 \mathrm{~V}$	$1.7 \mathrm{M} \Omega$	$170 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$3.6 \mathrm{M} \Omega$	$360 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$7.5 \mathrm{M} \Omega$	$750 \mathrm{k} \Omega$
$\pm 15 \mathrm{~V}$	$20 \mathrm{M} \Omega$	$2.0 \mathrm{M} \Omega$

Biasing Circuits

TL/H/10073-9

FET Current Source Biasing

TL/H/10073-10

Transient Response Test Circuit

TL/H/10073-11

LM833 Dual Audio Operational Amplifier

General Description

The LM833 is a dual general purpose operational amplifier designed with particular emphasis on performance in audio systems.
This dual amplifier IC utilizes new circuit and processing techniques to deliver low noise, high speed and wide bandwidth without increasing external components or decreasing stability. The LM833 is internally compensated for all closed loop gains and is therefore optimized for all preamp and high level stages in PCM and HiFi systems.
The LM833 is pin-for-pin compatible with industry standard dual operational amplifiers.
Features
© Wide dynamic range
$>140 \mathrm{~dB}$

- Low input noise voltage
- High slew rate
- High gain bandwidth product
﹎ㅜㅇ Wide power bandwidth
Wide power bandwidn kiz
- Low distortion 0.002\%
- Low offset voltage 0.3 mV
n Large phase margin

Schematic Diagram (1/2 LM833)

Connection Diagram

TL/H/5218-2
Order Number LM833M or LM833N
See NS Package Number M08A or N08E

Typical Application RIAA Preamp

TL/H/5218-3

$A_{V}=35 \mathrm{~dB}$	$f=1 \mathrm{kHz}$
$E_{n}=0.33 \mu V$	A Weighted
$S / N=90 \mathrm{~dB}$	A Weighted, $V_{I N}=10 \mathrm{mV}$
	$@ f=1 \mathrm{kHz}$

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	$V_{C C}-V_{\text {EE }}$	36 V
Differential Input Voltage (Note 1)	$\mathrm{V}_{\text {ID }}$	$\pm 30 \mathrm{~V}$
Input Voltage Range (Note 1)	$V_{I C}$	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	P_{D}	500 mW
Operating Temperature Range	$T_{\text {OPR }}$	$-40 \sim 85^{\circ} \mathrm{C}$
Storage Temperature Range	$T_{\text {STG }}$	$-60 \sim 150^{\circ} \mathrm{C}$

Soldering Information Dual-In-Line Package Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package Vapor Phase (60 seconds) $215^{\circ} \mathrm{C}$ Infrared (15 seconds) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 3)
1600V

DC Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right.$)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$V_{O S}$	Input Offset Voltage	$R_{S}=10 \Omega$		0.3	5	mV
I_{OS}	Input Offset Current			10	200	nA
I_{B}	Input Bias Current			500	1000	nA
A_{V}	Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	90	110		dB
$\mathrm{~V}_{\mathrm{OM}}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ $R_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12	± 13.5		V
$\mathrm{~V}_{\mathrm{CM}}$	Input Common-Mode Range		± 10	± 13.4		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}$	± 12	± 14.0		V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=15 \sim 5 \mathrm{~V},-15 \sim-5 \mathrm{~V}$	80	100		dB
IQ	Supply Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{Both} \mathrm{Amps}$		5	8	mA

AC Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right)$

Symbol	Parameter	Conditions	Min	Typ	Max	Units
SR	Slew Rate	$R_{L}=2 \mathrm{k} \Omega$	5	7		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}$	10	15		MHz

Design Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)$
The following parameters are not tested or guaranteed.

Symbol	Parameter	Conditions	Typ	Units
$\Delta V_{O S} / \Delta T$	Average Temperature Coefficient of Input Offset Voltage		2	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
THD	Distortion	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{f}=20 \sim 20 \mathrm{kHz}$ $\mathrm{V}_{\mathrm{OUT}}=3 \mathrm{Vrms}, \mathrm{A}_{\mathrm{V}}=1$	0.002	$\%$
e_{n}	Input Referred Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	4.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Referred Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	0.7	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{O}}=27 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{THD} \leq 1 \%$	120	kHz
f_{U}	Unity Gain Frequency	Open Loop	9	MHz
ϕ_{M}	Phase Margin	Open Loop	$\mathrm{f}=20 \sim 20 \mathrm{kHz}$	60
	Input Referred Cross Talk	feg		

Note 1: If supply voltage is less than $\pm 15 \mathrm{~V}$, it is equal to supply voltage.
Note 2: This is the permissible value at $T_{A} \leq 85^{\circ} \mathrm{C}$.
Note 3: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

TL/H/5218-7
Voltage Gain \& Phase vs Frequency

TL/H/5218-10

Input Bias Current vs Ambient Temperature

DC Voltage Gain vs Ambient Temperature

TL/H/5218-8
Gain Bandwidth Product vs Ambient Temperature

TL/H/5218-11

TL/H/5218-9

Gain Bandwidth

Typical Performance Characteristics (Continued)

TL/H/5218-13

TL/H/5218-16

TL/H/5218-19

TL/H/5218-15

TL/H/5218-18

TL/H/5218-14

Distortion vs Frequency

Typical Performance Characteristics (Continued)

Application Hints

The LM833 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 50 pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

Capacitive loads greater than 50 pF must be isolated from the output. The most straightforward way to do this is to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

Noise Measurement Circuit

 sources. Always check with oscilloscope for power line noise.

Total Gain: 115 dB @f $=\mathbf{1 k H z}$
Input Referred Noise Voltage: $\mathbf{e}_{\mathrm{n}}=\mathrm{V} 0 / 560,000$ (V)

Typical Applications

NAB Preamp

TL/H/5218-31

Balanced to Single Ended Converter

Adder/Subtracter

Sine Wave Oscillator

$$
f_{0}=\frac{1}{2 \pi R C}
$$

Second Order High Pass Filter (Butterworth)

TL/H/5218-35

$$
\begin{aligned}
& \text { if } C 1=C 2=C \\
& R 1=\frac{\sqrt{2}}{2 \omega_{0} C} \\
& R 2=2 \bullet R 1 \\
& \text { Illustration is } f_{0}=1 \mathrm{kHz}
\end{aligned}
$$

Second Order Low Pass Filter
(Butterworth)

if $\mathrm{R} 1=\mathrm{R} 2=\mathrm{R}$
$C_{1}=\frac{\sqrt{2}}{\omega_{0} R}$
$\mathrm{C} 2=\frac{\mathrm{C} 1}{2}$
Illustration is $f_{0}=1 \mathrm{kHz}$

Typical Applications (Continued)

$f_{0}=\frac{1}{2 \pi C 1 R 1}, Q=\frac{1}{2}\left(1+\frac{R 2}{R 0}+\frac{R 2}{R G}\right), A_{B P}=Q A_{L P}=Q A_{L H}=\frac{R 2}{R G}$
Illustration is $f_{0}=1 \mathrm{kHz}, Q=10, A_{B P}=1$

TL/H/5218-38

TL/H/5218-39

Typical Application (Continued)

Balanced Input Mic Amp

$\mathbf{f o}(\mathbf{H z})$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
32	$0.12 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	$75 \mathrm{k} \boldsymbol{\Omega}$	500Ω
64	$0.056 \mu \mathrm{~F}$	$3.3 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	510Ω
125	$0.033 \mu \mathrm{~F}$	$1.5 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	510Ω
250	$0.015 \mu \mathrm{~F}$	$0.82 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
500	8200 pF	$0.39 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	470Ω
1 k	3900 pF	$0.22 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
2 k	2000 pF	$0.1 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	470Ω
4 k	1100 pF	$0.056 \mu \mathrm{~F}$	$62 \mathrm{k} \Omega$	470Ω
8 k	510 pF	$0.022 \mu \mathrm{~F}$	$68 \mathrm{k} \Omega$	510Ω
16 k	330 pF	$0.012 \mu \mathrm{~F}$	$51 \mathrm{k} \Omega$	510Ω

[^18]$$
Q=1.7
$$

Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61

LM837 Low Noise Quad Operational Amplifier

General Description

The LM837 is a quad operational amplifier designed for low noise, high speed and wide bandwidth performance. It has a new type of output stage which can drive a 600Ω load, making it ideal for almost all digital audio, graphic equalizer, preamplifiers, and professional audio applications. Its high performance characteristics also make it suitable for instrumentation applications where low noise is the key consideration.
The LM837 is internally compensated for unity gain operation. It is pin compatible with most other standard quad op amps and can therefore be used to upgrade existing systems with little or no change.

Features

- High slew rate
$10 \mathrm{~V} / \mu \mathrm{s}$ (typ) $8 \mathrm{~V} / \mu \mathrm{s}$ (min) 25 MHz (typ) 15 MHz (min) 200 kHz (typ) $\pm 40 \mathrm{~mA}$ $>600 \Omega$
$4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ 0.0015\%
- Low total harmonic distortion
0.3 mV

Schematic and Connection Diagrams

Dual-In-Line Package

Order Number LM837M or LM837N See NS Package Number M14A or N14A

Absolute Maximum Ratings

If Military/Aerospace spec please contact the Natio Office/Distributors for avai	Semi lity and	are required, ductor Sales cifications.
Supply Voltage	$\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}$	$\pm 18 \mathrm{~V}$
Differential Input Voltage (Note 1)) $V_{\text {ID }}$	$\pm 30 \mathrm{~V}$
Common Mode Input Voltage (Note 1)	VIC	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	P_{D}	$\begin{gathered} 1.2 \mathrm{~W}(\mathrm{~N}) \\ 830 \mathrm{~mW}(\mathrm{M}) \end{gathered}$
Operating Temperature Range	TOPR	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	$60^{\circ} \mathrm{C}$ to +15

Soldering Information
Dual-In-Line Package
Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package Vapor Phase (60 seconds)
$215^{\circ} \mathrm{C}$ Infrared (15 seconds) $220^{\circ} \mathrm{C}$ ESD rating is to be determined.
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

DC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{OS}	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		0.3	5	mV
I_{OS}	Input Offset Current			10	200	nA
I_{B}	Input Bias Current			500	1000	nA
A_{V}	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}$	90	110		dB
$\mathrm{~V}_{\mathrm{OM}}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 12	± 13.5		V
		$\mathrm{R}_{\mathrm{L}}=600 \Omega$	± 10	± 12.5		V
$\mathrm{~V}_{\mathrm{CM}}$	Common Mode Input Voltage		± 12	± 14.0		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}$	80	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=15 \sim 5,-15 \sim-5$	80	100		dB
I_{S}	Power Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$, Four Amps		10	15	mA

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Symbol	Parameter	Condition	Min	Typ	Max	Units
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	8	10		$\mathrm{~V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega$	15	25		MHz

Design Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ (Note 3)

Symbol	Parameter	Condition	Min	Typ	Max	Units
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{O}}=25 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, THD $<1 \%$		200		kHz
$e_{n 1}$	Equivalent Input Noise Voltage	JIS A, $\mathrm{R}_{S}=100 \Omega$		0.5		$\mu \mathrm{V}$
$\mathrm{e}_{\mathrm{n} 2}$	Equivalent Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$		4.5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$		0.7		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD	Total Harmonic Distortion	$\begin{aligned} & A_{V}=1, V_{\text {OUT }}=3 \mathrm{Vrms}, \\ & f=20 \sim 20 \mathrm{kHz}, R_{L}=600 \Omega \end{aligned}$		0.0015		\%
fu	Zero Cross Frequency	Open Loop		12		MHz
ϕ_{m}	Phase Margin	Open Loop		45		deg
	Input-Referred Crosstalk	$\mathrm{f}=20 \sim 20 \mathrm{kHz}$		-120		dB
$\Delta V_{\text {OS }} / \Delta T$	Average TC of Input Offset Voltage			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Note 1: Unless otherwise specified the absolute maximum input voltage is equal to the power supply voltage.
Note 2: For operation at ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance, junction to ambient, as follows: LM837N, $90^{\circ} \mathrm{C} / \mathrm{W} ; \mathrm{LM} 837 \mathrm{M}, 150^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: The following parameters are not tested or guaranteed.

Detailed Schematic

TL/H/9047-3

Typical Performance Characteristics

Maximum Output Voltage vs Ambient Temperature

Supply Current vs Ambient Temperature

Maximum Output Voltage

TL/H/9047-4

Typical Performance Characteristics (Continued)

TIME ($0.1 \mu \mathrm{~s} / \mathrm{DIV}$)
TL/H/9047-6

TIME ($1 \mu \mathrm{~s} / \mathrm{dIV}$)

Current Limit
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~A}_{\mathrm{V}}=1$

TIME ($0.1 \mathrm{~ms} / \mathrm{DIV}$)
TL/H/9047-7

TIME ($1 \mu \mathrm{~s} / \mathrm{DIV}$)

行

 National Semiconductor
LM1558／LM1458 Dual Operational Amplifier

General Description

The LM1558 and the LM1458 are general purpose dual op－ erational amplifiers．The two amplifiers share a common bias network and power supply leads．Otherwise，their oper－ ation is completely independent．
The LM1458 is identical to the LM1558 except that the LM1458 has its specifications guaranteed over the tempera－ ture range from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ．

Features

－No frequency compensation required
T Short－circuit protection
© Wide common－mode and differential voltage ranges
－Low－power consumption
－8－lead can and 8－lead mini DIP
■ No latch up when input common mode range is exceeded

Schematic and Connection Diagrams

Note：Numbers in parentheses are pin numbers for amplifier B．
TL／H／7886－1

Metal Can Package

TL／H／7886－2
Top View
Order Number LM1558H or LM1458H
See NS Package Number H08C

Dual－In－Line Package

TL／H／7886－3
Top View
Order Number LM1558J，LM1458J，LM1458M or LM1458N See NS Package Number J08A，M08A or N08E

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 4)
Supply Voltage

LM1558	$\pm 22 \mathrm{~V}$
LM1458	$\pm 18 \mathrm{~V}$

Power Dissipation (Note 1)
LM1558H/LM1458H
500 mW
LM1458N 400 mW

Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration
$\pm 15 \mathrm{~V}$
Continuous

Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM1558	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM1458	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$260^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	
Soldering Information	
Dual-In-Line Package	$260^{\circ} \mathrm{C}$
Soldering (10 seconds)	
Small Outline Package	$215^{\circ} \mathrm{C}$
Vapor Phase (60 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 5)
300 V

Electrical Characteristics (Note 3)

Parameter	Conditions	LM1558			LM1458			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	5.0		1.0	6.0	mV
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	200		80	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200	500		200	500	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$
Supply Current Both Amplifiers	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3.0	5.0		3.0	5.6	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$	50	160		20	160		V/mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$			6.0			7.5	mV
Input Offset Current				500			300	nA
Input Bias Current				1.5			0.8	$\mu \mathrm{A}$
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq \mathrm{k} \Omega \end{aligned}$	25			15			V / mV
Output Voltage Swing	$\begin{aligned} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} & =10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}} & =2 \mathrm{k} \Omega \end{aligned}$	± 12	± 14		± 12	± 14		V
		± 10	± 13		± 10	± 13		V
Input Voltage Range	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}$	± 12			± 12			V
Common Mode Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	77	96		77	96		dB

Note 1: The maximum junction temperature of the LM1558 is $150^{\circ} \mathrm{C}$, while that of the LM1458 is $100^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. For the DIP the device must be derated based on a thermal resistance of $187^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM1458, however, all specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.
Note 4: Refer to RETS 1558 V for LM1558J and LM1558H military specifications.
Note 5: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

行

National
Semiconductor

LM2900／LM3900／LM3301／LM3401 Quad Amplifiers

General Description

The LM2900 series consists of four independent，dual input， internally compensated amplifiers which were designed specifically to operate off of a single power supply voltage and to provide a large output voltage swing．These amplifi－ ers make use of a current mirror to achieve the non－invert－ ing input function．Application areas include：ac amplifiers， RC active filters，low frequency triangle，squarewave and pulse waveform generation circuits，tachometers and low speed，high voltage digital logic gates．

Features

－Wide single supply voltage Range or dual supplies
$4 V_{D C}$ to $32 V_{D C}$ $\pm 2 V_{D C}$ to $\pm 16 V_{D C}$
（⿴囗⿰丨丨⿰⿴囗十⿴囗十灬丶 Supply current drain independent of supply voltage
－Low input biasing current
30 nA
－High open－loop gain 70 dB
－Wide bandwidth
2.5 MHz （unity gain）
$\left(V^{+}-1\right) V p-p$
－Large output voltage swing
－Internally frequency compensated for unity gain
－Output short－circuit protection

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage
Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)($ Note 1)

Molded DIP
S.O. Package

Input Currents, $\mathrm{I}_{\mathbb{N}}+$ or $\mathrm{I}_{\mathbb{N}^{-}}$
Output Short-Circuit Duration-One Amplifier
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Application Hints)
Operating Temperature Range
LM2900
LM3900
Storage Temperature Range
Lead Temperature (Soldering, 10 sec .)
Soldering Information
Dual-In-Line Package Soldering (10 sec .)
Small Outline Package Vapor Phase (60 sec .) Infrared (15 sec .)

LM2900/LM3900
$32 V_{D C}$
$\pm 16 V_{D C}$

1080 mW
765 mW
$20 \mathrm{~mA} D C$
Continuous
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$
$220^{\circ} \mathrm{C}$

LM3301	LM3401
$28 V_{D C}$	$18 V_{D C}$
$\pm 14 V_{D C}$	$\pm 9 V_{D C}$
	1080 mW
1080 mW	
$20 \mathrm{~mA} A_{D C}$	20 mA
Continuous	Continuous

$$
-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
260^{\circ} \mathrm{C}
$$

$260^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$
$220^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $260^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 7) 2000V 2000V 200V
Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V} \mathrm{DC}$, unless otherwise stated

Parameter		Conditions		LM2900			LM3900			LM3301			LM3401			Units		
		Min	Typ	Max														
Open Loop	Voltage Gain			Over Temp. $\Delta V_{O}=10 V_{D C}$ Inverting Input											0.8			V/mV
	Voltage Gain	1.2	2.8				1.2	2.8		1.2	2.8		1.2	2.8				
	Input Resistance		1					1			1		0.1	1		$\mathrm{M} \Omega$		
	Output Resistance		8					8			9			8		k Ω		
Unity Gain Bandwidth		Inverting Input			2.5			2.5			2.5			2.5		MHz		
Input Bias Current		Inverting Input, $\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}$ Inverting Input			30	200		30	200		30	300		30	$\begin{aligned} & 300 \\ & 500 \end{aligned}$	nA		
Slew Rate		Positive Output Swing Negative Output Swing			$\begin{array}{\|l\|} \hline 0.5 \\ 20 \\ \hline \end{array}$			$\begin{aligned} & 0.5 \\ & 20 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 20 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 0.5 \\ 20 \\ \hline \end{array}$		$\mathrm{V} / \mu \mathrm{s}$		
Supply Current		$\mathrm{R}_{\mathrm{L}}=\infty$ On All Amplifiers			6.2	10		6.2	10		6.2	10		6.2	10	$\mathrm{mA}^{\text {DC }}$		
Output Voltage Swing	$V_{\text {OUT }}$ High	$\begin{aligned} & R_{L}=2 \mathrm{k}, \\ & \mathrm{~V}^{+}=15.0 \mathrm{~V} \mathrm{DC} \end{aligned}$ $\mathrm{V}^{+}=$Absolute Maximum Ratings	$\begin{aligned} & \operatorname{liN}^{-}=0, \\ & \mathbb{N}^{+}=0 \\ & \hline \end{aligned}$	13.5			13.5			13.5			13.5			$V_{D C}$		
	Vout Low		䂠 ${ }^{-}=10 \mu \mathrm{~A}$, $\mathrm{IN}^{+}=0$		0.09	0.2		0.09	0.2		0.09	0.2		0.09	0.2			
	V out High		$\begin{aligned} & \operatorname{liN}^{-}=0, \\ & \operatorname{IN}^{+}=0 \\ & R_{\mathrm{L}}=\infty, \end{aligned}$	29.5			29.5			26.0			16.0					
Output Current Capability	Source			6	18		6	10		5	18		5	10		$m A_{D C}$		
	Sink	(Note 2)		0.5	1.3		0.5	1.3		0.5	1.3		0.5	1.3				
	ISINK	$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{N}^{-}}=5 \mu \mathrm{~A}$			5			5			5			5				

Electrical Characteristics (Note 6$), \mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}$, unless othewise stated (Conimued)

Parameter	Conditions	LM2900			LM3900			LM3301			LM3401			Units
		Min	Typ	Max										
Power Supply Rejection	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=100 \mathrm{~Hz}$		70			70			70			70		dB
Mirror Gain	@ $20 \mu \mathrm{~A}$ (Note 3) @ $200 \mu \mathrm{~A}$ (Note 3)	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.10 \end{aligned}$	$\mu \mathrm{A} / \mu \mathrm{A}$
Δ Mirror Gain	@ $20 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ (Note 3)		2	5		2	5		2	5		2	5	\%
Mirror Current	(Note 4)		10	500		10	500		10	500		10	500	$\mu A_{D C}$
Negative Input Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)		1.0			1.0			1.0			1.0		$\mathrm{mA}_{\text {DC }}$
Input Bias Current	Inverting Input		300			300								nA

Note 1: For operating at high temperatures, the device must be derated based on a $125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $92^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. Thermal resistance for the S.O. package is $131^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: The output current sink capability can be increased for large signal conditions by overdriving the inverting input. This is shown in the section on Typical Characteristics.
Note 3: This spec indicates the current gain of the current mirror which is used as the non-inverting input.
Note 4: Input V_{BE} match between the non-inverting and the inverting inputs occurs for a mirror current (non-inverting input current) of approximately $10 \mu \mathrm{~A}$. This is therefore a typical design center for many of the application circuits.
Note 5: Clamp transistors are included on the IC to prevent the input voltages from swinging below ground more than approximately $-0.3 \mathrm{~V}_{\mathrm{DC}}$. The negative input currents which may result from large signal overdrive with capacitance input coupling need to be externally limited to values of approximately 1 mA . Negative input currents in excess of 4 mA will cause the output voltage to drop to a low voltage. This maximum current applies to any one of the input terminals. If more than one of the input terminals are simultaneously driven negative smaller maximum currents are allowed. Common-mode current biasing can be used to prevent negative input voltages; see for example, the "Differentiator Circuit" in the applications section.
Note 6: These specs apply for $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise stated.
Note 7: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Application Hints

When driving either input from a low-impedance source, a limiting resistor should be placed in series with the input lead to limit the peak input current. Currents as large as 20 mA will not damage the device, but the current mirror on the non-inverting input will saturate and cause a loss of mirror gain at mA current levels-especially at high operating temperatures.
Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. For example, when operating from a well-regulated $+5 \mathrm{~V}_{\mathrm{DC}}$ power supply at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with a $100 \mathrm{k} \Omega$ shunt-feedback resistor (from the output to the inverting input) a short directly to the power supply will not cause catastrophic failure but the current magnitude will be approximately 50 mA and the junction temperature will be above T_{J} max. Larger feedback resistors will reduce the current, $11 \mathrm{M} \Omega$ provides approximately 30 mA , an open circuit provides 1.3 mA , and a direct connection from the output to the non-inverting input will result in catastrophic failure when the output is shorted to V^{+}as this then places the base-emitter junction of the input transistor directly across the power supply. Short-circuits to ground will have magnitudes of approximately 30 mA and will not cause catastrophic failure at $T_{A}=25^{\circ} \mathrm{C}$.

Unintentional signal coupling from the output to the non-inverting input can cause oscillations. This is likely only in breadboard hook-ups with long component leads and can be prevented by a more careful lead dress or by locating the non-inverting input biasing resistor close to the IC. A quick check of this condition is to bypass the non-inverting input to ground with a capacitor. High impedance biasing resistors used in the non-inverting input circuit make this input lead highly susceptible to unintentional AC signal pickup.
Operation of this amplifier can be best understood by noticing that input currents are differenced at the inverting-input terminal and this difference current then flows through the external feedback resistor to produce the output voltage. Common-mode current biasing is generally useful to allow operating with signal levels near ground or even negative as this maintains the inputs biased at $+\mathrm{V}_{\mathrm{BE}}$. Internal clamp transistors (see note 5) catch-negative input voltages at approximately $-0.3 \mathrm{~V}_{\mathrm{DC}}$ but the magnitude of current flow has to be limited by the external input network. For operation at high temperature, this limit should be approximately $100 \mu \mathrm{~A}$.
This new "Norton" current-differencing amplifier can be used in most of the applications of a standard IC op amp. Performance as a DC amplifier using only a single supply is not as precise as a standard IC op amp operating with split supplies but is adequate in many less critical applications. New functions are made possible with this amplifier which are useful in single power supply systems. For example, biasing can be designed separately from the AC gain as was shown in the "inverting amplifier," the "difference integrator" allows controlling the charging and the discharging of the integrating capacitor with positive voltages, and the "frequency doubling tachometer" provides a simple circuit which reduces the ripple voltage on a tachometer output DC voltage.

Typical Performance Characteristics

Input Current

Supply Rejection

Voltage Gain

Supply Current

Mirror Gain

Large Signal Frequency Response

Maximum Mirror Current

Typical Applications $\left(v^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$

TL/H/7936-4

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V} \mathrm{DC}\right)$ (Continued)

Low-Drift Ramp and Hold Circuit

TL/H/7936-10

Bi-Quad Active Filter
(2nd Degree State-Variable Network)

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)
 Voltage-Controlled Current Source (Transconductance Amplifier)

TL/H/7936-12

Hi V_{IN}, Lo $\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{O}}\right)$ Self-Regulator

Ground-Referencing a Differential Input Signal

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Voltage-Controlled Current Sink (Transconductance Amplifier)

$I_{O}=1 \mathrm{~mA} / \mathrm{VOLT}\left(\mathrm{V}_{\mathrm{IN}}\right)$

TL/H/7936-17

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Frequency Differencing Tachometer

$V_{O D C}=A\left(f_{1}-f_{2}\right)$

TL/H/7936-26

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}\right.$ DC) (Continued)
Frequency Averaging Tachometer

TL/H/7936-27

Squaring Amplifier (W/Hysteresis)

Differentiator (Common-Mode Biasing Keeps Input at $+\mathrm{V}_{\mathrm{BE}}$)

TL/H/7936-31

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V} \mathrm{DC}\right)$ (Continued)

Free-Running Staircase Generator/Pulse Counter

TL/H/7936-39

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}\right.$ DC) (Continued)

TL/H/7936-40

TL/H/7936-41

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/7936-43

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

High Pass Active Filter

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V} \mathrm{DC}\right)($ Continued $)$

TLLH/7986-47

Sawtooth Generator

TL/H/7936-48

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Boosting to $\mathbf{3 0 0} \mathrm{mA}$ Loads

Split-Supply Applications $\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}} \& \mathrm{~V}^{-}=-15 \mathrm{~V}_{\mathrm{DC}}\right)$

LM3080/LM3080A

Operational Transconductance Amplifier

General Description

The LM3080 is a programmable transconductance block intended to fulfill a wide variety of variable gain applications. The LM3080 has differential inputs and high impedance push-pull outputs. The device has high input impedance and its transconductance $\left(\mathrm{g}_{\mathrm{m}}\right)$ is directly proportional to the amplifier bias current (l_{ABC}).
High slew rate together with programmable gain make the LM3080 an ideal choice for variable gain applications such as sample and hold, multiplexing, filtering, and multiplying.
The LM3080N and LM3080AN are guaranteed from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Slew rate (unity gain compensated): $50 \mathrm{~V} / \mu \mathrm{s}$
- Fully adjustable gain: 0 to $g_{m} \bullet R_{L}$ limit
- Extended g_{m} linearity: 3 decades
- Flexible supply voltage range: $\pm 2 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

■ Adjustable power consumption

Schematic and Connection Diagrams

Dual-In-Line Package

Top View
Order Number LM3080AN or LM3080N
See NS Package Number N08E

Absolute Maximum Ratings
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (Note 2)

LM3080	$\pm 18 \mathrm{~V}$
LM3080A	$\pm 22 \mathrm{~V}$
Power Dissipation	250 mW
Differential Input Voltage	$\pm 5 \mathrm{~V}$

Amplifier Bias Current ($l_{A B C}$)
DC Input Voltage
Output Short Circuit Duration Operating Temperature Range
LM3080N or LM3080AN
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)

2 mA
$+V_{S}$ to $-V_{S}$ Indefinite
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM3080			LM3080A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	Over Specified Temperature Range $I_{\mathrm{ABC}}=5 \mu \mathrm{~A}$		$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 5 \\ & 6 \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Offset Voltage Change	$5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A}$		0.1			0.1	3	mV
Input Offset Current			0.1	0.6		0.1	0.6	$\mu \mathrm{A}$
Input Bias Current	Over Specified Temperature Range		$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$		$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Forward Transconductance (gm_{m})	Over Specified Temperature Range	$\begin{aligned} & 6700 \\ & 5400 \end{aligned}$	9600	13000	$\begin{aligned} & 7700 \\ & 4000 \\ & \hline \end{aligned}$	9600	12000	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$
Peak Output Current	$\begin{aligned} & R_{\mathrm{L}}=0, \mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=0 \\ & \mathrm{R}_{\mathrm{L}}=0 \end{aligned}$ Over Specified Temperature Range	$\begin{aligned} & 350 \\ & 300 \end{aligned}$	$\begin{gathered} 5 \\ 500 \end{gathered}$	650	$\begin{gathered} 3 \\ 350 \\ 300 \end{gathered}$	$\begin{gathered} 5 \\ 500 \end{gathered}$	$\begin{gathered} 7 \\ 650 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Peak Output Voltage Positive Negative	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \end{aligned}$		$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Amplifier Supply Current			1.1			1.1		mA
Input Offset Voltage Sensitivity Positive Negative	$\Delta V_{\text {OFFSET }} / \Delta V+$ $\Delta \mathrm{V}_{\text {OFFSET }} / \Delta \mathrm{V}-$		$\begin{aligned} & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \end{aligned}$
Common Mode Rejection Ratio		80	110		80	110		dB
Common Mode Range		± 12	± 14		± 12	± 14		V
Input Resistance		10	26		10	26		$\mathrm{k} \Omega$
Magnitude of Leakage Current	$\mathrm{I}_{\mathrm{ABC}}=0$		0.2	100		0.2	5	nA
Differential Input Current	$\mathrm{I}_{\text {ABC }}=0$, Input $= \pm 4 \mathrm{~V}$		0.02	100		0.02	5	nA
Open Loop Bandwidth	.		2			2		MHz
Slew Rate	Unity Gain Compensated		50			50		$\mathrm{V} / \mu \mathrm{s}$

Note 1: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$, amplifier bias current ($\mathrm{I}_{A B C}$) $=500 \mu \mathrm{~A}$, unless otherwise specified.
Note 2: Selection to supply voltage above $\pm 22 \mathrm{~V}$, contact the factory.

Typical Performance Characteristics

 Peak Output Current
 Input Offset Voltage

Total Power Dissipation

Transconductance

Input Offset Current

Peak Output Voltage and Common Mode Range

Leakage Current

Amplifier Bias Voltage vs
Amplifier Bias Current

Typical Performance Characteristics (Continued)

LM3303／LM3403／LM3503 Quad Operational Amplifiers

General Description

The LM3303，LM3403，and LM3503 are monolithic quad op－ erational amplifiers consisting of four independent high gain， internally frequency compensated，operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages．The common mode input range includes the negative supply，thereby eliminating the necessity for external biasing components in many applications．

Features

－Input common mode voltage range includes ground or negative supply
－Output voltage can swing to ground or negative supply

国 Four internally compensated operational amplifiers in a single package
■ Wide power supply range single supply of 3.0 V to 36 V dual supply of $\pm 1.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
－Class $A B$ output stage for minimal crossover distortion
－Short circuit protected outputs
－High open loop gain 200k
－LM741 operational amplifier type performance

Applications

⿴囗十心 Filters
（⿴囗⿰丨丨⿰丨丨丁

Connection Diagram

14－Lead DIP and SO－14 Package

Order Information

Device Code	Package Code	Package Description
LM3303J	J14A	Ceramic DIP
LM3303N	N14A	Molded DIP
LM3403J	J14A	Ceramic DIP
LM3403N	N14A	Molded DIP
LM3403M	M14A	Molded Surface Mount
LM3503J	J14A	Ceramic DIP

Equivalent Circuit（1／4 of Circuit）

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range

Ceramic DIP
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP and SO-14 $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
Military (LM3503)
Industrial (LM3303)
Commercial (LM3403)
Lead Temperature
Ceramic DIP (Soldering, 60 sec.)
Molded DIP and SO-14
(Soldering, 10 sec .)

Internal Power Dissipation (Notes 1, 2)
14L-Ceramic DIP
1.36W

14L-Molded DIP
1.04W

SO-14
0.93 W

Supply Voltage between $V+$ and V 36 V
Differential Input Voltage (Note 3)
$\pm 30 \mathrm{~V}$
Input Voltage
($\mathrm{V}-$) - 0.3 V to $\mathrm{V}+$
ESD Tolerance
(To Be Determined)

LM3303 and LM3403

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter		Conditions	LM3303			LM3403			Units	
			Min	Typ	Max	Min	Typ	Max			
V_{10}	Input Offset Voltage					2.0	8.0		2.0	8.0	mV
10	Input Offset Current				30	75		30	50	nA	
I_{B}	Input Bias Current				200	500		200	500	nA	
Z_{1}	Input Impedance			0.3	1.0		0.3	1.0		$\mathrm{M} \Omega$	
ICC	Supply Current		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		2.8	7.0		2.8	7.0	mA	
CMR	Common Mode Rejection		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		70	90		dB	
$V_{\text {IR }}$	Input Voltage Range			$\begin{aligned} & +12 \mathrm{~V} \\ & \text { to } \mathrm{V}- \end{aligned}$	$\begin{aligned} & +12.5 \mathrm{~V} \\ & \text { to } \mathrm{V}- \end{aligned}$		$\begin{aligned} & +13 V \\ & \text { to } V- \end{aligned}$	$\begin{aligned} & +13.5 \mathrm{~V} \\ & \text { to } \mathrm{V}- \end{aligned}$		V	
PSRR	Power Supply Rejection Ratio				30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$	
los	Output Short Circuit Current (Per Amplifier) (Note 4)			± 10	± 30	± 45	± 10	± 30	± 45	mA	
Avs	Large Signal Voltage Gain		$\begin{array}{\|l\|} \hline V_{O}= \pm 10 \mathrm{~V} \\ R_{L} \geq 2.0 \mathrm{k} \Omega \\ \hline \end{array}$	20	200	,	20	200		V/mV	
$\mathrm{V}_{\text {OP }}$	Output Voltage Swing		$R_{L}=10 \mathrm{k} \Omega$	± 12	12.5		± 12	+13.5		V	
			$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	± 10	12		± 10	± 13			
TR	Transient Response	Rise Time/ Fall Time	$\begin{aligned} & V_{O}=50 \mathrm{mV} \\ & A_{V}=1.0, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		0.3			0.3		$\mu \mathrm{S}$	
		Overshoot	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=50 \mathrm{mV} \\ & \mathrm{~A}_{\mathrm{V}}=1.0, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		5.0			5.0		\%	
BW	Bandwidth		$\begin{aligned} & V_{O}=50 \mathrm{mV} \\ & A_{V}=1.0, R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		1.0			1.0		MHz	
SR	Slew Rate		$\begin{aligned} & V_{1}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & A_{V}=1.0 \end{aligned}$		0.6			0.6		$\mathrm{V} / \mu \mathrm{s}$	

LM3303 and LM3403 (Continued)

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified
The following specifications apply for $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for the LM3303, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM3403

Symbol	Parameter	Conditions	LM3303			LM3403			Units
			Min	Typ	Max	Min	Typ	Max	
V_{10}	Input Offset Voltage				10			10	mV
$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	Input Offset Voltage Temperature Sensitivity			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
l_{10}	Input Offset Current				250			200	nA
$\Delta l_{10} / \Delta T$	Input Offset Current Temperature Sensitivity			50			50		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
IIB	Input Bias Current				1000			800	nA
Avs	Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, \\ & R_{L} \geq 2.0 \mathrm{k} \Omega \end{aligned}$	15			15			V/mV
$\mathrm{V}_{\text {OP }}$	Output Voltage Swing	$R_{L}=2.0 \mathrm{k} \Omega$	± 10			± 10			V

LM33303 and LM33403
Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5.0 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}$, unless otherwise specified

Symbol	Parameter	Conditions	LM3303			LM3403			Units
			Min	Typ	Max	Min	Typ	Max	
V_{10}	Input Offset Voltage				8.0		2.0	8.0	mV
l_{10}	Input Offset Current				75		30	50	nA
$\mathrm{IIB}^{\text {I }}$	Input Bias Current				500		200	500	nA
I_{CC}	Supply Current			2.5	7.0		2.5	7.0	mA
PSRR	Power Supply Rejection Ratio				150			150	$\mu \mathrm{V} / \mathrm{V}$
AVS	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega$	20	200		20	200		V / mV
V_{OP}	Output Voltage Swing (Note 5)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	3.3			3.3			V
		$\begin{aligned} & 5.0 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}, \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & (\mathrm{V}+) \\ & -2.0 \\ & \hline \end{aligned}$			$\begin{array}{r} (V+) \\ -2.0 \\ \hline \end{array}$			
CS	Channel Separation	$1.0 \mathrm{~Hz} \leq \mathrm{f} \leq 20 \mathrm{kHz}$ (Input Referenced)		-120			-120		dB

LM3503

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter	Conditions	LM3503			Units
			Min	Typ	Max	
V_{10}	Input Offset Voltage			2.0	5.0	mV
10	Input Offset Current			30	50	nA
$\mathrm{IIB}^{\text {I }}$	Input Bias Current			200	500	nA
Z_{1}	Input Impedance		0.3	1.0		$\mathrm{M} \Omega$
ICC	Supply Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		2.8	4.0	mA
CMR	Common Mode Rejection	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90		dB

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified (Continued)

Symbol	Parameter		Conditions	LM3503			Units	
			Min	Typ	Max			
$\mathrm{V}_{\text {IR }}$	Input Voltage Range				$\begin{aligned} & +13 \mathrm{~V} \\ & \text { to } \mathrm{V}- \end{aligned}$	$\begin{aligned} & +13.5 \mathrm{~V} \\ & \text { to } \mathrm{V}- \end{aligned}$		V
PSRR	Power Supply Rejection Ratio				30	150	$\mu \mathrm{V} / \mathrm{V}$	
los	Output Short Circuit Current (Per Amplifier) (Note 4)			± 10	± 30	± 45	mA	
Avs	Large Signal Voltage Gain		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega \\ & \hline \end{aligned}$	50	200		V/mV	
$\mathrm{V}_{\text {OP }}$	Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V	
			$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	± 10	± 13			
TR	Transient Response	Rise Time	$\begin{aligned} & V_{O}=50 \mathrm{mV}, \\ & A_{V}=1.0, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		0.3		$\mu \mathrm{S}$	
		Overshoot	$\begin{aligned} & V_{O}=50 \mathrm{mV}, \\ & A_{V}=1.0, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		5.0		\%	
BW	Bandwidth		$\begin{aligned} & V_{O}=50 \mathrm{mV}, \\ & A_{V}=1.0, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		1.0		MHz	
SR	Slew Rate		$\begin{aligned} & V_{1}=-10 V \text { to }+10 \mathrm{~V}, \\ & A_{V}=1.0 \end{aligned}$		0.6		$\mathrm{V} / \mu \mathrm{s}$	

LM3503

Electrical Characteristics $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Symbol	Parameter	Conditions	LM3503			Units
			Min	Typ	Max	
V_{10}	Input Offset Voltage				6.0	mV
$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	Input Offset Voltage Temperature Sensitivity			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
1 O	Input Offset Current				200	nA
$\Delta l_{10} / \Delta T$	Input Offset Current Temperature Sensitivity			50		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
I_{I}	Input Bias Current				1200	nA
AVS	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega$	25			V / mV
$\mathrm{V}_{\text {OP }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	± 10			V

The following specifications apply for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=+5.0 \mathrm{~V}, \mathrm{~V}-=$ GND

V_{10}	Input Offset Voltage			2.0	5.0	mV
10	Input Offset Current			30	50	nA
$\mathrm{I}_{\text {I }}$	Input Bias Current			200	500	nA
ICC	Supply Current			2.5	4.0	mA
PSRR	Power Supply Rejection Ratio				150	$\mu \mathrm{V} / \mathrm{V}$
AVS	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega$	20	200		V / mV
V_{OP}	Output Voltage Swing (Note 5)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	3.3			V
		$\begin{aligned} & 5.0 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}, \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} (V+) \\ -2.0 \end{gathered}$			
CS	Channel Separation	$\begin{aligned} & 1.0 \mathrm{~Hz} \leq \mathrm{f} \leq 20 \mathrm{kHz} \\ & \text { (Input Referenced) } \end{aligned}$		-120		dB

Note 1: $T_{J ~ M a x ~}=150^{\circ} \mathrm{C}$ for the Molded DIP and SO-14, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 14 L -Ceramic DIP at $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the $14 \mathrm{~L}-\mathrm{Molded} \mathrm{DIP}$ at $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the $\mathrm{SO}-14$ at $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 3: For supply voltage less than 30 V between $\mathrm{V}+$ and $\mathrm{V}-$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Not to exceed maximum package power dissipation.
Note 5: Output will swing to ground.

Typical Performance Characteristics

Output Swing vs
Supply Voltage

SUPPLY VOLTAGE ($\pm \mathrm{V}$)

Sine Wave Response

Input Bias Current vs Temperature

TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

Typical Applications

Multiple Feedback Bandpass Filter

TL/H/10064-4
$\mathrm{f}_{\mathrm{o}}=$ center frequency
$\mathrm{BW}=$ Bandwidth
R in $\mathrm{k} \Omega$
C in $\mu \mathrm{F}$
$Q=\frac{f_{0}}{B W}<10$
$\mathrm{C} 1=\mathrm{C} 2=\frac{\mathrm{Q}}{3}$
$\left.R 1=R 2=1 R 3=9 Q^{2}-1\right\}$ Using scaling factors in these expressions.
If source impedance is high or varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.
Design example:
given: $Q=5, f_{0}=1 \mathrm{kHz}$

$$
\begin{gathered}
\text { Let } R 1=R 2=10 \mathrm{k} \Omega \\
\text { then } \mathrm{R} 3=9(5)^{2}-10 \\
\mathrm{R} 3=215 \mathrm{k} \Omega \\
\mathrm{C}=\frac{5}{3}=1.6 \mathrm{nF}
\end{gathered}
$$

Wein Bridge Oscillator

TL/H/10064-5

$$
\begin{aligned}
\mathrm{f}_{\mathrm{o}}=\frac{1}{2 \pi \mathrm{RC}} \text { for } \mathrm{f}_{\mathrm{o}} & =1 \mathrm{kHz} \\
\mathrm{R} & =16 \mathrm{k} \Omega \\
\mathrm{C} & =0.01 \mu \mathrm{~F}
\end{aligned}
$$

Comparator with Hysteresis

$V_{I L}=\frac{R 1}{R 1+R 2}\left(V_{O L}-V_{R E F}\right)+V_{\text {REF }}$
$V_{I H}=\frac{R 1}{R 1+R 2}\left(V_{O H}-V_{R E F}\right)+V_{\text {REF }}$
$H=\frac{R 1}{R 1+R 2}\left(V_{O H}-V_{O L}\right)$

High Impedance Differential Amplifier

TL/H/10064-7
$V_{\text {OUT }}=C(1+a+b)(V 2-V 1)$
$\frac{\mathrm{R} 2}{\mathrm{R} 5} \equiv \frac{\mathrm{R} 6}{\mathrm{R} 7}$ for best CMRR
$R 1=R 4$
$R 2=R 5$
Gain $=\frac{R 6}{R 5}\left(1+\frac{2 R 1}{R 3}\right)=C(1+a+b)$

AC Coupled Non-Inverting Amplifier

TL/H/10064-9

$$
\begin{aligned}
& A_{V}=1+\frac{R 2}{R 1} \\
& A_{V}=11 \text { (as shown) }
\end{aligned}
$$

Typical Applications (Continued)

TL/H/10064-8
$A_{V}=\frac{R f}{R 1}$
$A_{V}=10$ (as shown)

TL/H/10064-11

Voltage Reference

TL/H/10064-10

$$
\begin{aligned}
& V_{O}=\frac{R 1}{R 1+R 2}\left(=\frac{V+}{2} \text { as shown }\right) \\
& V_{O}=\frac{1}{2} V+
\end{aligned}
$$

Function Generator

TL/H/10064-13
Note 2: $f=\frac{R 1+R 2}{4 C R_{f} R 1}$ if $R 3=\frac{R 2 R 1}{R 2+R 1}$

Bi-Quad Filter

L/H/10064-15

National Semiconductor

LM4136

Quad Operational Amplifier

General Description

The LM4136 monolithic quad operational amplifier consists of four independent high gain, internally frequency compensated operational amplifiers. The specifically designed low noise input transistors allow the LM4136 to be used in low noise signal processing applications such as audio preamplifiers and signal conditioners. The simplified output stage completely eliminates crossover distortion under any load conditions, has large source and sink capacity, and is shortcircuit protected. A novel current source stabilizes output parameters over a wide power supply voltage range.

Connection Diagram

14-Lead DIP and SO-14 Package

TL/H/10065-1

Equivalent Circuit (1/4 of Circuit)

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature Range

Ceramic DIP	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Molded DIP and SO-14	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature Ceramic DIP (Soldering, 60 sec.)	
Molded DIP and SO-14 (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
	$265^{\circ} \mathrm{C}$

Internal Power Dissipation (Notes 1, 2)
14L-Ceramic DIP
1.36W

14L-Molded DIP
1.04W

SO-14
0.93W

Supply Voltage $\pm 18 \mathrm{~V}$
Differential Input Voltage (Note 3) $\pm 30 \mathrm{~V}$
Input Voltage (Note 1) $\pm 15 \mathrm{~V}$
Output Short Circuit Duration (Note 4) Indefinite
ESD Tolerance

LM4136

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter		Conditions	Min	Typ	Max	Units
V_{10}	Input Offset Voltage		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		0.5	6.0	mV
10	Input Offset Current				5.0	200	nA
1 IB	Input Bias Current				40	500	nA
Z_{1}	Input Impedance			0.3	5.0		$\mathrm{M} \Omega$
P_{c}	Power Consumption				210	340	mW
CMR	Common Mode Rejection		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90	.	dB
V_{IR}	Input Voltage Range			± 12	± 14		V
PSRR	Power Supply Rejectior Ratio		$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150	$\mu \mathrm{V} / \mathrm{V}$
Avs	Large Signal Voltage Gain		$\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	20	300		V / mV
$V_{\text {OP }}$	Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		V
			$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega$	± 10	± 13		
TR	Transient Response	Rise Time	$\begin{aligned} & V_{I}=20 \mathrm{mV}, R_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \\ & C_{\mathrm{L}}=100 \mathrm{pF}, A_{V}=1.0 \end{aligned}$		0.13		$\mu \mathrm{s}$
		Overshoot			5.0		\%
BW	Bandwidth		$A_{V}=1.0$		3.0		MHz
SR	Slew Rate		$R_{L}=2.0 \mathrm{k} \Omega, A_{V}=1.0$		1.0		$\mathrm{V} / \mu \mathrm{s}$
CS	Channel Separation		$\begin{aligned} & \mathrm{f}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega \\ & \text { Open Loop } \end{aligned}$		105		dB
			$\begin{aligned} & f=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega \\ & \mathrm{~A}_{\mathrm{V}}=100 \end{aligned}$		105		

The following specifications apply over the range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

V_{10}	Input Offset Voltage	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$			7.5	mV
10	Input Offset Current				300	nA
IIB	Input Bias Current				800	nA
P_{c}	Power Consumption	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {A Max }}$		180	300	mW
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{A} \text { Min }}$		240	400	
Avs	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	15			V / mV
$V_{\text {OP }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$	± 10			V

Note 1: $T_{J \text { Max }}=150^{\circ} \mathrm{C}$ for the Molded DIP and SO-14, and $175^{\circ} \mathrm{C}$ for the Ceramic DIP.
Note 2: Ratings apply to ambient temperature at $25^{\circ} \mathrm{C}$. Above this temperature, derate the 14 L -Ceramic DIP at $9.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, the $14 \mathrm{~L}-\mathrm{Molded} \mathrm{DIP}$ at $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$, and the SO-14 at $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
Note 3: For supply voltage less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Short circuit may be to ground, one amplifier only.

Typical Performance Characteristics

Input Offset Current vs Temperature

Output Voltage Swing vs Load Resistance

Transient Response

Common Mode Range vs Supply Voltage

Power Consumption vs Temperature

Output Voltage Swing vs Frequency

Voltage Follower Large Signal Pulse Response

Input Noise Voltage

 vs FrequencyInput Noise Current vs Frequency

Distortion vs
Frequency ($\mathbf{V}_{\mathbf{O}}=\mathbf{1} \mathbf{V r m s}$)

Typical Applications

Typical Applications (Continued)

Differential Input Instrumentation Amplifier with High Common Mode Rejection

Typical Applications (Continued)

Typical Applications (Continued)

Multiple Aperture Window Discriminator

TL/H/10065-11

National Semiconductor

LM4250/LM4250C Programmable Operational Amplifier

General Description

The LM4250 and LM4250C are extremely versatile programmable monolithic operational amplifiers. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent power consumption, slew rate, input noise, and the gain-bandwidth product. The device is a truly general purpose operational amplifier.
The LM4250C is identical to the LM4250 except that the LM4250C has its performance guaranteed over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range instead of the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range of the LM4250.

Features

■ $\pm 1 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply operation

- 3 nA input offset current
- Standby power consumption as low as 500 nW
- No frequency compensation required
- Programmable electrical characteristics
- Offset voltage nulling capability
- Can be powered by two flashlight batteries
- Short circuit protection

Typical Applications

Quiescent $P_{D}=0.6 \mathrm{~mW}$
TL/H/9300-3

Connection Diagrams

TL/H/9300-2
Top View

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
(Note 2)
Supply Voltage
Operating Temp. Range
Differential Input Voltage
Input Voltage (Note 1)
ISET Current
Output Short Circuit Duration
TJMAX
H-Package
N-Package
J-Package
M-Package
Power Dissipation at TA $=25^{\circ} \mathrm{C}$
H-Package (Still Air)
(400 LF/Min Air Flow)
N-Package
J-Package
M-Package

LM4250	LM4250C
$\pm 18 \mathrm{~V}$	$\pm 18 \mathrm{~V}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
150 nA	150 nA
Continuous	Continuous
$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
	$100^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
	$100^{\circ} \mathrm{C}$

500 mW	300 mW
1200 mW	1200 mW
	500 mW
1000 mW	600 mW
	350 mW

Thermal Resistance (Typical) θ_{JA}
H-Package (Still Air)
($400 \mathrm{LF} /$ Min Air Flow)

N-Package
J-Package
$165^{\circ} \mathrm{C} / \mathrm{W} \quad 165^{\circ} \mathrm{C} / \mathrm{W}$
$65^{\circ} \mathrm{C} / \mathrm{W} \quad 65^{\circ} \mathrm{C} / \mathrm{W}$
$130^{\circ} \mathrm{C} / \mathrm{W}$
$108^{\circ} \mathrm{C} / \mathrm{W}$ $190^{\circ} \mathrm{C} / \mathrm{W}$

$$
\text { (Typical) } \theta_{\text {JC }}
$$ H-Package

$21^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range
Soldering Information
Dual-In-Line Package Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package Vapor Phase (60 seconds) $\quad 215^{\circ} \mathrm{C}$ Infrared (15 seconds) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD tolerance (Note 3) 800V
Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 2: Refer to RETS4250X for military specifications.
Note 3: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Resistor Biasing

Set Current Setting Resistor to \mathbf{V} -

$\mathbf{I S E T}$					
$\mathbf{V}_{\mathbf{S}}$	$0.1 \mu \mathrm{~A}$	$0.5 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
$\pm 1.5 \mathrm{~V}$	$25.6 \mathrm{M} \Omega$	$5.04 \mathrm{M} \Omega$	$2.5 \mathrm{M} \Omega$	$492 \mathrm{k} \Omega$	$244 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$55.6 \mathrm{M} \Omega$	$11.0 \mathrm{M} \Omega$	$5.5 \mathrm{M} \Omega$	$1.09 \mathrm{M} \Omega$	$544 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$116 \mathrm{M} \Omega$	$23.0 \mathrm{M} \Omega$	$11.5 \mathrm{M} \Omega$	$2.29 \mathrm{M} \Omega$	$1.14 \mathrm{M} \Omega$
$\pm 9.0 \mathrm{~V}$	$176 \mathrm{M} \Omega$	$35.0 \mathrm{M} \Omega$	$17.5 \mathrm{M} \Omega$	$3.49 \mathrm{M} \Omega$	$1.74 \mathrm{M} \Omega$
$\pm 12.0 \mathrm{~V}$	$236 \mathrm{M} \Omega$	$47.0 \mathrm{M} \Omega$	$23.5 \mathrm{M} \Omega$	$4.69 \mathrm{M} \Omega$	$2.34 \mathrm{M} \Omega$
$\pm 15.0 \mathrm{~V}$	$296 \mathrm{M} \Omega$	$59.0 \mathrm{M} \Omega$	$29.5 \mathrm{M} \Omega$	$5.89 \mathrm{M} \Omega$	$2.94 \mathrm{M} \Omega$

Electrical Characteristics LM4250 $\left(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\right.$ unless otherwise specified.) $T_{A}=T_{J}$

Parameter	Conditions	$\mathbf{V}_{\mathbf{S}}= \pm \mathbf{1 . 5 V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 mV		5 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 nA		10 nA
$l_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5 nA		50 nA
Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	40k		50k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$7.5 \mu \mathrm{~A}$		$80 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$23 \mu \mathrm{~W}$		$240 \mu \mathrm{~W}$
Vos	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		4 mV		6 mV
los	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 5 \mathrm{nA} \\ & 3 \mathrm{nA} \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \mathrm{nA} \\ & 10 \mathrm{nA} \end{aligned}$
Ibias			7.5 nA		50 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	30k		30k	
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	76 dB		76 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption			$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$
Parameter	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 mV		5 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3 nA		10 nA
$l_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.5 nA		50 nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	100k		100k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$10 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$300 \mu \mathrm{~W}$		2.7 mW
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		4 mV		6 mV
los	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 25 \mathrm{nA} \\ 3 \mathrm{nA} \\ \hline \end{gathered}$		$\begin{aligned} & 25 \mathrm{nA} \\ & 10 \mathrm{nA} \end{aligned}$
l bias			7.5 nA		50 nA
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	76 dB		76 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$330 \mu \mathrm{~W}$		3 mW

Electrical Characteristics $L M 4250 C\left(-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}\right.$ unless otherwise specified. $) T_{A}=T_{J}$

Parameter	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm \mathbf{1 . 5 V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
Vos	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
${ }_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$T_{A}=25^{\circ} \mathrm{C}$		$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$
Vos	$R_{S} \leq 10 \mathrm{k} \Omega$		6.5 mV		7.5 mV
los			8 nA		25 nA
Ibias			10 nA		80 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Output Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{S} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption			$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$

Parameter	Conditions	$V_{\text {S }}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SEI }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
Vos	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5 mV		6 mv
ios	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
Ibias	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & R_{L}=100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega \end{aligned}$	60k		60k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$330 \mu \mathrm{~W}$		3 mW
V OS	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega$		6.5 mV		7.5 mV
los			8 nA		25 nA
Ibias			10 nA		80 nA
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Ouiput Voltage Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common iviode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$330 \mu \mathrm{~W}$		3 mW

Typical Performance Characteristics (Continued)

Typical Applications (Continued)
Floating Input Meter Amplifier 100 nA Full Scale

Quiescent $\mathrm{P}_{\mathrm{D}}=1.8 \mu \mathrm{~W}$
TL/H/9300-8
*Meter movement ($0-100 \mu \mathrm{~A}, 2 \mathrm{k} \Omega$) marked for $0-100 \mathrm{nA}$ full scale.

X100 Instrumentation Amplifier $10 \mu \mathrm{~W}$

Note 1: Quiescent $P_{D}=10 \mu \mathrm{~W}$.
TL/H/9300-9
Note 2: R2, R3, R4, R5, R6 and R7 are 1\% resistors.
Note 3: R11 and C1 are for DC and AC common mode rejection adjustments.

Typical Applications (Continued)

Retet $^{\text {Sonnected to }} \mathbf{V}^{-}$

TL/H/9300-10

Transistor Current Sourcing Biasing
*R1 limits ISET maximum
TL/H/9300-12

R SET Connected to Ground

TL/H/9300-11

FET Current Sourcing Biasing

Offset Null Circuit

TL./H/9300-14

General Description

The LM6118 series are monolithic fast-settling unity-gaincompensated dual operational amplifiers with $\pm 20 \mathrm{~mA}$ output drive capability. The PNP input stage has a typical bias current of 200 nA , and the operating supply voltage is $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.
These dual op amps use slew enhancement with special mirror circuitry to achieve fast response and high gain with low total supply current.
The amplifiers are built on a junction-isolated VIPTM (Vertically Integrated PNP) process which produces fast PNP's that complement the standard NPN's.

Features Typical

- Low offset voltage 0.2 mV
- 0.01% settling time 400 ns
- Slew rate $A_{v}=-1 \quad 140 \mathrm{~V} / \mu \mathrm{s}$

■ Slew rate $A_{v}=+1 \quad 75 \mathrm{~V} / \mu \mathrm{s}$
Gain bandwidth 17 MHz
■ Total supply current 5.5 mA

- Output drives 50Ω load ($\pm 1 \mathrm{~V}$)
- Well-behaved, easy to use

Applications

- D/A converters
- Fast integrators
- Active filters

Typical Applications

TL/H/10254-1
Single ended input to differential output $A_{V}=10, B W=3.2 \mathrm{MHz}$
$40 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ Response $=1.4 \mathrm{MHz}$
$V_{S}= \pm 15 \mathrm{~V}$ Wide-Band, Fast-Settling 40 Vp-p Amplifier

Small Outline Package (WM)

Top View
Order Number LM6218AWM or LM6218WM See NS Package Number M14B

Connection Diagrams and Order Information

TL/H/10254-2
Top View
Note: Pin 4 connected to case
Order Number LM6118H or LM6218AH See NS Package Number H08A

Dual-In-Line Package (J or N)

TL/H/10254-4 Top View

Order Number LM6118J, LM6218AJ,
LM6218AN or LM6218N
See NS Package Number J08A or N08E

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Total Supply Voltage

Input Voltage
Differential Input Current (Note 3)
Output Current (Note 4)
Power Dissipation (Note 5)

42V
(Note 2)
$\pm 10 \mathrm{~mA}$
Internally Limited
500 mW

ESD Tolerance (C = $100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega)$	$\pm 2 \mathrm{kV}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

Operating Temp. Range

LM6118	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM6218A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM6218	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Electrical Characteristics $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$, I $\mathrm{l}_{\mathrm{OUT}}=0 \mathrm{~A}$, unless otherwise specified. Limits with standard type face are for $T_{J}=25^{\circ} \mathrm{C}$, and Bold Face Type are for Temperature Extremes.

Parameter	Conditions	$\begin{aligned} & \text { Typ } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	LM6118 Limits (Note 6)	LM6218A Limits (Note 7)	$\begin{aligned} & \text { LM6218 } \\ & \text { Limits } \\ & \text { (Note 7) } \end{aligned}$	Units
Input Offset Voltage	$V_{S}= \pm 15 \mathrm{~V}$	0.2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	mV (max)
Input Offset Voltage	$\mathrm{V}^{-}+3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-3.5 \mathrm{~V}$	0.3	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	mV (max)
Input Offset Current	$\mathrm{V}^{-}+3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-3.5 \mathrm{~V}$	20	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$n \mathrm{~A}$ (max)
Input Bias Current	$\mathrm{V}^{-}+3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-3.5 \mathrm{~V}$	200	$\begin{aligned} & 350 \\ & \mathbf{9 5 0} \end{aligned}$	$\begin{aligned} & 350 \\ & 950 \end{aligned}$	$\begin{gathered} 500 \\ 1250 \end{gathered}$	$n A(\max)$
Input Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}^{-}+3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq \mathrm{V}^{+}-3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 90 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 85 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	dB (min)
Positive Power Supply Rejection Ratio	$\begin{aligned} & V^{-}=-15 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 20 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 90 \\ & \mathbf{8 5} \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	dB (min)
Negative Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & -20 \mathrm{~V} \leq \mathrm{V}^{-} \leq-5 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{array}{r} 90 \\ \mathbf{8 5} \\ \hline \end{array}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	dB (min)
Large Signal Voltage Gain	$\begin{array}{ll} V_{\text {out }}= \pm 17 \mathrm{~V} & R_{L}=10 \mathrm{k} \\ V_{S}= \pm 20 \mathrm{~V} & \\ \hline \end{array}$	500	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 70 \end{aligned}$	V / mV (min)
	$\begin{array}{ll} V_{\text {out }}= \pm 10 \mathrm{~V} & R_{L}=500 \\ V_{S}= \pm 15 \mathrm{~V} & (\pm 20 \mathrm{~mA}) \\ \hline \end{array}$	200	$\begin{aligned} & 50 \\ & \mathbf{3 0} \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	V / mV (min)
Total Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	5.5	$\begin{gathered} 7 \\ 7.5 \end{gathered}$	$\begin{gathered} 7 \\ 7.5 \end{gathered}$	$\begin{gathered} 7 \\ 7.5 \end{gathered}$	mA (max)
Output Current Limit	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, Pulsed	65	80	80	80	mA (max)
Slew Rate, $\mathrm{Av}=-1$	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, V_{\text {out }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{S}}=R_{\mathrm{f}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{f}}=10 \mathrm{pF} \end{aligned}$	140	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 100 \\ & \mathbf{5 0} \end{aligned}$	$\begin{aligned} & 100 \\ & \mathbf{5 0} \\ & \hline \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}(\mathrm{min})$
Slew Rate, $\mathrm{Av}=+1$	$\begin{aligned} & V_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {out }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{S}}=\mathrm{R}_{\mathrm{f}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{f}}=10 \mathrm{pF} \end{aligned}$	75	$\begin{aligned} & 50 \\ & \mathbf{3 0} \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & \mathbf{3 0} \end{aligned}$	$\mathrm{V} / \mu \mathrm{s}(\mathrm{min})$
Gain-Bandwidth Product	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{f}_{\mathrm{O}}=200 \mathrm{kHz}$	17	14	14	13	MHz (min)
0.01\% Settling Time $A_{V}=-1$	$\begin{aligned} & \Delta V_{\text {out }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \\ & R_{S}=R_{f}=2 k, C_{f}=10 \mathrm{pF} \end{aligned}$	400				ns
Input Capacitance	Inverter	5				pF
	Follower	3				pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: Input voltage range is ($\mathrm{V}^{+}-\mathrm{IV}$) to (V^{-}).
Note 3: The inputs are shunted with three series-connected diodes back-to-back for input differential clamping. Therefore differential input voltages greater than about 1.8 V will cause excessive current to flow unless limited to less than 10 mA .

Note 4: Current limiting protects the output from a short to ground or any voltage less than the supplies. With a continuous overioad, the package dissipation must be taken into account and heat sinking provided when necessary.
Note 5: Devices must be derated using a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for the H package, $90^{\circ} \mathrm{C} / \mathrm{W}$ for the N , J and WM packages. If a heat sink is used on the H package, use a thermal resistance of $45^{\circ} \mathrm{C} / \mathrm{W}$ junction to case.
Note 6: All limits are 100% production tested at $25^{\circ} \mathrm{C}$ and at temperature extremes. All limits are used to calculate AOQL, (Average Outgoing Quality Level).
Note 7: $25^{\circ} \mathrm{C}$ limits are 100% production tested. Temperature extreme limits are guaranteed via correlation using accepted SQC (Statistical Quality Control) methods. Aii limits are : :sed to calculate AOQL.

Typical Performance Characteristics

Total Harmonic Distortion

Input Noise Voltage

Power Supply Rejection

Output Impedance

Frequency Response High Frequency

Large Signal Response

TL/H/10254-5

Typical Performance Characteristics (Continued)

Typical Performance Characteristics

TLI'H/:0254-8

Application Information

Genera!

The LM6118 series are high-speed, fast-settling dual opamps. To insure maximum performance, circuit board layout is very important. Minimizing stray capacitance at the inputs and reducing coupling between the amplifier's input and output will minimize problems.

Supply Bypassing

To assure stability, it is recommended that each power supply pin be bypassed with a $0.1 \mu \mathrm{~F}$ low inductance capacitor near the device. If high frequency spikes from digital circuits or switching supplies are present, additional filtering is recommended. To prevent these spikes from appearing at the output, R-C filtering of the supplies near the device may be necessary.

Power Dissipation

These amplifiers are specified to 20 mA output current. If accompanied with high supply voltages, relatively high power dissipation in the device will occur, resulting in high junction temperatures. In these cases the package thermal resistance must be taken into consideration. (See Note 5 under Electrical Characteristics.) For high dissipation, an H package with a heat sink or a N package with large areas of copper on the pc board is recommended.

Amplifier Shut Down

If one of the amplifiers is not used, it can be shut down by connecting both the inverting and non-inverting inputs to the V^{-}pin. This will reduce the power supply current by approximately 25%.

Capacitive Loading

Maximum capacitive loading is about 50 pF for a closedloop gain of +1 , before the amplifier exhibits excessive ringing and becomes unstable. A curve showing maximum capacitive loads, with different closed-loop gains; is shown in the Typical Performance Characteristics section.
To drive larger capacitive loads at low closed-loop gains, isolate the amplifier output from the capacitive load with 50Ω. Connect a small capacitor directly from the amplifier output to the inverting input. The feedback loop is closed from the isolated output with a series resistor to the inverting input.

TM/L/10254-9

TI/H/10254-11
Setting time to 0.01%, $10 \cup$ Step
For $C_{L}=1000 \mathrm{pF}$, settling time $\approx 1500 \mathrm{~ns}$
For $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$, settling time $\approx 500 \mathrm{~ns}$
Integrator

TL/H/10254-12

Application Information (Continued)

Examples of unity gain connections for a voltage follower, Inverter, and integrator driving capacitive loads up to 1000 pF are shown here. Different R1-C1 time constants and capacitive loads will have an effect on settling times.

Input Bias Current Compensation

Input bias current of the first op amp can be reduced or balanced out by the second op amp. Both amplifiers are laid out in mirror image fashion and in close proximity to each other, thus both input bias currents will be nearly identical
and will track with temperature. With both op amp inputs at the same potential, a second op amp can be used to convert bias current to voltage, and then back to current feeding the first op amp using large value resistors to reduce the bias current to the level of the offset current.
Examples are shown here for an inverting application, (a) where the inputs are at ground potential, and a second circuit (b) for compensating bias currents for both inputs.

Bias Current Compensation

TL/H/10254-14
*mount resistor close to input pin to minimize stray capacitance
(b) Compensation to Both Inputs
(a) Inverting Input Bias Compensation for Integrator Application

Amplifier/Parallel Buffer

TL/H/10254-15
$A_{V}=+5$, lout $\leq 80 \mathrm{~mA}$.
$V_{S}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 0.01 \mu \mathrm{~F}$
Large and small signa! B.W. $=1.3 \mathrm{MHz}(\mathrm{THD}=3 \%)$

Application Information (Continued)

Constant-Voltage Crossover Network With 12 dB/Octave Slope

TL/H/10254-16

Bilateral Current Source

TL/H/10254-17
$V_{S}= \pm 15 \mathrm{~V},-10 \leq \mathrm{V}_{\mathbb{I}} \leq 10 \mathrm{~V}$
$\frac{\mathrm{I}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}=\frac{\mathrm{R} 4}{\mathrm{R} 2 \mathrm{R} 6}=\frac{1 \mathrm{~mA}}{1 \mathrm{~V}}$
Output dynamic range $=10 \mathrm{~V}-$ R6 \mid IOUT \mid
$R_{L}=500 \Omega$, small signal $B W=6 \mathrm{MHz}$
Large signal response $=800 \mathrm{kHz}$
$\mathrm{C}_{\text {out }}$ equiv. $=\frac{\mathrm{R} 2+\mathrm{R} 4}{2 \pi \mathrm{f}_{\mathrm{O}} \mathrm{R} 2 \mathrm{R} 6}=32 \mathrm{pF}\left(\mathrm{fo}_{\mathrm{O}}=15 \mathrm{MHz}\right)$

Coaxial Cable Driver

Small signal ($200 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$) BW $\approx 5 \mathrm{MHz}$

Instrumentation Amplifier

TL/H/10254-18
$A_{V}=10, V_{S}= \pm 15 \mathrm{~V}$, All resistors 0.01%
Small signal and large signal (20 Vp.p) B.W. $\approx 800 \mathrm{kHz}$

150 MHz Gain-Bandwidth Amplifier

TL/H/10254-20
$A_{V}=100, V_{S}= \pm 15 \mathrm{~V}$,
Small signal $B W \approx 1.5 \mathrm{MHz}$
Large signal BW $\left(20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right) \approx 800 \mathrm{kHz}$

Schematic Diagram (Continued)

TL/H/10254-22

π
 National Semiconductor

LM6161/LM6261/LM6361

High Speed Operational Amplifier

General Description

The LM6161 family of high-speed amplifiers exhibits an excellent speed-power product in delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 50 MHz unity gain stability with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate $300 \mathrm{~V} / \mu \mathrm{s}$
- High unity gain freq
- Low supply current
- Fast settling
- Low differential gain
- Low differential phase

■ Wide supply range

- Stable with unlimited capacitive load
- Well behaved; easy to apply

Applications

图 Video amplifier
(${ }^{*}$ High-frequency filter
(4) Wide-bandwidth signal conditioning

Simplified Schematic

TL/H/9057-3

Connection Diagram

TL/H/9057-5

Order Number LM6161J or LM6261J See NS Package Number J08A
Order Number LM6261N or
LM6361N
See NS Package Number N08E
Order Number LM6361M
See NS Package Number M08A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (V+ - V-)
Differential Input Voltage (Note 8) $\pm 8 \mathrm{~V}$
Common-Mode Voltage Range
(Note 12)
$(\mathrm{V}+-0.7 \mathrm{~V})$ to $\left(\mathrm{V}^{-}-7 \mathrm{~V}\right)$
Output Short Circuit to GND (Note 1)
Continuous
Soldering Information
Dual-In-Line Package (N, J) Soldering (10 sec .)
Small Outline Package (M) Vapor Phase (60 sec .) Infrared (15 sec .)
$260^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$ $220^{\circ} \mathrm{C}$

Storage Temp Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Max Junction Temperature
$150^{\circ} \mathrm{C}$
ESD Tolerance (Notes 8 and 9) $\pm 700 \mathrm{~V}$
Operating Ratings
Temperature Range (Note 2)

LM6161
LM6261
LM6361
Supply Voltage Range

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \leq T_{J} \leq+125^{\circ} \mathrm{C} \\
-25^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C} \\
4.75 \mathrm{~V} \text { to } 32 \mathrm{~V}
\end{array}
$$

See AN-450 "Surface Mounting Method on Product Reliability" for other methods of soldering surface mount devices.

DC Electrical Characteristics (Note 3)

Parameter	Conditions	Typ	LM6161		LM6261		LM6361		Units
				Design Limit (Note 5)				Design Limit (Note 5)	
Input Offset Voltage		5	$\begin{gathered} 7 \\ 10 \end{gathered}$		7	9	20	22	mV max
Input Offset Voltage Average Drift		10							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		2	$\begin{aligned} & 3 \\ & 6 \end{aligned}$		3	5	5	6	$\mu \mathrm{A}$ \max
Input Offset Current		150	$\begin{aligned} & 350 \\ & \mathbf{8 0 0} \end{aligned}$		350	600	1500	1900	nA max
Input Offset Current Average Drift		0.4							$n A /{ }^{\circ} \mathrm{C}$
Input Resistance	Differential	325							k Ω
Input Capacitance	$\mathrm{Av}=+1$ @ 10 MHz	1.5							pF
Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (Note 11)	750	$\begin{aligned} & 550 \\ & \mathbf{3 0 0} \\ & \hline \end{aligned}$		550	400	400	350	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~min} \end{aligned}$
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	2900							V/V
Input Common-Mode Voltage Range	Supply $= \pm 15 \mathrm{~V}$	+14.0	$\begin{gathered} +13.9 \\ +13.8 \\ \hline \end{gathered}$		+ 13.9	+13.8	+13.8	+13.7	Volts min
		-13.2	$\begin{array}{r} -12.9 \\ -12.7 \\ \hline \end{array}$		-12.9	- 12.7	-12.8	-12.7	Volts min
	$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	4.0	$\begin{aligned} & 3.9 \\ & 3.8 \\ & \hline \end{aligned}$		3.9	3.8	3.8	3.7	Volts min
		1.8	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		2.0	2.2	2.1	2.2	Volts max
Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	94	$\begin{aligned} & 80 \\ & 74 \\ & \hline \end{aligned}$		80	76	72	70	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
Power Supply Rejection Ratio	$\pm 10 \mathrm{~V} \leq \mathrm{V} \pm \leq \pm 16 \mathrm{~V}$	90	$\begin{aligned} & 80 \\ & 74 \end{aligned}$		80	76	72	70	$d B$ \min

DC Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	Typ	LM6161		LM6261		LM6361		Units
			Tested Limit (Note 4)	Design Limit (Note 5)		Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	
Output Voltage Swing	$\begin{aligned} & \text { Supply }= \pm 15 \mathrm{~V} \\ & \text { and } \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	+14.2	$\begin{array}{r} +13.5 \\ +13.3 \end{array}$		+ 13.5	+13.3	+13.4	+13.3	Volts min
		-13.4	$\begin{array}{r} -13.0 \\ -12.7 \end{array}$		-13.0	-12.8	-12.9	-12.8	Volts min
	$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & \text { and } R_{L}=2 \mathrm{k} \Omega \text { (Note } 6 \text {) } \end{aligned}$	4.2	$\begin{aligned} & 3.5 \\ & \mathbf{3 . 3} \end{aligned}$		3.5	3.3	3.4	3.3	Volts min
		1.3	$\begin{aligned} & 1.7 \\ & 2.0 \end{aligned}$		1.7	1.9	1.8	1.9	Volts max
Output Short Circuit Current	Souce	65	$\begin{aligned} & 30 \\ & 20 \end{aligned}$		30	25	30	25	mA min
	Sink	65	$\begin{aligned} & 30 \\ & 20 \end{aligned}$		30	25	30	25	mA min
Supply Current		5.0	$\begin{aligned} & 6.5 \\ & 6.8 \end{aligned}$		6.5	6.7	6.8	6.9	mA max

AC Electrical Characteristics (Notes $3 \& 7$)

Parameter	Conditions	Typ	LM6161		LM6261		LM6361		Units
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	
Gain-Bandwidth Product	@ F $=20 \mathrm{MHz}$	50	$\begin{aligned} & 40 \\ & \mathbf{3 0} \end{aligned}$		40	35	35	32	MHz min
	Supply $= \pm 5 \mathrm{~V}$	35							MHz
Slew Rate	$A v=+1$ (Note 10)	300	$\begin{gathered} 200 \\ 180 \end{gathered}$		200	180	200	180	$\mathrm{V} / \mu \mathrm{s}$ \min
	Supply $= \pm 5 \mathrm{~V}$	200							$\mathrm{V} / \mu \mathrm{s}$
Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}_{\mathrm{pp}}$	4.5							MHz
Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step to } 0.1 \% \\ & \mathrm{Av}=-1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	120							ns
Phase Margin		45							Deg
Differential Gain	NTSC, Av $=+4$	<0.1							\%
Differential Phase	NTSC, Av $=+4$	0.1							Deg
Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$	15							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	1.5							$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is $105^{\circ} \mathrm{C} / \mathrm{W}$, the molded plastic SO (M) package is $155^{\circ} \mathrm{C} / \mathrm{W}$, and the cerdip (J) package is $125^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into a printed circuit board.
Note 3: Unless otherwise specified, all limits guaranteed for $T_{A}=T_{j}=25^{\circ} \mathrm{C}$ with supply voltage $= \pm 15 \mathrm{~V}, V_{C M}=0 \mathrm{~V}$, and $R_{L} \geq 100 \mathrm{k} \Omega$. Boldface limits apply over the range listed under "Operating Temperature Range" with $T_{A}=T_{j}$ in the "Absolute Maximum Ratings" section.
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All limits are 100\% production tested.
Note 5: All limits guaranteed at temperature extremes (bold type face) via correlation using standard Statistical Quality Control (SQC) methods.
Note 6: For single supply operation, the following conditions apply: $V^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$. Pin $1 \&$ Pin 8 (Vos Adjust) are each connected to Pin $4\left(\mathrm{~V}^{-}\right)$to realize maximum output swing. This connection will degrade V_{OS}, $\mathrm{V}_{\text {OS }}$ Drift, and Input Voltage Noise.
Note 7: $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$.
Note 8: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially Vos, los, and Noise).
Note 9: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.
Note 10: $\mathrm{V}_{1 \mathrm{~N}}=8 \mathrm{~V}$ step. For supply $= \pm 5 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=5 \mathrm{~V}$ step.
Note 11: Voltage Gain is the total output swing $(20 \mathrm{~V})$ divided by the input signal required to produce that swing.
Note 12: The voltage between V^{+}and either input pin must not exceed 36 V .

Typical Performance Characteristics $\left(R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Voltage Gain
vs Load Resistance

Gain vs Supply Voltage

Typical Performance Characteristics

$\left(R_{\mathrm{I}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

Typical Performance Characteristics

$\left(R_{L}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

Bias Current vs Common-Mode Voltage

TL/H/9057-12

Applications Tips

The LM6361 has been compensated for unity-gain operation. Since this compensation involved adding emitter-degeneration resistors to the op amp's input stage, the openloop gain was reduced as the stability increased. Gain error due to reduced Avol is most apparent at high gains; thus, for gains between 5 and 25, the less-compensated LM6364 should be used, and the uncompensated LM6365 is appropriate for gains of 25 or more. The LM6361, LM6364, and LM6365 have the same high slew rate, regardless of their compensation.
The LM6361 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (especially in low-gain circuits). The LM6361's compensation is effectively increased with load capacitance, reducing its bandwidth and increasing its stability.
Power supply bypassing is not as critical for the LM6361 as it is for other op amps in its speed class. Bypassing will,
however, improve the stability and transient response and is recommended for every design. $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ of tantalum may provide extra noise reduction.
Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling across adjacent nodes and can cause gain to unintentionally vary with frequency.
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

Typical Applications

Offset Voltage Adjustment

1 MHz Low-Pass Filter

TL/H/9057-10
$\dagger 1 \%$ tolerance
*Matching determines filter precision $\mathrm{f}_{\mathrm{C}}=2 \pi \sqrt{(\mathrm{R1R2} \mathrm{C} 1 \mathrm{C} 2)}^{-1}$

Modulator with Differential-to-Single-Ended Converter

TL/H/9057-11

LM6164/LM6264/LM6364 High Speed Operational Amplifier

General Description

The LM6164 family of high-speed amplifiers exhibits an excellent speed-power product in delivering 300 V per $\mu \mathrm{s}$ and 175 MHz GBW (stable down to gains as low as +5) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

■ High slew rate $\quad 300 \mathrm{~V} / \mu \mathrm{s}$

- High GBW product 175 MHz

■ Low supply current 5 mA

- Fast settling 100 ns to 0.1%
- Low differential gain
<0.1\%
- Low differential phase
$<0.1^{\circ}$
- Wide supply range
4.75 V to 32 V
- Stable with unlimited capacitive load
- Well behaved; easy to apply

Applications

- Video amplifier
- Wide-bandwidth signal conditioning

Simplified Schematic

Connection Diagram

TL/H/9153-8
Order Number LM6164J or LM6264J
See NS Package Number J08A
Order Number LM6364M
See NS Package Number M08A
Order Number LM6264N or LM6364N
See NS Package Number N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
36 V
Differential Input Voltage (Note 8) $\pm 8 \mathrm{~V}$
Common-Mode Input Voltage
(Note 12)
$\left(\mathrm{V}^{+}-0.7 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-7 \mathrm{~V}\right)$
Output Short Circuit to Gnd (Note 1)
Continuous
Soldering Information
Dual-In-Line Package (N, J) Soldering (10 sec.)
$260^{\circ} \mathrm{C}$
Small Outline Package (M)
Vapor Phase (60 sec .) Infrared (15 sec.)
$215^{\circ} \mathrm{C}$
$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
$\begin{array}{lr}\text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Max Junction Temperature (Note 2) } & 150^{\circ} \mathrm{C} \\ \text { ESD Tolerance (Notes } 8 \& 9 \text {) } & \pm 700 \mathrm{~V}\end{array}$

Operating Ratings

Temperature Range (Note 2)

$$
\begin{array}{lr}
\text { LM6161 } & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C} \\
\text { LM6261 } & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C} \\
\text { LM6361 } & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+70^{\circ} \mathrm{C} \\
\text { Supply Voltage Range } & 4.75 \mathrm{~V} \text { to } 32 \mathrm{~V}
\end{array}
$$

Parameter	Conditions	Typ	LM6164		LM6264		LM6364		Units
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)		Design Limit (Note 5)	
Output Voltage Swing	$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \text { and } \\ & R_{L}=2 \mathrm{k} \Omega \text { (Note } 6 \text {) } \end{aligned}$	4.2	$\begin{array}{r} 3.5 \\ \mathbf{3 . 3} \\ \hline \end{array}$		3.5	3.3	3.4	3.3	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		1.3	$\begin{aligned} & 1.7 \\ & 2.0 \end{aligned}$		1.7	1.9	1.8	1.9	$\begin{gathered} \mathrm{V} \\ \text { max } \end{gathered}$
Output Short Circuit Current	Source	65	$\begin{array}{r} 30 \\ \mathbf{2 0} \\ \hline \end{array}$		30	25	30	25	$\underset{\text { min }}{\substack{2}}$
	Sink	65	$\begin{array}{r} 30 \\ 20 \\ \hline \end{array}$		30	25	30	25	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
Supply Current		5.0	$\begin{gathered} 6.5 \\ 6.8 \end{gathered}$		6.5	6.7	6.8	6.9	$\begin{aligned} & \mathrm{mA} \\ & \max \end{aligned}$

AC Electrical Characteristics (Notes 3 \& 7)

Parameter	Conditions	Typ	LM6164		LM6264		LM6364		Units
						Design Limit (Note 5)			
Gain-Bandwidth Product	@ $\mathrm{F}=20 \mathrm{MHz}$	175	$\begin{aligned} & 140 \\ & 100 \end{aligned}$		140	120	120	100	MHz min
	Supply $= \pm 5 \mathrm{~V}$	120							
Slew Rate	$A_{V}=+20$ (Note 10)	300	$\begin{aligned} & 200 \\ & 180 \end{aligned}$		200	180	200	180	$\mathrm{V} / \mu \mathrm{s}$ \min
	Supply $= \pm 5 \mathrm{~V}$	200							
Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{VPP}$	4.5							MHz
Setting Time . .	10V Step to 0.1\% $A_{V}=-4, R_{L}=2 \mathrm{k} \Omega$	100	\cdots						ns
Phase Margin	$A_{V}=+5$	45							Deg
Differential Gain	NTSC, $A_{V}=+10$	<0.1							\%
Differential Phase	NTSC, $A_{V}=+10$	<0.1							Deg
Input Noise Voltage	$\mathrm{F}=10 \mathrm{kHz}$	8							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\mathrm{F}=10 \mathrm{kHz}$	1.5							$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The typical junction-to-ambient thermal resistance of the molded plastic $\mathrm{DIP}(\mathrm{N})$ is $105^{\circ} \mathrm{C} /$ Watt, the molded plastic SO (M) package is $155^{\circ} \mathrm{C} / \mathrm{Watt}$, and the cerdip (J) package is $125^{\circ} \mathrm{C} /$ Watt. All numbers apply for packages soldered directly into a printed circuit board.
Note 3: Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$ with supply voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{r}_{\mathrm{I}} \geq 100 \mathrm{~K} \Omega$ Boldface limits apply over the range listed under "Operating Temperature Range".
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes. All limits are 100\% production tested.
Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes. All limits are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.
Note 6: For single supply operation, the following conditions apply: $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$. Pin 1 \& Pin 8 (V_{OS} Adjust) are each connected to Pin $4(\mathrm{~V}-)$ to realize maximum output swing. This connection will degrade V_{OS}.
Note 7: $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$.
Note 8: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially VOS, los, and Noise).
Note 9: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.
Note 10: $\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ step. For supply $= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1 \mathrm{~V}$ step.
Note 11: Voltage Gain is the total output swing (20V) divided by the input signal required to produce that swing.
Note 12: The voltage between V^{+}and either input pin must not exceed 36 V .

Typical Performance Characteristics（ $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified）

Voltage Gain vs
Load Resistance

Gain vs Supply Voltage

Typical Performance Characteristics

$\left(R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

TL/Hi/9153-7
Note: Differential gain and differential phase measured for four series LM6364 op amps configured as unity-gain followers, in series with an LM6321 buffer. Error added by LM6321 is negilgible. Test performed using Tektronix Type 520 NTSC test system.

TIME (50 ns/div)

Input Noise Current

Input Noise Voltage

TL/H/G153-9

Typical Performance Characteristics

$\left(R_{L}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

Common-Mode Input

 Saturation Voltage

Output Resistance
Open-Loop

Bias Current vs
Common-Mode Voltage

TL/H/9153-13

Applications Tips

The LM6364 has been compensated for gains of 5 or greater (over specified ranges of temperature, power supply voltage, and load). Since this compensation involved adding emitter-degeneration resistors in the op amp's input stage, the open-loop gain was reduced as the stability increased. Gain error due to reduced $A_{\text {Vol }}$ is most apparent at high gains; thus, the uncompensated LM6365 is appropriate for gains of 25 or more. If unity-gain operation is desired, the LM6361 should be used. The LM6361, LM6364, and LM6365 have the same high slew rate (typically $300 \mathrm{~V} / \mu \mathrm{s}$), regardless of their compensation.
The LM6364 is unusually tolerant of capacitive loads. Most op amps tend to oscillate when their load capacitance is greater than about 200 pF (in low-gain circuits). However, load capacitance on the LM6364 effectively increases its compensation capacitance, thus slowing the op amp's response and reducing its bandwidth. The compensation is not ideal, though, and ringing or oscillation may occur in low-gain circuits with large capacitive loads. To overcompensate the LM6364 for operation at gains less than 5, a

Typical Applications

Video-Bandwidth Amplifier

TL/H/9153-12
series resistor-capacitor network should be added between the input pins (as shown in the Typical Applications, Noise Gain Compensation) so that the high-frequency noise gain rises to at least 5.
Power supply bypassing will improve the stability and transient response of the LM6364, and is recommended for every design. $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitors should be used (from each supply "rail" to ground); if the device is far away from its power supply source, an additional $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ (tantalum) may be required for extra noise reduction.
Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling between adjacent nodes, so that circuit gain unintentionally varies with frequency.
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

Noise-Gain Compensation for Gains ≤ 5

TL/H/9153-11
$\mathrm{R}_{\mathrm{X}} \mathrm{C}_{\mathrm{X}} \geq(2 \pi \bullet 25 \mathrm{MHz})^{-1}$
$5 R_{X}=R_{1}+R_{F}\left(1+R_{1} / R_{2}\right)$

National Semiconductor

LM6165/LM6265/LM6365

High Speed Operational Amplifier

General Description

The LM6165 family of high-speed amplifiers exhibits an excellent speed-power product in delivering $300 \mathrm{~V} / \mu \mathrm{s}$ and 725 MHz GBW (stable for gains as low as +25) with only 5 mA of supply current. Further power savings and application convenience are possible by taking advantage of the wide dynamic range in operating supply voltage which extends all the way down to +5 V .
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which produces fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate $300 \mathrm{~V} / \mu \mathrm{s}$
- High GBW product 725 MHz
- Low supply current 5 mA
- Fast settling
- Low differential gain

80 ns to 0.1%

- Low differential phase
<0.1\%
$<0.1^{\circ}$
- Wide supply range
4.75 V to 32 V
(Stable with unlimited capacitive load
- Well behaved; easy to apply

Applications

- Video amplifier
- Wide-bandwidth signal conditioning

Simplified Schematic

TL/H/9152-3

Connection Diagram

TL/H/9152-8

Order Number LM6165J or LM6265J See NS Package Number J08A

Order Number LM6365M
See NS Package Number M08A
Order Number LM6265N or LM6365N
See NS Package Number N08E

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 36 V
Differential Input Voltage (Note 8) $\pm 8 \mathrm{~V}$
Common-Mode Voltage Range
(Note 12)
$\left(\mathrm{V}^{+}-0.7 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-7 \mathrm{~V}\right)$
Output Short Circuit to GND (Note 1) Continuous
Soldering Information
Dual-In-Line Package (N, J) Soldering (10 sec .)
$260^{\circ} \mathrm{C}$
Small Outline Package (M) Vapor Phase (60 sec.)
$215^{\circ} \mathrm{C}$ Infrared (15 sec.) $220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Storage Temp Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Max Junction Temperature (Note 2)	$150^{\circ} \mathrm{C}$
ESD Tolerance (Notes 8 and 9$)$	$\pm 700 \mathrm{~V}$

Operating Ratings

Temperature Range (Note 2)

LM6165
LM6265
LM6365
Supply Voltage Range

DC Electrical Characteristics (Note 3)

Parameter	Conditions	Typ	LM6165		LM6265		LM6365		Units
			Tested Limit	Design Limit	Tested Limit	Design Limit	Tested Limit	Design Limit	
			(Note 4)	(Note 5)	(Note 4)	(Note 5)	(Note 4)	(Note 5)	
Input Offset Voltage		1	$\begin{aligned} & 3 \\ & 4 \end{aligned}$		3	4	6	7	mV max
Input Offset Voltage Average Drift		3							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		2.5	$\begin{aligned} & 3 \\ & 6 \end{aligned}$		3	5	5	6	$\mu \mathrm{A}$ \max
Input Offset Current		150	$\begin{aligned} & 350 \\ & \mathbf{8 0 0} \\ & \hline \end{aligned}$		350	600	1500	1900	$\begin{gathered} \text { na } \\ \text { max } \end{gathered}$
Input Offset Current Average Drift		0.3							$n A /{ }^{\circ} \mathrm{C}$
Input Resistance	Differential	20							k Ω
Input Capacitance		6.0							pF
Large Signal Voltage Gain	$\begin{array}{\|l\|} \hline V_{O U T}= \pm 10 \mathrm{~V}, \\ \left.R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { (Note } 11\right) \\ \hline \end{array}$	10.5	$\begin{aligned} & 7.5 \\ & \mathbf{5 . 0} \\ & \hline \end{aligned}$		7.5	6.0	5.5	5.0	V / mV min
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	38							
Input Common-Mode Voltage Range	Supply $= \pm 15 \mathrm{~V}$	+14.0	$\begin{array}{r} +13.9 \\ +13.8 \end{array}$		$+13.9$	+13.8	+13.8	+13.7	$\begin{gathered} V \\ \mathrm{~min} \end{gathered}$
		-13.6	$\begin{gathered} -13.4 \\ -13.2 \end{gathered}$,	-13.4	-13.2	-13.3	- 13.2	$\begin{gathered} V \\ \min \end{gathered}$
	$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \\ & \text { (Note 6) } \end{aligned}$	4.0	$\begin{aligned} & 3.9 \\ & 3.8 \end{aligned}$		3.9	3.8	3.8	3.7	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		1.4	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$		1.6	1.8	1.7	1.8	$\begin{gathered} V \\ \max \end{gathered}$
Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	102	$\begin{aligned} & 88 \\ & \mathbf{8 2} \end{aligned}$		88	84	80	78	dB min
Power Supply Rejection Ratio	$\pm 10 \mathrm{~V} \leq \mathrm{V} \pm \leq \pm 16 \mathrm{~V}$	104	$\begin{aligned} & 88 \\ & 82 \end{aligned}$		88	84	80	78	dB min
Output Voltage Swing	$\begin{aligned} & \text { Supply }= \pm 15 \mathrm{~V} \\ & \text { and } \mathrm{R}_{\mathrm{L}}=2 . \mathrm{k} \Omega \end{aligned}$	+14.2	$\begin{array}{r} +13.5 \\ +13.3 \\ \hline \end{array}$		+13.5	+13.3	+13.4	+13.3	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
		-13.4	$\begin{gathered} -13.0 \\ -12.7 \end{gathered}$		-13.0	-12.8	-12.9	-12.8	$\begin{gathered} V \\ \min \end{gathered}$

DC Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	Typ	LM6165		LM6265		LM6365		Units
			Tested Limit	Design Limit	Tested Limit	Design Limit	Tested Limit	Design Limit	
			(Note 4)	(Note 5)	(Note 4)	(Note 5)	(Note 4)	(Note 5)	
Output Voltage Swing	$\begin{aligned} & \text { Supply }=+5 \mathrm{~V} \text { and } \\ & R_{L}=2 \mathrm{k} \Omega \text { (Note 6) } \end{aligned}$	4.2	$\begin{aligned} & 3.5 \\ & 3.3 \end{aligned}$		3.5	3.3	3.4	3.3	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
		1.3	$\begin{array}{r} 1.7 \\ \mathbf{2 . 0} \\ \hline \end{array}$		1.7	1.9	1.8	1.9	$\begin{gathered} \mathrm{V} \\ \max \\ \hline \end{gathered}$
Output Short Circuit Current	Source	65	$\begin{aligned} & 30 \\ & \mathbf{2 0} \\ & \hline \end{aligned}$		30	25	30	25	mA min
	Sink	65	$\begin{aligned} & 30 \\ & 20 \end{aligned}$		30	25	30	25	mA min
Supply Current		5.0	$\begin{aligned} & 6.5 \\ & 6.8 \end{aligned}$		6.5	6.7	6.8	6.9	mA max

AC Electrical Characteristics (Notes 3 \& 7)

Parameter	Conditions	Typ	LM6165		LM6265		LM6365		Units
			Tested Limit	Design Limit	Tested Limit	Design Limit	Tested Limit	Design Limit	
			(Note 4)	(Note 5)	(Note 4)	(Note 5)	(Note 4)	(Note 5)	
Gain-Bandwidth Product	$@ \mathrm{~F}=20 \mathrm{MHz}$	725	$\begin{array}{r} 575 \\ 350 \end{array}$		575	425	500	400	MHz min
	Supply $= \pm 5 \mathrm{~V}$	500							
Slew Rate	$A_{V}=+25$ (Note 10)	300	$\begin{aligned} & 200 \\ & 180 \end{aligned}$		200	180	200	180	$\mathrm{V} / \mu \mathrm{s}$ min
	Supply $= \pm 5 \mathrm{~V}$	200							
Power Bandwidth	$\mathrm{V}_{\text {OUT }}=20 \mathrm{VPP}$	4.5							MHz
Setting Time	10V Step to 0.1\% $A_{V}=-25, R_{L}=2 \mathrm{k} \Omega$	80							ns
Phase Margin	$A_{V}=+25$	45							Deg
Differential Gain	NTSC, $A_{V}=+25$	<0.1							\%
Differential Phase	NTSC, $A_{V}=+25$	<0.1							Deg
Input Noise Voltage	$\mathrm{F}=10 \mathrm{kHz}$	5							$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Current	$\mathrm{F}=10 \mathrm{kHz}$	1.5							$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

Note 1: Continuous short-circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The typical junction-to-ambient thermal resistance of the molded plastic DIP (N) is $105^{\circ} \mathrm{C} /$ Watt, and the molded plastic SO (M) package is $155^{\circ} \mathrm{C} / \mathrm{Watt}$, and the cerdip (J) package is $125^{\circ} \mathrm{C} /$ Watt. All numbers apply for packages soldered directly into a printed circuit board.
Note 3: Unless otherwise specified, all limits guaranteed for $T_{a}=T_{j}=25^{\circ} \mathrm{C}$ with supply voltage $= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}} \geq 100 \mathrm{k} \Omega$. Boldface limits apply over the range listed under "Operating Temperature Range".
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All limits are $\mathbf{1 0 0 \%}$ production tested.
Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All limits are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.
Note 6: For single supply operation, the following conditions apply: $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{C}, \mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}$. Pin $1 \& \operatorname{Pin} 8$ (V_{OS} Adjust) are each connected to Pin $4(\mathrm{~V}-)$ to realize maximum output swing. This connection will degrade V_{OS}.
Note 7: $\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}$.
Note 8: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exeeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors and probable degradation of the input parameters (especially $V_{\text {OS, }}$ los, and Noise).
Note 9: The average voltage that the weakest pin combinations (those involving Pin 2 or Pin 3) can withstand and still conform to the datasheet limits. The test circuit used consists of the human body model of 100 pF in series with 1500Ω.
Note 10: $\mathrm{V}_{\mathrm{IN}}=0.7 \mathrm{~V}$ step. For supply $= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.2 \mathrm{~V}$ step.
Note 11: Voltage Gain is the total output swing (20 V) divided by the input signal required to produce that swing.
Note 12: The voltage between $\mathrm{V}+$ and either input pin must not exceed 36 V .

Typical Performance Characteristics $R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics (Continued)

$R_{L}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics (Continued)

$R_{L}=10 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Applications Tips

The LM6365 has no frequency compensation, but is stable for gains of 25 or greater (over the specified ranges of temperature, power supply voltage, and load). The LM6365 and LM6364, specified in separate datasheets, are compensated versions of the LM6365. The LM6361 is unity-gain stable, while the LM6364 is stable for gains as low as 5 . The LM6361, and LM6364 have the same high slew rate as the LM6365, typically $300 \mathrm{~V} / \mu \mathrm{s}$.
To use the LM6365 for gains less than 25, a series resistorcapacitor network should be added between the input pins (as shown in the Typical Applications, Noise Gain Compensation) so that the high-frequency noise gain rises to at least 25.

Power supply bypassing will improve stability and transient response of the LM6365, and is recommended for every

Typical Applications

Offset Voltage Adjustment

TL/H/9152-11
design. $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ ceramic capacitors should be used (from each supply "rail" to ground); an additional $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ (tantalum) may be required for extra noise reduction.
Keep all leads short to reduce stray capacitance and lead inductance, and make sure ground paths are low-impedance, especially where heavier currents will be flowing. Stray capacitance in the circuit layout can cause signal coupling between adjacent nodes, and can cause circuit gain to unintentionally vary with frequency.
Breadboarded circuits will work best if they are built using generic PC boards with a good ground plane. If the op amps are used with sockets, as opposed to being soldered into the circuit, the additional input capacitance may degrade circuit performance.

LM6313 High Speed,

 High Power Operational Amplifier
General Description

The LM6313 is a high-speed, high-power operational amplifier. This operational amplifier features a 35 MHz small signal bandwidth, and $250 \mathrm{~V} / \mu \mathrm{s}$ slew rate. A compensation pin is included for adjusting the open loop bandwidth. The input stage (A1) and output stage (A2) are pinned out separately, and can be used independently. The operational amplifier is designed for low impedance loads and will deliver $\pm 300 \mathrm{~mA}$. The LM6313 has both overcurrent and thermal shutdown protection with an error flag to signal both these fault conditions.
These amplifiers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features
■ High slew rate $\quad 250 \mathrm{~V} / \mu \mathrm{s}$
[Wide bandwidth 35 MHz

- Peak output current $\pm 300 \mathrm{~mA}$
- Input and output stages pinned out separately
- Single or dual supply operation
- Thermal protection
- Error flag warns of faults
- Wide supply voltage range $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

Applications

- High speed ATE pin driver
- Data acquisition
- Driving capacitive loads
- Flash A-D input driver
- Precision $50 \Omega-75 \Omega$ video line driver
- Laser diode driver

Typical Application

TL/H/10521-2

Absolute Maximum Ratings (Note 1)

Operational Amplifier DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, $R_{S}=50 \Omega$, the circuit configured as in Figure 1.

Symbol	Parameter	Conditions	Typical	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \text { Limit } \end{aligned}$	$\underset{\text { Limit }}{0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}}$	Units
V_{OS}	Input Offset Voltage		5	20	22	mV (Max)
$\Delta V_{O S} / \Delta T$	Average Input Offset Voltage Drift		10			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{b}	Input Bias Current		2	5	7	$\mu \mathrm{A}$ (Max)
los	Input Offset Current		0.15	1.5	1.9	$\mu \mathrm{A}$ (Max)
$\Delta \mathrm{lOS}^{\text {/ }}$ /T	Average Input Offset Current Drift		0.4			$n A /{ }^{\circ} \mathrm{C}$
$\mathrm{RIN}^{\text {I }}$	Input Resistance	Differential	325			$\mathrm{k} \Omega$
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance	$A_{V}=+1, f=10 \mathrm{MHz}$	2.2			pF
V_{CM}	Common-Mode Voltage Range		$\begin{aligned} & +14.2 \\ & -13.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +13.8 \\ & -12.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +13.7 \\ -12.7 \\ \hline \end{array}$	V (Min)
$A_{V 1}$ AV2	Voltage Gain 1 Voltage Gain 2	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 8 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6000 \\ & 5000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 2000 \\ & 1500 \end{aligned}$	V/V (Min)
CMRR	Common-Mode Rejection Ratio	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$	90	72	70	dB (Min)
PSRR	Power Supply Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 16 \mathrm{~V}$	90	72	70	dB (Min)
$\begin{aligned} & \mathrm{v}_{\mathrm{O} 1} \\ & \mathrm{v}_{\mathrm{O} 2} \\ & \mathrm{v}_{\mathrm{O} 3} \end{aligned}$	Output Voltage Swing 1 Output Voltage Swing 2 Output Voltage Swing 3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\begin{aligned} & 13.1 \\ & 12.0 \\ & 11.0 \end{aligned}$	$\begin{gathered} 11.8 \\ 10.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 11.2 \\ & 10.0 \\ & 8.5 \end{aligned}$	$\pm \mathrm{V}$ (Min)
Is	Supply Current	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$	18	23	$\begin{aligned} & 24 \\ & 21 \end{aligned}$	$\mathrm{mA}(\mathrm{Max})$
ISC	Peak Short-Circuit Output	(See Figure 3)	300			mA

FIGURE 1

Electrical Characteristics (Continued)

Operational Amplifier AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, $R_{S}=50 \Omega$, the circuit configured as in Figure 1.

Symbol	Parameter	Conditions	Typical	Units
GBW	Gain-Bandwidth Product	$@ \mathrm{f}=30 \mathrm{MHz}$	35	MHz
SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=50 \Omega($ Note 6$)$	250	$\mathrm{~V} / \mu \mathrm{s}$
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{OUT}}=20 \mathrm{~V}_{\mathrm{PP}}$	3.0	MHz
t_{S}	Settling Time	10 V Step to 0.1% (See Figure 2)	200	ns
	Phase Margin	$\mathrm{A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	53	Deg
	Differential Gain		0.1	$\%$
	Differential Phase		0.1	Deg
e_{n}	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$	14	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	1.8	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

A1 DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and

 Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega$.| Symbol | Parameter | Conditions | Typical | $25^{\circ} \mathrm{C}$
 Limit | $0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}$
 Limit | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Avol | Large Signal Voltage Gain | $\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$ | $\begin{gathered} 650 \\ 6000 \\ \hline \end{gathered}$ | $\begin{gathered} 300 \\ 2500 \\ \hline \end{gathered}$ | $\begin{array}{r} 250 \\ 2000 \\ \hline \end{array}$ | V/V (Min) |
| CMRR | Common-Mode Rejection Ratio | $-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+10 \mathrm{~V}$ | 90 | 72 | 70 | dB (Min) |
| PSRR | Power Supply Rejection Ratio | $\pm 5 \mathrm{~V} \leq \pm \mathrm{V}_{\mathrm{S}} \leq+16 \mathrm{~V}$ | 90 | 72 | 70 | dB (Min) |
| Isc | Output Short Circuit Current | | ± 60 | ± 30 | ± 25 | mA (Min) |

A1 AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{R}_{\mathrm{S}}=50 \Omega$.

Symbol	Parameter	Conditions	Typical	$\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Limit	Units
GBW	Gain-Bandwidth	$\mathrm{f}=30 \mathrm{MHz}$	37	25	$\mathrm{MHz}(\mathrm{Min})$
SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \pm 4 \mathrm{~V}_{\mathrm{IN}}$, $\pm 2 \mathrm{~V}_{\mathrm{OUT}}$	250	150	$\mathrm{~V} / \mu \mathrm{s}(\mathrm{Min})$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test condition listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 2: In order to achieve optimum AC performance, the input stage was designed without protective clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of one of the input transistors. Degradation of the input parameters (especially V_{OS}, los, and Noise) is proportional to the level of the externally limited breakdown current and the accumulated duration of the breakdown condition.
Note 3: Continuous short-circuit operation of A1 at elevated temperature can result in exceeding the maximum allowed junction temperature of $125^{\circ} \mathrm{C}$. A 2 contains current limit and thermal shutdown to protect against fault conditions. The device may be damaged by shorts to the supplies.
Note 4: Human body model, $\mathrm{C}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{S}}=1500 \Omega$.

Electrical Characteristics (Continued)
A2 DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_{A}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{R}_{\mathrm{S}}=50 \Omega$.

Symbol	Parameter	Conditions	Typical	$25^{\circ} \mathrm{C}$ Limit	$\underset{\text { Limit }}{0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C}}$	Units
$A_{V 1}$	Voltage Gain 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.99	0.97	0.95	V/mV (Min)
$A_{V 2}$	Voltage Gain 2	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.9	0.85	0.82	V/V (Min)
$\mathrm{V}_{\text {OS }}$	Offset Voltage	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	15	70	100	mV (Max)
I_{b}	Input Bias Current	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$	1	6	8	$\mu \mathrm{A}$ (Max)
R_{IN}	Input Resistance	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	5			$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3.5			pF
R_{0}	Output Resistance	l OUT $= \pm 10 \mathrm{~mA}$	3.5	5.0	8.0	Ω (Min)
V_{O}	Voltage Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & 13.7 \\ & 12.5 \\ & 11.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 10.5 \\ 9.0 \end{gathered}$	$\begin{gathered} 12.7 \\ 10.0 \\ 8.5 \end{gathered}$	V (Min)
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$	70	60	50	dB (Min)

A2 AC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes. $\mathrm{R}_{\mathrm{S}}=50 \Omega$.

Symbol	Parameter	Conditions	Typical	$25^{\circ} \mathrm{C}$ Limit	Units
$\begin{aligned} & \text { SR } 1 \\ & \text { SR } 2 \end{aligned}$	Slew Rate 1 Slew Rate 2	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 11 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { (Note } 7 \text {) } \end{aligned}$	$\begin{gathered} 1200 \\ 750 \end{gathered}$	550	$\mathrm{V} / \mu \mathrm{s}$ (Min)
BW	-3 dB Bandwidth	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 100 \mathrm{mVpp} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \end{aligned}$	65	30	MHz (Min)
$\begin{aligned} & t_{r}, \\ & t_{f} \end{aligned}$	Rise Time Fall Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mVpp} \end{aligned}$	8		ns
P_{D}	Propagation Delay	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mVpp} \end{aligned}$	4		ns
	Overshoot	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 21 \end{aligned}$		\%

Additional (A2) Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_{A}=25^{\circ} \mathrm{C}$, and Supply Voltage $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Boldface limits apply at temperature extremes.

Symbol	Parameter	Conditions	Typical	$\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Limit	$\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{7 0} 0^{\circ} \mathrm{C}$ Limit	Units
V_{OL}	Flag Pin Output Low Voltage	ISINK Flag Pin $=500 \mu \mathrm{~A}$	220	340	$\mathbf{4 0 0}$	$\mathrm{mV}(\mathrm{Max})$
IOH	Flag Pin Output High Current	V_{OH} Flag Pin $=15 \mathrm{~V}$ (Note 8)	0.01	10	$\mathbf{2 0}$	$\mu \mathrm{~A}(\mathrm{Max})$

Note 5: For operation at elevated temperature, these devices must be derated to insure $T_{J} \leq 125^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{J}}=T_{A}+\left(P_{D} \times \theta_{J A}\right) . \theta_{J A}$ for the N package mounted flush to the PCB, is $40^{\circ} \mathrm{C} / \mathrm{W}$ when pins $4,5,12$ and 13 are soldered to a total of $2 \mathrm{in}^{2}$ of copper trace.
Note 6: Measured between $\pm 5 \mathrm{~V}$.
Note 7: $\mathrm{V}_{\mathrm{IN}}= \pm 9 \mathrm{~V}$ step input, measured between $\pm 5 \mathrm{~V}$ out.
Note 8: The error flag is set during current limit or thermal shut-down. The flag is an open collector, low on fault.

Simplified Schematic

Settling Time Test Circuit

FIGURE 2

TL/H/10521-6
FIGURE 3

Protection Circuit Block Diagram

Typical Performance Characteristics Op Amp
 (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.)

Typical Performance Characteristics A1 Only
(Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.)

Typical Performance Characteristics A2 Only

(Unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.)

Gain-Bandwidth and Phase Margin vs Load Capacity

Output Resistance (Open Loop)

TL/H/10521-9

Application Hints

The LM6313 is a high-speed, high power operational amplifier that is designed for driving low-impedance loads such as 50Ω and 75Ω cables. Available in the standard, low cost, 16-pin DIP, this amplifier will drive back terminated video cables with up to $10 \mathrm{Vp}-\mathrm{p}$. The ability to add additional compensation allows the LM6313 to drive capacitive loads of any size at bandwidths previously possible only with very expensive hybrid devices.
The LM6313 is excellent for driving high-speed flash A-to-D converters that require low-impedance drive at high frequencies. At 1 MHz , when used as a buffer, the LM6313 output impedance is below 0.1Ω. This very low output impedance also means that cables can be accurately backterminated by just placing the characteristic impedance in series with the LM6313 output.

OVER-VOLTAGE PROTECTION

If the LM6313 is being operated on supply voltages of greater than $\pm 5 \mathrm{~V}$, the possibility of damaging the output stage transistors exists. At higher supply voltages, if the output is shorted or excessive power dissipation causes the output stage to shut down, the maximum A2 input-to-output voltage, can be exceeded. This occurs when the input stage tries to drive the output while the output is at ground. To prevent this from happening, an easy solution is to place diodes around the output stage (See Figure 4). This will limit the maximum differential voltage to about 1.3 V . Any signal diode, such as the 1 N914 or the 1 N4148 will work fine.

TL/H/10521-11
FIGURE 4

HEAT SINKING

When driving a low impedance load such as 50Ω, and operating from $\pm 15 \mathrm{~V}$ supplies, the internal power dissipation of the LM6313 can rise above 3W. To prevent overheating of the chip, which would cause the thermal protection circuitry to shut the system down, the following guidelines should be followed:

1. Reduce the supply voltage. The LM6313 will operate with little change in performance, except output voltage swing, on $\pm 5 \mathrm{~V}$ supplies. This will reduce the dissipation to the level where no precautions against overheating are necessary for loads of 10Ω or more.
2. Solder pins 4,5,12 and 13 to copper traces which are at least 0.100 inch wide and have a total area of at least 2 square inches, to obtain a θ_{JA} of $40^{\circ} \mathrm{C} / \mathrm{W}$. These four pins are connected to the back of the chip and will be at $\mathrm{V}-$. They should not be used as a V - connection unless pin 3 is also connected to this same point.

SUPPLY BYPASSING

Because of the large currents required to drive low-impedance loads, supply bypassing as close as possible to the I.C. is important. At 50 MHz , a few inches of wire or circuit trace can have 20Ω or 30Ω of inductive reactance. This inductance in series with a $0.1 \mu \mathrm{~F}$ bypass capacitor can resonate at 1 MHz to 2 MHz and just appear as an inductor at higher frequencies. $\mathrm{A} 0.1 \mu \mathrm{~F}$ and a $10 \mu \mathrm{~F}$ to $15 \mu \mathrm{~F}$ capacitor connected in parallel and as close as possible to the LM6313 supply pins, from each supply to ground, will give best performance.

SELECTION OF COMPENSATION CAPACITOR

The compensation pin, pin 15, makes it possible to drive any load at any closed loop gain without stability problems. In most cases, where the gain is $\mathbf{- 1}$ or greater and the load is resistive, no compensation capacitor is required. When used at unity gain or when driving reactive loads, a small capacitor of 5 pF to 20 pF will insure optimum performance. The easiest way to determine the best value of compensation capacitor is to temporarily connect a trimmer capacitor (typical range of 2 pF to 15 pF) between pin 15, and ground, and adjust it for little or no overshoot at the output while driving the input with a square wave.
If the actual load capacitance is known, the typical graphs "Gain-Bandwidth and Phase Margin vs. Load Capacitance" can be used to select a value.

VIDEO CABLE DRIVER

The LM6313 is ideally suited for driving 50Ω or 75Ω cables. Unlike a buffer that requires a separate gain stage to make up for the losses involved in termination, the LM6313 gain can be set to 1 plus the line losses when the transmission line is end-terminated. If back-termination is needed, adding the line impedance in series with the output and raising the gain to 2 plus the expected line losses will provide a 0 dB loss system. Figure 5 illustrates the back and end terminated video system including compensation for line losses. The excellent stability of the LM6313 with changes in supply voltages allow running the amplifier on unregulated supplies. The typical change in phase shift when the supplies are changed from $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ is less than 3° at 10 MHz .

TL/H/10521-12
FIGURE 5

Application Hints (Continued)

LASER DIODE MODULATOR

Figure 6 is a minimum component count example of a video modulator for a CW laser diode. This example biases the diode at 200 mA and modulates the current at $\pm 200 \mathrm{~mA}$ per volt of signal. If it is desired to reduce power consumption and $\pm 5 \mathrm{~V}$ supplies are available, all that is necessary is to change R2 to $5 \mathrm{k} \Omega$ and R4 to 15Ω.

FIGURE 6

In photo $1, C_{L}$ is 1000 pF . The LM6313 is slewing at $250 \mathrm{~V} / \mu \mathrm{s}$, from -5 V to +5 V . The slew rate is $450 \mathrm{~V} / \mu \mathrm{s}$ from +5 V to -5 V . This requires the op amp to deliver 450 mA into the load and remain stable.

TL/H/10521-16
Photo 1

CAPACITIVE LOAD DRIVING

Figure 7 is the circuit used to demonstrate the ability of the LM6313 to drive capacitive loads at speeds not previously possible with monolithic op amps.

FIGURE 7

In photo $2, \mathrm{C}_{\mathrm{L}}$ is changed to $1 \mu \mathrm{~F}$. Under these conditions, the op amp is forced into current limiting. Here the current is internally limited to about $\pm 400 \mathrm{~mA}$. Note the rapid and complete recovery to normal operation at the end of slewing.

TL/H/10521-15
Photo 2

LM13080

Programmable Power Operational Amplifier

General Description

The LM13080 is an internally compensated medium power operational amplifier designed for use in those applications requiring load currents of several hundred milliamperes. This amplifier has the added advantage of having an input stage programmed with an external resistor. The user is able to optimize the amplifier performance for each individual application with this feature. Applications include servo amplifiers and drivers, high input impedance audio amplifiers, DC-to-DC converters, precision power comparators which can either sink or source current and motor speed controls.
The LM13080 may be powered from either single or dual power supplies, and will operate from as little as 3 V .
As a power operational amplifier, the LM13080 is capable of delivering 0.25 A to a load. This feature allows the system designer to fulfill his medium power circuit requirements without having to add external current boost transistors to the output of a standard operational amplifier.

By selecting the proper input stage bias resistor it is possible to tailor the performance of the input stage to meet the needs of any particular system. Trade-offs between input offset voltage, input bias current and gain bandwidth are easily made.
An unusual feature of the LM13080 is an electronic shutdown capability.

Features

- High output current-250 mA
- Externally programmable input stage
(1) Low power supply operation-3V

国 Electronic shut-down capability

- Internally compensated for unity gain
- Low input bias current

Schematic Diagram

TL/H/7978-2

Connection Diagram

Order Number LM13080N
See NS Package Number N08E

Absolute Maximum Ratings
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Operation Range
Power Dissipation (Note 1)
Differential Input Voltage (Note 2)

Electrical Characteristics $\mathrm{V}_{S}=12 \mathrm{~V}, \mathrm{R}_{\text {SET }}=680 \mathrm{k}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)		± 3	± 7	mV
Input Bias Current	$\mathrm{I}_{\mathrm{IN}(+)}$ or $\operatorname{lin}^{(-),},^{\text {a }}=25^{\circ} \mathrm{C}$		100	400	nA
Input Offset Current	$\operatorname{lin(+)}-\operatorname{lin}^{\text {(}- \text {) }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 30	± 75	nA
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)		3	6	mA
Output Voltage Swing $\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & V_{S}= \pm 6 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \text { (Note 1) } \\ & R_{L}=50 \Omega \\ & R_{L}=8 \Omega \\ & R_{L}=50 \Omega \\ & R_{L}=8 \Omega \\ & \hline \end{aligned}$	$\begin{gathered} 4.5 \\ 2 \end{gathered}$	$\begin{gathered} 5 \\ -5 \end{gathered}$	$\begin{gathered} -4.5 \\ -2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{f}=100 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	3	10		V/mV
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}} \leq 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Note 3) } \end{aligned}$	1		$\mathrm{V}_{S}-1.5$	V
Input Offset Voltage	(Note 5)			± 10	mV
Input Offset Voltage Drift			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\ln (+)$ or $\ln (-)$			600	nA
Input Offset Current	$\ln (+)-\ln (-)$			± 150	nA
Input Offset Current Drift			50		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$ (Note 6)			8	mA
Output Voltage Swing $\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} V_{S} & = \pm 6 \mathrm{~V}(\text { Note } 1) \\ R_{\mathrm{L}} & =50 \Omega \\ R_{\mathrm{L}} & =8 \Omega \\ R_{\mathrm{L}} & =50 \Omega \\ R_{\mathrm{L}} & =8 \Omega \end{aligned}$	$\begin{gathered} -4 \\ -1.6 \end{gathered}$		$\begin{gathered} 4 \\ 1.6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$

Electrical Characteristics $\mathrm{v}_{\mathrm{S}}=12 \mathrm{~V}, \mathrm{R}_{\text {SET }}=680 \mathrm{k}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified (Continued)

Parameter	Conditions	Min	Typ	Max	Units
Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{~Hz}$	1			$\mathrm{~V} / \mathrm{mV}$
Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}} \leq 15 \mathrm{~V}($ Note 3)	1.25		$\mathrm{~V}_{\mathrm{S}}-1.75$	V
Common-Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	63	85		dB
Total Harmonic Distortion	$\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{Vrms}$, $\mathrm{f}=1 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	5	$\%$

Note 1: For operation at high temperatures, the LM13080 must be derated based upon a maximum junction temperature of $150^{\circ} \mathrm{C}$ and a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$. The thermal resistance values given are for a still air ambient with the package soldered into a printed circuit board.
Note 2: Differential input voltages up to the magnitude of the power supply voltage will not damage the input circuitry. However, input voltages outside the input common-mode voltage range will not be able to properly control the output of the amplifier.
Note 3: The input voltage applied to either input should not be allowed to go more than 0.3 V below the potential applied to pin 4; however, either input can be taken as high as 15 V without causing damage to the circuit. Input voltages below the minimum common-mode voltage range may cause a phase reversal in the output.
Note 4: This input current will exist only when the voltage at either input lead is driven negative. It is due to the base-isolation junction of the PNP transistor tub becoming forward biased and thereby acting as an input diode clamp. In addition to this diode action, there is also lateral NPN parasitic action on the IC chip. This transistor action can cause the output to take an undefined state for the time duration that an input is driven negative.
Note 5: $\mathrm{V}_{\mathrm{O}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$, and over the full input common-mode voltage range.
Note 6: Supply current is measured with the amplifier connected in a unity gain follower configuration and the positive input set to one-half of the supply voltage.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Application Hints

The LM13080 is a power op amp capable of sourcing or sinking more than 250 mA and does not include internal current limit or thermal shut-down. Therefore, the user must make sure that his application will not cause the power dissipation rating of the package to be exceeded. The LM13080 is rated at a maximum dissipation of 1250 mW at $25^{\circ} \mathrm{C}$. For operation at temperatures above $25^{\circ} \mathrm{C}$, the maximum dissipation must be derated using the equation:

$$
P_{D}=\frac{T_{J}-T_{A}}{\Theta_{J A}}
$$

where P_{D} is the maximum allowable power dissipation, T_{j} is the maximum junction temperature $\left(150^{\circ} \mathrm{C}\right), \mathrm{T}_{\mathrm{A}}$ is the ambient temperature and Θ_{JA} is the thermal resistance of the package operated in a still air environment. $\Theta_{J A}$ for the LM13080N is $100^{\circ} \mathrm{C} / \mathrm{W}$. For example, if the LM13080N is used in free air in a $70^{\circ} \mathrm{C}$ ambient, the maximum power that can be dissipated is:

$$
\mathrm{P}_{\mathrm{D}}=\frac{150^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{100^{\circ} \mathrm{C} / \mathrm{W}}=800 \mathrm{~mW}
$$

The LM13080 derives its ability to sink current through the use of a composite NPN/PNP output configuration. This local loop must be compensated by the series connection of a $0.05 \mu \mathrm{~F}$ capacitor and a 10Ω resistor between the output of the op amp (pin 5) and the negative power supply (pin 4). The RC does not just filter out the oscillation from the output waveform but actually stabilizes the loop.
If the inputs of the LM13080 are driven below the input com-mon-mode voltage range, it is possible that the output will experience a phase reversal. This is particularly true for the non-inverting input $\left(\mathrm{V}_{\mathrm{IN}}(+)\right.$). If either input is driven to a voltage level 0.3 V below the substrate (pin 4) a parasitic NPN transistor will be turned ON. The emitter of this parasitic transistor is the normal input transistor epi (N -type, base) region, the base is the substrate (P -type) and the collector is every other epi region on the die. Circuit operation in this mode is unpredictable. If an input is forced below the substrate, the current flowing out of that input should be limited to 20 mA to insure that the amplifier will not be destroyed.
Programming the LM13080 is accomplished by selecting the value of $R_{S E T}$, the input stage bias resistor, to optimize the amplifier for each particular application. An example would be an application with low source resistance which requires a low offset voltage to make a precise DC measurement. By selecting an RSET of $100 \mathrm{k} \Omega$, the normal offset voltage would be reduced to approximately one-fourth the value it would be if a 680k resistor was used. By studying the curves, it can be seen that the bias current will increase but an increase here has very little effect due to the small source impedance. It should also be noted that with a 100k input set resistor the gain bandwidth product will also increase, and in fact, the amplifier must be operated with a closed loop voltage gain of 6 to assure stability.
The effect of R ${ }_{\text {SET }}$ on the total quiescent supply current will be very small ($\Delta I_{\mathrm{S}}<5 \% I_{\mathrm{S}}$) as long as R RET is 100 k or greater.

To employ electronic shut-down the output bias pin, pin 2, and the negative end of the input bias resistor, R $\mathrm{R}_{\text {SET }}$, are connected to the negative power supply (or ground in a single power system) through a saturated NPN transistor (or other electronic switch). When the transistor is turned OFF, all of the bias currents inside the op amp are turned OFF and all input and output terminals will float. When first turned ON, the output will take about 5μ s to reach the correct level. To insure that the LM13080 is OFF, leakage in the control device must be below the level that will allow pins 2 and 7 to fall to 0.4 V below $\mathrm{V}+$.
Power supply rejection is a function of the change in voltage across the input bias resistor, $\mathrm{R}_{\text {SET }}$. To improve the PSRR of the LM13080, the user must be careful to bypass pin 7 to pin 6 or to establish a floating voltage referenced to the positive power supply to serve as a connection point for $R_{\text {SET }}$. In applications where PSRR is important, it is imperative that a supply bypass capacitor(s) be used.

Typical Applications

LINE DRIVER

The line driver circuit in Figure 1 is able to accept an unbalanced, high impedance input and convert it to a balanced output suitable for driving a low impedance line. This is particularly useful in an environment where magnetically induced hum or noise pickup is a problem.
The outputs of the 2 LM13080s are of opposite polarity; therefore, terminating the line with a balanced load (i.e., a differential amplifier or a transformer) will cause commonmode interference pickup to be cancelled.
This circuit will drive a $20 \mathrm{Vp-p}$ signal into a 50Ω load for frequencies up to 10 kHz . Above 10 kHz the output signal is slew rate limited, but the line driver will still supply a $13 \mathrm{Vp}-\mathrm{p}$ signal at 20 kHz . The voltage gain of the network is 2 , and the low frequency roll-off is determined by:

$$
f_{L}=\frac{1}{2 \pi R C}
$$

It can be seen that if the load is connected directly between the outputs of the amplifiers, the line driver becomes a simple bridge amplifier capable of delivering 2 W into a 16Ω load.

PIEZOELECTRIC ALARM

The piezoelectric alarm shown in Figure 2 uses a 3-terminal transducer (Gulton 101FB or equivalent) to produce an 80 dB SPL alarm.
The transducer has a feedback terminal which is connected to the non-inverting input of the LM13080, causing oscillation at the resonant frequency of the piezoelectric crystal. The alarm can be controlled through the use of the electronic shut-down feature of the amplifier. The 100k resistor and $0.1 \mu \mathrm{~F}$ capacitor are used to provide a reference voltage at the inverting input and to keep the duty cycle of the crystal oscillation close to 50%. The RC time constant of this feedback network should be much greater than the time constant of the transducer.

Typical Applications (Continued)

TL/H/7978-5
FIGURE 1. Line Driver-Unbalanced Input to Balanced Output

TL/H/7978-6
FIGURE 2. Piezoelectric Alarm

SIRENS

Two separate circuits for sirens are shown. The first, Figure 3 , is a 2-state or ON-OFF type siren where the LM13080 oscillates at an audio frequency and drives an 8Ω speaker and the LM339 acts as a switch which controls the audio burst rate. The second siren, Figure 4, provides a constant audio output but alternates between 2 separate tones. The LM13080 is set to oscillate at one basic frequency and this frequency is changed by adding a $200 \mathrm{k} \Omega$ charging resistor in parallel with the feedback resistor, R2.

LAMP FLASHER-RELAY DRIVER

The LM13080 is easily adaptable to such applications as low frequency warning devices. The output of the oscillator is a squarewave that is used to drive lamps or small relays. As shown in Figure 5, the circuit alternately flashes 2 incandescent lamps.

FIGURE 3. 2-State Siren

Typical Applications (Continued)

FIGURE 4. 2-Tone Siren

FIGURE 5. Low Frequency Lamp Flasher/Relay Driver

MOTOR SPEED CONTROL

The LM13080 can be used to construct a very simple speed control for small motors requiring less than 0.5 A start current. This circuit operates by impressing the multiple of a reference voltage across the motor, and then varying the reference by means of a quasi-positive feedback to change the voltage across the motor any time the load on the motor changes.
To understand the circuit operation, it is easiest to let the voltage at the cathode of diode D1, Figure 6, be the input
voltage, $\mathrm{V}_{\mathbb{I}}$, to the system. Diode D 1 is actually a level shift diode to bring V_{IN} into the common-mode range of the amplifier. A reference voltage is established by the combined voltage drop through the 10Ω potentiometer, R3 and the reference diode, D2 and is applied to the non-inverting input of the LM13080. Resistor R4 is a bias resistor used to keep D 2 active. The 10 k speed adjust potentiometer is 2 resistors in 1, where section R1 is the input resistance and section R2 is the negative feedback resistance. It can be seen that the voltage impressed across the motor is equal to:

$$
V_{\mathrm{MOTOR}}=\frac{\left(\mathrm{V}_{\mathrm{BE} 2}+\mathrm{l}_{3} \mathrm{R} 3\right) \mathrm{R} 2}{\mathrm{R} 1}+\mathrm{V}_{\mathrm{BE}}
$$

Typical Applications (Continued)

The positive feedback is developed as a change in the voltage across R3 due to the change in the motor current caused by a variation in the motor's load. Resistor R3 is shown as a potentiometer so that the amount of positive feedback can be adjusted for smooth operation of the motor. Capacitor C1 and resistor R5 serve as a filter for the reference voltage at the non-inverting input of the amplifier.

VOLTAGE REGULATORS

In normal, positive or negative regulator application such as those shown in Figure 7 and Figure 8, the LM13080 has 2 major advantages over standard operational amplifiers. The LM13080 has its own on-chip pass device and in addition can either sink or source 250 mA of load current.

FIGURE 6. Motor Speed Control

FIGURE 7. Positive Variable Voltage Regulator
Note: Pin numbers apply to miniDIP.

TL/H/7978-13
FIGURE 8. Negative Variable Voltage Regulator

National Semiconductor

LM13600/LM13600A

Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

General Description

The LM13600 series consists of two current controlled transconductance amplifiers each with differential inputs and a push-pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The result is a 10 dB signal-tonoise improvement referenced to 0.5 percent THD. Controlled impedance buffers which are especially designed to complement the dynamic range of the amplifiers are provided.

Features

© gm_{m} adjustable over 6 decades
■ Excellent gm_{m} linearity

四 Excellent matching between amplifiers
■ Linearizing diodes

- Controlled impedance buffers
(ax High output signal-to-noise ratio
(r Wide supply range $\pm 2 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$

Applications

■ Current-controlled amplifiers

- Current-controlled impedances
- Current-controlled filters
- Current-controlled oscillators
- Multiplexers
- Timers
\square Sample and hold circuits

Connection Diagram

Dual-In-Line and Small Outline Packages

TL/H/7980-2
Top View
Order Number LM13600M, LM13600N or LM13600AN
See NS Package Number M16A or N16A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (Note 1)

LM13600

LM13600A
Power Dissipation (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Differential Input Voltage
Diode Bias Current (ID)
Amplifier Bias Current (I $\mathrm{I}_{\mathrm{ABC}}$)
Output Short Circuit Duration
Buffer Output Current (Note 3)

$$
\begin{array}{r}
36 \mathrm{~V}_{\mathrm{DC}} \text { or } \pm 18 \mathrm{~V} \\
44 \mathrm{~V} \text { DC }+22 \mathrm{~V} \\
570 \mathrm{~mW} \\
\pm 5 \mathrm{~V} \\
2 \mathrm{~mA} \\
2 \mathrm{~mA} \\
\text { Continuous } \\
20 \mathrm{~mA}
\end{array}
$$

Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DC Input Voltage	$+\mathrm{V}_{\mathrm{S}}$ to $-\mathrm{V}_{\mathrm{S}}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Soldering Information

Dual-In-Line Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 4)

Parameter	Conditions	LM13600			LM13600A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Vos)	Over Specified Temperature Range $\mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A}$		$\begin{aligned} & 0.4 \\ & 0.3 \\ & \hline \end{aligned}$	4 4		$\begin{aligned} & 0.4 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$	mV mV mV
$V_{\text {OS }}$ Including Diodes	Diode Bias Current (ID_{D}) $=500 \mu \mathrm{~A}$		0.5	5		0.5	2	mV
Input Offset Change	$5 \mu \mathrm{~A} \leq \mathrm{I}_{\text {ABC }} \leq 500 \mu \mathrm{~A}$		0.1	3		0.1	1	mV
Input Offset Current			0.1	0.6		0.1	0.6	$\mu \mathrm{A}$
Input Bias Current	Over Specified Temperature Range		$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$		$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Forward Transconductance $\left(\mathrm{g}_{\mathrm{m}}\right)$	Over Specified Temperature Range	$\begin{array}{r} 6700 \\ 5400 \\ \hline \end{array}$	9600	13000	$\begin{aligned} & 7700 \\ & 4000 \\ & \hline \end{aligned}$	9600	12000	$\mu \mathrm{mho}$ $\mu \mathrm{mho}$
gm Tracking			0.3			0.3		dB
Peak Output Current	$\begin{aligned} & R_{\mathrm{L}}=0, I_{\mathrm{ABC}}=5 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=0, I_{\mathrm{ABC}}=500 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=0, \text { Over Specified Temp Range } \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 500 \end{gathered}$	650	$\begin{gathered} 3 \\ 350 \\ 300 \end{gathered}$	$\begin{gathered} 5 \\ 500 \end{gathered}$	$\begin{gathered} 7 \\ 650 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Peak Output Voltage Positive Negative	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +12 \\ & -12 \\ & \hline \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \end{aligned}$		$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Supply Current	$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$, Both Channels		2.6			2.6		mA
$V_{\text {OS }}$ Sensitivity Positive Negative	$\begin{aligned} & \Delta \mathbf{V}_{\mathbf{O S}} / \Delta \mathbf{V}+ \\ & \Delta \mathbf{V}_{\mathbf{O S}} / \Delta \mathbf{V}- \end{aligned}$		$\begin{array}{r} 20 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \end{aligned}$
CMRR		80	110		80	110		dB
Common Mode Range		± 12	± 13.5		± 12	± 13.5		V
Crosstalk	Referred to Input (Note 5) $20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}$		100			100		dB
Differential Input Current	$\mathrm{I}_{\mathrm{ABC}}=0$, Input $= \pm 4 \mathrm{~V}$		0.02	100		0.02	10	nA
Leakage Current	$\mathrm{I}_{\mathrm{ABC}}=0$ (Refer to Test Circuit)		0.2	100		0.2	5	nA

Electrical Characteristics (Note 4) (Continued)

Parameter	Conditions	LM13600			LM13600A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Resistance		10	26		10	26		k Ω
Open Loop Bandwidth			2			2		MHz
Slew Rate	Unity Gain Compensated		50			50		$\mathrm{V} / \mu \mathrm{s}$
Buffer Input Current	(Note 5), Except $\mathrm{I}_{\text {ABC }}=0 \mu \mathrm{~A}$		0.2	0.4		0.2	0.4	$\mu \mathrm{A}$
Peak Buffer Output Voltage	(Note 5)	10			10			V

Note 1: For selections to a supply voltage above $\pm 22 \mathrm{~V}$, contact factory.
Note 2: For operating at high temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $175^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in still air.
Note 3: Buffer output current should be limited so as to not exceed package dissipation.
Note 4: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, amplifier bias current $\left(\mathrm{l}_{\mathrm{ABC}}\right)=500 \mu \mathrm{~A}$, pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.
Note 5: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{OUT}}=5 \mathrm{k} \Omega$ connected from the buffer output to $-\mathrm{V}_{\mathrm{S}}$ and the input of the buffer is connected to the transconductance amplifier output.

Schematic Diagram

One Operational Transconductance Amplifier

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TL/H/7980-4

Unity Gain Follower

TL/H/7980-5

Differential Input Current Test Circuit

Circuit Description

The differential transistor pair Q_{4} and Q_{5} form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer function:

$$
\begin{equation*}
V_{I N}=\frac{k T}{q} \ln \frac{I_{5}}{I_{4}} \tag{1}
\end{equation*}
$$

where $\mathrm{V}_{\mathbb{N}}$ is the differential input voltage, kT / q is approximately 26 mV at $25^{\circ} \mathrm{C}$ and I_{5} and I_{4} are the collector currents of transistors Q_{5} and Q_{4} respectively. With the exception of Q_{3} and Q_{13}, all transistors and diodes are identical in size. Transistors Q_{1} and Q_{2} with Diode D_{1} form a current mirror which forces the sum of currents I_{4} and I_{5} to equal $I_{A B C}$;

$$
\begin{equation*}
I_{4}+I_{5}=I_{A B C} \tag{2}
\end{equation*}
$$

where $I_{A B C}$ is the amplifier bias current applied to the gain pin.
For small differential input voltages the ratio of I_{4} and I_{5} approaches unity and the Taylor series of the In function can be approximated as:

$$
\begin{align*}
& \frac{k T}{q} \ln \frac{I_{5}}{I_{4}} \approx \frac{k T}{q} \frac{I_{5}-I_{4}}{I_{4}} \tag{3}\\
& I_{4} \approx I_{5} \approx \frac{I_{A B C}}{2} \\
& V_{I N}\left[\frac{I_{A B C}}{2 k T}\right]=I_{5}-I_{4} \tag{5}
\end{align*}
$$

Collector currents I_{4} and I_{5} are not very useful by themselves and it is necessary to subtract one current from the
other. The remaining transistors and diodes form three current mirrors that produce an output current equal to I_{5} minus I_{4} thus:

$$
\begin{equation*}
V_{I N}\left[\frac{I_{\text {ABC }} q}{2 k T}\right]=I_{O U T} \tag{5}
\end{equation*}
$$

The term in brackets is then the transconductance of the amplifier and is proportional to $I_{A B C}$.

Linearizing Diodes

For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly nonlinear. Figure 1 demonstrates how the internal diodes can linearize the transfer function of the amplifier. For convenience assume the diodes are biased with current sources and the input signal is in the form of current I_{s}. Since the sum of I_{4} and I_{5} is $I_{A B C}$ and the difference is lout, currents I_{4} and I_{5} can be written as follows:

$$
I_{4}=\frac{I_{A B C}}{2}-\frac{I_{\mathrm{OUT}}}{2}, I_{5}=\frac{I_{\mathrm{ABC}}}{2}+\frac{\mathrm{I}_{\mathrm{OUT}}}{2}
$$

Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following is true:

$$
\begin{align*}
& \frac{k T}{q} \ln \frac{\frac{I_{D}}{2}+I_{S}}{\frac{I_{D}}{2}-I_{S}}=\frac{k T}{q} \ln \frac{\frac{I_{A B C}}{2}+\frac{l_{\text {out }}}{2}}{\frac{l_{A B C}}{2}-\frac{l_{\text {out }}}{2}} \\
& \therefore I_{\text {out }}=I_{S}\left(\frac{21_{A B C}}{I_{D}}\right) \quad \text { for }\left|I_{S}\right|<\frac{I_{D}}{2} \tag{6}
\end{align*}
$$

FIGURE 1. Linearizing Diodes

Linearizing Diodes (Continued)

Notice that in deriving Equation 6 no approximations have been made and there are no temperature-dependent terms. The limitations are that the signal current not exceed $I_{D} / 2$ and that the diodes be biased with currents. In practice, replacing the current sources with resistors will generate insignificant errors.

Controlled Impedance Buffers

The upper limit of transconductance is defined by the maximum value of $I_{A B C}(2 \mathrm{~mA})$. The lowest value of $\mathrm{I}_{\mathrm{ABC}}$ for which the amplifier will function therefore determines the overall dynamic range. At very low values of $\mathrm{I}_{\mathrm{ABC}}$, a buffer which has very low input bias current is desirable. An FET follower satisfies the low input current requirement, but is somewhat non-linear for large voltage swing. The controlled impedance buffer is a Darlington which modifies its input bias current to suit the need. For low values of $I_{A B C}$, the buffer's input current is minimal. At higher levels of $\mathrm{I}_{\mathrm{ABC}}$, transistor Q_{3} biases up Q_{12} with a current proportional to $I_{A B C}$ for fast slew rate. When $I_{A B C}$ is changed, the DC level of the Darlington output buffer will shift. In audio applications where $I_{A B C}$ is changed suddenly, this shift may produce an audible "pop". For these applications the LM13700 may produce superior results.

Applications-Voltage Controlled Amplifiers

Figure 2 shows how the linearizing diodes can be used in a voltage-controlled amplifier. To understand the input biasing, it is best to consider the $13 \mathrm{k} \Omega$ resistor as a current source and use a Thevenin equivalent circuit as shown in Figure 3. This circuit is similar to Figure 1 and operates the same. The potentiometer in Figure 2 is adjusted to minimize the effects of the control signal at the output.
For optimum signal-to-noise performance, $I_{A B C}$ should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the S / N ratio. The linearizing diodes help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. S/N may be optimized by adjusting the magnitude of the input signal via $\mathrm{R}_{\text {IN }}$ (Figure 2) until the output distortion is below some desired level. The output voltage swing can then be set at any level by selecting R_{L}.
Although the noise contribution of the linearizing diodes is negligible relative to the contribution of the amplifier's internal transistors, I_{D} should be as large as possible. This minimizes the dynamic junction resistance of the diodes $\left(r_{e}\right)$ and maximizes their linearizing action when balanced against $R_{I N}$. A value of 1 mA is recommended for I_{D} unless the specific application demands otherwise.

TL/H/7980-9
FIGURE 2. Voltage Controlled Amplifier

FIGURE 3. Equivalent VCA Input Circuit
TL/H/7980-10

Stereo Volume Control

The circuit of Figure 4 uses the excellent matching of the two LM13600 amplifiers to provide a Stereo Volume Control with a typical channel-to-channel gain tracking of 0.3 dB . Rp is provided to minimize the output offset voltage and may be replaced with two 510Ω resistors in AC-coupled applications. For the component values given, amplifier gain is derived for Figure 2 as being:

$$
\frac{V_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{IN}}}=940 \times \mathrm{I}_{\mathrm{ABC}}
$$

FIGURE 4. Stereo Volume Control

TL/H/7980-12
FIGURE 5. Amplitude Modulator

Stereo Volume Control (Continued)

The constant term in the above equation may be cancelled by feeding $I_{S} \times I_{D} R_{C} / 2\left(V^{-}+1.4 \mathrm{~V}\right)$ into I_{0}. The circuit of Figure 6 adds R_{M} to provide this current, resulting in a fourquadrant multiplier where R_{C} is trimmed such that $V_{O}=0 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{IN} 2}=0 \mathrm{~V}$. R_{M} also serves as the load resistor for I_{O}.
Noting that the gain of the LM13600 amplifier of Figure 3 may be controlled by varying the linearizing diode current l_{D} as well as by varying $\mathrm{I}_{\mathrm{ABC}}$, Figure 7 shows as AGC Amplifier using this approach. As V_{O} reaches a high enough amplitude ($3 \mathrm{~V}_{\mathrm{BE}}$) to turn on the Darlington transistors and the linearizing diodes, the increase in I_{D} reduces the amplifier gain so as to hold V_{O} at that level.

Voltage Controlled Resistors

An Operational Transconductance Amplifier (OTA) may be used to implement a Voltage Controlled Resistor as shown
in Figure 8. A signal voltage applied at R_{X} generates a V_{IN} to the LM13600 which is then multiplied by the g_{m} of the amplifier to produce an output current, thus:

$$
R_{X}=\frac{R+R_{A}}{g_{m} R_{A}}
$$

where $\mathrm{g}_{\mathrm{m}} \approx 19.2 \mathrm{I}_{\mathrm{ABC}}$ at $25^{\circ} \mathrm{C}$. Note that the attenuation of V_{O} by R and R_{A} is necessary to maintain $V_{I N}$ within the linear range of the LM13600 input.
Figure 9 shows a similar VCR where the linearizing diodes are added, essentially improving the noise performance of the resistor. A floating VCR is shown in Figure 10, where each "end" of the "resistor" may be at any voltage within the output voltage range of the LM13600.

TL/H/7980-13
FIGURE 6. Four-Quadrant Multiplier

TL/H/7980-14
FIGURE 7. AGC Amplifier

FIGURE 8. Voltage Controlled Resistor, Single-Ended

Voltage Controlled Filters

OTA's are extremely useful for implementing voltage controlled filters, with the LM13600 having the advantage that the required buffers are included on the I.C. The VC Lo-Pass Filter of Figure 11 performs as a unity-gain buffer amplifier at frequencies below cut-off, with the cut-off frequency being the point at which X_{C} / g_{m} equals the closed-loop gain of (R / R_{A}). At frequencies above cut-off the circuit provides a single RC roll-off (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation,
where g_{m} is again $19.2 \times \mathrm{I}_{\mathrm{ABC}}$ at room temperature. Figure 12 shows a VC High-Pass Filter which operates in much the same manner, providing a single RC roll-off below the defined cut-off frequency.
Additional amplifiers may be used to implement higher order filters as demonstrated by the two-pole Butterworth Lo-Pass Filter of Figure 13 and the state variable filter of Figure 14. Due to the excellent g_{m} tracking of the two amplifiers and the varied bias of the buffer Darlingtons, these filters perform well over several decades of frequency.

FIGURE 9. Voltage Controlled Resistor with Linearizing Diodes

TL/H/7980-17
FIGURE 10. Floating Voltage Controlled Resistor

TL/H/7980-18
FIGURE 11. Voltage Controlled Low-Pass Filter

Voltage Controlled Filters (Continued)

FIGURE 12. Voltage Controlled Hi-Pass Filter

TL/H/7980-20
FIGURE 13. Voltage Controlled 2-Pole Butterworth Lo-Pass Filter

TL/H/7980-21
FIGURE 14. Voltage Controlled State Variable Filter

Voltage Controlled Oscillators

The classic Triangular/Square Wave VCO of Figure 15 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13600. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as I_{C} is varied from 1 mA to 10 nA . The output amplitudes are set by $I_{A} \times R_{A}$. Note that the peak differential input voltage must be less than 5 V to prevent zenering the inputs.
A few modifications to this circuit produce the ramp/pulse VCO of Figure 16. When $\mathrm{V}_{\mathrm{O} 2}$ is high, I_{F} is added to I_{C} to
increase amplifier A1's bias current and thus to increase the charging rate of capacitor C . When $\mathrm{V}_{\mathrm{O} 2}$ is low, I_{F} goes to zero and the capacitor discharge current is set by l .
The VC Lo-Pass Filter of Figure 11 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13600 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is 360° or 180° for the inverter and 60° per filter stage. This VCO operates from 5 Hz to 50 kHz with less than 1\% THD.

TL/H/7980-22
FIGURE 15. Triangular/Square-Wave VCO

Voltage Controlled Oscillators (Continued)

TL/H/7980-24
FIGURE 17. Sinusoidal VCO

FIGURE 18. Single Amplifier VCO
Figure 18 shows how to build a VCO using one amplifier when the other amplifier is needed for another function.

Additional Applications

Figure 19 presents an interesting one-shot which draws no power supply current until it is triggered. A positive-going trigger pulse of at least 2 V amplitude turns on the amplifier through R_{B} and pulls the non-inverting input high. The amplifier regenerates and latches its output high until capacitor C charges to the voltage level on the non-inverting input. The output then switches low, turning off the amplifier and discharging the capacitor. The capacitor discharge rate is increased by shorting the diode bias pin to the inverting input so than an additional discharge current flows through D_{1} when the amplifier output switches low. A special feature of this timer is that the other amplifier, when biased from V_{O}, can perform another function and draw zero stand-by power as well.

The operation of the multiplexer of Figure 20 is very straightforward. When $A 1$ is turned on it holds V_{O} equal to $\mathrm{V}_{\mathrm{IN} 1}$ and when A 2 is supplied with bias current then it controls $\mathrm{V}_{\mathrm{O}} . \mathrm{C}_{\mathrm{C}}$ and R_{C} serve to stabilize the unity-gain configuration of amplifiers A1 and A2. The maximum clock rate is limited to about 200 kHz by the LM13600 slew rate into 150 pF when the $\left(\mathrm{V}_{\mathrm{IN} 1}-\mathrm{V}_{\mathrm{IN} 2}\right)$ differential is at its maximum allowable value of 5 V .
The Phase-Locked Loop of Figure 21 uses the four-quadrant multiplier of Figure 6 and the VCO of Figure 18 to produce a PLL with a $\pm 5 \%$ hold-in range and an input sensitivity of about 300 mV .

TL/H/7980-26
FIGURE 19. Zero Stand-By Power Timer

Additional Applications (Continued)

TL/H/7980-27
FIGURE 20. Multiplexer

FIGURE 21. Phase Lock Loop

The Schmitt Trigger of Figure 22 uses the amplifier output current into R to set the hysteresis of the comparator; thus $\mathrm{V}_{\mathrm{H}}=2 \times \mathrm{R} \times \mathrm{I}_{\mathrm{B}}$. Varying I_{B} will produce a Schmitt Trigger with variable hysteresis.
Figure 23 shows a Tachometer or Frequency-to-Voltage converter. Whenever A1 is toggled by a positive-going input, an amount of charge equal to $\left(V_{H}-V_{L}\right) C_{t}$ is sourced into C_{f} and R_{t}. This once-per-cycle charge is then balanced by the current of V_{O} / R_{t}. The maximum $f_{I N}$ is limited by the amount of time required to charge C_{t} from V_{L} to V_{H} with a current of I_{B}, where V_{L} and V_{H} represent the maximum low and maxi-
mum high output voltage swing of the LM13600. D1 is added to provide a discharge path for C_{t} when $A 1$ switches low. The Peak Detector of Figure 24 uses A2 to turn on A1 whenever V_{IN} becomes more positive than V_{O}. A1 then charges storage capacitor C to hold V_{O} equal to $\mathrm{V}_{\text {IN }} \mathrm{PK}$. One precaution to observe when using this circuit: the Darlington transistor used must be on the same side of the package as A2 since the A1 Darlington will be turned on and off with A1. Pulling the output of A2 low through D1 serves to turn off $A 1$ so that V_{O} remains constant.

Additional Applications (Continued)

TL/H/7980-29
FIGURE 22. Schmitt Trigger

FIGURE 23. Tachometer

FIGURE 24. Peak Detector and Hold Circuit

Additional Applications (Continued)

The Sample-Hold circuit of Figure 25 also requires that the Darlington buffer used be from the other (A2) half of the package and that the corresponding amplifier be biased on continuously. The Ramp-and-Hold of Figure 26 sources I_{B} into capacitor C whenever the input to A 1 is brought high, giving a ramp-rate of about $1 \mathrm{~V} / \mathrm{ms}$ for the component values shown.
The true-RMS converter of Figure 27 is essentially an automatic gain control amplifier which adjusts its gain such that the AC power at the output of amplifier A1 is constant. The output power of amplifier A 1 is monitored by squaring amplifier A2 and the average compared to a reference voltage with amplifier A3. The output of A3 provides bias current to the diodes of A1 to attenuate the input signal. Because the output power of A1 is held constant, the RMS value is constant and the attentuation is directly proportional to the RMS value of the input voltage. The attenuation is also proportional to the diode bias current. Amplifier A4 adjusts the ratio of currents through the diodes to be equal and therefore the voltage at the output of A4 is proportional to the RMS value of the input voltage. The calibration potentiometer is set such that V_{O} reads directly in RMS volts.

FIGURE 25. Sample-Hold Circuit

FIGURE 26. Ramp and Hold

FIGURE 27. True RMS Converter

Additional Applications (Continued)

The circuit of Figure 28 is a voltage reference of variable temperature coefficient. The $100 \mathrm{k} \Omega$ potentiometer adjusts the output voltage which has a positive TC above 1.2 V , zero TC at about 1.2 V and negative TC below 1.2 V . This is accomplished by balancing the TC of the A2 transfer function against the complementary TC of D1.
The \log amplifier of Figure 29 responds to the ratio of currents through buffer transistors Q3 and Q4. Zero temperature dependence for $\mathrm{V}_{\text {OUT }}$ is ensured because the TC of the A2 transfer function is equal and opposite to the TC of the logging transistors Q3 and Q4.
The wide dynamic range of the LM13600 allows easy control of the output pulse width in the Pulse Width Modulator of Figure 30.
For generating $\mathrm{I}_{\mathrm{ABC}}$ over a range of 4 to 6 decades of current, the system of Figure 31 provides a logarithmic current out for a linear voltage in.
Since the closed-loop configuration ensures that the input to A 2 is held equal to 0 V , the output current of A 1 is equal to $I_{3}=-V_{C} / R_{C}$.
The differential voltage between Q1 and Q2 is attenuated by the R1, R2 network so that A1 may be assumed to be
operating within its linear range. From equation (5), the input voltage to A1 is:

$$
\mathrm{V}_{\mathrm{IN}} 1=\frac{-2 \mathrm{kTl}_{3}}{\mathrm{ql}_{2}}=\frac{2 \mathrm{kTV}_{\mathrm{C}}}{\mathrm{ql}_{2} \mathrm{R}_{\mathrm{C}}}
$$

The voltage on the base of Q1 is then

$$
V_{B} 1=\frac{\left(R_{1}+R_{2}\right) V_{I N} 1}{R_{1}}
$$

The ratio of the Q1 and Q2 collector currents is defined by:

$$
V_{B} 1=\frac{k T}{q} \ln \frac{I_{C 2}}{I_{C 1}} \approx \frac{k T}{q} \ln \frac{I_{A B C}}{I_{1}}
$$

Combining and solving for $\mathrm{l}_{\mathrm{ABC}}$ yields:

$$
I_{A B C}=I_{1} \exp \left[\frac{2\left(R_{1}+R_{2}\right) V_{C}}{R_{1} I_{2} R_{C}}\right]
$$

This logarithmic current can be used to bias the circuit of Figure 4 provide a temperature independent stereo attenuation characteristic.

FIGURE 28. Delta VBE Reference

Additional Applications (Continued)

TL/H/7980-37
FIGURE 30. Pulse Width Modulator

TL/H/7980-38
FIGURE 31. Logarithmic Current Source

LM13700/LM13700A
 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

General Description

The LM13700 series consists of two current controlled transconductance amplifiers, each with differential inputs and a push-pull output. The two amplifiers share common supplies but otherwise operate independently. Linearizing diodes are provided at the inputs to reduce distortion and allow higher input levels. The result is a 10 dB signal-tonoise improvement referenced to 0.5 percent THD. High impedance buffers are provided which are especially designed to complement the dynamic range of the amplifiers. The output buffers of the LM13700 differ from those of the LM13600 in that their input bias currents (and hence their output $D C$ levels) are independent of $\mathrm{I}_{\mathrm{ABC}}$. This may result in performance superior to that of the LM13600 in audio applications.

Features

- g_{m} adjustable over 6 decades
- Excellent gm_{m} linearity

■ Excellent matching between amplifiers

- Linearizing diodes
- High impedance buffers
- High output signal-to-noise ratio
- Wide supply range $\pm 2 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$

Applications

- Current-controlled amplifiers
- Current-controlled impedances
(1) Current-controlled filters
- Current-controlled oscillators
- Multiplexers
- Timers
- Sample-and-hold circuits

Connection Diagram

Dual In-Line and Small Outline Packages

TL/H/7981-2
Top View
Order Number LM13700M, LM13700N or LM13700AN
See NS Package Number M16A or N16A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage (Note 1)

LM13700
 LM13700A

Power Dissipation (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
LM13700N, LM13700AN
$36 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 18 \mathrm{~V}$
$44 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 22 \mathrm{~V}$

Diode Bias Current (ID)
Amplifier Bias Current ($\mathrm{I}_{\mathrm{ABC}}$)
Output Short Circuit Duration
Buffer Output Current (Note 3)

570 mW
$\pm 5 \mathrm{~V}$
2 mA
2 mA
Continuous
20 mA

Operating Temperature Range

LM13700N, LM13700AN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$+\mathrm{V}_{\mathrm{S}}$ to $-\mathrm{V}_{\mathrm{S}}$	
DC Input Voltage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	
Soldering Information	
Dual-In-Line Package	$260^{\circ} \mathrm{C}$
Soldering (10 sec.)	$215^{\circ} \mathrm{C}$
Small Outline Package	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 4)

Parameter	Conditions	LM13700			LM13700A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Vos)	Over Specified Temperature Range $\mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A}$		$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	4 4		0.4 0.3	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$	mV
$\mathrm{V}_{\text {OS }}$ Including Diodes	Diode Bias Current ($I_{\text {D }}$) $=500 \mu \mathrm{~A}$		0.5	5		0.5	2	mV
Input Offset Change	$5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A}$		0.1	3		0.1	1	mV
Input Offset Current			0.1	0.6		0.1	0.6	$\mu \mathrm{A}$
Input Bias Current	Over Specified Temperature Range		0.4	5		0.4	5	$\mu \mathrm{A}$
			1	8		1	7	
Forward Transconductance (g_{m})		6700	9600	13000	7700	9600	12000	$\mu \mathrm{mho}$
	Over Specified Temperature Range	5400			4000			
gm_{m} Tracking			0.3			0.3		dB
Peak Output Current	$\mathrm{R}_{\mathrm{L}}=0, I_{\text {ABC }}=5 \mu \mathrm{~A}$		5		3	5	7	$\mu \mathrm{A}$
	$\mathrm{R}_{\mathrm{L}}=0, \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A}$	350	500	650	350	500	650	
	$\mathrm{R}_{\mathrm{L}}=0$, Over Specified Temp Range	300			300			
Peak Output Voltage Positive Negative	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=\infty, 5 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{ABC}} \leq 500 \mu \mathrm{~A} \end{aligned}$	$\begin{array}{r} +12 \\ -12 \\ \hline \end{array}$	$\begin{array}{r} +14.2 \\ -14.4 \\ \hline \end{array}$		$\begin{aligned} & +12 \\ & -12 \end{aligned}$	$\begin{aligned} & +14.2 \\ & -14.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current	$\mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A}$, Both Channels		2.6			2.6		mA
Vos Sensitivity Positive Negative	$\begin{aligned} & \Delta \mathbf{V}_{\mathrm{OS}} / \Delta \mathbf{V}^{+} \\ & \Delta \mathbf{V}_{\mathbf{O S}} / \Delta \mathbf{V}^{-} \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} / \mathrm{V} \\ & \mu \mathrm{~V} / \mathrm{V} \\ & \hline \end{aligned}$
CMRR		80	110		80	110		dB
Common Mode Range		± 12	± 13.5		± 12	± 13.5		V
Crosstalk	Referred to Input (Note 5) $20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}$		100			100		dB
Differential Input Current	$\mathrm{I}_{\text {ABC }}=0$, input $= \pm 4 \mathrm{~V}$		0.02	100		0.02	10	nA
Leakage Current	$\mathrm{I}_{\mathrm{ABC}}=0$ (Refer to Test Circuit)		0.2	100		0.2	5	nA
Input Resistance		10	26		10	26		$\mathrm{k} \Omega$

Electrical Characteristics (Note 4) (Continued)

Parameter	Conditions	LM13700			LM13700A			Units
		Min	Typ	Max	Min	Typ	Max	
Open Loop Bandwidth			2			2		MHz
Slew Rate	Unity Gain Compensated		50			50		$\mathrm{V} / \mu \mathrm{s}$
Buffer Input Current	(Note 5)		0.5	2		0.5	2	$\mu \mathrm{A}$
Peak Buffer Output Voltage	(Note 5)	10			10			V

Note 1: For selections to a supply voltage above $\pm 22 \mathrm{~V}$, contact factory.
Note 2: For operation at ambient temperatures above $25^{\circ} \mathrm{C}$, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance, junction to ambient, as follows: LM13700N, $90^{\circ} \mathrm{C} / \mathrm{W}$; LM13700M, $110^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Buffer output current should be limited so as to not exceed package dissipation.
Note 4: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, amplifier bias current $\left(l_{\mathrm{ABC}}\right)=500 \mu \mathrm{~A}$, pins 2 and 15 open unless otherwise specified. The inputs to the buffers are grounded and outputs are open.
Note 5: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A}$, ROUT $=5 \mathrm{k} \Omega$ connected from the buffer output to $-V_{S}$ and the input of the buffer is connected to the transconductance amplifier output.

Schematic Diagram

One Operational Transconductance Amplifier

TL/H/7981-1

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TL/H/7981-4

Unity Gain Follower

TL/H/7981-5

Leakage Current Test Circuit

Differential Input Current Test Circuit

TL/H/7981-7

Circuit Description

The differential transistor pair Q_{4} and Q_{5} form a transconductance stage in that the ratio of their collector currents is defined by the differential input voltage according to the transfer function:

$$
\begin{equation*}
V_{I N}=\frac{k T}{q} \ln \frac{l_{5}}{l_{4}} \tag{1}
\end{equation*}
$$

where $\mathrm{V}_{\mathbb{N}}$ is the differential input voltage, kT / q is approximately 26 mV at $25^{\circ} \mathrm{C}$ and I_{5} and I_{4} are the collector currents of transistors Q_{5} and Q_{4} respectively. With the exception of Q_{3} and Q_{13}, all transistors and diodes are identical in size. Transistors Q_{1} and Q_{2} with Diode D_{1} form a current mirror which forces the sum of currents I_{4} and I_{5} to equal ${ }^{\prime}{ }_{A B C}$;

$$
\begin{equation*}
I_{4}+I_{5}=I_{A B C} \tag{2}
\end{equation*}
$$

where $I_{A B C}$ is the amplifier bias current applied to the gain pin.
For small differential input voltages the ratio of I_{4} and I_{5} approaches unity and the Taylor series of the In function can be approximated as:

$$
\begin{gather*}
\frac{\mathrm{kT}}{\mathrm{q}} \ln \frac{\mathrm{I}_{5}}{\mathrm{I}_{4}} \approx \frac{\mathrm{kT}}{\mathrm{q}} \frac{\mathrm{I}_{5}-\mathrm{I}_{4}}{\mathrm{I}_{4}} \tag{3}\\
\mathrm{I}_{4} \approx \mathrm{I}_{5} \approx \frac{\mathrm{I}_{\mathrm{ABC}}}{2} \\
\mathrm{~V}_{\mathrm{IN}}\left[\frac{\mathrm{I}_{\mathrm{ABC}}}{2 \mathrm{kT}}\right]=\mathrm{I}_{5}-\mathrm{I}_{4} \tag{4}
\end{gather*}
$$

Collector currents I_{4} and I_{5} are not very useful by themselves and it is necessary to subtract one current from the other. The remaining transistors and diodes form three current mirrors that produce an output current equal to I_{5} minus I_{4} thus:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}}\left[\frac{\mathrm{I}_{\mathrm{ABC}}}{2 \mathrm{kT}}\right]=\mathrm{I}_{\mathrm{OUT}} \tag{5}
\end{equation*}
$$

The term in brackets is then the transconductance of the amplifier and is proportional to $I_{A B C}$.

Linearizing Diodes

For differential voltages greater than a few millivolts, Equation 3 becomes less valid and the transconductance becomes increasingly nonlinear. Figure 1 demonstrates how the internal diodes can linearize the transfer function of the amplifier. For convenience assume the diodes are biased with current sources and the input signal is in the form of current I_{S}. Since the sum of I_{4} and I_{5} is $I_{A B C}$ and the difference is lout, currents I_{4} and I_{5} can be written as follows:

$$
I_{4}=\frac{I_{\mathrm{ABC}}}{2}-\frac{\mathrm{IOUT}_{\mathrm{OUT}}}{2}, I_{5}=\frac{I_{\mathrm{ABC}}}{2}+\frac{I_{\mathrm{OUT}}}{2}
$$

Since the diodes and the input transistors have identical geometries and are subject to similar voltages and temperatures, the following is true:

$$
\begin{align*}
& \frac{k T}{q} \ln \frac{\frac{I_{D}}{2}+I_{S}}{\frac{I_{D}}{2}-I_{S}}=\frac{k T}{q} \ln \frac{\frac{I_{A B C}}{2}+\frac{I_{O U T}}{2}}{\frac{I_{A B C}}{2}-\frac{I_{O U T}}{2}} \\
& \therefore I_{O U T}=I_{S}\left(\frac{2 I_{A B C}}{I_{D}}\right) \text { for }\left|I_{S}\right|<\frac{I_{D}}{2} \tag{6}
\end{align*}
$$

Notice that in deriving Equation 6 no approximations have been made and there are no temperature-dependent terms. The limitations are that the signal current not exceed $\mathrm{I}_{\mathrm{D}} / 2$ and that the diodes be biased with currents. In practice, replacing the current sources with resistors will generate insignificant errors.

Applications: Voltage Controlled Amplifiers

Figure 2 shows how the linearizing diodes can be used in a voltage-controlled amplifier. To understand the input biasing, it is best to consider the $13 \mathrm{k} \Omega$ resistor as a current source and use a Thevenin equivalent circuit as shown in Figure 3. This circuit is similar to Figure 1 and operates the same. The potentiometer in Figure 2 is adjusted to minimize the effects of the control signal at the output.

TL/H/7981-8
FIGURE 1. Linearizing Diodes

Applications:
 Voltage Controlled Amplifiers (Continued)

For optimum signal-to-noise performance, l_{ABC} should be as large as possible as shown by the Output Voltage vs. Amplifier Bias Current graph. Larger amplitudes of input signal also improve the S / N ratio. The linearizing diodes help here by allowing larger input signals for the same output distortion as shown by the Distortion vs. Differential Input Voltage graph. S/N may be optimized by adjusting the magnitude of the input signal via R_{IN} (Figure 2) until the output
distortion is below some desired level. The output voltage swing can then be set at any level by selecting R_{L}.
Although the noise contribution of the linearizing diodes is negligible relative to the contribution of the amplifier's internal transistors, I_{D} should be as large as possible. This minimizes the dynamic junction resistance of the diodes (r_{a}) and maximizes their linearizing action when balanced against $R_{I N}$. A value of 1 mA is recommended for I_{D} unless the specific application demands otherwise.

FIGURE 2. Voltage Controlled Amplifier

FIGURE 3. Equivalent VCA Input Circuit

Stereo Volume Control

The circuit of Figure 4 uses the excellent matching of the two LM13700 amplifiers to provide a Stereo Volume Control with a typical channel-to-channel gain tracking of 0.3 dB . RP is provided to minimize the output offset voltage and may be replaced with two 510Ω resistors in AC-coupled applications. For the component values given, amplifier gain is derived for Figure 2 as being:

$$
\frac{V_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{IN}}}=940 \times \mathrm{I}_{\mathrm{ABC}}
$$

If V_{C} is derived from a second signal source then the circuit becomes an amplitude modulator or two-quadrant multiplier as shown in Figure 5, where:

$$
\mathrm{I}_{\mathrm{O}}=\frac{-2 \mathrm{I}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{D}}}\left(\mathrm{I}_{\mathrm{ABC}}\right)=\frac{-2 \mathrm{I}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{D}}} \frac{\mathrm{~V}_{\mathrm{IN} 2}}{\mathrm{R}_{\mathrm{C}}}-\frac{2 \mathrm{I}_{\mathrm{S}}}{I_{\mathrm{D}}} \frac{\left(\mathrm{~V}^{-}+1.4 \mathrm{~V}\right)}{R_{\mathrm{C}}}
$$

The constant term in the above equation may be cancelled by feeding $\mathrm{I}_{\mathrm{S}} \times \mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{C}} / 2\left(\mathrm{~V}^{-}+1.4 \mathrm{~V}\right)$ into I_{O}. The circuit of Figure 6 adds R_{M} to provide this current, resulting in a fourquadrant multiplier where R_{C} is trimmed such that $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{IN} 2}=0 \mathrm{~V}$. R_{M} also serves as the load resistor for l_{O}.

TL/H/7981-11
FIGURE 4. Stereo Volume Control

TL/H/7981-12
FIGURE 5. Amplitude Modulator

Stereo Volume Control (Continued)

TL/H/7981-13
FIGURE 6. Four-Quadrant Multiplier

Noting that the gain of the LM13700 amplifier of Figure 3 may be controlled by varying the linearizing diode current I_{D} as well as by varying $\mathrm{I}_{\mathrm{ABC}}$, Figure 7 shows an AGC Amplifier using this approach. As V_{O} reaches a high enough amplitude $\left(3 \mathrm{~V}_{\mathrm{BE}}\right)$ to turn on the Darlington transistors and the linearizing diodes, the increase in I_{D} reduces the amplifier gain so as to hold V_{O} at that level.

Voltage Controlled Resistors

An Operational Transconductance Amplifier (OTA) may be used to implement a Voltage Controlled Resistor as shown in Figure 8. A signal voltage applied at R_{X} generates a V_{IN}
to the LM13700 which is then multiplied by the g_{m} of the amplifier to produce an output current, thus:

$$
R_{X}=\frac{R+R_{A}}{g_{m} R_{A}}
$$

where $\mathrm{g}_{\mathrm{m}} \approx 19.2 \mathrm{l}_{\mathrm{ABC}}$ at $25^{\circ} \mathrm{C}$. Note that the attenuation of V_{O} by R and R_{A} is necessary to maintain $V_{I N}$ within the linear range of the LM13700 input.
Figure 9 shows a similar VCR where the linearizing diodes are added, essentially improving the noise performance of the resistor. A floating VCR is shown in Figure 10, where each "end" of the "resistor" may be at any voltage within the output voltage range of the LM13700.

FIGURE 7. AGC Amplifier

Voltage Controlled Resistors (Continued)

TL/H/7981-15
FIGURE 8. Voltage Controlled Resistor, Single-Ended

TL/H/7981-16
FIGURE 9. Voltage Controlled Resistor with Linearizing Diodes

Voltage Controlled Filters

OTA's are extremely useful for implementing voltage controlled filters, with the LM13700 having the advantage that the required buffers are included on the I.C. The VC Lo-Pass Filter of Figure 11 performs as a unity-gain buffer amplifier at frequencies below cut-off, with the cut-off frequency being the point at which X_{C} / g_{m} equals the closed-loop gain of (R / R_{A}). At frequencies above cut-off the circuit provides a single RC roll-off (6 dB per octave) of the input signal amplitude with a -3 dB point defined by the given equation, where gm_{m} is again $19.2 \times \mathrm{I}_{\mathrm{ABC}}$ at room temperature. Figure

12 shows a VC High-Pass Filter which operates in much the same manner, providing a single RC roll-off below the defined cut-off frequency.
Additional amplifiers may be used to implement higher order filters as demonstrated by the two-pole Butterworth Lo-Pass Filter of Figure 13 and the state variable filter of Figure 14. Due to the excellent g_{m} tracking of the two amplifiers, these filters perform well over several decades of frequency.

TL/H/7981-17
FIGURE 10. Floating Voltage Controlled Resistor

FIGURE 11. Voltage Controlled Low-Pass Filter

Voltage Controlled Filters (Continued)

Voltage Controlled Oscillators

The classic Triangular/Square Wave VCO of Figure 15 is one of a variety of Voltage Controlled Oscillators which may be built utilizing the LM13700. With the component values shown, this oscillator provides signals from 200 kHz to below 2 Hz as I_{C} is varied from 1 mA to 10 nA . The output amplitudes are set by $\mathrm{I}_{\mathrm{A}} \times \mathrm{R}_{\mathrm{A}}$. Note that the peak differential input voltage must be less than 5 V to prevent zenering the inputs.
A few modifications to this circuit produce the ramp/pulse VCO of Figure 16. When $\mathrm{V}_{\mathrm{O} 2}$ is high, I_{F} is added to I_{C} to
increase amplifier A1's bias current and thus to increase the charging rate of capacitor C. When $V_{O 2}$ is low, I_{F} goes to zero and the capacitor discharge current is set by I_{C}.
The VC Lo-Pass Filter of Figure 11 may be used to produce a high-quality sinusoidal VCO. The circuit of Figure 16 employs two LM13700 packages, with three of the amplifiers configured as lo-pass filters and the fourth as a limiter/inverter. The circuit oscillates at the frequency at which the loop phase-shift is 360° or 180° for the inverter and 60° per filter stage. This VCO operates from 5 Hz to 50 kHz with less than 1% THD.

FIGURE 15. Triangular/Square-Wave VCO
TL/H/7981-22

FIGURE 16. Ramp/Pulse VCO

VoItage Controlled Oscillators (Continued)

TL/H/7981-24

FIGURE 17. Sinusoidal VCO

FIGURE 18. Single Amplifier VCO
Figure 18 shows how to build a VCO using one amplifier when the other amplifier is needed for another function.

Additional Applications

Figure 19 presents an interesting one-shot which draws no power supply current until it is triggered. A positive-going trigger pulse of at least 2 V amplitude turns on the amplifier through R_{B} and pulls the non-inverting input high. The amplifier regenerates and latches its output high until capacitor C charges to the voltage level on the non-inverting input. The output then switches low, turning off the amplifier and discharging the capacitor. The capacitor discharge rate is speeded up by shorting the diode bias pin to the inverting input so that an additional discharge current flows through D_{1} when the amplifier output switches low. A special feature of this timer is that the other amplifier, when biased from V_{O}, can perform another function and draw zero stand-by power as well.

Additional Applications (Continued)

The operation of the multiplexer of Figure 20 is very straightforward. When $A 1$ is turned on it holds V_{O} equal to $V_{I N 1}$ and when $A 2$ is supplied with bias current then it controls $\mathrm{V}_{\mathrm{O}} . \mathrm{C}_{\mathrm{C}}$ and R_{C} serve to stabilize the unity-gain configuration of amplifiers A1 and A2. The maximum clock rate is limited to about 200 kHz by the LM13700 slew rate into 150 pF when the $\left(\mathrm{V}_{\mathrm{IN} 1}-\mathrm{V}_{\mathrm{IN} 2}\right)$ differential is at its maximum allowable value of 5 V .

TL/H/7981-27
FIGURE 20. Multiplexer

TL/H/7981-28
FIGURE 21. Phase Lock Loop

Additional Applications (Continued)

The Schmitt Trigger of Figure 22 uses the amplifier output current into R to set the hysteresis of the comparator; thus $\mathrm{V}_{\mathrm{H}}=2 \times \mathrm{R} \times \mathrm{I}_{\mathrm{B}}$. Varying I_{B} will produce a Schmitt Trigger with variable hysteresis.

Figure 23 shows a Tachometer or Frequency-to-Voltage converter. Whenever A1 is toggled by a positive-going input, an amount of charge equal to $\left(V_{H}-V_{L}\right) C_{t}$ is sourced into C_{f} and R_{t}. This once per cycle charge is then balanced by the current of $\mathrm{V}_{\mathrm{O}} / \mathrm{R}_{\mathrm{t}}$. The maximum F_{IN} is limited by the amount of time required to charge C_{t} from V_{L} to V_{H} with a current of I_{B}, where V_{L} and V_{H} represent the maximum low and maximum high output voltage swing of the LM13700. D1 is added to provide a discharge path for C_{t} when A 1 switches low.
The Peak Detector of Figure 24 uses A2 to turn on A1 whenever V_{IN} becomes more positive than V_{O}. A1 then charges storage capacitor C to hold V_{O} equal to $V_{I N} P K$. Pulling the output of A2 low through D1 serves to turn off A1 so that V_{O} remains constant.

FIGURE 22. Schmitt Trigger

TL/H/7981-30
FIGURE 23. Tachometer

TL/H/7981-31
FIGURE 24. Peak Detector and Hold Circuit

Additional Applications (Continued)

The Ramp-and-Hold of Figure 26 sources I_{B} into capacitor C whenever the input to A 1 is brought high, giving a ramprate of about $1 \mathrm{~V} / \mathrm{ms}$ for the component values shown.
The true-RMS converter of Figure 27 is essentially an automatic gain control amplifier which adjusts its gain such that the AC power at the output of amplifier A1 is constant. The output power of amplifier A 1 is monitored by squaring amplifier A2 and the average compared to a reference voltage with amplifier A3. The output of A3 provides bias current to the diodes of A1 to attenuate the input signal. Because the output power of A1 is held constant, the RMS value is constant and the attenuation is directly proportional to the RMS value of the input voltage. The attenuation is also proportional to the diode bias current. Amplifier A4 adjusts the ratio of currents through the diodes to be equal and therefore the voltage at the output of A4 is proportional to the RMS value of the input voltage. The calibration potentiometer is set such that V_{O} reads directly in RMS volts.

FIGURE 25. Sample-Hold Circuit

FIGURE 26. Ramp and Hold

Additional Applications (Continued)

TL/H/7981-34
FIGURE 27. True RMS Converter

The circuit of Figure 28 is a voltage reference of variable Temperature Coefficient. The $100 \mathrm{k} \Omega$ potentiometer adjusts the output voltage which has a positive TC above 1.2 V , zero TC at about 1.2 V , and negative TC below 1.2 V . This is accomplished by balancing the TC of the A2 transfer function against the complementary TC of D1.
The wide dynamic range of the LM13700 allows easy control of the output pulse width in the Pulse Width Modulator of Figure 29.
For generating $\mathrm{I}_{\mathrm{ABC}}$ over a range of 4 to 6 decades of current, the system of Figure 30 provides a logarithmic current out for a linear voltage in.
Since the closed-loop configuration ensures that the input to A 2 is held equal to 0 V , the output current of A 1 is equal to $l_{3}=-V_{C} / R_{C}$.
The differential voltage between Q1 and Q2 is attenuated by the R1,R2 network so that A1 may be assumed to be
operating within its linear range. From equation (5), the input voltage to A1 is:

$$
\mathrm{V}_{\mathrm{IN} 1}=\frac{-2 \mathrm{kTl}_{3}}{\mathrm{ql}_{2}}=\frac{-2 \mathrm{kTV}_{\mathrm{C}}}{\mathrm{ql}_{2} \mathrm{R}_{\mathrm{C}}}
$$

The voltage on the base of Q1 is then

$$
V_{B} 1=\frac{\left(R_{1}+R_{2}\right) V_{I N} 1}{R_{1}}
$$

The ratio of the Q1 and Q2 collector currents is defined by:

$$
V_{B} 1=\frac{k T}{q} \ln \frac{\mathrm{I}_{\mathrm{C} 2}}{\mathrm{I}_{\mathrm{C}}} \approx \frac{\mathrm{kT}}{\mathrm{q}} \ln \frac{\mathrm{I}_{\mathrm{ABC}}}{\mathrm{I}_{1}}
$$

Combining and solving for $\mathrm{I}_{\mathrm{ABC}}$ yields:

$$
I_{A B C}=I_{1} \exp \frac{2\left(R_{1}+R_{2}\right) V_{C}}{R_{1} I_{2} R_{C}}
$$

This logarithmic current can be used to bias the circuit of Figure 4 to provide temperature independent stereo attenuation characteristic.

Additional Applications (Continued)

TL/H/7981-35
FIGURE 28. Delta VBE Reference

TL/H/7981-36
FIGURE 29. Puise Width Modulator

Additional Applications (Continued)

FIGURE 30. Logarithmic Current Source

National

LMC660AM／LMC660AI／LMC660C CMOS Quad Operational Amplifier

General Description

The LMC660 CMOS Quad operational amplifier is ideal for operation from a single supply．It is fully specified for opera－ tion from +5 V to +15 V and features rail－to－rail output swing in addition to an input common－mode range that in－ cludes ground．Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design．Input $\mathrm{V}_{\text {OS，}}$ ，drift，and broadband noise as well as voltage gain into realistic loads（ $2 \mathrm{k} \Omega$ and 600Ω ）are all equal to or better than widely accepted bipolar equivalents． This chip is built with National＇s advanced Double－Poly Sili－ con－Gate CMOS process．
See the LMC662 datasheet for a dual CMOS operational amplifier with these same features．

Features

－Rail－to－rail output swing
－Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
－High voltage gain
126 dB
［ Low input offset voltage
m Low offset voltage drift
－Ultra low input bias current $1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
－Input common－mode includes GND
■ Operation guaranteed from +5 V to +15 V
－ISS $=375 \mu \mathrm{~A}$／amplifier；independent of V^{+}
－Low distortion
0.01% at 10 kHz
－Slew rate
－Insensitive to latch－up
－Symmetrical gain when sourcing and sinking current

Applications

－High－impedance buffer
（ Precision current－to－voltage converter
■ Long－term integrator
（⿴囗⿰丨丨⿹勹巳 High－impedance preamplifier
active filter
a Sample－and－Hold circuit
© Peak detector

Connection Diagram

TL／H／8767－1

Ordering Information

Package	Temperature Range			NSC
	Industrial	Commercial	Drawing	
14－Pin Cavity DIP	LMC660AMD			D14E
14－Pin Small Outline		LMC660AIM	LMC660CM	M14A
14－Pin Molded DIP		LMC660AIN	LMC660CN	N14A

[^19]Junction Temperature (Note 2)
$150^{\circ} \mathrm{C}$
ESD tolerance (Note 10)

Operating Conditions

Temperature Range

LMC660AM	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
LMC660AI	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
LMC660C	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}$
Supply Voltage Range	4.75 V to 15.5 V

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LMC660AM		LMC660AI		LMC660C		Units
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	
Input Offset Voltage		1	3		3	3.3	6	6.3	mV max
			3.5						
Input Offset Voltage Average Drift		1.3							$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	(Note 9)	0.04	20		20	4		2	pA max
			100						
Input Offset Current	(Note 9)	0.01	20		20	2		1	pA max
			100						
Input Resistance		>1							Terra Ω
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	70		70	68	63	62	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			68						
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	70		70	68	63	62	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
			68						
Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	84		84	83	74	73	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			82						
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	-0.1		-0.1	0	-0.1	0	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0						
		$\mathrm{v}^{+}-1.9$	$\mathrm{v}^{+}-2.3$		$\mathrm{v}^{+}-2.3$	$\mathbf{v}^{+}-2.5$	$\mathrm{V}^{+}-2.3$	$v^{+}-2.4$	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			$\mathbf{v}^{+}-2.6$						
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { (Note 6) }$ Sourcing								
		2000	400		400	440	200	300	V / mV min
			300						
	Sinking	500	180		180	120	90	80	V / mV min
			70						
	$R_{L}=600 \Omega(\text { Note } 6)$ Sourcing								
		1000	200		200	220	100	150	$\underset{\mathrm{min}}{\mathrm{~V} / \mathrm{mV}}$
			150						
	Sinking	250	100		100	60	50	40	V / mV min
			35						

DC Electrical Characteristics (Continued)
Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LMC660AM		LMC660AI		LMC660C		Units
			Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	
Output Swing	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.87	4.82		4.82	4.79	4.78	4.76	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			4.77						
		0.10	0.15		0.15	0.17	0.19	0.21	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.19						
	$\begin{aligned} & V+=5 V \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	4.61	4.41		4.41	4.31	4.27	4.21	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			4.24						
		0.30	0.50		0.50	0.56	0.63	0.69	$\begin{gathered} V \\ \max \end{gathered}$
			0.63						
	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.63	14.50		14.50	14.44	14.37	14.32	$\begin{gathered} V \\ \min \end{gathered}$
			14.40						
		0.26	0.35		0.35	0.40	0.44	0.48	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.43						
	$\begin{aligned} & V+=15 V \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	13.90	13.35		13.35	13.15	12.92	12.76	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			13.02						
		0.79	1.16		1.16	1.32	1.45	1.58	$\begin{gathered} V \\ \max \end{gathered}$
			1.42						
Output Current$V^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	16		16	14	13	11	mA \min
			12						
		21	16		16	14	13	11	mA min
			12						
Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=13 V$	40	19		28	25	23	21	mA min
			19						
		39	19		28	24	23	20	mA
			19						
Supply Current	All Four Amplifiers $V_{O}=1.5 \mathrm{~V}$	1.5	2.2		2.2	2.6	2.7	2.9	mA min
			2.9						

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LMC660AM		LMC660AI		LMC660C		Units
				Design Limit (Note 5)		Design Limit (Note 5)	Tested Limit (Note 4)	Design Limit (Note 5)	
Slew Rate	(Note 7)	1.1	0.8		0.8	0.6		0.7	$\mathrm{V} / \mu \mathrm{s}$ min
			0.5						
Gain-Bandwidth Product		1.4							MHz min
Phase Margin		50							Deg
Gain Margin		17							dB
Amp-to-Amp Isolation	(Note 8)	130							dB
Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	22							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002							$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{aligned} & F=10 \mathrm{kHz}, A_{V}=-10 \\ & R_{L}=2 \mathrm{k} \Omega, V_{O}=8 V_{P P} \end{aligned}$	0.01							\%

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The junction-to-ambient thermal resistance of the molded plastic DIP (N) is $75^{\circ} \mathrm{C} / \mathrm{W}$., the molded plastic $\mathrm{SO}(\mathrm{M})$ package is $105^{\circ} \mathrm{C} / \mathrm{W}$., and the cavity DIP (D) package is $92^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into a PC board.

Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: These limits are guaranteed and are used in calculating outgoing AQL.
Note 5: These limits are guaranteed, but are not used in calculating outgoing AQL.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 8: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 9: The specifications in the Design Limit column reflect the true performance of the part, while those in the Tested Limit column are degraded to allow for the unavoidable inaccuracies involved in cost-effective high-speed automatic testing.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise speciifed

Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Applications Hint

Amplifier Topolgy

The topology chosen for the LMC660 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and Cff) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

LMC660 Circuit Topology (Each Amplifier)

TL/H/8767-4
The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 600Ω load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (600Ω) the gain will be reduced as indicated in the Electrical Characteristics.

Compensating Input Capacitance

The high input resistance of the LMC660 op amps allows the use of large feedback and source resistor values without losing gain accuracy due to loading. However, the circuit will be especially sensitive to its layout when these large-value resistors are used.

Every amplifier has some capacitance between each input and AC ground, and also some differential capacitance between the inputs. When the feedback network around an amplifier is resistive, this input capacitance (along with any additional capacitance due to circuit board traces, the socket, etc.) and the feedback resistors create a pole in the feedback path. In the following General Operational Amplifier circuit, the frequency of this pole is

$$
\mathrm{fp}=\frac{1}{2 \pi \mathrm{C}_{\mathrm{S}} \mathrm{R}_{\mathrm{P}}}
$$

where C_{S} is the total capacitance at the inverting input, including amplifier input capcitance and any stray capacitance from the IC socket (if one is used), circuit board traces, etc., and R_{P} is the parallel combination of R_{F} and $R_{I N}$. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations.
When the feedback resistors are smaller than a few $k \Omega$, the frequency of the feedback pole will be quite high, since C_{S}
is generally less than 10 pF . If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of C_{S}), the pole will have a negligible effect on stability, as it will add only a small amount of phase shift.
However, if the feedback pole is less than approximately 6 to 10 times the "ideal" -3 dB frequency, a feedback capacitor, C_{F}, should be connected between the output and the inverting input of the op amp. This condition can also be stated in terms of the amplifier's low-frequency noise gain: To maintain stability a feedback capacitor will probably be needed if

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \leq \sqrt{6 \times 2 \pi \times 6 B W \times R_{F} \times C_{S}}
$$

where $\left(\frac{R_{F}}{R_{I N}}+1\right)$ is the amplifier's low-frequency noise gain and GBW is the amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula $\left(\frac{R_{F}}{R_{I N}}+1\right)$ regardless of whether the amplifier is being used in inverting or non-inverting mode. Note that a feedback capacitor is more likely to be needed when the noise gain is low and/or the feedback resistor is large.
If the above condition is met (indicating a feedback capacitor will probably be needed), and the noise gain is large enough that:

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \geq 2 \sqrt{G B W \times R_{F} \times C_{S}}
$$

the following value of feedback capacitor is recommended:

$$
C_{F}=\frac{C_{S}}{2\left(\frac{R_{F}}{R_{I N}}+1\right)}
$$

If

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)<2 \sqrt{G B W \times R_{F} \times C_{S}}
$$

the feedback capacitor should be:

$$
C_{F}=\sqrt{\frac{C_{S}}{G B W \times R_{F}}}
$$

Note that these capacitor values are usually significant smaller than those given by the older, more conservative formula:

$$
C_{F}=\frac{C_{S} R_{I N}}{R_{F}}
$$

General Operational Amplifier Circuit

TL/H/8767-6
C_{S} consists of the amplifier's input capacitance plus any stray capacitance from the circuit board and socket. C_{F} compensates for the pole caused by C_{S} and the feedback resistors.

Applications Hint (Continued)

Using the smaller capacitors will give much higher bandwidth with little degradation of transient response. It may be necessary in any of the above cases to use a somewhat larger feedback capacitor to allow for unexpected stray capacitance, or to tolerate additional phase shifts in the loop, or excessive capacitive load, or to decrease the noise or bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray capacitance may be larger or smaller than the breadboard's, so the actual optimum value for C_{F} may be different from the one estimated using the breadboard. In most cases, the values of C_{F} should be checked on the actual circuit, starting with the computed value.

Input Overdrive

Input overdrive protection has been built into the LMC660, so that no latching, "output phase changes", or activation of parasitic junctions occurs when the inputs are taken outside the power supply rails. In addition, this protection inhibits ESD damage whether or not the device is powered up, and even if the power supply pins are floating. The protection consists of 200Ω series input resistors and diodes connected from each input to each power supply rail.
If the input to the LMC660 is set above the LMC660's input common-mode range, the LMC660's output will go to the positive supply rail. This output will stay at the positive supply rail until the input voltage is dropped back into the input common-mode range.

Capacitive Load Tolerance

Like many other op amps, the LMC660 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See Typical Performance Characteristics.
The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor ($5 \cdot \mathrm{pF}$ to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

Rx, Cx Improve Capacitive Load Tolerance

Typical Single-Supply
 Applications ($\mathrm{V}^{+}=5.0 \mathrm{VDC}$)

Additional single-supply applications ideas can be found in the LM324 datasheet. The LMC660 is pin-for-pin compatible with the LM324 and offers greater bandwidth and input resistance over the LM324. These features will improve the performance of many existing single-supply applications. Note, however, that the supply voltage range of the LMC660 is smaller than that of the LM324.

Low-Leakage Sample-and-Hold

TL/H/8767-7

Instrumentation Amplifier

TL/H/8767-8

$$
\begin{aligned}
\frac{V_{\text {OUT }}}{V_{\text {IN }}} & =\frac{R 2+2 R 1}{R 2} \times \frac{R 4}{R 3} \quad \begin{array}{r}
\text { if } R 1=R 5 \\
R 3=R 6 \\
\text { and } R 4=R 7 .
\end{array} \\
& =100 \text { for circuit as shown. }
\end{aligned}
$$

All resistors should be at least 1% tolerance. Matching of R1 to R5, R3 to R6, and R4 to R7 affect CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.

Typical Single-Supply Applications $\left({ }^{+}+=5.0 \mathrm{vDC}\right)$

Sine-Wave Oscillator

TL/H/8767-9
Oscillator frequency is determined by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 :

$$
\text { fosc } \begin{aligned}
=1 / 2 \pi R C, \text { where } R & =R 1=R 2 \text { and } \\
C & =C 1=C 2 .
\end{aligned}
$$

This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5 V .

10 Hz Bandpass Filter

$\mathrm{f}_{\mathrm{c}}=10 \mathrm{~Hz}$
$\mathrm{d}=0.895$
Gain $=1$

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

$\mathrm{f}_{\mathrm{c}}=1 \mathrm{~Hz}$
TL/H/8767-14
$d=1.414$

High Gain Amplifier with Offset Voltage Reduction

LMC662AM/LMC662AI/LMC662C CMOS Dual Operational Amplifier

General Description

The LMC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It is fully specified for operation from +5 V to +15 V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input $V_{\text {OS }}$, drift, and broadband noise as well as voltage gain into realistic loads ($2 \mathrm{k} \Omega$ and 600Ω) are all equal to or better than widely accepted bipolar equivalents. This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LMC660 datasheet for a Quad CMOS operational amplifier with these same features.

Features

- Rail-to-rail output swing
(1) Specified for $2 \mathrm{k} \Omega$ and 600Ω loads
- High voltage gain

126 dB

- Low input offset voltage

Connection Diagram

TL/H/9763-1

Ordering Information

Package	Temperature Range			NSC Drawing
	Military	Industrial	Commercial	
8-Pin Cavity DIP	LMC662AMD	LMC662AID		M08A
8-Pin Small Outline		LMC662AIM	LMC662CM	M
8-Pin Molded DIP		LMC662AIN	LMC662CN	N08E

Absolute Maximum Ratings (Note 3)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Differential Input Voltage
\pm Supply Voltage
Either Input beyond V^{+}or V^{-}
0.7 V

Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to GND (Note 1)
Lead Temperature (Soldering, 10 sec .)
Continuous $260^{\circ} \mathrm{C}$

Storage Temp. Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 2)	$150^{\circ} \mathrm{C}$
ESD Tolerance (Note 10)	500 V

Operating Conditions

Temperature Range

LMC662AM
LMC662AI
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$
LMC662C
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+70^{\circ} \mathrm{C}$
Supply Voltage Range
4.75 V to 15.5 V

DC Electrical Characteristics

unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LMC662AM		LMC662AI		LMC662C		Units
					$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	Design Limit (Note 5)		Design Limit (Note 5)	
Input Offset Voltage		1	3		3	3.3	6	6.3	$\begin{gathered} m V \\ \max \end{gathered}$
			3.5						
Input Offset Voltage Average Drift		1.3						-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	(Note 9)	0.04	20		20	4		2	pA max
			100						
Input Offset Current	(Note 9)	0.01	20		20	2		- 1	$\underset{\max }{\mathrm{pA}}$
			100						
Input Resistance		>1							Teras
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	70		70	68	63	62	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
			68						
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	70	.	70	68	63	62	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
			68						
Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	84		84	83	74	73	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
			82						
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR } \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	-0.1		-0.1	0	-0.1	0	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0						
		$\mathrm{V}^{+}-1.9$	$\mathrm{v}^{+}-2.3$		$\mathrm{V}^{+}-2.3$	$\mathbf{v}^{+}-2.5$	$\mathrm{V}^{+}-2.3$	$\mathbf{v}^{+}-2.4$	$\begin{gathered} V \\ \min \end{gathered}$
			$\mathbf{v}^{+}-2.6$						
Large Signal Voltage Gain	$R_{L}=2 \mathrm{k} \Omega \text { (Note 6) }$ Sourcing								
		2000	400		400	440	200	300	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			300						
	Sinking	500	180		180	120	90	80	V / mV min
			70						
	$\left.R_{L}=600 \Omega \text { (Note } 6\right)$ Sourcing								
		1000	200		200	220	100	150	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			150						
	Sinking	250	100		100	60	50	40	V / mV min
			35						

DC Electrical Characteristics (Continued) unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.									
Parameter	Conditions	Typ	LMC662AM		LMC662AI		LMC662C		Units
				Design Limit (Note 5)		Design Limit (Note 5)		Design Limit (Note 5)	
Output Swing	$\begin{aligned} & V^{+}=5 V \\ & R_{L}=2 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	4.87	4.82		4.82	4.79	4.78	4.76	$\begin{gathered} \vee \\ \mathrm{min} \end{gathered}$
			4.77						
		0.10	0.15		0.15	0.17	0.19	0.21	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.19						
	$\begin{aligned} & V+=5 V \\ & R_{L}=600 \Omega \text { to } V+/ 2 \end{aligned}$	4.61	4.41		4.41	4.31	4.27	4.21	$\begin{gathered} V \\ \min \end{gathered}$
			4.24						
		0.30	0.50		0.50	0.56	0.63	0.69	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.63						
	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=2 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.63	14.50		14.50	14.44	14.37	14.32	$\begin{gathered} V \\ \min \end{gathered}$
			14.40						
		0.26	0.35		0.35	0.40	0.44	0.48	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.43						
	$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	13.90	13.35		13.35	13.15	12.92	12.76	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			13.02						
		0.79	1.16		1.16	1.32	1.45	1.58	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			1.42						
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	22	16		16	14	13	11	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			12						
		21	16		16	14	13	11	mA min
			12						
Output Current$V^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=13 \mathrm{~V}$	40	19		28	25	23	21	mA min
			19						
		39	19		28	24	23	20	mA \min
			19						
Supply Current	Both Amplifiers$V_{O}=1.5 \mathrm{~V}$	0.75	1.3		1.3	1.5	1.6	1.8	mA max
			1.8						

AC Electrical Characteristics

unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LMC662AM		LMC662AI		LMC662C		Units
								Design Limit (Note 5)	
Slew Rate	(Note 7)	1.1	0.8		0.8	0.6	0.8	0.7	$\mathrm{V} / \mu \mathrm{s}$ min
			0.5						
Gain-Bandwidth Product		1.4							MHz
Phase Margin		50							Deg
Gain Margin		17							dB
Amp-to-Amp Isolation	(Note 8)	130							dB
Input Referred Voltage Noise	$F=1 \mathrm{kHz}$	22							$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002							$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{aligned} & F=10 \mathrm{kHz}, A_{V}=-10 \\ & R_{L}=2 \mathrm{k} \Omega, V_{O}=8 \mathrm{~V}_{P P} \end{aligned}$	0.01							\%

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The junction-to-ambient thermal resistance of the molded plastic DIP (N) is $101^{\circ} \mathrm{C} / \mathrm{W}$, the molded plastic $\mathrm{SO}(\mathrm{M})$ package is $152^{\circ} \mathrm{C} / \mathrm{W}$, and the cavity DIP (D) package is $124^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into a PC board.

Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Conditions indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: These limits are guaranteed and are used in calculating outgoing AQL.
Note 5: These limits are guaranteed, but are not used in calculating outgoing AQL.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 7: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 8: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 9: The specifications in the Design Limit column reflect the true performance of the part, while those in the Tested Limit column are degraded to allow for the unavoidable inaccuracies involved in cost-effective high-speed automatic testing.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Non-Inverting Large Signal Pulse Response

Output Characteristics Current Sourcing

Stability vs
Capacitive Load

Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Input Voltage Noise vs Frequency

Frequency Response vs Capacitive Load

Stability vs
Capacitive Load

LOAD CURRENT (mA)
TL/H/9763-3
Note: Avoid resistive loads of less than 500Ω, as they may cause instability.

Application Hints

AMPLIFIER TOPOLOGY

The topology chosen for the LMC662 is unconventional (compared to general-purpose op amps) in that the traditional unity-gain buffer output stage is not used; instead, the output is taken directly from the output of the integrator, to allow rail-to-rail output swing. Since the buffer traditionally delivers the power to the load, while maintaining high op amp gain and stability, and must withstand shorts to either rail, these tasks now fall to the integrator.
As a result of these demands, the integrator is a compound affair with an embedded gain stage that is doubly fed forward (via C_{f} and C_{ff}) by a dedicated unity-gain compensation driver. In addition, the output portion of the integrator is a push-pull configuration for delivering heavy loads. While sinking current the whole amplifier path consists of three gain stages with one stage fed forward, whereas while sourcing the path contains four gain stages with two fed forward.

LMC662 Circuit Topology (Each Amplifier)

TL/H/9763-4
The large signal voltage gain while sourcing is comparable to traditional bipolar op amps, even with a 600Ω load. The gain while sinking is higher than most CMOS op amps, due to the additional gain stage; however, under heavy load (600Ω) the gain will be reduced as indicated in the Electrical Characteristics.

COMPENSATING INPUT CAPACITANCE

The high input resistance of the LMC662 op amps allows the use of large feedback and source resistor values without losing gain accuracy due to loading. However, the circuit will be especially sensitive to its layout when these large-value resistors are used.
Every amplifier has some capacitance between each input and AC ground, and also some differential capacitance between the inputs. When the feedback network around an amplifier is resistive, this input capacitance (along with any additional capacitance due to circuit board traces, the socket, etc.) and the feedback resistors create a pole in the feedback path. In the following General Operational Amplifier Circuit, the frequency of this pole is

$$
f_{p}=\frac{1}{2 \pi C_{S} R_{p}}
$$

where C_{S} is the total capacitance at the inverting input, including amplifier input capacitance and any stray capaci-
tance from the IC socket (if one is used), circuit board traces, etc., and R_{P} is the parallel combination of R_{F} and $R_{\text {IN }}$. This formula, as well as all formulae derived below, apply to inverting and non-inverting op-amp configurations. When the feedback resistors are smaller than a few $k \Omega$, the frequency of the feedback pole will be quite high, since C_{S} is generally less than 10 pF . If the frequency of the feedback pole is much higher than the "ideal" closed-loop bandwidth (the nominal closed-loop bandwidth in the absence of C_{S}), the pole will have a negligible effect on stability, as it will add only a small amount of phase shift.
However, if the feedback pole is less than approximately 6 to 10 times the "ideal" -3 dB frequency, a feedback capacitor, C_{F}, should be connected between the output and the inverting input of the op amp. This condition can also be stated in terms of the amplifier's low-frequency noise gain: To maintain stability, a feedback capacitor will probably be needed if

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \leq \sqrt{6 \times 2 \pi \times G B W \times R_{F} \times C_{S}}
$$

where

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)
$$

is the amplifier's low-frequency noise gain and GBW is the amplifier's gain bandwidth product. An amplifier's low-frequency noise gain is represented by the formula

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)
$$

regardless of whether the amplifier is being used in an inverting or non-inverting mode. Note that a feedback capacitor is more likely to be needed when the noise gain is low and/or the feedback resistor is large.
If the above condition is met (indicating a feedback capacitor will probably be needed), and the noise gain is large enough that:

$$
\left(\frac{R_{F}}{R_{I N}}+1\right) \geq 2 \sqrt{G B W \times R_{F} \times C_{S}},
$$

the following value of feedback capacitor is recommended:

$$
C_{F}=\frac{C_{S}}{2\left(\frac{R_{F}}{R_{I N}}+1\right)}
$$

If

$$
\left(\frac{R_{F}}{R_{I N}}+1\right)<2 \sqrt{G B W \times R_{F} \times C_{S}}
$$

the feedback capacitor should be:

$$
C_{F}=\sqrt{\frac{C_{S}}{G B W \times R_{F}}}
$$

Note that these capacitor values are usually significantly smaller than those given by the older, more conservative formula:

$$
C_{F}=\frac{C_{S} R_{I N}}{R_{F}}
$$

Application Hints (Continued)

General Operational Amplifier Circuit

TL/H/9763-6
C_{s} consists of the amplifier's input capacitance plus any stray capacitance from the circuit board and socket. C_{F} compensates for the pole caused by C_{S} and the feedback resistor.

Using the smaller capacitors will give much higher bandwidth with little degradation of transient response. It may be necessary in any of the above cases to use a somewhat larger feedback capacitor to allow for unexpected stray capacitance, or to tolerate additional phase shifts in the loop, or excessive capacitive load, or to decrease the noise or bandwidth, or simply because the particular circuit implementation needs more feedback capacitance to be sufficiently stable. For example, a printed circuit board's stray capacitance may be larger or smaller than the breadboard's, so the actual optimum value for C_{F} may be different from the one estimated using the breadboard. In most cases, the value of C_{F} should be checked on the actual circuit, starting with the computed value.

INPUT OVERDRIVE

Input overdrive protection has been built into the LMC662, so that no latching, "output phase changes", or activation of parasitic junctions occurs when the inputs are taken outside the power supply rails. In addition, this protection inhibits ESD damage whether or not the device is powered up, and even if the power supply pins are floating. The protection consists of 200Ω series input resistors and diodes connected from each input to each power supply rail.
If the input to the LMC662 is set above the LMC662's input common-mode range, the LMC662's output will go to the positive supply rail. This output will stay at the positive supply rail until the input voltage is dropped back into the input common-mode range.

CAPACITIVE LOAD TOLERANCE

Like many other op amps, the LMC662 may oscillate when its applied load appears capacitive. The threshold of oscillation varies both with load and circuit gain. The configuration most sensitive to oscillation is a unity-gain follower. See the Typical Performance Characteristics.

The load capacitance interacts with the op amp's output resistance to create an additional pole. If this pole frequency is sufficiently low, it will degrade the op amp's phase margin so that the amplifier is no longer stable at low gains. The addition of a small resistor (50Ω to 100Ω) in series with the op amp's output, and a capacitor (5 pF to 10 pF) from inverting input to output pins, returns the phase margin to a safe value without interfering with lower-frequency circuit operation. Thus, larger values of capacitance can be tolerated without oscillation. Note that in all cases, the output will ring heavily when the load capacitance is near the threshold for oscillation.

Rx, Cx Improve Capacitive Load Tolerance

Typical Single-Supply Applications

$\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Additional single-supply applications ideas can be found in the LM358 datasheet. The LMC662 is pin-for-pin compatible with the LM358 and offers greater bandwidth and input resistance over the LM358. These features will improve the performance of many existing single-supply applications. Note, however, that the supply voltage range of the LM662 is smaller than that of the LM358.

TL/H/9763-15

Typical Single-Supply Applications $\left(v^{+}=5.0 \mathrm{v}_{\mathrm{DC}}\right)$ (Continued)

TL/H/9763-7

$$
\begin{aligned}
\frac{V_{\text {OUT }}}{V_{I N}} & =\frac{R 2+2 R 1}{R 2} \times \frac{R 4}{R 3} \quad \begin{array}{rl}
\text { if } R 1=R 5 ; \\
R 3 & R 2 \\
\text { and } R 4=R
\end{array}, \\
& =100 \text { for circuit shown. }
\end{aligned}
$$

All resistors should be at least 1% tolerance. Matching of R1 to R5, R3 to R6, and R4 to R7 affects CMRR. Gain may be adjusted through R2. CMRR may be adjusted through R7.

TL/H/9763-8

1 Hz Square-Wave Oscillator

TL/H/9763-9

TL/H/9763-10

Oscillator frequency is determined by $\mathrm{R} 1, \mathrm{R} 2, \mathrm{C} 1$, and C 2 :

$$
\mathrm{fose}=1 / 2 \pi \mathrm{RC}
$$

where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$.
This circuit, as shown, oscillates at 2.0 kHz with a peak-topeak output swing of 4.5 V

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

10 Hz Bandpass Filter

$\mathrm{Q}=2.1$
Gain $=-8.8$
TL/H/9763-11

1 Hz Low-Pass Filter (Maximally Flat, Dual Supply Only)

TL/H/9763-13

10 Hz High-Pass Filter (2 dB Dip)

High Gain Amplifier with Offset Voltage Reduction

Gain $=-46.8$
Output offset voltage reduced to the level of the input offset voltage of the bottom amplifier (typically 1 mV).

LMC669 Auto-Zero

General Description

The LMC669 uses sampled-data techniques to reduce the input offset voltage (VOS) of an amplifier or system to approximately $5 \mu \mathrm{~V}$. A four-stage comparator samples the summing node of an inverting-amplifier and generates a correction voltage that is applied to the amplifier's non-inverting input. The offset correction is independent of time, temperature, and supply voltage, and requires no initial or periodic user offset adjustments.
The user may also adjust clock frequency, sample rate, and the correction voltage's step size and magnitude.
The Auto-Zero operates on supply voltages of $\pm 8 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ with a quiescent current of 3 mA .

The use of the LMC669 does not limit the performance of the amplifier it is used with. Full use of the gain-bandwidth product, slew rate, and DC gain is retained.
The LMC669 can be used as a precision comparator with a latched, open drain output, or as a low-offset inverting operational amplifier for low-speed applications.

Features

- 5 microvolts typical offset voltage
- Temperature independent offset correction
- Internal or external clocking
- Automatic and continuous offset voltage correction
- High voltage CMOS-up to $\pm 20 \mathrm{~V}$ supplies

Typical Application

TL/H/8561-1
Numbers in () are for 16-pin packages

Absolute Maximum Ratings (Notes 1 \& 2)		
If Military/Aerospace specified devices are required,	Power Dissipation (Note 4)	500 mW
please contact the National Semiconductor Sales	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Office/Distributors for availability and specifications.	Lead Temp. (soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Positive Supply Voltage (V^{+}) +22V		
Negative Supply Voltage (V^{-}) -22V	Operating Ranges (Notes 1 \& 2)	
Voltage of Logic Pins $\mathrm{T} 1, \mathrm{~T} 2$, RESET, CLK	Temperature Range LMC669D	$\begin{array}{r} T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \\ -40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \end{array}$
Voltage at Inputs $\quad-0.2 \mathrm{~V}$ to $\left(\mathrm{V}^{+}+0.2 \mathrm{~V}\right)$	Positive Supply Voltage	+8 V to +20 V
Input Current (Note 3)	Negative Supply Voltage	-8 V to -20 V
INREF, IN1 and IN2 20 mA	INREF, IN1 and IN2 Voltage (Note 5)	-200 mV to +2 V
	ESD Susceptability (Note 10)	600 V

Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$, and $\mathrm{V}-=-15 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {mAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+15 \mathrm{~V}$, and $\mathrm{V}^{-}=-15 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\text {MIN }}$ to $\mathbf{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units	
IS^{-}	Maximum Negative Supply Current		RESET Low,$T_{\text {CLK }}=50 \mu \mathrm{~s}$	2.0	5.0		mA	
				7.0				
f_{S}	Maximum Sample Rate			$\overline{\text { RESET }}$ Low, Internal Clock	100	66.6	56	kHz
${ }_{\text {f CLK }}$	Clock Frequency Range	min		100		100	Hz	
		max		100		100	kHz	
T_{R}	Minimum $\overline{\text { RESET }}$ Pulse Width			80	150	175	ns	
$\mathrm{V}_{\text {TH }}$	Digital Input Threshold Voltage	High (min)		2.9	3.5		V	
		Low (max)		2.9	1.5		V	
		High (min)		3.5	4.0		V	
		Low (max)		1.5	1.0		V	
$\mathrm{I}_{\mathrm{DIN}}$	T1, T2, RESET, \& CLK Maximum Digital Input Current	High		1.0			pA	
					1.0		$\mu \mathrm{A}$	
		Low		1.0			pA	
					1.0		$\mu \mathrm{A}$	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are with respect to AGND.
Note 3: This input current will exist only when an input is driven to a voltage greater than ($\mathrm{V}^{+}+0.2 \mathrm{~V}$) or less than -0.2 V . It is due to internal diode clamps at the inputs turning on. If the current is limited to 20 mA , the overdrive will not be harmful to the LMC669.
Note 4: The typical junction-to-ambient thermal resistance (θ_{JA}) of the 16 pin J package is $80^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: If input currents are limited, input voitages may be driven beyond these limits and the device will still be functional. The comparator output will be correct as long as the voltage on either the INREF pin or the two input IN1 \& IN2 pins is between -200 mV and +2 V .
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Guaranteed and 100% tested.
Note 8: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 9: The LMC669CD exhibits a warm-up drift of approximately $3 \mu \mathrm{~V}$ to $5 \mu \mathrm{~V}$ in the negative direction. There are two factors that work together to cause this. Firstly, as the die becomes warm, a temperature gradient forms between pin 2 and pins 1 and 16 . Secondly, a thermocouple is created between the metal of the leadframe and the metal of the wire (usually copper) used to connect the IC to a circuit. It takes about 6 minutes for the drift to stabilize. The N and M packages do not exhibit this drift because their leadframes are 90% copper.
Note 10: Human body model, 100 pF discharged through $1.5 \mathrm{k} \Omega$.

Typical Performance Characteristics

Connection Diagram

Pin Description LMC669 Numbers in () are for 16-pin package

Pin
IN1, IN2
1, 20
$(1,16)$

Description
These are the inputs to the Auto Zero's comparator. They should be tied together and connected to the summing node of the host operational amplifier (op amp). One set of inputs, either IN1 and IN2 or INREF, must be between +2 volts and ground while the other can go to V^{+}(also refer to notes 3 and 5).

Description

This is the input for the comparator's reference voltage. Correction of V_{OS} is accomplished by connecting this pin to a good clean system ground of its own. One set of inputs, either IN1 and IN2 or INREF, must be between +2 volts and ground while the other can go to V^{+}(also refer to notes 3 and 5).

$\begin{gathered} \text { T1, T2 } \\ 16,15 \\ (12,11) \end{gathered}$	

Pin

16, 15
$(12,11)$
+, V^{-}
$(13,8)$

Description
These pins select one of five clock divider ratios. The ratio, hence the sample rate can be changed by applying V^{+}or ground to T 1 and T 2 . The ratio chosen by these inputs is valid after the comparator's output changes state; i.e., a zero-crossing between the offset and correction voltage has taken place. These inputs can also be changed at any time to modify the LMC669's sample rate. Use the table below to determine the reduction in the clock's frequency for each combination of T 1 and T 2 .

T1	T2	$\overline{\text { RESET }}$	\div
X	X	0	1
1	1	1	4
1	0	1	16
0	1	1	128
0	0	1	1024

Positive and negative power supply inputs. Typical supply voltages are ± 15 volts, but operation will take place from ± 8 to ± 20 volts. Power supply current is typically 3 mA . Bypass capacitors ($0.01 \sim 0.1 \mu \mathrm{~F}$) should be connected to the power supply pins.

Application Hints

1.0 INTRODUCTION

In its standard application shown in Figure 1, the LMC669 continuously samples the summing node of an inverting amplifier and generates a correction voltage for the amplifier's non-inverting input, nulling the amplifier's input offset voltage $\left(\mathrm{V}_{\mathrm{OS}}\right)$ to $5 \mu \mathrm{~V}$. The offset correction is independent of time, temperature, and supply voltage. The LMC669 eliminates the need for initial or periodic offset adjustments, compensates for $V_{\text {os }}$ drift due to temperature changes, allows the use of greater DC gain, and increases immunity to changes in power supply voltages.
At the input of the LMC669 is a sampled-data differential comparator with very low offset voltage. When the comparator samples the summing node voltage and determines that it is not at ground, the LMC669's output generates a small voltage step in the opposite direction of the error. The size of the step and the sample rate are user-selectable. The correction voltage continues to step up or down until the summing node is within the V_{OS} of the LMC669-typically $5 \mu \mathrm{~V}$. At this point the Auto Zero continues to monitor the summing node and perform any needed corrections. An internal divider generates five different sampling rates for any given clock frequency.
The only external parts needed for $\mathrm{V}_{\text {os }}$ correction of most amplifiers are two resistors and one capacitor. Since the capacitor is in the feedback loop of an integrator, it should be a low leakage type (polycarbonate, polypropylene, polystyrene, mylar, etc.). The tolerance of the resistors and capacitor is not critical (10% components are satisfactory).

Application Hints (Continued)

TL/H/8561-5
FIGURE 1. Typical Application

1.1 CIRCUIT OPERATION

At the heart of the LMC669 is a four-stage precision sam-pled-data comparator, shown in Figure 2. The circuit operates by successively zeroing the offset of each stage, resulting in a very high gain amplifier with extremely low input offset voltage.
After a comparator decision is made, the latch is enabled and holds the comparator's output state. At the same time this state appears at COMPOUT. The latch also generates a $\pm 1 \mathrm{~V}$ signal that charges capacitor C_{1} to $\pm 1 \mathrm{~V}$. C_{1} 's charge is then transferred to the integrator's feedback capacitor C_{2}. Since C_{2} is five times larger than C_{1}, a 200 mV step will appear at the integrator's output. Further reduction of the step size is possible with an external capacitor connected in parallel with C_{2} (between OUTPUT and CAP). The integrator output is then attenuated by a resistive divider network before being applied to the external op amp's non-inverting input, completing the offset correction loop.

1.2 CLOCKS

In order to control the events that take place in the LMC669, an internal Schmitt trigger oscillator generates a 100 kHz clock. This oscillator's frequency can be lowered by connecting a capacitor between the CLK input and ground as in Figure 3c. It can also be overridden by applying an external clock source ($\leq 100 \mathrm{kHz}$) to the CLK input (Figure 3a). Further, the clock can be halted with a diode connected as shown in Figure 3(b).

The clock signal drives the input of the divider (See Figure 2). Depending on the logic levels at inputs T1, T2, and RESET, the clock can be divided by five different ratios (1, $4,16,128$, and 1024). The output of the divider triggers the sequencer which controls the auto-zero function.
When the LMC669 is powered-up or reset the internal divider automaticaliy divides by one. This allows the Auto-Zero to operate at maximum sampling rate so that large initial offsets can be rapidly corrected. When the comparator toggles for the first time, this indicates that input null has been achieved and that maximum sample rate is no longer required. The latch then switches the divider from $\div 1$ to the ratio programmed via T1 and T2. By employing this "two speed" approach the device can move quickly to handle turn-on transients and then shift to the optimum "gear" for long term offset correction. It is also possible to return to the maximum sample rate via the RESET input so that non-power-up transients can be dealt with as well.

1.3 INPUT RANGE

The IN1, IN2, and INREF inputs can accept signal levels between 0 and +2 V . However, as long as both IN 1 and IN2, or INREF, is kept between 0 and 2 V the other input (or inputs) can be taken to V^{+}and, if input current limiting ($\leq 20 \mathrm{~mA}$) is provided, to V^{-}. In most auto-zero applications IN1 and IN2 will be able to go to these extended limits since INREF will normally be grounded.

Application Hints (Continued)

FIGURE 2. Block Diagram

ON - OFF
(b)
$\mathrm{C}_{\mathrm{T}}(\mathrm{pF})=\mathrm{CLOCK} \operatorname{PERIOD}(\mu \mathrm{S})$
i.e., $100 \mathrm{pF} \rightarrow 100 \mu \mathrm{~S}$
(c)

TL/H/8561-8
FIGURE 3. Clock Input. External clock (a), controlling internal clock (b), reducing internal clock frequency (c).

Application Hints (Continued)

2.0 APPLICATION CIRCUITS

The most general application of the Auto-Zero is offset correction of an inverting op amp as shown in Figure 1. The example below shows how the integration capacitor and the resistor divider are chosen.
Determine the maximum expected offset voltage from the op amp characteristics and the requirements of the overall system. The correction voltage swing capability should be greater than or equal to this value. Also select the minimum system resolution and the time that can be allowed to null the initial offset. These will determine the correction voltage step size. The magnitude of the correction voltage ($\mathrm{V}_{\text {corr }}$) and the step size (dv) are defined according to equations 1 and 2 :

$$
\begin{equation*}
\text { Correction voltage }=V_{\text {corr }}=V_{\text {out }} \frac{R_{2}}{R_{1}+R_{2}} \tag{1}
\end{equation*}
$$

V_{0} is typically $\pm 12 \mathrm{~V}$ for $\pm 15 \mathrm{~V}$ supplies.

$$
R_{2}=\frac{R_{1} V_{\text {corr }}}{\left(V_{o}-V_{\text {corr }}\right)}
$$

$$
=\frac{10 K V_{\text {corr }}}{\left(12-V_{\text {corr }}\right)}
$$

$$
\text { for } R_{1}=10 \mathrm{k} \Omega \text { (For proper operation } R_{1}+R_{2} \text { should }
$$ be greater than $10 \mathrm{k} \Omega$.)

$$
\begin{equation*}
\text { step size }=d v=1.0 \mathrm{~V}\left(\frac{C_{1}}{C_{2}+C}\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
C=\frac{C_{1} R_{2}}{d v\left(R_{1}+R_{2}\right)}-C_{2} \tag{2a}
\end{equation*}
$$

with $\mathrm{C}_{1}=2 \mathrm{pF}, \mathrm{C}_{2}=10 \mathrm{pF}, \mathrm{R}_{1}$ and R_{2} from Eq. 1a. C_{1} and C_{2} are internal.
A further consideration regarding the selection of step size is resolution: the magnitude of the smallest significant signal. In the case of nulling the V_{os} of an op amp used with a digital-to-analog converter (DAC) the smallest signal is the voltage produced by the least-significant bit (LSB). Therefore, the correction voltage's step size would need to be much smaller than the magnitude of the DAC's LSB in order to retain the DAC's desired resolution.
Finally, for proper operation, the sampling period should be longer than the amplifier's settling time. $10 \mu \mathrm{~s}$ or more should be adequate for most contemporary amplifiers.

DESIGN EXAMPLE

As an example, assume that the offset of the op amp in Figure 1 is expected to be no more than 15 mV and the system can tolerate a $1 \mu \mathrm{~V}$ square wave at a rate equal to the internal clock. Begin by using R_{1} and R_{2} to set the maximum correction voltage to 15 mV . The LMC669's output can swing to ± 12 volts with a $10 \mathrm{~K} \Omega$ load and a ± 15 volt power supply. R_{1} and R_{2} should be chosen to reduce this to 15 mV :

$$
\begin{aligned}
R_{2}= & \frac{R_{1} V_{\text {corr }}}{V_{0}-V_{\text {corr }}} \\
& =\frac{(10 \mathrm{~K})(0.015)}{(12-0.015)} \\
& =12.5 \Omega \approx 13 \Omega \\
& \quad \text { for } \pm 15 \mathrm{~V} \text { supplies and } R_{1}=10 \mathrm{~K}
\end{aligned}
$$

Now choose C, the integrator's external feedback capacitor, to set the final step size to $1 \mu \mathrm{~V}$. Using equation (2a):

$$
C=\frac{C_{1} R_{2}}{d v\left(R_{1}+R_{2}\right)}-C_{2}
$$

with $R_{1}=10 \mathrm{k} \Omega, R_{2}=13 \Omega, C_{1}=2 \mathrm{pF}$, and $\mathrm{C}_{2}=10 \mathrm{pF}$, yields

$$
C \cong 2500 \mathrm{pF}
$$

The null time for this example, with an amplifier offset of 15 mV , step size of $1 \mu \mathrm{~V}$, and initial sample rate of 100 kHz , is

$$
\begin{align*}
\text { Null time } & =\frac{V_{\text {os }}}{(\text { dv })(\text { sample rate })} \tag{3}\\
& =150 \mathrm{msec}
\end{align*}
$$

If this is too slow, the step size can be increased.

OP AMP INPUT BIAS CURRENT

Input bias current should be considered when selecting an op amp that is nulled by the LMC669. If this current is too high, the result is a significant voltage drop across the feedback components and consequent output offset. The Auto Zero will not correct this error since it does not appear as a voltage at the summing node. Therefore, use low resistance feedback networks, or op amps with low input bias current such as the LF156, LF400, and LF411.

NOISE

Through careful selection of the sample rate and step size a compromise can be made between noise and null time. Low sample rates achieve low noise but take a long time to null an offset or correct it when a sudden change occurs. High sample rates can quickly null or correct changes in $\mathrm{V}_{\text {os }}$ but do so with an increase in noise. Step size directly affects the null time and the amount of noise introduced: small step sizes ($<100 \mathrm{nV}$) contribute almost no noise, but result in long null times.
Low noise LMC669 applications are beneficial to instrumentation and audio electronics. An LM833 low noise operational amplifier ($4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$) with the LMC669 is shown in Figure 4. In this circuit the Auto Zero adds only $1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ referred to the amplifier's input. To achieve this the step size is set to 100 nV . The sample rate, with the internal clock free-running, is set to 98 Hz (clock frequency 1024), and input and output filters are added to the LMC669. The input filter prevents switching transients from reaching the amplifier input and the output filter attenuates AC components of the steps at the Auto Zero's output. The filter at the op amp's input also introduces a pole at

$$
F_{p}=\frac{1}{2 \pi\left(R_{\text {in }}+R_{f}\right) C_{f}}
$$

and a zero at

$$
F_{z}=\frac{1}{2 \pi R_{f} C_{f}}
$$

The maximum $\mathrm{V}_{\text {os }}$ that can be corrected by the circuit in Figure 4 is 12 mV . More offset correction can be obtained while retaining good noise performance by increasing the size of R_{2} and C the same percentage. Increasing C compensates for the reduced attenuation caused by increasing R_{2}. This allows the step size to remain the same but increases the amount of correction voltage applied to the op amp.

Application Hints (Continued)

TL/H/8561-9
FIGURE 4. Low Noise Application

TL/H/8561-10
FIGURE 5. Zeroing LM 1875 Power Op-Amp

Application Hints (Continued)

POWER AMPLIFIERS

For applications such as motor control, automated servo systems, and power amplification the LMC669 can also be used with amplifiers other than standard small signal op amps. Figure 5 shows how the Auto Zero can allow an LM1875 audio power amplifier to operate with very low offset. While the sample rate for this configuration is not critical, the LMC669's output step size should be set for less than $1 \mu \mathrm{~V}$ to ensure low system noise.

NON-INVERTING AMPLIFIERS AND SYSTEMS

A variation of the above circuit appears in Figure 6 with the LMC669 operating as a DC-servo integrating feedback loop. This configuration is applicable when the Auto Zero is used with non-inverting op amps amplifying AC-only signals. The output error of the amplifier is reduced to the $\mathrm{V}_{\text {os }}$ of the Auto Zero, typically $5 \mu \mathrm{~V}$. A filter at the input of the LMC669 limits current and ensures that only DC and very low frequencies
($<0.6 \mathrm{~Hz}$) are sampled. In this application the output of the op amp is sampled and compared with a reference ground. The correction output from the Auto Zero now replaces the ground reference for the feedback resistor connected to the inverting input.
Systems can also benefit from the Auto Zero. Figure 7 shows how the $\mathrm{V}_{\text {os }}$ of an MF6 Butterworth low-pass switched capacitor filter is nulled by the LMC669. The Auto Zero's IN1 and IN2 inputs are connected to the MF6's output while INREF is connected to its input. The correction signal is applied to the MF6's $V_{\text {os }}$ ADJ input. RC low-pass filters ($\mathrm{R}_{\mathrm{f} 1}, \mathrm{C}_{\mathrm{f} 1}$ and $\mathrm{R}_{\mathrm{f} 2}, \mathrm{C}_{\mathrm{f} 2}$) are used to reduce $A C$ signals at the LMC669's inputs and provide current limiting. It is important to set each passive RC filter's cutoff as low as possible, at most 0.1 of the MF6's f_{0}.
This correction makes the MF6 useful in applications calling for good DC accuracy. The MF6's typical 250 mV offset is decreased to $5 \mu \mathrm{~V}$ with a step size of $1 \mu \mathrm{~V}$.

FIGURE 6. DC Servo Loop

Application Hints (Continued)

TL/H/8561-12
FIGURE 7. Auto zeroing a system. In this case the $\mathbf{2 5 0} \mathbf{~ m V}$ offset of a switched-capacitor low-pass filter is corrected by the LMC669.

MAINTAINING DAC LINEARITY

The LMC669 is particularly useful for zeroing the offset of an op amp used with a CMOS digital-to-analog converter (DAC). For good linearity the DAC's two outputs (lout and $\left.\overline{l_{\text {out }}}\right)$ must be connected to identical ground potentials. The presence of op amp $\mathrm{V}_{\text {os }}$ (and its drift due to temperature) will degrade the DAC's linearity. Even though the effects of $V_{\text {os }}$ can be corrected by trimming, a static trim will not be very helpful if the $\mathrm{V}_{\text {os }}$ changes with respect to temperature. Figure 8 shows the DAC1208 with a 10 V reference driving an LF357. The linearity of this DAC will degrade by 0.01% for each millivolt of op amp $\mathrm{V}_{\text {os }}$. Therefore, the LF357's typical offset of 5 mV will turn the 12-bit DAC1208's 0.012% linearity error into 0.062%. What was a 12 bit linear device now has only 9 bits linearity. The original linearity specification can be retained by connecting an LMC669 to the inputs of the LF357, rendering the non-linearity due to $V_{0 s}$ and temperature drift negligible. The DAC is now able to operate at its published linearity specifications independent of $V_{o s}$ and temperature.
Figure 9 shows the schematic of a unipolar power DAC. One use of the power DAC is as a digitally controlled power supply having the ability to sink current, in the case of inductive loads, as well as source current. The linearity of the DAC is preserved by the nulling action of the LMC669 connected to the inputs of the LM1875 power amplifier. The
amplifier can generate an output voltage from 0 to 25 volts and a maximum current of 3 amperes. The actual output is determined by

$$
V_{\text {out }}=\frac{-V_{\text {ref }}(\mathrm{D})}{4096}
$$

(" D " is the value of the digital code, base 10). The magnitude of each step is

$$
1 \mathrm{LSB}=\frac{\left|\mathrm{V}_{\text {ref }}\right|}{4096}
$$

Stable operation of the LM1875 is ensured by the RC combination connected to the inverting input.

LMC669 AS A COMPARATOR

The LMC669's operation as a comparator is shown in Figure 10. Its input impedance is $5 \mathrm{k} \Omega$ with 160 pF to ground. For proper operation as a comparator IN1 and IN2, or INREF, should be kept between 0 and 2 V while the other input (or inputs) can be taken to V^{+}. If input current limiting ($\leq 20 \mathrm{~mA}$) is provided, the inputs can also go to V^{-}. (In addition, please refer to notes 3 and 5 under "Electrical Characteristics".)
The open collector output can be pulled-up to typically 25 volts. When the sink current is 1 mA the output can pulldown to 0.25 V . Outputs closer to ground are possible with a larger pullup resistor.

Application Hints (Continued)

TL/H/8561-13
FIGURE 8. Reducing $\mathrm{V}_{\text {os }}$-induced linearity errors in a 12-bit DAC by $0.01 \% / \mathrm{mV}$ offset.

FIGURE 9. Power DAC with $\pm \mathbf{2 0} V_{\text {p-p }}$ and $3 A$ output capabilities.

Application Hints (Continued)

LOW-FREQUENCY, HIGH-GAIN AMPLIFIER

For applications that require precision high-gain DC and low-frequency performance, the LMC669 can be connected as an amplifier as shown in Figure 11. For a closed-loop gain of -1000 the useful frequency range is typically

$$
\mathrm{F}_{\max }=20 \frac{\mathrm{~Hz}}{\mathrm{mV} \text { of step size }}
$$

FIGURE 10. Low-Speed Precision Comparator

TL/H/8561-15
FIGURE 11. Low Offset, High Gain, Low Frequency Op Amp.

Bandwidth $\cong 20 \frac{\mathrm{~Hz}}{\mathrm{mV} \text { of step size }}$, sample rate $=100 \mathrm{kHz}$.

LP124/LP2902/LP324 Micropower Quad Operational Amplifier

General Description

The LP124 series consists of four independent, high gain internally compensated micropower operational amplifiers. These amplifiers are specially suited for operation in battery systems while maintaining good input specifications, and extremely low supply current drain. In addition, the LP124 has an input common mode range, and output source range which includes ground, making it ideal in single supply applications.
These amplifiers are ideal in applications which include portable instrumentation, battery backup equipment, and other circuits which require good DC performance and low supply current.

Features

- Low supply current
$125 \mu \mathrm{~A}$ (max)
- Low offset voltage

2 mV (max)

- Low input bias current

4 nA (max)

- Input common mode to GND

■ Interfaces to CMOS logic

- Wide supply range
$3 \mathrm{~V}<\mathrm{V}+<32 \mathrm{~V}$
- Small Outline Package available
- Pin-for-pin compatible with LM124

Connection Diagram

Dual-in-Line (J, N) and SO (M)

Order Number LP124J or LP324J
See NS Package Number J14A
Order Number LP324M or LP2902M
See NS Package Number M14A
Order Number LP324N or LP2902N
See NS Package Number N14A

Simplified Schematic

TL/H/8562-2

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
LP2902
32 V or $\pm 16 \mathrm{~V}$

Differential Input Voltage
LP2902
Input Voltage (Note 1)
LP2902
Output Short-Circuit to GND
(One Amplifier) (Note 2)
$\mathrm{V}+\leq 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
ESD Susceptibility (Note 9)

26 V or $\pm 13 \mathrm{~V}$ 32 V 26 V
-0.3 V to 32 V
-0.3 V to 26 V
Continuous
$\pm 500 \mathrm{~V}$

Operating Conditions

	J	Package N	M
Power Dissipation (Note 3)	500 mW	500 mW	500 mW
$\mathrm{T}_{\mathrm{j}} \mathrm{Max}$	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
θ_{ja}	$90^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$140^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temp. Range	(Note 4)	(Note 4)	(Note 4)
Storage Temp. Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T} \leq 150^{\circ} \mathrm{C}$		
Soldering			
Information (10 sec.)	$300^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$	
Vapor Phase (60 sec.)			$215^{\circ} \mathrm{C}$
Infrared (15 sec.)			$220^{\circ} \mathrm{C}$

Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	LP124			LP2902 (Note 8)			LP324			Units Limits
			Typ	Tested Limit (Note 6)		Typ	Tested Limit (Note 6)	Design Limit (Note 7)	Typ			
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		1	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	7	2	4	10	2	4	9	$\begin{gathered} \mathrm{mV} \\ (\mathrm{Max}) \end{gathered}$
I_{b}	Input Bias Current		1	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	8	2	20	40	2	10	20	nA (Max)
l OS	Input Offset Current		0.1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	2	0.5	4	8	0.2	2	4	nA (Max)
$\mathrm{A}_{\text {vol }}$	Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \text { to GND } \\ & \mathrm{V}^{+}=30 \mathrm{~V} \end{aligned}$	100	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	60	70	40	30	100	50	40	$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & (\mathrm{Min}) \end{aligned}$
CMRR	Common Mode Rej. Ratio	$\begin{aligned} & \mathrm{V}+=30 \mathrm{~V} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{cm}} \\ & \mathrm{~V}_{\mathrm{cm}}<\mathrm{V}^{+}-1.5 \end{aligned}$	100	$\begin{aligned} & 85 \\ & \mathbf{8 0} \end{aligned}$	75	90	80	75	90	80	75	$\begin{gathered} \mathrm{dB} \\ (\mathrm{Min}) \end{gathered}$
PSRR	Power Supply Rej. Ratio	$\mathrm{V}^{+}=5 \mathrm{~V}$ to 30 V	100	$\begin{aligned} & 85 \\ & \mathbf{8 0} \end{aligned}$	75	90	80	75	90	80	75	$\begin{gathered} \mathrm{dB} \\ (\mathrm{Min}) \end{gathered}$
I_{s}	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	85	$\begin{aligned} & 125 \\ & 150 \end{aligned}$	200	85	150	250	85	150	250	$\begin{gathered} \mu \mathrm{A} \\ (\mathrm{Max}) \end{gathered}$
Vo	Output Voltage Swing	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=350 \mu \mathrm{~A} \\ & \text { to } \mathrm{GND} . \\ & \mathrm{V}_{\mathrm{cm}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	3.6	$\begin{aligned} & 3.4 \\ & 3.1 \end{aligned}$	$\mathbf{V}+\mathbf{- 1 . 9 V}$	3.6	3.4	$\mathbf{V}+\mathbf{- 1 . 9 V}$	3.6	3.4	$\mathbf{V}+$ - $\mathbf{1 . 9 V}$	$\begin{gathered} \text { V } \\ (\mathrm{Min}) \end{gathered}$
		$\begin{aligned} & \mathrm{L}=350 \mu \mathrm{~A} \\ & \text { to } \mathrm{V}+ \\ & \mathrm{V}_{\mathrm{cm}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	0.7	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	1.0	0.7	0.8	1.0	0.7	0.8	1.0	$\begin{gathered} V \\ (\operatorname{Max}) \end{gathered}$
$I_{\text {out }}$ Source		$\begin{aligned} & V_{0}=3 V \\ & V_{\text {in }} \text { (diff) }=1 V \end{aligned}$	11	9	4	10	7	4	10	7	4	$\begin{gathered} \mathrm{mA} \\ (\mathrm{Min}) \end{gathered}$
lout Sink		$\begin{aligned} & V_{0}=1.5 \mathrm{~V} \\ & V_{\text {in }}(\text { diff })=1 \mathrm{~V} \end{aligned}$	6	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	4	5	4	3	5	4	3	mA (Min)
$l_{\text {out }}$ Sink		$\begin{aligned} & V_{\mathrm{o}}=1.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cm}}=0 \mathrm{~V} \end{aligned}$	5	$\begin{gathered} 3 \\ 0.5 \end{gathered}$	1.5	4	2	1	4	2	1	$\begin{gathered} \mathrm{mA} \\ \text { (Min) } \end{gathered}$
$\mathrm{I}_{\text {source }}$	Output Short to GND	$V_{\text {in }}($ diff $)=1 \mathrm{~V}$	20	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	35	20	$\begin{aligned} & 25 \\ & \mathbf{3 5} \end{aligned}$	35	20	$\begin{aligned} & 25 \\ & 35 \end{aligned}$	35	$\begin{gathered} \mathrm{mA} \\ (\mathrm{Max}) \end{gathered}$

Electrical Characteristics (Note 5) (Continued)

Symbol	Parameter	Conditions	LP124			LP2902 (Note 8)			LP324			Units Limits
			Typ	Tested Limit (Note 6)	Design Limit (Note 7)	Typ	Tested Limit (Note 6)	Design Limit (Note 7)	Typ		Design Limit (Note 7)	
$\mathrm{I}_{\text {sink }}$	Output Short to V^{+}	$\mathrm{V}_{\text {in }}(\mathrm{diff})=1 \mathrm{~V}$	15	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	35	15	20	35	15	20	35	$\begin{gathered} \mathrm{mA} \\ (\mathrm{Max}) \end{gathered}$
$\begin{aligned} & V_{o s} \\ & \text { Drift } \end{aligned}$			7			10			10			$\mu \mathrm{V} / \mathrm{C}^{\circ}$
Ios Drift			5			10			10			$\mathrm{pA} / \mathrm{C}^{\circ}$
GBW	Gain । Bandwidth Product		100			100			100			KHz
S_{r}	Slew Rate		50			50			50			V / mS

Note 1: The input voltage is not allowed to go more than -0.3 V below V - (GND) as this will turn on a parasitic transistor causing large currents to flow through the device.
Note 2: Short circuits from the output to GND can cause excessive heating and eventual destruction. The maximum sourcing output current is approximately 30 mA independent of the magnitude of V^{+}. At values of supply voltage in excess of $15 \mathrm{~V}_{\mathrm{DC}}$, continuous short-circuit to GND can exceed the power dissipation ratings (particularly at elevated temperatures) and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
Note 3: For operation at elevated temperatures, these devices must be derated based on a thermal resistance of $\theta_{j a}$ and $T_{j} \max . T_{j}=T_{A}+\theta_{j a} P_{D}$.
Note 4: The LP124 may be operated from $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$. The LP2902 may be operated from $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$, and the LP324 may be operated from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$.
Note 5: Boldface numbers apply at temperature extremes. All other numbers apply only at $T_{A}=T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{cm}}=\mathrm{V} / 2$, and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$ connected to GND unless otherwise specified.
Note 6: Guaranteed and 100% production tested.
Note 7: Guaranteed (but not 100% production tested) over the operating supply voltage range (3.0 V to 32 V for the LP124, LP324, and 3.0 V to 26 V for the LP2902), and the common mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$), unless otherwise specified. These limits are not used to calculate outgoing quality levels.
Note 8: The LP2902 operating supply range is 3 V to 26 V , and is not tested above 26 V .
Note 9: The test circuit used consists of the human body model of 100 pF in series with 1500Ω.

Typical Performance Curves

Input Current

Open Loop Frequency Response

Supply Current

Power Supply Rejection Ratio

Typical Performance Curves (Continued)

Application Hints

The LP124 series is a micro-power pin-for-pin equivalent to the LM124 op amps. Power supply current, input bias current, and input offset current have all been reduced by a factor of 10 over the LM124. Like its predecessor, the LP124 series op amps can operate on single supply, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \mathrm{~V}_{\mathrm{DC}}$.
The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14). Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or the unit is not inadvertently installed backwards in the
test socket as an unlimited current surge through the resulting forward diode within the IC could destroy the unit.
Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode with a resistor to the IC input terminal can be used.
The amplifiers have a class B output stage which allows the amplifiers to both source and sink output currents. In applications where crossover distortion is undesirable, a resistor

Application Hints (Continued)

should be used from the output of the amplifier to ground. The resistor biases the output into class A operation.
The LP124 has improved stability margin for driving capacitive loads. No special precautions are needed to drive loads in the 50 pF to 1000 pF range. It should be noted however that since the power supply current has been reduced by a factor of 10, so also has the slew rate and gain bandwidth product. This reduction can cause reduced performance in AC applications where the LM124 is being replaced by an LP124. Such situations usually occur when the LM124 has been operated near its power bandwidth.
Output short circuits either to ground or to the positive power supply should be of short time duration. Units can be destroyed, not as a result of the short circuit current causing metal fusing, but rather due to the large increase in IC chip dissipation which will cause eventual failure due to excessive junction temperatures. For example: If all four amplifiers were simultaneously shorted to ground on a 10 V supply the junction temperature would rise by $110^{\circ} \mathrm{C}$.
Exceeding the negative common-mode limit on either input will cause a reversal of phase to the output and force

TL/H/8562-5
the amplifier to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. Exceeding the positive common-mode limit on a single input will not change the phase of the output. However, if both inputs exceed the limit, the output of the amplifier will be forced to a low state. In neither case does a latch occur since returning the input within the common mode range puts the input stage and thus the amplifier in a normal operating mode.
The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage. If complementary power supplies are available, all of the standard op amp circuits can be used. In general, introducing a pseudo-ground (a bias voltage reference to $\mathrm{V}+/ 2$) will allow operation above and below this value in single power supply systems. Many application circuits are shown which take advantage of the wide input common-mode voltage range which includes ground. In most cases, input biasing is not required and input voltages which range to ground can easily be accommodated.

Comparator with Hysteresis

TL/H/8562-6

TL/H/8562-7

TL/H/8562-8

Application Hints（Continued）

TL/H/8562-15

TL/H/8562-16

Window Comparator

TL/H/8562-17

LPC660AM/LPC660AI/LPC660I CMOS Quad Operational Amplifier

General Description

The LPC660 CMOS Quad operational amplifier is ideal for operation from a single supply. It is fully specified for operation from +5 V to +15 V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input V_{OS}, drift, and broadband noise as well as voltage gain (into $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$) are all equal to or better than widely accepted bipolar equivalents, while the power supply requirement is less than 1 mW .
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LPC662 datasheet for a Dual CMOS operational amplifier with these same features.

Applications

■ High-impedance buffer
比 Precision current-to-voltage converter
四 Long-term integrator

- High-impedance preamplifier
- Active filter
- Sample-and-Hold circuit
- Peak detector

Features

- Rail-to-rail output swing
- Micropower operation (1 mW)
- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain

120 dB

- Low input offset voltage 3 mV max
. Low offset voltage drift $1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
․ Ultra low input bias current 40 fA
- Input common-mode includes GND
(1) Operation guaranteed from +5 V to +15 V
a Low distortion
0.01% at 1 kHz
- Slew rate
$0.11 \mathrm{~V} / \mu \mathrm{s}$
- Insensitive to latch-up

Connection Diagram

Dual-In-Line Package

Top View

Ordering Information

Package	Temperature Range		NSC Drawing
	Military	Industrial	
14-Pin Cavity DIP	LPC660AMD		M14A
14-Pin Small Outline		LPC660AIM or LPC660IM	N14A
14-Pin Molded DIP		LPC660AIN or LPC660IN	N

Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Differential Input Voltage
Either Input beyond V^{+}or V^{-}
\pm Supply Voltage
0.7 V

Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Output Short Circuit to GND (Note 1)
Lead Temperature (Soldering, 10 sec .)
Storage Temp. Range

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC660AM	LPC660AI	LPC6601	Units
			Limit (Note 4)	Limit (Note 4)	Limit (Note 4)	
Input Offset Voltage		1	3	3	6	mV max
			3.5	3.3	6.3	
Input Offset Voltage Average Drift		1.3				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	(Note 8)	0.04	20	20	20	pA max
			100	4	4	
Input Offset Current	(Note 8)	0.01	20	20	20	pA max
			100	2	2	
Input Resistance		>1				Tera Ω
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
			68	68	61	
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}+\leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \min \end{gathered}$
			68	68	61	
Negative Power Supply Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	84	84	74	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			82	83	73	
Input Common Mode Voltage Range	$\begin{aligned} & V^{+}=5 \mathrm{~V} \& 15 \mathrm{~V} \\ & \text { For CMRR }>50 \mathrm{~dB} \end{aligned}$	-0.4	-0.1	-0.1	-0.1	$\begin{gathered} V \\ \max \end{gathered}$
			0	0	0	
		V+-1.9	$\mathrm{V}+-2.3$	$\mathrm{V}+-2.3$	$\mathrm{V}+$ - 2.3	$\begin{gathered} V \\ \min \end{gathered}$
			$\mathbf{v}+$ - 2.6	v+ - 2.5	v+-2.5	
Large Signal Voltage Gain	$\left.R_{\mathrm{L}}=100 \mathrm{k} \Omega \text { (Note } 5\right)$ Sourcing Sinking	1000	400	400	300	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			250	300	200	
		500	180	180	90	V / mV min
			70	120	70	
	$R_{\mathrm{L}}=5 \mathrm{k} \Omega(\text { Note } 5)$ Sourcing Sinking	1000	200	200	100	V / mV min
			150	160	80	
		250	100	100	50	V / mV min
			35	60	40	

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified. (Continued)

Parameter	Conditions	Typ	LPC660AM	LPC660AI	LPC6601	Units
			$\begin{gathered} \text { Limit } \\ \text { (Note 4) } \end{gathered}$	Limit (Note 4)	Limit (Note 4)	
Output Swing	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	4.987	4.970	4.970	4.940	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.950	4.950	4.910	
		0.004	0.030	0.030	0.060	$\begin{gathered} V \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.940	4.850	4.850	4.750	$\begin{gathered} V \\ \min \end{gathered}$
			4.750	4.750	4.650	
		0.040	0.150	0.150	0.250	$\begin{gathered} V \\ \max \end{gathered}$
			0.250	0.250	0.350	
	$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.970	14.920	14.920	14.880	$\begin{gathered} V \\ \min \end{gathered}$
			14.880	14.880	14.820	
		0.007	0.030	0.030	0.060	$\begin{gathered} V \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.840	14.680	14.680	14.580	$\begin{gathered} V \\ \min \end{gathered}$
			14.600	14.600	14.480	
		0.110	0.220	0.220	0.320	$\begin{gathered} V \\ \max \end{gathered}$
			0.300	0.300	0.400	
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=5 \mathrm{~V}$	22	16	16	13	mA min
			12	14	11	
		21	16	16	13	mA min
			12	14	11	
Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{O}=13 \mathrm{~V}$	40	19	28	23	mA \min
			19	25	20	
		39	19	28	23	mA
			19	24	19	min
Supply Current	All Four Amplifiers$V_{O}=1.5 \mathrm{~V}$	160	200	200	240	$\mu \mathrm{A}$ max
			250	230	270	

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	LPC660AM	LPC660AI	LPC6601	Units
			Limit (Note 4)	$\begin{aligned} & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Limit (Note 4)	
Slew Rate	(Note 6)	0.11	0.07	0.07	0.05	$\mathrm{V} / \mu \mathrm{s}$ min
			0.04	0.05	0.03	
Gain-Bandwidth Product		0.35				MHz
Phase Margin		50				Deg
Gain Margin		17				dB
Amp-to-Amp Isolation	(Note 7)	130				dB
Input Referred Voltage Noise	$\mathrm{F}=1 \mathrm{kHz}$	42				$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Current Noise	$\mathrm{F}=1 \mathrm{kHz}$	0.0002				$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}=10 \mathrm{kHz}, \mathrm{~A}_{\mathrm{V}}=-10 \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V}_{\mathrm{PP}} \end{aligned}$	0.01				\%

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.

Note 2: The junction-to-ambient thermal resistance of the molded plastic DIP (N) is $101^{\circ} \mathrm{C} / \mathrm{W}$, the molded plastic SO (M) package is $152^{\circ} \mathrm{C} / \mathrm{W}$, and the cavity DIP (D) package is $124^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into a PC board.

Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: These limits are guaranteed and are used in calculating outgoing AQL.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{PP}}$.
Note 8: The LPC660AI and the LPC6601 input bias current and input offset current specifications over the temperature range are guaranteed through correlation techniques; these numbers reflect the true performance of the part. All other input bias and offset current specifications (other than the typical) are measured; these numbers are degraded in order to reduce the test time (and the cost of the part) taken in measuring these parameters.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Non-Inverting Small Signal Pulse Response

Inverting Slew Rate vs Temperature

Large-Signal Pulse Non-Inverting Response

TL/H/10547-3

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Continued)

LPC662AM/LPC662AI/LPC662I CMOS Dual Operational Amplifier

General Description

The LPC662 CMOS Dual operational amplifier is ideal for operation from a single supply. It is fully specified for operation from +5 V to +15 V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input $V_{O S}$, drift, and broadband noise as well as voltage gain (into $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$) are all equal to or better than widely accepted bipolar equivalents, while the power supply requirement is less than 0.5 mW .
This chip is built with National's advanced Double-Poly Sili-con-Gate CMOS process.
See the LPC660 datasheet for a Quad CMOS operational amplifier with these same features.

Applications

- High-impedance buffer
- Precision current-to-voltage converter
- Long-term integrator
- High-impedance preamplifier
- Active filter

■ Sample-and-Hold circuit

- Peak detector

Features

- Rail-to-rail output swing
- Micropower operation ($<0.5 \mathrm{~mW}$)
- Specified for $100 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ loads
- High voltage gain 120 dB
- Low input offset voltage 3 mV max

■ Low offset voltage drift $1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

- Ultra low input bias current 40 fA
- Input common-mode includes GND

■ Operation guaranteed from +5 V to +15 V

- Low distortion
0.01% at 1 kHz
\square Slew rate $\quad 0.11 \mathrm{~V} / \mu \mathrm{s}$
- Insensitive to latch-up

Connection Diagram

TL/H/10548-1

Ordering Information

Package	Temperature Range		NSC Drawing
	Military	Industrial	
8-Pin Cavity DIP	LPC662AMD		M08A
8-Pin Small Outline		LPC662AIM or LPC662IM	N08E
8-Pin Molded DIP		LPC662AIN or LPC662IN	N

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	$\begin{aligned} & \text { LPC662AM } \\ & \text { Limit } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LPC662AI } \\ & \text { Limit } \\ & \text { (Note 4) } \\ & \hline \end{aligned}$		Units
Input Offset Voltage		1	3	3	6	mV max
			3.5	3.3	6.3	
Input Offset Voltage Average Drift		1.3				$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	(Note 8)	0.04	20	20	20	pA max
			100	4	4	
Input Offset Current	(Note 8)	0.01	20	20	20	pA max
			100	2	2	
Input Resistance		>1				Tera Ω
Common Mode Rejection Ratio	$\begin{aligned} & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12.0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			68	68	61	
Positive Power Supply Rejection Ratio	$\begin{aligned} & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	83	70	70	63	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
			68	68	61	
Negative Power Supply Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}^{-} \leq-10 \mathrm{~V}$	94	84	84	74	dB min
			82	83	73	
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \text { For } \mathrm{CMRR} \geq 50 \mathrm{~dB} \end{aligned}$	-0.4	-0.1	-0.1	-0.1	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0	0	0	
		$v+-1.9$	$V+-2.3$	V+-2.3	$\mathrm{V}+-2.3$	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			$\mathbf{v}+$ - 2.6	v+-2.5	v+-2.5	
Large Signal Voltage Gain	$R_{L}=100 \mathrm{k} \Omega(\text { Note } 5)$ Sourcing Sinking	1000	400	400	300	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
			250	300	200	
		500	180	180	90	V / mV min
			70	120	70	
	$R_{\mathrm{L}}=5 \mathrm{k} \Omega(\text { Note } 5)$ Sourcing Sinking	1000	200	200	100	V / mV min
			150	160	80	
		250	100	100	50	$\begin{gathered} \mathrm{V} / \mathrm{mV} \\ \min \end{gathered}$
			35	60	40	

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}+/ 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified. (Continued)

Parameter	Conditions	Typ	LPC662AM Limit (Note 4)	LPC662AI Limit (Note 4)	$\begin{aligned} & \text { LPC662I } \\ & \text { Limit } \\ & \text { (Note 4) } \end{aligned}$	Units
Output Swing	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.987	4.970	4.970	4.940	$\begin{gathered} \mathrm{V} \\ \min \end{gathered}$
			4.950	4.950	4.910	
		0.004	0.030	0.030	0.060	$\begin{gathered} V \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	4.940	4.850	4.850	4.750	$\begin{gathered} V \\ \mathrm{~min} \end{gathered}$
			4.750	4.750	4.650	
		0.040	0.150	0.150	0.250	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.250	0.250	0.350	
	$\begin{aligned} & V+=15 \mathrm{~V} \\ & R_{L}=100 \mathrm{k} \Omega \text { to } V+/ 2 \end{aligned}$	14.970	14.920	14.920	14.880	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			14.880	14.880	14.820	
		0.007	0.030	0.030	0.060	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
			0.050	0.050	0.090	
	$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \text { to } \mathrm{V}+/ 2 \end{aligned}$	14.840	14.680	14.680	14.580	$\begin{gathered} V \\ \min \end{gathered}$
			14.600	14.600	14.480	
		0.110	0.220	0.220	0.320	$\underset{\max }{V}$
			0.300	0.300	0.400	
Output Current$\mathrm{V}^{+}=5 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	22	16	16	13	mA min
			12	14	11	
	Sinking, $\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	21	16	16	13	mA min
			12	14	11	
Output Current$\mathrm{V}^{+}=15 \mathrm{~V}$	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$	40	19	28	23	mA min
			19	25	20	
		39	19	28	23	mA
			19	24	19	min
Supply Current	Both Amplifiers$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	86	120	120	140	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
			145	140	160	

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. Boldface limits apply at the temperature extremes. $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$, and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M}$ unless otherwise specified.

Parameter	Conditions	Typ	$\begin{array}{c}\text { LPC662AM } \\ \text { Limit } \\ \text { (Note 4) }\end{array}$	$\begin{array}{c}\text { LPC662AI } \\ \text { Limit } \\ \text { (Note 4) }\end{array}$	$\begin{array}{c}\text { LPC662I } \\ \text { Limit } \\ \text { (Note 4) }\end{array}$	Units
Slew Rate	(Note 6)	0.11	0.07	0.07	0.05	$\mathrm{~V} / \mu \mathrm{s}$
min						

Note 1: Applies to both single supply and split supply operation. Continuous short circuit operation at elevated ambient temperature and/or multiple Op Amp shorts can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$.
Note 2: The junction-to-ambient thermal resistance of the molded plastic DIP (N) is $101^{\circ} \mathrm{C} / \mathrm{W}$, the molded plastic SO (M) package is $152^{\circ} \mathrm{C} / \mathrm{W}$, and the cavity DIP (D) package is $124^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into a PC board.

Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.
Note 4: These limits are guaranteed and are used in calculating outgoing AQL.
Note 5: $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=7.5 \mathrm{~V}$ and R_{L} connected to 7.5 V . For Sourcing tests, $7.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 11.5 \mathrm{~V}$. For Sinking tests, $2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 7.5 \mathrm{~V}$.
Note 6: $\mathrm{V}^{+}=15 \mathrm{~V}$. Connected as Voltage Follower with 10 V step input. Number specified is the slower of the positive and negative slew rates.
Note 7: Input referred. $V^{+}=15 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}^{+} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}_{\mathrm{Pp}}$.
Note 8: The LPC662AI and the LPC6621 input bias current and input offset current specifications over the temperature range are guaranteed through correlation techniques; these numbers reflect the true performance of the part. All other input bias and offset current specifications (other than the typical) are measured; these numbers are degraded in order to reduce the test time (and the cost of the part) taken in measuring these parameters.

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Output Characteristics

Crosstalk Rejection vs Frequency

Power Supply Rejection Ratio vs Frequency

TL/H/10548-2

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{v}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Continued)

Gain and Phase
Responses vs Temperature

Non-Inverting
Small-Signal Pulse

Open-Loop
Frequency Response

Gain Error

Inverting Large-Signal

Gain and Phase
Responses vs Load
Capacitance

Common-Mode Error vs Common-Mode Voltage of 3 Representative Units

Non-Inverting Large-Signal Pulse

Typical Performance Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（Continued）

National Semiconductor

OP-07 Low Offset, Low Drift Operational Amplifier

General Description

The OP-07 has very low input offset voltage ($25 \mu \mathrm{~V}$ max. for OP-07A) which is obtained by trimming at the wafer stage. These low offset voltages generally eliminate any need for external nulling. The OP-07 also features low input bias current ($\pm 2 \mathrm{nA}$ for OP-07A) and high open-loop gain ($300 \mathrm{~V} / \mathrm{mV}$ for OP-07A). The low offsets and high open-loop gain make the OP-07 particularly useful for high-gain applications.
The wide input voltage range of $\pm 13 \mathrm{~V}$ minimum combined with high CMRR of 110 dB and high input impedance provide high accuracy in the non-inverting circuit configuration. Excellent linearity and gain accuracy can be maintained even at high closed-loop gains.
Stability of offsets and gain with time or variation in temperature is excellent.
The OP-07 is available in TO-99 metal can, ceramic or molded DIP.
For improved specifications, see the LM607.

Features

a Low Vos
(1) Low VOS Drift

回 Ultra-Stable vs Time

- Low Noise
- Wide Input Voltage Range
$\pm 14 \mathrm{~V}$
- Wide Supply Voltage Range
$\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Fits 725/108A/308A, 741, AD510 Sockets
- Replaces the μ A714

Applications

© Strain Gauge Amplifiers

- Thermocouple Amplifiers
- Precision Reference Buffer

■ Analog Computing Functions

Connection Diagrams

Dual-In-Line Package

TL/H/10550-1
See NS Package Number J08A or N08E

Metal Can Package

TL/H/10550-2
See NS Package Number H08C

Ordering Information

$\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathbf{C}$ $\mathbf{V}_{\text {OSMax }}$ $(\mu \mathbf{V})$	H08C TO-99	Package J08A CERDIP	N08E Plastic	Operating Temperature Range
25	OP-07AJ*	OP-07AZ *		MIL
75	OP-07EJ	OP-07EZ	OP-07EP	COM
75	OP-07J*	OP-07Z*		MIL
150	OP-07CJ	OP-07CZ	OP-07CP	COM
150	OP-07DJ		OP-07DP	COM

[^20]If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage

Internal Power Dissipation (Note 5)	500 mW
Differential Input Voltage	$\pm 30 \mathrm{~V}$
Input Voltage (Note 6)	$\pm 22 \mathrm{~V}$
Output Short-Circuit Duration	Continuous

Storage Temperature Range

J and Z Packages	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
P Package	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec.)	$260^{\circ} \mathrm{C}$
Junction Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range

OP-07A, OP-07,
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Boldface type refers to limits over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	OP-07A			OP-07			Units
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 1) (Note 1)		$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\begin{aligned} & 25 \\ & 60 \end{aligned}$		$\begin{aligned} & 30 \\ & 60 \end{aligned}$	$\begin{gathered} 75 \\ 200 \end{gathered}$	$\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OS/t }}$	Long-Term Input Offset Voltage Stability	(Note 2)		0.2	1.0		0.2	1.0	$\mu \mathrm{V} / \mathrm{Mo}$
los	Input Offset Current			$\begin{aligned} & 0.3 \\ & 0.8 \end{aligned}$	$\begin{gathered} 2.0 \\ 4 \\ \hline \end{gathered}$		$\begin{aligned} & 0.4 \\ & 1.2 \end{aligned}$	$\begin{array}{r} 2.8 \\ 5.6 \\ \hline \end{array}$	nA
I_{B}	Input Bias Current			$\begin{gathered} \pm 0.7 \\ \pm \mathbf{1} \end{gathered}$	$\begin{gathered} \pm 2.0 \\ \pm 4 \end{gathered}$		$\begin{gathered} \pm 1.0 \\ \pm 2 \end{gathered}$	$\begin{gathered} \pm 3.0 \\ \pm 6 \end{gathered}$	nA
$e_{\text {np-p }}$	Input Noise Voltage	0.1 Hz to 10 Hz (Note 3)		0.35	0.6		0.35	0.6	μV_{p-p}
e_{n}	Input Noise Voltage Density	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \text { (Note 3) } \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \text { (Note 3) } \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \text { (Note 3) } \end{aligned}$		$\begin{gathered} 10.3 \\ 10.0 \\ 9.6 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 13.0 \\ & 11.0 \\ & \hline \end{aligned}$		$\begin{gathered} 10.3 \\ 10.0 \\ 9.6 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 13.0 \\ & 11.0 \end{aligned}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{i}_{\text {np-p }}$	Input Noise Current	0.1 Hz to 10 Hz (Note 3)		14	30		14	30	$p A_{p-p}$
i_{n}	Input Noise Current Density	$\begin{aligned} & f_{\mathrm{O}}=10 \mathrm{~Hz}(\text { Note 3) } \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note 3) } \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}(\text { Note 3) } \\ & \hline \end{aligned}$		$\begin{aligned} & 0.32 \\ & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & \hline 0.80 \\ & 0.23 \\ & 0.17 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.32 \\ & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.23 \\ & 0.17 \\ & \hline \end{aligned}$	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
R_{IN}	Input Resistance Differential-Mode	(Note 4)	30	80		20	60		$\mathrm{M} \Omega$
RINCM	Input Resistance Common-Mode			200			200		G Ω
IVR	Input Voltage Range		$\begin{gathered} \pm 13.0 \\ \pm 13.0 \\ \hline \end{gathered}$	$\begin{gathered} \pm 14.0 \\ \pm 13.5 \end{gathered}$		$\begin{gathered} \pm 13.0 \\ \pm \mathbf{1 3 . 0} \end{gathered}$	$\begin{gathered} \pm 14.0 \\ \pm 13.5 \\ \hline \end{gathered}$		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}$	$\begin{gathered} 110 \\ 106 \\ \hline \end{gathered}$	$\begin{aligned} & 126 \\ & 123 \end{aligned}$		$\begin{aligned} & 110 \\ & 106 \\ & \hline \end{aligned}$	$\begin{aligned} & 126 \\ & 123 \end{aligned}$		dB
PSRR	Power Supply Rejection Ratio	$V_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$		$\begin{array}{r} 4 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Avo	Large-Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \text { (Note 4) } \\ & \hline \end{aligned}$	$\begin{gathered} 300 \\ 200 \\ 150 \end{gathered}$	$\begin{aligned} & 500 \\ & 400 \\ & 400 \end{aligned}$		$\begin{gathered} 200 \\ 150 \\ 150 \end{gathered}$	$\begin{gathered} 500 \\ 400 \\ 400 \end{gathered}$		V/mV
V_{0}	Output Voltage Swing	$\begin{aligned} & R_{L} \geq 10 \mathrm{k} \Omega \\ & R_{L} \geq 2 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{gathered} \pm 12.5 \\ \pm 12.0 \\ \pm 12.0 \\ \pm 10.5 \\ \hline \end{gathered}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 12.6 \\ \pm 12.0 \end{gathered}$		$\begin{gathered} \pm 12.5 \\ \pm 12.0 \\ \pm 12.0 \\ \pm 10.5 \\ \hline \end{gathered}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 12.6 \\ \pm 12.0 \end{gathered}$		V

Electrical Characteristics (Continued)

Unless otherwise specified, $V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$. Boldface type refers to limits over $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	OP-07A			OP-07			Units
			Min	Typ	Max	Min	Typ	Max	
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ (Note 3)	0.1	0.3		0.1	0.3		$\mathrm{V} / \mu \mathrm{s}$
BW	Closed-Loop Bandwidth	$\mathrm{A}_{\mathrm{VCL}}=+1$ (Note 3)	0.4	0.6		0.4	0.6		MHz
R_{0}	Open-Loop Output Resistance	$\mathrm{V}_{\mathrm{O}}=0,10=0$		60			60		Ω
P_{d}	Power Consumption	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \text { No Load } \\ & V_{S}= \pm 3 \mathrm{~V}, \text { No Load } \end{aligned}$		$\begin{gathered} 75 \\ 4 \end{gathered}$	$\begin{gathered} 120 \\ 6 \\ \hline \end{gathered}$		$\begin{gathered} 75 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 120 \\ 6 \\ \hline \end{gathered}$	mW
	Offset Adj. Range	$\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega$		± 4			± 4		mV
$\begin{aligned} & \mathrm{TCV}_{\mathrm{OS}} \\ & \mathrm{TCV}_{\mathrm{OSn}} \\ & \hline \end{aligned}$	Average Input Offset Voltage Drift Without External Trim With External Trim	(Note 3) $R_{P}=20 \mathrm{k} \Omega \text { (Note 4) }$		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	1.3 1.3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TClos	Average Input Offset Current Drift	(Note 3)		5	25		8	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{TCl}_{\mathrm{B}}$	Average Input Bias Drift	(Note 3)		8	25		13	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$

Note 1: OP-07A grade V_{OS} is measured approximately one minute after application of power. For all other grades V_{OS} is measured approximately 0.5 second after application of power.
Note 2: Long-Term Offset Voltage Stability refers to the averaged trend line of $V_{O S}$ vs time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically $2.5 \mu \mathrm{~V}$. Parameter is sample tested.
Note 3: Sample tested.
Note 4: Guaranteed by design.
Note 5: The typical θ_{JA} of the $\mathrm{H08}$ (TO-99) package is $155^{\circ} \mathrm{C} / \mathrm{W}$, the J 08 (CERDIP) package is $92^{\circ} \mathrm{C} / \mathrm{W}$ and the $\mathrm{NO8}$ (Molded DIP) is $100^{\circ} \mathrm{C} / \mathrm{W}$. The typical θ_{JC} of the H08 package is $17.5^{\circ} \mathrm{C} / \mathrm{W}$. All numbers apply for packages soldered directly into an etched circuit board.
Note 6: For supply voltages of less than $\pm 22 \mathrm{~V}$, the maximum input voltage is 0.5 V beyond either supply.
Simplified Schematic

*R2A and R2B are electronically trimmed on chip at the factory for minimum offset voltage.

Electrical Characteristics
Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Boldface type refers to limits over $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	OP-07E			OP-07C			Units
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 1)		$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{gathered} 75 \\ 130 \end{gathered}$		$\begin{aligned} & 60 \\ & 85 \end{aligned}$	$\begin{aligned} & 150 \\ & 250 \end{aligned}$	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS/t }}$	Long-Term $V_{\text {OS }}$ Stability	(Note 2)		0.3	1.5		0.4	2.0	$\mu \mathrm{V} / \mathrm{Mo}$
los	Input Offset Current			$\begin{aligned} & 0.5 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 3.8 \\ & \mathbf{5 . 3} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	$\begin{array}{r} 6.0 \\ \mathbf{8 . 0} \\ \hline \end{array}$	nA
I_{B}	Input Bias Current			$\begin{array}{r} \pm 1.2 \\ \pm 1.5 \\ \hline \end{array}$	$\begin{array}{r} \pm 4.0 \\ \pm \mathbf{5 . 5} \end{array}$		$\begin{gathered} \pm 1.8 \\ \pm 2.2 \end{gathered}$	$\begin{array}{r} \pm 7.0 \\ \pm \mathbf{9 . 0} \end{array}$	nA
$\mathrm{e}_{\text {np-p }}$	Input Noise Voltage	0.1 Hz to 10 Hz (Note 3)		0.35	0.6		0.38	0.65	μV_{p-p}
e_{n}	Input Noise Voltage Density	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 3) \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} 10.3 \\ 10.0 \\ 9.6 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 13.0 \\ & 11.0 \end{aligned}$		$\begin{gathered} 10.5 \\ 10.2 \\ 9.8 \end{gathered}$	$\begin{array}{r} 20.0 \\ 13.5 \\ 11.5 \end{array}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{i}_{\text {np-p }}$	Input Noise Current	0.1 Hz to 10 Hz (Note 3)		14	30		15	35	$\mathrm{pA}_{\mathrm{p} \text {-p }}$
i_{n}	Input Noise Current Density	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 3) \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.32 \\ & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.23 \\ & 0.17 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.27 \\ & 0.18 \end{aligned}$	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance Differential-Mode	(Note 4)	15	50		8	33		M Ω
RINCM	Input Resistance Common-Mode			160			120		$\mathrm{G} \Omega$
IVR	Input Voltage Range		± 13.0	± 14.0		± 13	± 14		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}$	$\begin{gathered} 106 \\ 103 \\ \hline \end{gathered}$	$\begin{gathered} 123 \\ 123 \\ \hline \end{gathered}$		$\begin{aligned} & 100 \\ & 97 \\ & \hline \end{aligned}$	$\begin{gathered} 120 \\ 120 \\ \hline \end{gathered}$		dB
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & V_{S}= \pm 3 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 20 \\ & 32 \end{aligned}$		$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{aligned} & 32 \\ & \mathbf{5 1} \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$
Avo	Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V} \text { (Note 4) } \\ & \hline \end{aligned}$	$\begin{gathered} 200 \\ 180 \\ 150 \end{gathered}$	$\begin{gathered} 500 \\ 450 \\ 400 \end{gathered}$		$\begin{aligned} & 120 \\ & 100 \\ & 100 \end{aligned}$	$\begin{gathered} 400 \\ 400 \\ 400 \end{gathered}$		V/mV
V_{0}	Output Voltage Swing	$\begin{aligned} & R_{L} \geq 10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{gathered} \pm 12.5 \\ \pm 12.0 \\ \pm 12.0 \\ \pm 10.5 \\ \hline \end{gathered}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 12.6 \\ \pm 12.0 \end{gathered}$	\because	$\begin{gathered} \pm 12.0 \\ \pm 11.5 \\ \pm 11.0 \end{gathered}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 12.6 \\ \pm 12.0 \end{gathered}$		V
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ (Note 3)	0.1	0.3		0.1	0.3		$\mathrm{V} / \mu \mathrm{s}$
BW	Closed-Loop Bandwidth	$\mathrm{A}_{\mathrm{VCL}}=+1$ (Note 3)	0.4	0.6		0.4	0.6		MHz
R_{0}	Output Resistance	$\mathrm{V}_{\mathrm{O}}=0, l_{0}=0$		60	,		60		Ω
P_{d}	Power Consumption	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \text { No Load } \\ & V_{S}= \pm 3 \mathrm{~V}, \text { No Load } \end{aligned}$		$\begin{gathered} 75 \\ 4 \end{gathered}$	$\begin{gathered} 120 \\ 6 \\ \hline \end{gathered}$		$\begin{gathered} 80 \\ 4 \end{gathered}$	$\begin{gathered} 150 \\ 8 \\ \hline \end{gathered}$	mW
	Offset Adj. Range	$\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega$		± 4			± 4		mV
$\begin{aligned} & \mathrm{TCV}_{\mathrm{OS}} \\ & \mathrm{TCV}_{\mathrm{OS}} \\ & \hline \end{aligned}$	Average Input Offset Voltage Drift Without External Trim With External Trim	(Note 4) $R_{P}=20 \mathrm{k} \Omega \text { (Note 4) }$		$\begin{aligned} & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.4 \\ & \hline \end{aligned}$	1.8 1.6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TClos	Average Input Offset Current Drift	(Note 3)		8	35		12	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{TCl}_{\mathrm{B}}$	Average Input Bias Current Drift	(Note 3)		13	35		18	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$

Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Boldface type refers to limits over $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	OP-07D			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	(Note 1)		$\begin{aligned} & 60 \\ & \mathbf{8 5} \end{aligned}$	$\begin{array}{r} 150 \\ 250 \end{array}$	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS/t }}$	Long-Term $\mathrm{V}_{\text {OS }}$ Stability	(Note 2)		0.5	3.0	$\mu \mathrm{V} / \mathrm{Mo}$
los	Input Offset Current			$\begin{aligned} & 0.8 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 6.0 \\ & \mathbf{8 . 0} \end{aligned}$	$n \mathrm{~A}$
I_{B}	Input Bias Current			$\begin{array}{r} \pm 2.0 \\ \pm \mathbf{3 . 0} \end{array}$	$\begin{gathered} \pm 12.0 \\ \pm \mathbf{1 4 . 0} \end{gathered}$	nA
$e_{\text {np-p }}$	Input Noise Voltage	0.1 Hz to 10 Hz (Note 3)		0.38	0.65	$\mu \mathrm{Vp}$-p
e_{n}	Input Noise Voltage Density	$\begin{aligned} \mathrm{f}_{\mathrm{O}} & =10 \mathrm{~Hz} \\ \mathrm{f}_{\mathrm{O}} & =100 \mathrm{~Hz}(\text { Note } 3) \\ \mathrm{f}_{\mathrm{O}} & =1000 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} 10.5 \\ 10.3 \\ 9.8 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 13.5 \\ & 11.5 \end{aligned}$	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{i}_{\text {np-p }}$	Input Noise Current	0.1 Hz to 10 Hz (Note 3)		15	35	pAp-p
i_{n}	Input Noise Current Density	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}(\text { Note } 3) \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.15 \\ & 0.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.27 \\ & 0.18 \\ & \hline \end{aligned}$	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance Differential-Mode	(Note 4)	7	31		$\mathrm{M} \Omega$
$\mathrm{R}_{\text {INCM }}$	Input Resistance Common-Mode			120		$\mathrm{G} \Omega$
IVR	Input Voltage Range		± 13	± 14		V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 13 \mathrm{~V}$	$\begin{aligned} & 94 \\ & 94 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 106 \end{aligned}$		dB
PSRR	Power Supply Rejection Ratio	$V_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		$\begin{gathered} 7 \\ 10 \\ \hline \end{gathered}$	$\begin{array}{r} 32 \\ \mathbf{5 1} \\ \hline \end{array}$	$\mu \mathrm{V} / \mathrm{V}$
Avo	Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}} \leq 2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}} \geq 500 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}} \pm 3 \mathrm{~V}(\text { Note } 4) \end{aligned}$	$\begin{aligned} & 120 \\ & 100 \end{aligned}$	$\begin{gathered} 400 \\ 400 \\ 400 \end{gathered}$		V / mV
V_{0}	Output Voltage Swing	$\begin{aligned} & R_{L} \geq 10 \mathrm{k} \Omega \\ & R_{L} \geq 2 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\ & R_{\mathrm{L}} \geq 1 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\begin{gathered} \pm 12.0 \\ \pm 11.5 \\ \pm \mathbf{1 1 . 0} \end{gathered}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 12.6 \\ \pm 12.0 \\ \hline \end{gathered}$		V
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ (Note 3)	0.1	0.3		$\mathrm{V} / \mu \mathrm{s}$
BW	Closed-Loop Bandwidth	$\mathrm{A}_{\mathrm{VCL}}=+1$ (Note 3)	0.4	0.6		MHz
RO	Output Resistance	$\mathrm{V}_{\mathrm{O}}=0, \mathrm{l}_{0}=0$		60		Ω
P_{d}	Power Consumption	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \text { No Load } \\ & V_{S}= \pm 3 \mathrm{~V}, \text { No Load } \end{aligned}$		$\begin{gathered} 80 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 150 \\ 8 \\ \hline \end{gathered}$	mW
	Offset Adj. Range	$\mathrm{R}_{\mathrm{P}}=20 \mathrm{k} \Omega$		± 4		mV
$\begin{aligned} & \mathrm{TCV}_{\mathrm{OS}} \\ & \mathrm{TCV}_{\mathrm{OS}} \end{aligned}$	Average Input Offset Voltage Drift Without External Trim With External Trim	(Note 4) $R_{P}=20 \mathrm{k} \Omega \text { (Note 4) }$		$\begin{aligned} & 0.7 \\ & 0.7 \\ & \hline \end{aligned}$	2.5 2.5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
TClos	Average Input Offset Current Drift	(Note 3)		12	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{TCl}_{\mathrm{B}}$	Average Input Bias Current Drift	(Note 3)		18	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$

Note 1: OP-07A grade V_{OS} is measured approximately one minute after application of power. For all other grades V_{OS} is measured approximately 0.5 second after application of power.
Note 2: Long-Term Offset Voltage Stability refers to the averaged trend line of $V_{O S}$ vs Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in $\mathrm{V}_{\text {OS }}$ during the first 30 operating days are typically $2.5 \mu \mathrm{~V}$. Parameter is sample tested.
Note 3: Sample Tested.
Note 4: Guaranteed by design.

TL/H/10550-4

Low Frequency Noise Test Circuit

Optional Offset Nulling Circuit

TL/H/10550-6

TL081CP Wide Bandwidth JFET Input Operational Amplifier

General Description

The TL081 is a low cost high speed JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The TL081 is pin compatible with the standard LM741 and uses the same offset voltage adjustment circuitry. This feature allows designers to immediately upgrade the overall performance of existing LM741 designs.
The TL081 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices has low noise and offset voltage drift, but for applications where these requirements
are critical, the LF356 is recommended. If maximum supply current is important, however, the TL081C is the better choice.

Features

- Internally trimmed offset voltage	15 mV
- Low input bias current	50 pA
m Low input noise voltage	$25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low input noise current	$0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
W Wide gain bandwidth	4 MHz
ఐ High slew rate	$13 \mathrm{~V} / \mu \mathrm{s}$
囚 Low supply current	1.8 mA
⿴ High input impedance	$10^{12} \Omega$
$\begin{aligned} & \text { Low total harmonic distortion } A_{V}=10 \text {, } \\ & R_{L}=10 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}, \\ & B W=20 \mathrm{~Hz}-20 \mathrm{kHz} \end{aligned}$	<0.02\%
■ Low 1/f noise corner	50 Hz
■ Fast settling time to 0.01\%	$2 \mu \mathrm{~s}$

Simplified Schematic

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	
please contact the National	Semiconductor Sales
Office/Distributors for availability and specifications.	
Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Notes 1 and 6)	670 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}(\mathrm{MAX})}$	$115^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 30 \mathrm{~V}$

please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	TL081C			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Average TC of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		25	$\begin{gathered} 100 \\ 4 \\ \hline \end{gathered}$	pA nA
I_{B}	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 3,4) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		50	$\begin{gathered} 200 \\ 8 \\ \hline \end{gathered}$	pA nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		10^{12}		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ Over Temperature	25 15	100		V / mV V/mV
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 5)	70	100		dB
Is	Supply Current			1.8	2.8	mA

AC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	TL081C			Units
			Min	Typ	Max	
SR	Slew Rate	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13		$\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth Product	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$		25		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $120^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for N package.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{OS}}, l_{\mathrm{B}}$ and I_{OS} are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $P_{D} \cdot T_{j}=T_{A}+\theta_{j A} P_{D}$ where $\theta_{j A}$ is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 5: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $V_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

Note 6: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TL/H/8358-6

Pulse Response

Application Hints

The TL081 is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this
will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output.
Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the

Application Hints (Continued)

common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
The TL081 is biased by a zener reference which allows normal circuit operation on $\pm 4 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The TL081 will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the
resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Detailed Schematic

TL/H/8358-8

Typical Applications

- $V_{\text {OUT }}$ switches high when $R_{S} / \mathrm{S}>\mathrm{V}_{\mathrm{D}}$

Ultra-Low (or High) Duty Cycle Pulse Generator

TL/H/8358-11

- tOUTPUT $^{\text {HIGH }} \approx$ R1C $\ell n \frac{4.8-2 \mathrm{~V}_{\mathrm{S}}}{4.8-\mathrm{V}_{\mathrm{S}}}$
- toutput Low \approx R2C $\ell \mathrm{n} \frac{2 \mathrm{~V}_{\mathrm{S}}-7.8}{\mathrm{~V}_{\mathrm{S}}-7.8}$
where $\mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}+|\mathrm{V}-|$
*Iow leakage capacitor

TL/H/8358-10
Parasitic input capacitance $\mathrm{C} 1 \cong(3 \mathrm{pF}$ for TL081 plus any additional layout capacitance) interacts with feedback elements and creates undesirable high frequency pole. To compensate, add C2 such that: $R 2 C 2 \cong \mathrm{R} 1 \mathrm{C} 1$.

General Description

These devices are low cost, high speed, dual JFET input operational amplifiers with an internally trimmed input offset voltage (BI-FET IITM technology). They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The TL082 is pin compatible with the standard LM1558 allowing designers to immediately upgrade the overall performance of existing LM1558 and most LM358 designs.
These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The devices also exhibit low noise and offset voltage drift.

Features

- Internally trimmed offset voltage 15 mV
- Low input bias current 50 pA
- Low input noise voltage $16 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
. Low input noise current $0.01 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
- Wide gain bandwidth 4 MHz
- High slew rate $13 \mathrm{~V} / \mu \mathrm{s}$
. Low supply current 3.6 mA
- High input impedance $10^{12} \Omega$
. Low total harmonic distortion $A_{V}=10, \quad<0.02 \%$
$R_{L}=10 \mathrm{k}, \mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp}-\mathrm{p}$,
$\mathrm{BW}=20 \mathrm{~Hz}-20 \mathrm{kHz}$
- Low 1/f noise corner 50 Hz
- Fast settling time to $0.01 \% \quad 2 \mu \mathrm{~s}$

Connection Diagram

TL/H/8357-3

Order Number TL082CP
See NS Package Number N08E

Simplified Schematic

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation	$($ Note 1$)$
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}(\text { MAX })}$	$150^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	TL082C			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over Temperature		5	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\Delta V_{O S} / \Delta T$	Average TC of Input Offset Voltage	$\mathrm{R}_{S}=10 \mathrm{k} \Omega$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \end{aligned}$		25	$\begin{gathered} 200 \\ 4 \\ \hline \end{gathered}$	pA nA
I_{B}	Input Bias Current	$\begin{aligned} & T_{j}=25^{\circ} \mathrm{C},(\text { Notes } 4,5) \\ & T_{j} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		50	$\begin{gathered} 400 \\ 8 \end{gathered}$	pA nA
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1012		Ω
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { Over Temperature } \end{aligned}$	25 15	100		V / mV V / mV
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 13.5		V
V_{CM}	Input Common-Mode Voltage Range	$V_{S}= \pm 15 \mathrm{~V}$	± 11	$\begin{aligned} & +15 \\ & -12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	100		dB
PSRR	Supply Voltage Rejection Ratio	(Note 6)	70	100		dB
Is	Supply Current			3.6	5.6	mA

AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	TL082C			Units
			Min	Typ	Max	
	Amplifier to Amplifier Coupling	$T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{~Hz}$ 20 kHz (Input Referred)		-120		dB
SR	Slew Rate	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	8	13		$\mathrm{V} / \mathrm{\mu s}$
GBW	Gain Bandwidth Product	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4		MHz
e_{n}	Equivalent Input Noise Voltage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \\ & \mathrm{f}=1000 \mathrm{~Hz} \end{aligned}$		25		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Equivalent Input Noise Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{f}=1000 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$

Note 1: For operating at elevated temperature, the device must be derated based on a thermal resistance of $115^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient for the N package.
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
Note 3: The power dissipation limit, however, cannot be exceeded.
Note 4: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{OS}}, \mathrm{I}_{\mathrm{B}}$ and los are measured at $\mathrm{V}_{\mathrm{CM}}=0$.
Note 5: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature, T_{j}. Due to the limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{jA}} \mathrm{P}_{\mathrm{D}}$ where θ_{jA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
Note 6: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice. $V_{S}= \pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

Typical Performance Characteristics

TL/H/8357-4

Typical Performance Characteristics (Continued)

Pulse Response

Application Hints

These devices are op amps with an internally trimmed input offset voltage and JFET input devices (BI-FET II). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages
should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.
Exceeding the negative common-mode limit on either input will cause a reversal of the phase to the output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case

Application Hints (Continued)

does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.
Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state.
The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3 V of the negative supply, an increase in input offset voltage may occur.
Each amplifier is individually biased by a zener reference which allows normal circuit operation on $\pm 6 \mathrm{~V}$ power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.
The amplifiers will drive a $2 \mathrm{k} \Omega$ load resistance to $\pm 10 \mathrm{~V}$ over the full temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.
Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards
in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling.
As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.
A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.

Typical Applications

Note 1: All controls flat.
Note 2: Bass and treble boost, mid flat.
Note 3: Bass and treble cut, mid flat.
Note 4: Mid boost, bass and treble flat. Note 5: Mid cut, bass and treble flat.

- All potentiometers are linear taper
- Use the LF347 Quad for stereo applications

Typical Applications (Continued)
Improved CMRR Instrumentation Amplifier

TL/H/8357-14
$A_{V}=\left(\frac{2 R 2}{R 1}+1\right) \frac{R 5}{R 4}$
A and $\frac{1}{ \pm}$ are separate isolated grounds
Matching of R2's, R4's and R5's control CMRR
With $\mathrm{A}_{\mathrm{V}^{\prime}}=1400$, resistor matching $=0.01 \%: C M R R=136 \mathrm{~dB}$

- Very high input impedance
- Super high CMRR

Fourth Order Low Pass Butterworth Filter

- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{R 1 R 2 C C 1}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{\mathrm{R}^{\prime} \mathrm{R}^{\prime} \mathrm{CC} 1}} \cdot \frac{1}{2 \pi}$
- Passband gain $\left(H_{0}\right)=(1+R 4 / R 3)\left(1+R 4^{\prime} / R 3^{\prime}\right)$
- First stage $Q=1.31$
- Second stage $Q=0.541$
- Circuit shown uses nearest 5% tolerance resistor values for a filter with a corner frequency of 100 Hz and a passband gain of 100
- Offset nulling necessary for accurate DC performance

Typical Applications (Continued)

Fourth Order High Pass Butterworth Filter

- Corner frequency $\left(f_{c}\right)=\sqrt{\frac{1}{R_{1} R^{2} C^{2}}} \cdot \frac{1}{2 \pi}=\sqrt{\frac{1}{\mathrm{R}^{\prime} \mathrm{R}^{\prime} \mathrm{C}^{2}}} \cdot \frac{1}{2 \pi}$
- Passband gain $\left(H_{0}\right)=(1+R 4 / R 3)\left(1+R 4^{\prime} /\right.$ R3 $\left.^{\prime}\right)$
- First stage $Q=1.31$
- Second stage $Q=0.541$
- Circuit shown uses closest 5% tolerance resistor values for a filter with a corner frequency of 1 kHz and a passband gain of 10

Ohms to Volts Converter

$V_{\mathrm{O}}=\frac{1 \mathrm{~V}}{\mathrm{R}_{\text {LADDER }}} \times \mathrm{R}_{\mathrm{X}}$
Where R LADDER is the resistance from switch S1 pole to pin 7 of the TLO82CP.

Section 4 Buffers
Section 4 Contents
Buffers Definition of Terms 4-3
Buffers Selection Guide 4-4
LH0002/LH0002C Current Amplifier 4-5
LH0033/LH0033A/LH0033C/LH0033AC, LH0063/LH0063C Fast Buffer Amplifiers 4-8
LH2110/LH2210/LH2310 Dual Voltage Followers 4-19
LH4001 Wideband Current Buffer 4-21
LH4002 Wideband Video Buffer 4-25
LH4003/LH4003C Precision RF Closed Loop Buffer 4-30
LH4004/LH4004C Wideband FET Input Buffer/Amplifier 4-36
LH4006 Precision RF Closed Loop Buffer 4-42
LH4008/LH4008C Fast Buffer 4-48
LH4009/LH4009C Fast Buffer 4-55
LH4010/LH4010C Fast FET Buffer 4-62
LH4011/LH4011C Fast Open Loop Buffer 4-70
LH4012/LH4012C Wideband Buffer 4-78
LH4033C/LH4063C Fast and Ultra Fast Buffer Amplifiers 4-86
LM102/LM302 Voltage Followers 4-97
LM110/LM210/LM310 Voltage Followers 4-103
LM6121/LM6221/LM6321 High Speed Buffers 4-116
LM6125/LM6225/LM6325 High Speed Buffers 4-121

Buffers Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.
Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.
Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental.

where V_{1} is the rms amplitude of the fundamental and V 2, $\mathrm{V} 3, \mathrm{~V} 4, \ldots$ are the rms amplitudes of the individual harmonics.
Input Bias Current: The average of the two input currents. Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.
Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance $\left(R_{S}\right)$ and load resistance (R_{L}).
Output Resistance: The small signal resistance seen at the output with the output voltage near zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.
Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.
Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.
Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

Buffers Selection Guide (Notes 1and 2)

Device Type	Key Features	Slew Rate $(\mathbf{V} / \mu \mathbf{s})$	$\begin{gathered} \text { Bandwidth } \\ -3 \mathrm{~dB}(\mathrm{MHz}) \end{gathered}$	Gain (Av)	$\begin{aligned} & \text { Output } \\ & \text { (V, mA) } \end{aligned}$	Full Power BW $\left(\mathrm{MHz} @ \mathrm{~V}_{\mathrm{Pp}}, \mathrm{R}_{\mathrm{L}}\right)$	Test Conditions
LH4012	Super Fast, High Current	11,500	460	0.93	$\pm 11.4, \pm 230$	180 @ 20, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
LH4009	LH4008 Type with Short Circuit Protection	8000	190	0.87	$\pm 11, \pm 220$	130 @ 20, 50	$R_{L}=50, V_{S}= \pm 15 \mathrm{~V}$
LH4008	FET Input, High Current, Ultra Fast	7000	180	0.94	$\pm 12, \pm 240$	110 @ 20, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
LH4011	Very Fast, High Current	5000	160	0.94	$\pm 11.4, \pm 230$	80 @ 20, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
LH4010	FET Input, High Speed	2500	200	0.97	$\pm 9, \pm 90$	80 @ 10, 1k	$R_{L}=1 \mathrm{k}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$
LH0063	FET Input, Very Fast	2400	200	0.93	$\pm 13, \pm 260$	40 @ 20, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{S}= \pm 15 \mathrm{~V}$
LH4063	Low Cost LH0063	2400	200	0.93	$\pm 13, \pm 260$	40 @ 20, 50	$R_{L}=50, V_{S}= \pm 15 \mathrm{~V}$
LH0033	FET Input, High Speed	1500	100	0.98	$\pm 9, \pm 90$	24 @ 20, 1k	$R_{L}=1 \mathrm{k}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
LH4033	Low Cost LH0033	1400	100	0.98	$\pm 9, \pm 90$	20 @ 20, 1k	$R_{L}=1 \mathrm{k}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$
LH4002	Wideband Video Buffer	1250	200	0.97	$\pm 2.2, \pm 44$	100 @ 4, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$
LH4003	Precision Buffer	1000	250	0.98	$\pm 3, \pm 60$	80 @ 4, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{S}}= \pm 6 \mathrm{~V}$
LH4006	Precision Buffer	1000	350	0.98	$\pm 3, \pm 60$	80 @ 4, 50	$\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{S}}= \pm 6 \mathrm{~V}$
LM6121/6125	High Speed VIPTM Buffer	800	50	0.90	$\pm 12, \pm 240$	10.6 @ 12, 50	$R_{L}=50, V_{S}= \pm 15 \mathrm{~V}$
LH4004	Current Feedback Buffer	600	125	0.98	$\pm 4.5, \pm 90$	40 @ 5, 50	$R_{L}=50, V_{S}= \pm 12 \mathrm{~V}$
LH0002	Medium Speed	200	30	0.97	$\pm 10, \pm 100$	3 @ 20, 1k	$R_{L}=1 \mathrm{k}, \mathrm{V}_{S}= \pm 12 \mathrm{~V}$
LH4001	Low Cost LH0002	125	25	0.97	$\pm 10, \pm 100$	4 @ 10, 100	$\mathrm{R}_{\mathrm{L}}=100, \mathrm{~V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$
LH2110.	Dual Voltage Follower	30	20	0.999	$\pm 10, \pm 10$	0.5 @ 20, 10k	$R_{L}=10 \mathrm{k}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$
LM110, 210, 310	Voltage Follower	30	20	0.9999	$\pm 10, \pm 10$	0.5 @ 20, 10k	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Note 1: Datasheet should be referred to for test conditions and more detailed information.
Note 2: $200^{\circ} \mathrm{C}$ Temp Range Parts are available. Consult local sales office for information.

7 National Semiconductor
 LH0002/LH0002C Current Amplifier

General Description

The LH0002/LH0002C is a general purpose current amplifier.

Features

- High input impedance
$400 \mathrm{k} \Omega$
6Ω
- High power efficiency
- Low harmonic distortion
- DC to 30 MHz bandwidth
- Output voltage swing that approaches supply voltage
- 400 mA pulsed output current
- Slew rate is typically $200 \mathrm{~V} / \mu \mathrm{s}$
- Operation from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$

These features make it ideal to integrate with an operational amplifier inside a closed loop configuration to increase current output. The symmetrical output portion of the cir-
cuit also provides a low output impedance for both the positive and negative slopes of output pulses.
The LH0002 is available in an 8-lead low-profile TO-5 header and a 20 -pin leadless chip carrier; the LH0002C is also available in an 8 -lead TO-5, and a 10-pin molded dual-in-line package.
The LH0002 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0002C is specified for operation over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

- Line driver
- 30 MHz buffer
- High speed D/A conversion
- Instrumentation buffer
- Precision current source

Schematic and Connection Diagrams

Order Number LH0002H or LH0002CH
See NS Package Number H08D

Pin numbers in parentheses denote pin
connections for dual-in-line package.
Metal Can Package

TL/H/5560-3

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 2)
$\begin{array}{lr}\text { Supply Voltage } & \pm 22 \mathrm{~V} \\ \text { Power Dissipation Ambient } & 600 \mathrm{~mW}\end{array}$ Input Voltage
(Equal to Power Supply Voltage)
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range

LH0002	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0002C	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Steady State Output Current	$\pm 100 \mathrm{~mA}$
Pulsed Output Current (50 ms On/1 sec. Off)	$\pm 400 \mathrm{~mA}$
Lead Temperature Soldering (10 seconds)	
\quad Metal Can	$300^{\circ} \mathrm{C}$
Plastic	$260^{\circ} \mathrm{C}$
ESD rating to be determined.	

Electrical Characteristics (Note 1)

Parameter	Conditions	Min	Typ	Max	Units
Voltage Gain	$\mathrm{R}_{S}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.95	0.97		
AC Current Gain	$\mathrm{V}_{I N}=1.0 \mathrm{Vrms}, \mathrm{f}=1.0 \mathrm{kHz}$		40		$\mathrm{~A} / \mathrm{mA}$
Input Impedance	$\mathrm{R}_{\mathrm{S}}=200 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	180	400		$\mathrm{k} \Omega$
Output Impedance	$\mathrm{V}_{I N}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		6.0	10	Ω
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}$	± 10	± 11		V
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 10		.	V
DC Output Offset Voltage	$\mathrm{R}_{\mathrm{S}}=300 \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$		± 10	± 30	mV
DC Input Offset Current	$\mathrm{R}_{S}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$		± 6.0	± 10	$\mu \mathrm{~A}$
Harmonic Distortion	$\mathrm{V}_{I N}=5.0 \mathrm{Vrms}, \mathrm{f}=1.0 \mathrm{kHz}$		0.1		$\%$
Rise Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \Delta \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}$		7.0	12	ns
Positive Supply Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$		+6.0	+10	mA
Negative Supply Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$		-6.0	-10	mA

Note 1: Specification applies for $T_{A}=25^{\circ} \mathrm{C}$ with +12 V on Pins 1 and $2 ;-12 \mathrm{~V}$ on Pins 6 and 7 for the metal can package and +12 V on Pins 1 and 2 ; -12 V on Pins 4 and 5 for the dual-in-line package unless otherwise specified. The parameter guarantees for LH0002C apply over the temperature range of $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, while parameters for the LH0002 are guaranteed over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise specified.
Note 2: Refer to RETSO002X for LH0002 military specifications.

Typical Applications

[^21]Typical Performance Characteristics

LH0033/LH0033A/LH0033C/LH0033AC/LH0063/ LH0063C Fast and Ultra Fast Buffer Amplifiers

General Description

The LH0033/LH0033A and LH0063 are high speed, FET input, voltage follower/buffers designed to provide high current drive at frequencies from DC to over 100 MHz . The LH0033/LH0033A will provide $\pm 10 \mathrm{~mA}$ into $1 \mathrm{k} \Omega$ loads ($\pm 100 \mathrm{~mA}$ peak) at slew rates of $1500 \mathrm{~V} / \mu \mathrm{s}$. The LH0063 will provide $\pm 250 \mathrm{~mA}$ into 50Ω loads ($\pm 500 \mathrm{~mA}$ peak) at slew rates up to $6000 \mathrm{~V} / \mu \mathrm{s}$. In addition, both exhibit excellent phase linearity up to 20 MHz .
Both are intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffers for driving reactive loads and high impedance input buffers for high speed A to Ds and comparators. In addition, the LH0063 can continuously drive 50Ω coaxial cables or be used as a yoke driver for high resolution CRT displays. For additional applications information, see AN-48. These devices are constructed using specially selected junction FETs and active laser trimming to achieve guaranteed performance specifications. The LH0033/LH0033A and LHOO63 are specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the LH0033C/LH0033AC and LH0063C are specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The LH0033/

LH0033A is available in either a 1.5 W metal TO-8 package or an 8 -pin ceramic dual-in-line package. The LH0063 is available in a 5 W 8 -pin TO-3 package.

Features

- Ultra fast (LH0063): $6000 \mathrm{~V} / \mu \mathrm{s}$
- Wide range single or dual supply operation
- Wide power bandwidth: DC to 100 MHz
- High output drive: $\pm 10 \mathrm{~V}$ with 50Ω load
- Low phase non-linearity: 2 degrees
- Fast rise times: 2 ns
- High current gain: 120 dB
- High input resistance: $10^{10} \Omega$

Advantages

- Only 10 V supply needed for 5 Vp -p video out
- Speed does not degrade system performance
- Wide data rate range for phase encoded systems
- Output drive adequate for most loads
- Single pre-calibrated package

Connection Diagrams

Case is electrically isolated
Order Number LH0033G, LH0033AG, LH0033CG, LH0033ACG, LH0063K, LH0063CK, LH0033J or LH0033CJ
See NS Package Number G12B, HY08A or K08A

LH0033J Dual-In-Line Package

LH0063K Metal Can Package

TL/K/5507-3
Top View
Case is electrically isolated
Leadless Chip Carrier

TL/K/5507-27
Order Number LH0033E See NS Package Number E48B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Notes 5 \& 7)

Supply Voltage $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$	40 V
Maximum Power Dissipation (See Curves)	
LH0063/LH0063C	5 W
LH0033A/LH0033AC/LH0033/LH0033C	1.5 W
Maximum Junction Temperature	$175^{\circ} \mathrm{C}$
Input Voltage	$\pm \mathrm{V}_{\mathrm{S}}$
Continuous Output Current	
LH0063/LH0063C	$\pm 250 \mathrm{~mA}$
LH0033A/LH0033AC/LH0033/LH0033C	$\pm 100 \mathrm{~mA}$

Peak Output Current	$\pm 500 \mathrm{~mA}$
LH0063/LH0063C	
LH0033A/LH0033AC/	$\pm 250 \mathrm{~mA}$
LH0033/LH0033C	
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0033A/LH0033 and LH0063	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH0033AC/LH0033C and LH0063C	-65° to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	$300^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	
ESD rating to be determined.	

Note 1: LH0033 and LH0033A are 100% production tested as specified at $25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and- $55^{\circ} \mathrm{C}$. LH0033AC/C are 100% production tested at $25^{\circ} \mathrm{C}$ only.
Specifications at temperature extremes are verified by sample testing, but these limited are not used to calculate outgoing quality level.
Note 2: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at $T_{J}=25^{\circ} \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient, and more under load conditions. Accordingly, V_{OS} may change one to several mV , and I_{B} will change significantly during warm-up. Refer to I_{B} vs temperature graph for expected values.
Note 3: LH0033 and LH0033A are 100\% production tested for this parameter. LH0033AC/C are sample tested only. Limits are not used to calculate outgoing quality levels. $\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$ is the average value calculated from measurements at $25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}$.
Note 4: Measured in still air 7 minutes after application of power. Guaranteed through correlated automatic pulse testing.
Note 5: Guaranteed through correlated automatic pulse testing at $T_{J}=25^{\circ} \mathrm{C}$.
Note 6: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.
Note 7: Refer to RETS0033AG for the LH0033AG and RETS0033G for the LH0033G military specifications.

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless otherwise specified. (Note 1)

Parameter	Conditions	LH0063			LH0063C			Units
		Min	Typ	Max	Min	Typ	Max	
Output Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ (Note 2)		10	25		10	50	mV mV
				100			. 100	
Average Temperature Coefficient of Output Offset Voltage	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega$		300			300		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 2)		10	30		10	30	nA nA
				100			100	
Voltage Gain	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.94	0.96	1.0	0.94	0.96	1.0	V/V
Voltage Gain	$\begin{aligned} & V_{I N}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & T_{J}=25^{\circ} \mathrm{C} \end{aligned}$	0.92	0.93	0.98	0.91	0.93	0.98	V/V
Input Capacitance	Case Shorted to Output		8.0			8.0		pF
Output Impedance	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$		1.0	4.0		1.0	4.0	Ω
Output Current Swing	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$	0.2	0.25		0.2	0.25		A
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 10	± 13		± 10	± 13		V
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	5.0	7.0		5.09	7.0		Vp-p
Supply Current	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \text { (Note 3) } \end{aligned}$		35	65		35	65	mA
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$ (Note 3)		50			50		mA
Power Consumption	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		1.05	1.95		1.05	1.95	W
Power Consumption	$\mathrm{V}_{S}= \pm 5.0 \mathrm{~V}$		500			500		mW

AC Electrical Characteristics $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$ (Note 4)

Parameter	Conditions	LH0063			LH0063C			Units
		Min	Typ	Max	Min	Typ	Max	
Slew Rate	$\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$		6000			6000		$\mathrm{V} / \mu \mathrm{s}$
Slew Rate	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	2000	2400		2000	2400		$\mathrm{V} / \mu \mathrm{s}$
Bandwidth	$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vrms}$		200			200		MHz
Phase Non-Linearity	$\mathrm{BW}=1.0 \mathrm{~Hz}$ to 20 MHz		2.0			2.0		degrees
Rise Time	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		1.6			1.9	.	ns
Propagation Delay	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		1.9			2.1		ns
Harmonic Distortion			<0.1			<0.1		\%

Note 1: LH0063 is 100% production tested as specified at $25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$. LHO063C is 100% production tested at $25^{\circ} \mathrm{C}$ only. Specifications at temperature extremes are verified by sample testing, but these limits are not used to calculate outgoing quality level.
Note 2: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at $T_{J}=25^{\circ} \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient, and more under load conditions. Accordingly, V_{OS} may change one to several mV , and I_{B} ans I_{OS} will change significantly during warm-up. Refer to I_{B} and I_{OS} vs temperature graph for expected values.
Note 3: Guaranteed through correlated automatic pulse testing at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
Note 4: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.
Note 5: Refer to RETS0063K for the LH0063K military specifications.

LH0033 Output Voltage vs Supply Voltage

LH0033 Positive Pulse Response

Typical Performance Characteristics (Continued) LH0033 Input Bias Current
vs Temperature

LH0033 Normalized Input Bias Current During Warm-Up

LH0063 Small Signal Rise Time

LH0063 Frequency

LH0033 Input Bias Current vs Input Voltage

1086420-2-6-10 INPUT VOLTAGE (V)

Application Hints

RECOMMENDED LAYOUT PRECAUTIONS

RF/video printed circuit board layout rules should be followed when using the LH0O33 and LH0063 since they will provide power gain to frequencies over 100 MHz . Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively the case should be connected to the output to minimize input capacitance.

OFFSET VOLTAGE ADJUSTMENT

Both the LH0033's and LH0063's offset voltages have been actively trimmed by laser to meet guaranteed specifications when the offset preset pin is shorted to the offset adjust pin. This pre-calibration allows the devices to be used in most DC or AC applications without individually offset nulling each device. If offset null is desirable, it is simply obtained by leaving the offset preset pin open and connecting a trim pot of 100Ω for the LH0033 or $1 \mathrm{k} \Omega$ for the LH0063 between the offset adjust pin and V^{-}, as illustrated in Figures 1 and 2.

TL/K/5507-6
FIGURE 1. Offset Zero Adjust for LH0033 (Pin numbers shown for TO-8)

TL/K/5507-7
FIGURE 2. Offset Zero Adjust for LH0063

Application Hints (Continued)

OPERATION FROM SINGLE OR ASYMMETRICAL POWER SUPPLIES

Both device types may be readily used in applications where symmetrical supplies are unavailable or not desirable. A typical application might be an interface to a MOS shift register where $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-12 \mathrm{~V}$. In this case, an apparent output offset occurs due to the device's voltage gain of less than unity. This additional output offset error may be predicted by:

$$
\Delta V_{O} \cong\left(1-A_{V}\right) \frac{\left(V^{+}-V^{-}\right)}{2}=0.005\left(V^{+}-V^{-}\right)
$$

where:
$A_{V}=$ No load voltage gain, typically 0.99
$\mathrm{V}^{+}=$Positive supply voltage
$\mathrm{V}^{-}=$Negative supply voltage
For the above example, $\Delta \mathrm{V}_{\mathrm{O}}$ would be -35 mV . This may be adjusted to zero as described in Figure 2. For AC coupled applications, no additional offset occurs if the DC input is properly biased as illustrated in the Typical Applications section.

TL/K/5507-8

FIGURE 3. LH0033 Using Resistor Current Limiting

SHORT CIRCUIT PROTECTION

In order to optimize transient response and output swing, output current limit has been omitted from the LH0033 and LH0063. Short circuit protection may be added by inserting appropriate value resistors between V^{+}and $\mathrm{V}_{\mathrm{C}}{ }^{+}$pins and V^{-}and $\mathrm{V}_{\mathrm{C}}{ }^{-}$pins as illustrated in Figures 3 and 4. Resistor values may be predicted by:

$$
\mathrm{R}_{\mathrm{LIM}} \cong \frac{\mathrm{~V}+}{\mathrm{I}_{\mathrm{SC}}}=\frac{\mathrm{V}-}{\mathrm{I}_{\mathrm{SC}}}
$$

where:
$\mathrm{I}_{\mathrm{SC}} \leq 100 \mathrm{~mA}$ for LH0033
Isc $\leq 250 \mathrm{~mA}$ for LH0063

TL/K/5507-9

FIGURE 4. LH0063 Using Resistor Current Limiting

Application Hints (Continued)

The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing. Decoupling $\mathrm{V}_{\mathrm{C}}{ }^{+}$and $\mathrm{V}_{\mathrm{C}}{ }^{-}$pins with capacitors to ground will retain full output swing for transient pulses. Alternate active current limit techniques that retain full DC output swing are shown in Figures 5 and 6. In Figures 5 and 6, the current sources are saturated during normal operation, thus apply full supply voltage to the V_{C} pins. Under fault conditions, the voltage decreases as required by the overload.
For Figure 5:

$$
R_{\mathrm{LIM}}=\frac{V_{\mathrm{BE}}}{I_{\mathrm{SC}}}=\frac{0.6 \mathrm{~V}}{60 \mathrm{~mA}}=10 \Omega
$$

In Figure 6, quad transistor arrays are used to minimize can count and:

$$
\mathrm{R}_{\mathrm{LIM}}=\frac{\mathrm{V}_{\mathrm{BE}}}{1 / 3(\mathrm{lsC})}=\frac{0.6 \mathrm{~V}}{1 / 3(200 \mathrm{~mA})}=8.2 \Omega
$$

TL/K/5507-10
FIGURE 5. LH0033 Current Limiting Using Current Sources

TL/K/5507-11

FIGURE 6. LH0063 Current Limiting Using Current Sources

CAPACITIVE LOADING

Both the LH0O33 and LH0063 are designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from ($\mathrm{C} \times \mathrm{d}_{\mathrm{V}} / \mathrm{d}_{\mathrm{t}}$) should be limited below absolute maximum peak current ratings for the devices.
Thus for the LH0033:

$$
\left(\frac{\Delta V_{I N}}{\Delta t}\right) \times \mathrm{C}_{\mathrm{L}} \leq \mathrm{I}_{\text {OUT }} \leq \pm 250 \mathrm{~mA}
$$

and for the LH0063:

$$
\left(\frac{\Delta \mathrm{V}_{\text {IN }}}{\Delta \mathrm{t}}\right) \times \mathrm{C}_{\mathrm{L}} \leq \mathrm{l}_{\text {OUT }} \leq \pm 500 \mathrm{~mA}
$$

In addition, power dissipation resulting from driving capacitive loads plus standby power should be kept below total package power rating:

$$
\begin{aligned}
& P_{D \text { pkg. }} \geq P_{D C}+P_{A C} \\
& P_{D} \text { pkg. } 2\left(V^{+}-V^{-}\right) \times I_{S}+P_{A C} \\
& P_{A C} \cong(V p-p)^{2} \times f \times C_{L}
\end{aligned}
$$

where:
Vp-p=Peak-to-peak output voltage swing

$$
\mathrm{f}=\text { Frequency }
$$

$$
\mathrm{C}_{\mathrm{L}}=\text { Load Capacitance }
$$

OPERATION WITHIN AN OP AMP LOOP

Both devices may be used as a current booster or isolation buffer within a closed loop with op amps such as LH0032, LH0062, or LM118. An isolation resistor of 47Ω should be used between the op amp output and the input of LH0033. The wide bandwidths and high slew rates of the LH0033 and LH0063 assure that the loop has the characteristics of the op amp and that additional rolloff is not required.

HARDWARE

In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to the system chassis.

DESIGN PRECAUTION

Power supply bypassing is necessary to prevent oscillation with both the LH0033 and LH0063 in all circuits. Low inductance ceramic disc capacitors with the shortest practical lead lengths must be connected from each supply lead (within $<1 / 4$ to $1 / 2^{\prime \prime}$ of the device package) to a ground plane. Capacitors should be one or two $0.1 \mu \mathrm{~F}$ in parallel for the LH0033; adding a $4.7 \mu \mathrm{~F}$ solid tantalum capacitor will help in troublesome instances. For the LH0063, two $0.1 \mu \mathrm{~F}$ ceramic and one $4.7 \mu \mathrm{~F}$ solid tantalum capacitors in parallel will be necessary on each supply lead.

Typical Applications (Continued)
Gamma Ray Pulse Integrator

TL/K/5507-15

Nuclear Particle Detector

High Input Impedance AC Coupled Amplifier

TL/K/5507-17

Typical Applications (Continued)

High Input Impedance Comparator with Offset Adjust

TL/K/5507-21

Instrumentation Shield/Line Driver

TL/K/5507-22

Typical Applications (Continued)
1W CW Final Amplifier

TL/K/5507-23

National Semiconductor LH2110/LH2210/LH2310 Dual Voltage Followers

General Description

The LH2110 series of dual voltage followers are two LM110 type followers in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information, see the LM110 data sheet and National's Linear Applications Handbook.
The LH2110 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2210 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH2310 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Connection Diagram

TL/K/10119-1
Order Number LH2110D, LH2210D or LH2310D See NS Package Number D16C

Features

- Low input current
- High input resistance
- High slew rate
- Wide bandwidth $30 \mathrm{~V} / \mu \mathrm{s}$
- Wide operating supply range $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Output short circuit proof

Auxiliary Circuits

Increasing Negative Swing Under Load

TL/K/10119-2

Offset Balancing Circuit

TL/K/10119-3

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	$\pm 18 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$

Output Short Circuit Duration (Note 3)
Operating Temperature Range LH2110 LH2210 LH2310
Storage Temperature Range
Lead Temperature (Soldering, 10 sec.)

Continuous
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics Each Side (Note 4)

Parameter	Conditions	Limits			Units
		LH2110	LH2210	LH2310	
İnput Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.0	4.0	7.5	mV Max
Input Bias Current Input Resistance	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 3.0 \\ 10^{10} \end{gathered}$	$\begin{gathered} 3.0 \\ 10^{10} \end{gathered}$	$\begin{gathered} 7.0 \\ 10^{10} \end{gathered}$	nA Max Ω Min
Input Capacitance		1.5	1.5	1.5	pF Typ
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega \end{aligned}$	0.999	0.999	0.999	V/V Min
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.5	2.5	2.5	Ω Max
Supply Current (Each Amplifier)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.5	5.5	5.5	mA Max
Input Offset Voltage		6.0	6.0	10	$m \mathrm{max}$
Offset Voltage Temperature Drift	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 6 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 12 \\ \hline \end{gathered}$	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Typ
Input Bias Current		10	10	10	$n A$ Max
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0.999	0.999	0.999	$\mu \mathrm{V} / \mathrm{V}$ Min
Output Voltage Swing (Note 5)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 10	± 10	± 10	V Min
Supply Current (Each Amplifier)	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	4.0	4.0		mA Max
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$	70	70	70	dB Min

Note 1: The maximum junction temperature of the LH2110 is $150^{\circ} \mathrm{C}$, while that of the LH 2210 is $100^{\circ} \mathrm{C}$ and that of the LH 2310 is $85^{\circ} \mathrm{C}$. For operating devices in the flat package at elevated temperatures, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16^{- \text {-inch-thick epoxy glass board with }}$ 0.03 -inch-wide, 2 -ounce copper conductors. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$. It is necessary to insert a resistor greater than $2 \mathrm{k} \Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM210, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$, and for the LH2310, all temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals.

LH4001 Wideband Current Buffer

General Description

The LH4001 is a high speed unity gain buffer designed to provide high current drive capability at frequencies from DC to over 25 MHz . It is capable of providing a continuous output current of $\pm 100 \mathrm{~mA}$ and a peak of $\pm 200 \mathrm{~mA}$.
The LH4001 is designed to fulfill a wide range of applications such as impedance transformation, high impedance input buffers for A/D converters and comparators, as well as high speed line drivers. It is also suitable for use in current booster applications within an op amp loop. This allows the output current capability of existing op amps to be increased to $\pm 100 \mathrm{~mA}$.

Features

- DC to 25 MHz bandwidth
- $125 \mathrm{~V} / \mu$ s slew rate
- Drives $\pm 10 \mathrm{~V}$ into 50Ω
- Operates from ± 5 to $\pm 20 \mathrm{~V}$ supplies
- Output swing approaches supply voltage

Applications

■ Boost op amp output

- Buffer amplifiers
- Isolate capacitive loads
- Drive long cables

Typical Applications and Connection Diagram

Dual-In-Line Package

*Note: Electrically connected internally. No connection should be made to these pins.

Order Number LH4001CN See NS Package Number N10A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Supply Voltage, V_{S}	$\pm 22 \mathrm{~V}$
Continuous Output Current, IO	$\pm 100 \mathrm{~mA}$
Peak Output Current, IO(peak)	
($50 \mathrm{~ms} \mathrm{On} / 1 \mathrm{Sec}$ Off)	

Input Voltage Range, $V_{I N}$	$\pm V_{S}$
Power Dissipation Ambient	500 mW
Storage Temperature Range, $\mathrm{T}_{\mathrm{STG}}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range, T_{A}	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, <10 seconds)	$260^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
A_{V}	Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V} \end{aligned}$	0.95	0.97	1	V/V
$\mathrm{R}_{\text {IN }}$	Input Impedance	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=200 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V} \end{aligned}$	180	400		$\mathrm{k} \Omega$
Rout	Output Impedance	$\begin{aligned} & R_{S}=10 \mathrm{k} \Omega, R_{L}=50 \Omega \\ & V_{I N}= \pm 1.0 \mathrm{~V} \end{aligned}$		6	10	Ω
V_{O}	Output Swing	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{S}}=50 \Omega \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 12 \mathrm{~V} \end{aligned}$	± 10	± 11		V
I_{B}	Input Bias Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		± 10	± 50	$\mu \mathrm{A}$
t_{r}	Rise Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \Delta \mathrm{~V}_{\text {IN }}=100 \mathrm{mV}$		7		ns
SR	Slew Rate	$\mathrm{V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		125		$\mathrm{V} / \mu \mathrm{s}$
Is	Supply Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$		± 6	± 10	mA
Vos	DC Output Offset Voltage	$\mathrm{R}_{\mathrm{S}}=300 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		± 10	± 50	mV

Note 1: Specification applies for $T_{A}=25^{\circ} \mathrm{C}$ with +12 V on Pins $1 \& 2 ;-12 \mathrm{~V}$ on Pins $4 \& 5$ unless otherwise specified.
Typical Performance Characteristics

Pulse Response

TOP TRACE $=$ INPUT
BOTTOM TRACE $=$ OUTPUT

Applications Information

Figure 1 shows a simple implementation of a non-inverting buffer amplifier of unity gain. Popular industry standard operational amplifiers such as LF156, LF351, LF411, LF441, LM11, LM741, etc. can be used in this configuration. Due to the high bandwidth of the LH4001, it is suitable for use with most monolithic op amps.
Figure 2 shows an implementation of an inverting amplifier with output current capability in excess of $\pm 100 \mathrm{~mA}$. The gain of this amplifier is determined by the values of R_{F} and $R_{I N}$. The resistor between the non-inverting input and ground is used to minimize the output offset voltage resulting from the input bias current.
Because of its high current drive capability, the LH4001 buffer amplifier is suitable for driving terminated or unterminated co-axial cables, and high current or reactive loads.

Figure 3 shows a co-axial cable drive circuit. The 43Ω resistor matches the driving source to the cable, however, its inclusion rarely will result in substantial improvement in pulse response into a terminated cable. If the 43Ω resistor is included, the output voltage to the load is about half what it would be without the near end termination.
Figure 4 shows a non-inverting amplifier with gain and output current capability in excess of $\pm 100 \mathrm{~mA}$. It is capable of providing $\pm 10 \mathrm{~mA}$ into a $1 \mathrm{k} \Omega$ load or $\pm 100 \mathrm{~mA}$ into a 100Ω load ($\pm 10 \mathrm{~V}$ swing). Figures 5 and 6 show two different methods of providing current limit or short circuit protection for the LH4001. In Figure 6, the 10』 resistor limits the output current to approximately 70 mA . This circuit is highly recommended if there is a potential for a short circuit to occur.

FIGURE 2. Inverting Buffer Amplifier with Current Limit

Applications Information (Continued)

FIGURE 3. Coaxial Cable Drive Circuit

TL/K/8628-5

$$
V_{\text {OUT }}=V_{\text {IN }}\left(1+\frac{R 2}{R 1}\right)
$$

FIGURE 4. Non-Inverting Buffer Amplifier with Gain

TL/K/8628-8
FIGURE 5. LH4001 Using Resistor Current Limiting

FIGURE 6. Current Limit Using Current Sources

LH4002 Wideband Video Buffer

General Description

The LH4002 is a high speed voltage follower designed to drive video signals from DC up to 200 MHz . At voltage supplies of $\pm 5 \mathrm{~V}$, the LH4002 will provide up to 40 mA into 50Ω at slew rates in excess of $1000 \mathrm{~V} / \mu \mathrm{s}$.
The device is intended to fulfill a wide range of high speed applications including video distribution, impedance transformation, and load isolation. It is also suitable for use in current booster applications within an op amp loop. This allows the output current capability of existing op amps to be increased.

Features

■ DC to 200 MHz Bandwidth with $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$

- $1250 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate into 50Ω
- 150 MHz Bandwidth with $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ and Voltage Swing $=2 \mathrm{~V}_{\mathrm{P} \text { - }}$

Applications

- Wideband Buffer Amplifiers
- Wideband Line Driver

Schematic and Connection Diagrams

TL/K/8686-15

Order Number LH4002CH or LH4002H See NS Package Number H08D

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, V_{S}
$\pm 6 \mathrm{~V}$
Input Voltage Range, V_{IN}
Continuous Output Current, 10
$\pm \mathrm{V}_{\mathrm{S}}$

Storage Temperature Range, TSTG
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range, T_{A}

LH4002	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH4002C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
ESD rating is to be determined.	

DC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\max }$ unless otherwise stated.

Symbol	Parameter	Conditions		Min	Typ	Max	Units
Vos	Input Offset Voltage	$\begin{aligned} & T_{A}=T_{J}=25^{\circ} \mathrm{C} \\ & R_{S}=150 \Omega, R_{L}=50 \Omega \end{aligned}$			20	50	mV
I_{B}	Input Bias Current	$\mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$			100	200	$\mu \mathrm{A}$
A_{V}	DC Voltage Gain	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}$		0.95	0.97		V/V
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{S}}=150 \Omega, \mathrm{~V}_{\text {IN }}= \pm 2.5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	± 2.2	± 2.4		V
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	± 2.0	± 2.2		V
I_{S}	Supply Current	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			20	35	mA
R OUT	Output Resistance	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$			6	10	Ω
R_{IN}	Input Resistance	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$		10	18		$\mathrm{k} \Omega$

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Min	Typ	Max	Units
S_{R}	Slew Rate	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{R}_{\mathrm{S}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 2 \mathrm{~V} \end{aligned}$		1000	1250		$\mathrm{V} / \mu \mathrm{S}$
$f_{3 \mathrm{~dB}}$	Bandwidth, -3 dB	$\begin{gathered} R_{\mathrm{S}}=50 \Omega \\ \mathrm{R}_{\mathrm{L}}=50 \Omega \\ \text { (Note 2) } \end{gathered}$	$\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$		125		MHz
			$V_{\text {OUT }}=2 V_{\text {P-P }}$	100	150		MHz
			$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV} \mathrm{P}_{\text {PP }}$		200		MHz
	Phase Non-Linearity	BW $=1.0-20 \mathrm{MHz}$			2.0		degrees
t_{r}	Rise Time	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$			3		ns
t_{d}	Propagation Delay	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$			1.2		ns
THD	Harmonic Distortion	$\mathrm{f}=1 \mathrm{kHz}$			0.1		\%

Note 1: Under normal operating conditions $+V_{C C 1}$ and $+V_{C C 2}$ should be connected together, and $-V_{C C 1}$ and $-V_{C C 2}$ should be connected together.
Note 2: Guaranteed by design. This parameter is sample tested.
Connection Diagrams (Continued)

Top View
Order Number LH4002CN-8
See NS Package Number N08E
Note: $+\mathrm{V}_{\mathrm{CC} 1}$ and $+\mathrm{V}_{\mathrm{CC} 2}$ pins and $-\mathrm{V}_{\mathrm{CC} 1}$ and $-\mathrm{V}_{\mathrm{CC} 2}$ pins are internally connected.

Top View
Order Number LH4002E
See NS Package Number E20A

Typical Performance Characteristics

Typical Applications

TL/K/8686-11
FIGURE 1. Wideband Unity Gain Amplifier Using LH4002CN

TL/K/8686-9
FIGURE 2. Compensation for Capacitive Loads

Applications Information

The high speed performance of the LH4002 can only be realized by taking certain precautions in circuit layout and power supply decoupling. Low inductance ceramic chip or disc power supply decoupling capacitors of $0.01 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ should be connected with the shortest practical lead length between device supply leads and a ground plane. Failure to follow these rules can result in oscillations. When driving a capacitive load such as inputs to flash converters, the circuits in Figure 2 and 3 can be used to minimize the amount of overshoot and ringing at the outputs. Figure 2 indicates that a 50Ω should be placed in parallel with the load and Figure 3 recommends that a 100Ω resistor be placed in series with the input to the LH4002.

TL/K/8686-10
FIGURE 3. Compensation for Capacitive Loads

Short Circuit Protection

In order to optimize transient response and output swing, output current limits have been omitted from the LH4002. Short circuit protection may be added by inserting appropriate value resistors between $+V_{C C 1}$ and $+V_{C C 2}$ pins and between $-\mathrm{V}_{\mathrm{CC} 1}$ and $-\mathrm{V}_{\mathrm{CC} 2}$ pins as illustrated in Figure 4. Resistor values may be predicted by:

$$
R_{\mathrm{LIM}}=\frac{+\mathrm{V}_{\mathrm{CC} 1}}{I_{\mathrm{SC}}}=\frac{-\mathrm{V}_{\mathrm{CC} 1}}{\mathrm{I}_{\mathrm{SC}}}
$$

where $\mathrm{I}_{\mathrm{SC}} \leq 100 \mathrm{~mA}$. The inclusion of 50Ω limiting resistors in the collectors of the output transistors limits the short circuit current to approximately 100 mA without reducing the output voltage swing.

Short Circuit Protection (Continued)

FIGURE 4. LH4002 Using Resistor Current Limiting

LH4003/LH4003C Precision RF Closed Loop Buffer

General Description

The LH4003 is a precision RF buffer optimized for unity gain applications. The LH4003 features a small signal bandwidth of 250 MHz . The buffer is internally compensated to be unity gain stable and has internal short circuit protection. The LH4003 is useful in applications such as video buffering, cable driving, and flash converter input conditioning.

Features

- Operation from $\pm 6 \mathrm{~V}$ supplies
- Drive 50Ω directly
- Internal power supply bypassing
- Short circuit protection
- $1000 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- 0.97 gain accuracy into 50Ω

Applications

- Line drivers

■ Video buffers

Block and Connection Diagram

Note 1: NC = No Connection
Note 2: Pins 9 \& 17 Internally Connected

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, Vs
$\pm 8 \mathrm{~V}$
Power Dissipation, P_{D}
$T_{A}=25^{\circ} \mathrm{C}$, derate linearly at $62.5^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, derate linearly at $33.3^{\circ} \mathrm{C} / \mathrm{W}$ Input Common Mode Voltage Range, V_{CM} Output Current, lo

Output Short Circuit Duration
Continuous Operating Temperature Range, T_{A}

LH4003CD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH4003D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics $V_{S}= \pm 6 \mathrm{~V}, \mathrm{R}_{S}=R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted. (Notes 1, 6)

Symbol	Parameter	Conditions		LH4003C			Units (Max Unless Otherwise Stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	$\begin{aligned} & T_{A}=T_{J}=25^{\circ} \mathrm{C} \\ & \text { (Note 4) } \end{aligned}$		5	15		mV
$\mathrm{V}_{\text {OS/ } / \text { T }}$	Offset Voltage Drift			100			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$R_{S}=300 \Omega, T_{A}=T_{J}=25^{\circ} \mathrm{C}$ (Note 4)		100	200		$\mu \mathrm{A}$
A_{V}	Voltage Gain	$\begin{aligned} & V_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	0.98	0.95		$\mathrm{V} / \mathrm{V}_{(\text {Min }}$
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.98	0.95		
V_{0}	Output Voltage Swing				± 3		$V_{(\text {Min })}$
PSFRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 4 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$		55	45		$\mathrm{dB}_{(\text {(Min) }}$
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ (Note 7)		55	65		mA
P_{D}	Power Dissipation					780	mW

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. (Note 1)

Symbol	Parameter	Conditions		LH4003C			Units (Max Unless Otherwise Stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
tr_{r}	Small Signal Rise Time	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		2			
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1\%	$\mathrm{V}_{\mathrm{IN}}= \pm 3 \mathrm{~V}$		80			
SR	Slew Rate	$\mathrm{V}_{\mathrm{IN}}=-3 \mathrm{~V}$ to +3 V	10\%-90\%	1000		800	$\mathrm{V} / \mu \mathrm{s}$ (Min)
		$\mathrm{V}_{\text {IN }}=+3 \mathrm{~V}$ to -3 V	10\%-90\%	1200		1000	
$f_{-3 \mathrm{~dB}}$	Small Signal Bandwidth	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mVp}$-p		250	200		MHz (Min)
	Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}$, (Note 5)		65			MHz
	Harmonic Distortion	$\begin{aligned} & \text { Second Order, } \mathrm{V}_{\text {OUT }}=4 \mathrm{~V} p-\mathrm{p}, \\ & f_{\mathrm{IN}}=10 \mathrm{MHz} \end{aligned}$		-60			dB

Symbol	Parameter	Conditions		LH4003			Units (Max Unless Otherwise Stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
vos	Output Offset Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \text { (Note 4) } \end{aligned}$		2	15		mV
					20		
$\mathrm{V}_{\mathrm{OS} / \Delta \mathrm{T}}$	Offset Voltage Drift			100			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{R}_{S}=300 \Omega$	$T_{A}=T_{J}=25^{\circ} \mathrm{C}$, (Note 4)	100	200		$\mu \mathrm{A}$
					200		
A_{V}	Voltage Gain	$\begin{aligned} & V_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	0.98	0.95	0.93	$\mathrm{V} / \mathrm{V}_{(\text {Min })}$
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.98	0.95		
					0.93		
vo	Output Voltage Swing	$A_{V}=+1$			± 3	± 3	$\begin{gathered} \mathrm{V} \\ (\mathrm{Min}) \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 4 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$		55	45		$\begin{gathered} \mathrm{dB} \\ (\mathrm{Min}) \end{gathered}$
					40		
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ (Note 7)		55	65	80	mA
P_{D}	Power Dissipation					780	mW

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. (Note 1)

Symbol	Parameter	Conditions		LH4003			Units (Max Unless Otherwise Stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
t_{r}	Small Signal Rise Time	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		2			ns
$\mathrm{t}_{\text {s }}$	Settling Time to 0.1\%	$\mathrm{V}_{\mathrm{IN}}= \pm 3 \mathrm{~V}$		80			ns
SR	Slew Rate	$V_{\text {IN }}=-3 V$ to $+3 V$	10\%-90\%	1000		800	$\begin{aligned} & V_{\mu S} \\ & (\mathrm{Min}) \end{aligned}$
		$V_{I N}=+3 V$ to $-3 V$	10\%-90\%	1200		1000	
$f_{-3 \mathrm{~dB}}$	Small Signal Bandwidth	$V_{\text {OUT }}=100 \mathrm{mVp}-\mathrm{p}$		250	200		MHz (Min)
	Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}$, (Note 5)		65			MHz
	Harmonic Distortion	$\begin{aligned} & \text { Second Order, } \mathrm{V}_{\mathrm{OUT}}=4 \mathrm{~V} p-\mathrm{p}, \\ & f_{\mathrm{IN}}=10 \mathrm{MHz} \end{aligned}$		-60			dB

Note 1: These measurements are taken with the LH4003 strapped for a gain of +1 .
Note 2: Tested limits are guaranteed and 100% tested in production.
Note 3: Design limits are guaranteed (but not 100% production tested) over indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 4: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $T_{J}=25^{\circ} \mathrm{C}$. See Typical Performance Characteristics for more information.
Note 5: Full power bandwidth is calculated based on slew rate measurement using FPBW = slew rate / ($2 \pi \mathrm{~V}$ peak).
Note 6: Boldface limits are guaranteed over full temperature. Operating ambient temperature range of LH 4003 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4003 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Note 7: When the LH4003 is operated at elevated temperature (such as $125^{\circ} \mathrm{C}$), some form of heat sinking or forced air cooling is required. The quiescent power with V_{S} of $\pm 6 \mathrm{~V}$ is 780 mW , whereas the package is rated to 750 mW without a heatsink at $125^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Application Information

The unity gain follower configuration shown in Figure 1, offers a 250 MHz small signal bandwidth to the -3 dB point and the minimum slew rate of $800 \mathrm{~V} / \mu \mathrm{s}$ insures a full power bandwidth of 65 MHz for a 4 V peak-to-peak signal, according to the formula:

$$
\mathrm{B}=\mathrm{SR} / 2 \pi \mathrm{Vp}
$$

Where SR is the slew rate in $\mu \mathrm{s}, \mathrm{B}$ is the bandwidth of the device in MHz for a peak sine wave voltage V .
The unity gain follower/buffer is therefore an excellent choice for wideband sinewave buffering or pulse amplification. Figure 2 shows the typical pulse response for such a configuration.

DRIVING CAPACITIVE LOADS

Flash A/D, unterminated cables, etc, can exhibit up to 300 pF of capacitance, thus creating stability or settling problems. Figure 3 shows the compensation scheme for driving such capacitive loads while still insuring optimum settling. The output current limit of the LH4003 is a considerable help for driving capacitive loads, the charging current is kept in control and the damping resistor can be small without overloading the output stage. A 20Ω resistor in series with the capacitance is required for insuring an optimum settling time of 0.5% in less than 20 ns which is suitable for driving a 7 bit flash A to D converter in video applications at a sampling rate of 20 MSPS (see Figure 4).

LAYOUT CONSIDERATIONS

The layout of a RF/Video PC board where the signal frequency is beyond 100 MHz required special attention. All the traces or connections must be as short and as wide as possible in order to keep their parasitic inductance to a minimum. This is especially critical for the supply lines where the current can reach over 100 mA in a few nanoseconds.

Although the LH4003 contains internal decoupling, it still requires some external bypassing capacitors, which have to be located as close to the supply pins as possible. A $4.7 \mu \mathrm{~F}$ in parallel with a 100 nF low inductance capacitor will insure good filtering. In some cases of noisy environment, or when the power supply is located far from the circuit, it may be necessary to use a dual stage decoupling as shown in Figure 5.
Ground can also become a considerable problem. It is assumed to be uniformly zero volts and considered as a reference. In practice, if the ground is poorly laid out, every single point may be at a different potential and at a different phase, which is a source of instability or signal distortion.
The most reliable solution to this problem is to have a ground plane that will minimize the parasitic inductance and therefore, potential and phase differences.

INPUT CAPACITANCE

The input capacitance of the LH4003 is typically 8 pF and will slightly increase with frequency. A large source resistance value in front of this will form a pole, which may substantially reduce the bandwidth of the circuit and affect stability.
This is the reason why resistor values higher than 500 ohms should not be utiilized in the feedback network and high source impedance should be avoided.

BIAS CURRENT

The input bias current is typically $100 \mu \mathrm{~A}$ and may create an undesirable output offset voltage when the source impedance is high. An internal 50Ω resistor is provided for matching with a 50Ω source impedance in order to minimize the output offset voltage. Figure 6 shows a circuit that uses a FET transistor pair for the input stage in order to reduce the input bias current to the sub-nanoampere region.

Typical Applications (Continued)

Note: Top trace is input and bottom trace is output. $V_{C C}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{ISO}}=20 \Omega$ and $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$. FIGURE 4. Pulse Response when Driving Capacitance.

FIGURE 5. Dual Stage Decoupling

TL/K/9243-9
FIGURE 6. FET Buffer Reduces Bias Current

National

LH4004/LH4004C Wideband FET-Input Buffer/Amplifier

General Description

The LH4004 is an FET input, high speed differential amplifier optimized for unity gain applications. It eliminates most of the drawbacks of conventional open loop buffers and does not require compensation for unity and other low gain operations. It is an ideal choice for video distribution, driving flash converters, and summing amplifiers. Furthermore, the bandwidth does not decrease with increasing gain. At a closed loop gain of 4 , the LH4004 still offers a 75 MHz bandwidth.

Features

■ $\pm 0.5 \mathrm{~dB}$ gain flatness

- $500 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Drives 50Ω directly
- 140 MHz bandwidth
- No external components required for unity gain operation
- Internal power supply bypassing

Applications

똔 Unity gain buffer

- Low gain op amp

Simplified Schematic and Connection Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, V_{S}
$\pm 15 \mathrm{~V}$
Power Dissipation, P_{D}
$T_{A}=25^{\circ} \mathrm{C}$, derate linearly at $80^{\circ} \mathrm{C} / \mathrm{W}$
1.8W
3.75 W

Input Voltage Range, V_{IN}

Operating Temperature Range, T_{A} LH4004CD
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ LH4004D
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, TSTG
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$
Maximum Junction Temperature, T_{J} $300^{\circ} \mathrm{C}$
ESD rating is to be determined.

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Note 1)

Symbol	Parameter	Conditions		LH4004C			Units (Max Unless Otherwise Stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$V_{I N}=O V, T_{A}=T_{J}=25^{\circ} \mathrm{C}$ (Note 4)		8	15		mV
$\mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Offset Voltage Drift			300			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{Pin}$			400		pA
	Gain Accuracy	$\begin{aligned} & V_{I N}= \pm 1 V \\ & A_{V}=+1 \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	0.98	0.96	0.93	V/V (Min)
			$\mathrm{R}_{\mathrm{L}}=50 \Omega$	0.98	0.96	0.93	
V_{0}	Output Voltage Swing	$V_{\text {IN }}= \pm 10 \mathrm{~V}$	$R_{L}=500 \Omega$	9.6	9.2	9.2	V (Min)
V_{O}	Output Voltage Current Swing	$\mathrm{V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		± 4.5	± 4		V (Min)
Is	Supply Current			35	40		mA
PSRR	Power Supply Rejection Ratio	$\pm \mathrm{V}_{S}= \pm 11 \mathrm{~V}$			40		dB (Min)

AC Electrical Characteristics $\mathrm{v}_{S}= \pm 12 \mathrm{~V}, \mathrm{R}_{S}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

DC Electrical Characteristics

$V_{S}= \pm 12 \mathrm{~V}, R_{S}=R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted (Notes $1 \& 5$)

Symbol	Parameter	Conditions		LH4004			Units (Max Unless Otherwise Stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 4)		8	15		mV
$\mathrm{V}_{\text {OS }} / \Delta T$	Offset Voltage Drift			300			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
l_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \text { Pin } 6 \text { (Note 4) }$			400		pA
					400		nA
	Gain Accuracy	$\begin{aligned} & V_{\mathbb{N}}= \pm 1 V \\ & A_{V}=+1 \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	0.98	0.96		$\begin{aligned} & \text { V/V } \\ & \text { (Min) } \end{aligned}$
					0.93		
			$\mathrm{R}_{\mathrm{L}}=50 \Omega$	0.98	0.96		
					0.93		
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	9.6	9.2		V (Min)
V_{0}	Output Voltage Swing	$V_{\text {IN }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		± 4.5	± 4		V (Min)
Is	Supply Current			35	40		-
PSRR	Power Supply Rejection Ratio				- 40		dB (Min)

AC Electrical Characteristics $V_{S}= \pm 12 \mathrm{~V}, \mathrm{R}_{S}=R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions		LH4004			Units (Max Unless Otherwise Stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
t_{r}	Small Signal Rise Time	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		3			ns
t_{s}	Settling Time to 0.5\%	$\mathrm{V}_{\mathrm{IN}}=-2.5 \mathrm{~V}$ to +2.5 V		30			ns
$f_{-3 \mathrm{~dB}}$	Small Signal Bandwidth	$\mathrm{V}_{\text {IN }}=-10 \mathrm{dBm}$	$A_{V}=+1$		125		MHz (Min)
			$A_{V}=+4$		75		
	Large Signal Bandwidth	$\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	$A_{V}=+1$		70		MHz
	Gain Flatness	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~A}_{\mathrm{V}}=+1 \\ & f=0-50 \mathrm{MHz} \end{aligned}$			± 0.5		dB
	Harmonic Distortion	Second Order$\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V} p-\mathrm{p}, f_{\mathrm{IN}}=10 \mathrm{MHz}$.	dB
SR	Slew Rate	$\mathrm{V}_{\mathrm{IN}}=-2.5 \mathrm{~V}$ to +2.5 V		1500		1200	$\mathrm{V} / \mu \mathrm{s}$
		$\mathrm{V}_{\mathrm{IN}}=+2.5 \mathrm{~V}$ to -2.5 V		600		500	(Min)

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4004 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4004 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Note 2: Tested limits are guaranteed and 100\% production tested.
Note 3: Design limits are guaranteed (but not 100\% production tested) over the indicated temperature range. These limits are not used to calculate outgoing quality levels.
Note 4: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $T_{J}=25^{\circ} \mathrm{C}$.
Note 5: When the LH4004 is operated at elevated temperature (such as $125^{\circ} \mathrm{C}$), some form of heat sinking or forced air cooling is required. The quiescent power with V_{S} of $\pm 12 \mathrm{~V}$ is 960 mW , whereas the package is only rated to 800 mW without a heatsink at $125^{\circ} \mathrm{C}$.

Application Hints

The front page figure shows the simplified schematic which includes the feedback resistor and the decoupling capacitors.
The essential difference from other op amps is that both inputs are radically different, the non-inverting input goes to a FET buffer follower and the inverting input is connected to the second stage emitter node. This topology is responsible for the unique bandwidth characteristic and transfer function of the amplifier.
Let's consider the connection diagram of Figure 1. The typical transfer function in the case of a classical op amp would be:

$$
\frac{V_{\mathrm{OUT}}}{V_{\text {IN }}}=\frac{\mathrm{K}(\mathrm{~s})}{1+K(\mathrm{~s}) / \mathrm{B}}
$$

where $B=\frac{R_{A}+R_{B}}{R_{B}}$ and $K(s)$ is the open loop gain of the amplifier and is frequency dependent. By rearranging the formula, we find;
(1) $\frac{V_{\text {OUT }}}{V_{\text {IN }}}=B * \frac{K(s)}{K(s)+B}$

For the LH4004, a small signal analysis shows that the difference between the two inputs turns the previous typical equation into:
(2) $\frac{V_{\text {OUT }}}{V_{\text {IN }}}=B^{*} \frac{K(s)}{K(s)+B+m R_{A}}$
where m is an internal parameter to the device and $K(s)$ is approximately 70 dB at DC with a 50Ω load.
In both equations, the second term is negligible when the open loop gain of the amplifier, $\mathrm{K}(\mathrm{s})$, approaches infinity, but in equation (1), when the signal frequency reaches a point where $\mathrm{K}(\mathrm{s})$ is small, say $\mathrm{K}(\mathrm{s})=10$ or less, then the term will be very sensitive to the value of the closed loop gain B and $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$ will fall earlier as B increases.
In equation (2), m is approximately 0.19 and R_{A} is provided inside the package, with a value which has been chosen to be 240Ω. The term mR_{A} is therefore equal to 46 and will dominate the term B as long as it is kept below 5 . The result is that $V_{\text {OUT }} / V_{\text {IN }}$ will not be as dependent on B as with traditional topologies. The gain will still fall with the open loop gain $K(s)$ as the frequency increases, but the roll off will be virtually independent of the closed loop gain B.
Resistor R_{B} sets the overall closed loop gain, but has very little effect on stability and bandwidth. Another peculiarity of the LH4004 is that the loop compensation can be accomplished by changing the value of resistor R_{A} (Figure 2). Even though this such as settling time, overshoot and phase margin, it will not affect the slew rate. Although this resistive compensation scheme is adequate in most cases, an alternate method is to place a capacitor between pins 3 and 19 (Figure 3). This method of compensation also reduces the device slew rate (Figure 4).

Low Gain Operation

The small amount of stray capacitance present at the inverting input can cause peaking which increases with decreasing gain. The gain set resistor R_{B} (in Figure 1) is effectively
in parallel with this capacitance and so a frequency domain pole results. With a small R_{B}, this pole is at a high frequency and it affects the closed loop gain of the LH4004 only slightly. At lower values of gain, this pole becomes significant. For example, at a gain of +2 , the gain may peak as much as 1.5 dB to 2 dB at 100 MHz .

BANDWIDTH IN MHz FOR UNITY GAIN CONFIGURATION
TL/K/8831-10
FIGURE 2. Bandwidth vs Rext

BANDWIDTH IN MHz FOR UNITY GAIN CONFIGURATION
TL/K/8831-11
FIGURE 3. Bandwidth vs Cext $^{\text {end }}$

늠

TL/K/8831-13
FIGURE 4. Slew Rates vs Compensation C

Typical Applications

TL/K/8831-4
FIGURE 5. Unity Gain Buffer

TL/K/8831-5
FIGURE 7. Driving Capacitive Loads

TL/K/8831-12
FIGURE 6. Differential Amplifier

TL/K/8831-6
FIGURE 8. Offset Adjust

TL/K/8831-7
FIGURE 9. LH4004 Used in Amplifier Applications

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

TL/K/8831-14

Large Signal Pulse Response

TL/K/8831-16
Top Trace $=$ Input Bottom Trace = Output

TL/K/8831-15

Small Signal Pulse Response

TL/K/8831-17
Top Trace $=$ Input
Bottom Trace $=$ Output

LH4006/LH4006C Precision RF Closed Loop Buffer

General Description

The LH4006 is a precision RF buffer optimized for unity gain applications. It features a small signal bandwidth of 350 MHz . The buffer is internally compensated to be unity gain stable and has internal short circuit protection. The LH4006 is useful in applications such as video buffering, cable driving, and flash converter input conditioning. The high bandwidth also allows the LH4006 to be used in RF/IF signal conditioning such as amplification or down conversion.

Features

■ Operation from $\pm 6 \mathrm{~V}$ supplies

- Drives 50Ω directly
- Internal power supply bypassing
- Short circuit protection
- $1000 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- 0.95 gain accuracy into 50Ω

Applications

- Line drivers
- Video buffers
- Pulse amplifiers

Connection Diagram

Note 1: NC = not connected.
Note 2: Pins 9 \& 17 are internally connected.
Order Number LH4006D \& LH4006CD See NS Package Number D24D

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage, V_{S}
$\pm 8 \mathrm{~V}$
Power Dissipation, P_{D}
3.75 W

Operating Temperature Range, T_{A}

LH4006CD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH4006D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, TSTG	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$
Lead Temperature (Soldering <10 sec.)	$300^{\circ} \mathrm{C}$
ESD Rating to be determined.	

2W
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Derate Linearly at $62.5^{\circ} \mathrm{C} / \mathrm{W}$

$$
\pm V_{S}
$$

$$
\pm 100 \mathrm{~mA}
$$

Output Short Circuit Duration

DC Electrical Characteristics (Notes 1 \& 6)

$V_{S}= \pm 6 \mathrm{~V}, R_{S}=R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions		LH4006C			Units (Max unless otherwise stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
$V_{\text {OS }}$	Output Offset Voltage	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, Note 4		5	15		mV
$\mathrm{V}_{\text {OS/ }}$ TT	Offset Voltage Drift			100			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{R}_{\mathrm{S}}=300 \Omega$, Note 4		100	300		$\mu \mathrm{A}$
A_{V}	Voltage Gain	$\begin{aligned} & V_{I N}=2 V p-p, \\ & f=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	0.98	0.95		$\begin{aligned} & \text { V/V } \\ & (\mathrm{min}) \end{aligned}$
			$R_{L}=1 \mathrm{k} \Omega$	0.98	0.95		
V_{0}	Output Voltage Swing	$A_{V}=+1$			± 3		$\underset{(\mathrm{min})}{V}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 4 \mathrm{~V} \text { to } \pm 8 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$		55	45		$\begin{gathered} \mathrm{dB} \\ (\mathrm{~min}) \end{gathered}$
Is	Supply Current	$V_{\mathbb{I N}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ Note 7		55	65		mA
P_{D}	Power Dissipation					780	mW

AC Electrical Characteristics (Note 1)

$V_{S}= \pm 6 \mathrm{~V}, R_{S}=R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions		LH4006C			Units (Max unless otherwise stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
tr	Small Signal Rise Time	$\Delta \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		2			ns
ts	Settling Time to 0.1\%	$V_{I N}= \pm 3 \mathrm{~V}$		80			
SR	Slew Rate	$V_{\text {IN }}=-3 V$ to $+3 V$	10\%-90\%	1000			$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & (\mathrm{~min}) \end{aligned}$
		$V_{I N}=+3 V$ to $-3 V$	10\%-90\%	1200			
$f_{-3 \mathrm{~dB}}$	Small Signal Bandwidth	$V_{\text {OUT }}=100 \mathrm{mVp}-\mathrm{p}$	$A_{V}=+1$	350	300		MHz
	Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}$, Note 5		80			
	Second Order Harmonic Distortion	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=4 \mathrm{Vp}-\mathrm{p}, \\ & f_{\mathrm{IN}}=10 \mathrm{MHz} \end{aligned}$		-60			dB

DC Electrical Characteristics (Notes 1 \& 6)
$V_{S}= \pm 6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions		LH4006			Units (Max unless otherwise stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2	15		mV
					25		
$\mathrm{V}_{\text {OS/ } / \Delta T}$	Offset Voltage Drift	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		100			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & R_{S}=300 \Omega \\ & T_{A}=T_{J}=25^{\circ} \mathrm{C}, \text { Note } 4 \end{aligned}$		100	300		$\mu \mathrm{A}$
					400		
A_{V}	Voltage Gain	$\begin{aligned} & V_{I N}=2 V p-p, \\ & f=1 \mathrm{kHz} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	0.98	$\begin{gathered} 0.95 \\ \mathbf{0 . 9 3} \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & (\mathrm{~min}) \end{aligned}$
			$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.98	$\begin{aligned} & 0.95 \\ & \mathbf{0 . 9 3} \end{aligned}$		
V_{0}	Output Voltage Swing	$A_{V}=+1$			± 3	± 3	$\begin{gathered} \text { V } \\ (\mathrm{min}) \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 4 \mathrm{~V}$ to +8 V		55	45		$\begin{gathered} d B \\ (\min) \end{gathered}$
					40		
Is	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \text { (Note 7) } \end{aligned}$		55	65	80	mA
P_{D}	Power Dissipation					780	mW

AC Electrical Characteristics (Note 1)

$V_{S}= \pm 6 \mathrm{~V}, R_{S}=R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions		LH4006			Units (Max unless otherwise stated)
				Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
tr	Small Signal Rise Time	$\Delta \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$		2			ns
ts	Settling Time to 0.1\%	$\mathrm{V}_{\mathrm{IN}}= \pm 3 \mathrm{~V}$		80			
SR	Slew Rate	$V_{\text {IN }}=-3 V$ to $+3 V$	10\%-90\%	1000			$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & (\mathrm{~min}) \end{aligned}$
		$V_{I N}=+3 V$ to $-3 V$	10\%-90\%	1200			
$f_{-3 \mathrm{~dB}}$	Small Signal Bandwidth	$V_{\text {OUT }}=100 \mathrm{mVp}-\mathrm{p}$	$A_{V}=+1$	350	300		MHz
	Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}$, Note 5		80			
	Second Order Harmonic Distortion	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=4 \mathrm{Vp-p}, \\ & f_{\text {IN }}=10 \mathrm{MHz} \end{aligned}$		-60			dB

Note 1: These measurements are taken with the LH4006 strapped for a gain of +1 .
Note 2: Tested limits are guaranteed and 100% tested in production.
Note 3: Design limits are guaranteed (but not 100% production tested) over indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 4: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual value may be higher at operating junction temperature.
Note 5: Full power bandwidth is calculated based on slew rate measurement using FPBW = slew rate/($2 \pi \mathrm{~V}$ peak).
Note 6: Boldface limits are guaranteed over full temperature. Operating ambient temperature range of LH 4006 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4006 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Note 7: When the LH4006 is operated at elevated temperature (such as $125^{\circ} \mathrm{C}$), some form of heat sinking or forced air cooling is required. The quiescent power with V_{S} of $\pm 6 \mathrm{~V}$ is 780 mW , whereas the package is rated to 750 mW without a heatsink at $125^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Application Information

The unity gain follower configuration shown in Figure 1, offers a 350 MHz small signal bandwidth to the -3 dB point and the minimum slew rate of $1000 \mathrm{~V} / \mu \mathrm{s}$ insures a full power bandwidth of 80 MHz for a 4 V peak to peak signal, according to the formula:

$$
B=\frac{S R}{2 \pi V p}
$$

Where SR is the slew rate in $\mathrm{V} / \mu \mathrm{s}, \mathrm{B}$ is the bandwidth of the device in MHz for a peak sine wave voltage Vp .
The unity gain follower/buffer is therefore an excellent choice for wideband sinewave buffering or pulse amplification. Figure 2 shows the typical pulse response for such a configuration.

TL/K/9255-3
FIGURE 1. Unity Gain Follower

FIGURE 2. Follower/Buffer Pulse Response

Driving Capacitive Loads

Flash A/D, unterminated cables, etc, can exhibit up to 300 pF of capacitance, thus creating stability or settling problems. Figure 3 shows the compensation scheme for driving such capacitive loads while still insuring optimum settling. The output current limit of the LH4006 is a considerable help for driving capacitive loads, the charging current is kept
in control and the damping resistor can be small without overloading the output stage. A 20Ω resistor in series with the capacitance is required for insuring an optimum settling time to 0.5% in less than 20 ns which is suitable for driving a 7 bit flash A to D converter in video applications at a sampling rate of 20 MSPS (see Figure 4).

FIGURE 3. Driving Capacitance

$\mathrm{V}_{\mathrm{CC}}= \pm 6$ Volts
$\mathrm{C}_{\mathrm{L}}=360 \mathrm{pF}$
FIGURE 4. Pulse Response When Driving Capacitance

Layout Considerations

The layout of a RF/Video PC board where the signal frequency is beyond 100 MHz requires special attention. All the traces or connections must be as short and as wide as possible in order to keep their parasitic inductance to a minimum. This is especially critical for the supply lines where the current can reach over 100 mA in a few nanoseconds.
Although the LH4006 contains internal decoupling, it still requires some external bypassing capacitors, which have to be located as close to the supply pins as possible. A $4.7 \mu \mathrm{~F}$ in parallel with a 100 nF low inductance capacitor will insure good filtering. In some cases of noisy environment, or when the power supply is located far from the circuit, it may be necessary to use a dual stage decoupling as shown in Figure 5 .

TL/K/9255-8
FIGURE 5. Dual Stage Decoupling
Ground can also become a considerable problem. It is assumed to be uniformly zero volts and considered as a reference. In practice, if the ground is poorly laid out, every single point may be at a different potential and at a different phase, which is a source of instability or signal distortion.
The most reliable solution to this problem is to have a ground plane that will minimize the parasitic inductance and therefore, potential and phase differences.

Input Capacitance

The input capacitance of the LH4006 is typically 8 pF and will slightly increase with frequency. A large source resistance value in front of this will form a pole, which may substantially reduce the bandwidth of the circuit and affect stability.
This is the reason why resistor values higher than 500Ω should not be used in the feedback network and high source impedance should be avoided.

Bias Current

The input bias current is typically $100 \mu \mathrm{~A}$ and may create an undesirable output offset voltage when the source impedance is high. An internal 50Ω resistor is provided for matching with a 50Ω source impedance in order to minimize the output offset voltage. Figure 6 shows a circuit that uses a FET transistor pair for the input stage in order to reduce the input bias current to the sub-nanoampere region.

TL/K/9255-9
FIGURE 6. FET Input Follower Buffer

LH4008/LH4008C Fast Buffer

General Description

The LH4008 is a very high speed, FET input, voltage follower/buffer designed to provide high current drive at frequencies from DC to over 180 MHz . The LH4008/LH4008C will provide $\pm 200 \mathrm{~mA}$ into 50Ω loads ($\pm 500 \mathrm{~mA}$ peak) at slew rates of $10,000 \mathrm{~V} / \mu \mathrm{s}$. In addition, it exhibits excellent phase linearity.
The LH4008 is intended to fulfill a wide range of buffer applications. Due to its high speed it does not degrade the system performance. Its high output current makes it adequate for most loads. Only a single +10 V supply is needed for a 5 $V_{\text {PP }}$ video signal. In addition, the LH4008 can continuously drive 50Ω coaxial cables.
These devices are constructed using specially selected junction FET's and active laser trimming to achieve guaranteed performance specifications. The LH4008K is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the LH4008CK and LH4008CT are specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. LH4008K and LH4008CK are available in an 8 -pin TO-3 package. The LH4008CT is available in an 11-pin TO220 package.

Features

■ Fast $\quad 10,000 \mathrm{~V} / \mu \mathrm{s}$

- Wide range single or dual supply operation
■ Wide power bandwidth - DC to 130 MHz
- High output drive $\pm 10 \mathrm{~V}$ with 50Ω load

■ Low phase non-linearity < 2 degrees
\square Fast rise times $<1.6 \mathrm{~ns}$

- High input resistance $>10^{10} \Omega$
- Pin compatible with LH0063

Applications

- High speed line drivers
- Video impedance transformation
- Op amp isolation buffers
- Yoke driver for high resolution CRT
- High impedance input buffer

Connection Diagram

Metal Can Package (TO-3), 8 Pin

Note: Case is electrically isolated.
Top View
Order Number LH4008K or LH4008CK
See NS Package Number K08A

Plastic Package (TO-220), 11 Leads

TL/K/9666-18
Note: Metal tab is electrically isolated.
Top View
Order Number LH4008CT See NS Package Number TA11B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Maximum Power Dissipation (See Curves) 3.2W
Maximum Junction Temperature $175^{\circ} \mathrm{C}$
Input Voltage
Equal to Supplies

Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH4008	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH4008C	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range	
Lead Temperature	$300^{\circ} \mathrm{C}$
(Soldering, 10 seconds)	TBD

DC Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, R_{S}=R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 1) (Continued)

Symbol	Parameter	Conditions	LH4008C			Units (Max Unless Otherwise Noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Output Offset	(Note 4)	10	50		mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Avererage Temperature Coefficient of Output Offset Voltage	$\mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega$	200			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$ (Note 4)	10	30		nA
A_{V}	Voltage Gain	$\begin{aligned} & V_{I N}= \pm 10 \mathrm{~V} \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$	0.95	0.92		V/V
A_{V}	Voltage Gain	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.94	0.9		V/V
$\mathrm{ClN}_{\text {IN }}$	Input Capacitance	Case Shorted to Output	8			pF
R OUT	Output Impedance	$V_{\text {OUT }}= \pm 10 \mathrm{~V}$	1.8	4		Ω
$\mathrm{V}_{\text {O }}$	Output Current Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega \\ & \hline \end{aligned}$	0.25	0.2		Amps
V_{O}	Output Voltage Swing		11.9	± 10.5		V
LSV_{0}	Low Supply Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	± 3.2	± 2.5		$\begin{gathered} \text { V } \\ (\mathrm{Min}) \end{gathered}$
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	60	70		mA
Is	Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	45			mA
$P_{\text {D }}$	Power Consumption	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	1.8	2.1		W
P_{D}	Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	450			mW

AC Electrical Characteristics $L H 4008\left(T_{J}=25^{\circ}, V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega\right)$

Symbol	Parameter	Conditions	LH4008C/LH4008			Units (Max Unless Otherwise Noted)
			Typical			
S_{R}	Slew Rate Rising Edge	$\begin{aligned} & V_{I N}=20 V_{P-P} \\ & 20 \%-80 \% \end{aligned}$	10000			$\mathrm{V} / \mu \mathrm{s}$
S_{R}	Slew Rate Falling Edge	$\begin{aligned} & V_{I N}=20 V_{P-P} \\ & 20 \%-80 \% \end{aligned}$	7000			$\mathrm{V} / \mu \mathrm{s}$
BW	Bandwidth	$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vrms}$	180	160		MHz
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{VP-P}$	130	110		MHz
	Phase Non-Linearity	$\mathrm{BW}=1.0$ to 50 MHz	2			degrees
t_{r}	Rise Time	$\Delta \mathrm{V}_{\text {IN }}=20 \mathrm{~V}_{\text {P-P }}$	1.6			ns
t_{p}	Propagation Delay	$\Delta \mathrm{V}_{\text {IN }}=20 \mathrm{~V}_{\text {P-P }}$	1.2			ns
	Harmonic Distortion		<0.1			\%

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4008 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4008 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Note 2: Tested limits are guaranteed and 100\% production tested.
Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature range. These limits are not used to calculate outgoing quality level.
Note 4: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $T_{J}=25^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Small Signal Rise Time

TIME ($500 \mathrm{ps} /$ div.)

Supply Current vs Supply Voltage

TL/K/9666-5

Small Signal Fall Time
 TIME ($1 \mathrm{~ns} /$ div.)

TL/K/9666-13

Large Signal Fall Time

TIME ($500 \mathrm{ps} /$ div.)
TL/K/9666-15

Bandwidth Test Circuit

TL/K/9666-3

Application Hints

Recommended Layout Precautions: RF/video printed circuit board layout rules should be followed when using the LH4008 since it will provide power gain to frequencies over 180 MHz . Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively, the case should be connected to the output to minimize input capacitance.

TL/K/9666-6
FIGURE 2. Offset Zero Adjust
Short Circuit Protection: Short circuit protection may be added by inserting appropriate value resistors between V^{+} and $\mathrm{V}_{\mathrm{C}}{ }^{+}$pins and V^{-}and $\mathrm{V}_{\mathrm{C}^{-}}$pins as illustrated in Figures 2 and 3. Resistor values may be predicted by:

$$
\mathrm{R}_{\mathrm{LIM}}=\frac{\mathrm{V}^{+}}{\mathrm{I}_{\mathrm{SC}}}=\frac{\mathrm{V}^{-}}{\mathrm{I}_{\mathrm{SC}}}
$$

The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing. Decoupling $\mathrm{V}_{\mathrm{C}}{ }^{+}$and $\mathrm{V}_{\mathrm{C}}{ }^{-}$pins with capacitors to ground will retain fuli output swing for transient pulses.

FIGURE 3. Using Resistor Current Limiting

Power Bandwidth Test Circuit

TL/K/9666-4

Capacitive Loading: The LH4008 is designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from ($\mathrm{C} \times \mathrm{dV} / \mathrm{dt}$), should be limited below absolute maximum peak current ratings for the devices.

$$
\left(\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{t}}\right) \times \mathrm{C}_{\mathrm{L}} \leq \text { lout } \leq \pm 500 \mathrm{~mA}
$$

In addition, power dissipation resulting from driving capacitive loads plus standby power should be kept below package power rating:

$$
\begin{aligned}
& P_{\text {diss }}^{\text {pkg. }} \\
& \geq P_{D C}+P_{A C} \\
& P_{\text {diss }}^{\text {pkg. }} \geq\left(V^{+}-V^{-}\right) \times I_{S}+P_{A C} \\
& P_{A C}=\left(V_{p-p}\right)^{2} \times f \times C_{L}
\end{aligned}
$$

where

$$
\begin{aligned}
& V_{p-p}=\text { Peak-to-peak output voltage swing } \\
& f=\text { frequency } \\
& C_{L}=\text { Load Capacitance }
\end{aligned}
$$

Operation within an Op Amp Loop: The device may be used as a current booster or isolation buffer within a closed loop with op amps such as LH0032, LM6161, or LM118. An isolation resistor of 47Ω should be used between the op amp output and the input of LH4008. The wide bandwidth and high slew rate of the LH4008 assures that the loop has the characteristics of the op amp and that additional rolloff is not required.
Hardware: In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to system chassis.

ATTENTION!

Power supply bypassing is necessary to prevent oscillation in all circuits. Low inductance ceramic disc capacitance with the shortest practical lead lengths must be connected from each supply lead (within < $1 / 4$ to $1 / 2^{\prime \prime}$ of the device package) to a ground plane. Capacitors should be two $0.1 \mu \mathrm{~F}$ ceramic and one $4.7 \mu \mathrm{~F}$ solid tantalum capacitors in parallel on each supply lead.

Schematic Diagram

FIGURE 1
Typical Applications

Typical Applications (Continued)

TL/K/9666-9

TL/K/9666-11

TL/K/9666-17

捲
 National Semiconductor
 LH4009／LH4009C Fast Buffer

General Description

The LH4009 is a very high speed，FET input，voltage follow－ er／buffer designed to provide high current drive at frequen－ cies from DC to over 190 MHz ．The LH4009／LH4009C will provide $\pm 200 \mathrm{~mA}$ into 50Ω loads（ $\pm 250 \mathrm{~mA}$ peak）at slew rates of $10000 \mathrm{~V} / \mu \mathrm{s}$ ．In addition，it exhibits excellent phase linearity．
The LH4009 is intended to fulfill a wide range of buffer appli－ cations．Due to its high speed it does not degrade the sys－ tem performance．Its high output current makes it adequate for most loads．Only a single +10 V supply is needed for a 5 VPP video signal．In addition，the LH4009 can continuously drive 50Ω coaxial cables．
These devices are constructed using specially selected junction FETs and active laser trimming to achieve guaran－ teed performance specifications．The LH4009K is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ；whereas，the LH4009CK is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．LH4009K and LH4009CK are available in an 8－pin TO－3 package． LH4009CT is available in an 11－pin TO－220 package and is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ．

Features

－Fast
$10000 \mathrm{~V} / \mu \mathrm{s}$
国 Wide range single or dual supply operation
龱 Wide power bandwidth
DC to 150 MHz
－High output drive $\pm 10 \mathrm{~V}$ with 50Ω load
－Low phase non－linearity 2 degrees
－Fast rise times
2 ns
High input resistance $10^{10} \Omega$
国 Pin compatible with LH0063
（ Built in short circuit protection

Applications

■ High speed line drivers
（aideo impedance transformation
■ Op amp isolation buffers
（a）Yoke driver for high resolution CRT
a High impedance input buffer

Connection Diagrams

Plastic Package（TO－220）， 11 Pin

Metal Tab is Electrically Isolated
Order Number LH4009CT See NS Package Number TA11B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Maximum Power Dissipation (see Curves) 3W
Maximum Junction Temperature Input Voltage
Continuous Output Current
$175^{\circ} \mathrm{C}$
Equal to Supplies
$\pm 200 \mathrm{~mA}$

Peak Output Current
$\pm 250 \mathrm{~mA}$
Duration of Short Circuit Protection 30 sec
Operating Temperature Range

LH4009	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH4009C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
(Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
ESD	TBD

DC Electrical Characteristics $V_{S}= \pm 15 \mathrm{~V}, R_{S}=R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Conditions	LH4009			Units (Max unless otherwise noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Output Offset	(Note 4)	10	$\begin{gathered} 25 \\ 150 \end{gathered}$		mV
I_{B}	Input Bias Current	(Note 4)	5	$\begin{gathered} 30 \\ 100 \end{gathered}$		nA
Av	Voltage Gain	$V_{\mathbb{I}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.92	$\begin{gathered} 0.9 \\ \mathbf{0 . 8 5} \end{gathered}$		V/V (Min)
Av	Voltage Gain	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.87	$\begin{aligned} & 0.85 \\ & 0.8 \end{aligned}$		V / V (Min)
$\mathrm{C}_{\text {IN }}$	Input Capacitance		10			pF
R OUT	Output Impedance	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$		5		Ω
V_{O}	Output Voltage Swing		± 11	$\begin{gathered} \pm 10 \\ \pm 8 \end{gathered}$		V (Min)
$\mathrm{LSV}_{\mathrm{O}}$	Low Supply Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$		± 2.5		$V(\mathrm{Min})$
Is	Supply Current	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$,	47	$\begin{aligned} & 60 \\ & 75 \end{aligned}$		mA
LVIS	Low Voltage Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	45	60		mA
P_{D}	Power Consumption	$\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	1.26	1.8		W
P_{D}	Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		600		mW

DC Electrical Characteristics $V_{S}= \pm 15 \mathrm{~V}, R_{S}=R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Conditions	LH4009C			Units (Max unless otherwise noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
Vos	Output Offset	(Note 4)	10	50		mV
I_{B}	Input Bias Current	(Note 4)	5	30		nA
Av	Voltage Gain	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.92	0.9		V / V (Min)
Av	Voltage Gain	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.87	0.85		V/V (Min)
$\mathrm{C}_{\text {IN }}$	Input Capacitance					pF
R ${ }_{\text {OUT }}$	Output Impedance	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$		5		Ω
V_{0}	Output Voltage Swing		± 11	± 10		V (Min)
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$		± 2.5		V (Min)
Is	Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	42	60		mA
LVIS	Low Voltage Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	45	60		mA
$P_{\text {D }}$	Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	1.26	1.8		W
P_{D}	Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		600		mW

AC Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$

Symbol	Parameter	Conditions	LH4009			Units (Max unless otherwise noted)
			Typical			
SR	Slew Rate Rising Edge	$\begin{aligned} & V_{\text {IN }}=20 V_{P P} \\ & 20 \%-80 \% \end{aligned}$	11,000			$\mathrm{V} / \mu \mathrm{S}$ (Min)
SR	Slew Rate Falling Edge	$\begin{aligned} & V_{I N}=20 V_{P P} \\ & 20 \%-80 \% \end{aligned}$	8000			$\mathrm{V} / \mu \mathrm{s}$ (Min)
BW	Bandwidth	$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{Vrms}$	190	160		MHz (Min)
PBW	Power Bandwidth	$\mathrm{V}_{\text {IN }}=20 \mathrm{~V}_{\mathrm{PP}}$	150	130		MHz (Min)
	Rise Time	$\Delta V_{\text {IN }}=20 \mathrm{~V}_{\mathrm{PP}}$	1.2			ns
	Propagation Delay	$\Delta V_{\text {IN }}=20 \mathrm{~V}_{\mathrm{PP}}$	1.3			ns

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4009 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4009 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Note 2: Tested limits are guaranteed and 100\% production tested.
Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature or temperature range. These limits are not used to calculate outgoing quality level.

Note 4: Specifications are at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $T_{J}=25^{\circ} \mathrm{C}$.

Typical Performance Characteristics

TL/K/9405-9

Typical Performance Characteristics (Continued)

Large Signal Rise Time

Small Signal Rise Time

Large Signal Fall Time

TL/K/9405-11

Small Signal Fall Time

TL/K/9405-12

Bandwidth Test Circuit

TL/K/9405-14

Power Bandwidth Test Circuit

TL/K/9405-15

Application Hints

RECOMMENDED LAYOUT PRECAUTIONS: RF/video printed circuit board layout rules should be followed when using the LH4009 since it will provide power gain to frequencies over 200 MHz . Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively, the case should be connected to the output to minimize input capacitance.

TL/K/9405-3
FIGURE 1. Offset Zero Adjust
SHORT CIRCUIT PROTECTION: The LH4009 features built-in short circuit protection. It will protect the device against output shorts to ground for up to 30 seconds. Beyond that the device may get degraded.
CAPACITIVE LOADING: The LH4009 is designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from ($\mathrm{C} \times \mathrm{dV} / \mathrm{dt}$), should
be limited below absolute maximum peak current ratings for the devices.

$$
\left(\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta t}\right) \times \mathrm{C}_{\mathrm{L}} \leq \mathrm{I}_{\mathrm{OUT}} \leq \pm 250 \mathrm{~mA}
$$

In addition, power dissipation resulting from driving capactive loads plus standby power should be kept below package power rating:

$$
\begin{aligned}
& P_{\text {diss }} \geq P_{D C}+P_{A C} \\
& \text { pkg. }
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {diss }} \geq\left(V^{+}-V^{-}\right) \times I_{S}+P_{A C} \\
& \text { pkg. } \\
& P_{A C}=(V p-p)^{2} \times f \times C_{L}
\end{aligned}
$$

where $\quad V p-p=$ Peak-to-peak output voltage swing

$$
f=\text { frequency }
$$

$$
\mathrm{C}_{\mathrm{L}}=\text { Load Capacitance }
$$

OPERATION WITHIN AN OP AMP LOOP: The device may be used as a current booster or isolation buffer within a closed loop with op amps such as LH0032, LM6161, or LM118. An isolation resistor of 47Ω should be used between the op amp output and the input of LH4009. The wide bandwidth and high slew rate of the LH4009 assures that the loop has the characteristics of the op amp and that additional rolloff is not required.
HARDWARE: In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to system chassis.

ATTENTION!

POWER SUPPLY BYPASSING is necessary to prevent oscillation in all circuits. Low inductance ceramic disc capacitance with the shortest practical lead lengths must be connected from each supply lead (within $<1 / 4$ to $1 / 2^{\prime \prime}$ of the device package) to a ground plane. Capacitors should be two $0.1 \mu \mathrm{~F}$ ceramic and one $4.7 \mu \mathrm{~F}$ solid tantalum capacitors in parallel on each supply lead.

Schematic Diagram

TL/K/9405-1
Typical Applications

1W CW Final Amplifier

TL/K/9405-8

LH4010/LH4010C Fast FET Buffer

General Description

The LH4010/LH4010C is a high speed, FET input, voltage follower/buffer designed to provide high current drive at frequencies from DC to over 100 MHz . LH4010 will provide $\pm 100 \mathrm{~mA}$ into 50Ω loads ($\pm 250 \mathrm{~mA}$ peak) at slew rates of $2500 \mathrm{~V} / \mu \mathrm{s}$. In addition, both exhibit excellent phase linearity up to 20 MHz .
The LH4010 is intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffer for driving reactive loads and high impedance input buffers for high speed ADCs and comparators.
These devices are constructed using specially selected junction FETs and active laser trimming to achieve guaranteed performance specifications. The LH4010 is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the LH4010C is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The LH4010/ LH4010C is available in a 1.5 W metal TO-8 package or a 16 lead dual-in-line package, N16A.

Features

- Slew rate $2500 \mathrm{~V} / \mu \mathrm{s}$
- Wide range single or dual supply operation
- Power bandwidth

DC to 20 MHz

- High output drive $\pm 10 \mathrm{~V}$ with 100Ω load
- Low phase non-linearity 2°
- Fast rise times 2 ns
- High current gain 120 dB
- High input resistance 1010Ω
- Pin compatible with LH0033

Applications

- High speed cable driver
- Isolation buffer
- ADC input buffer
- Op amp current booster

Schematic and Connection Diagram

TL/K/9349-16
Pin numbers shown for TO-8 (" G ") package.

TL/K/9349-24
Order Number LH4010CN See NS Package Number N16A

Metal Can Package (TO-8)

Top View
Case is Electrically Isolated.
Order Number LH4010G or LH4010CG
See NS Package Number H12B

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Maximim Power Dissipation (See Curves)
1.5W

Maximum Junction Temperature
$175^{\circ} \mathrm{C}$
Input Voltage
Equal to Supplies

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted (Note 1)

Symbol	Parameter	Conditions	LH4010C			Units (Max Unless Otherwise Noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Output Offset Voltage	$\begin{aligned} & V_{I N}=0 V, T_{A}=T_{J}=25^{\circ} \mathrm{C} \\ & \text { (Note 4) } \end{aligned}$	5	10	20	mV
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 1)	0.5	1	50	nA
V_{0}	Output Voltage Swing	$\mathrm{V}_{\text {IN }}= \pm 14 \mathrm{~V}$ (Note 1)		± 12	± 12	$V(\mathrm{Min})$
		$\mathrm{V}_{\mathrm{IN}}= \pm 10.5, \mathrm{R}_{\mathrm{L}}=100 \Omega$		± 9		V (Min)
$\mathrm{R}_{\text {IN }}$	Input Impedance	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}= \pm 1 \mathrm{~V}$	1010			Ω
I_{5}	Supply Current		22	26		mA
Rout	Output Impedance	$\begin{aligned} & V_{I N}= \pm V_{D C} \\ & \Delta R_{L}=100 \Omega \text { to } \infty \end{aligned}$		10		Ω
A_{V}	Voltage Gain	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$		0.96	0.96	V / V (Min)
		$V_{I N}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		0.90	0.90	V/V (Min)

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ otherwise noted (Note 1)

Symbol	Parameter	Conditions	LH4010			Units (Max Unless Otherwise Noted)
			Typical	Tested Limit (Note 2)		
$\mathrm{V}_{\text {OS }}$	Input Offset	$\begin{aligned} & V_{i N}=0 V, T_{A}=T_{J}=25^{\circ} \mathrm{C} \\ & (\text { Notes 1, 4) } \end{aligned}$	5	10		mV
				25		
I_{B}	Input Bias Current	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (Notes 1, 4)	200	500		pA
				10		nA
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{IN}}= \pm 14 \mathrm{~V}$		± 12		V (Min)
		$\begin{aligned} & V_{I N}= \pm 10.5, R L=100 \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		± 9		V (Min)
$\mathrm{R}_{\text {IN }}$	Input Impedance	$\begin{aligned} & T_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 1 \mathrm{~V} \end{aligned}$	1010			Ω
Is	Supply Current		22	26		mA
Rout	Output Impedance	$\begin{aligned} & V_{I N}= \pm V_{D C}(\text { Note } 4) \\ & \Delta R_{L}=100 \Omega \text { to } \infty \\ & \hline \end{aligned}$		8		Ω
A_{V}	Voltage Gain	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$		0.97		V/V (Min)
		$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{RL}=100 \Omega$		0.92		V/V (Min)

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions	LH4010/LH4010C			Units (Max Unless Otherwise Noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
t_{r}	Small Signal Rise Time (Note 5)	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	1.5			ns
		$R_{L}=50 \Omega, V_{I N}=0.5 \mathrm{~V}$		2.5		
${ }_{\text {t }}$	Propagation Delay (Note 5)	$\Delta \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$	2.0			ns
BW	Small Signal Bandwidth (Note 7)		200			MHz (Min)
		$\mathrm{R}_{\mathrm{L}}=50 \Omega$			140	
SR	Slew Rate (Note 6)	$\mathrm{V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}$	2500	2000		$\mathrm{V} / \mu \mathrm{s}$ (Min)

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4010 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4010 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Note 2: Tested limits are guaranteed and 100\% production tested.
Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature or temperature range. These limits are not used to calculate outgoing quality level.
Note 4: Specifications are at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $T_{J}=25^{\circ} \mathrm{C}$.
Note 5: See AC Test Circuit.
Note 6: Slew rate is measured between +2.5 V and -2.5 V . See AC Test Circuit.
Note 7: Bandwidth is calculated from rise time with $f=\mathrm{t}_{\mathrm{r}} / \pi$.

Typical Characteristics

Small Signal Pulse

Output Resistance vs Output Current

Gain vs Input Voltage

Frequency Response

AC Test Circuit

TL/K/9349-2

Application Hints

Recommended Layout Precautions: RF/video printed circuit board layout rules should be followed when using the LH4010 and LH4010C since they will provide power gain to frequencies over 100 MHz . Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors. In addition, ground plane shielding may be extended to the metal case of the device since it is electrically isolated from internal circuitry. Alternatively the case should be connected to the output to minimize input capacitance.
Offset Voltage Adjustment: Both the LH4010 and LH4010C offset voltages have been actively trimmed by laser to meet guaranteed specifications when the offset preset pin is shorted to the offset adjust pin. This pre-calibration allows the devices to be used in most DC or AC applications without individually offset nulling each device. If offset null is desirable, it is simply obtained by leaving the offset preset pin open and connecting a trim pot of 100Ω between the offset adjust pin and V^{-}as illustrated in Figure 1.

FIGURE 1. Offset Zero Adjust for LH4010
Operation from Single or Asymmetrical Power Supplies: Both device types may be readily used in application where symmetrical supplies are unavailable or not desirable. A typical application might be an interface to a MOS shift register where $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-12 \mathrm{~V}$. In this case, an apparent output offset occurs due to the device's voltage gain of less than unity. This additional output offset error may be predicted by:

$$
\Delta \mathrm{V}_{\mathrm{O}} \cong\left(1-\mathrm{A}_{\mathrm{V}}\right) \frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)}{2}=0.005\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)
$$

where:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{V}} & =\text { No load voltage gain, typically } 0.99 \\
\mathrm{~V}^{+} & =\text {Positive supply voltage } \\
\mathrm{V}^{-} & =\text {Negative supply voltage }
\end{aligned}
$$

For the above example, ΔV_{O} would be -35 mV . This may be adjusted to zero as discussed above. For AC coupled applications, no additional offset occurs if the DC input is properly biased as illustrated in the "typical applications" section.
Short Circuit Protection: In order to optimize transient response and output swing, output current limit has been omitted from the LH4010 and LH4010C. Short circuit protection may be added by inserting appropriate value resistors between V^{+}and $\mathrm{V}_{\mathrm{C}}{ }^{+}$pins and V^{-}and $\mathrm{V}_{\mathrm{C}}{ }^{-}$pins as illustrated in Figure 2. Resistor values may be predicted by:

$$
R_{L I M} \cong \frac{v^{+}}{I_{S C}}=\frac{-v^{-}}{I_{S C}}
$$

where:

$$
\mathrm{I}_{\mathrm{Sc}} \leq 100 \mathrm{~mA}
$$

The inclusion of limiting resistors in the collectors of the output transitors reduces output voltage swing. Decoupling $\mathrm{V}_{\mathrm{C}}{ }^{+}$and $\mathrm{V}_{\mathrm{C}}{ }^{-}$pins with capacitors to ground will retain full output swing for transient pulses. An alternate active current limit technique that retains full DC output swing is shown in Figure 3.

TL/K/9349-13

Applications Hints (Continued)

TL/K/9349-15

FIGURE 3. LH4010 Current Limiting Using Current Sources

Capacitive Loading: The LH4010 is designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without being susceptible to oscillation. However, peak current resulting from ($\mathrm{C} \times \mathrm{dV} / \mathrm{dt}$) should be limited below absolute maximum peak current ratings for the devices.
Thus:

$$
\left\{\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{t}}\right\} \times \mathrm{C}_{\mathrm{L}} \leq \text { IOUT } \leq \pm 250 \mathrm{~mA}
$$

Typical Applications

High Input Impedance AC Coupled Amplifier

In addition, power dissipation resulting from driving capcitative loads plus standby power should be kept below total package power rating:

$$
\begin{gathered}
P_{\substack{\text { diss } \\
\text { pkg }}} \geq P_{D C}+P_{A C} \\
P_{\text {diss }}^{\text {pkg }}< \\
\left.P_{A C} \cong\left(V^{+}-V^{-}\right) \times I_{S}+P_{A C}\right)^{2} \times f \times C_{L}
\end{gathered}
$$

where: $\quad V_{P P}=$ Peak-to-peak output voltage swing

$$
f=\text { frequency }
$$

$$
\mathrm{C}_{\mathrm{L}}=\text { Load Capacitance }
$$

Operation Within an Op Amp Loop: Both devices may be used as a current booster or isolation buffer within a closed loop with op amps such as LH0032, LM6361, or LM118. An isolation resistor of 47Ω should be used between the op amp output and the input of LH4010. The wide bandwidths and high slew rates of the LH4010 assure that loop has the characteristics of the op amp and that additional rolloff is not required.
Hardware: In order to utilize the full drive capabilities of the device, it should be mounted with a heat sink particularly for extended temperature operation. The case is isolated from the circuit and may be connected to system chassis.

ATTENTION!

Power supply bypassing is necessary to prevent oscillation in all circuits. Low inductance ceramic disc capacitors with the shortest practical lead lengths must be connected from each supply lead (within $<1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ of the device package) to a ground plane. Capacitors should be one or two $0.1 \mu \mathrm{~F}$ in parallel; adding a $4.7 \mu \mathrm{~F}$ solid tantalum capacitor will help in troublesome instances.

TL/K/9349-18

Typical Applications (Continued)

${ }^{*}$ Select C_{1} for optimum pulse response.

Single Supply AC Amplifier

TL/K/9349-20

Typical Applications (Continued)

High Speed Sample and Hold

*Pin numbers shown for TO-8 (" G ") package.

LH4011/LH4011C Fast Open Loop Buffer

General Description

The LH4011 is a very high speed, FET input, voltage follower/buffer designed to provide high current drive at frequencies from DC to over 150 MHz . The LH4011/LH4011C will provide $\pm 200 \mathrm{~mA}$ into 50Ω loads ($\pm 500 \mathrm{~mA}$ peak) at slew rates of $5000 \mathrm{~V} / \mu \mathrm{s}$. In addition, it exhibits excellent phase linearity.
The LH4011 is intended to fulfill a wide range of buffer applications. Due to its high speed it does not degrade the system performance. Its high output current makes it adequate for most loads. Only a single +10 V supply is needed for a 5 VPP video signal. In addition, the LH4011 can continuously drive 50Ω coaxial cables.
These devices are constructed using specially selected junction FET's and active laser trimming to achieve guaranteed performance specifications. The LH4011K is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas, the LH4011CK is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. LH 4011 K and LH4011CK are available in a 5 W 8 -pin TO-3 package. The LH4011CT is specified for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and is available in an 11-pin TO-220 package.

Features

- Fast $5000 \mathrm{~V} / \mu \mathrm{s}$
- Wide range single or dual supply operation
- Wide bandwidth

DC to 160 MHz

- High output drive $\pm 10 \mathrm{~V}$ with 50Ω load
■ Low phase non-linearity $<2^{\circ}$
- Fast rise times $<2 \mathrm{~ns}$

■ High input resistance $\quad>1010 \Omega$

- Pin compatible with LH0063

Applications

- High speed line drivers
- Video impedance transformation
- Op amp isolation buffers
- Yoke driver for high resolution CRT
- High impedance input buffer

Connection Diagrams

Plastic Package (TO-220), 11-Pin

TL/K/9423-19

Top View
Note: Metal Tab is Electrically Isolated Order Number LH4011CT
See NS Package Number TA11B

Absolute Maximum Ratings		
If Military/Aerospace specified devices are required,	Peak Output Current	$\pm 500 \mathrm{~mA}$
please contact the National Semiconductor Sales	Operating Temperature Range	
Office/Distributors for availability and specifications.	LH4011	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$) 40V	LH4011C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Power Dissipation (See Curves) 3.2W	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $175^{\circ} \mathrm{C}$	Lead Temperature	
Input Voltage Equal to Supplies	(Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
Continuous Output Current $\pm 200 \mathrm{~mA}$	ESD	TBD

DC Electrical Characteristics

$V_{S} \pm 15 \mathrm{~V}, \mathrm{RS}=\mathrm{RL}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 1)

Symbol	Parameter	Conditions	LH4011			Units (Max Unless Otherwise Noted)
			Typical		Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Output Offset	$\begin{aligned} & R_{L}=50 \Omega \\ & R_{S}<100 \mathrm{k} \Omega \text { (Note 4) } \end{aligned}$	10	25		mV
				100		
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Aver. Temp. Coeffic. of Output Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}<100 \mathrm{~K} \Omega \\ & \mathrm{~T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }} \end{aligned}$	300			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 4)	10	30		nA
				100	.	
A_{v}	Voltage Gain	$\begin{aligned} & V_{I N} \pm 10 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega \end{aligned}$	0.95	0.94		V/V (Min)
				0.92		
A_{v}	Voltage Gain	$\begin{aligned} & V_{I N}= \pm 10 \mathrm{~V}, R_{L}=50 \Omega \\ & R_{S}<100 \mathrm{k} \Omega \end{aligned}$	0.94	0.92		V/V (Min)
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Case Shorted to Output	8			pF
ROUT	Output Impedance	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$		4		Ω
V_{0}	Output Current Swing	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega$	0.25	0.2		Amps (Min)
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	11.4	± 10		V (Min)
V_{0}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	± 2.7	± 2.5		V (Min)
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	60	68		mA
I_{5}	Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	50			mA
P_{D}	Power Consumption	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	1.8			W
P_{D}	Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	0.5			W

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \mathrm{RS}=\mathrm{RL}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 1)

Symbol	Parameter	Conditions	LH4011C			Units (Max Unless Otherwise Noted
			Typical	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 2) } \\ & \hline \end{aligned}$	Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Output Offset	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega \text { (Note } 4 \text {) } \end{aligned}$	10	50		mV
$\Delta V_{\text {OS }} / \Delta T$	Aver. Temp. Coeffic. of Output Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega \\ & \mathrm{~T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }} \end{aligned}$	300			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 4)	10	30		nA
A_{V}	Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega \end{aligned}$	0.95	0.92		V/V (Min)
A_{v}	Voltage Gain	$\begin{aligned} & V_{I N}= \pm 10 V, R_{L}=50 \Omega, T_{J}=25^{\circ} \mathrm{C} \\ & R_{S}<100 \mathrm{k} \Omega \end{aligned}$	0.94	0.9		V/V (Min)
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Case Shorted to Output	8			pF
Rout	Output Impedance	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$		4		Ω
V_{O}	Output Current Swing	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}<100 \mathrm{k} \Omega$	0.25	0.2		Amps (Min)
V_{0}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	11.4	± 10		V (Min)
V_{O}	Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	± 2.7	± 2.5		V (Min)
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	60	68		mA
Is	Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	50			mA
P_{D}	Power Consumption	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	1.8			W
P_{D}	Power Consumption	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	0.5		-	W

AC Electrical Characteristics $T_{J}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$

Symbol	Parameter	Conditions	LH4011C/LH4011			Units (Max Unless Otherwise Noted)
			Typical		Design Limit (Note 3)	
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{IN}}=20 \mathrm{~V} \mathrm{PP}, 20 \%$ to 80%	5000			$\mathrm{V} / \mu \mathrm{s}$
BW	Bandwidth	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{Vrms}$	160	140		MHz
PBW	Power Bandwidth	$\Delta \mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V} \mathrm{PP}$	80	60		MHz (Min)
	Phase Non-Linearity	$\mathrm{BW}=1.0 \mathrm{MHz}$ to 50 MHz	2			deg.
	Rise Time	$\Delta V_{\text {IN }}=1 \mathrm{~V}_{\text {PP }}$	1.6			ns
	Propagation Delay	$\Delta \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{PP}}$	1.9			ns
	Harmonic Distortion		<0.1			\%

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4011 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4011 is $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 2: Tested limits are guaranteed and 100\% production tested.
Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature range. These limtis are not used to calculate outgoing quality level.
Note 4: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $T_{J}=25^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Output Swing vs Supply Voltage

Small Signal Rise Time

TIME（ $1 \mathrm{~ns} / \mathrm{div}$ ．）
TL／K／9423－4

Input Bias Current

TL／K／9423－3

Small Signal Fall Time

TIME（1 ns／div．）
TL／K／9423－15

Frequency Response

TL／K／9423－6

Large Signal Fall Time

TIME（2 ns／div．）
TL／K／9423－16

Schematic Diagram

LH4011/LH4011C

TL/K/9423-2

Bandwidth Test Circuit

TL/K/9423-13
FIGURE 1. Bandwidth Test Circuit

Power Bandwidth Test Circuit

TL/K/9423-14
FIGURE 2. Power Bandwidth Test Circuit

Application Hints

Recommended Layout Precautions：RF／video printed circuit board layout rules should be followed when using the LH4011 since it will provide gain to frequencies over 160 MHz ．Ground planes are recommended and power sup－ plies should be decoupled at each device with low induc－ tance capacitors．In addition，ground plane shielding may be extended to the metal case of the device since it is electri－ cally isolated from internal circuitry．Alternatively，the case should be connected to the output to minimize input capaci－ tance．
Short Circuit Protection：Short circuit protection may be add－ ed by inserting appropriate value resistors between V^{+}and $\mathrm{V}_{\mathrm{C}}{ }^{+}$pins and V^{-}and $\mathrm{V}_{\mathrm{C}^{-}}$pins as illustrated in Figure 4. Resistor values may be predicted by：

$$
\mathrm{R}_{\mathrm{LIM}} \cong \frac{\mathrm{v}^{+}}{\mathrm{I}_{\mathrm{SC}}}=\frac{\mathrm{v}^{-}}{\mathrm{I}_{\mathrm{SC}}}
$$

The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing．Decoupling $\mathrm{V}_{\mathrm{C}}{ }^{+}$and $\mathrm{V}_{\mathrm{C}}{ }^{-}$pins with capacitors to ground will retain full output swing for transient pulses．

TL．／K／9423－7
FIGURE 3．Offset Zero Adjust

TL／K／9423－8
FIGURE 4．Using Resistor Current Limiting

Application Hints (Continued)

Capacitive Loading: The LH4011 is designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from ($\mathrm{C} \times \mathrm{dV} / \mathrm{dt}$), should be limited below absolute maximum peak current ratings for the devices.

$$
\left(\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{t}}\right) \times \mathrm{C}_{\mathrm{L}} \leq \mathrm{IOUT} \leq \pm 500 \mathrm{~mA}
$$

In addition, power dissipation resulting from driving capacitive loads plus standby power should be kept below the package power rating.

$$
\begin{aligned}
& P_{\text {diss }} \geq P_{D C}+P_{A C} \\
& \text { pkg. } \\
& P_{\text {diss }}^{\text {pkg. }} \geq\left(V^{+}-V^{-}\right) \times I_{S}+P_{A C} \\
& P_{A C}=\left(V_{p-p}\right)^{2} \times f \times C_{L}
\end{aligned}
$$

where $\quad V_{p-p}=$ Peak-to-peak output voltage swing
$f=$ frequency
$C_{L}=$ Load Capacitance

Operation Within an Op Amp Loop: The device may be used as a current booster or isolation buffer within a closed loop with op amps such as LH0032, LM6161, or LM118. An isolation resistor of 47Ω should be used between the op amp output and the input of LH4011. The wide bandwidth and high slew rate of the LH4011 assures that the loop has the characteristics of the op amp and that additional compensation is not required.
Hardware: In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation. The cases of both are isolated from the circuit and may be connected to system chassis.

ATTENTION!

Power supply bypassing is necessary to prevent oscillation in all circuits. Low inductance ceramic disc capacitance with the shortest practical lead lengths must be connected from each supply lead (within $1 / 4$ to $1 / 2^{\prime \prime}$ of the device package) to a ground plane. Capacitors should be two $0.1 \mu \mathrm{~F}$ ceramic and one $4.7 \mu \mathrm{~F}$ solid tantalum capacitors in parallel on each supply lead.

Typical Applications

TL/K/9423-9

1W CW Final Amplifier

Typical Applications (Continued)

TL/K/9423-17

LH4012/LH4012C Wideband Buffer

General Description

The LH4012 is a very high speed buffer designed to provide high current drive at frequencies from DC to over 400 MHz . The LH4012/LH4012C will provide $\pm 200 \mathrm{~mA}$ into 50Ω loads at slew rates of $11500 \mathrm{~V} / \mu \mathrm{s}$. In addition, it exhibits excellent phase linearity.
The LH4012 is intended to fulfill a wide range of buffer applications. Due to its high speed it does not degrade the system performance. Its high output current makes it adequate for most loads. Only a single +10 V supply is needed for a 5 VPP video signal.
These devices are constructed using specially selected bipolar transistors to achieve guaranteed performance specifications. The LH4012K is specified for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the LH4012CK is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Both devices are available in an 8-pin TO-3 package.

Features

- Internal supply bypass capacitors
- Ultra fast slewing $11500 \mathrm{~V} / \mu \mathrm{s}$
- Wide range single or dual supply operation
- Wide bandwidth

DC to 490 MHz
. High output drive $\pm 10 \mathrm{~V}$ with 50Ω load

- Low phase non-linearity 1 deg.
- Fast rise times 1.2 ns

Applications

migh speed line drivers

- Video impedance transformation
- Op amp isolation buffers
- Yoke driver for high resolution CRT

Schematic Diagram

LH4012

Top View
Case is Electrically Tied to Pins 4 and 6 (Ground)
Order Number LH4012K or LH4012CK See NS Package Number K08A

Absolute Maximum Ratings		
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales	Output Current, Continuous Peak	$\begin{aligned} & \pm 200 \mathrm{~mA} \\ & \pm 400 \mathrm{~mA} \end{aligned}$
Office/Distributors for availability and specifications.	Operating Temperature Range	
Supply Voltage (V^{+}, - V^{-}) 40V	LH4012	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Power Dissipation (See Curves) 3W	LH4012C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature $175^{\circ} \mathrm{C}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Input Voltage $\quad\left\|\mathrm{V}_{\text {OUT }} \pm \mathrm{V}_{\text {IN }}\right\|<3 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
	ESD	TBD

DC Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, R_{S}=R_{L}=50 \Omega, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified (Note 1)

Symbol	Parameter	Conditions	LH4012			Units (Max unless Otherwise Noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
$\mathrm{V}_{\text {OS }}$	Output Offset		± 20	± 50		mV
				± 55		
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Aver. Temp. Coeffic. of Output Offset Voltage	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$	30			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current (Note 4)		0.2	0.7		mA
A_{V}	Voltage Gain	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.98	0.95		V/V (Min)
A_{V}	Voltage Gain	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.93	0.9		V/V (Min)
				0.9		
$\mathrm{C}_{\text {IN }}$	Input Capacitance		7			pF
ROUT	Output Impedance	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	2.3	4.5		Ω
V_{0}	Output Voltage Swing		11.4	10		V (Min)
				9		
PSRR	Power Supply Rejection Ratio		70			dB
$L_{\text {LSAV }}$	Low Supply Voltage Gain	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \\ & V_{I N}= \pm 2.5 \mathrm{~V} \end{aligned}$	0.92	0.85		V/V (Min)
				0.85		
$\mathrm{LSV}_{\mathrm{O}}$	Low Supply Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	3.4	2.5		V (Min)
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	65	75		mA
				80		
LVI_{S}	Low Voltage Supply Current	$V_{S}= \pm 5 \mathrm{~V}$	21	30	:	mA
$P_{\text {D }}$	Power Consumption	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	1.95	2.25		W
$P_{\text {D }}$	Power Consumption	$R_{L}=\infty, V_{S}= \pm 5.0 \mathrm{~V}$	0.21	0.3		W

DC Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, R_{S}=R_{L}=50 \Omega, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified (Note 1)

Symbol	Parameter	Conditions	LH4012C			Units (Max unless Otherwise Noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
V_{OS}	Output Offset		± 20	± 50		mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Aver. Temp. Coeffic. of Output Offset Voltage	$\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\text {A }}<\mathrm{T}_{\text {MAX }}$	30			$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current (Note 4)		0.2	0.7		mA
A_{V}	Voltage Gain	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	0.98	0.95		V / V (Min)
A_{V}	Voltage Gain	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	0.93	0.9		V/V (Min)
$\mathrm{C}_{\text {IN }}$	Input Capacitance		7			pF
ROUT	Output Impedance	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	2.3	4.5		Ω
V_{0}	Output Voltage Swing		11.4	10		V (Min)
PSRR	Power Supply Rejection Ratio		70			db (Min)
$L_{\text {LS }}$.	Low Supply Voltage Gain	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \\ & V_{\mathrm{IN}}= \pm 2.5 \mathrm{~V} \end{aligned}$	0.92	0.85	\because	V/V (Min)
$\mathrm{LSV}_{\mathrm{O}}$	Low Supply Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	3.4	2.5		V (Min)
Is	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	65	75		mA
LVIS	Low Voltage Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	21	30		mA
PD_{D}	Power Consumption	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	1.95	2.25	,	W
P_{D}	Power Consumption'	$\mathrm{V}_{\mathrm{S}}= \pm 5.0 \mathrm{~V}$	0.21	0.3	.	W

AC Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega$ (Note 5)

Symbol	Parameter	Conditions	LH4012/LH4012C			Units (Max unless Otherwise Noted)
			Typical	Tested Limit (Note 2)	Design Limit (Note 3)	
SR	Slew Rate	$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	11500		,	$\mathrm{V} / \mu \mathrm{s}$
SSBW	Small Signal Bandwidth	$\mathrm{V}_{\mathrm{IN}}=0.223 \mathrm{Vrms}$	460	400		MHz (Min)
PBW	Power Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\text {IN }}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	230	200		MHz
	Phase Non-Linearity	$\mathrm{BW}=1.0 \mathrm{MHz}$ to 100 MHz	1			Degrees
	Rise Time		1.2		,	ns
	Propagation Delay	$\mathrm{V}_{\text {IN }}=20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	1	.		ns
	Harmonic Distortion	$\begin{aligned} & V_{I N}=10 V_{P-P} \\ & f=100 \mathrm{MHz} \end{aligned}$	0.5			\%

Note 1: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range of LH 4012 C is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and LH 4012 is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Note 2: Tested limits are guaranteed and 100% production tested.
Note 3: Design limits are guaranteed (but not production tested) over the indicated temperature or temperature range. These limits are not used to calculate outgoing quality level.
Note 4: Specifications is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed value at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
Note 5: For test circuits see Figures 1, 2.

Typical Performance Characteristics

Gain and Phase vs Frequency

Frequency (MHz)

Fall Time

TIME (500 ps/div.)

Output Voltage Swing vs Temperature

1 dB Compression vs Frequency

Typical S Parameters $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{S}}=50 \Omega$

\mathbf{f}	S11		S21		S12		S22	
$\mathbf{M H z}$	Mag	Ang	dB	Ang	dB	Ang	Mag	Ang
10	0.99	-3	5.27	-3.7	-60	54	0.87	176
100	0.99	-26	5.20	-33	-32	129	0.92	167
250	1.0	-82	5.15	-94	-14	69	0.94	138
500	0.80	-170	1.20	-182	-10	-22	0.60	96

Small Signal Bandwidth Test Circuit

TL/K/9720-4
FIGURE 1. Small Signal Bandwidth Test Circuit

Power Bandwidth Test Circuit

TL/K/9720-5
FIGURE 2. Power Bandwidth Test Circuit

Application Information

LAYOUT: Breadboards should have a solid ground plane and short point-to-point wiring. Do not use wire wrap boards or techniques. PC boards should have short connections and as much ground plane as possible.
It is best to have a layout without sockets, but sockets with shortpins and receptacles do not significantly degrade the performance.
The LH4012 has built-in $0.01 \mu \mathrm{~F}$ power supply bypass capacitors, but additional $4.7 \mu \mathrm{~F}$ tantalum capacitors are needed a maximum of $1^{\prime \prime}$ distant from the pins.
Input and output signals should be fed by coax or microstrip if the distances are more than a few inches to avoid impedance mismatches and resulting reflections. However, inside a feedback loop all connections should be short to avoid time delays and the associated phase shifts.
SOURCE RESISTANCE: The LH4012 is designed to work from a 50Ω or higher source impedance. If driven from a low source impedance, especially if it is inductive, a series input resistor is recommended that brings the source impedance to 50Ω, or instabilities could result.
CAPACITIVE LOADING: As with all buffers, capacitive loading can lead to instabilities. This can be minimized by reducing the phase angle of the load with a resistor either in series or in parallel with the capacitor or with a combination of both.
The charge current of the load capacitor,

$$
C \text { Load } \times \frac{d V}{d T}
$$

should be considered when the load current is checked against its absolute maximum limit.
In addition, power dissipation resulting from driving capacitive loads plus standby power should be kept below the package power rating.
$P_{A C}+P_{D C}<P_{\text {Pkg. }}$ Diss.
$P_{A C}=\left(V_{P P}\right)^{2} \times f \times C$ load
$P_{D C}=\left(V^{+}-V^{-}\right) \times I_{S}$
where $\mathrm{V}_{\mathrm{PP}}=$ output voltage swing
$f=$ Frequency

OPERATION WITHIN AN OP AMP LOOP: The device may be used as a current booster or isolation buffer within a closed loop with op amps such as LH0032, LM6161, or LM118. An isolation resistor of 47Ω should be used between the op amp output and the input of the LH4012. The wide bandwidth and high slew rate of the LH4012 assures that the loop has the characteristics of the op amp and that additional frequency compensation is not required.
HEATSINK: In order to utilize the full drive capabilities of both the LH4012K or the LH4012CK, the device should be mounted with a heatsink, particularly for extended temperature operation.
VOLTAGE SWING: Input voltage is allowed to swing between positive and negative supply voltage levels, but it must be within $\pm 3 \mathrm{~V}$ of the output voltage. If the voltage differential from input to output is greater than $\pm 3 \mathrm{~V}$ the base-to-emitter diode of one of the input transistors will be broken down in reverse and the transistor will be degraded and could be destroyed.
SHORT CIRCUIT PROTECTION: In the interest of high performance the LH4012 has been designed without built-in protection. The simplest protection is a series resistor in the output. This approach has the advantage that input and output voltage of the buffer stay close together even during a shorted load. The main disadvantage is that the output voltage swing is reduced. Accuracy is normally not a problem, since the voltage drop across the protection resistor can be compensated for by more gain somewhere else in the circuit. This is especially true if the buffer is used within the feedback loop of an opamp.

Application Information (Continued)

TL/K/9720-6
Isolation Buffer

Coaxial Cable Driver

TL/K/9720-9

Application Information (Continued)

TL/K/9720-11

LH4033C/LH4063C Fast and Ultra Fast Buffer Amplifiers

General Description

The LH4033C and LH4063C are high speed, FET input, voltage follower/buffers designed to provide high current drive at frequencies from DC to over 100 MHz . The LH4033C will provide $\pm 10 \mathrm{~mA}$ into $1 \mathrm{k} \Omega$ loads ($\pm 100 \mathrm{~mA}$ peak) at slew rates of $1500 \mathrm{~V} / \mu \mathrm{s}$. The LH4063C will provide $\pm 250 \mathrm{~mA}$ into 50Ω loads ($\pm 500 \mathrm{~mA}$ peak) at slew rates of up to $6000 \mathrm{~V} / \mu \mathrm{s}$. In addition, both exhibit excellent phase linearity up to 20 MHz .
Both are intended to fulfill a wide range of buffer applications such as high speed line drivers, video impedance transformation, nuclear instrumentation amplifiers, op amp isolation buffer for driving reactive loads and high impedance input buffers for high speed ADCs and comparators. In addition, the LH4063C can continuously drive 50Ω coaxial cables or be used as a diddle yoke driver for high resolution CRT displays. For additional applications information, see AN-48.
These devices are constructed using specially selected junction FETs and active laser trimming to achieve guaranteed performance specifications. The LH4033C and LH4063C are specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The LH4033C is available in a 16 -pin plastic DIP. The LH4063C is available in an 11-lead TO-220 package.

Features

- Fast (LH4063) $6000 \mathrm{~V} / \mu \mathrm{s}$
- Wide range single or dual supply operation
- Wide power bandwidth DC to 100 MHz

■ High output drive $\pm 10 \mathrm{~V}$ with 50Ω load
■ Low phase non-linearity 2°

- Fast rise times 2 ns
- High current gain 120 dB
- High input resistance $10^{10} \Omega$

Applications

- High speed ATE
- Coaxial cable driver
- Isolation buffer
- High speed S/H amplifier
- High frequency filter
- Flash A/D buffer

Connection Diagrams

11-Lead TO-220
Order Number LH4063CT
See NS Package Number TA11A

TL/K/10008-2
16-Lead Molded Dual-In-Line Package
Order Number LH4033CN
See NS Package Number N16A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
40V
Maximum Power Dissipation (See Curves)

LH4063C
5W
LH4033C
Maximum Junction Temperature $175^{\circ} \mathrm{C}$
Input Voltage $\pm \mathrm{V}_{\mathrm{S}}$
Continuous Output Current

LH4063C	$\pm 250 \mathrm{~mA}$
LH4033C	$\pm 100 \mathrm{~mA}$

Peak Output Current

LH4063C	$\pm 500 \mathrm{~mA}$
LH4033C	$\pm 250 \mathrm{~mA}$

Operating Temperature Range LH4033C and LH4063C
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$

DC Electrical Characteristics $\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ unless otherwise specified (Note 1)

Parameter	Conditions	Limits			Units
		LH4033C			
		Nin	Typ	Max	
Output Offset Voltage	$\begin{aligned} & R_{S}=100 \Omega, T_{J}=25^{\circ} \mathrm{C}, V_{I N}=0 \mathrm{~V} \\ & R_{S}=100 \Omega(\text { Note } 2) \end{aligned}$		12	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Temperature Coefficient of Offset Voltage	$R_{S}=100 \Omega, \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}$ (Note 3)		50	100	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{array}{ll} \hline V_{I N}=0 V & T_{J}=25^{\circ} \mathrm{C}(\text { Note 2) } \\ & T_{A}=25^{\circ} \mathrm{C}(\text { Note 4) } \\ & T_{J}=T_{A}=T_{\text {MAX }} \\ \hline \end{array}$			$\begin{aligned} & 500 \\ & 5.0 \\ & 20 \\ & \hline \end{aligned}$	pA nA nA
Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, R_{S}=100 \Omega \\ & R_{L}=1.0 \mathrm{k} \Omega \end{aligned}$	0.96	0.98	1.00	V/V
Input Impedance	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	10^{10}	10^{11}		Ω
Output Impedance	$\mathrm{V}_{\mathrm{IN}}= \pm 1.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k}$		6.0	10	Ω
Output Voltage Swing	$\begin{aligned} & V_{I}= \pm 14 \mathrm{~V}, R_{\mathrm{L}}=1.0 \mathrm{k} \\ & V_{1}= \pm 10.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 9.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (Note 5), No Load		21	24	mA
Power Consumption	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ (No Load)		630	720	mW

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$ (Note 6)

Parameter	Conditions	Limits			Units
		LH4033C			
		Min	Typ	Max	
Slew Rate	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	1000	1400		V/ $\mu \mathrm{s}$
Bandwidth	$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}_{\text {rms }}$		100		MHz
Phase Non-Linearity	$\mathrm{BW}=1.0$ to 20 MHz		2.0		Degrees
Rise Time	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		3.2		ns
Propagation Delay	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		1.5		ns
Harmonic Distortion	$\mathrm{f}>1 \mathrm{kHz}$		<0.1		\%

Note 1: LH4033C is 100%, production tested at $25^{\circ} \mathrm{C}$ only. Specifications at temperature extremes are verified by sample testing, but these limits are not used to calculate outgoing quality level.

Note 2: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at $T_{J}=25^{\circ} \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient, and more under load conditions. Accordingly, $V_{O S}$ may change one to several mV , and I_{B} will change significantly during warm-up. Refer to I_{B} vs. temperature graph for expected values.
Note 3: LH4033C is sample tested only. Limits are not used to calculate outgoing quality levels. $\Delta V_{O S} / \Delta T$ is the average value calculated from measurements at $25^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {max }}$.
Note 4: Measured in still air 7 minutes after. application of Power. Guaranteed through correlated automatic pulse testing.
Note 5: Guaranteed through automatic pulse testing at $T_{J}=25^{\circ} \mathrm{C}$.
Note 6: Not 100% production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless otherwise specified (Note 1)

Parameter	Conditions	Limits			Units
		LH4063C			
		Min	Typ	Max	
Output Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \text { (Note 2) } \end{aligned}$		10	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Temperature Coefficient of Output Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		300		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 2)		10	$\begin{gathered} 30 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Voltage Gain	$\begin{aligned} & V_{I N}= \pm 10 \mathrm{~V}, R_{S}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=1.0 \mathrm{k} \Omega \end{aligned}$	0.94	0.96	1.0	V/V
	$\begin{aligned} & V_{I N}= \pm 10 \mathrm{~V}, R_{S}=100 \mathrm{k} \Omega, \\ & R_{L}=50 \Omega, T_{J}=25^{\circ} \mathrm{C} \end{aligned}$	0.91	0.93	0.98	V/V
Input Capacitance	Case Shorted to Output		8.0		pF
Output Impedance	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{S}} \leq 100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=50 \Omega \end{aligned}$	-	1.0	4.0	Ω
Output Current Swing	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$	0.2	0.25		Amps
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	± 10	± 13		V
	$\begin{aligned} & V_{S}= \pm 5.0 \mathrm{~V}, R_{L}=50 \Omega \\ & T_{J}=25^{\circ} \mathrm{C} \end{aligned}$	5.09	7.0		$V_{\text {P-P }}$
Supply Current	$T_{J}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ (Note 3)		35	65	mA
	$\mathrm{V}_{S}= \pm 5.0 \mathrm{~V}$ (Note 3)		50		mA
Power Consumption	$\begin{aligned} & T_{J}=25^{\circ} C_{,}, R_{L}=\infty, \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$		1.05	1.95	W
	$\mathrm{V}_{S}= \pm 5.0 \mathrm{~V}$		500		mW

AC Electrical Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ (Note 4), $\mathrm{R}_{\mathrm{S}}=50 \Omega$

Parameter	Conditions	Limits			Units
		LH4063C			
		Min	Typ	Max	
Slew Rate	$\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$		6000		$\mathrm{V} / \mu \mathrm{s}$
	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	2000	2400		$\mathrm{V} / \mu \mathrm{s}$
Bandwidth	$\mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}_{\text {rms }}$		200		MHz
Phase Non-Linearity	$B W=1.0$ to 20 MHz		2.0		Degrees
Rise Time	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		1.9		ns
Propagation Delay	$\Delta \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$		2.1		ns
Harmonic Distortion			<0.1		\%

[^22]
Typical Performance Characteristics

LH4033C Power Dissipation

LH4033C Supply Current vs Supply Voltage

LH4033C Frequency Response

LH4063C Power Dissipation

LH4063C Supply Current vs Supply Voltage

LH4033C Negative Pulse Response

LH4033C Rise and Fall Time vs Temperature

LH4063C DC Safe Operating Area

LH4033C Output Voltage vs Supply Voltage

LH4033C Positive Pulse
Response

LH4063C Large Signal Pulse Response

TL／K／10008－3

Typical Performance Characteristics (Continued)

Application Hints

Recommended Layout Precautions: RF/video printed circuit board layout rules should be followed when using the LH4033C and LH4063C since they will provide power gain to frequencies over 100 MHz . Ground planes are recommended and power supplies should be decoupled at each device with low inductance capacitors.
Offset Voltage Adjustment: Both the LH4033C's and LH4063C's offset voltages have been actively trimmed by laser to meet guaranteed specifications when the offset preset pin is shorted to the offset adjust pin. This pre-calibration allows the devices to be used in most DC or AC applications without individually offset nulling each device. If offset null is desirable, it is simply obtained by leaving the offset preset pin open and connecting a trim pot of 200Ω for the LH4033C or $1 \mathrm{k} \Omega$ for the LH4063C between the offset adjust pin and V - as illustrated in Figures 1 and 2.

TL/K/10008-5
FIGURE 1. Offset Zero Adjust for LH4033C

TL/K/10008-6
FIGURE 2. Offset Zero Adjust for LH4063C

Application Hints (Continued)

Operation from Single or Asymmetrical Power Supplies: Both device types may be readily used in applications where symmetrical supplies are unavailable or not desirable. A typical application might be an interface to a MOS shift register where $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-12 \mathrm{~V}$. In this case, an apparent output offset occurs due to the device's voltage gain of less than unity. This additional output offset error may be predicted by:

$$
\Delta V_{O} \cong\left(1-A_{V}\right) \frac{\left(V^{+}-V^{-}\right)}{2}=0.005\left(V^{+}-V^{-}\right)
$$

where:
$A_{V}=$ No load voltage gain, typically 0.99
$\mathrm{V}^{+}=$Positive supply voltage
$V^{-}=$Negative suply voltage
For the above example, ΔV_{O} would be -35 mV . This may be adjusted to zero by offset voltage adjustment described earlier. For AC coupled applications, no additional offset occurs if the DC input is properly biased as illustrated in the "typical applications" section.
Short Circuit Protection: In order to optimize transient response and output swing, output current limit has been omitted from the LH4033 and LH4063. Short circuit protection may be added by inserting appropriate value resistors between V^{+}and $\mathrm{V}_{\mathrm{C}}{ }^{+}$pins and V^{-}and $\mathrm{V}_{\mathrm{C}^{-}}$pins as illustrated in Figures 3 and 4. Resistor values may be predicted by:

$$
\mathrm{R}_{\mathrm{LIM}} \cong \frac{\mathrm{~V}+}{\mathrm{I}_{\mathrm{SC}}}=\frac{\mathrm{V}-}{\mathrm{I}_{\mathrm{SC}}}
$$

where:

$$
\mathrm{I}_{\mathrm{SC}} \leq 100 \mathrm{~mA} \text { for LH4033C }
$$

$$
\text { ISC } \leq 250 \mathrm{~mA} \text { for LH4063C }
$$

TL/K/10008-7
FIGURE 3. LH4033C Using Resistor Current Limiting
The inclusion of limiting resistors in the collectors of the output transistors reduces output voltage swing. Decoupling $\mathrm{V}_{\mathrm{C}}{ }^{+}$and $\mathrm{V}_{\mathrm{C}^{-}}$pins with capacitors to ground will retain full output swing for transient pulses. Alternate active current
limit techniques that retain full $D C$ output swing are shown in Figures 5, 6 and 7. In Figures 5 and 6, the current sources are saturated during normal operation thus apply full supply voltage to the V_{C} pins. Under fault conditions, the voltage decreases as required by the overload. For Figure 5:

$$
R_{\mathrm{LIM}}=\frac{V_{\mathrm{BE}}}{I_{\mathrm{SC}}}=\frac{0.6 \mathrm{~V}}{60 \mathrm{~mA}}=10 \Omega
$$

In Figure 6, quad transistor arrays are used to minimize part count and:

$$
R_{\mathrm{LIM}}=\frac{\mathrm{V}_{\mathrm{BE}}}{1 / 3\left(\mathrm{I}_{\mathrm{SC}}\right)}=\frac{0.6 \mathrm{~V}}{1 / 3(200 \mathrm{~mA})}=8.2 \Omega
$$

TL/K/10008-8
FIGURE 4. LH4063C Using Resistor Current Limiting

FIGURE 5. LH4033C Current Limiting Using Current Sources

Application Hints (Continued)

FIGURE 6. LH4063C Current Limiting Using Current Sources
Capacitance Loading: Both the LH4033C and LH4063C are designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads without susceptibility to oscillation. However, peak current resulting from (CdV/dt) should be limited below absolute maximum peak current ratings for the devices.
Thus for the LH4033C:

$$
\left(\frac{\Delta \mathrm{V}_{\text {IN }}}{\Delta t}\right) \times \mathrm{C}_{\mathrm{L}} \leq \text { louT } \leq \pm 250 \mathrm{~mA}
$$

and for the LH4063C:

$$
\left(\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{t}}\right) \times \mathrm{C}_{\mathrm{L}} \leq \mathrm{lOUT} \leq \pm 500 \mathrm{~mA}
$$

In addition, power dissipation resulting from driving capacitive loads plus standby power should be kept below total package power rating:

$$
\begin{aligned}
P_{\text {diss }}^{\text {pkg }} & \geq P_{D C}+P_{A C} \\
& \geq\left(V^{+}-V^{-}\right) \times I_{S}+P_{A C} \\
& P_{A C} \cong\left(V_{P_{-}}\right)^{2} \times f \times C_{L}
\end{aligned}
$$

where $\quad V_{P-P}=$ Peak-to-peak output voltage swing
$\mathrm{f}=$ Frequency
$C_{L}=$ Load Capacitance

Operation Within an Op Amp Loop: Both devices may be used as a current booster or isolation buffer within a closed loop with op amps such as LH0032, LH0062, or LM118. An isolation resistor of 47Ω should be used between the op amp output and the input of LH4033C. The wide bandwidths and high slew rates of the LH4033C and LH4063C assure that the loop has the characteristics of the op amp and that additional rolloff is not required.
Hardware: In order to utilize the full drive capabilities of both devices, each should be mounted with a heat sink particularly for extended temperature operation.

DESIGN PRECAUTION

Power supply bypassing is necessary to prevent oscillation with both the LH4033C and LH4063C in all circuits. Low inductance ceramic disc capacitors with the shortest practical lead lengths must be connected from each supply lead (within $<1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ of the device package) to a ground plane. Capacitors should be one or two $0.1 \mu \mathrm{~F}$ in parallel for the LH4033C; adding a $4.7 \mu \mathrm{~F}$ solid tantalum capacitor will help in troublesome instances. For the LH4063C, two $0.1 \mu \mathrm{~F}$ ceramic and one $4.7 \mu \mathrm{~F}$ solid tantalum capacitors in parallel will be necessary on each supply lead.

Schematic Diagrams

TL/K/10008-11

Schematic Diagrams (Continued)

Typical Applications

High Speed Automatic Test Equipment Forcing Function Generator

Typical Applications (Continued)

Gamma Ray Pulse Integrator

TL/K/10008-14

Nuclear Particle Detector

Isolation Buffer

High Input Impedance AC Coupled Amplifier

$\mathrm{fH}>100 \mathrm{MHz} \quad \mathrm{TL} / \mathrm{K} / 10008-16$
Coaxial Cable Driver

TL/K/10008-18

Typical Applications (Continued)

High Input Impedance Comparator With Offset Adjust

Single Supply AC Amplifier

Instrumentation Shield/Line Driver

TL/K/10008-22
4.5 MHz Notch Filter

High Speed Sample \& Hold

TL/K/10008-25

LM102/LM302 Voltage Followers

General Description

The LM102 series are high-gain operational amplifiers designed specifically for unity-gain voltage follower applications. Built on a single silicon chip, the devices incorporate advanced processing techniques to obtain very low input current and high input impedance. Further, the input transistors are operated at zero collector-base voltage to virtually eliminate high temperature leakage currents. It can therefore be operated in a temperature stabilized component oven to get extremely low input currents and low offset voltage drift.
The LM102, which is designed to operate with supply voltages between $\pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$, also features low input capacitance as well as excellent small signal and large signal frequency response-all of which minimize high fre-
quency gain error. Because of the low wiring capacitances inherent in monolithic construction, this fast operation can be realized without increasing power consumption.

Features

(1) Fast slewing - $10 \mathrm{~V} / \mu \mathrm{s}$
(1. Low input current - 10 nA (max)

- High input resistance - $10,000 \mathrm{M} \Omega$
(1) No external frequency compensation required

■ Simple offset balancing with optional 1 K potentiometer
m Plug-in replacement for both the LM101 and LM709 in voltage follower applications

Schematic Diagram

TL/H/7753-1

```
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 6)
Supply Voltage
                    \pm18V
Power Dissipation (Note 1)
500 mW
Input Voltage (Note 2)
                                    \pm15V
Output Short Circuit Duration (Note 3)
                                    Indefinite
```

Operating Free Air Temperature Range

LM102	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM302	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
ESD rating to be determined.	

Electrical Characteristics

Parameter	Conditions	LM102			LM302			Units
		Min	Typ	Max	Min	Type	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		5	15	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	10		10	30	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1010	1012		10^{9}	10^{12}		Ω
Input Capacitance				3.0		3.0		pF
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}} \pm 15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega \end{aligned}$	0.999	0.9996		0.9985	0.9995	1.0	V/V
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.8	2.5		0.8	2.5	Ω
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.5	5.5		3.5	5.5	mA
Input Offset Voltage				7.5			20	mV
Offset Voltage Temperature Drift			6			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & T_{A}=T_{A} M A X \\ & T_{A}=T_{A} M I N \end{aligned}$		$\begin{gathered} 3 \\ 30 \end{gathered}$	$\begin{gathered} 10 \\ 100 \end{gathered}$		$\begin{aligned} & 3.0 \\ & 20 \end{aligned}$	$\begin{aligned} & 15 \\ & 50 \end{aligned}$	nA nA
Large Signal Voltage Gain	$\begin{aligned} & V_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0.999						
Output Voltage Swing	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ (Note 5)	± 10			± 10			V
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		2.6	4.0				mA
Supply Voltage Rejection Ratio	$\pm 12 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 15 \mathrm{~V}$	60			60			dB

Note 1: The maximum junction temperature of the LM102 is $150^{\circ} \mathrm{C}$, while that of the LM302 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: It is necessary to insert a resistor (at least $5 k$ and preferably $10 k$) in series with the input pin when the amplifier is driven from low impedance sources to prevent damage when the output is shorted and to ensure stability.
Note 4: These specifications apply for $\pm 12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the LM 102 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LM 302 unless otherwise specified.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals. See curve.
Note 6: Refer to RETS102X for the LM102H military specifications.

APPLICATION HINT

The input must be driven from a source impedance of typically $10 \mathrm{k} \Omega(5 \mathrm{k} \Omega \mathrm{Min})$ to maintain stability. The total source impedance will be reduced at high frequencies if there is stray capacitance at the input pin. In these cases, a $10 \mathrm{k} \Omega$ resistor should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent oscillation.

Guaranteed Performance Characteristics LM102

Output Swing

Typical Performance Characteristics LM102

LOAD CURRENT (mA)

TL/H/7753-7

Large Signal Frequency Response

Maximum Power Dissipation

Typical Performance Characteristics Lм302

Positive Output Swing

Large Signal

Frequency Response

Large Signal Pulse Response

Typical Applications

TL/H/7753-3

TL/H/7753-5
High Input Impedance AC Amplifier

Connection Diagram

TL/H/7753-2
Order Number LM102H or LM302H
See NS Package Number H08C

National Semiconductor
 LM110/LM210/LM310 Voltage Follower

General Description

The LM110 series are monolithic operational amplifiers internally connected as unity-gain non-inverting amplifiers. They use super-gain transistors in the input stage to get low bias current without sacrificing speed. Directly interchangeable with 101, 741 and 709 in voltage follower applications, these devices have internal frequency compensation and provision for offset balancing.
The LM110 series are useful in fast sample and hold circuits, active filters, or as general-purpose buffers. Further, the frequency response is sufficiently better than standard IC amplifiers that the followers can be included in the feedback loop without introducing instability. They are plug-in replacements for the LM102 series voltage followers, offer-
ing lower offset voltage, drift, bias current and noise in addition to higher speed and wider operating voltage range.
The LM110 is specified over a temperature range $-55^{\circ} \mathrm{C} \leq$ $\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the LM 210 from $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the LM 310 from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.

Features

- Input current

10 nA max over temperature
■ Small signal bandwidth 20 MHz

- Slew rate $30 \mathrm{~V} / \mu \mathrm{s}$
- Supply voltage range $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

Schematic Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6)
$\begin{array}{lr}\text { Supply Voltage } & \pm 18 \mathrm{~V} \\ \text { Power Dissipation (Note 1) } & 500 \mathrm{~mW} \\ \text { Input Voltage (Note 2) } & \pm 15 \mathrm{~V} \\ \text { Output Short Circuit Duration (Note 3) } & \text { Indefinite } \\ \text { Operating Temperature Range } & \\ \text { LM110 } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { LM210 } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \text { LM310 } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\end{array}$

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$260^{\circ} \mathrm{C}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 sec.)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.	
ESD rating to be determined	

Electrical Characteristics (Note 4)

Parameter	Conditions	LM110			LM210			LM310			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	4.0		1.5	4.0		2.5	7.5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.0	3.0		1.0	3.0		2.0	7.0	nA
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10^{10}	1012		1010	10^{12}		1010	1012		Ω
Input Capacitance			1.5			1.5			1.5		pF
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8 \mathrm{k} \Omega \end{aligned}$	0.999	0.9999		0.999	0.9999		0.999	0.9999		V/V
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	2.5		0.75	2.5		0.75	2.5	Ω
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.9	5.5		3.9	5.5		3.9	5.5	mA
Input Offset Voltage				6.0			6.0			10	mV
Offset Voltage Temperature Drift	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \\ & +85 \leq T_{A} \leq 125^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 6 \\ 12 \end{gathered}$			6			10		$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
Input Bias Current				10			10			10	nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	0.999			0.999			0.999			V/V
Output Voltage Swing (Note 5)	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 10			± 10			± 10			V
Supply Current	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		2.0	4.0		2.0	4.0				mA
Supply Voltage Rejection Ratio	$\pm 5 \mathrm{~V} \leq \mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$	70	80		70	80		70	80		dB

Note 1: The maximum junction temperature of the $L M 110$ is $150^{\circ} \mathrm{C}$, of the LM 210 is $100^{\circ} \mathrm{C}$, and of the LM 310 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the HO8 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $22^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit for the LM110 and LM210 is allowed for case temperatures to $125^{\circ} \mathrm{C}$ and ambient temperatures to $70^{\circ} \mathrm{C}$, and for the $\mathrm{LM} 310,70^{\circ} \mathrm{C}$ case temperature or $55^{\circ} \mathrm{C}$ ambient temperature. It is necessary to insert a resistor greater than $2 \mathrm{k} \Omega$ in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted. $R_{S}=5 \mathrm{kmin}, 10 \mathrm{k}$ typical is recommended for dynamic stability in all applications.
Note 4: These specifications apply for $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} 125^{\circ} \mathrm{C}$ for the $\mathrm{LM} 110,-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ for the LM 210 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LM310 unless otherwise specified.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and V^{-}terminals. See curve.
Note 6: Refer to RETS110X for LM110H, LM110J military specifications.

Application Hint

The input must be driven from a source impedance of typically $10 \mathrm{k} \Omega$ ($5 \mathrm{k} \Omega \mathrm{min}$.) to maintain stability. The total source impedance will be reduced at high frequencies if there is stray capacitance at the input pin. In these cases, a $10 \mathrm{k} \Omega$ resistor should be inserted in series with the input, physically close to the input pin to minimize the stray capacitance and prevent oscillation.

Typical Performance Characteristics (LM310)

Large Signal
Frequency Response

Voltage Gain and Phase Lag

FREQUENCY (Hz)

Positive Output Swing

Supply Current
 TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Auxiliary Circuits

TL/H/7761-3
*May be added to reduce internal dissipation

Typical Applications

Fast Integrator with Low Input Current

Typical Applications (Continued)
Fast Inverting Amplifier with High Input Impedance

TL/H/7761-6

Typical Applications (Continued)

Driver for A/D Ladder Network

Buffer for Analog Switch*

Typical Applications (Continued)
Comparator for AC Coupled Signals

TL/H/7761-11

TL/H/7761-12

Typical Applications (Continued)

Comparator for A/D Converter Using a Ladder Network

Sine Wave Oscillator

Typical Applications (Continued)

*Values are for 10 kHz cutoff. Use silvered mica capacitors for good temperature stability.

*Values are for 100 Hz cutoff. Use metalized polycarbonate capacitors for good temperature stability.

Typical Applications (Continued)

TL/H/7761-22

Bandpass Filter

TL/H/7761-24
\dagger Use capacitor with polycarbonate teflon or polythylene dietetric

Typical Applications (Continued)

TL/H/7761-26

Connection Diagrams

TL/H/7761-30

Package is connected to Pin $4\left(\mathrm{~V}^{-}\right)$
Top View
Order Number LM110H, LM210H or LM310H
See NS Package Number H08C

Order Number LM110J, LM210J or LM310J
See NS Package Number J14A

Order Number LM310M or LM310N See NS Package Number M08A or N08E

National Semiconductor
 LM6121/LM6221/LM6321 High Speed Buffer

General Description

These high speed unity gain buffers slew at $800 \mathrm{~V} / \mu \mathrm{s}$ and have a small signal bandwidth of 50 MHz while driving a 50Ω load. They can drive $\pm 300 \mathrm{~mA}$ peak and do not oscillate while driving large capacitive loads. The LM6121 family are monolithic ICs which offer performance similar to the LH0002 with the additional features of current limit and thermal shutdown.
These buffers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Simplified Schematic

TL/H/9223-1
Numbers in () are for 8-pin N DIP.

Features

■ High slew rate $800 \mathrm{~V} / \mu \mathrm{s}$

- Wide bandwidth

50 MHz

- Slew rate and bandwidth 100% tested
- Peak output current $\pm 300 \mathrm{~mA}$
- High input impedance $5 \mathrm{M} \Omega$
- LH0002H pin compatible
- No oscillations with capacitive loads
- 5 V to $\pm 15 \mathrm{~V}$ operation guaranteed
. Current and thermal limiting
- Fully specified to drive 50Ω lines

Pin Configurations

TL/H/9223-2
*Heat-sinking pins.
Order Number LM6221N or LM6321N See NS Package Number N08E

Note: Pin 6 connected to case.
Order Number LM6121H or LM6221H See NS Package Number H08C

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Input to Output Voltage (Note 2)
Input Voltage
Output Short-Circuit to GND (Note 3)
Storage Temperature Range Lead Temperature
(Soldering, 10 seconds)
ESD Tolerance (Note 10)

$$
\begin{array}{r}
36 \mathrm{~V}(\pm 18) \\
\pm 7 \mathrm{~V} \\
\pm \mathrm{Vsupply} \\
\text { Continuous }
\end{array}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
260^{\circ} \mathrm{C}
$$

$$
\pm 2000 \mathrm{~V}
$$

Package

H	N
$150^{\circ} \mathrm{C} / \mathrm{W}$	$47^{\circ} \mathrm{C} / \mathrm{W}$
$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
4.75 to $\pm 16 \mathrm{~V}$	

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	Typ	LM6121		LM6221		LM6321		Units
					$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 7) } \\ \hline \end{array}$		Design Limit (Note 7)		Design Limit (Note 7)	
$A_{V 1}$	Voltage Gain 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{iN}}= \pm 10 \mathrm{~V}$	0.990	$\begin{gathered} 0.980 \\ 0.970 \end{gathered}$		0.980	0.950	0.970	0.950	
$A_{V 2}$	Voltage Gain 2	$R_{L}=50 \Omega, V_{\mathbb{I N}}= \pm 10 \mathrm{~V}$	0.900	$\begin{gathered} 0.860 \\ \mathbf{0 . 8 0 0} \end{gathered}$		0.860	0.820	0.850	0.820	V/V Min
$A_{V 3}$	Voltage Gain 3 (Note 8)	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega \quad \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \quad\left(1.5 \mathbf{V}_{\mathbf{p p}}\right) \end{aligned}$	0.840	$\begin{aligned} & 0.780 \\ & \mathbf{0 . 7 5 0} \end{aligned}$		0.780	0.700	0.750	0.700	
$\mathrm{V}_{\text {OS }}$	Offsct Voltage	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	15	$\begin{aligned} & 30 \\ & 50 \end{aligned}$		30	60	50	100	$\begin{gathered} \mathrm{mV} \\ \mathrm{Max} \end{gathered}$
I_{B}	Input Bias Current	$R_{L}=1 \mathrm{k} \Omega, \mathrm{R}_{S}=10 \mathrm{k} \Omega$	1	$\begin{aligned} & 4 \\ & 7 \end{aligned}$		4	7	5	7	$\mu \mathrm{A}$ Max
$\mathrm{R}_{\text {IN }}$	Input Resistance	$R_{L}=50 \Omega$	5							$\mathrm{M} \Omega$
$\mathrm{CIN}^{\text {N }}$	Input Capacitance		3.5							pF
Ro	Output Resistance	lout $= \pm 10 \mathrm{~mA}$	3	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$		5	10	5	6	$\begin{gathered} \Omega \\ \operatorname{Max} \end{gathered}$
$\mathrm{I}^{1} 1$	Supply Current 1	$\mathrm{R}_{\mathrm{L}}=\infty$	15	$\begin{aligned} & 18 \\ & 20 \end{aligned}$		18	20	20	22	mA
Is2	Supply Current 2	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=5 \mathrm{~V}$	14	$\begin{aligned} & 16 \\ & 18 \end{aligned}$		16	18	18	20	Max
$\mathrm{V}_{\mathrm{O} 1}$	Output Swing 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	13.5	$\begin{gathered} 13.3 \\ 13 \end{gathered}$		13.3	13	13.2	13	
$\mathrm{V}_{\mathrm{O} 2}$	Output Swing 2	$R_{L}=100 \Omega$	12.7	$\begin{gathered} 11.5 \\ 10 \end{gathered}$		11.5	10	11	10	$\begin{aligned} & \pm V \\ & \text { Min } \end{aligned}$
$\mathrm{V}_{\mathrm{O} 3}$	Output Swing 3	$R_{L}=50 \Omega$	12	$\begin{aligned} & 11 \\ & 9 \end{aligned}$		11	9	10	9	
$V_{\text {O4 }}$	Output Swing 4	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \left.\mathrm{~V}^{+}=5 \mathrm{~V} \text { (Note } 8\right) \\ & \hline \end{aligned}$	1.8	$\begin{aligned} & 1.6 \\ & \mathbf{1 . 3} \\ & \hline \end{aligned}$		1.6	1.4	1.6	1.5	V_{pp} Min
PSSR	Power Supply Rejection Ratio	$\mathrm{V} \pm= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	70	$\begin{array}{r} 60 \\ 55 \end{array}$		60	50	60	50	dB Min

AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	Typ	LM6121		LM6221		LM6321		Units
					Design Limit (Note 7)	Tested Limit (Note 6)	Design Limit (Note 7)			
SR_{1} SR_{2} SR_{3}	Slew Rate 1 Slew Rate 2 Slew Rate 3	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & (\text { Note } 9) \\ & \mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{pp}}, R_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}+=5 \mathrm{~V}(\text { Note } 8) \\ & \hline \end{aligned}$	$\begin{gathered} 1200 \\ 800 \\ 50 \end{gathered}$	550		550		550		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{Min} \end{aligned}$
BW	-3 dB Bandwidth	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 100 \mathrm{~m} \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \hline \end{aligned}$	50	30		30		30		MHz Min
t_{r}, t_{f}	Rise Time Fall Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mV} \mathrm{~V}_{\mathrm{pp}} \\ & \hline \end{aligned}$	7.0							ns
$t_{\text {pd }}$	Propagation Delay Time	$\begin{aligned} & R_{L}=50 \Omega, C_{L} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mV}_{\mathrm{pp}} \\ & \hline \end{aligned}$	4.0							ns
	Overshoot	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mV} \mathrm{~V}_{\mathrm{pp}} \end{aligned}$	10							\%

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.
Note 2: During current limit or thermal limit, the input current will increase if the input to output differential voltage exceeds 8 V . For input to output differential voltages in excess of 8 V the input current should be limited to $\pm 20 \mathrm{~mA}$.
Note 3: The LM6121 series buffers contain current limit and thermal shutdown to protect against fault conditions.
Note 4: For operation at elevated temperatures, these devices must be derated based on a thermal resistance of $\theta_{J A}$ and T_{J} max, with $T_{J}=T_{A}+\theta_{J A} P D$. $\theta_{J C}$ for the LM 6121 H and LM 6221 H is $17^{\circ} \mathrm{C} / \mathrm{W}$. The thermal impedance θ_{JA} of the device in the N package is $47^{\circ} \mathrm{C} / \mathrm{W}$ when soldered directly to a printed circuit board, and the heat-sinking pins (pins 1, 4, 5and 8) are connected to 2 square inches of 2 oz . copper. When installed in a socket, the thermal impedance θ_{JA} of the N package is $84^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: $\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified. Boldface numbers apply over the operating temperature range. Numbers in standard typeface apply at $T_{A}=25^{\circ} \mathrm{C}$. Electrical tests are performed with high-speed automated test equipment, so that $T_{J}=T_{A}$, unless otherwise noted.
Note 6: Guaranteed and 100% production tested.
Note 7: Guaranteed over the operating temperature range (but not 100% tested).
Note 8: The input is biased to 2.5 V and V_{IN} swings V_{pp} about this value. The input swing is $2 \mathrm{~V}_{\mathrm{pp}}$ at all temperatures except for the $\mathrm{A}_{\mathrm{V}} 3$ test at $-55^{\circ} \mathrm{C}$ where it is reduced to $1.5 \mathrm{~V}_{\mathrm{pp}}$.
Note 9: Slew rate is measured with a $\pm 11 \mathrm{~V}$ input pulse and 50Ω source impedance at $25^{\circ} \mathrm{C}$. Since voltage gain is typically 0.9 driving a 50Ω load, the output swing will be approximately $\pm 10 \mathrm{~V}$. Slew rate is calculated for transitions between $\pm 5 \mathrm{~V}$ levels on both rising and falling edges. A high speed measurement is done to minimize device heating. For slew rate versus junction temperature see typical performance curves. The input pulse amplitude should be reduced to $\pm 10 \mathrm{~V}$ for measurements at temperature extremes. For accurate measurements, the input slew rate should be at least $1700 \mathrm{~V} / \mu \mathrm{s}$.
Note 10: The test circuit consists of the human body model of 120 pF in series with 1500Ω.

Typical Performance Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise speciiied

Typical Performance Characteristics $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified (Continued)

Forward Transmission

Gain (S12)

TL/H/9223-5

Application Hints

POWER SUPPLY DECOUPLING

The method of supply bypassing is not critical for stability of the LM6121 series buffers. However, their high current output combined with high slew rate can result in significant voltage transients on the power supply lines if much inductance is present. For example, a slew rate of $900 \mathrm{~V} / \mu \mathrm{s}$ into a 50Ω load produces a di/dt of $18 \mathrm{~A} / \mu \mathrm{s}$. Multiplying this by a wiring inductance of 50 nH result in a 0.9 V transient. To minimize this problem use high quality decoupling very close to the device. Suggested values are a $0.1 \mu \mathrm{~F}$ ceramic in parallel with one or two $2.2 \mu \mathrm{~F}$ tantalums. A ground plane is recommended.

LOAD IMPEDANCE

The LM6121 is stable to any load when driven by a 50Ω source. As shown in the Overshoot vs Capacitive Load graph, worst case is a purely capacitive load of about 1000 pF . Shunting the load capacitance with a resistor will reduce overshoot.

SOURCE INDUCTANCE

Like any high frequency buffer, the LM6121 can oscillate at high values of source inductance. The worst case condition occurs at a purely capacitive load of 50 pF where up to 100 nH of source inductance can be tolerated. With a 50Ω load, this goes up to 200 nH . This sensitivity may be reduced at the expense of a slight reduction in bandwidth by adding a resistor in series with the buffer input. A 100Ω resistor will ensure stability with source inductances up to 400 nH with any load.

OVERVOLTAGE PROTECTION

The LM6121 may be severely damaged or destroyed if the Absolute Maximum Rating of 7 V between input and output pins is exceeded.

If the buffer's input-to-output differential voltage is allowed to exceed 7 V , a base-emitter junction will be in reversebreakdown, and will be in series with a forward-biased baseemitter junction. Referring to the LM6121 simplified schematic, the transistors involved are Q1 and Q3 for positive inputs, and Q2 and Q4 for negative inputs. If any current is allowed to flow through these junctions, localized heating of the reverse-biased junction will occur, potentially causing damage. The effect of the damage is typically increased offset voltage, increased bias current, and/or degraded AC performance. The damage is cumulative, and may eventually result in complete device failure.
The device is best protected by the insertion of the parallel combination of a $100 \mathrm{k} \Omega$ resistor (R1) and a small capacitor (C1) in series with the buffer input, and a $100 \mathrm{k} \Omega$ resistor (R2) from input to output of the buffer (see Figure 1). This network normally has no effect on the buffer output. However, if the buffer's current limit or shutdown is activated, and the output has a ground-referred load of significantly less than $100 \mathrm{k} \Omega$, a large input-to-output voltage may be present. R1 and R2 then form a voltage divider, keeping the input-output differential below the 7 V Maximum Rating for input voltages up to 14 V . This protection network should be sufficient to protect the LM6121 from the output of nearly any op amp which is operated on supply voltages of $\pm 15 \mathrm{~V}$ or lower.

TL/H/9223-6
FIGURE 1. LM6121 with Overvoltage Protection

\cdots
 National Semiconductor

LM6125/LM6225/LM6325 High Speed Buffer

General Description

The LM6125 family of high speed unity gain buffers slew at $800 \mathrm{~V} / \mu \mathrm{s}$ and have a small signal bandwidth of 50 MHz while driving a 50Ω load. These buffers drive $\pm 300 \mathrm{~mA}$ peak and do not oscillate while driving large capacitive loads. The LM6125 contains unique features not found in power buffers; these include current limit, thermal shutdown, electronic shutdown, and an error flag that warns of fault conditions.

These buffers are built with National's VIPTM (Vertically Integrated PNP) process which provides fast PNP transistors that are true complements to the already fast NPN devices. This advanced junction-isolated process delivers high speed performance without the need for complex and expensive dielectric isolation.

Features

- High slew rate $800 \mathrm{~V} / \mu \mathrm{s}$ 50 MHz $\pm 300 \mathrm{~mA}$
- Peak output current
- High input impedance
$5 \mathrm{M} \Omega$
- No oscillations with capacitive loads
- Current and thermal limiting
- Electronic shutdown
- "Bi-state" output
- Error flag warns of faults
- Slew rate and bandwidth 100% tested
- 5 V to $\pm 15 \mathrm{~V}$ operation guaranteed

Fully specified to drive 50Ω lines

Simplified Schematic and Block Diagram

Numbers in () are for 14-pin N DIP.

Pin Configurations

*Heat sinking pins. Internally connected to V -.

Order Number LM6225N or LM6325N
See NS Package Number N14A

TL/H/9222-4
Top View
Note: Pin 4 connected to case
Order Number LM6125H
or LM6225H
See NS Package Number H08C

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$36 \mathrm{~V}(\pm 18 \mathrm{~V})$
Input to Output Voltage (Note 2)
Input Voltage
Output Short-Circuit to GND
(Note 3)
Flag Output Voltage
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)
ESD Tolerance (Note 11)

	Package		
	H	N	
$\theta_{J A}$ (Note 4)	$150^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$	
Maximum Junction Temp. $\left(T_{J}\right)$	$150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$	
Operating Temperature Range			
LM6125		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
LM6225	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
LM6325	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
Operating Supply Voltage Range	4.75 V to $\pm 16 \mathrm{~V}$		

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	Typ	LM6125		LM6225		LM6325		Units
				$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Note 6) } \\ \hline \end{gathered}$	Design Limit (Note 7)	Tested Limit (Note 6)	$\begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 7) } \\ \hline \end{gathered}$	Tested Limit (Note 6)	Design Limit (Note 7)	
$A_{V 1}$	Voltage Gain 1	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.990	$\begin{gathered} 0.980 \\ \mathbf{0 . 9 7 0} \end{gathered}$		0.980	0.950	0.970	0.950	
$A_{V 2}$	Voltage Gain 2	$R_{L}=50 \Omega, \mathrm{~V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	0.900	$\begin{gathered} 0.860 \\ \mathbf{0 . 8 0 0} \end{gathered}$		0.860	0.820	0.850	0.820	V/V \min
$A_{V}{ }^{\text {a }}$	Voltage Gain 3 (Note 8)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}\left(1.5 \mathbf{V P P}{ }^{2}\right. \end{aligned}$	0.840	$\begin{gathered} 0.780 \\ \mathbf{0 . 7 5 0} \end{gathered}$		0.780	0.700	0.750	0.700	
$\mathrm{V}_{\text {OS }}$	Offset Voltage	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	15	$\begin{aligned} & 30 \\ & 50 \end{aligned}$		30	60	50	100	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
I_{B}	Input Bias Current	$R_{L}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega$	1	$\begin{aligned} & 4 \\ & 7 \end{aligned}$		4	7	5	7	$\mu \mathrm{A}$ \max
$\mathrm{R}_{\text {IN }}$	Input Resistance	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	5							$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		3.5							pF
R_{0}	Output Resistance	lout $= \pm 10 \mathrm{~mA}$	3	$\begin{gathered} 5 \\ 10 \end{gathered}$.	5	10	5	6	$\begin{gathered} \Omega \\ \max \end{gathered}$
$\mathrm{I}_{1} 1$	Supply Current 1	$R_{L}=\infty$	15	$\begin{aligned} & 18 \\ & 20 \end{aligned}$		18	20	20	22	
$\mathrm{I}^{2} 2$	Supply Current 2	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=5 \mathrm{~V}$	14	$\begin{aligned} & 16 \\ & 18 \end{aligned}$		16	18	18	20	mA \max
IS/D	Supply Current in Shutdown	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V} \pm= \pm 15 \mathrm{~V}$	1.1	$\begin{array}{r} 1.5 \\ \mathbf{2 . 0} \\ \hline \end{array}$		1.5	2.0	1.5	2.0	
$\mathrm{V}_{\text {O1 }}$	Output Swing 1		13.5	$\begin{gathered} 13.3 \\ 13 \end{gathered}$		13.3	13	13.2		
$\mathrm{V}_{\mathrm{O} 2}$	Output Swing 2	$R_{L}=100 \Omega$	12.7	$\begin{gathered} 11.5 \\ 10 \end{gathered}$		11.5	10	11	10	$\begin{aligned} & \pm V \\ & \min \end{aligned}$
$\mathrm{V}_{\mathrm{O} 3}$	Output Swing 3	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	12	$\begin{aligned} & 11 \\ & 9 \end{aligned}$		11	9	10	9	
$\mathrm{V}_{\text {O4 }}$	Output Swing 4	$\begin{aligned} & R_{L}=50 \Omega \\ & V^{+}=5 V(\text { Note } 8) \end{aligned}$	1.8	$\begin{array}{r} 1.6 \\ 1.3 \\ \hline \end{array}$		1.6	1.4	1.6	1.5	VPP min
PSRR	Power Supply Rejection Ratio	$\mathrm{V} \pm= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	70	$\begin{array}{r} 60 \\ \mathbf{5 5} \\ \hline \end{array}$		60	50	60	50	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \\ \hline \end{gathered}$
V_{OL}	Flag Pin Output Low Voltage	ISINK Flag Pin $=500 \mu \mathrm{~A}$ (Note 9)		$\begin{array}{r} 300 \\ \mathbf{4 0 0} \\ \hline \end{array}$		300	400	340	400	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{max} \end{aligned}$
${ }^{\mathrm{IOH}}$	Flag Pin Output High Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \text { Flag Pin }=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S} / \mathrm{D}}=\mathrm{OV}(\text { Note } 9) \end{aligned}$	0.01	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		10	20	10	20	$\mu \mathrm{A}$ \max

DC Electrical Characteristics (Note 5) (Continued)										
Symbol	Parameter	Conditions	Typ	LM6125		LM6225		LM6325		Units
				$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Design Limit (Note 7)	Tested Limit (Note 6)	Design Limit (Note 7)	Tested Limit (Note 6)	$\begin{aligned} & \text { Design } \\ & \text { Limit } \\ & \text { (Note 7) } \end{aligned}$	
$\mathrm{V}_{\text {TH }}$	Shutdown Threshold		1.4							V
V_{IH}	Shutdown Pin Trip Point High			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		2.0	2.0	2.0	2.0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{\text {IL }}$	Shutdown Pin Trip Point Low			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$		0.8	0.8	0.8	0.8	$\begin{gathered} V \\ \max \end{gathered}$
IIL	Shutdown Pin Input Low Current	$\mathrm{V}_{\mathrm{S} / \mathrm{D}}=0 \mathrm{~V}$	-0.07	$\begin{array}{r} -10 \\ -20 \end{array}$		-10	-20	-10	-20	$\begin{gathered} \mu \mathrm{A} \\ \max \\ \hline \end{gathered}$
${ }_{1 / H}$	Shutdown Pin Input High Current	$\mathrm{V}_{\mathrm{S} / \mathrm{D}}=5 \mathrm{~V}$	-0.05	$\begin{array}{r} -10 \\ -20 \\ \hline \end{array}$		-10	-20	-10	-20	$\mu \mathrm{A}$ max
Io	Bi-State Output Current	$\begin{aligned} & \text { Shutdown Pin }=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=+5 \mathrm{~V} \text { or }-5 \mathrm{~V} \end{aligned}$	1	$\begin{gathered} 50 \\ 2000 \\ \hline \end{gathered}$		50	100	100	200	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	Typ	LM6125		LM6225		LM6325		Units
				$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Design Limit (Note 7)		$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 7) } \\ \hline \end{array}$			
$\begin{aligned} & \mathrm{SR}_{1} \\ & \mathrm{SR}_{2} \\ & \\ & \mathrm{SR}_{3} \end{aligned}$	Slew Rate 1 Slew Rate 2 Slew Rate 3	$\begin{aligned} & V_{I N}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{IN}}= \pm 11 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & (\text { Note 10 }) \\ & \mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{PP},} \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}^{+}=5 \mathrm{~V}(\text { Note 8) } \end{aligned}$	$\begin{gathered} 1200 \\ 800 \\ 50 \end{gathered}$	550		550		550		$\begin{gathered} \mathrm{V} / \mu \mathrm{s} \\ \mathrm{~min} \end{gathered}$
BW	-3 dB Bandwidth	$\begin{aligned} & V_{I N}=100 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{LP}}=50 \Omega \\ & C_{L} \leq 10 \mathrm{pF} \\ & \hline \end{aligned}$	50	30		30		30		MHz min
t_{r}, t_{f}	Rise Time Fall Time	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}} \\ & \hline \end{aligned}$	8.0							ns
$t_{\text {PD }}$	Propagation Delay Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}} \\ & \hline \end{aligned}$	4.0							ns
	Overshoot	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{O}}=100 \mathrm{mV} \mathrm{~V}_{\mathrm{PP}} \\ & \hline \end{aligned}$	10							\%
V_{FT}	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ Feedthrough in Shutdown	$\begin{aligned} & \text { Shutdown Pin }=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V} \mathrm{P}-\mathrm{P}, 1 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \hline \end{aligned}$	-50							dB
Cout	Output Capacitance in Shutdown	Shutdown Pin $=0 \mathrm{~V}$	30							pF
${ }_{\text {tSD }}$	Shutdown Response Time		700							ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 2: During current limit, thermal limit, or electronic shutdown the input current will increase if the input to output differential voltage exceeds 8 V . For input to output differential voltages in excess of 8 V the input current should be limited to $\pm 20 \mathrm{~mA}$.

Note 3: The LM6125 series buffers contain current limit and thermal shutdown to protect against fault conditions.
Note 4: For operation at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{J A}$ and $T_{J} m a x, T_{J}=T_{A}+\theta_{J A} P_{D} . \theta_{J C}$ for the LM6125H and LM6225H is $17^{\circ} \mathrm{C} / \mathrm{W}$. The thermal impedance θ_{JA} of the device in the N package is $40^{\circ} \mathrm{C} / \mathrm{W}$ when soldered directly to a printed circuit board, and the heat-sinking pins (pins 3, 4, 5, 10,11, and 12) are connected to 2 square inches of 2 oz . copper. When installed in a socket, the thermal impedance θ_{JA} of the N package is $60^{\circ} \mathrm{C} / \mathrm{W}$.
Note 5: $\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{~V}_{S}= \pm 15 \mathrm{~V}_{\text {shutdown }}=\mathrm{V}^{+}$, unless otherwise specified. Boldface numbers apply over the operating temperature range. Numbers is standard typeface apply at $T_{A}=25^{\circ} \mathrm{C}$. Electrical tests are performed with high-speed automated test equipment, so that $T_{J}=T_{A}$, unless otherwise noted.

Note 6: Guaranteed and 100% production tested.
Note 7: Guaranteed over the Operating Temperature Range (but not 100% tested).
Note 8: The input is biased to +2.5 V , and $\mathrm{V}_{I N}$ swings V_{PP} about this value. The input swing is $2 \mathrm{~V}_{\mathrm{PP}}$ at all temperatures except for the AV^{3} test at $-55^{\circ} \mathrm{C}$ where it is reduced to 1.5 V Pp.
Note 9: The Error Flag is set (low) during current limit or thermal fault detection in addition to being set by the Shutdown pin. It is an open-collector output which requires an external pullup resistor.
Note 10: Slew rate is measured with a $\pm 11 \mathrm{~V}$ input pulse and 50Ω source impedance at $25^{\circ} \mathrm{C}$. Since voltage gain is typically 0.9 driving a 50Ω load, the output swing will be approximately $\pm 10 \mathrm{~V}$. Slew rate is calculated for transitions between $\pm 5 \mathrm{~V}$ levels on both rising and falling edges. A high speed measurement is done to minimize device heating. For slew rate versus junction temperature see typical performance curves. The input pulse amplitude should be reduced to $\pm 10 \mathrm{~V}$ for measurements at temperature extremes. For accurate measurements, the input slew rate should be at least $1700 \mathrm{~V} / \mu \mathrm{s}$.
Note 11: The test circuit consists of the human body model of 120 pF in series with 1500Ω.

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise specified (Continued)

TL/H/9222-7

Typical Connection Diagram

TL/H/9222-6

Application Hints

POWER SUPPLY DECOUPLING

The method of supply bypassing is not critical for stability of the LM6125 series buffers. However, their high current output combined with high slew rate can result in significant voltage transients on the power supply lines if much inductance is present. For example, a slew rate of $900 \mathrm{~V} / \mu \mathrm{s}$ into a 50Ω load produces a di/dt of $18 \mathrm{~A} / \mu \mathrm{s}$. Multiplying this by a wiring inductance of 50 nH results in a 0.9 V transient. To minimize this problem use high quality decoupling very close to the device. Suggested values are a $0.1 \mu \mathrm{~F}$ ceramic in parallel with one or two $2.2 \mu \mathrm{~F}$ tantalums. A ground plane is recommended.

LOAD IMPEDANCE

The LM6125 is stable into any load when driven by a 50Ω source. As shown in the Overshoot vs Capacitive Load graph, worst case is a purely capacitive load of about 1000 pF . Shunting the load capacitance with a resistor will reduce overshoot.

SOURCE INDUCTANCE

Like any high-frequency buffer, the LM6125 can oscillate at high values of source inductance. The worst case condition occurs at a purely capacitive load of 50 pF where up to 100 nH of source inductance can be tolerated. With a 50Ω load, this goes up to 200 nH . This sensitivity may be reduced at the expense of a slight reduction in bandwidth by adding a resistor in series with the buffer input. A 100Ω resistor will ensure stability with source inductances up to 400 nH with any load.

ERROR FLAG LOGIC

The Error Flag pin is an open-collector output which requires an external pull-up resistor. Flag voltage is HIGH during operation, and is LOW during a fault condition. A fault condition occurs if either the internal current limit or the thermal shutdown is activated, or the shutdown (S/D) pin is driven low by external logic. Flag voltage returns to its HIGH state when normal operation resumes.
If the S/D pin is not to be used, it should be connected to V ${ }^{+}$.

OVERVOLTAGE PROTECTION

The LM6125 may be severely damaged or destroyed if the Absolute Maximum Rating of 7 V between input and output pins is exceeded.
If the buffer's input-to-output differential voltage is allowed to exceed 7V, a base-emitter junction will be in reversebreakdown, and will be in series with a forward-biased baseemitter junction. Referring to the LM6125 simplified schematic, the transistors involved are Q1 and Q3 for positive inputs, and Q2 and Q4 for negative inputs. If any current is allowed to flow through these junctions, localized heating of the reverse-biased junction will occur, potentially causing damage. The effect of the damage is typically increased offset voltage, increased bias current, and/or degraded AC performance. The damage is cumulative, and may eventually result in complete device failure.
The device is best protected by the insertion of the parallel combination of a $100 \mathrm{k} \Omega$ resistor (R1) and a small capacitor (C1) in series with the buffer input, and a $100 \mathrm{k} \Omega$ resistor (R2) from input to output of the buffer (see Figure 1). This network normally has no effect on the buffer output. However, if the buffer's current limit or shutdown is activated, and the output has a ground-referred load of significantly less than $100 \mathrm{k} \Omega$, a large input-to-output voltage may be present. R1 and R2 then form a voltage divider, keeping the input-output differential below the 7 V Maximum Rating for input voltages up to 14 V . This protection network should be sufficient to protect the LM6125 from the output of nearly any op amp which is operated on supply voltages of $\pm 15 \mathrm{~V}$ or lower.

TL/H/9222-8
FIGURE 1. LM6125 with Overvoltage Protection

> Section 5
> Voltage Comparators
Section 5 Contents
Voltage Comparators Definition of Terms 5-3
Voltage Comparators Selection Guide 5-4
3.08 LF111/LF211/LF311 Voltage Comparators 5-5
13,50 LH2111/LH2211/LH2311 Dual Voltage Comparators 5-14
LM106/LM206/LM306 Voltage Comparators 5-17
LM111/LM211/LM311 Voltage Comparators 5-21
LM119A/LM119/LM219/LM319A/LM319 High Speed Dual Comparators 5-34
. 45 LM139/LM239/LM339/LM139A/LM239A/LM339A, LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators 5-40
LM160/LM260/LM360 High Speed Differential Comparators 5-52
LM161/LM261/LM361 High Speed Differential Comparators 5-56
LM193/LM293/LM393, LM193A/LM293A/LM393A/LM2903 Low Power Low Offset Voltage Dual Comparators 5-61
LM710/LM710C Voltage Comparator 5-70
LM1514/LM1414 Dual Differential Voltage Comparators 5-74
LP265/LP365 Micropower Programmable Quad Comparators 5-76
LP311 Voltage Comparator 5-84
LP339 Ultra-Low Power Quad Comparator 5-88

Voltage Comparators Definition of Terms

Input Bias Current: The average of the two input currents. Input Offset Current: The absolute value of the difference between the two input currents for which the output will be driven higher than or lower than specified voltages.
Input Offset Voltage: The absolute value of the voltage between the input terminals required to make the output voltage greater than or less than specified voltages.
Input Voltage Range: The range of voltage on the input terminals (common-mode) over which the offset specifications apply.
Logic Threshold Voltage: The voltage at the output of the comparator at which the loading logic circuitry changes its digital state.
Negative Output Level: The negative DC output voltage with the comparator saturated by a differential input equal to or greater than a specified voltage.
Output Leakage Current: The current into the output terminal with the output voltage within a given range and the input drive equal to or greater than a given value.
Output Resistance: The resistance seen looking into the output terminal with the DC output level at the logic threshold voltage.
Output Sink Current: The maximum negative current that can be delivered by the comparator.
Positive Output Level: The high output voltage level with a given load and the input drive equal to or greater than a specified value.
Power Consumption: The power required to operate the comparator with no output load. The power will vary with signal level, but is specified as a maximum for the entire range of input signal conditions.

Response Time: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive.
Saturation Voltage: The low-output voltage level with the input drive equal to or greater than a specified value.
Strobe Current: The current out of the strobe terminal when it is at the zero logic level.
Strobe Output Level: The DC output voltage, independent of input conditions, with the voltage on the strobe terminal equal to or less than the specified low state.
Strobe "ON" Voltage: The maximum voltage on either strobe terminal required to force the output to the specified high state independent of the input voltage.
Strobe "OFF" Voltage: The minimum voltage on the strobe terminal that will guarantee that it does not interfere with the operation of the comparator.
Strobe Release Time: The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from zero to the one logic level.
Supply Current: The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions.
Voltage Gain: The ratio of the change in output voltage to the change in voltage between the input terminals producing it.

\checkmark National Semiconductor

LF111/LF211/LF311 Voltage Comparators

General Description

The LF111, LF211 and LF311 are FET input voltage comparators that virtually eliminate input current errors. Designed to operate over a 5.0 V to $\pm 15 \mathrm{~V}$ range the LF111 can be used in the most critical applications.
The extremely low input currents of the LF111 allows the use of a simple comparator in applications usually requiring input current buffering. Leakage testing, long time delay circuits, charge measurements, and high source impedance voltage comparisons are easily done.

Further, the LF111 can be used in place of the LM111 eliminating errors due to input currents. See the "application hints" of the LM311 for application help.

Features

- Eliminates input current errors
- Interchangeable with LM111
- No need for input current buffering

Schematic Diagram

Connection Diagram

Metal Can Package

TL/H/5703-1
Top View
Order Number LF111H, LF211H or LF311H
See NS Package Number H08C

Absolute Maximum Ratings

If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for availability and specifications．

（Note 8）

Total Supply Voltage（ V_{84} ）
Output to Negative Supply Voltage（ V_{74} ）
Ground to Negative Supply Voltage（ V_{14} ）
Differential Input Voltage
Input Voltage（Note 1）
Power Dissipation（Note 2）
Output Short Circuit Duration

LF111／LF211 LF311

36 V	36 V
50 V	40 V
30 V	30 V
$\pm 30 \mathrm{~V}$	$\pm 30 \mathrm{~V}$
$\pm 15 \mathrm{~V}$	$\pm 15 \mathrm{~V}$
500 mW	500 mW
10 seconds	10 seconds

LF111／LF211
LF311
Operating Temp．
Range

$$
\begin{array}{lr}
\text { LF111 } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
\text { LF211 } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{array}
$$

LF311
Storage Temp．
Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp．
（Soldering，
10 seconds）
$260^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$
ESD rating to be determined．

Electrical Characteristics（LF111／LF211）（Note 3）

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		0.7	4.0	mV
Input Offset Current（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$（Note 6）		5.0	25	pA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0$（Note 6）		20	50	pA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time（Note 5）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-5.0 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	1.5	V
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\mathrm{V}_{\text {IN }} \leq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2	10	nA
Input Offset Voltage（Note 4）	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$			6.0	mV
Input Offset Current（Note 4）	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$（Note 6）		2.0	3.0	nA
Input Bias Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$（Note 6）		5.0	7.0	nA
Input Voltage Range		－13．5	± 14	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}+24.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-6.0 \mathrm{mV}, \mathrm{I}_{\mathrm{OUT}} \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5.0 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1：This rating applies for $\pm 15 \mathrm{~V}$ supplies．The positive input voltage limit is 30 V above the negative supply．The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply，whichever is less．
Note 2：The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$ ，the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$ ．For operating at elevated temperatures， devices in the H 08 package must be derated based on a thermal resistance of $+65^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient（in 400 linear feet／min air flow），$+165^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient（in static air），or $+20^{\circ} \mathrm{C} / \mathrm{W}$ junction to case．
Note 3：These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ ，and the Ground pin at ground，and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LF111，unless otherwise stated．With the LF211，however，all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq \pm 85^{\circ} \mathrm{C}$ and for the LF311 $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ ．The offset voltage，offset current and bias current specifications apply for any supply voltage from a single 5.0 V supply up to $\pm 15 \mathrm{~V}$ supplies．
Note 4：The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load．Thus， these parameters define an error band and take into account the worst case effects of voltage gain and input impedance．
Note 5：The response time specified（see definitions）is for a 100 mV input step with 5.0 mV overdrive．
Note 6：For input voltages greater than 15 V above the negative supply the bias and offset currents will increase－see typical performance curves．
Note 7：This specification gives the current that must be drawn from the strobe pin to ensure the output is properly disabled．Do not short the strobe pin to ground； it should be current driven at 3 to 5 mA ．
Note 8：Refer to RETSF111X for LF111H military specifications．

Electrical Characteristics (LF311) (Note 3)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage (Note 4)	$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {S }} \leq 50 \mathrm{k}$		2.0	10	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C M}=0$ (Note 6)		5.0	75	pA
Input Bias Current	$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{C M}=0$ (Note 6)		25	150	pA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}$, $\mathrm{l}_{\text {OUT }}=50 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	1.5	V
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0		mA
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$		0.2	10	$n \mathrm{~A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{S} \leq 50 \mathrm{k}$			15	mV
Input Offset Current (Note 4)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		1.0		nA
Input Bias Current	$\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0$ (Note 6)		3.0		nA
Input Voltage Range			$\begin{gathered} \hline+14 \\ -13.5 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}+\geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{OUT}} \leq 8.0 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LF111 is $+150^{\circ} \mathrm{C}$, the LF211 is $+110^{\circ} \mathrm{C}$ and the LF311 is $+85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 08 package must be derated based on a thermal resistance of $+165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $+20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LF111, unless otherwise stated. With the LF211, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ and for the LF311 $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5.0 mV supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15 V above the negative supply the bias and offset currents will increase-see typical performance curves.
Note 7: This specification gives the current that must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .

Auxiliary Circuits

Note: Do Not Ground Strobe Pin.

Typical Performance Characteristics

Response Time for Various Input Overdrives

Response Time for Various

Input Bias Current vs Temperature

Response Time for Various

Response Time for Various

Supply Current

Transfer Function

TL/H/5703-4

Typical Applications

100 kHz Free Running Multivibrator

Crystal Oscillator

10 Hz to 10 kHz Voltage Controlled Oscillator

Typical Applications (Continued)

Frequency Doubler

Zero Crossing Detector Driving MOS Switch

Driving Ground-Referred Load

TL/H/5703-11
*Input polarity is reversed when using pin 1 as output.

Zero Crossing Detector Driving MOS Logic

TL/H/5703-10

Typical Applications (Continued)

Typical Applications (Continued)

Relay Driver with Strobe

TL/H/5703-18
Note: Do Not Ground Strobe Pin.

Positive Peak Detector

Typical Applications（Continued）

TTL Interface with High Level Logic

＊Values shown are for a 0 to 30 V logic swing and a 15 V threshold．
\dagger May be added to control speed and reduce susceptibility to noise spikes

Using Clamp Diodes to Improve Response

LH2111/LH2211/LH2311 Dual Voltage Comparators

General Description

The LH2111 series of dual voltage comparators are two LM111 type comparators in a single hermetic package. Featuring all the same performance characteristics of the single, these duals offer in addition closer thermal tracking, lower weight, reduced insertion cost and smaller size than two singles. For additional information see the LM111 data sheet and National's Linear Application Handbook.
The LH2111 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH2211 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LH2311 is specified for operation over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

Features

- Wide operating supply range	$\pm 15 \mathrm{~V}$ to a single +5 V
- Low input currents	6 nA
- High sensitivity	$10 \mu \mathrm{~V}$
- Wide differential input range	$\pm 30 \mathrm{~V}$
- High output drive	$50 \mathrm{~mA}, 50 \mathrm{~V}$

Connection Diagram

Order Number LH2111D, LH2211D or LH2311D
See NS Package Number D16C
Order Number LH2111J, LH2211J or LH2311J
See NS Package Number J16A

Absolute Maximum Ratings
 If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
 Total Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
 Output to Negative Supply Voltage (VOUT - V^{-}) 50 V
 Ground to Negative Supply Voltage (GND - V^{-}) 30 V
 Differential Input Voltage $\pm 30 \mathrm{~V}$

Electrical Characteristics Each Side (Note 3)

Parameter	Conditions	Limits			Units
		LH2111	LH2211	LH2311	
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$	3.0	3.0	7.5	mV Max
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10	10	50	nA Max
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	100	100	250	$n A$ Max
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	200	200	200	V/mV Typ
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	200	200	200	ns Typ
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \text { IOUT }=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.5	1.5	1.5	\checkmark Max
Strobe On Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3.0	3.0	3.0	mA Typ
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	10	10	50	nA Max
Input Offset Voltage (Note 4)	$\mathrm{R}_{S} \leq 50 \mathrm{k}$	4.0	4.0	10	$m \mathrm{max}$
Input Offset Current (Note 4)		20	20	70	$n A$ Max
Input Bias Current		150	150	300	nA Max
Input Voltage Range		± 14	± 14	± 14	\checkmark Typ
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 8 \mathrm{~mA} \end{aligned}$	0.4	0.4	0.4	\checkmark Max
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6.0	6.0	7.5	mA Max
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	5.0	5.0	5.0	mA Max

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature is $150^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the flat package, the derating is based on a thermal resistance of $185^{\circ} \mathrm{C} / \mathrm{W}$ when mounted on a $1 / 16^{-i n c h}$-thick epoxy glass board with 0.03 -inch-wide, 2 ounce copper conductor. The thermal resistance of the dual-inline package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the $\mathrm{LH} 2111,-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ for the LH 2211 , and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ for the LH2311, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. For the LH2311, $\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{mV}$.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.

Auxiliary Circuits

TTL Interface with High Level Logic

捲
 National Semiconductor

LM106/LM206/LM306 Voltage Comparator

General Description

The LM106 series are high-speed voltage comparators designed to accurately detect low-level analog signals and drive a digital load. They are equivalent to an LM710, combined with a two input NAND gate and an output buffer. The circuits can drive RTL, DTL or TTL integrated circuits directly. Furthermore, their outputs can switch voltages up to 24 V at currents as high as 10 mA .
The devices have short-circuit protection which limits the inrush current when it is used to drive incandescent lamps, in addition to preventing damage from accidental shorts to the positive supply. The speed is equivalent to that of an LM710. However, they are even faster where buffers and additional logic circuitry can be eliminated by the increased flexibility of the LM106 series. They can also be operated from any negative supply voltage between -3 V and -12 V with little effect on performance.

The LM106 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM206 is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The LM306 is specified for operation over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

m Improved accuracy

- Fan-out of 10 with DTL or TTL
(Added logic or strobe capability
■ Useful as a relay or lamp driver
m Plug-in replacement for the LM710
© 40 ns maximum response time

Schematic and Connection Diagrams**

TL/H/7756-1
*Grounding either strobe forces the output to -0.5 V (typ.). To disable strobe function, connect strobes to V^{+}or leave open.
**Pin connections shown are for TO-5 package.

```
Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
(Note 6)
Positive Supply Voltage 15V
Negative Supply Voltage -15V
Output Voltage
    24V
Output to Negative Supply Voltage 30V
Differential Input Voltage }\pm5\textrm{V
Input Voltage \pm7V
```

Power Dissipation (Note 1)	600 mW
Output Short Circuit Duration	10 seconds
Operating Temperature Range	TMIN $^{\text {miN }}$ TMAX
LM106	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM206	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM306	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
ESD rating to be determined.	

Electrical Characteristics (Note 2)

Parameier	Conditions	LM106/LM206			LM306			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 3)		0.5	2.0		1.6	5.0	mV
Input Offset Current	(Note 3)		0.7	3.0		1.8	5.0	$\mu \mathrm{A}$
Input Bias Current			10	20		16	25	$\mu \mathrm{A}$
Response Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=390 \Omega \text { to } 5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF},(\text { Note } 4) \end{aligned}$		28	40		28	40	ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \text { I OUT }=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}} \leq-7 \mathrm{mV}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} \end{aligned}$		1.0	1.5		0.8	2.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \geq 7 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} \end{aligned}$		0.02	1.0		0.02	2.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$

THE FOLLOWING SPECIFICATIONS APPLY FOR $T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$ (Note 5)

Input Offset Voltage	(Note 3)			3.0			6.5	mV
Average Temperature Coefficient of Input Offset Voltage			3.0	10		5	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{L} \leq T_{A} \leq 25^{\circ} \mathrm{C}, \text { (Note } 3 \text {) } \\ & 25^{\circ} \mathrm{C} \leq T_{A} \leq T_{H} \end{aligned}$		$\begin{gathered} 1.8 \\ 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$		2.4	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{H}} \\ & \mathrm{~T}_{\mathrm{L}} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 5.0 \\ 15 \end{gathered}$	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		$\begin{aligned} & 15 \\ & 24 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \end{gathered}$	$n A /{ }^{\circ} \mathrm{C}$ $n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{L}} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{H}} \\ & \hline \end{aligned}$			$\begin{aligned} & 45 \\ & 20 \\ & \hline \end{aligned}$		25	$\begin{array}{r} 40 \\ 25 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Voltage Range	$-7 \mathrm{~V} \geq \mathrm{V}-\geq-12 \mathrm{~V}$	± 5.0			± 5.0			V
Differential Input Voltage Range		± 5.0			± 5.0			V
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \text { IOUT }=50 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}} \leq-8 \mathrm{mV} \text { For LM306 } \end{aligned}$			1.0			1.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \text { IOUT }=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}} \leq-8 \mathrm{mV} \text { For LM306 } \end{aligned}$			0.4			0.4	V
Positive Output Level	$V_{\text {IN }} \geq 5 \mathrm{mV}$, lout $=-400 \mu \mathrm{~A}$ $\mathrm{V}_{\mathrm{IN}} \geq 8 \mathrm{mV}$ For LM306	2.5		5.5	2.5		5.5	V
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{I N} \geq 5 \mathrm{mV}, 8 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 24 \mathrm{~V} \\ & \mathrm{~V}_{I N} \geq 8 \mathrm{mV} \text { For LM306 } \\ & \mathrm{T}_{\mathrm{L}} \leq \mathrm{T}_{A} \leq 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C}<\mathrm{T}_{A} \leq \mathrm{T}_{H} \\ & \hline \end{aligned}$			$\begin{array}{r} 1.0 \\ 100 \\ \hline \end{array}$			2.0 100	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Strobe Current	$\mathrm{V}_{\text {STROBE }}=0.4 \mathrm{~V}$		-1.7	-3.2		-1.7	-3.2	mA

Electrical Characteristics (Note 2) (Continued)

Parameter	Conditions	LM106/LM206			LM306			Units
		Min	Typ	Max	Min	Typ	Max	
Strobe "ON" Voltage		0.9	1.4		0.9	1.4		V
Strobe "OFF" Voltage	$\mathrm{I}_{\text {SINK }} \leq 16 \mathrm{~mA}$		1.4	2.2		1.4	2.2	V
Positive Supply Current	$\begin{aligned} & V_{I N}=-5 \mathrm{mV} \\ & V_{I N}=-8 \mathrm{mV} \text { for LM306 } \end{aligned}$		5.5	10		5.5	10	mA
Negative Supply Current			-1.5	-3.6		-1.5	-3.6	mA

Note 1: The maximum junction temperature of LM106 is $150^{\circ} \mathrm{C}, \mathrm{LM} 206$ is $110^{\circ} \mathrm{C}, \mathrm{LM} 306$ is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the HO 8 package must be derated based on a thermal resistance of $170^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $23^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: These specifications apply for $-3 \mathrm{~V} \geq \mathrm{V}-\geq-12 \mathrm{~V}, \mathrm{~V}+=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. All currents into device pins are considered positive.
Note 3: The offset voltages and offset currents given are the maximum values required to drive the output down to 0.5 V or up to 4.4 V (0.5 V or up to 4.8 V for the LM306). Thus, these parameters actually define an error band and take into account the worst-case effects of voltage gain, specified supply voltage variations, and common mode voltage variations.
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 5: All currents into device pins are considered positive.
Note 6: Refer to RETS106X for LM106 military specifications.

Typical Applications**

TL/H/7756-4

TL/H/7756-5

Adjustable Threshold Line Receiver

TL/H/7756-7

[^23]
Typical Performance Characteristics

National Semiconductor

LM111/LM211/LM311 Voltage Comparator General Description

The LM111, LM211 and LM311 are voltage comparators that have input currents nearly a thousand times lower than devices like the LM106 or LM710. They are also designed to operate over a wider range of supply voltages: from standard $\pm 15 \mathrm{~V}$ op amp supplies down to the single 5 V supply used for IC logic. Their output is compatible with RTL, DTL and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50 V at currents as high as 50 mA .
Both the inputs and the outputs of the LM111, LM211 or the LM311 can be isolated from system ground, and the output can drive loads referred to ground, the positive supply or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire OR'ed. Although slower than the LM106 and LM710 (200 ns response time vs

40 ns) the devices are also much less prone to spurious oscillations. The LM111 has the same pin configuration as the LM106 and LM710.
The LM211 is identical to the LM111, except that its performance is specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range instead of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LM311 has a temperature range of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Operates from single 5 V supply
(1) Input current: 150 nA max. over temperature

■ Offset current: 20 nA max. over temperature
© Differential input voltage range: $\pm 30 \mathrm{~V}$

- Power consumption: 135 mW at $\pm 15 \mathrm{~V}$

Typical Applications**

Detector for Magnetic Transducer

Relay Driver with Strobe

Strobing

**Note: Pin connections shown on schematic diagram and typical applications are for H08 metal can package.
Increasing Input Stage Current*

*Increases typical common mode slew from $7.0 \mathrm{~V} / \mu \mathrm{s}$ to $18 \mathrm{~V} / \mu \mathrm{s}$.

Digital Transmission Isolator

Strobing off Both Input* and Output Stages

Note: Do Not Ground Strobe Pin.

Absolute Maximum Ratings for the LM111／LM211

If Military／Aerospace specified devices are required， please contact the National Semiconductor Sales Office／Distributors for availability and specifications． （Note 7）
Total Supply Voltage（ V_{84} ）
36 V
Output to Negative Supply Voltage（ V_{74} ）
50 V
Ground to Negative Supply Voltage（ V_{14} ）
30 V
Differential Input Voltage
$\pm 30 \mathrm{~V}$
Input Voltage（Note 1）$\pm 15 \mathrm{~V}$
Power Dissipation（Note 2） 500 mW
Output Short Circuit Duration 10 sec

Operating Temperature Range LM111 LM211	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{array}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature（Soldering， 10 sec ）	$260^{\circ} \mathrm{C}$
Voltage at Strobe Pin	$\mathrm{V}+-5 \mathrm{~V}$
Soldering Information	
Dual－In－Line Package	
Soldering（10 seconds）	．． $260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase（60 seconds）	$.215^{\circ} \mathrm{C}$
Infrared（15 seconds）	$220^{\circ} \mathrm{C}$

See AN－450＂Surface Mounting Methods and Their Effect on Product Reliability＂for other methods of soldering sur－ face mount devices．
ESD Rating（Note 8）300V

Electrical Characteristics for the LM111 and LM211（Note 3）

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{k}$		0.7	3.0	mV
Input Offset Current（Note 4）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.0	10	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time（Note 5）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-5 \mathrm{mV}, \text { I OUT }=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe ON Current（Note 6）	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.0	3.0	5.0	mA
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {STROBE }}=3 \mathrm{~mA} \end{aligned}$		0.2	10	nA
Input Offset Voltage（Note 4）	$\mathrm{R}_{S} \leq 50 \mathrm{k}$			4.0	mV
Input Offset Current（Note 4）				20	nA
Input Bias Current				150	nA
Input Voltage Range	$\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \operatorname{Pin} 7$ Pull－Up May Go To 5V	－14．5	13．8，－14．7	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-6 \mathrm{mV}, \mathrm{IOUT} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Output Leakage Current	$\mathrm{V}_{\text {IN }} \geq 5 \mathrm{mV}, \mathrm{V}_{\text {OUT }}=35 \mathrm{~V}$		0.1	0.5	$\mu \mathrm{A}$
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	6.0	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1：This rating applies for ± 15 supplies．The positive input voltage limit is 30 V above the negative supply．The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply，whichever is less．
Note 2：The maximum junction temperature of the LM111 is $150^{\circ} \mathrm{C}$ ，while that of the LM 211 is $110^{\circ} \mathrm{C}$ ．For operating at elevated temperatures，devices in the H08 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to ambient，or $20^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to case．The thermal resistance of the dual－in－line package is $110^{\circ} \mathrm{C} / \mathrm{W}$ ，junction to ambient．
Note 3：These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and Ground pin at ground，and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$ ，unless otherwise stated．With the LM211，however，all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ ．The offset voltage，offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies．
Note 4：The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load．Thus， these parameters define an error band and take into account the worst－case effects of voltage gain and input impedance．
Note 5：The response time specified（see definitions）is for a 100 mV input step with 5 mV overdrive．
Note 6：This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled．Do not short the strobe pin to ground；it should be current driven at 3 to 5 mA ．
Note 7：Refer to RETS111X for the LM111H，LM111J and LM111J－8 military specifications．
Note 8：Human body model， $1.5 \mathrm{k} \Omega$ in series with 100 pF ．

Absolute Maximum Ratings for the LM311
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Total Supply Voltage (V_{84})
Output to Negative Supply Voltage V_{74}) 40 V
Ground to Negative Supply Voltage V_{14}) 30 V
Differential Input Voltage
$\pm 30 \mathrm{~V}$
Input Voltage (Note 1)
$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)
500 mW
ESD Rating (Note 7)
300 V

Output Short Circuit Duration	10 sec
Operating Temperature Range	0° to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10 sec)	$260^{\circ} \mathrm{C}$
Voltage at Strobe Pin	$\mathrm{V}^{+}-5 \mathrm{~V}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	220

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics for the LM311 (Note 3)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{S} \leq 50 \mathrm{k}$		2.0	7.5	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6.0	50	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		100	250	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \text { lout }=50 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5	V
Strobe ON Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.5	3.0		mA
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { I }_{\text {STROBE }}=3 \mathrm{~mA} \\ & \mathrm{~V}-=\mathrm{V}_{\text {GRND }}=-5 \mathrm{~V} \end{aligned}$		0.2	50	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 50 \mathrm{~K}$			10	mV
Input Offset Current (Note 4)				70	nA
Input Bias Current				300	nA
Input Voltage Range		-14.5	13.8,-14.7	13.0	V
Saturation Voltage	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{OUT}} \leq 8 \mathrm{~mA} \end{aligned}$		0.23	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.1	7.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.1	5.0	mA

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LM311 is $110^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the H08 package must be derated based on a thermal resistance of $165^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $20^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the dual-in-line package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and the Ground pin at ground, and $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$, unless otherwise specified. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 6: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground; it should be current driven at 3 to 5 mA .
Note 7: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

LM111/LM211 Typical Performance Characteristics (Continued)

TL/H/5704-3

LM311 Typical Performance Characteristics

TL/H/5704-9

LM311 Typical Performance Characteristics（Continued）

TL／H／5704－11

Application Hints

CIRCUIT TECHNIQUES FOR AVOIDING

OSCILLATIONS IN COMPARATOR APPLICATIONS

When a high-speed comparator such as the LM111 is used with fast input signals and low source impedances, the output response will normally be fast and stable, assuming that the power supplies have been bypassed (with $0.1 \mu \mathrm{~F}$ disc capacitors), and that the output signal is routed well away from the inputs (pins 2 and 3) and also away from pins 5 and 6.

However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high ($1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), the comparator may burst into oscillation near the crossing-point. This is due to the high gain and wide bandwidth of comparators like the LM111. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 1 below.

1. The trim pins (pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trim-pot, they should be shorted together. If they are connected to a trim-pot, a $0.01 \mu \mathrm{~A}$ capacitor C 1 between pins 5 and 6 will minimize the susceptibility to $A C$ coupling. A smaller capacitor is used if pin 5 is used for positive feedback as in Figure 1.
2. Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor C 2 is connected directly across the input pins.
3. When the signal source is applied through a resistive network, R_{S}, it is usually advantageous to choose an RS' of substantially the same value, both for DC and for dynamic (AC) considerations. Carbon, tin-oxide, and metal-film resistors have all been used successfully in comparator input circuitry. Inductive wirewound resistors are not suitable.
4. When comparator circuits use input resistors (eg. summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words there should be very little lead length or printed-circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if $R_{S}=10 \mathrm{k} \Omega$, as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to damp. Twisting these input leads tightly is the only (second best) alternative to placing resistors close to the comparator.
5. Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM111 circuitry, for example, one side of a double-layer circuit card. Ground foil (or, positive supply or negative supply foil) should extend between the output and the inputs, to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides, to guard against capacitive coupling from any high-level signals (such as the output). If pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located, at most, a few inches away from the LM111, and the 0.01 $\mu \mathrm{F}$ capacitor should be installed. If this capacitor cannot be used, a shielding printed-circuit foil may be advisable between pins 6 and 7 . The power supply bypass capacitors should be located within a couple inches of the LM111. (Some other comparators require the power-supply bypass to be located immediately adjacent to the comparator.)

Application Hints（Continued）

6．It is a standard procedure to use hysteresis（positive feedback）around a comparator，to prevent oscillation， and to avoid excessive noise on the output because the comparator is a good amplifier for its own noise．In the circuit of Figure 2，the feedback from the output to the positive input will cause about 3 mV of hysteresis．How－ ever，if R_{S} is larger than 100Ω ，such as $50 \mathrm{k} \Omega$ ，it would not be reasonable to simply increase the value of the positive feedback resistor above $510 \mathrm{k} \Omega$ ．the circuit of Figure 3 could be used，but it is rather awkward．See the notes in paragraph 7 below．
7．When both inputs of the LM111 are connected to active signals，or if a high－impedance signal is driving the posi－ tive input of the LM111 so that positive feedback would be disruptive，the circuit of Figure 1 is ideal．The positive
feedback is to pin 5 （one of the offset adjustment pins）．It is sufficient to cause 1 to 2 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz ．The positive－feedback signal across the 82Ω resistor swings 240 mV below the positive sup－ ply．This signal is centered around the nominal voltage at pin 5 ，so this feedback does not add to the $V_{\text {OS }}$ of the comparator．As much as 8 mV of V_{OS} can be trimmed out，using the $5 \mathrm{k} \Omega$ pot and $3 \mathrm{k} \Omega$ resistor as shown．
8．These application notes apply specifically to the LM111， LM211，LM311，and LF111 families of comparators，and are applicable to all high－speed comparators in general， （with the exception that not all comparators have trim pins）．

TL／H／5704－30
Pin connections shown are for LM111H in the H08 hermetic package
FIGURE 2．Conventional Positive Feedback

TL／H／5704－31
FIGURE 3．Positive Feedback with High Source Resistance

Typical Applications (Continued) (Pin numbers refer to H08 package)

Zero Crossing Detector Driving MOS Switch

10 Hz to $10 \mathbf{k H z}$ Voltage Controlled Oscillator

TL/H/5704-15

Driving Ground-Referred Load
*Input polarity is reversed when using pin 1 as output.

Using Clamp Diodes to Improve Response

TL/H/5704-17

Typical Applications (Continued) (Pin numbers refer to H08 package)

TTL Interface with High Level Logic

Crystal Oscillator

TL/H/5704-19

Comparator and Solenoid Driver

TL/H/5704-20

Low Voltage Adjustable Reference Supply
*Solid tantalum

TL/H/5704-21

TL/H/5704-22
*Values shown are for a 0 to 30 V logic swing and a 15 V threshold. †May be added to control speed and reduce susceptibility to noise spikes.

Precision Squarer

Typical Applications（Continued）（Pin numbers refer to H08 package）

＊Solid tantalum

Negative Peak Detector

＊Solid tantalum
TL／H／5704－23

TL／H／5704－25

Zero Crossing Detector Driving MOS Logic

TL／H／5704－24

Precision Photodiode Comparator

TL／H／5704－26
＊R2 sets the comparison level． At comparison，the photodiode has less than 5 mV across it， decreasing leakages by an order of magnitude．

Typical Applications (Continued) (Pin numbers refer to H08 package)

TL/H/5704-27
Switching Power Amplifier

Schematic Diagram*

Connection Diagrams*

TOP VIEW
NOTE: Pin 4 connected to case.

Order Number LM111H, LM211H or LM311H See NS Package Number H08C

Order Number LM111J-8, LM211J-8 LM311J-8, LM311M or LM311N See NS Package Number J08A, M08A or N08E

TL/H/5704-6
Order Number LM111J, LM211J, LM311J or LM311N-14
See NS Number Package
J14A or N14A

LM119A/LM119/LM219/LM319A/LM319 High Speed Dual Comparator

General Description

The LM119 series are precision high speed dual comparators fabricated on a single monolithic chip. They are designed to operate over a wide range of supply voltages down to a single 5 V logic supply and ground. Further, they have higher gain and lower input currents than devices like the LM710. The uncommitted collector of the output stage makes the LM119 compatible with RTL, DTL and TTL as well as capable of driving lamps and relays at currents up to 25 mA .
The LM119A and LM319A offer improved precision over the standard LM119 and LM319, with tighter tolerances on offset voltage, offset current, and voltage gain.

Features

- Two independent comparators
- Operates from a single 5 V supply

Connection Diagrams

Order Number LM119AJ, LM119J, LM219J, LM319AJ, LM319J, LM319AM, LM319M, LM319AN or LM319N
See NS Package Number J14A, M14A or N14A
Metal Can Package

TL/H/5705-7
Case is connected to pin $5\left(\mathrm{~V}^{-}\right)$
Top View
Order Number LM119AH, LM119H, LM319AH or LM319H
See NS Package Number H10C

- Typically 80 ns response time at $\pm 15 \mathrm{~V}$
- Minimum fan-out of 2 each side
- Maximum input current of $1 \mu \mathrm{~A}$ over temperature
- Inputs and outputs can be isolated from system ground
- High common mode slew rate

Although designed primarily for applications requiring operation from digital logic supplies, the LM119 series are fully specified for power supplies up to $\pm 15 \mathrm{~V}$. It features faster response than the LM111 at the expense of higher power dissipation. However, the high speed, wide operating voltage range and low package count make the LM119 much more versatile than older devices like the LM711.
The LM119A and LM119 are specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM219 is specified from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, and the LM319A and LM319 are specified from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Typical Applications*
Relay Driver

TL/H/5705-5
Window Detector

*Pin numbers are for metal can package.

Absolute Maximum Ratings Lм119A/119/219

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 7)
Total Supply Voltage 36V
Output to Negative Supply Voltage
36V
Ground to Negative Supply Voltage
Ground to Positive Supply Voltage
25 V
18 V
Differential Input Voltage $\pm 5 \mathrm{~V}$
Input Voltage (Note 1)
$\pm 15 \mathrm{~V}$
ESD rating ($1.5 \mathrm{k} \Omega$ in series with 100 pF)
Power Dissipation (Note 2)
Output Short Circuit Duration

Operating Temperature Range
LM119A, LM119 $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LM219 $\quad-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) $260^{\circ} \mathrm{C}$
Soldering Information
Dual-In-Line Package Soldering (10 seconds) $260^{\circ} \mathrm{C}$
Small Outline Package
Vapor Phase (60 seconds) $215^{\circ} \mathrm{C}$
Infrared (15 seconds) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 3)

Parameter	Conditions	LM119A			LM119/LM219			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		0.5	1.0		0.7	4.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	40		30	75	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150	500		150	500	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)	20	40		10	40		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		80			80		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-5 \mathrm{mV}, \text { IOUT }=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 5 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	2		0.2	2	$\mu \mathrm{A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		1.2	2.0			7	mV
Input Offset Current (Note 4)				75			100	nA
Input Bias Current				1000			1000	nA
Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	$\begin{gathered} -12 \\ 1 \\ \hline \end{gathered}$	± 13	$\begin{gathered} +12 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} -12 \\ 1 \\ \hline \end{gathered}$	± 13	$\begin{gathered} +12 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}+\geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-6 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 3.2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}} \geq 0^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}} \leq 0^{\circ} \mathrm{C} \end{aligned}$		0.23	$\begin{aligned} & 0.4 \\ & 0.6 \\ & \hline \end{aligned}$		0.23	$\begin{aligned} & 0.4 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 5 \mathrm{mV}, \mathrm{~V}_{\mathrm{OUT}}=35 \mathrm{~V}, \\ & \mathrm{~V}^{-}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V} \end{aligned}$		1	10		1	10	$\mu \mathrm{A}$
Differential Input Voltage				± 5			± 5	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3			4.3		mA
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		8	11.5		8	11.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3	4.5		3	4.5	mA

Note 1: For supply voltages less than $\pm 15 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM119A and LM119 is $150^{\circ} \mathrm{C}$, while that of the LM219 is $110^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 10 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $19^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the $J 14$ package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.

Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, and the Ground pin at ground, and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise stated. With the LM219, however, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. Do not operate the device with more than 16 V from ground to V_{S}.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.
Note 6: Output is pulled up to 15 V through a $1.4 \mathrm{k} \Omega$ resistor.
Note 7: Refer to RETS119X for LM119H/883 and LM119J/883 specifications, RETS119AX for LM119AH/883 and LM119AJ/883 specifications.

Absolute Maximum Ratings $\mathrm{LM} 319 \mathrm{~A} / 319$	
If Military/Aerospace specified devices are required,	
please contact the National Semiconductor Sales	
Office/Distributors for availability and specifications.	
Total Supply Voltage	36 V
Output to Negative Supply Voltage	36 V
Ground to Negative Supply Voltage	25 V
Ground to Positive Supply Voltage	18 V
Differential Input Voltage	$\pm 5 \mathrm{~V}$
Input Voltage (Note 1$)$	$\pm 15 \mathrm{~V}$
Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
ESD rating (1.5 k Ω in series with 100 pF)	800 V

Absolute Maximum Ratings LM319A/319 please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Total Supply Voltage
36 V
Output to Negative Supply Voltage 25 V
Ground to Positive Supply Voltage 18 V
Differential Input Voltage ,

Power Dissipation (Note 2) 800 V

Operating Temperature Range LM319A, LM319 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
Soldering Information
Dual-In-Line Package
Soldering (10 sec.) $260^{\circ} \mathrm{C}$

Small Outline Package Vapor Phase (60 sec .) $215^{\circ} \mathrm{C}$ Infrared (15 sec.) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 3)

Parameter	Conditions	LM319A			LM319			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$		0.5	1.0		2.0	8.0	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	40		80	200	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150	500		250	1000	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)	20	40		8	40		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		80			80		ns
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \text { IOUT }=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.75	1.5		0.75	1.5	V
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 10 \mathrm{mV}, \mathrm{~V}_{\mathrm{OUT}}=35 \mathrm{~V}, \\ & \mathrm{~V}^{-}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	10		0.2	10	$\mu \mathrm{A}$
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{k}$			10			10	mV
Input Offset Current (Note 4)				300			300	nA
Input Bias Current				1000			1200	nA
Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \end{aligned}$	1	± 13	3	1	± 13	3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}+\geq 4.5 \mathrm{~V}, \mathrm{~V}-=0 \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 3.2 \mathrm{~mA} \end{aligned}$		0.3	0.4		0.3	0.4	V
Differential Input Voltage				± 5			± 5	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0$		4.3			4.3		mA
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$		8	12.5		8	12.5	mA
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3	5		3	5	mA

Note 1: For supply voltages less than ± 15 the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM319A and LM319 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the H 10 package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $19^{\circ} \mathrm{C} / \mathrm{W}$, junction to case. The thermal resistance of the N14 and J14 package is $100^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient. The thermal resistance of the M14 package is $115^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise stated. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to $\pm 15 \mathrm{~V}$ supplies. Do not operate the device with more than 16 V from ground to V_{S}.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.
Note 6: Output is pulled up to 15 V through a $1.4 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics LM119A/LM19/LM219

Typical Performance Characteristics Lм319А, Lм319

Response Time for Various Input Overdrives

Response Time for Various

Response Time for Various

Output Limiting Characteristics

TL/H/5705-3

LM139/LM239/LM339/LM139A/LM239A/LM339A/ LM2901/LM3302 Low Power Low Offset Voltage Quad Comparators

General Description

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic- where the low power drain of the LM339 is a distinct advantage over standard comparators.

Advantages

- High precision comparators
- Reduced V_{OS} drift over temperature
- Eliminates need for dual supplies
- Allows sensing near GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

国 Wide single supply voltage range of dual supplies

LM139 series,	$2 V_{D C}$ to $36 V_{D C}$ or
LM139A series, LM2901	$\pm 1 V_{D C}$ to $\pm 18 V_{D C}$
LM3302	$2 V_{D C}$ to $28 V_{D C}$
	or $\pm 1 V_{D C}$ to $\pm 14 V_{D C}$

■ Very low supply current drain (0.8 mA) - independent of supply voltage
m Low input biasing current 25 nA

- Low input offset current $\pm 5 \mathrm{nA}$ and offset voltage $\pm 3 \mathrm{mV}$
E Input common-mode voltage range includes GND
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage

250 mV at 4 mA
■ Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Schematic and Connection Diagrams

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 10)

LM139/LM239/LM339
 LM139A/LM239A/LM339A

LM2901

Supply Voltage, V +
Differential Input Voltage (Note 8)
Input Voltage
Input Current ($\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{DC}}$),
(Note 3)
Power Dissipation (Note 1)
Molded DIP
Cavity DIP
Small Outline Package
Output Short-Circuit to GND, (Note 2)
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)
$36 V_{D C}$ or $\pm 18 V_{D C}$ $36 V_{D C}$
$-0.3 V_{D C}$ to $+36 V_{D C}$
50 mA
1050 mW
1190 mW
760 mW

Continuous $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

LM3302
$28 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 14 \mathrm{~V}_{\mathrm{DC}}$ 28 VDC
$-0.3 V_{D C}$ to $+28 V_{D C}$
50 mA
1050 mW

Continuous $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range LM339/LM339A LM239/LM239A LM2901 LM139/LM139A
Soldering Information Dual-In-Line Package Soldering (10 seconds) Small Outline Package

Vapor Phase (60 seconds) Infrared (15 seconds)

LM139/LM239/LM339
LM139A/LM239A/LM339A
LM3302 LM2901
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD rating ($1.5 \mathrm{k} \Omega$ in series with 100 pF) 600 V 600 V

Electrical Characteristics $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated)

Parameter	Conditions	LM139A			LM239A, LM339A			LM139			LM239, LM339			LM2901			LM3302		Units
		Min T	Typ	Max	Min	Typ	Max		Typ	Max	Min T	Typ	Max	Min	Typ	Max	Min Typ	Max	
Input Offset Voltage	(Note 9)		± 1.0	± 2.0		± 1.0	± 2.0		± 2.0	± 5.0		± 2.0	± 5.0		± 2.0	± 7.0	± 3	± 20	$\mathrm{m} \mathrm{V}_{D C}$
Input Bias Current	$\operatorname{lin}(+)$ or $\operatorname{lin}(-)$ with Output in Linear Range, (Note 5), $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		25	100		25	250		25	100		25	250		25	250	25	500	$n A_{D C}$
Input Offset Current	$\operatorname{lin}(+){ }^{-1} \ln (-), V_{C M}=0 V$		± 3.0	± 25		± 5.0	± 50		± 3.0	± 25		± 5.0	± 50		± 5	± 50	± 3	± 100	$n A_{D C}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}\left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right) \\ & (\text { Note 6) } \end{aligned}$	0		$\mathrm{V}+$-1.5	0		$\mathrm{V}+-1.5$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}+-1.5$	0 V	V+-1.5	$V_{D C}$
Supply Current	$R_{L}=\infty$ on all Comparators, $\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=36 \mathrm{~V},\left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V} \mathrm{DC}\right)$		0.8	2.0		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$m A_{D C}$ $m A_{D C}$
Voltage Gain	$\begin{aligned} & R_{L} \geq 15 \mathrm{k} \Omega, V^{+}=15 V_{D C} \\ & V_{O}=1 V_{D C} \text { to } 11 V_{D C} \\ & \hline \end{aligned}$	50	200			200			200			200		25	100		230		V / mV
Large Signal Response Time	$\mathrm{V}_{\mathrm{IN}}=$ TTL Logic Swing, $\mathrm{V}_{\text {REF }}=$ $1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$,		300			300			300			300			300		300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \text { (Note 7) } \end{aligned}$		1.3			1.3			1.3			1.3			1.3		1.3		$\mu \mathrm{S}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{\operatorname{IN}(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	6.0	16			16			16			16		6.0	16		6.016		$\mathrm{mA}_{\text {DC }}$

Electrical Characteristics $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated) (Continued)

Parameter	Conditions	LM139A			LM239A, LM339A			LM139			LM239, LM339			LM2901			LM3302			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Saturation Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \\ \hline \end{array}$		250	400		250	400		250	400		250	400		250	400		250	500	mV DC
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(+)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(-)}=0, \\ & \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		0.1			0.1			0.1			0.1			0.1			0.1		$n A_{D C}$

Electrical Characteristics $\left(\mathrm{V}^{+}=.5 .0 \mathrm{~V}_{D C}\right.$, Note 4)

Parameter	Conditions	LM139A		LM239A, LM339A		LM139		LM239, LM339		L.M2901		LM3302		Units
		Min Typ	Max	Min Typ	Max	Min Typ	Max	Min Typ	Max	Min Typ	Max	Min Typ	Max	
Input Offset Voltage	(Note 9)		± 4.0		± 4.0		± 9.0		± 9.0	± 9	± 15		± 40	$\mathrm{mV} \mathrm{V}_{\mathrm{DC}}$
Input Offset Current -	$\ln (+)^{-1 / 2}(-), V_{C M}=0 V$		± 100		± 150		± 100		± 150	± 50	± 200		± 300	$n A_{D C}$
Input Bias Current	$\operatorname{IN}(+)$ or $I_{N(-)}$ with Output in Linear Range, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)		300		400		300		400	200	500		1000	$n A_{D C}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}(\mathrm{LM} 3302, \mathrm{~V}+=28 \mathrm{~V} \mathrm{DC}) \\ & (\text { Note 6) } \end{aligned}$	0	$\mathrm{V}+$-2.0	0	$\mathrm{V}+$-2.0	0	$\mathrm{V}^{+}-2.0$		$\mathrm{V}^{+}-2.0$	0	V + -2.0	0	V + -2.0	$V_{D C}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\operatorname{IN}(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\operatorname{IN}(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \end{aligned}$		700		700		700		700	400	700		700	mV DC
Output Leakage Current	$\begin{aligned} & V_{I N(+)}=1 V_{D C}, V_{I N(-)}=0, \\ & V_{O}=30 V_{D C},\left(L M 3302, V_{O}=28 V_{D C}\right) \end{aligned}$		1.0		1.0		1.0		1.0		1.0		1.0	$\mu A_{D C}$
Differential Input Voltage	Keep all V_{IN} 's $\geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if used), (Note 8)		36		36		36		36		36		28	V_{DC}

 dissipation very small ($\mathrm{P}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.

 are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$, and the LM 2901 , LM 3302 temperature range is $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$.
Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
 to $+30 \mathrm{~V}_{\mathrm{DC}}$ without damage (25 V for LM3302), independent of the magnitude of V^{+}.
Note 7: The response time specified is a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
 must not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative power supply, if used) (at $25^{\circ} \mathrm{C}$).
Note 9: At output switch point, $V_{O} \cong 1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{S}=0 \Omega$ with V^{+}from $5 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$; and over the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}+-1.5 \mathrm{~V}_{\mathrm{DC}}$), at $25^{\circ} \mathrm{C}$. For $\mathrm{LM} 3302, \mathrm{~V}+$ from $5 \mathrm{~V}_{\mathrm{DC}}$ to $28 \mathrm{~V}_{\mathrm{DC}}$. Note 10: Refer to RETS139AX for LM139AJ military specifications and to RETS139X for LM139J military specifications.

Typical Performance Characteristics Lм139/Lм239/Lм339, LM139A/Lм239A/Lм339A, LM3302

Typical Performance Characteristics LM2901

Response Time for Various Input Overdrives-Negative Transition

Response Time for Various Input Overdrives-Positive Transition

TL/H/5706-7

Application Hints

The LM139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing this input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.
All pins of any unused comparators should be grounded.
The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than $\mathrm{V}+$ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 $V_{D C}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.
The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+} terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega \mathrm{R}_{\text {SAT }}$ of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.

Typical Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

Basic Comparator

TL/H/5706-3

Driving CMOS

TL/H/5706-4
AND Gate

TL/H/5706-8

Driving TTL

TL/H/5706-5
OR Gate
TL/H/5706-9

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued)

One-Shot Multivibrator with Input Lock Out

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

ORing the Outputs

TL/H/5706-15

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{D C}\right)$ (Continued)
Time Delay Generator

TL/H/5706-14

Non-Inverting Comparator with Hysteresis

TL/H/5706-18

Inverting Comparator with Hysteresis

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued)

Crystal Controlled Oscillator

Typical Applications $\left(\mathrm{v}^{+}=5 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

TL/H/5706-27

Zero Crossing Detector (Single Power Supply)

TL/H/5706-30

TL/H/5706-28

Low Frequency Op Amp with Offset Adjust

Split-Supply Applications $\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}\right.$ and $\left.\mathrm{V}^{-}=-15 \mathrm{~V}_{\mathrm{DC}}\right)$

TL/H/5706-31

TL/H/5706-32
TL/H/5706-33

National Semiconductor
LM160/LM260/LM360 High Speed Differential Comparator

General Description

The LM160/LM260/LM360 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the $\mu \mathrm{A} 760 / \mu \mathrm{A} 760 \mathrm{C}$, for which it is a pin-for-pin replacement. The device has been optimized for greater speed, input impedance and fan-out, and lower input offset voltage. Typically delay varies only 3 ns for overdrive variations of 5 mV to 400 mV .
Complementary outputs having minimum skew are provided. Applications involve high speed analog to digital convertors and zero-crossing detectors in disk file systems.

Features

- Guaranteed high speed 20 ns max
- Tight delay matching on both outputs
- Complementary TTL outputs
- High input impedance
- Low speed variation with overdrive variation
- Fan-out of 4
- Low input offset voltage
- Series 74 TTL compatible

Connection Diagrams

Metal Can Package

TOP VIEW

TL/H/5707-4
Order Number LM160H, LM260H or LM360H See NS Package Number H08C

Dual-In-Line Package

top view
TL/H/5707-5
Order Number LM360M or LM360N See NS Package Number M08A or N08E

top view
TL/H/5707-6
Order Number LM160J-14, LM360J-14 or LM360N-14
See NS Package Number J14A or N14A

Absolute Maximum Ratings (Note 5)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 7)
Positive Supply Voltage
$+8 \mathrm{~V}$
Negative Supply Voltage
Peak Output Current $-8 \mathrm{~V}$

Differential Input Voltage
20 mA

Input Voltage

$$
\pm 5 \mathrm{~V}
$$

ESD rating is to be determined.

Operating Temperature Range

LM160	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM260	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM360	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Soldering Information	
Dual-In-Line Package	
Soldering (10 seconds)	$260^{\circ} \mathrm{C}$
Small Outline Package	
\quad Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics ($\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$)

Parameter	Conditions	Min	Typ	Max	Units
Operating Conditions Supply Voltage $\mathrm{V}_{\mathrm{CC}}{ }^{+}$ Supply Voltage $V_{C C}$		$\begin{gathered} 4.5 \\ -4.5 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ -5 \end{gathered}$	$\begin{gathered} 6.5 \\ -6.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input Offset Voltage	$\mathrm{R}_{S} \leq 200 \Omega$		2	5	mV
Input Offset Current			0.5	3	$\mu \mathrm{A}$
Input Bias Current			5	20	$\mu \mathrm{A}$
Output Resistance (Either Output)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OH }}$		100		Ω
Response Time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}(\text { Notes } 1,6) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}(\text { Notes } 2,6) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}(\text { Notes } 3,6) \end{aligned}$		$\begin{aligned} & 13 \\ & 12 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Response Time Difference between Outputs $\begin{aligned} & \left(t_{\mathrm{pd}} \text { of }+\mathrm{V}_{\mathrm{IN} 1}\right)-\left(\mathrm{t}_{\mathrm{pd}} \text { of }-\mathrm{V}_{\mathrm{IN} 2}\right) \\ & \left(\mathrm{t}_{\mathrm{pd}} \text { of }+\mathrm{V}_{\mathrm{IN} 2}\right)-\left(\mathrm{t}_{\mathrm{pd}} \text { of }-\mathrm{V}_{\mathbb{I N} 1}\right) \\ & \left(\mathrm{t}_{\mathrm{pd}} \text { of }+\mathrm{V}_{\mathrm{IN} 1}\right)-\left(\mathrm{t}_{\mathrm{pd}} \text { of }+\mathrm{V}_{\mathrm{IN} 2}\right) \\ & \left(\mathrm{t}_{\mathrm{pd}} \text { of }-\mathrm{V}_{\mathrm{IN} 1}\right)-\left(\mathrm{t}_{\mathrm{pd}} \text { of }-\mathrm{V}_{\mathrm{IN} 2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C}(\text { Notes } 1,6) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Notes } 1,6) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Notes } 1,6) \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Notes } 1,6) \\ & \hline \end{aligned}$		$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
Input Resistance	$\mathrm{f}=1 \mathrm{MHz}$		17		$\mathrm{k} \Omega$
Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$		3		pF
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=50 \Omega$		8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current			7		$n A /{ }^{\circ} \mathrm{C}$
Common Mode Input Voltage Range	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$	± 4	± 4.5		V
Differential Input Voltage Range		± 5			V
Output High Voltage (Either Output)	$\mathrm{I}_{\text {OUT }}=-320 \mu \mathrm{~A}, \mathrm{~V}_{\text {S }}= \pm 4.5 \mathrm{~V}$	2.4	3		V
Output Low Voltage (Either Output)	$\mathrm{I}_{\text {SINK }}=6.4 \mathrm{~mA}$		0.25	0.4	V
Positive Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$		18	32	mA
Negative Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 6.5 \mathrm{~V}$		-9	-16	mA

Note 1: Response time measured from the 50% point of a $30 \mathrm{mVp}-\mathrm{p} 10 \mathrm{MHz}$ sinusoidal input to the 50% point of the output.
Note 2: Response time measured from the 50% point of a $2 \mathrm{Vp}-\mathrm{p} 10 \mathrm{MHz}$ sinusoidal input to the 50% point of the output.
Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output crosses the logic threshold.
Note 4: Typical thermal impedances are as follows:

Cavity DIP $(\mathrm{J}):$	θ_{jA}	$135^{\circ} \mathrm{C} / \mathrm{W}$
Molded DIP $(\mathrm{N}):$	θ_{jA}	$130^{\circ} \mathrm{C} / \mathrm{W}$

$\begin{array}{cc}\theta_{\mathrm{jA}} & 165^{\circ} \mathrm{C} / \mathrm{W} \\ & 67^{\circ} \mathrm{C} / \mathrm{W} \\ \theta_{\mathrm{jC}} & 25^{\circ} \mathrm{C} / \mathrm{W}\end{array}$
(Still Air) (400 LF/min Air Flow)

Header (H)
$\theta_{\mathrm{jA}} \quad 130^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{j A}$

Typical Performance Characteristics

AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Propagation Delay vs

TL/H/5707-2

AC Test Circuit

Schematic Diagram

TL/H/5707-1

General Description

The LM161/LM261/LM361 is a very high speed differential input, complementary TTL output voltage comparator with improved characteristics over the SE529/NE529 for which it is a pin-for-pin replacement. The device has been optimized for greater speed performance and lower input offset voltage. Typically delay varies only 3 ns for over-drive variations of 5 mV to 500 mV . It may be operated from op amp supplies ($\pm 15 \mathrm{~V}$).
Complementary outputs having maximum skew are provided. Applications involve high speed analog to digital converters and zero-crossing detectors in disk file systems.

Connection Diagrams

Features

■ Independent strobes

- Guaranteed high speed 20 ns max

■ Tight delay matching on both outputs

- Complementary TTL outputs
- Operates from op amp supplies $\pm 15 \mathrm{~V}$
- Low speed variation with overdrive variation
- Low input offset voltage
- Versatile supply voltage range

Logic Diagram
*Output is
low when current is drawn from strobe pin.

TL/H/5708-4

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 4)
Positive Supply Voltage, V +
Negative Supply Voltage, V^{-}
$+16 \mathrm{~V}$
$-16 \mathrm{~V}$
Gate Supply Voltage, VCC
Output Voltage
Differential Input Voltage
Input Common Mode Voltage
Power Dissipation
Storage Temperature Range
Operating Temperature Range
LM161
LM261
LM361
Lead Temp. (Soldering, 10 seconds)
For Any Device Lead Below V^{-}

Operating Conditions

Electrical Characteristics $\left(\mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}\right.$, unless noted)

Parameter	Conditions	Limits						Units
		LM161/LM261			LM361			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage			1	3		1	5	mV
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5	20		10	30	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3		2	5	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3			3		V / mV
Input Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{kHz}$		20			20		$\mathrm{k} \Omega$
Logical "1" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\text {SOURCE }}=-0.5 \mathrm{~mA} \end{aligned}$	2.4	3.3		2.4	3.3		V
Logical '0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{SINK}}=6.4 \mathrm{~mA} \end{aligned}$			0.4			0.4	V
Strobe Input "1" Current (Output Enabled)	$\begin{aligned} & V_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\text {STROBE }}=2.4 \mathrm{~V} \end{aligned}$			200			200	$\mu \mathrm{A}$
Strobe Input "0" Current (Output Disabled)	$\begin{aligned} & V_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \mathrm{~V}_{\text {STROBE }}=0.4 \mathrm{~V} \end{aligned}$			-1.6			-1.6	mA
Strobe Input "0" Voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$			0.8			0.8	V
Strobe Input "1" Voltage	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$	2			2			V
Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	-18		-55	-18		-55	mA

Electrical Characteristics (Continued)
$\left(\mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}\right.$, unless noted)

Parameter	Conditions	Limits						Units
		LM161/LM261			LM361			
		Min	Typ	Max	Min	Typ	Max	
Supply Current ${ }^{+}$	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			4.5				mA
Supply Current I+	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						5	mA
Supply Current 1-	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			10				mA
Supply Current I-	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$						10	mA
Supply Current ICC	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} \end{aligned}$			18				mA
Supply Current ICC	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=-10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$						20	mA
Transient Response	$\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}$ overdrive (Note 3)							
Propagation Delay Time ($\mathrm{t}_{\mathrm{pd}(0)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		14	20		14	20	ns
Propagation Delay Time ($\mathrm{t}_{\mathrm{pd}(1)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		14	20		14	20	ns
Delay Between Output A and B	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		2	5	ns
Strobe Delay Time ($\mathrm{t}_{\mathrm{pd}(0)}$)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8			8		ns
Strobe Delay Time ($\mathrm{tpd}_{\text {d }}(1)$)			8			8		

Note 1: The device may be damaged by use beyond the maximum ratings.
Note 2: Typical thermal impedances are as follows:

	H Package	J Package	N Package
$\theta_{\mathrm{j} A}$	$165^{\circ} \mathrm{C} / \mathrm{W}$ (Still Air) $67^{\circ} \mathrm{C} / \mathrm{W}(400 \mathrm{LF} / \mathrm{Min}$ Air Flow)	$112^{\circ} \mathrm{C} / \mathrm{W}$	$105^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{j} \mathrm{C}$	$25^{\circ} \mathrm{C} / \mathrm{W}$		

Note 3: Measurements using AC Test circuit, Fanout = 1. The devices are faster at low supply voltages.
Note 4: Refer to RETS161X for LM161H and LM161J military specifications.

Typical Performance Characteristics

$\begin{array}{lllllllll}-55-35-15 & 5 & 25 & 45 & 65 & 85 & 105 & 125\end{array}$ AMBIENT TEMPERATURE ('C)

Delay of Output 1 With
Respect to Output 2 vs Ambient Temperature
 AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)

Propagation Delay vs Supply Voltage

Supply Current vs Supply Voltage

 AMBIENT TEMPERATURE (${ }^{\circ} \mathrm{C}$)
 DIFFERENTIAL IRPUT VOLTAGE (V)

TL/H/5708-5
AC Test Circuit

Schematic Diagram

LM161

TL/H/5708-1
R10, R16: 85
R11, R17: 205

National Semiconductor LM193/LM293/LM393, LM193A/LM293A/LM393A, LM2903 Low Power Low Offset Voltage Dual Comparators

General Description

The LM193 series consists of two independent precision voltage comparators with an offset voltage specification as low as 2.0 mV max for two comparators which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM193 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the LM193 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

- Eliminates need for dual supplies
- Allows sensing near ground
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

Advantages

- High precision comparators
- Reduced $\mathrm{V}_{\text {OS }}$ drift over temperature

Schematic and Connection Diagrams

Dual-In-Line Package

TOP VIEW

top view
TL/H/5709-1
Order Number LM393J, LM393AJ, LM393M, LM2903M, LM393N, LM393AN or LM2903N See NS Package Number J08A, M08A or N08E

Typical Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{D C}\right)$

Basic Comparator

Driving CMOS

Driving TTL

TL/H/5709-2

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
(Note 10)
Supply Voltage, ${ }^{+}+$
Differential Input Voltage (Note 8)
Input Voltage
Input Current $\left(\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{DC}}\right)($ Note 3)
Power Dissipation (Note 1)
Molded DIP
Metal Can
Small Outline Package
Output Short-Circuit to Ground (Note 2)
$36 V_{D C}$ or $\pm 18 V_{D C}$
$36 V_{D C}$
$-0.3 V_{D C}$ to $+36 V_{D C}$
50 mA
780 mW
660 mW
510 mW
Continuous

Electrical Characteristics $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated)

Parameter	Conditions	LM193A			LM293A, LM393A			LM193			LM293, LM393			LM2903			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 9)		± 1.0	± 2.0		± 1.0	± 2.0		± 1.0	± 5.0		± 1.0	± 5.0		± 2.0	± 7.0	$\mathrm{m} \mathrm{V}_{\mathrm{DC}}$
Input Bias Current	$\mathrm{I}_{\mathrm{N}}(+)$ or $\mathrm{I}_{\mathrm{N}}(-)$ with Output In Linear Range, $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$ (Note 5)		25	100		25	250		25	100		25	250		25	250	$n A_{D C}$
Input Offset Current	$\mathrm{I}_{\mathrm{N}}(+)-\mathrm{I}_{\mathrm{N}}(-) \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		± 3.0	± 25		± 5.0	± 50		± 3.0	± 25		± 5.0	± 50		± 5.0	± 50	$n A_{D C}$
Input Common Mode Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}$ (Note 6)	0		$v+-1.5$	0		$\mathrm{v}^{+}-1.5$	$V_{D C}$									
Supply Current	$R_{L}=\infty$ on All Comparators, $\mathrm{R}_{\mathrm{L}}=\infty$ on All Amps, $\mathrm{V}^{+}=36 \mathrm{~V}_{\mathrm{DC}}$		$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 2.5 \\ \hline \end{gathered}$		$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 2.5 \\ \hline \end{gathered}$		$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 2.5 \\ \hline \end{gathered}$		$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 2.5 \\ \hline \end{gathered}$		$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$	$\begin{array}{r} 1.0 \\ 2.5 \\ \hline \end{array}$	$m A_{D C}$ $m A_{D C}$
Voltage Gain	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{~V}+=15 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	50	200		50	200		50	200		50	200		25	100		V / mV
Large Signal Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{TTL} \text { Logic Swing, } \mathrm{V}_{\mathrm{REF}}=1.4 \mathrm{~V} \mathrm{DC} \\ & \mathrm{~V}_{\mathrm{RL}}=5 \mathrm{~V} \mathrm{VC}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega \end{aligned}$		300			300			300			300			300		ns
Response Time	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$ (Note 7)		1.3			1.3			1.3			1.3			1.5		$\mu \mathrm{s}$
Output Sink Current	$\mathrm{V}_{\text {IN }}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{IN}}(+)=0, \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}_{\mathrm{DC}}$	6.0	16		6.0	16		6.0	16		6.0	16		6.0	16		$\mathrm{mA}_{\text {DC }}$
Saturation Voltage	$\mathrm{V}_{\text {IN }}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {IN }}(+)=0, \mathrm{ISINK} \leq 4 \mathrm{~mA}$		250	400		250	400		250	400		250	400		250	400	$m V_{D C}$
Output Leakage Current	$\mathrm{V}_{\mathrm{IN}}(-)=0, \mathrm{~V}_{\text {IN }}(+)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}}$		0.1			0.1			0.1			0.1			0.1		$n A_{D C}$

Electrical Characteristics $\left(\mathrm{v}^{+}=5 \mathrm{~V}\right.$ DC) (Note 4$)$

Parameter	Conditions	LM193A			LM293A, LM393A			LM193			LM293, LM393			LM2903			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 9)			± 4.0			± 4.0			± 9			± 9		± 9	± 15	$m V_{D C}$
Input Offset Current	$\operatorname{liN(+)}{ }^{-1} \ln (-), \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$			± 100			± 150			± 100			± 150		± 50	± 200	$n A_{D C}$
Input Bias Current	$\mathbb{I N}^{N}(+)$ or $\mathbb{I}_{\mathbb{N}}(-)$ with Output in Linear Range, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)			300			400			300			400		200	500	$n A_{D C}$
Input Common Mode Voltage Range	$\mathrm{V}+=30 \mathrm{~V}_{\text {DC }}$ (Note 6)	0		$\mathrm{V}+-2.0$	0		$\mathrm{V}+$-2.0	0		$\mathrm{V}+$-2.0	0		$\mathrm{V}+-2.0$	0		$\mathrm{V}+$-2.0	$V_{D C}$
Saturation Voltage	$\mathrm{V}_{\mathrm{IN}}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{IN}}(+)=0, \mathrm{ISINK} \leq 4 \mathrm{~mA}$,			700			700			700			700		400	700	$m V_{D C}$
Output Leakage Current	$\mathrm{V}_{I N}(-)=0, \mathrm{~V}_{\text {IN }(+)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{O}}=30 \mathrm{~V}_{\mathrm{DC}}$			1.0			1.0			1.0			1.0			1.0	$\mu A_{D C}$
Differential Input Voltage	Keep All V_{IN} ' $\mathrm{s} \geq 0 \mathrm{~V}_{\mathrm{DC}}$ (or V^{-}, if Used), (Note 8)			36			36			36			36			36	$V_{D C}$

 chip dissipation very small ($\mathrm{P}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.

 overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}$.
 tions are limited to $0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$. The LM2903 is limited to $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.
 to $36 \mathrm{~V}_{\mathrm{DC}}$ without damage, independent of the magnitude of V^{+}.
Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
 not be less than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (or $0.3 \mathrm{~V}_{\mathrm{DC}}$ below the magnitude of the negative power supply, if used).
Note 9: At output switch point, $V_{O} \cong 1.4 V_{D C}, R_{S}=0 \Omega$ with $V+$ from $5 V_{D C}$ to $30 V_{D C}$; and over the full input common-mode range ($0 V_{D C}$ to $V^{+}-1.5 V_{D C}$), at $25^{\circ} C$
Note 10: Refer to RETS193AX for LM193AH/military specifications and to RETS193X for LM193H/military specifications.

Typical Performance Characteristics LM193/LM293/Lм393, LM193A/LM293A/LM393A

TL/H/5709-3

Typical Performance Characteristics Lm2903

Response Time for Various Input Overdrives-Negative Transition

Response Time for Various Input Overdrives-Positive Transition

Application Hints

The LM193 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator change states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1.0 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.

All pins of any unused comparators should be grounded.
The bias network of the LM193 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2.0 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than $\mathrm{V}+$ without damaging the device (see Note 8). Protection should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.
The output of the LM193 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V^{+} terminal of the LM193 package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega \mathrm{r}_{\text {SAT }}$ of the output transistor. The low offset voltage of the output transistor (1.0 mV) allows the output to clamp essentially to ground level for small load currents.

Typical Applications (Continued) $\left(V^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$

Two-Decade High-Frequency VCO

TL/H/5709-5
$700 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{o}} \leq 100 \mathrm{kHz}$

Typical Applications (Continued) $\left(V^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$

TL/H/5709-6

Non-Inverting Comparator with Hysteresis

TL/H/5709-9

Inverting Comparator with Hysteresis

TL/H/5709-10

Output Strobing

* OR LOGIC GATE

WITHOUT PULL.UP RESISTOR

AND Gate

TL/H/5709-12

OR Gate

TL/H/5709-13

Typical Applications (Continued) $\left(\mathrm{V}^{+}=\mathrm{V}_{\mathrm{DC}}\right)$

Split-Supply Applications $\left(\mathrm{V}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}\right.$ and $\left.\mathrm{V}^{-}=-15 \mathrm{~V}_{\mathrm{DC}}\right)$

Comparator With a Negative Reference

LM710/LM710C Voltage Comparator

General Description

The LM710 series are high-speed voltage comparators intended for use as an accurate, low-level digital level sensor or as a replacement for operational amplifiers in comparator applications where speed is of prime importance. The circuit has a differential input and a single-ended output, with saturated output levels compatible with practically all types of integrated logic.
The device is built on a single silicon chip which insures low offset and thermal drift. The use of a minimum number of stages along with minority-carrier lifetime control (gold doping) makes the circuit much faster than operational amplifiers in saturating comparator applications. In fact, the low
stray and wiring capacitances that can be realized with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.
The LM710 series are useful as pulse height discriminators, voltage comparators in high-speed A/D converters or go, no-go detectors in automatic test equipment. They also have applications in digital systems as an adjustable-threshold line receiver or an interface between logic types. In addition, the low cost of the units suggests them for applications replacing relatively simple discrete component circuitry.

Schematic and Connection Diagrams

TL/H/10410-2
Top View
Note: Pin 4 is connected to case.
Order Number LM710H or LM710CH See NS Package Number H08C

Dual-In-Line Package

Top View
Order Number LM710CN See NS Package Number N14A

Absolute Maximum Ratings			
If Military/Aerospace specified devices are required,	Power Dissipation		
please contact the National Semiconductor Sales	TO-99 (Note 1)	700 mW	
Office/Distributors for availability and specifications.	Plastic Dual-In-Line Package (Note 2)	950 mW	
Positive Supply Voltage	+14 V	Operating Temperature Range	
Negative Supply Voltage	-7 V	LM710	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Peak Output Current	10 mA	LM710C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Output Short Circuit Duration	10 seconds	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 5 \mathrm{~V}$	Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
Input Voltage	$\pm 7 \mathrm{~V}$		

Electrical Characteristics (Note 3)

Parameter	Conditions	LM710			LM710C			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{R}_{S} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.6	2.0		1.6	5.0	mV
Input Offset Current	$\mathrm{V}_{\text {OUT }}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.75	3.0		1.8	5.0	$\mu \mathrm{A}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		13	20		16	25	$\mu \mathrm{A}$
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1250	1700		1000	1500		
Output Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		200			200		Ω
Output Sink Current	$\begin{aligned} & V_{\text {OUT }}=0, T_{A}=25^{\circ} \mathrm{C} \\ & \Delta V_{\mathbb{I N}} \geq 5 \mathrm{mV} \\ & \Delta V_{\mathbb{I N}} \geq 10 \mathrm{mV} \end{aligned}$	2.0	2.5		1.6	2.5		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Response Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 4)		40			40		ns
Input Offset Voltage	$\mathrm{R}_{S} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$			3.0			6.5	mV
Average Temperature Coefficient of Input Offset Voltage	$\begin{aligned} & T_{M I N} \leq T_{A} \leq T_{M A X} \\ & R_{S} \leq 50 \Omega \end{aligned}$		3.0	10		5.0	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	$\begin{aligned} & T_{A}=T_{A M A X} \\ & T_{A}=T_{A M I N} \end{aligned}$		$\begin{gathered} 0.25 \\ 1.8 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 7.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 75 \\ & \hline \end{aligned}$		$\begin{aligned} & 15 \\ & 24 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ \hline \end{gathered}$	$n A /{ }^{\circ} \mathrm{C}$ $n A /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$		27	45		25	40	$\mu \mathrm{A}$
Input Voltage Range	$\mathrm{V}^{-}=-7 \mathrm{~V}$	± 5.0			± 5.0			\checkmark
Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega$	80	100		70	98		dB
Differential Input Voltage Range		± 5.0			± 5.0			V
Voltage Gain		1000			800			V/V
Positive Output Level	$\begin{aligned} & -5 \mathrm{~mA} \leq \text { lout } \leq 0 \\ & \mathrm{~V}_{\mathrm{IN}} \geq 5 \mathrm{mV} \\ & \mathrm{~V}_{\mathbb{N}} \geq 10 \mathrm{mV} \end{aligned}$	2.5	3.2	4.0	2.5	3.2	4.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Negative Output Level	$\begin{aligned} & V_{\mathrm{IN}} \geq 5 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{IN}} \geq 10 \mathrm{mV} \end{aligned}$	-1.0	-0.5	0	-1.0	-0.5	0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Sink Current	$\begin{aligned} & V_{I N} \geq 5 \mathrm{mV}, V_{\text {OUT }}=0 \\ & T_{A}=125^{\circ} \mathrm{C} \\ & T_{A}=-55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.3 \end{aligned}$					$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	$\begin{aligned} & V_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=0 \\ & 0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$				0.5			mA

Electrical Characteristics (Note 3) (Continued)

Parameter	Conditions	LM710			LM710C			Units
		Min	Typ	Max	Min	Typ	Max	
Positive Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \geq 5 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{IN}} \geq 10 \mathrm{mV} \\ & \hline \end{aligned}$		5.2	9.0		5.2	9.0	mA mA
Negative Supply Current	$\begin{aligned} & V_{I N} \geq 5 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{IN}} \geq 10 \mathrm{mV} \end{aligned}$		4.6	7.0		4.6	7.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Power Consumption	$\begin{aligned} & \text { IOUT }=0 \\ & \mathrm{~V}_{\text {IN }} \geq 5 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{IN}} \geq 10 \mathrm{mV} \end{aligned}$		90	150			150	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$

Note 1: Rating applies for ambient temperatures of $25^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $25^{\circ} \mathrm{C}$.
Note 2: Derate linearly at $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $25^{\circ} \mathrm{C}$.
Note 3: These specifications appy for $\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}^{-}=-6 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for LM 710 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for LM 710 C unless otherwise specified: The input offset voltage and input offset current (see definitions) are specified for a logic threshold voltage of 1.8 V at $-55^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, and 1 V at $125^{\circ} \mathrm{C}$ for LM 710 and 1.5 V at $0^{\circ} \mathrm{C}, 1.4 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, and 1.2 V at $70^{\circ} \mathrm{C}$ for LM 710 C .
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive (LM710) or a 10 mV overdrive (LM710C).

Typical Applications

TL/H/10410-5

Pulse Width Modulator

TL/H/10410-6

Level Detector with Lamp Driver

Typical Performance Characteristics

Output Voltage Level

Voltage Gain

Output Sink Current

Maximum Power Dissipation

TL/H/10410-8

LM1514/LM1414
 Dual Differential Voltage Comparator

General Description

The LM1514/LM1414 is a dual differential voltage comparator intended for applications requiring high accuracy and fast response times. The device is constructed on a single monolithic silicon chip.
The LM1514/LM1414 is useful as a variable threshold Schmitt trigger, a pulse height discriminator, a voltage comparator in high-speed A/D converters, a memory sense amplifier or a high noise immunity line receiver. The output of the comparator is compatible with all integrated logic forms. The LM1514/LM1414 meet or exceed the specifications for the MC1514/MC1414 and are pin-for-pin replacements. The LM1514 is available in the ceramic dual-in-line package. The LM1414 is available in either the ceramic or molded dual-in-line package.

The LM1514 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LM1414 is specified for operation over the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.

Features

- Two totally separate comparators per package
- Independent strobe capability

■ High speed 30 ns typ

- Low input offset voltage and current

国 High output sink current over temperature

- Output compatible with TTL/DTL logic
- Molded or ceramic dual-in-line package

Schematic and Connection Diagrams

Dual-In-Line Package

TL/H/10411-2
Order Number LM1414J or LM1514J See NS Package Number J14A

Order Number LM1414N See NS Package Number N14A

Absolute Maximum Ratings (Note 1)		
If Military/Aerospace specified devices are required,	Power Dissipation (Note 2)	1000 mW
please contact the National Semiconductor Sales	Operating Temperature Range	
Office/Distributors for availability and specifications.	LM1514	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Positive Supply Voltage	+14.0 V	LM1414
Negative Supply Voltage	-7.0 V	Storage Temperature Range
Peak Output Current	10 mA	Lead Temperature (Soldering, 10 sec.)
Differential Input Voltage	$\pm 5.0 \mathrm{~V}$	
Input Voltage	$\pm 7.0 \mathrm{~V}$	

Electrical Characteristics for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+12 \mathrm{~V}, \mathrm{~V}-=-6 \mathrm{~V}$, unless otherwise specified

Parameter	Conditions	LM1514			LM1414			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.4 \mathrm{~V}$		0.6	2.0		1.0	5.0	mV
Input Offset Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.4 \mathrm{~V}$		0.8	3.0		1.2	5.0	$\mu \mathrm{A}$
Input Bias Current				20			25	$\mu \mathrm{A}$
Voltage Gain		1250			1000			
Output Resistance			200			200		Ω
Differential Input Voltage Range		± 5.0			± 5.0			V
Input Voltage Range	$\mathrm{V}-=-7.0 \mathrm{~V}$	± 5.0			± 5.0			V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, \mathrm{~V}^{-}=-7.0 \mathrm{~V}$	80	100		70	100		dB
Positive Output Voltage	$\mathrm{V}_{\text {IN }} \geq 7.0 \mathrm{mV}, 0 \leq \mathrm{l}_{\text {OUT }} \leq-5.0 \mathrm{~mA}$	2.5	3.2	4.0	2.5	3.2	4.0	V
Negative Output Voltage	$\mathrm{V}_{\mathrm{IN}} \leq-7.0 \mathrm{mV}$	-1.0	-0.5	0	-1.0	-0.5	0	V
Strobed Output Voltage	$\mathrm{V}_{\text {STROBE }} \leq 0.3 \mathrm{~V}$	-1.0	-0.5	0	-1.0	-0.5	0	V
Strobe "0" Current	$\mathrm{V}_{\text {STROBE }}=100 \mathrm{mV}$		-1.2	-2.5		-1.2	-2.5	mA
Positive Supply Current	$\mathrm{V}_{\text {IN }} \leq-7 \mathrm{mV}$			18			18	mA
Negative Supply Current	$\mathrm{V}_{\text {IN }} \leq-7 \mathrm{mV}$			-14			-14	mA
Power Consumption			180	300		180	300	mW
Response Time	(Note 3)		30			30		ns

LM1514/LM1414: The following apply for $T_{L} \leq T_{A}<T_{H}$ (Note 4) unless otherwise specified
$\left.\begin{array}{l|l|l|l|l|l|l|l|l}\hline \text { Input Offset Voltage } & \begin{array}{l}R_{S} \leq 200 \Omega, \mathrm{~V}_{\text {OUT }}=1.8 \mathrm{~V} \text { for } \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}} \\ \mathrm{V}_{\mathrm{CM}}=\mathrm{VV}, \mathrm{V}_{\mathrm{OUT}}=1.0 \mathrm{~V} \text { for } \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{H}}\end{array} & & & 3.0 \\ 3.0\end{array}\right)$

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced pin.
Note 2: LM1514 ceramic package: The maximum junction temperature is $+150^{\circ} \mathrm{C}$, for operating at elevated temperatures, devices must be derated linearly at 12.5 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. LM1414 ceramic package: The maximum junction temperature is $+125^{\circ} \mathrm{C}$ for operating at elevated temperatures, devices must be derated linearly at 12.5 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. LM1414 molded package: The maximum junction temperature is $+125^{\circ} \mathrm{C}$, for operating at elevated temperatures, devices must be derated linearly at 10 $\mathrm{mW} /{ }^{\circ} \mathrm{C}$.
Note 3: The response time specified (see definitions) for a 100 mV input step with 5 mV overdrive.
Note 4: For LM1514, $T_{L}=-55^{\circ} \mathrm{C}, \mathrm{T}_{H}=+125^{\circ} \mathrm{C}$. For $\mathrm{LM} 1414, \mathrm{~T}_{\mathrm{L}}=0^{\circ} \mathrm{C}, \mathrm{T}_{H}=+70^{\circ} \mathrm{C}$.

LP265/LP365 Micropower Programmable Quad Comparator

General Description

The LP365 consists of four independent voltage comparators. The comparators can be programmed, four at the same time, for various supply currents, input currents, response times and output current drives. This is accomplished by connecting a single resistor between the V_{CC} and ISET pins.
These comparators can be operated from split power supplies or from a single power supply over a wide range of voltages. The input can sense signals at ground level even with single supply operation. The unique output NPN transistor stages are uncommitted to either power supply. They can be connected directly to various logic system supplies so that they are highly flexible to interface with various logic families.
Application areas include battery power circuits, threshold detectors, zero crossing detectors, simple serial A/D converters, VCO, multivibrators, voltage converters, power sequencers, and high performance V/F converters, and RTD linearization.

Features

- Single programming resistor to tailor power consumption, input current, speed and output current drive capability
- Wide single supply voltage range or dual supplies (4 $V_{D C}$ to $36 V_{D C}$ or $\pm 2.0 V_{D C}$ to $\left.\pm 18 V_{D C}\right)$
■ Low supply current drain ($10 \mu \mathrm{~A}$) and low power consumption ($10 \mu \mathrm{~W} /$ comparator) @ $\mathrm{I}_{\mathrm{SET}}=0.5 \mu \mathrm{~A}$ $V_{C C}=5 \mathrm{VDC}$
- Uncommitted output stage-selectable output levels
- Output directly compatible with DTL, TTL, CMOS, MOS or other special logic families
- Input common-mode range includes ground
- Differential input voltage equal to the power supply voltage

Connection Diagram

Dual-In-Line Package

TOP VIEW
TL/H/5023-2
Order Number LP365M, LP265N, LP365AN or LP365N See NS Package Numbers M16A or N16A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Differential Input Voltage
Input Voltage (Note 1)
Output Short Circuit to V_{E} (Note 2)
$36 V_{D C}$ or $\pm 18 V_{D C}$
$\pm 36 V_{D C}$
$-0.3 V$ to $+36 V_{D C}$
$V_{\text {OUT }}$ with Respect to V_{E}
ESD Tolerance (Note 10)
$V_{E}-7 V \leq V_{\text {OUT }} \leq V_{E}+36 V$ 2000 V

T_{j} Max
$\theta_{\mathrm{j} A}$ Lead Temp.
(Soldering-10 sec.)
(Vapor Phase-60 sec.)
(Infrared-15 sec.)
Operating Temp. Range LP365:
LP265:
Storage Temp. Range

N Package
$500 \mathrm{~mW} \quad 500 \mathrm{~mW}$ $115^{\circ} \mathrm{C} \quad 115^{\circ} \mathrm{C}$
$115^{\circ} \mathrm{C} / \mathrm{W} \quad 90^{\circ} \mathrm{C} / \mathrm{W}$
$260^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$
$220^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

Electrical Characteristics (Note 4) Low power $V_{S}=5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}$

Symbol	Parameter	Conditions	LP365A			LP265/LP365			Units (Limit)
			Typ	Tested Limit (Note 5)		Typ			
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=O V \\ & R_{S}=100 \end{aligned}$	1	3	6	3	6	9	$\begin{gathered} \mathrm{mV} \\ (\mathrm{Max}) \end{gathered}$
los	Input Offset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{LP} 265 \end{aligned}$	2	20	50	4	25	75	nA (Max)
						4	25	150	
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{LP} 265 \end{aligned}$	10	50	125	15	75	200	nA (Max)
						15	75	300	
Avol	Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$	500	50	50	300	25	25	V/mV (Min)
V_{CM}	Input Common- Mode Voltage Range			0	0		0	0	V (Max)
				3	3		3	3	$\begin{gathered} V \\ (\mathrm{Min}) \end{gathered}$
CMRR	Common-Mode Rejection Ratio	$0 \leq \mathrm{V}_{\mathrm{CM}} \leq 3 \mathrm{~V}$	85	75	70	80	75	70	$\begin{gathered} d B \\ (\mathrm{Min}) \end{gathered}$
PSRR	Supply Voltage Rejection Ratio	$\begin{aligned} & \pm 2.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \\ & \leq \pm 3.5 \mathrm{~V} \end{aligned}$	75	65	65	70	65	65	$\begin{gathered} \mathrm{dB} \\ (\mathrm{Min}) \end{gathered}$
Is	Supply Current	$\begin{aligned} & \text { All Inputs }=0 \mathrm{~V} \text {, } \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$	215	250	300	225	275	300	$\begin{gathered} \mu \mathrm{A} \\ (\mathrm{Max}) \end{gathered}$
V_{OH}	Output Voltage High	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \end{aligned}$		4.9	4.5		4.9	4.5	$\begin{gathered} V \\ (\mathrm{Min}) \end{gathered}$
V_{OL}	Output Voltage Low	$\mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}$		0.4	0.4		0.4	0.4	$\begin{gathered} V \\ (M a x) \end{gathered}$
ISINK	Output Sink Current	$\begin{aligned} & V_{E}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$	2.4	1.2	0.6	2.0	0.8	0.4	mA (Min)
ILEAK	Output Leakage Current	$\begin{aligned} & V_{C}=5 \mathrm{~V}, \\ & V_{E}=0 \mathrm{~V} \\ & \hline \end{aligned}$	2	50	5000	2	100	5000	$\begin{gathered} \mathrm{nA} \\ (\mathrm{Max}) \\ \hline \end{gathered}$
t_{R}	Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{E}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \text { (Note 7) } \\ & \hline \end{aligned}$	4			4			$\mu \mathrm{S}$

Electrical Characteristics (Continued) (Note 8) High power $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, $\mathrm{I}_{\text {SET }}=100 \mu \mathrm{~A}$

Note 1: The input voltage is not allowed to go 0.3 V above V^{+}or -0.3 V below V^{-}as this will turn on a parasitic transistor causing large currents to flow through the device.
Note 2: Short circuits from the output to V^{+}may cause excessive heating and eventual destruction. The current in the output leads and the V_{E} lead should not be allowed to exceed 30 mA . The output should not be shorted to V^{-}if $\mathrm{V}_{\mathrm{E}} \leq\left(\mathrm{V}^{-}\right)+7 \mathrm{~V}$.
Note 3: For operating at elevated temperatures, these devices must be derated based on a thermal resistance of $\theta_{j A}$ and $T_{j} m a x . T_{j}=T_{A}+\theta_{j A} P_{D}$.
Note 4: Boldface numbers apply at temperature extremes. All other numbers apply at $T_{A}=T_{j}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$, and $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$ as shown in the Typical Connection diagram.
Note 5: Guaranteed and 100% production tested.
Note 6: Guaranteed (but not 100% production tested) over the operating temperature and supply voltage ranges. These limits are not used to calculate out-going quality levels.
Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive.
Note 8: Boldface numbers apply at temperature extremes. All other numbers apply at $T_{A}=T_{j}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{SET}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$, and $V_{C}=5 \mathrm{~V}$ as shown in the Typical Connection diagram.
Note 9: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Note 10: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

Supply Current vs Temperature

Response Time Negative Transition

Response Time Positive Transition

Typical Applications
Gated 4-Phase Oscillator

"Voting" Comparator

TL/H/5023-4
$f=20 \mathrm{kHz}$
$\mathrm{f}=\frac{1}{1.6 \bullet \mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}}}$

All four phases run when X is low. When X is high, oscillation stops and power drain is zero.

Typical Applications (Continued)

Ordinary Hysteresis

TL/H/5023-6
It is a good practice to add a few millivolts of positive feedback to prevent oscillation when the input voltage is near the threshold.

Bar-Graph Display

TL/H/5023-8
The positive feedback from pin 16 provides hysteresis.

Hysteresis from Emitter

TL/H/5023-7
Positive feedback from the emitter can also prevent oscillations when $\mathrm{V}_{\text {IN }}$ is near the threshold.

Level-Sensitive Strobe

TL/H/5023-9
Comparators B, C, and D do not respond until activated by the signal applied to comparator A .

Typical Applications (Continued)
Slow Op Amp (Inverter)

$\mathrm{R}_{\mathrm{B}}=\mathrm{V}+/ 20 \mu \mathrm{~A}$
Unlike most comparators, the LP365 can be used as an op amp, if suitable R-C damping networks are used.

TL/H/5023-12
Chopping the outputs by modulating the $\mathrm{I}_{\text {SET }}$ current allows data to be transmitted via opto-couplers, transformers, etc.

Slow Op Amp (Unity-Gain Follower)

TL/H/5023-11
$\mathrm{R}_{\mathrm{B}}=\mathrm{V}+/ 20 \mu \mathrm{~A}$
The LP365 can also be used as a high-input-impedance follower-amplifier with the damping components shown.

Low Battery Detector

IS @ $6 \mathrm{~V}=45 \mu \mathrm{~A}$
$\mathrm{IS} @ 3.8 \mathrm{~V}=1 \mu \mathrm{~A}$
$\mathrm{f}=3 \mathrm{kHz}$
Comparator A detects when the supply voltage drops to 4 V and enables comparator B to drive a piezoelectric alarm.

Current sources are programmed by ISET
V_{E} is common to all 4 comparators

LP311 Voltage Comparator

General Description

The LP311 is a low power version of the industry-standard LM311. It takes advantage of stable high-value ion-implanted resistors to perform the same function as an LM311, with a $30: 1$ reduction in power drain, but only a 6:1 slowdown of response time. Thus the LP311 is well suited for batterypowered applications, and all other applications where fast response is not needed. It operates over a wide range of supply voltages from 36 V down to a single 3 V supply, with less than $200 \mu \mathrm{~A}$ drain, but it is still capable of driving a 25 mA load. The LP311 is quite easy to apply without any oscillation, if ordinary precautions are taken to minimize stray coupling from the output to either input or to the trim pins. (See the LM311 section of the Linear Databook.)

Features

- Low power drain, $900 \mu \mathrm{~W}$ on 5 V supply
- Operates from $\pm 15 \mathrm{~V}$ or a single supply as low as 3 V
- Output can drive 25 mA
- Emitter output can swing below negative supply
- Response time: $1.2 \mu \mathrm{~s}$

■ Same pin-out as LM311

- Low input currents: 2 nA of offset, 15 nA of bias
- Large common-mode input range: -14.6 V to 13.6 V with $\pm 15 \mathrm{~V}$ supply

Schematic Diagram

TL/H/5711-7
Connection Diagrams

TL/H/5711-3
Note: Pin 4 connected to case.
Order Number LP311H See NS Package Number H08C

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Total Supply Voltage (V_{8}) 36 V
Collector Output to Negative Supply Voltage (V_{7-4}) 40V
Collector Output to Emitter Output 40V
Emitter Output to Negative Supply Voltage $\left(\mathrm{V}_{1-4}\right) \pm 30 \mathrm{~V}$
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage (Note 1) $\pm 15 \mathrm{~V}$

Power Dissipation (Note 2)	500 mW
Output Short Circuit Duration	10 sec
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Electrical Characteristics
(Note 3)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k}$		2.0	7.5	mV
Input Offset Current (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	25	nA
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	100	nA
Voltage Gain	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}$	40	200		V / mV
Response Time (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.2		$\mu \mathrm{s}$
Saturation Voltage (Note 6)	$\begin{aligned} & \mathrm{V}_{\text {IN }} \leq-10 \mathrm{mV}, \text { lout }=25 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}=25^{\circ} \mathrm{C}} \end{aligned}$		0.4	1.5	V
Strobe Current (Note 7)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	100	200	300	$\mu \mathrm{A}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }} \geq 10 \mathrm{mV}, \mathrm{~V}_{\text {OUT }}=35 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		0.2	100	nA
Input Offset Voltage (Note 4)	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k}$			10	mV
Input Offset Current (Note 4)				35	nA
Input Bias Current				150	nA
Input Voltage Range		$\mathrm{V}-+0.5$	+13.7, -14.7	V + -1.5	V
Saturation Voltage (Note 6)	$\begin{aligned} & \mathrm{V}^{+} \geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \leq-10 \mathrm{mV}, \mathrm{I}_{\mathrm{SINK}} \leq 1.6 \mathrm{~mA} \end{aligned}$		0.1	0.4	V
Positive Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output on		150	300	$\mu \mathrm{A}$
Negative Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80	180	$\mu \mathrm{A}$
Minimum Operating Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3.0	3.5	V

Note 1: This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
Note 2: The maximum junction temperature of the LP311 is $85^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the dual-in-line package must be derated based on a thermal resistance of $160^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient.
Note 3: These specifications apply for $V_{S}= \pm 15 \mathrm{~V}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 4 V supply up to $\pm 15 \mathrm{~V}$ supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst-case effects of voltage gain and input impedance.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive.
Note 6: Saturation voltage specification applied to collector-emitter voltage (V7-1) for $\mathrm{V}_{\text {COLLECTOR }} \leq$ ($\mathrm{V}^{+}-3 \mathrm{~V}$).
Note 7: This specification gives the range of current which must be drawn from the strobe pin to ensure the output is properly disabled. Do not short the strobe pin to ground. It should be current driven, $100 \mu \mathrm{~A}$ to $300 \mu \mathrm{~A}$.

Output Saturation Voltage (Emitter Output)

TL/H/5711-5

Typical Performance Characteristics (Continued)

TL/H/5711-6

Applications Information

For applications information and typical applications, refer to the LM311 datasheet.

Auxiliary Circuits

Offset Balancing

TL/H/5711-2

Note: Do not ground strobe pin.

LP339 Ultra-Low Power Quad Comparator

General Description

The LP339 consists of four independent voltage comparators designed specifically to operate from a single power supply and draw typically $60 \mu \mathrm{~A}$ of power supply drain current over a wide range of power supply voltages. Operation from split supplies is also possible and the ultra-low power supply drain current is independent of the power supply voltage. These comparators also feature a common-mode range which includes ground, even when operated from a single supply.
Applications include limit comparators, simple analog-to-digital converters, pulse, square and time delay generators; VCO's; multivibrators; high voltage logic gates. The LP339 was specifically designed to interface with the CMOS logic family. The ultra-low supply current makes the LP339 valuable in battery powered applications.

Advantages

- Ultra-low power supply drain suitable for battery applications
- Single supply operation
- Sensing at ground
- Compatible with CMOS logic family
- Pin-out identical to LM339

Features

■ Ultra-low power supply current drain $(60 \mu \mathrm{~A})$-independent of the supply voltage ($75 \mu \mathrm{~W} /$ comparator at $+5 \mathrm{~V}_{\mathrm{DC}}$)

- Low input biasing current 3 nA

■ Low input offset current $\pm 0.5 \mathrm{nA}$
■ Low input offset voltage $\pm 2 \mathrm{mV}$

- Input common-mode voltage includes ground
- Output voltage compatible with MOS and CMOS logic
- High output sink current capability (30 mA at $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}$)
- Supply Input protected against reverse voltages

Schematic and Connection Diagrams

TL/H/5226-1

Typical Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{v}_{\mathrm{DC}}\right)$

Basic Comparator

TL/H/5226-3

TL/H/5226-2
Order Number LP339M for S.O. Package See NS Package Number M14A
Order Number LP339N for Dual-In-Line Package See NS Package Number N14A

Driving CMOS

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1) Molded DIP
Output Short Circuit to GND (Note 2)
$36 V_{D C}$ or $\pm 18 V_{D C}$
$\pm 36 V_{D C}$
$-0.3 \mathrm{~V}_{\mathrm{DC}}$ to $36 \mathrm{~V}_{\mathrm{DC}}$
570 mW
Continuous

Input Current $\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{DC}}$ (Note 3) Operating Temperature Range

50 mA
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
-65° to $+150^{\circ} \mathrm{C}$
Soldering Information:
$\begin{array}{ll}\text { Dual-In-Line Package (10 sec.) } & +260^{\circ} \mathrm{C} \\ \text { S.O. Package: } & \\ \quad \text { Vapor Phase }(60 \text { sec.) } & +215^{\circ} \mathrm{C} \\ \text { Infrared (15 sec.) } & +220^{\circ} \mathrm{C}\end{array}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics $(\mathrm{V}+=5 \mathrm{~V}$ D , Note 4)

Parameter	Conditions	Min	Typ	Max	Units
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 9)		± 2	± 5	$m V_{D C}$
Input Bias Current	$I_{\mathbb{I}}(+)$ or $I_{\mathbb{N}}(-)$ with the Output in the Linear Range, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5)		2.5	25	$n A_{D C}$
Input Offset Current	$\underline{\operatorname{liN}}(+)-\operatorname{liN}(-), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		± 0.5	± 5	$n A_{D C}$
Input Common Mode Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 6)	0		$V+-1.5$	$V_{D C}$
Supply Current	$\mathrm{R}_{\mathrm{L}}=$ Infinite on all Comparators, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100	$\mu A_{D C}$
Voltage Gain	$\begin{aligned} & V_{O}=1 V_{D C} \text { to } 11 V_{D C}, \\ & R_{L}=15 \mathrm{k} \Omega, V+=15 V_{D C}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		500		V / mV
Large Signal Response Time	$\begin{aligned} & V_{I N}=T T L \text { Logic Swing, } V_{R E F}=1.4 V_{D C}, \\ & V_{R L}=5 V_{D C}, R_{L}=5.1 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		1.3		$\mu \mathrm{Sec}$
Response Time	$\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7)		8		$\mu \mathrm{Sec}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\text {IN }}(+)=0, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(\text { Note 11) } \end{aligned}$	15	30		$m A_{D C}$
	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}_{\mathrm{DC}}$	0.20	0.70		$m A_{D C}$
Output Leakage Current	$\mathrm{V}_{\text {IN }}(+)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {IN }}(-)=0, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.1		$n A_{D C}$
Input Offset Voltage	(Note 9)			± 9	mV DC
Input Offset Current	$\operatorname{liN}^{(+)}$- $\operatorname{liN}(-)$		± 1	± 15	$n A_{D C}$
Input Bias Current	$\mathrm{I}_{\mathrm{N}}(+)$ or $\mathrm{I}_{\mathrm{N}}(-)$ with Output in Linear Range		4	40	$n A_{D C}$
Input Common Mode Voltage Range	Single Supply	0		$V+-2.0$	$V_{D C}$
Output Sink Current	$\mathrm{V}_{1 N}(-)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {IN }}(+)=0, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}$	10			$m A_{D C}$
Output Leakage Current	$\mathrm{V}_{\text {IN }}(+)=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {IN }}(-)=0, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}_{\mathrm{DC}}$			1.0	$\mu A_{D C}$
Differential Input Voltage	All $\mathrm{V}_{\text {IN's }} \geq 0 \mathrm{~V}_{\text {DC }}$ (or V - on split supplies) (Note 8)			36	V_{DC}

Note 1: For elevated temperature operation, T_{j} max is $125^{\circ} \mathrm{C}$ for the LP339. $\theta_{\text {ia }}$ (junction to ambient) is $175^{\circ} \mathrm{C} / \mathrm{W}$ for the LP339N and $120^{\circ} \mathrm{C} / \mathrm{W}$ for the LP339M when either device is soldered in a printed circuit board in a still air environment. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small ($\mathrm{P}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to $V+$ can cause excessive heating and eventual destruction. The maximum output current is approximately 50 mA .
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input clamp diodes. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltage of the comparators to go to the $V+$ voltage level (or to ground for a large input overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which is negative, again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$.
Note 4: These specifications apply for $V+=5 V_{D C}$ and $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$, unless otherwise stated. The temperature extremes are guaranteed but not 100% production tested. These parameters are not used to calculate outgoing AQL.
Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading change exists on the reference or the input lines as long as the common-mode range is not exceeded.
Note 6: The input common-mode voltage or either input voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}+-1.5 \mathrm{~V}\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$, but either or both inputs can go to $30 \mathrm{~V}_{\mathrm{DC}}$ without damage.
Note 7: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals $1.3 \mu \mathrm{~s}$ can be obtained. See Typical Performance Characteristics section.

Electrical Characteristics ($\mathrm{V}+=5 \mathrm{~V} \mathrm{VC}$, Note 4) (Continued)
Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than $-0.3 V_{D C}$ (or $0.3 V_{D C}$ below the magnitude of the negative power supply, if used) at $T_{A}=25^{\circ} \mathrm{C}$.
Note 9: At output switch point, $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}+$ from $5 \mathrm{~V}_{\mathrm{DC}}$; and over the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}+-1.5 \mathrm{~V}_{\mathrm{DC}}$).
Note 10: For input signals that exceed $V+$, only the overdriven comparator is affected. With a 5 V supply, V_{IN} should be limited to 25 V maximum, and a limiting resistor should be used on all inputs that might exceed the positive supply.
Note 11: The output sink current is a function of the output voltage. The LP339 has a bi-modal output section which allows it to sink large currents via a Darlington connection at output voltages greater than approximately $1.5 \mathrm{~V}_{\mathrm{DC}}$ and sink lower currents below this point. (See typical characteristics section and applications section).

Typical Performance Characteristics

Output Sink Current

Input Current

Response Times for
Various Input
Overdrives -
Negative Transition

Output Sink Current

Response Times for
Various Input
Overdrives -
Positive Transition

TL/H/5226-10

Application Hints

All pins of any unused comparators should be grounded.
The bias network of the LP339 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
It is usually unnecessary to use a bypass capacitor across the power supply line.
The differential input voltage may be larger than $V+$ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 V_{DC} (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the application section.
The output section of the LP339 has two distinct modes of operation-a Darlington mode and a grounded emitter mode. This unique drive circuit permits the LP339 to sink 30 mA at $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{DC}}$ (Darlington mode) and $700 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}_{\mathrm{DC}}$ (grounded emitter mode). Figure 1 is a simplified schematic diagram of the LP339 output section.

TL/H/5226-11
FIGURE 1

Notice that the output section is configured in a Darlington connection (ignoring Q3). Therefore, if the output voltage is held high enough ($\mathrm{V}_{\mathrm{O}} \geq 1 \mathrm{~V}_{\mathrm{DC}}$), Q1 is not saturated and the output current is limited only by the product of the betas of Q1, Q2 and I1 (and the 60 R RSAT of Q2). The LP339 is thus capable of driving LED's, relays, etc. in this mode while maintaining an ultra-low power supply current of typically $60 \mu \mathrm{~A}$.
If transistor Q3 were omitted, and the output voltage allowed to drop below about $0.8 \mathrm{~V}_{\mathrm{DC}}$, transistor Q1 would saturate and the output current would drop to zero. The circuit would, therefore, be unable to 'pull' low current loads down to ground (or the negative supply, if used). Transistor Q3 has been included to bypass transistor Q1 under these conditions and apply the current I1 directly to the base of Q2. The output sink current is now approximately 11 times the beta of Q2 $\left(700 \mu \mathrm{~A}\right.$ at $\left.\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}_{\mathrm{DC}}\right)$. The output of the LP339 exhibits a bi-modal characteristic with a smooth transition between modes. (See Output Sink Current graphs in Typical Performance Characteristics section.)
It is also important to note that in both cases the output is an uncommitted collector. Therefore, many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted power supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the $\mathrm{V}+$ terminal of the LP339 package.

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V} \mathrm{VC}\right)$

One-Shot Multivibrator

TL/H/5226-13

Time Delay Generator

ORing the Outputs

Typical Applications (Continued) $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)$
Pulse Generator
Squarewave Oscillator

TL/H/5226-18

Three Level Audio Peak Indicator

TL/H/5226-22

Bi-Stable Multivibrator

TL/H/5226-21

Typical Applications (Continued) (Single Supply)

TL/H/5226-24

Non-Inverting Comparator with Hysteresis

TL/H/5226-26

Inverting Comparator with Hysteresis

TL/H/5226-27
Output Strobing

TL/H/5226-30

Transducer Amplifier

TL/H/5226-31

Split-Supply Applications Zero Crossing Detector

Zero Crossing Detector (Single Power Supply)

TL/H/5226-32

Comparator With a Negative Reference

TL/H/5226-34

Section 6
Instrumentation Amplifiers

Section 6 Contents

Instrumentation Amplifiers Definition of Terms .
Instrumentation Amplifiers Selection Guide 6-4
LH0036/LH0036C Instrumentation Amplifier .
LH0038/LH0038C True Instrumentation Amplifier . 6-14
LH0084/LH0084C Digitally-Programmable-Gain Instrumentation Amplifier 6-25
LM221/LM321/LM321A Precision Preamplifiers . 6-37
LM363 Precision Instrumentation Amplifier . 6-46

Instrumentation Amplifiers Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.
Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.
Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. \% harmonic distortion $=$

$$
\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamental and V 2 , $\mathrm{V} 3, \mathrm{~V} 4, \ldots$ are the rms amplitudes of the individual harmonics.

Input Bias Current: The average of the two input currents. Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.
Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance $\left(R_{S}\right)$ and load resistance (R_{L}).
Output Resistance: The small signal resistance seen at the output with the output voltage near zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.
Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.
Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.
Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

Instrumentation Amplifiers Selection Guide

Part Number	Gain Error (Max)	Gain Linearity (Typ)	CMRR dB (Min)	$I_{B} \mathrm{nA}$ (Max)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
LH0036 μ Power	1\%	0.03\%	72	100
LH0038	0.3\%	0.0001\%	94	100
LH0084	0.1\%	0.002\%	76	0.500
LM363	2.5\%	0.01\%	90	10

Note 1: Datasheet should be referred to for test conditions and more detailed information.

7 National Semiconductor
 LH0036/LH0036C Instrumentation Amplifier

General Description

The LH0036/LH0036C is a true micro power instrumentation amplifier designed for precision differential signal processing. Extremely high accuracy can be obtained due to the $300 \mathrm{M} \Omega$ input impedance and excellent 100 dB common mode rejection ratio. It is packaged in a hermetic TO-8 package. Gain is programmable from 1 to 1000 with a single external resistor. Power supply operating range is between $\pm 1 \mathrm{~V}$ and $\pm 18 \mathrm{~V}$. Input bias current and output bandwidth are both externally adjustable or can be set by internally set values. The LH0036 is specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range and the LH0036C is specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- High input impedance $300 \mathrm{M} \Omega$
- High CMRR

100 dB

- Single resistor gain adjust 1 to 1000
- Low power
- Wide supply range
- Adjustable input bias current
- Adjustable output bandwidth
- Guard drive output

Equivalent Circuit and Connection Diagrams

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 5)
Supply Voltage $\pm 18 \mathrm{~V}$
Differential Input Voltage $\pm 30 \mathrm{~V}$
Input Voltage Range $\pm \mathrm{V}_{\mathrm{S}}$
Shield Drive Voltage $\pm \mathrm{V}_{\mathrm{S}}$
CMRR Preset Voltage $\pm \mathrm{V}_{\mathrm{S}}$

CMMR Trim Voltage
$\pm V_{S}$
Power Dissipation (Note 3)
Short Circuit Duration Continuous
Operating Temperature Range LH0036
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ LH0036C
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
ESD rating to be determined.

Electrical Characteristics (Notes 1 and 2)

Parameter	Conditions	Limits						Units
		LH00336			LH0036C			
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	1.0		1.0	2.0	mV
($\mathrm{V}_{10 \mathrm{~S}}$)	$\mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega$			2.0			3.0	mV
Output Offset Voltage	$\mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	5.0		5.0	10	mV
(Voos)	$\mathrm{R}_{\mathrm{S}}=1.0 \mathrm{k} \Omega$			6.0			12	mV
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 1.0 \mathrm{k} \Omega$		10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Tempco ($\Delta \mathrm{V}_{\mathrm{IOS}} / \Delta \mathrm{T}$)								
Output Offset Voltage			15			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Tempco ($\Delta \mathrm{V}_{\text {OOS }} / \Delta \mathrm{T}$)								
Overall Offset Referred	$A_{V}=1.0$		2.5			6.0		mV
to Input (VOS)	$\begin{aligned} & A_{V}=10 \\ & A_{V}=100 \\ & A_{V}=1000 \end{aligned}$		$\begin{gathered} 0.7 \\ 0.52 \\ 0.502 \end{gathered}$	\cdots		$\begin{gathered} \hline 1.5 \\ 1.05 \\ 1.005 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		40	100		50	125	nA
(l_{B})				150			200	nA
Input Offset Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10	40		20	50	nA
(los)				80			100	nA
Input Voltage Range	Differential Common Mode	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{array}{r} \pm 10 \\ \pm 10 \\ \hline \end{array}$	$\begin{aligned} & \pm 12 \\ & \pm 12 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Gain Nonlinearity			0.03			0.03		\%
Deviation From Gain Equation Formula	$A_{V}=1$ to 1000 (Note 4)		± 0.3	± 1.0		± 1.0	± 3.0	\%

Electrical Characteristics (Notes 1 and 2) (Continued)

Parameter	Conditions	Limits						Units
		LH00336			LH0036C			
		Min	Typ	Max	Min	Typ	Max	
PSRR	$\begin{aligned} & \pm 5.0 \mathrm{~V} \leq V_{S} \leq \pm 15 \mathrm{~V}, A_{V}=1.0 \\ & \pm 5.0 \mathrm{~V} \leq V_{S} \leq \pm 15 \mathrm{~V}, A_{V}=100 \end{aligned}$		$\begin{gathered} 1.0 \\ 0.05 \\ \hline \end{gathered}$	$\begin{gathered} 2.5 \\ 0.25 \\ \hline \end{gathered}$		$\begin{gathered} 1.0 \\ 0.10 \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ 0.50 \\ \hline \end{gathered}$	mV / V mV / V
CMRR	$\begin{array}{ll} A_{V}=1.0 & D C \text { to } \\ A_{V}=10 & 100 \mathrm{~Hz} \\ A_{V}=100 & \Delta R_{S}=1.0 \mathrm{k} \end{array}$		$\begin{aligned} & 1.0 \\ & 0.1 \\ & 50 \end{aligned}$	$\begin{gathered} 2.5 \\ 0.25 \\ 100 \end{gathered}$		$\begin{gathered} 2.5 \\ 0.25 \\ 50 \end{gathered}$	$\begin{gathered} 5.0 \\ 0.50 \\ 100 \end{gathered}$	mV / V mV / V $\mu \mathrm{V} / \mathrm{V}$
Output Voltage	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	$\begin{array}{r} \pm 10 \\ \pm 0.6 \\ \hline \end{array}$	$\begin{gathered} \pm 13.5 \\ \pm 0.8 \end{gathered}$		$\begin{aligned} & \pm 10 \\ & \pm 0.6 \\ & \hline \end{aligned}$	$\begin{gathered} \pm 13.5 \\ \pm 0.8 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Output Resistance			0.5			0.5		Ω
Supply Current			300	400		400	600	$\mu \mathrm{A}$
Small Signal Bandwidth	$\begin{aligned} & A_{V}=1.0, R_{L}=10 \mathrm{k} \Omega \\ & A_{V}=10, R_{L}=10 \mathrm{k} \Omega \\ & A_{V}=100, R_{L}=10 \mathrm{k} \Omega \\ & A_{V}=1000, R_{L}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 350 \\ 35 \\ 3.5 \\ 350 \\ \hline \end{gathered}$			$\begin{gathered} 350 \\ 35 \\ 3.5 \\ 350 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{kHz} \\ \mathrm{kHz} \\ \mathrm{kHz} \\ \mathrm{~Hz} \\ \hline \end{gathered}$
Full Power Bandwidth	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{A}_{\mathrm{V}}=1$		5.0			5.0		kHz
Equivalent Input Noise Voltage	$\begin{aligned} & 0.1 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{S}}<50 \Omega \\ & \hline \end{aligned}$		20			20		$\mu \mathrm{V} / \mathrm{p}-\mathrm{p}$
Slew Rate	$\begin{aligned} & \Delta V_{I N}= \pm 10 \mathrm{~V} \\ & R_{L}=10 \mathrm{k} \Omega, A_{V}=1.0 \end{aligned}$		0.3			0.3		$\mathrm{V} / \mu \mathrm{S}$
Settling Time	$\begin{aligned} & \text { To } \pm 10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \Delta V_{\text {OUT }}=1.0 \mathrm{~V} \\ & A_{V}=1.0 \\ & A_{V}=100 \end{aligned}$		$\begin{aligned} & 3.8 \\ & 180 \end{aligned}$			$\begin{aligned} & 3.8 \\ & 180 \end{aligned}$		$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \end{aligned}$

Note 1: Unless otherwise specified, all specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, Pins 1,3 , and 9 grounded, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LH0036C and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0036.
Note 2: All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: The maximum junction temperature is $150^{\circ} \mathrm{C}$. For operation at elevated temperature derate the G package on a thermal resistance of $90^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{above} 25^{\circ} \mathrm{C}$.
Note 4: $A_{V}=1000$ guaranteed by design and testing at $A_{V}=100$.
Note 5: Refer to RETS0036G for LH0036G military specifications.

Typical Performance Characteristics

Supply Current vs Supply Voltage

Output Voltage Swing vs Supply Voltage

Closed Loop Voltage Gain vs Frequency

*Noise voltage includes contribution from source resistance

Common Mode Voltage vs Supply Voltage

SUPPLY VOLTAGE $(\pm V)$

Typical Applications

Pre MUX Signal Conditioning

Isolation Amplifier for Medical Telemetry

Thermocouple Amplifier with Cold Junction Compensation
 CONTACT WILH AMBIENT
THERMOCOUPLE JUNCTIONS

Process Control Interface

High Pass Filter ${ }_{\text {Gain }}$

$$
F_{L}=\frac{1}{2 \pi R_{G} C_{G}}
$$

TL/H/5545-3
$\mathrm{F}_{\mathrm{H}}=$ A FUNCTION OF SELECTED Avcl, Rs AND Rsw

Applications Information

THEORY OF OPERATION

FIGURE 1. Simplified LH0036
The LH0036 is a 2 stage amplifier with a high input impedance gain stage comprised of A_{1} and A_{2} and a differential to single-ended unity gain stage, A_{3}. Operational amplifier, A_{1}, receives differential input signal, e_{1}, and amplifies it by a factor equal to $\left(\mathrm{R}_{1}+\mathrm{R}_{\mathrm{G}}\right) / \mathrm{R}_{\mathrm{G}}$.
A_{1} also receives input e_{2} via A_{2} and $R 2$. e_{2} is seen as an inverting signal with a gain of $\mathrm{R}_{1} / \mathrm{R}_{\mathrm{G}}$. A_{1} also receives the common mode signal е $_{C M}$ and processes it with a gain of +1 .
Hence:
$V_{1}=\frac{R 1+R_{G}}{R_{G}} e_{1}-\frac{R 1}{R_{G}} e_{2}+e_{C M}$
By similar analysis V_{2} is seen to be:
$\mathrm{V}_{2}=\frac{\mathrm{R} 2+\mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{\mathrm{G}}} e_{2}-\frac{\mathrm{R} 2}{\mathrm{R}_{\mathrm{G}}} e_{1}+\mathrm{e}_{\mathrm{CM}}$
For $\mathrm{R} 1=\mathrm{R} 2$:
$V_{2}-V_{1}=\left[\left(\frac{2 R 1}{R_{G}}\right)+1\right]\left(e_{2}-e_{1}\right)$
Also, for R3 $=R 5=R 4=R 6$, the gain of $A_{3}=1$, and:
$e_{0}=(1)\left(V_{2}-V_{1}\right)=\left(e_{2}-e_{1}\right)\left[1+\left(\frac{2 R 1}{R_{G}}\right)\right]$
As can be seen for identically matched resistors, $e_{C M}$ is cancelled out, and the differential gain is dictated by equation (4).
For the LH0036, equation (4) reduces to:
$A_{V C L}=\frac{e_{0}}{e_{2}-e_{1}}=1+\frac{50 k}{R_{G}}$
The closed loop gain may be set to any value from 1 $\left(R_{G}=\infty\right)$) $1000\left(R_{G} \cong 50 \Omega\right)$. Equation (5a) re-arranged in more convenient form may be used to select R_{G} for a desired gain:
$\mathrm{R}_{\mathrm{G}}=\frac{50 \mathrm{k}}{\mathrm{A}_{\mathrm{VCL}}-1}$

USE OF BANDWIDTH CONTROL (pin 1)

In the standard configuration, pin 1 of the LH0036 is simply grounded. The amplifier's slew rate in this configuration is
typically $0.3 \mathrm{~V} / \mu \mathrm{S}$ and small signal bandwidth 350 kHz for $A_{\mathrm{VCL}}=1$. In some applications, particularly at low frequency, it may be desirable to limit bandwidth in order to minimize the overall noise bandwidth of the device. A resistor $R_{B W}$ may be placed between pin 1 and ground to accomplish this purpose. Figure 2 shows typical small signal bandwidth versus R_{BW}.

TL/H/5545-5
FIGURE 2. Bandwidth vs RBw
It also should be noted that large signal bandwidth and slew rate may be adjusted down by use of R_{BW}. Figure 3 is plot of slew rate versus R_{BW}.

TL/H/5545-6
FIGURE 3. Output Slew Rate vs RBW

CMRR CONSIDERATIONS

Use of Pin 9, CMRR Preset

Pin 9 should be grounded for nominal operation. An internal factory trimmed resistor, R6, will yield a CMRR in excess of 80 dB (for $\mathrm{A}_{\mathrm{VCL}}=100$). Should a higher CMRR be desired, pin 9 should be left open and the procedure, in this section followed.

DC Off-set Voltage and Common Mode Rejection Adjustments

Off-set may be nulled using the circuit shown in Figure 4.

TL/H/5545-7
FIGURE 4. Vos Adjustment Circuit

Applications Information (Continued)

Pin 8 is also used to improve the common mode rejection ratio as shown in Figure 5. Null is achieved by alternately applying $\pm 10 \mathrm{~V}$ (for $V^{+} \& V^{-}=15 \mathrm{~V}$) to the inputs and adjusting R1 for minimum change at the output.

TL/H/5545-8
FIGURE 5. CMRR Adjustment Circuit
The circuits of Figure 4 and 5 may be combined as shown in Figure 6 to accomplish both VOS and CMRR null. However, the V_{OS} and CMRR adjustment are interactive and several iterations are required. The procedure for null should start with the inputs grounded.

TL/H/5545-10
FIGURE 6. Combined CMRR, Vos Adjustment Circuit
R2 is adjusted for $V_{O S}$ null. An input of +10 V is then applied and R1 is adjusted for CMRR null. The procedure is then repeated until the optimum is achieved.
A circuit which overcomes adjustment interaction is shown in Figure 7. In this case, R2 is adjusted first for output null of the LH0036. R1 is then adjusted for output null with +10 V input. It is always a good idea to check CMRR null with a -10 V input. The optimum null achievable will yield the highest CMRR over the amplifiers common mode range.

*Note: Nominal value R1 to Achieve Optimum CMRR is $3.0 \mathrm{k} \Omega$
FIGURE 7. Improved VOS, CMRR Nulling Circuit

AC CMRR Considerations

The ac CMRR may be improved using the circuit of Figure 8.

TL/H/5545-9
FIGURE 8. Improved AC CMRR Circuit
After adjusting R1 for best dc CMRR as before, R2 should be adjusted for minimum peak-to-peak voltage at the output while applying an ac common mode signal of the maximum amplitude and frequency of interest.

INPUT BIAS CURRENT CONTROL

Under nominal operating conditions (pin 3 grounded), the LH0036 requires input currents of 40 nA . The input current may be reduced by inserting a resistor $\left(R_{B}\right)$ between 3 and ground or, alternatively, between 3 and V^{-}. For R_{B} returned to ground, the input bias current may be predicted by:
$\mathrm{I}_{\mathrm{BIAS}} \cong \frac{\mathrm{V}^{+}-0.5}{4 \times 10^{8}+800 R_{B}}$
or
$R_{B}=\frac{V^{+}-0.5-\left(4 \times 10^{8}\right)\left(I_{\mathrm{BIAS}}\right)}{800 \mathrm{I}_{\mathrm{BIAS}}}$
Where:

$$
\begin{aligned}
I_{\mathrm{BIAS}}= & \text { Input Bias Current }(\mathrm{nA}) \\
\mathrm{R}_{\mathrm{B}}= & \text { External Resistor connected between } \\
& \text { pin } 3 \text { and ground (Ohms) } \\
\mathrm{V}^{+}= & \text {Positive Supply Voltage (Volts) }
\end{aligned}
$$

Figure 9 is a plot of input bias current versus R_{B}.

TL/H/5545-12
FIGURE 9. Input Bias Current as a Function of $\mathbf{R}_{\mathbf{B}}$
As indicated above, R_{B} may be returned to the negative supply voltage. Input bias current may then be predicted by:
$\mathrm{I}_{\mathrm{BIAS}} \cong \frac{\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)-0.5}{4 \times 10^{8}+800 \mathrm{R}_{\mathrm{B}}}$

Applications Information (Continued)

or
$R_{B} \cong \frac{\left(V^{+}-V^{-}\right)-0.5-\left(4 \times 10^{8}\right)\left(I_{B I A S}\right)}{800 I_{B I A S}}$
Where:
$\mathrm{I}_{\mathrm{BIAS}}=$ Input Bias Current (nA)
$R_{B}=$ External resistor connected between pin 3 and V^{-}(Ohms)
$\mathrm{V}^{+}=$Positive Supply Voltage (Volts)
$\mathrm{V}^{-}=$Negative Supply Voltage (Volts)

TL/H/5545-13
FIGURE 10. Input Bias Current as a Function of $\mathbf{R}_{\mathbf{B}}$
Figure 10 is a plot of input bias current versus R_{B} returned to V^{-}it should be noted that bandwidth is affected by changes in R_{B}. Figure 11 is a plot of bandwidth versus R_{B}.

TL/H/5545-14
FIGURE 11. Unity Gain Bandwidth as a Function of R $_{B}$

BIAS CURRENT RETURN
 PATH CONSIDERATIONS

The LH0036 exhibits input bias currents typically in the 40 nA region in each input. This current must flow through $\mathrm{R}_{\text {ISO }}$ as shown in Figure 12.

TL/H/5545-16
FIGURE 12. Bias Current Return Path

In a typical application, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{B} 1} \cong \mathrm{I}_{\mathrm{B} 2} \cong 40 \mathrm{nA}$, the total current, I_{T}, would flow through RISO $_{\text {ISO }}$ causing a voltage rise at point A. For values of $R_{I S O} \geq 150 \mathrm{M} \Omega$, the voltage at point A exceeds the +12 V common range of the device. Clearly, for $\mathrm{R}_{\text {ISO }}=\infty$, the LH0036 would be driven to positive saturation.

The implication is that a finite impedance must be supplied between the input and power supply ground. The value of the resistor is dictated by the maximum input bias current, and the common mode voltage. Under worst case conditions:
$R_{I S O} \leq \frac{V_{C M R}-V_{C M}}{I_{T}}$
Where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CMR}}= \text { Common Mode Range }(10 \mathrm{~V} \text { for } \\
& \text { the LH0036) } \\
& \mathrm{V}_{\mathrm{CM}}= \text { Common Mode Voltage } \\
& \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{B} 1}+\mathrm{I}_{\mathrm{B} 2}
\end{aligned}
$$

In applications in which the signal source is floating, such as a thermocouple, one end of the source may be grounded directly or through a resistor.

GUARD OUTPUT

Pin 2 of the LH0036 is provided as a guard drive pin in those stringent applications which require very low leakage and minimum input capacitance. Pin 2 will always be biased at the input common mode voltage. The source impedance looking into pin 2 is approximately $15 \mathrm{k} \Omega$. Proper use of the guard/shield pin is shown in Figure 13.

FIGURE 13. Use of Guard
For applications requiring a lower source impedance than $15 \mathrm{k} \Omega$, a unity gain buffer, such as the LH0002 may be inserted between pin 2 and the input shields as shown in Figure 14.

TL/H/5545-17
FIGURE 14. Guard Pin With Buffer

Definition of Terms

Bandwidth: The frequency at which the voltage gain is reduced to 0.707 of the low frequency (dc) value.

Closed Loop Gain, AVCL: The ratio of the output voltage swing to the input voltage swing determined by $\mathrm{A}_{\mathrm{VCL}}=1+$ ($50 \mathrm{k} / \mathrm{R}_{\mathrm{G}}$). Where: $\mathrm{R}_{\mathrm{G}}=$ Gain Set Resistor.

Common Mode Rejection Ratio: The ratio of input voltage range to the peak-to-peak change in offset voltage over this range.

Gain Equation Accuracy: The deviation of the actual closed loop gain from the predicted closed loop gain, AVCL $=1+\left(50 \mathrm{k} / \mathrm{R}_{\mathrm{G}}\right)$ for the specified closed loop gain.

Input Bias Current: The current flowing at pin 5 and 6 under the specified operating conditions.

Input Offset Current: The difference between the input bias current at pins 5 and 6 ; i.e. $I_{O S}=\left|I_{5}-I_{6}\right|$.

Input Stage Offset Voltage, $\mathbf{V}_{\text {IOS }}$: The voltage which must be applied to the input pins to force the output to zero volts for $\mathrm{A}_{\mathrm{VCL}}=100$.

Output Stage Offset Voltage, $\mathbf{V}_{\mathbf{O O S}}$: The voltage which must be applied to the input of the output stage to produce zero output voltage. It can be measured by measuring the overall offset at unity gain and subtracting $\mathrm{V}_{\mathrm{IOS}}$.
$V_{O O S}=\left[\begin{array}{l|l}V_{O S} & A_{V C L}=1\end{array}\right]-\left[\begin{array}{l|l} & V_{O S} \\ & A_{V C L}=1000\end{array}\right]$
Overall Offset Voltage:
$V_{\mathrm{OS}}=\mathrm{V}_{\mathrm{IOS}}+\frac{\mathrm{V}_{\mathrm{OOS}}}{A_{\mathrm{VCL}}}$
Power Supply Rejection Ratio: The ratio of the change in offset voltage, V_{OS}, to the change in supply voltage producing it.

Resistor, $\mathbf{R}_{\mathbf{B}}$: An optional resistor placed between pin 3 of the LH0036 and ground (or V^{-}) to reduce the input bias current.

Resistor, \mathbf{R}_{BW} : An optional resistor placed between pin 1 of the LH0036 and ground (or V^{-}) to reduce the bandwidth of the output stage.

Resistor, $\mathbf{R}_{\mathbf{G}}$: A gain setting resistor connected between pins 4 and 7 of the LH0036 in order to program the gain from 1 to 1000.

Settling Time: The time between the initiation of an input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.

LH0038/LH0038C True Instrumentation Amplifier

General Description

The LH0038/LH0038C is a precision true instrumentation amplifier (TIA) capable of amplifying very low level signals, such as thermocouple and low impedance strain gauge outputs. Precision thin film gain setting resistors are included in the package to allow the user to set the closed-loop gain from 100 to 2000 . Since the resistors are of a homogeneous single chip construction, they track almost perfectly so that temperature variations of closed loop gain are virtually eliminated.
LH0038 exhibits excellent CMRR, PSRR, gain linearity, as well as extremely low input offset voltage, offset voltage drift and input noise voltage.

The devices are provided in a hermetically sealed 16-lead DIP. The LHOO38 is guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; whereas the LH0038C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Features

■ Ultra-low input offset voltage $25 \mu \mathrm{~V}$ typ., $100 \mu \mathrm{~V}$ max

- Ultra-low input offset drift
- Ultra-low input noise $0.25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- Pin strap gain options $100,200,400,500,1 \mathrm{k}, 2 \mathrm{k}$
- Excellent PSRR and CMRR

120 dB

Simplified Schematic Diagram

TL/H/5543-1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

(Note 4)

Supply Voltage
Differential Input Voltage (Note 1)
Input Voltage
Power Dissipation (Note 3)
$\pm 18 \mathrm{~V}$
$\pm 1 \mathrm{~V}$
$\pm V_{S}$
500 mW

Short Circuit Duration
Continuous
Operating Temperature Range
LH0038
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0038C
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
ESD rating to be determined.

DC Electrical Characteristics (Note 2)

DC Electrical Characteristics (Note 2) (Continued)

Symbol	Parameter	Conditions	LH0038			LH0038C			Units
			Min	Typ	Max	Min	Typ	Max	
losc	Output Short Circuit Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 2	± 5	± 10	± 2	± 5	± 10	mA
Is	Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.6	2.0		1.6	3.0	
$\mathrm{R}_{\text {IN }}$ DIFF	Input Resistance	$A_{V C L}=1000, T_{A}=25^{\circ} \mathrm{C}$		5			5		$\mathrm{M} \Omega$
$\mathrm{R}_{\text {IN }}{ }^{\text {CM }}$	Common-Mode Input Resistance			1			1		G Ω
ROUT	Output Resistance			1			1		$\mathrm{m} \Omega$

AC Electrical Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Comment	Conditions		Typ	Units
e_{n}	Equivalent Input Noise Voltage	Figure 1	$\mathrm{R}_{\mathrm{S}}=0, \mathrm{f}=0.1$ to 10 Hz		0.2	$\mu \mathrm{Vp}$-p
$\overline{e_{n}}$	Equivalent Input Spot Noise Voltage	Figure 1	$R_{S}=100 \Omega$	$\mathrm{f}=10 \mathrm{~Hz}$	6.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
				$\mathrm{f}=100 \mathrm{~Hz}$	6.0	
				$\mathrm{f}=1 \mathrm{kHz}$	6.0	
				$\mathrm{f}=10 \mathrm{kHz}$	6.0	
BW	Large Signal Bandwidth		$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$		1.6	kHz
S_{r}	Slew Rate		$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$		0.3	$\mathrm{V} / \mu \mathrm{s}$
t_{s}	Settling Time to 0.01\%	Figure 13		20V Step	120	$\mu \mathrm{S}$
				-10V Step	80	
				+10 V Step	60	
t_{r}	Rise Time		$\Delta \mathrm{V}_{\text {OUT }}$	$\mathrm{A}_{\mathrm{VCL}}=100$	6	$\mu \mathrm{S}$
				$\mathrm{A}_{\mathrm{VCL}}=1000$	13	
$\overline{i_{n}}$	Equivalent Input Spot Noise Current		$\mathrm{R}_{\mathrm{S}}=100 \mathrm{M} \Omega$	$\mathrm{f}=10 \mathrm{~Hz}$	0.1	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Note 1: The inputs are protected by diodes for overvoltage protection. Excessive currents will flow for differential voltages in excess of $\pm 1 \mathrm{~V}$. Input current should be limited to less than 10 mA .
Note 2: Unless otherwise noted these specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15.0 \mathrm{~V}$, pin 15 connected to pin 1 , pin 16 connected to ground, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the LH0038 and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for LH0038C. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}$ unless otherwise specified.
Note 3: See Typical Performance Characteristics for Thermal Resistance Information.
Note 4: Refer to RETS0038D for LH0038D military specifications.
Connection Diagram

Typical Performance Characteristics

Closed Loop Frequency
Response

Input Noise Voltage
(Includes Source Impedance)

Wide Band Noise

TL/H/5543-4
$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega, A_{V}=10 \mathrm{k}, \mathrm{DUT}=1 \mathrm{k}$
Vertical sensitivity: $0.1 \mu \mathrm{~V} / \mathrm{CM}$
Horizontal sensitivity: $5 \mathrm{~s} / \mathrm{CM}$
Bandwidth: 0.1 Hz to 10 Hz

Pulse Response

TL/H/5543-5
$V_{S}= \pm 15 \mathrm{~V}$
$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$
$A_{V C L}=1 \mathrm{k}$

TL/H/5543-3
Rise Time

$V_{S}= \pm 15 \mathrm{~V}$
$R_{L} \geq 10 \mathrm{k} \Omega$
$A_{\mathrm{VCL}}=1 \mathrm{k}$

Noise Test Circuit

TL/H/5543-7
FIGURE 1

Typical Application

TL/H/5543-8
FIGURE 2. X1000 Bridge Amplifier

Applications Information

THEORY OF OPERATION

The LH0038 is a 3 -stage, true instrumentation amplifier composed of a well matched transistor differential pair, Q1 and Q2, a common-mode loop amplifier, A2 and A3, and a differential to single ended amplifier, A4. A simplified schematic is shown in Figure 3.
Current source, I_{A}, establishes a voltage across R14 of approximately 2 V , which results in a 2 V drop across R8 and R12. This constant voltage forces the first stage current to
be $20 \mu \mathrm{~A}$ per side. The action of A2 and A3 is such that $20 \mu \mathrm{~A}$ is maintained constant despite the presence of com-mon-mode signals. The differential outputs of A2 and A3 are applied to differential amplifier, A4, which converts the signal to a single-ended output and provides gain of 5 . The total gain of the amplifier is, therefore, the fixed gain of 5 multiplied by the gain of the composite input stage.

TL/H/5543-9
FIGURE 3. LH0038 Simplified Schematic

The closed loop gain of the composite amplifier may be better understood by referring to Figure 3. The Q1-A2 loop may be viewed as differential amplifier with the inverting input at the base and non-inverting input at the emitter. Combining small signal $A C$ and large signal DC analysis $=$

$$
\begin{align*}
v 1= & e 1\left(\frac{R 17+R_{E}}{R_{E}}\right)-e 2\left(\frac{R 17}{R_{E}}\right) \tag{1}\\
& +E_{C M}-v_{B E 1}-l_{1} R 17 \tag{7}
\end{align*}
$$

By similar analysis:

$$
\begin{align*}
\mathrm{v} 2= & \mathrm{e} 2\left(\frac{R 16+R_{E}}{R_{E}}\right)-\mathrm{e} 1\left(\frac{R 16}{R_{E}}\right) \tag{2}\\
& +E_{C M}-V_{B E 2}-l_{2} R 16
\end{align*}
$$

For $\mathrm{I}_{1} \equiv \mathrm{I}_{2}, \mathrm{R} 17 \equiv \mathrm{R} 16, \mathrm{~V}_{\mathrm{BE} 1} \equiv \mathrm{~V}_{\mathrm{BE} 2}$, subtracting equation (1) from (2) results in:

$$
\begin{align*}
& v 2-v 1=(e 2-e 1)\left(\frac{R 16+R_{E}}{R_{E}}\right) \\
&+(e 2-e 1)\left(\frac{R 16}{R_{E}}\right) \tag{3}\\
& \frac{v 2-v 1}{e 2-e 1}=\frac{2 R 16}{R_{E}}+1 \tag{4}
\end{align*}
$$

The differential input voltage ($\mathrm{v} 2-\mathrm{v} 1$) is amplified by the closed loop gain of A4:

$$
\begin{equation*}
e_{\text {OUT }}=\left(A_{\text {VCL4 }}\right)(\mathrm{e} 2-\mathrm{e} 1) \tag{5}
\end{equation*}
$$

where:

$$
A_{V C L 4}=\frac{R 20}{R 8}=5.00
$$

$$
\begin{equation*}
\mathrm{A}_{\mathrm{VCL}}=5\left(\frac{2 \mathrm{R} 16}{\mathrm{R}_{\mathrm{E}}}+1\right) \tag{6}
\end{equation*}
$$

As an example, with all gain pins open, $R_{E}=10.525 \mathrm{k} \Omega$, and;

$$
A_{\mathrm{VCL}}=5\left(\frac{(2)(100 \mathrm{k})}{\mathrm{R}_{\mathrm{E}}}+1\right)=100.0
$$

All other closed loop gain configurations place a precision resistor in parallel with $\mathrm{R}_{\mathrm{E}}(\mathrm{R9}+\mathrm{R} 10)$. For example, for a gain of 200 , pin 6 is connected to pin 10 and the gain is predicted by:

$$
\begin{align*}
A_{\text {VCL }} & =5.00\left[\frac{(2)(100 \mathrm{k})}{(10.526) \|(10.000 \mathrm{k})}+1\right] \tag{8}\\
& =(5.00)(40)=200
\end{align*}
$$

CLOSED LOOP GAIN CONSIDERATIONS USING INTERNAL RESISTORS

Table 1 summarizes the primary gain configurations available with the LH0038. Obviously, other gains are possible. Using the internally supplied resistors has the advantage that R16, R17, and R_{E} all track thermally, minimizing the device's gain error as a function of temperature.
Gain adjustment by paralleling or series padding internally supplied resistors is generally discouraged since external resistors will generally not thermally track. It is recommended that the gain adjustment be done in a subsequent stage as shown in Figure 4.

Applications Information (Continued)

TL/H/5543-10
FIGURE 4. Recommended Gain Adjust Circuit

TABLE I. LH0038 Internal Gain Configurations

Overall Gain	First Stage Gain	Pin Configuration	Effective $\mathbf{R}_{\mathbf{E}}$
100	20	All Gain Pins Open	$10.5260 \mathrm{k} \Omega$
200	40	$\operatorname{Pin} 6$ to $\operatorname{Pin} 10$	$5.1281 \mathrm{k} \Omega$
400	80	$\operatorname{Pin} 6$ to $\operatorname{Pin} 9, \operatorname{Pin} 10$ to $\operatorname{Pin} 5$	$2.5316 \mathrm{k} \Omega$
500	100	$\operatorname{Pin} 6$ to $\operatorname{Pin} 10, \operatorname{Pin} 9$ to $\operatorname{Pin} 5$	$2.0202 \mathrm{k} \Omega$
1000	200	$\operatorname{Pin} 7$ to $\operatorname{Pin} 10$	$1.0050 \mathrm{k} \Omega$
2000	400	$\operatorname{Pin} 8$ to $\operatorname{Pin} 10$	$0.5013 \mathrm{k} \Omega$

GUARD DRIVE

The LH0038 is provided with a guard drive output, which will always be at the input common-mode voltage. The guard
drive amplifier is short-circuit proof and is capable of driving several thousand pF without danger of latch-up or oscillation.
The guard drive tied to a shielded input cable will greatly reduce noise pick-up, and also improve AC CMRR by maintaining the shield at the common-mode voltage. Figure 5 illustrates the proper use of the guard drive. The guard drive output is also connected to the case to provide electrostatic shielding to the system.

REMOTE OUTPUT SENSE

The feedback network of the LH0038 may be closed directly at the load in order to eliminate errors due to lead resistance. Also, a unity gain buffer; e.g. LH0002, may be included within the feedback loop to increase output current capability as shown in Figure 7.

FIGURE 5. Guard Drive Application

Applications Information (Continued)

TL/H/5543-12
FIGURE 6. Remote Sense Connection

TL/H/5543-13
FIGURE 7. Output Buffer Connection

OFFSET NULL

Offset of the LH0038 is trimmed by the factory to a very low value. The offset may be further trimmed using a $10 \mathrm{k} \Omega, 10$ turn, $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ potentiometer as shown in Figure 8. However, a drift increase of $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ will be caused for each $100 \mu \mathrm{~V}$ of offset adjusteci. The recommended offset null is shown in Figure 4 and is accomplished in the following stage.

BIAS CURRENT CONSIDERATIONS

The LH0038 exhibits bias current of approximately 50 nA per side, and requires a path to ground or supply. The practical limitation to the maximum resistance between the inputs and ground is dictated by negative common-mode range as shown in Figure 9. For example, for $\mathrm{V}_{\mathrm{CM}}=-10 \mathrm{~V}$, $\mathrm{R}_{\mathrm{CM}} \leq 20 \mathrm{M} \Omega$.
The LH0038 input stage bias was optimized for minimum voltage noise so the input bias currents are higher than might otherwise be expected. Note, however, that the input currents are very well matched, resulting in an offset current value much lower than one might infer from the bias current. In order to take advantage of this low offset current, the source impedances at both inputs should be matched to minimize DC drift. Further, bias current is relatively constant with temperature (as opposed to an FET stage), so one can consider bias current compensation schemes such as shown in Figure 10. The danger with such techniques is that the offset current and noise contributed by the bias current compensator will dominate the system noise.

TL/H/5543-14
FIGURE 8. Offset Adjust Circuit (See also Figure 4)

FIGURE 9. Bias Current Return

Applications Information (Continued)

TL/H/5543-16
FIGURE 10. Bias Current Compensation

SETTLING TIME

The LH0038 has been purposely over-compensated, and is therefore remarkably free from any undesirable transient response. Small signal settling time is governed by gain-bandwidth product; large signal settling time is dominated by slew rate.

Figure 11 shows an input voltage step of +10 V to -10 V applied, through a 1000 to 1 voltage divider, to the device configured for an inverting gain of 1000. The output of the device will therefore be equal to the negative of the input after the device is completely settled. By resistively subtracting the input before the divider from the device output, a pseudo summing node is generated. The voltage at this pseudo summing junction goes "off screen" on the photos, since in the first small time increment the input goes instantaneously to -10 mV and the output is still at +10 V . About $130 \mu \mathrm{~s}$ after the input has gone negative, the output slews back in range and begins an exponential approach to the final value. Figure 12 is the same set-up for a -10 V to +10 V input pulse. Note that there is no overshoot in either case. The test circuit is shown in Figure 13.

HIGH FREQUENCY CMRR

The LH0038 resistor ratios are carefully trimmed for optimum CMRR at DC through 60 Hz . Inevitably, this rejection will degrade at higher frequencies due to 2 separate effects: stray capacitance mismatch and slew rate limiting in the in-
put stage. In most discrete instrumentation amplifier realizations, the stray capacitance mismatch dominates simply because the stray capacitances are relatively large (this can be trimmed out in a discrete amplifier). In a hybrid circuit such as the LH0038, stray capacitance is minimized, so the effects of mismatch are also minimized.
The response to a pulse or noise spike applied as a com-mon-mode signal may be dominated by the slew characteristics of the input stage. Whenever the common-mode input slew rate exceeds $0.2 \mathrm{~V} / \mu \mathrm{s}$, the 2 input amplifiers will apply identical ramp signals to the final stage and cause its output to go to near OV. Note that the amplifier is not really active under these conditions as normal mode signal variations will not be coupled to the output. Some time may be required for the amplifier to settle after a transient of this kind before the output can be considered representative of the input. Slew rate limiting will not normally be the limiting factor for sine wave common-mode signals as $0.2 \mathrm{~V} / \mu \mathrm{s}$ corresponds to about $2 \mathrm{kHz}(20 \mathrm{Vp}-\mathrm{p})$.

POWER SUPPLY DECOUPLING

Although the LH0038 exhibits in excess of 120 dB PSRR at $D C$, the figure degrades to 100 dB at 120 Hz . It is recommended that both V^{+}and V - leads be by-passed with $1 \mu \mathrm{~F}$ electrolytic in shunt with $0.01 \mu \mathrm{~F}$ ceramic disc no further than 1 inch from the device.

Applications Information (Continued)

TL/H/5543-17

TL/H/5543-18
$t_{S}, A_{V}=100, V_{I N}=-20 \mathrm{~V}$
FIGURE 12. Settling Time

TL/H/5543-19
FIGURE 13. Settling Time Test Circuit

FIGURE 14. Settling Time

Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to 3 dB below the low frequency.
Common-Mode Rejection Ratio, CMRR: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.
Input Offset Voltage, $V_{\text {IOS: }}$ The voltage which must be applied to the inputs to force the outputs of the input stage to OV . $\mathrm{V}_{\mathrm{IOS}}$ can be calculated by measuring V_{OS} at closed loop gains of 100 and 2000 and using the following equation:

$$
V_{\mathrm{IOS}}=\frac{\left(\mathrm{V}_{\mathrm{OS}}\right) 2 k-\left(\mathrm{V}_{\mathrm{OS}}\right) 100}{1900}
$$

Where:
$\left(\mathrm{V}_{\mathrm{OS}}\right) 2 \mathrm{k}=$ overall offset voltage for $\mathrm{A}_{\mathrm{VCL}}=2 \mathrm{k}$.
$\left(\mathrm{V}_{\mathrm{OS}}\right) 100=$ overall offset voltage for $\mathrm{A}_{\mathrm{VCL}}=100$.
Gain Non-Linearity: The deviation of the gain from a straight line drawn through the end points expressed as a percent of full-scale (10 V for operations on $\pm 15 \mathrm{~V}$ supply). Note that this is a more stringent specification than deviation from the best straight line and is double the number that would be specified if the percentage were based on a 20 V ($\pm 10 \mathrm{~V}$) range.
Guard Voltage Error: The voltage difference between the guard drive output and the average of the 2 input voltages. Input Bias Current, $\mathrm{I}_{\mathbf{B}}$: The average of the 2 input currents. Input Common-Mode Voltage Range, $\mathbf{V}_{\text {INCM }}$: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Input Offset Current, Ios: The difference in the currents into the 2 input terminals when the output is at zero.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Overall Offset Voltage, $V_{\text {OS: }}$ The output voltage when both inputs are connected to $0 \mathrm{~V} . \mathrm{V}_{\mathrm{OS}}$ is composed of input amplifier offset voltage effects, $\mathrm{V}_{\text {IOS }}$, and output amplifier effects, $V_{\text {OOS }}$. It is given by:

$$
\mathrm{V}_{\mathrm{OS}}=\left(\mathrm{A}_{\mathrm{VCL}}\right)\left(\mathrm{V}_{\mathrm{IOS}}\right)-\mathrm{V}_{\mathrm{OOS}}
$$

Where:
$\mathrm{A}_{\mathrm{VCL}}=$ closed loop gain $=100$ to 2 k
$\mathrm{V}_{\text {IOS }}=$ input stage offset voltage
$V_{\text {OOS }}=$ output stage offset voltage

Output Offset Voltage, Voos: The output voltage when theoutputs of the input stage are forced to 0 V . $\mathrm{V}_{\text {OOS }}$ may be calculated by measuring V_{OS} at closed loop gains of 100 and 2000 and using the following equation:

$$
\frac{\mathrm{V}_{\mathrm{OOS}}=(20)\left(\mathrm{V}_{\mathrm{OS}}\right) 100-\left(\mathrm{V}_{\mathrm{OS}}\right) 2 \mathrm{k}}{19}
$$

Where:
$\left(\mathrm{V}_{\text {OS }}\right) 100=$ overall offset voltage for $\mathrm{A}_{\mathrm{VCL}}=100$
(V_{OS}) $2 \mathrm{k}=$ overall offset voltage for AVCL^{2}
Output Voltage, $\mathrm{V}_{\mathbf{O}}$: The peak output voltage swing, referred to zero.
Offset Voltage Temperature Drift, $\Delta \mathbf{V}_{105} / \Delta \mathrm{T}$: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection Ratio, PSRR: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Settling times, $\mathbf{t}_{\mathbf{s}}$: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate, $\mathbf{S}_{\mathbf{r}}$: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.
Supply Current, $\pm \mathbf{I}_{\mathbf{s}}$: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Supply Voltage Range: The range of voltages on the supply terminals for which the device is operational. Note that the specifications are not guaranteed over the full supply voltage range unless specifically stated.
Transient Response, t_{r} : The closed-loop step-function response of the amplifier under small-signal conditions.
Unity Gain Bandwidth: The frequency range from DC to the frequency where the amplifier open loop gain rolls off to 1 .
Closed Loop Gain, AvcL: The ratio of output voltage to input voltage under the stated conditions of source resistance $\left(R_{S}\right)$ and load resistance (R_{L}).
Voltage Gain Error: The deviation in percent between the ideal voltage gain and the value obtained when the device is configured for that gain.

National Semiconductor

LH0084/LH0084C Digitally-Programmable-Gain Instrumentation Amplifier

General Description

The LH0084/LH0084C is a self-contained, high speed, high accuracy, digitally-programmable-gain instrumentation amplifier. It consists of paired FET-input variable-gain voltagefollower input stages followed by a differential-to-singleended output stage. The input stage is programmable in accurate gain steps of $1,2,5$, or 10 controlled by the logic levels of a 2-bit TTL-compatible digital input word. For additional flexibility, the output stage is pin-strappable to fixed gains of 1,4 , or 10 for an overall gain range of 1 to 100.
Applications include increased dynamic range A-to-D converters, test systems, and post multiplexer amplifier for data acquisition systems.
The device exhibits high input impedance, low offset voltage, high PSRR, high speed, and excellent gain accuracy and gain non-linearity.

The LH0084 is guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The LH0084C is guaranteed from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Both devices are provided in a hermetically sealed 16 -lead dual-in-line metal package.

Features

© Excellent gain accuracy
0.075\% max and low gain non-linearity 0.01\% typ

- Extremely low gain drift
$1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max
- High input impedance $10^{11} \Omega$ typ
 70 dB min
- TTL compatible digital inputs

■ High speed, settling to 0.1%
$4 \mu \mathrm{~s}$ max

Simplified Schematic and Connection Diagrams

Case is electrically isolated

Order Number LH0084D or LH0084CD See NS Package D16D

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 6)

Supply Voltage (Note 1)	$\pm 18 \mathrm{~V}$
Analog Input Voltage (Note 2)	$\pm 15 \mathrm{~V}$
Differential Input Voltage (Note 2)	$\pm 30 \mathrm{~V}$
Digital Input Voltage	$-4 \mathrm{~V},+18 \mathrm{~V}$

Power Dissipation (Note 5)
2.5W

Continuous
Operating Temperature Range

LH0084	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0084C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)	$+260^{\circ} \mathrm{C}$
ESD rating to be determined.	

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$+260^{\circ} \mathrm{C}$

DC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{MiN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$ unless noted

Symbol	Parameter	Conditions		LH0084			LH0084C			Units
				Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{10 \mathrm{~S}}$	Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}}=100 \Omega \\ & \mathrm{~V}_{\mathrm{CM}}=0 \\ & (\text { Note 3) } \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		0.3	5		0.3	10	mV
						7			13	
$\Delta \mathrm{V}_{\text {IOS }} / \Delta \mathrm{T}$	Input Offset Voltage Change with Temperature				10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {Oos }}$	Output Offset Voltage		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		0.6	5		0.6	10	mV
						7			13	
$\Delta \mathrm{V}_{\text {OOS }} / \Delta \mathrm{T}$	Output Offset Voltage Change with Temperature				20			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current (Note 4)		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		150	500		150	500	pA
						500			100	nA
los	Input Offset Current		$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		50	200		50	200	pA
						200			50	nA
R_{IN}	Input Resistance	Differential			1011			1011		Ω
		Common-Mode			1011			1011		
V_{IN}	Input Voltage Range			± 10			± 10			V
A_{V}	Voltage Gain	See Table I			$\begin{gathered} \hline 1 \\ 2 \\ 5 \\ 10 \\ 20 \\ 50 \\ 100 \end{gathered}$			$\begin{gathered} 1 \\ 2 \\ 5 \\ 10 \\ 20 \\ 50 \\ 100 \end{gathered}$		V/V
	Gain Error	$A_{V}=1,2,5$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.01	0.075		0.02	0.15	\%
		$A_{V}=10,20,50,100$			0.02	0.1		0.03	0.2	
		$A_{V}=1,2,5$			0.02	0.2		0.02	0.2	
		$A_{V}=10,20,50,100$			0.03	0.3		0.03	0.3	
	Gain Nonlinearity		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.002			0.002		
					0.005			0.005		
$\Delta A_{V} / \Delta T$	Gain Temperature Coefficient				1	10		1	10	ppm $/{ }^{\circ} \mathrm{C}$
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	$A_{V}=1$	70	80		70	80		dB
			$A_{V}=10$	76	94		76	94		
			$A_{V}=100$	80	94		80	94		
PSRR	Power Supply Rejection Ratio	$\pm 8 \mathrm{~V} \leq \mathrm{V}_{S} \leq+18 \mathrm{~V}$	$A_{V}=1$	70	84		70	84		dB
			$A_{V}=10$	76	92		76	92		
			$A_{V}=100$	80	104		80	104		
V_{0}	Output Voltage Swing	$\mathrm{H}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$		± 10	± 12		± 10	± 12		V
lo	Output Short Circuit		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	± 5	± 18	± 40	± 5	± 18	± 40	mA
	Current			± 2		± 40	± 2		± 40	

DC Electrical Characteristics (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ unless noted

Symbol	Parameter	Conditions	LH0084			LH0084C			Units
			Min	Typ	Max	Min	Typ	Max	
R_{0}	Output Resistance			0.05			0.05		Ω
V_{IL}	Digital " 0 " Input Voltage				0.7			0.7	V
V_{IH}	Digital "1" Input Voltage		2.0			2.0			
IIL	Digital "0" Input Current	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		1.5	40		1.5	40	A
I_{H}	Digital "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$		0.01			0.01		
V_{S}	Supply Voltage Range		± 8		± 18	± 8		± 18	V
Is(+)	Positive Supply Current	$\mathrm{V}_{S} \leq \pm 18 \mathrm{~V}$		12	18		12	26	mA
$\mathrm{IS}_{\mathrm{S}}(-)$	Negative Supply Current			8	12		8	14	
P_{D}	Power Dissipation	$V_{S}= \pm 15 \mathrm{~V}$		315	450		315	600	mW

AC Electrical Characteristics $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$

Symbol	Parameter	Conditions		Min	Typ	Max	Units
BW	Bandwidth (Figure 1)	Small Signal,$-3 \mathrm{~dB}$	$A_{V}=1$		3250		kHz
			$A_{V}=10$		500		
			$A_{V}=100$		350		
		Small Signal,-1%	$A_{V}=1$		300		
			$A_{V}=10$		75		
			$A_{V}=100$		55		
PBW	Power Bandwidth	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$			200		
SR	Slew Rate			10	13		$\mathrm{V} / \mu \mathrm{s}$
t_{s}	Settling Time (Figure 2)$\pm 0.1 \%$	$\Delta \mathrm{V}_{0}= \pm 20 \mathrm{~V}$	$A_{V}=1$		2.3	3.0	$\mu \mathrm{S}$
			$A_{V}=10$		2.7	3.5	
			$A_{V}=100$		3.1	4.0	
	Gain Switching Time				3.5		
E_{N}	Equivalent Input Noise Voltage (Figure 3)	$\mathrm{BW}=0.1 \mathrm{~Hz}-10 \mathrm{~Hz}$	$A_{v}=100$		7		$\mu \mathrm{Vp}$-p
		$B W=10 \mathrm{~Hz}-10 \mathrm{kHz}$			1.4		$\mu \mathrm{Vrms}$
I_{N}	Equivalent Input Noise Current (Figure 3)	$\mathrm{BW}=10 \mathrm{~Hz}-10 \mathrm{kHz}$			30		pArms

Note 1: Improper supply power-on sequence may damage the device. See Power Supply Connection section under Applications Information.
Note 2: For supply voltages less than $\pm 15 \mathrm{~V}$ the maximum input voltage is equal to the supply voltage.
Note 3: These parameters are specified at junction temperature, T_{J}. In normal operation the junction temperature rises above the ambient temperature, T_{A}, as a result of internal power dissipation, $\mathrm{P}_{\mathrm{D}} . \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\theta_{\mathrm{JA}} \mathrm{P}_{\mathrm{D}}$ where θ_{jA} is the thermal resistance from junction to ambient.
Note 4: The input bias currents are junction leakage currents which approximately double for every $10^{\circ} \mathrm{C}$ increase in the junction temperature.
Note 5: See Typical Performance Characteristics for Thermal Resistance Information.
Note 6: Refer to RETS0084D for LH0084D military specifications.

Typical Performance Characteristics

Small Signal
Frequency Response

Input Common-Mode Range

Settling Time

Common-Mode Rejection

Supply Current

Equivalent Input Noise Voltage (Includes Source-Resistance Noise)

TL/H/5651-2

AC Test Circuits

FIGURE 1. Frequency Response Measurement Circuit

FIGURE 2. Settling Time Measurement Circuit

$A_{V}=10$ input Stage

Wideband Noise

$R_{S}=50 \Omega$ Bandwidth 0.1 Hz to 10 Hz
1μ V/Division Vertical 5 Seconds/Division Horizontal

Applications Information

THEORY OF OPERATION

The LH0084 is a digitally-programmable-gain true-instrumentation amplifier composed of a variable-gain voltage-follower input stage (A1 and A2), followed by a differential output stage (A3). The schematic is shown in Figure 4.
The input stage contains matched high-speed FET-input op amps (A1 and A2). A high-stability temperature-compensated resistor network (R1 through R7) controls feedback ratios at the inverting inputs of op amps A1 and A2 via FET switches S1A-S4A and S1B-S4B. Since the FET switches are in series with the op amp input impedance their resistance match and temperature drift do not degrade the gain accuracy of the instrumentation amplifier. The FET switches are controlled through a 1-of-4 decoder and switch driver, by the logic levels applied at the digital input terminals D1
and DO and set the gain of the input stage as shown in Table I.
If, for example, D1 is High (22.0 V) and D0 is Low ($\leq 0.7 \mathrm{~V}$), FET switch pair S3A and S3B will be closed (and all remaining switches open). The input stage gain, $\mathrm{A}_{\mathrm{V}(1)}$, can then be shown to be:

$$
\begin{aligned}
A_{V(1)} & =\frac{V 2-V_{1}}{V_{I N}(+)-V_{I N}(-)} \\
& =1+\frac{R 4+R 5+R 6+R 7}{R 1+R 2+R 3} \\
& =1+\frac{6 k+6 k+10 k+10 k}{4 k+2 k+2 k} \\
& =5
\end{aligned}
$$

Schematic Diagram

TL/H/5651-6
FIGURE 4

TABLE I. Gain Truth Table and Connection Table

Digital Inputs		1st Stage Gain $\mathrm{A}_{\mathrm{V} \text { (1) }}$	Pin Connections	2nd Stage Gain $A_{V(2)}$	Overall Gain A_{V}
D1	DO				
0	0	1	6-10, 13-GND	1	1
0	1	2			2
1	0	5			5
1	1	10			10
0	0	1	7-10, 12-GND	4	4
0	1	2			8
1	0	5			20
1	1	10			40
0	0	1	8-10, 11-GND	10	10
0	1	2			20
1	0	5			50
1	1	10			100

The output stage, consisting of op amp A3 and resistors R8 through R15, converts the voltage difference at the output of the input stage, V2 minus V1, to a single-ended output. For increased flexibility of the LH0084, the output stage gain is pin-strappable by selecting R10, R10+R12, or $\mathrm{R} 10+\mathrm{R} 12+\mathrm{R} 14$ as feedback resistor for A3. The ratios of these resistors to the differential stage input resistor R3 are kept very accurate to maintain the excellent overall gain accuracy of the device. The output stage gain, $A_{V(2)}$, is equal to the feedback resistance divided by the input resistance. Thus with, for example, Pin 7 wired to Pin 10, that gain would be:

$$
\begin{align*}
A_{V(2)} & =\frac{V_{O U T}}{V 2-V 1} \\
& =\frac{R 10+R 12}{R 8} \tag{2}\\
& =\frac{10 K+30 K}{10 k}
\end{align*}
$$

To preserve the high common-mode rejection ratio of the output stage, the ground sense resistor, R11, R11+R13 or R11+R13+R15, must match the feedback resistor used. The overall gain of the LH0084 is therefore:

$$
\begin{align*}
A_{V} & =\frac{V_{O U T}}{V_{\mathbb{I N}}(+)-V_{\mathbb{I N}}(-)} \\
& =\frac{V_{2}-V_{1}}{V_{\mathbb{I N}}(+)-V_{\mathbb{I N}}(-)} \cdot \frac{V_{O U T}}{V_{2}-V_{1}} \tag{3}\\
& =A_{V_{(1)}} \cdot A_{V(2)}
\end{align*}
$$

The different gains available are in the range of 1 through 100 and are summarized in Table I.

POWER SUPPLY CONNECTIONS

Proper power supply connections are shown in Figure 5. The power supplies should be bypassed to ground as close as possible to device supply pins. For optimum high speed performance V^{+}and V^{-}should be decoupled with a 0.01 $\mu \mathrm{F}$ ceramic disc in parallel with a $1 \mu \mathrm{~F}$ electrolytic capacitor.
The two ground pins, analog and digital grounds, should be connected together as close to the device as possible, preferably with a ground plane underneath the device. If this is not possible, the grounds should be connected together locally with back-to-back diodes and hard-wired together offboard. If a ground reference offset is used, it must be low impedance compared to the ground sense resistance to avoid CMRR degradation.
Care must be taken in the supply power-on sequence. The LH0084 may suffer irreversible damage if the V^{+}supply is applied prior to the powering on the V^{-}supply. In most applications using dual tracking supplies and with the device supply pins adequately bypassed, this will not present a problem. If this cannot be guaranteed, a germanium or Schottky protection diode should be connected between the digital ground pin and the V^{-}pin as shown in Figure 5.

FIGURE 5. Power Supply Connections

Applications Information

(Continued)

SIGNAL CONNECTIONS

The input signals should be connected as shown in Figure 6. To minimize errors, $\mathrm{R}_{\mathrm{S}}(+), \mathrm{R}_{\mathrm{S}}(-)$ and R_{CM} should be kept as small as possible.
The output connections are also shown in Figure 6. The feedback leads should be kept short as should the ground sense in order to minimize lead resistance and parasitic capacitance.

OFFSET AND GAIN ADJUSTMENTS

Special care must be taken when using external offset adjustment. Since the LH0084 is a 2-stage amplifier with each stage contributing offset errors, and the amplifier presumably is used at several different gains, it is important to realize that the offsets of both the 1st and the 2nd stages must be nulled to maintain zero offset referred to output (RTO) at all gain settings.
In general, it is recommended that the input stage offset ($\mathrm{V}_{\mathrm{IOS}}$) be adjusted with a potentiometer as shown in Figure 7. The output stage offset ($\mathrm{V}_{\mathrm{OOS}}$) is ideally adjusted at a subsequent gain stage (i.e. sample-and-hold or A-to-D converter), but if this is impractical, it may also be done as shown in Figure 7.

Recommended offset adjust procedure is as follows: Initially set both pots to center positions and short both inputs of the LH0084 to ground.
a) Set the input stage gain to 1 (pull D1 and D0 low). Measure the output voltage, $\mathrm{V}_{\text {OUT1 }}$.
b) Set the input stage gain to 10 (pull D1 and D0 high). Measure the new output voltage, $V_{\text {OUT2 }}$.
c) Calculate the portion of $V_{\text {OUT2 }}$ contributed by the output stage offset per the equation:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{OOS}}=\frac{1}{9}\left(10 \cdot \mathrm{~V}_{\mathrm{OUT} 1}-\mathrm{V}_{\mathrm{OUT} 2}\right) \tag{4}
\end{equation*}
$$

d) While maintaining an input stage gain of 10, adjust the input offset voltage ($\mathrm{V}_{\text {IOS }}$) potentiometer until the output voltage is equal to the voltage calculated in Equation (4).
e) Change the input back to a gain of 1 and adjust the output offset voltage ($\mathrm{V}_{\mathrm{OOS}}$) potentiometer until the output voltage is zero.

FIGURE 6. Signal Connections

TL/H/5651-8
FIGURE 7. Offset Adjust Circuit

Applications Information (Continued)

An alternate offset adjust scheme is shown in Figure 8. The offset should be rezeroed after each time the gain is changed or when the op amp integrator drift warrants a new zero pulse. An additional advantage of this adjustment technique is that it can also be used to cancel out offset voltage drift and common-mode voltage error contributions.
External gain adjustment is generally discouraged since gain accuracy can be optimized for one gain setting only. If gain adjustment is required, however, it should be done at a subsequent gain stage.

LOGIC CONNECTIONS

The digital inputs D1 and D0 are referenced to the digital
ground. The device interfaces directly to TTL and, with pulldown resistors, to CMOS.
Interfacing with microprocessors will usually require a latch. A circuit using full 6 -bit wide address decode and write strobe is shown in Figure 9.

REMOTE OUTPUT SENSE

The feedback resistors of the LH0084 can be connected directly at the load in order to eliminate errors due to lead resistance (Figure 10).

FIGURE 9. Typical Microprocessor Interface

TL/H/5651-9
FIGURE 10. Remote Sense Connection

Applications Information (Continued)

Also, a unity gain buffer, such as the LH0033, may be included in the feedback loop for increased current drive capability as shown in Figure 11.

FIGURE 11. Buffered Output Connection

The output sense feature can also be used in other ways such as output offset, Figure 12, or current source output, Figure 13.

$V_{\text {OUT }} A_{V} \cdot V_{\text {IN }}+V_{\text {REF }}$
$\left|V_{\text {OUT }}\right| \leq 10 \mathrm{~V}$
FIGURE 12. Output Offset Connection

TL/H/5651-10
FIGURE 13. Output Current Source Connection

Applications

The LH0084 is ideal for application in increased dynamic range A-to-D converters, test systems, process control, and multi-channel data acquisition system. Figure 14 shows the device used in a typical data acquisition system.
A software offset and gain error correction scheme is shown in Figure 15. By first selecting a multiplexer input con-
nected to analog ground, and then selecting a channel connected to a reference of known value, the overall system gain and offset errors can be calculated. For all subsequent readings, offset and gain corrections can be made mathematically by solving a simple first-order equation in software.

TL/H/5651-11
FIGURE 14. Typical Data Acquisition System

Applications (Continued)

TL/H/5651-12
FIGURE 15. Software System Offset and Gain Calibration Circuit

Definition of Terms

Input Offset Voltage, $\mathrm{V}_{\mathrm{IOS}}$: The voltage which must be applied to the inputs to force the output of the input stage to 0 V . $\mathrm{V}_{\text {IOS }}$ can be calculated by measuring $\mathrm{V}_{\mathrm{OS}}(\mathrm{RTO})$ at input stage gains of 1 and 10 and using the following equation:

$$
V_{I O S}=\frac{1}{9}\left(\left.V_{O S}\right|_{A V}=10-\left.V_{O S}\right|_{A V}=1\right)
$$

where:

$$
\begin{aligned}
& \left.V_{O S}\right|_{A_{V}=10}=\text { Overall offset }(R T O) \text { for } A_{V}=10 \\
& V_{\text {OS }}^{A_{V}=1}=\text { Overall offset (RTO) for } A_{V}=1
\end{aligned}
$$

Input Offset Current, los: The difference in the currents into the 2 analog input terminals at OV .
Input Bias Current, I_{B} : The average of the currents into the 2 analog input terminals at 0 V .
Input Resistance, $\mathbf{R}_{\text {IN }}$: Common-mode input resistance is the change in input voltage range divided by the change in input bias current with both analog inputs at the same voltage. Differential input resistance is the change in input voltage at one input terminal divided by the change in input current at the other input terminal which is kept still at 0 V .
Input Voltage Range, $\mathbf{V}_{\mathbf{I N}}$: The voltage range for which the device is operational.
Common-Mode Rejection Ratio, CMRR: The ratio of the input common-mode voltage range to the change in input offset voltage over this range.
Power Supply Rejection Ratio, PSRR: The ratio of the specified change in supply voltage to the change in input offset voltage over this range.
Voltage Gain, $\mathbf{A}_{\mathbf{V}}$: The ratio of output voltage change to the input voltage change producing it.
Gain Error: The deviation in percent between the ideal voltage gain and the value obtained when the device is configured for that gain.

Gain Non-Linearity: The deviation of the gain from a straight line drawn through the end-points expressed as a percent of full-scale (10 V for operation with $\pm 15 \mathrm{~V}$ supply). For testing purposes it is the difference between positive swing gain (0 V to 10 V) and average gain (-10 V to 10 V) or between negative swing gain (0 V to -10 V) and average gain.
Output Stage Offset Voltage, $\mathrm{V}_{\text {OOS }}$: The voltage which must be applied to the input of the output stage for the output to be forced to OV . $\mathrm{V}_{\mathrm{OOS}}$ can be calculated by measuring V_{OS} (RTO) at input stage gains of 1 and 10 and applying the following equation:

$$
V_{O O S}=\frac{1}{9}\left(\left.10 \cdot V_{O S}\right|_{A V}=1-\left.V_{O S}\right|_{A V}=10\right)
$$

where:

$$
\begin{aligned}
& V_{O s} A_{A}={ }_{1}=\text { Overall offset }(R T O) \text { for } A_{V}=1 \\
& \left.V_{O S}\right|_{A_{V}}={ }_{10}=\text { Overall offset (RTO) for } A_{V}=10
\end{aligned}
$$

Offset Voltage (Referred to Output), $\mathrm{V}_{\mathrm{OS}(\mathrm{RTO}}$: The output voltage when both inputs are connected to 0 V . V_{OS} is composed of input offset voltage, V_{105}, and output offset voltage, $\mathrm{V}_{\mathrm{OOS}}$, and is a function of amplifier gain. The overall offset voltage is given by:

$$
V_{O S(R T O)}=A_{V(2)}\left(A_{V(1)} V_{I O S}+V_{O O S}\right)
$$

where:
$\mathrm{V}_{\mathrm{IOS}}=$ Input offset voltage
$\mathrm{V}_{\text {OOS }}=$ Output stage offset voltage
$\mathrm{A}_{\mathrm{V}(1)}=$ Input state gain
$A_{V(2)}=$ Output stage gain

Definition of Terms (Continued)

Output Voltage Swing, $\mathbf{V}_{\mathbf{O}}$: The peak output voltage swing referenced to ground into specified load.
Output Short-Circuit Current, I_{O} : The current supplied by the device with the output connected directly to ground.
Output Resistance, r_{o} : The ratio of change in output voltage to change in output current around zero output.
Supply Voltage Range, $\mathbf{V}_{\mathbf{s}}$: The supply voltage range for which the device is operational.
Supply Current, $\mathbf{I}_{\mathbf{s}}$: The current required from the supply to operate the device with zero load and with the analog as well as the digital inputs at 0 V .
Power Dissipation, P_{D} : The power dissipated in the device with zero load and with the analog as well as the digital inputs at 0 V .
Digital "1" Input Voltage, $\mathbf{V}_{\mathbf{I H}}$: Minimum voltage required at the digital input to guarantee a high logic state.
Digital " 0 " Input Voltage, V_{IL} : Maximum voltage required at the digital input to guarantee a low logic state.
Digital " 1 " Input Current, $\mathbf{l}_{\mathbf{I H}}$: The current into a digital input at specified logic level.
Digital " 0 " Input Current, I_{L} : The current into a digital input at specified logic level.
Average Input Offset Voltage Drift, $\Delta \mathbf{V}_{\mathbf{I O S}} / \Delta \mathrm{T}$: The ratio of input offset voltage change from $25^{\circ} \mathrm{C}$ to either temperature extreme divided by the temperature range.
Average Output Offset Voltage Drift, $\Delta \mathbf{V}_{\text {Oos }} / \Delta \mathbf{T}$: The ratio of output offset voltage change from $25^{\circ} \mathrm{C}$ to either temperature extreme divided by the temperature range.

Average Gain Temperature Coefficient, $\Delta \mathbf{A}_{\mathbf{v}} / \Delta \mathrm{T}$: The ratio of change in gain from $25^{\circ} \mathrm{C}$ to either temperature extreme divided by the temperature range.
Small Signal Bandwidth, BW: The frequency at which the device gain changes from the low frequency gain by a specified amount.
Power Bandwidth, PBW: Maximum frequency for which the output swing is a large signal sinewave without noticeable distortion.
Slew Rate, SR: The internally limited rate of change in output voltage with a large amplitude step function applied at the input.
Settling Time, t_{s} : The time between the initiation of an input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Gain Switching Time: The time between the initiation of a gain logic change and the time when the final gain switches are closed. It includes overdrive recovery time, but not settling to final value.
Equivalent Input Noise Voltage, $\mathbf{E}_{\mathbf{N}}$: The rms of peak noise voltage referred to the input (RTI) over a specified frequency band.
Equivalent Input Noise Current, I_{N} : The rms of peak noise current referred to the input (RTI) over a specified frequency band.

National Semiconductor

LM221／LM321／LM321A Precision Preamplifiers

General Description

The LM121 series are precision preamplifiers designed to operate with general purpose operational amplifiers to dras－ tically decrease dc errors．Drift，bias current，common mode and supply rejection are more than a factor of 50 better than standard op amps alone．Further，the added dc gain of the LM121 decreases the closed loop gain error．
The LM121 series operates with supply voltages from $\pm 3 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ and has sufficient supply rejection to operate from unregulated supplies．The operating current is programma－ ble from $5 \mu \mathrm{~A}$ to $200 \mu \mathrm{~A}$ so bias current，offset current，gain and noise can be optimized for the particular application while still realizing very low drift．Super－gain transistors are used for the input stage so input error currents are lower than conventional amplifiers at the same operating current． Further，the initial offset voltage is easily nulled to zero．
The extremely low drift of the LM121 will improve accuracy on almost any precision dc circuit．For example，instrumen－ tation amplifier，strain gauge amplifiers and thermocouple amplifiers now using chopper amplifiers can be made with
the LM121．The full differential input and high common－ mode rejection are another advantage over choppers．For applications where low bias current is more important than drift，the operating current can be reduced to low values． High operating currents can be used for low voltage noise with low source resistance．The programmable operating current of the LM121 allows tailoring the input characteris－ tics to match those of specialized op amps．
The LM221 is specified over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range and the LM321 over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range．

Features

■ Guaranteed drift of LM321A－0．2 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

图 Offset voltage less than 0.4 mV
四 Bias current less than 10 nA at $10 \mu \mathrm{~A}$ operating current
■ CMRR 126 dB minimum
国 120 dB supply rejection
■ Easily nulled offset voltage

Typical Applications

Thermocouple Amplifier with Cold Junction Compensation

Absolute Maximum Ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)	500 mW
Differential Input Voltage (Notes 2 and 3)	$\pm 15 \mathrm{~V}$
Input Voltage (Note 3)	$\pm 15 \mathrm{~V}$

Electrical Characteristics (Note 4) LM 321 A

Parameter	Conditions	LM321A			Units
		Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$		0.2	0.4	mV
Input Offset Current	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{gathered}$		0.3	$\begin{gathered} 0.5 \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
Input Bias Current	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{gathered}$		$\begin{gathered} 5 \\ 50 \end{gathered}$	$\begin{gathered} 15 \\ 150 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
Input Resistance	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{gathered}$	$\begin{gathered} 2 \\ 0.2 \end{gathered}$	8		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {SET }}=70 \mathrm{k}$		0.8	2.2	mA
Input Offset Voltage	$6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$		0.5	0.65	mV
Input Bias Current	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$		$\begin{gathered} 15 \\ 150 \\ \hline \end{gathered}$	$\begin{gathered} 25 \\ 250 \\ \hline \end{gathered}$	nA nA
Input Offset Current	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$		$\begin{gathered} 0.5 \\ 5 \end{gathered}$	$\begin{gathered} 1 \\ 10 \end{gathered}$	nA nA
Input Offset Current Drift	$\mathrm{R}_{\text {SET }}=70 \mathrm{k}$		3		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Average Temperature	$\mathrm{R}_{\mathrm{S}} \leq 200 \Omega, 6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$				
Coefficient of Input Offset Voltage	Offset Voltage Nulled		0.07	0.2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Long Term Stability			3		$\mu \mathrm{V} / \mathrm{yr}$
Supply Current			1	3.5	mA
Input Voltage Range	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},(\text { Note } 5) \\ \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ \hline \end{gathered}$	$\begin{gathered} \pm 13 \\ +7,-13 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{aligned}$	$\begin{array}{r} 126 \\ 120 \\ \hline \end{array}$	$\begin{aligned} & 140 \\ & 130 \\ & \hline \end{aligned}$		dB dB
Supply Voltage Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{aligned}$	$\begin{aligned} & 118 \\ & 114 \\ & \hline \end{aligned}$	$\begin{aligned} & 126 \\ & 120 \\ & \hline \end{aligned}$		dB dB
Voltage Gain	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k}, \\ \mathrm{R}_{\mathrm{L}}>3 \mathrm{M} \Omega \end{gathered}$	12	20		V/V
Noise	$\mathrm{R}_{\text {SET }}=70 \mathrm{k}, \mathrm{R}_{\text {SOURCE }}=0$		8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Note 1: The maximum junction temperature of the LM321A is $85^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the H08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $18^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: The inputs are shunted with back-to-back diodes in series with a 500Ω resistor for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \leq \mathrm{V}_{S} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM 221 A , however all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, and for the LM321A the specifications apply over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 5: External precision resistor - 0.1% - can be placed from pins 1 and 8 to 7 increase positive common-mode range.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
$\pm 20 \mathrm{~V}$
Power Dissipation (Note 1)
500 mW
Differential Input Voltage (Notes 2 and 3)
$\pm 15 \mathrm{~V}$
Input Voltage (Note 3)

Operating Temperature Range

LM221

$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
ESD rating to be determined.

Electrical Characteristics (Note 4) LM221, LM321

Parameter	Conditions	LM221			LM321			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$			0.7			1.5	mV
Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{aligned}$			$\begin{gathered} 1 \\ 10 \\ \hline \end{gathered}$			$\begin{gathered} 2 \\ 20 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Bias Current	$\begin{aligned} \mathrm{T}_{\mathrm{A}} & 25^{\circ} \mathrm{C} \\ \mathrm{R}_{\text {SET }} & =70 \mathrm{k} \\ \mathrm{R}_{\text {SET }} & =6.4 \mathrm{k} \end{aligned}$			$\begin{gathered} 10 \\ 100 \\ \hline \end{gathered}$			$\begin{gathered} 18 \\ 180 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{aligned}$	$\begin{gathered} 4 \\ 0.4 \end{gathered}$			$\begin{gathered} 2 \\ 0.2 \end{gathered}$			$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\text {SET }}=70 \mathrm{k}$			1.5			2.2	mA
Input Offset Voltage	$6.4 \mathrm{k} \leq \mathrm{R}_{\text {SET }} \leq 70 \mathrm{k}$			1.0			2.5	mV
Input Bias Current	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$			$\begin{gathered} 30 \\ 300 \end{gathered}$			$\begin{gathered} 28 \\ 280 \\ \hline \end{gathered}$	nA nA
Input Offset Current	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$			$\begin{gathered} 3 \\ 30 \\ \hline \end{gathered}$			$\begin{gathered} 4 \\ 40 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Offset Current Drift	$\mathrm{R}_{\text {SET }}=70 \mathrm{k}$		3			3		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Voltage	$R_{S} \leq 200 \Omega, 6.4 k \leq R_{S E T} \leq 70 k$ Offset Voltage Nulled			1			1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Long Term Stability			5			5		$\mu \mathrm{V} / \mathrm{yr}$
Supply Current				2.5			3.5	mA
Input Voltage Range	$\begin{gathered} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V},(\text { Note } 5) \\ \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \end{gathered}$	$\begin{gathered} \pm 13 \\ +7,-13 \\ \hline \end{gathered}$			$\begin{gathered} \pm 13 \\ +7,-13 \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Common-Mode Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 114 \\ & \hline \end{aligned}$			$\begin{aligned} & 114 \\ & 114 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Supply Voltage Rejection Ratio	$\begin{aligned} & \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k} \\ & \mathrm{R}_{\mathrm{SET}}=6.4 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 114 \\ & \hline \end{aligned}$			$\begin{aligned} & 114 \\ & 114 \\ & \hline \end{aligned}$			dB dB
Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=70 \mathrm{k}, \\ & \mathrm{R}_{\mathrm{L}}>3 \mathrm{M} \Omega \end{aligned}$	16			12			V/V
Noise	$\mathrm{R}_{\text {SET }}=70 \mathrm{k}, \mathrm{R}_{\text {SOURCE }}=0$		8			8		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Note 1: The maximum junction temperature of the LM221 is $100^{\circ} \mathrm{C}$. The maximum junction temperature of the LM321 is $85^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in the H 08 package must be derated based on a thermal resistance of $150^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, or $18^{\circ} \mathrm{C} / \mathrm{W}$, junction to case.
Note 2: The inputs are shunted with back-to-back diodes in series with a 500Ω resistor for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs.
Note 3: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for $\pm 5 \leq \mathrm{V}_{\mathrm{S}} \leq \pm 20 \mathrm{~V}$ and $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, unless otherwise specified. With the LM221, however all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, and for the LM 321 the specifications apply over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range.
Note 5: External precision resistor -0.1% - can be placed from pins 1 and 8 to 7 increase positive common-mode range

Typical Performance Characteristics

Set Resistor and Set Current

Distribution of Offset Voltage Drift (Nulled)

Common-Mode Limits

Typical Performance Characteristics (Continued)

Frequency Compensation

UNIVERSAL COMPENSATION

The additional gain of the LM321 preamplifier when used with an operational amplifier usually necessitates additional frequency compensation. When the closed loop gain of the op amp with the LM321 is less than the gain of the LM321 alone, more compensation is needed. The worst case situation is when there is 100% feedback-such as a voltage follower or integrator-and the gain of the LM321 is high. When high closed loop gains are used-for example $A_{V}=$ 1000 -and only an addition gain of 200 is inserted by the LM321, the frequency compensation of the op amp will usually suffice.
The frequency compensation shown here is designed to operate with any unity-gain stable op amp. Figure 1 shows the basic configuration of frequency stabilizing network. In operation the output of the LM321 is rendered single ended by a $0.01 \mu \mathrm{~F}$ bypass capacitor to ground. Overall frequency compensation then is achieved by an integrating capacitor around the op amp.

$$
\begin{aligned}
& \text { Bandwidth at unity-gain } \cong \frac{12}{2 \pi \mathrm{R}_{\mathrm{SET}} \mathrm{C}} \\
& \text { for } 0.5 \mathrm{MHz} \text { bandwidth } \mathrm{C}=\frac{4}{10^{6} \mathrm{R}_{\mathrm{SET}}}
\end{aligned}
$$

For use with higher frequency op amps such as the LM118 the bandwidth may be increased to about 2 MHz .
If the closed loop gain is greater than unity, "C" may be decreased to:

$$
C=\frac{4}{10^{6} \mathrm{~A}_{\mathrm{CL}} \mathrm{R}_{\mathrm{SET}}}
$$

ALTERNATE COMPENSATION

The two compensation capacitors can be made equal for improved power supply rejection. In this case the formula for the compensation capscitor is:

$$
C=\frac{8}{10^{6} A_{C L} R_{S E T}}
$$

Typical Applications

*Offset adjust
\dagger See table for frequency compensation.

FIGURE 1. Low Drift Op Amp Using the LM321A as a Preamp

Gain of $\mathbf{1 0 0 0}$ Instrumentation Amplifier:

High Speed* Inverting Amplifier with Low Drift

*Bandwidth $=10 \mathrm{MHz}$ Slew Rate $=40 \mathrm{~V} / \mu \mathrm{s}$ TL/H/7769-4

Medium Speed* General Purpose Amplifier

Typical Applications（Continued）

Increased Common－Mode Range at High Operating Currents

LM363 Precision Instrumentation Amplifier

General Description

The LM363 is a monolithic true instrumentation amplifier. It requires no external parts for fixed gains of 10,100 and 1000. High precision is attained by on-chip trimming of offset voltage and gain. A super-beta bipolar input stage gives very low input bias current and voltage noise, extremely low offset voltage drift, and high common-mode rejection ratio. A new two-stage amplifier design yields an open loop gain of $10,000,000$ and a gain bandwidth product of 30 MHz , yet remains stable for all closed loop gains. The LM363 operates with supply voltages from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ with only 1.5 mA current drain.
The LM363's low voltage noise, low offset voltage and offset voltage drift make it ideal for amplifying low-level, lowimpedance transducers. At the same time, its low bias current and high input impedance (both common-mode and differential) provide excellent performance at high impedance levels. These features, along with its ultra-high com-mon-mode rejection, allow the LM363 to be used in the most demanding instrumentation amplifier applications, replacing expensive hybrid, module or multi-chip designs. Because the LM363 is internally trimmed, precision external resistors and their associated errors are eliminated.
The 16 -pin dual-in-line package provides pin-strappable gains of 10,100 or 1000 . Its twin differential shield drivers
eliminate bandwidth loss due to cable capacitance. Compensation pins allow overcompensation to reduce bandwidth and output noise, or to provide greater stability with capacitive loads. Separate output force, sense and reference pins permit gains between 10 and 10,000 to be programmed using external resistors.
On the 8 -pin HO8 package, gain is internally set at 10,100 or 500 but may be increased with external resistors. The shield driver and offset adjust pins are omitted on the 8 -pin versions.
The LM363 is rated for $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Features

- Offset and gain pretrimmed
- $12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input noise $(\mathrm{G}=500 / 1000)$
- 130 dB CMRR typical $(G=500 / 1000)$
- 2 nA bias current typical
- No external parts required
- Dual shield drivers
- Can be used as a high performance op amp

■ Low supply current (1.5 mA typ)

Typical Connections

TL/H/5609-1

Connection Diagrams

16-Pin Dual-In-Line Package

LM363 Electrical Characteristics (Continued) (Notes 1 and 2)

Parameter	Conditions	LM363			Units
		Typ	Tested Limit (Note 3)	Design Limit (Note 4)	
Common-Mode Rejection Ratio ($-11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 13 \mathrm{~V}$)	$\begin{aligned} & \mathrm{G}=1000,500 \\ & \mathrm{G}=100 \\ & \mathrm{G}=10 \end{aligned}$	$\begin{aligned} & 130 \\ & 120 \\ & 105 \\ & \hline \end{aligned}$	$\begin{gathered} 114 \\ 94 \\ 90 \\ \hline \end{gathered}$	$\begin{gathered} 104 \\ 84 \\ 80 \\ \hline \end{gathered}$	dB dB dB
Positive Supply Rejection Ratio (5V to 15V)	$\begin{aligned} & G=1000,500 \\ & G=100 \\ & G=10 \end{aligned}$	$\begin{aligned} & 130 \\ & 120 \\ & 100 \\ & \hline \end{aligned}$	$\begin{gathered} 110 \\ 100 \\ 85 \end{gathered}$	$\begin{gathered} 100 \\ 95 \\ 78 \\ \hline \end{gathered}$	dB dB dB
Negative Supply Rejection Ratio (-5 V to -15 V)	$\begin{aligned} & \mathrm{G}=1000,500 \\ & \mathrm{G}=100 \\ & \mathrm{G}=10 \end{aligned}$	$\begin{gathered} 120 \\ 106 \\ 86 \end{gathered}$	$\begin{gathered} 100 \\ 85 \\ 70 \end{gathered}$	$\begin{aligned} & 90 \\ & 75 \\ & 60 \end{aligned}$	dB dB dB
Input Bias Current		2	10	20	nA
Input Offset Current		1	3	5	nA
Common-Mode Input Resistance		100	8		$\mathrm{G} \Omega$
Differential Mode Input Resistance	$\begin{aligned} & \mathrm{G}=1000,500 \\ & \mathrm{G}=100 \\ & \mathrm{G}=10 \end{aligned}$	$\begin{gathered} 0.2 \\ 2 \\ 20 \end{gathered}$			$\begin{aligned} & \mathrm{G} \Omega \\ & \mathrm{G} \Omega \\ & \mathrm{G} \Omega \end{aligned}$
Input Offset Current Change	$-11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 13 \mathrm{~V}$	20	100	300	pa / V
Reference and Sense Resistance	Min Max	50	$\begin{aligned} & 30 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & 27 \\ & 83 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \hline \end{aligned}$
Open Loop Gain	$\mathrm{G}_{\mathrm{CL}}=1000,500$	10	1		$\mathrm{V} / \mu \mathrm{V}$
Supply Current	Positive Negative	$\begin{aligned} & 1.2 \\ & 1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.8 \\ & 3.4 \\ & \hline \end{aligned}$	mA mA mA

Note 1: These conditions apply unless otherwise noted; $\mathrm{V}^{+}=\mathrm{V}^{-}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, reference pin grounded, sense pin connected to output and $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Note 2: Boldface limits are guaranteed over full temperature range. Operating ambient temperature range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the LM 363 .
Note 3: Guaranteed and 100% production tested.
Note 4: Guaranteed but not 100% tested. These limits are not used in determining outgoing quality levels.
Note 5: Maximum rated junction temperature is $100^{\circ} \mathrm{C}$ for the LM 363 . Thermal resistance, junction to ambient, is $150^{\circ} \mathrm{C} / \mathrm{W}$ for the $\mathrm{TO}-99(\mathrm{H})$ package and $100^{\circ} \mathrm{C} / \mathrm{W}$ for the ceramic DIP (D).

Typical Performance Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Fixed Gain and Programmable			Units
	1000/500	100	10	
Input Voltage Noise, rms, 1 kHz	12	18	90	$\mathrm{nV} / \sqrt{ } / \mathrm{Hz}$
Input Voltage Noise (Note 6)	0.4	1.5	10	$\mu \mathrm{Vp}$-p
Input Current Noise, rms, 1 kHz	0.2	0.2	0.2	$\mathrm{pA} / \sqrt{ } / \mathrm{Hz}$
Input Current Noise (Note 6)	40	40	40	pAp-p
Bandwidth	30	100	200	kHz
Slew Rate	1	0.36	0.24	$\mathrm{V} / \mu \mathrm{S}$
Settling Time, 0.1% of 10 V	70	25	20	$\mu \mathrm{S}$
Offset Voltage Warm-Up Drift (Note 7)	5	15	50	$\mu \mathrm{V}$
Offset Voltage Stability (Note 8)	5	10	100	$\mu \mathrm{V}$
Gain Stability (Note 8)	0.01	0.005	0.05	\%

Note 6: Measured for 100 seconds in a 0.01 Hz to 10 Hz bandwidth.
Note 7: Measured for 5 minutes in still air, $\mathrm{V}^{+}=\mathrm{V}^{-}=-15 \mathrm{~V}$. Warm-up drift is proportionally reduced at lower supply voltages.

Output Swing Referred to Supplies

Supply Current vs Temperature

Input Offset Current vs Temperature

Typical Performance Characteristics (Continued)

CMRR with Unbalanced Source Resistance

Typical Performance Characteristics

Shield Driver Loading Error

Response

Shield Driver Loading Error

Small Signal Transient
Response

Shield Driver Loading Error

Small Signal Transient Response

Large Signal Transient Response

Large Signal Transient Response

TL/H/5609-6

TL/H/5609-7

Theory of Operation

Referring to the Simplified Schematic, it can be seen that the input voltage is applied across the bases of Q1 and Q2 and appears between their emitters. If $\mathrm{R}_{\mathrm{E} 1-2}$ is the resistance across these emitters, a differential current equal to $\mathrm{V}_{\mathrm{IN}} / \mathrm{R}_{\mathrm{E} 1-2}$ flows from Q1's emitter to Q2's. The second stage amplifier shown maintains Q1 and Q2 at equal collector currents by negative feedback to Q4. The emitter currents of Q3 and Q4 must therefore be unbalanced by an amount equal to the current flow across $R_{E 1-2}$. Defining $R_{E 3-4}=R 5+R 6$, the differential voltage across the emitters of Q4 to Q3 is equal to

$$
\frac{V_{I N}}{R_{E 1-2}} \times R_{E 3-4}
$$

This voltage divided by the attenuation factor

$$
\frac{\mathrm{R} 4}{\mathrm{R} 3+\mathrm{R} 4}=\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}
$$

is equal to the output-to-reference voltage. Hence, the overall gain is given by

$$
\mathrm{G}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}=\frac{\mathrm{R} 3+\mathrm{R} 4}{\mathrm{R} 4} \times \frac{\mathrm{R}_{\mathrm{E} 3-4}}{R_{\mathrm{E} 1-2}} .
$$

Application Hints

The LM363 was designed to be as simple to use as possible, but several general precautions must be taken. The differential inputs are directly coupled and need a return path to power supply common. Worst-case bias currents are only 10 nA for the LM363, so the return impedance can be as high as $100 \mathrm{M} \Omega$. Ground drops between signal return and IC supply common should not be ignored. While the LM363 has excellent common-mode rejection, signals must remain within the proper common-mode range for this specification to apply. Operating common-mode range is guaranteed from -11 V to +13 V with $\pm 15 \mathrm{~V}$ supplies.
The high-gain (500 or 1000) versions have large gain-bandwidth products (15 MHz or 30 MHz) so board layout is fairly critical. The differential input leads should be kept away from output force and sense leads, especially at high impedances. Only 1 pF from output to positive input at $100 \mathrm{k} \Omega$ source impedance can cause oscillations. The gain adjust leads on the 16-pin package should be treated as inputs and kept away from the output wiring.

POWER SUPPLY

The LM363 may be powered from split supplies from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ (or single-ended supplies from 10 V to 36 V). Positive supply current is typically 1.2 mA independent of supply voltage. The negative supply current is higher than the positive by the current drawn through the voltage dividers for the reference and sense inputs (typ 600μ A total). The LM363's excellent PSRR often makes regulated supplies unnecessary. Actually, supply voltage can be as low as 7 V total but PSRR is severely degraded, so that well-regulated supplies are recommended below 10 V total. Split supplies need not be balanced; output swing and input common-mode range will simply not be symmetrical with unbalanced supplies. For example, at +12 V and -5 V supplies, input common-mode range is typically +10.5 V to -2 V and output swing is +11 V to -4 V .
When using ultra-low offset versions, best results are obtained at $\pm 15 \mathrm{~V}$ supplies. For example, the LM363-500's offset voltage is guaranteed within $100 \mu \mathrm{~V}$ at $\pm 15 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$. Running at $\pm 5 \mathrm{~V}$ results in a worst-case negative PSRR error of $10 \mathrm{~V}(-15 \mathrm{~V}$ to $-5 \mathrm{~V})$ multiplied by $3.2 \times 10^{-6}(110 \mathrm{~dB})$ or $32 \mu \mathrm{~V}$, increasing the worst-case offset. Positive PSRR results in another $10 \mu \mathrm{~V}$ worst-case change.

INPUTS

The LM363 input circuitry is depicted in the Simplified Schematic. The input stage is run relatively rich $(50 \mu \mathrm{~A})$ for low voltage noise and wide bandwidth; super-beta transistors and bias-current cancellation (not shown) keep bias currents low. Due to the bias-current cancellation circuitry, bias current may be either polarity at either input. While input current noise is high relative to bias current, it is not significant until source resistance approaches $100 \mathrm{k} \Omega$.
Input common-mode range is typically from 3 V above V - to 1.5 V below $\mathrm{V}+$, so that a large potential drop between the input signal and output reference can be accommodated. However, a return path for the input bias current must be provided; the differential input stage is not isolated from the supplies. Differential input swing in the linear region is equal to output swing divided by gain, and typically ranges from 1.3 V at $\mathrm{G}=10$ to 13 mV at $\mathrm{G}=1000$.

Clamp diodes are provided to prevent zener breakdown and resulting degradation of the input transistors. At large input overdrives these diodes conduct, greatly increasing input currents. This behavior is illustrated in the \mathbb{I}_{N} VS V_{IN} plot in the Typical Performance Characteristics. (The graph is not symmetrical because at large input currents a portion of the current into the device flows out the V^{-}terminal.)
The input protection resistors allow a full 10 V differential input voltage without degradation even at $\mathrm{G}=1000$. At input voltages more than one diode drop below V - or two diode drops above V^{+}input, current increases rapidly. Diode clamps to the supplies, or external resistors to limit current to 20 mA , will prevent damage to the device.

REFERENCE AND SENSE INPUTS

The equivalent circuit is shown in the schematic diagram. Limitations for correct operation are as follows. Maximum differential swing between reference and sense pins is typically $\pm 15 \mathrm{~V}$ ($\pm 10 \mathrm{~V}$ guaranteed). If this limit is exceeded, the sense pin no longer controls the output, which pegs high or low. The negative common-mode limit is 1.5 V below V^{-}. (This is permissible because R2 and R4 are returned to a node biased higher than V^{-}.) If large positive voltages are applied to the reference and sense pins, the common-mode range of the signal inputs begins to suffer as the drop across R13 and R16 increases. For example, at $\pm 15 \mathrm{~V}$ supplies, $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {SENSE }}=0 \mathrm{~V}$, signal input range is typically -12 V to +13.5 V . at $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\text {SENSE }}=15 \mathrm{~V}$, signal input range drops to -11 V to +13.5 V . The reference and sense pin can be as much as 10 V above V^{+}as long as a restricted signal common-mode range (-10 V min) can be tolerated.
For maximum bipolar output swing at $\pm 15 \mathrm{~V}$ supplies, the reference pin should be returned to a voltage close to ground. At lower supply voltages, the reference pin need not be halfway between the supplies for maximum output swing. For example, at $\mathrm{V}^{+}=+12 \mathrm{~V}$ and $\mathrm{V}^{-}=-5 \mathrm{~V}$, grounding the reference pin still allows a +11 V to -4 V swing. For single-supply systems, the reference pin can be tied to either supply if a single output polarity is all that is required. For a bipolar input and output, create a low impedance reference with an op amp and voltage divider or a regulator (e.g., LM336, LM385, LM317L). This forms the reference for all succeeding signal-processing stages. (Don't connect the reference terminal directly to a voltage divider; this degrades gain error.) See Figure 1.

a. Usual configuration maximizes bipolar output swing.

TL/H/5609-8
b. Unequal supplies, output ground referred. Full output swing preserved referred to supplies.

Application Hints (Continued)

c. Single Supply, Unipolar Output

TL/H/5609-9

FIGURE 1. Reference Connections (Continued)

OUTPUTS

The LM363's output can typically swing within 1 V of the supplies at light loads. While specified to drive a $2 \mathrm{k} \Omega$ load to $\pm 10 \mathrm{~V}$, current limit is typically 15 mA at room temperature. The output can stably drive capacitive loads up to 400 pF . For higher load capacitance, the amplifier may be overcompensated. The output may be continuously shorted to ground without damaging the device.

OFFSET VOLTAGE

The LM363's offset voltage is internally trimmed to a very low value. Note that data sheet values are given at $T_{j}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ and $\mathrm{V}^{+}=\mathrm{V}^{-}=15 \mathrm{~V}$. For other conditions, warm-up drift, temperature drift, common-mode rejection and power supply rejection must be taken into account. Warm-up drift, due to chip and package thermal gradients, is an effect separate from temperature drift. Typical warm-up drift is tabulated in the Electrical Characteristics; settling time is approximately 5 minutes in still air. At load currents up to 5 mA , thermal feedback effects are negligible ($\Delta \mathrm{V}_{\mathrm{OS}} \leq 2 \mu \mathrm{~V}$ at $\mathrm{G}=1000$).
Care must be taken in measuring the extremely low offset voltages of the high gain amplifiers. Input leads must be held isothermal to eliminate thermocouple effects. Oscillations, due to either heavy capacitive loading or stray capacitance from input to output, can cause erroneous readings. In either case, overcompensation will help. High frequency noise fed into the inputs may be rectified internally, and pro-
duce an offset shift. A simple low-pass RC filter will usually cure this problem (Figure 2). Use film type resistors for their low thermal EMF. In highly noisy environments, LC filters can be substituted for increased RF attenuation.

TL/H/5609-10
FIGURE 2. Low Pass Filter Prevents RF Rectification
Instrumentation amplifiers have both an input offset voltage ($\mathrm{V}_{\mathrm{IOS}}$) and an output offset voltage ($\mathrm{V}_{\mathrm{OOS}}$). The total inputreferred offset voltage ($V_{\text {OSRTI }}$) is related to the instrumentation amplifier gain (G) as follows: $\mathrm{V}_{\text {OSRTI }}=\mathrm{V}_{\text {IOS }}+\mathrm{V}_{\text {OOS }} /$ G. The offset voltage given in the LM363 specifications is the total input-referred offset. As long as only one gain is used, offset voltage can be nulled at either input or output as shown in Figures $3 a$ and $3 b$. When the 16-pin device is used at multiple gain settings, both $\mathrm{V}_{\text {IOS }}$ and V_{OO} should be nulled to get minimum offset at all gains, as shown in Figure 3c. The correct procedure is to trim V_{OOS} for zero output at $\mathrm{G}=10$, then trim $\mathrm{V}_{\mathrm{IOS}}$ at $\mathrm{G}=1000$.

Application Hints (Continued)

Because the LM363's offset voltage is so low to begin with, offset nulling has a negligible effect on offset temperature drift. For example, zeroing a $100 \mu \mathrm{~V}$ offset, assuming external resistor TC of $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and worst-case internal resistor TC, results in an additional drift component of $0.08 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. For this reason, drift specifications are guaranteed, with or without external offset nulling.

GAIN ADJUSTMENT

Gain may be increased by adding an external voltage divider between output force and sense and reference; the preferred connection is shown in Figure 4. Since both the sense and reference pins look like $50 \mathrm{k} \Omega\left(\pm 20 \mathrm{k} \Omega\right.$) to V^{-}, impedances presented to both pins must be equal to avoid offset error. For example, a 100Ω imbalance can create a
worst-case output offset of 50 mV , creating an input-referred error of 5 mV at $\mathrm{G}=10$ or $50 \mu \mathrm{~V}$ at $\mathrm{G}=1000$.
Increasing gain this way increases output offset error. An LM363H-100 may have an output offset of 5 mV , resulting in input referred offset component of $50 \mu \mathrm{~V}$. Raising the gain to 200 yields a 10 mV error at the output and changes input referred error by an additional $50 \mu \mathrm{~V}$.
External resistors connected to the reference and sense pins can only increase the gain. If ultra-low output impedance is not critical, the technique in Figure 5 can be used to trim the gain to nominal value. Alternatively, the V_{OS} adjustment terminals on the 16-pin package may be used to trim the gain (Figure 10b).

TL/H/5609-12

R1 and R2 should be as low as possible to avoid errors due to $50 \mathrm{k} \Omega$ input impedance of reference and sense pins. Total resistance (R2+2R1) should be above $4 \mathrm{k} \Omega$, however, to prevent excessive load on the LM363 output. The exact formula for calculating gain (G) is:

$$
\mathrm{G}=\mathrm{G}_{\mathrm{O}}\left(1+\frac{2 \mathrm{R} 1}{\mathrm{R} 2}+\frac{\mathrm{R} 1}{50 \mathrm{k}}\right)
$$

$\mathrm{G}_{\mathrm{O}}=$ preset gain
The last term may be ignored in applications where gain accuracy is not critical. The table below gives suggested values for R1 and R2 along with the calculated error due to "closest value" standard 1% resistors. Total gain error tolerance includes contributions from LM363 G_{O} error and resistor tolerance ($\pm 1 \%$) and works out to approximately 2.5% in every case.

Gain Increase R1	$\begin{gathered} 1.5 \\ 1.21 \mathrm{k} \end{gathered}$	$\begin{gathered} 2 \\ 1.21 \mathrm{k} \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2 k \end{aligned}$	$\begin{gathered} 3 \\ 2 k \end{gathered}$	$\begin{gathered} 4 \\ 1.78 \mathrm{k} \end{gathered}$	$\begin{gathered} 5 \\ 2 k \end{gathered}$	$\begin{gathered} 6 \\ 2.49 k \end{gathered}$	$\begin{gathered} 7 \\ 2.94 \mathrm{k} \end{gathered}$	$\begin{gathered} 8 \\ 3.48 \mathrm{k} \end{gathered}$	$\begin{gathered} 9 \\ 3.92 \mathrm{k} \end{gathered}$	$\begin{gathered} 10 \\ 4.42 \mathrm{k} \end{gathered}$
R2	5 k	2.49k	2.74k	2.05k	1.21k	1k	1k	1k	1k	1k	1k
Error (typ)	+0.6\%	-0.2\%	0	-0.3\%	-0.6\%	+0.8\%	+0.5\%	-0.9\%	+0.4\%	-0.9\%	-0.7\%

FIGURE 4. Increasing Gain

TL/H/5609-13
FIGURE 5. Adjusting Gain (8-Pin Package)

Application Hints (Continued)

COMPENSATION AND OUTPUT CLAMPING

The LM363 is internally compensated for unity feedback from output to sense. Increasing gain with external dividers will decrease the bandwidth and increase stability margin. Without external compensation, the amplifier can stably drive capacitive loads up to 400 pF . When used as an op amp (sense and reference pins grounded, feedback to inverting input), the LM363 is stable for gains of 100 or more. For greater stability, the device may be over-compensated as in Figure 6. Tables I and II depict suggested compensation components along with the resulting changes in large and small signal bandwidth for the 8 -pin and 16-pin packages, respectively.
Note that the RC network from pin 8 of the 8-pin device to ground has a large effect on power bandwidth, especially at low gains. The Miller capacitance utilized for the 16 -pin device permits higher slew rate and larger load capacitance for the same bandwidth, and is preferred when bandwidth must be greatly reduced (e.g., to reduce output noise).

Heavy Miller overcompensation on the 16-pin package can degrade AC PSRR. A large capacitor between pins 15 and 16 couples transients on the positive supply to the output buffer. Since the amplifier bandwidth is severely rolled off it cannot keep the output at the correct state at moderate frequencies. Hence, for good PSRR, either keep the Miller capacitance under 1000 pF or use the pin 15-to-ground compensation.

a. 8-Pin Package

b. 16-Pin Package

TL/H/5609-14

FIGURE 6. Overcompensation
TABLE I. Overcompensation on 8-Pin Package

Gain	Compensation Network (Pin 8 to Ground) \dagger	$\begin{gathered} \hline \text { Small Signal } \\ 3 \mathrm{~dB} \\ \text { Bandwidth } \\ (\mathrm{kHz}) \\ \hline \end{gathered}$	Power Bandwidth $(\pm 10 \mathrm{~V}$ Swing $)$ (Hz)	Maximum Capacitive Load (pF)
500	$\begin{gathered} \text { } \overline{\mathrm{pF}}, 15 \mathrm{k} \\ 1000 \mathrm{pF}, 5 \mathrm{k} \\ 0.01 \mu \mathrm{~F}, 500 \Omega \\ 0.1 \mu \mathrm{~F} \\ \hline \end{gathered}$	$\begin{gathered} 125 \\ 95 \\ 45 \\ 10 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 100 \mathrm{k} \\ 15 \mathrm{k} \\ 1.8 \mathrm{k} \\ 200 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 400 \\ 600 \\ 800 \\ 1000^{*} \\ 1000^{*} \end{gathered}$
100	$\begin{gathered} 100 \mathrm{pF}, 15 \mathrm{k} \\ 1000 \mathrm{pF}, 5 \mathrm{k} \\ 0.01 \mu \mathrm{~F}, 500 \Omega \\ 0.1 \mu \mathrm{~F} \\ \hline \end{gathered}$	$\begin{gathered} 240 \\ 170 \\ 80 \\ 20 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 100 \mathrm{k} \\ 15 \mathrm{k} \\ 1.8 \mathrm{k} \\ 200 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} \hline 400 \\ 900 \\ 1200 \\ 1600^{*} \\ 2000^{*} \\ \hline \end{gathered}$
10	$\begin{gathered} -\overline{\mathrm{pF}}, 15 \mathrm{k} \\ 1000 \mathrm{pF}, 5 \mathrm{k} \\ 0.01 \mu \mathrm{~F}, 500 \Omega \\ 0.1 \mu \mathrm{~F} \\ \hline \end{gathered}$	$\begin{gathered} 240 \\ 170 \\ 90 \\ 20 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 100 \mathrm{k} \\ 15 \mathrm{k} \\ 1.8 \mathrm{k} \\ 200 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 400 \\ 900 \\ 1200 \\ 1600^{*} \\ 2000^{*} \\ \hline \end{gathered}$

*Also stable for $C_{L} \geq 0.05 \mu \mathrm{~F}$ †Pin 15 to ground on 16-pin package
TABLE II. Overcompensation on 16-Pin Package

Gain	Compensation Capacitor (Pin 15 to 16)	$\begin{gathered} \text { Small Signal } \\ 3 \mathrm{~dB} \\ \text { Bandwidth } \\ (\mathrm{Hz}) \\ \hline \end{gathered}$	Power Bandwidth ($\pm 10 \mathrm{~V}$ Swing) (Hz)	Maximum Capacitive Load (pF)
1000	$\begin{gathered} 0 \\ 10 \mathrm{pF} \\ 100 \mathrm{pF} \\ 1000 \mathrm{pF} \\ 0.01 \mu \mathrm{~F} \\ \hline \end{gathered}$	$\begin{gathered} 45 \mathrm{k} \\ 16 \mathrm{k} \\ 2.5 \mathrm{k} \\ 250 \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} 45 \mathrm{k} \\ 16 \mathrm{k} \\ 2.5 \mathrm{k} \\ 250 \\ 25 \\ \hline \end{gathered}$	$\begin{aligned} & 1000^{*} \\ & 2000^{*} \\ & 2500^{*} \\ & 3000^{*} \\ & 3000^{*} \end{aligned}$
100	$\begin{gathered} 0 \\ 10 \mathrm{pF} \\ 100 \mathrm{pF} \\ 1000 \mathrm{pF} \\ 0.01 \mu \mathrm{~F} \\ \hline \end{gathered}$	$\begin{gathered} \hline 140 \mathrm{k} \\ 50 \mathrm{k} \\ 7.5 \mathrm{k} \\ 750 \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} 100 \mathrm{k} \\ 50 \mathrm{k} \\ 7.5 \mathrm{k} \\ 750 \\ 75 \end{gathered}$	$\begin{gathered} 900 \\ 1600 \\ 2000^{*} \\ 2000^{*} \\ 2000^{*} \end{gathered}$
10	$\begin{gathered} \hline 0 \\ 10 \mathrm{pF} \\ 100 \mathrm{pF} \\ 1000 \mathrm{pF} \\ 0.01 \mu \mathrm{~F} \end{gathered}$	$\begin{gathered} \hline 180 \mathrm{k} \\ 60 \mathrm{k} \\ 9 \mathrm{k} \\ 900 \\ 90 \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \mathrm{k} \\ 50 \mathrm{k} \\ 9 \mathrm{k} \\ 900 \\ 90 \\ \hline \end{gathered}$	$\begin{gathered} 600 \\ 1100 \\ 1600 \\ 2000^{*} \\ 2000^{*} \\ \hline \end{gathered}$

[^24]
Application Hints (Continued)

Because the LM363's output voltage is approximately one diode drop below the voltage at pin 15 (pin 8 for the 8 -pin device), this point may be used to limit output swing as seen in Figure 7a. Current available from this pin is only $50 \mu \mathrm{~A}$, so that zeners must have a sharp breakdown to clamp accurately. Alternatively, a diode tied to a voltage source could be used as in Figure $7 b$.

TL/H/5609-15
FIGURE 7. Output Clamp

SHIELD DRIVERS

When differential signals are sent through long cables, three problems occur. First, noise, both common-mode and differential, is picked up. Second, signal bandwidth is reduced by the RC low-pass filter formed by the source impedance and the cable capacitance. Finally, when these RC time constants are not identical (unbalanced source impedance and/or unbalanced capacitance), AC common-mode rejection is degraded, amplifying both induced noise and "ground" noise. Either filtering at the amplifier inputs or slowing down the amplifier by overcompensating will indeed reduce the noise, but the price is slower response. The LM363's dual shield drivers can actually increase bandwidth while reducing noise.
The way this is done is by bootstrapping out shield capacitance. The shield drivers follow the input signal. Since both sides of the shield capacitance swing the same amount, it is effectively out of the circuit at frequencies of interest. Hence, the input signal is not rolled off and AC CMRR is not degraded (Figure 8). The LM363's shield drivers can handle capacitances (shield to center conductor) as high as 1000 pF with source resistances up to $100 \mathrm{k} \Omega$.
For best results, identical shielded cables should be used for both signal inputs, although small mismatches in shield driver to ground capacitance ($\leq 500 \mathrm{pF}$) do not cause problems. At certain low values of cable capacitance ($50 \mathrm{pF}-$ 200 pF), high frequency oscillations can occur at high source resistance ($\geq 10 \mathrm{k} \Omega$). This is alleviated by adding

50 pF to ground at both shield driver outputs. Do not use only one shield driver for a single-ended signal as oscillations can result; shield driver to input capacitance must be roughly balanced ($\pm 30 \%$). To further reduce noise pickup, the shielded signal lines may be enclosed together in a grounded shield. If a large amount of RF noise is the problem, the only sure cure is a filter capacitor at both inputs; otherwise the RFI may be internally rectified, producing an offset.
DC loading on the shield drivers should be minimized. The drivers can only source approximately $40 \mu \mathrm{~A}$; above this value the input stage bias voltages change, degrading V_{OS} and CMRR. While the shield drivers can sink several mA, $V_{\text {OS }}$ may degrade severely at loads above $100 \mu \mathrm{~A}$ (see Shield Driver Loading Error curve in Typical Performance Characteristics). Because the shield drivers are one diode drop above the input levels, unbalanced leakage paths from shield to input can produce an input offset at high source impedances. Buffering with emitter-followers (Figure 8b) reduces this leakage current by reducing the voltage differential and eliminates any loading on the amplifier.

a. Standard Configuration

b. NPN Followers to Reduce Offsets

TL/H/5609-16
FIGURE 8. Driving Shielded Cables

MISCELLANEOUS TRIMMING

The $V_{O S}$ adjust and shield driver pins available on the 16pin package may be used to trim the other parameters besides offset voltage, as illustrated in Figure 10. The bias-current trim relies on the fact that the voltage on the shield driver and gain setting pins is one diode drop respectively above and below the input voltage. Input bias current can be held to within 100 pA over the entire common-mode range, and input offset current always stays under 30 pA . The CMRR trims use the shield driver pins to drive the VOS adjust pins, thus maintaining the LM363's ultra-high input impedance.

Application Hints (Continued)

If power supply rejection is critical, frequently only the negative PSRR need be adjusted, since the positive PSRR is more tightly specified. Any or all of the trim schemes of Figure 10 can be combined as desired. As long as the center tap of the 100 k trimpot is returned to a voltage 200 mV below V^{+}, the trim schemes shown will not greatly affect

Vos. Both the gain and DC CMRR trims can degrade positive PSRR; the positive PSRR can then be nulled out if desired. The correct order of trimming from first to last is bias current, gain, CMRR, negative PSRR, positive PSRR and Vos.

Top Trace: Cable Shield Grounded

Bottom Trace: Cable Shield Bootstrapped

TL/H/5609-18
FIGURE 9. Improved Response using Shield Drivers

FIGURE 10. Other Trims for 16-Pin Package

TL/H/5609-20
The LM329 reference provides excellent line regulation and gain stability. When bridge is balanced (lout $=4 \mathrm{~mA}$), there's no drop across R3 and R4, so that gain and offset adjustments are non-interactive. The LM334 configured as a zero-TC current source supplies quiescent current to circuit. R11 provides current limiting.
Design Equations
$\mathrm{l}_{\mathrm{OS}}=\left(\mathrm{I}_{\mathrm{R} 6}+\mathrm{I}_{\mathrm{R} 7}\right)\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)=4 \mathrm{~mA}$
Gain $=\frac{\Delta l_{\text {OUT }}}{\Delta V_{\text {IN }}} \approx \frac{A_{V}}{R 1} \times \frac{R 2+R 3+R 4}{R 3+R 4} \cong \frac{10 \mathrm{~mA}}{\mathrm{mV}}$
when $A_{V}=L M 363$ voltage gain
Pick $\mathrm{I}_{334}=\frac{0.68 \mathrm{~V}}{\mathrm{R} 9}+\frac{68 \mathrm{mV}}{R 10} \approx 3.8 \mathrm{~mA}$
$I_{\text {MAX }}=I_{334}+\frac{\mathrm{V}_{\mathrm{Z}}-2.4 \mathrm{~V}}{\mathrm{R} 11}=26 \mathrm{~mA}$
$I_{\text {BRIDGE(MAX })} \cong I_{334-I_{363}-\mathrm{I}} \cong 1.5 \mathrm{~mA}$

Select for optimum square wave response. Omit for closed loop gains above 100. Not required for instrumentation amplifier configuration.

Precision Current Source (Low Output Current)

TL/H/5609-21
Precision Voltage to Current Converter (Low Input Voltage)

$$
\begin{array}{cl}
\mathrm{R} 1=\mathrm{R} 2 & \mathrm{R} 1=\mathrm{R} 2 \\
\mathrm{Req}=\mathrm{R} 1 \| 50 \mathrm{k} \Omega & \text { louT }=\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{GR} 1} \\
\text { lout }=\frac{\mathrm{G} \mathrm{~V}}{\mathrm{IN}} & \mathrm{GV}_{\text {IN }} \\
1 \mathrm{k} \Omega &
\end{array}
$$

TL/H/5609-22

Typical Applications (Continued)

Curvature Corrected Platinum RTD Thermometer

Thermistor $=$ Yellow Springs \#44032
Setpoint stability $=2.5 \times 10^{-4}{ }^{\circ} \mathrm{C} / \mathrm{Hr}$

Typical Applications (Continued)
Low Frequency Rolloff (AC Coupling)

$\mathrm{f} 1=\frac{1}{2 \pi \mathrm{C} 1(50 \mathrm{k} \Omega)}=1 \mathrm{~Hz}$
$\mathrm{f} 2=100 \mathrm{f} 1=100 \mathrm{~Hz}$
Reduced DC voltage gain
attenuates offset error and $1 / f$ noise by a factor of 100 .

Precision Comparator with Balanced Inputs and Variable Offset
Boosted Current Source with Limiting

Thermocouple Amplifier with Cold Junction Compensation

thermocouple to short to $120 \mathrm{~V}_{\mathrm{AC}}$ without
damaging amplifier.
Calibration:

1) Apply 50 mV signal in place of thermocouple. Trim R3 for $V_{\text {OUT }}=12.25 \mathrm{~V}$.
2) Reconnect thermocouple. Trim R9 for correct output.

Typical Applications (Conimued)

*Use square wave drive produced by optical chopper to run LF13333 switch inputs.
TL/H/5609-28

Pulsed Bridge Driver/Amplifier

TL/H/5609-29

Typical Applications (Continued)

Removing Large DC Offsets

$f_{1}=0.1 \mathrm{~Hz}$ for values shown. Integrator nulls out offset error to
TL/H/5609-31 LM363 bias currents flowing into R1 and R2.

Removing Small DC Offsets

TL/H/5609-32
Accommodates out referred offset of several volts. Limit is set by max differential between reference and sense terminals.

Section 7 Surface Mount

Section 7 Contents

Surface Mount 7-3
AN-450 Small Outline (SO) Package Surface Mounting Methods-Parameters and Their Effect on Product Reliability 7-13

Cost pressures today are forcing many electronics manufacturers to automate their production lines. Surface mount technology plays a key role in this cost-savings trend because:

1. The mounting of devices on the PC board surface eliminates the expense of drilling holes;
2. The use of pick-and-place machines to assemble the PC boards greatly reduces labor costs;
3. The lighter and more compact assembled products resulting from the smaller dimensions of surface mount packages mean lower material costs.
Production processes now permit both surface mount and insertion mount components to be assembled on the same PC board.

SURFACE MOUNT PACKAGING AT NATIONAL

To help our customers take advantage of this new technology, National has developed a line of surface mount packages. Ranging in lead counts from 3 to 360, the package offerings are summarized in Table 1 .
Lead center spacing keeps shrinking with each new generation of surface mount package. Traditional packages (e.g., DIPs) have a 100 mil lead center spacing. Surface mount packages currently in production (e.g., SOT, SOIC, PCC, LCC, LDCC) have a 50 mil lead center spacing. Surface mount packages in production release (e.g., PQFP) have a 25 mil lead center spacing. Surface mount packages in development (e.g., TAPEPAK®) will have a lead center spacing of only 12-20 mils.

TABLE I. Surface Mount Packages from National

Package Type	Small Outline Transistor (SOT)	Small Outline IC (SOIC)	Plastic Chip Carrier (PCC)	Plastic Quad Flat Pack (PQFP)	TAPEPAK ${ }^{\circledR}$ (TP)	Leadless Chip Carrier (LCC) (LDCC)	Leaded Chip Carrier
Package Material	Plastic	Plastic	Plastic	Plastic	Plastic	Ceramic	Ceramic
Lead Bend	Gull Wing	Gull Wing	J-Bend	Gull Wing	Gull Wing	-	Gull Wing
Lead Center Spacing	50 Mils	50 Mils	50 Mils	25 Mils	20, 15, 12 Mils	50 Mils	50 Mils
Tape \& Reel Option	Yes	Yes	Yes	tbd	tbd	No	No
Lead Counts	SOT-23 High Profile SOT-23 Low Profile	$\begin{aligned} & \text { SO-8(*) } \\ & \text { SO-14(*) } \\ & \text { SO-14 Wide(*) } \\ & \text { SO-16(*) } \\ & \text { SO-16 Wide(*) } \\ & \text { SO-20(*) } \\ & \text { SO-24(*) } \end{aligned}$	$\begin{aligned} & \text { PCC-20(*) } \\ & \text { PCC-28(*) } \\ & \text { PCC-44(*) } \\ & \text { PCC-68 } \\ & \text { PCC-84 } \\ & \text { PCC-124 } \end{aligned}$	PQFP-84 PQFP-100 PQFP-132 PQFP-196(*) PQFP-244	$\begin{aligned} & \hline \text { TP-40 (*) } \\ & \text { TP-68 } \\ & \text { TP-84 } \\ & \text { TP-132 } \\ & \text { TP-172 } \\ & \text { TP-220 } \\ & \text { TP-284 } \\ & \text { TP-360 } \end{aligned}$	$\begin{aligned} & \text { LCC-18 } \\ & \text { LCC-20(*) } \\ & \text { LCC-28 } \\ & \text { LCC-32 } \\ & \text { LCC-44 (*) } \\ & \text { LCC-48 } \\ & \text { LCC-52 } \\ & \text { LCC-68 } \\ & \text { LCC-84 } \\ & \text { LCC-124 } \end{aligned}$	$\begin{aligned} & \text { LDCC-44 } \\ & \text { LDCC-68 } \\ & \text { LDCC-84 } \\ & \text { LDCC-124 } \end{aligned}$

[^25]LINEAR PRODUCTS IN SURFACE MOUNT
Linear functions available in surface mount include:

- Op amps
- Comparators
- Regulators
- References
- Data conversion
- Industrial
- Consumer
- Automotive

A complete list of linear part numbers in surface mount is presented in Table III. Refer to the datasheet in the appropriate chapter of this databook for a complete description of the device. In addition, National is continually expanding the list of devices offered in surface mount. If the functions you need do not appear in Table III, contact the sales office or distributor branch nearest you for additional information.
Automated manufacturers can improve their cost savings by using Tape-and-Reel for surface mount devices. Simplified handling results because hundreds-to-thousands of semiconductors are carried on a single Tape-and-Reel pack (see ordering and shipping information-printed later in this sec-tion-for a comparison of devices/reel vs. devices/rail for those surface mount package types being used for linear products). With this higher device count per reel (when compared with less than a 100 devices per rail), pick-and-place machines have to be re-loaded less frequently and lower labor costs result.
With Tape-and-Reel, manufacturers save twice-once from using surface mount technology for automated PC board assembly and again from less device handling during shipment and machine set-up.

BOARD CONVERSION

Besides new designs, many manufacturers are converting existing printed circuit board designs to surface mount. The resulting PCB will be smaller, lighter and less expensive to manufacture; but there is one caveat-be careful about the thermal dissipation capability of the surface mount package.
Because the surface mount package is smaller than the traditional dual-in-line package, the surface mount package is not capable of conducting as much heat away as the DIP (i.e., the surface mount package has a higher thermal resist-ance-see Table II).
The silicon for most National devices can operate up to a $150^{\circ} \mathrm{C}$ junction temperature (check the datasheet for the rare exception). Like the DIP, the surface mount package can actually withstand an ambient temperature of up to $125^{\circ} \mathrm{C}$ (although a commercial temperature range device will only be specified for a max ambient temperature of $70^{\circ} \mathrm{C}$ and an industrial temperature range device will only be specified for a max ambient temperature of $85^{\circ} \mathrm{C}$). See AN-336, "Understanding Integrated Circuit Package Power Capabilities", (reprinted in the appendix of each linear databook volume) for more information.

TABLE II: Surface Mount Package
Thermal Resistance Range*

Package	Thermal Resistance** $\left(\theta_{\mathrm{j} \mathbf{A},}{ }^{\circ} \mathbf{C} / \mathbf{W}\right)$
SO-8	$120-175$
SO-14	$100-140$
SO-14 Wide	$70-110$
SO-16	$90-130$
SO-16 Wide	$70-100$
SO-20	$60-90$
SO-24	$55-85$
PCC-20	$70-100$
PCC-28	$60-90$
PCC-44	$40-60$

*Actual thermal resistance for a particular device depends on die size. Refer to the datasheet for the actual θ_{j} value.
**Test conditions: PCB mount (FR4 material), still air (room temperature), copper traces ($150 \times 20 \times 10$ mils).
Given a max junction temperature of $150^{\circ} \mathrm{C}$ and a maximum allowed ambient temperature, the surface mount device will be able to dissipate less power than the DIP device. This factor must be taken into account for new designs.
For board conversion, the DIP and surface mount devices would have to dissipate the same power. This means the surface mount circuit would have a lower maximum allowable ambient temperature than the DIP circuit. For DIP circuits where the maximum ambient temperature required is substantially lower than the maximum ambient temperature allowed, there may be enough margin for safe operation of the surface mount circuit with its lower maximum allowable ambient temperature. But where the maximum ambient temperature required of the DIP current is close to the maximum allowable ambient temperature, the lower maximum ambient temperature allowed for the surface mount circuit may fall below the maximum ambient temperature required. The circuit designer must be aware of this potential pitfall so that an appropriate work-around can be found to keep the surface mount package from being thermally overstressed in the application.

SURFACE MOUNT LITERATURE

National has published extensive literature on the subject of surface mount packaging. Engineers from packaging, quality, reliability, and surface mount applications have pooled their experience to provide you with practical hands-on knowledge about the construction and use of surface mount packages.
The applications note AN-450 "Surface Mounting Methods and their Effect on Product Reliability" is referenced on each SMD datasheet. In addition, "Wave Soldering of Surface Mount Components" is reprinted in this section for your information.

Amplifiers and Comparators

Part Number	Part Number
LF347WM	LM392M
LF351M	LM393M
LF451CM	LM741CM
LF353M	LM1458M
LF355M	LM2901M
LF356M	LM2902M
LF357M	LM2903M
LF444CWM	LM2904M
LM10CWM	LM2924M
LM10CLWM	LM3403M
LM308M	LM4250M
LM308AM	LM324M
LM310M	LM339M
LM311M	LM365WM
LM318M	LM607CM
LM319M	LMC669BCWM
LM324M	LMC669CCWM
LM339M	LF441CM
LM346M	
LM348M	
LM358M	
LM359M	

Regulators and References

Part Number	Part Number
LM317LM	LM2931M-5.0
LF3334M	LM3524M
LM336M-2.5	LM78L05ACM
LF336BM-2.5	LM78L12ACM
LM336M-5.0	LM78L15ACM
LM336BM-5.0	LM79L05ACM
LM337LM	LM79L12ACM
LM385M	LM79L15ACM
LM385M-1.2	LP2951ACM
LM385BM-1.2	LP2951CM
LM385M-2.5	
LM385BM-2.5	
LM723CM	
LM2931CM	

Data Acquisition Circuits

Part Number	Part Number
ADC0802LCV	ADC1025BCV
ADC0802LCWM	ADC1025CCV
ADC0804LCV	DAC0800LCM
ADC0804LCWM	DAC0801LCM
ADC0808CCV	DAC0802LCM
ADC0809CCV	DAC0806LCM
ADC0811BCV	DAC0807LCM
ADC0811CCV	DAC0808LCM
ADC0819BCV	DAC0830LCWM
ADC0819CCV	DAC0830LCV
ADC0820BCV	DAC0832LCWM
ADC0820CCV	DAC0832LCV
ADC0838BCV	
ADC0838CCV	
ADC0841BCV	
ADC0841CCV	
ADC0848BCV	
ADC0848CCV	
ADC1005BCV	
ADC1005CCV	

Industrial Functions

Part Number	Part Number
AH5012CM	LM13600M
LF13331M	LM13700M
LF13509M	LMC555CM
LF13333M	LM567CM
LM555CM	MF4CWM-50
LM556CM	MF4CWM-100
LM567CM	MF6CWM-50
LM1496M	MF10CCWM
LM2917M	MF6CWM-100
LM3046M	MF5CWM
LM3086M	
LM3146M	

Commercial and Automotive

Part Number	Part Number
LM386M-1	LM1837M
LM592M	LM1851M
LM831M	LM1863M
LM832M	LM1865M
LM833M	LM1870M
LM837M	LM1894M
LM838M	LM1964V
LM1131CM	LM2893M
	LM3361AM

Hybrids

Part Number	Part Number
LH0002E	LH0032E
LH4002E	LH0033E

A FINAL WORD

National is a world leader in the design and manufacture of surface mount components.
Because of design innovations such as perforated copper leadframes, our small outline package is as reliable as our DIP-the laws of physics would have meant that a straight "junior copy" of the DIP would have resulted in an "S.O." package of lower reliability. You benefit from this equivalence of reliability. In addition, our ongoing vigilance at each step of the production process assures that the reliability we designed in stays in so that only devices of the highest quality and reliability are shipped to your factory.
Our surface mount applications lab at our headquarters site in Santa Clara, California continues to research (and publish) methods to make it even easier for you to use surface mount technology. Your problems are our problems.
When you think "Surface Mount"-think "National"!

Ordering and Shipping Information

When you order a surface mount semiconductor, it will be in one of the several available surface mount package types. Specifying the Tape-and-Reel method of shipment means that you will receive your devices in the following quantities per Tape-and-Reel pack: SMD devices can also be supplied in conventional conductive rails.

Package	Package Designator	Max/Rail	Per Reel*
SO-8	M	100	2500
SO-14	M	50	2500
SO-14 Wide	WM	50	1000
SO-16	M	50	2500
SO-16 Wide	WM	50	1000
SO-20	M	40	1000
SO-24	M	30	1000
PCL-20	V	50	1000
PCL-28	V	40	1000
PCL-44	V	25	500
PQFP-196	VF	TBD	-
TP-40	TP	100	TBD
LCC-20	E	50	-
LCC-44	E	25	-

*Incremental ordering quantities. (National Semiconductor reserves the right to provide a smaller quantity of devices per Tape-and-Reel pack to preserve lot or date code integrity. See example below.)
Example: You order 5,000 LM324M ICs shipped in Tape-and-Reel.

- Case 1: All 5,000 devices have the same date code
- You receive 2 SO-14 (Narrow) Tape-and-Reel packs, each having 2500 LM324M ICs
- Case 2: 3,000 devices have date code A and 2,000 devices have date code B
- You receive 3 SO-14 (Narrow) Tape-and-Reel packs as follows:
Pack \#1 has 2,500 LM324M ICs with date code A Pack \#2 has 500 LM324M ICs with date code A Pack \#3 has 2,000 LM324M ICs with date code B

Short-Form Procurement Specification
TAPE FORMAT
\rightarrow Direction of Feed

	Trailer (Hub End)*		Carrier*	Leader (Start End)*	
	Empty Cavities, min (Unsealed Cover Tape)	Empty Cavities, min (Sealed Cover Tape)	Filled Cavities (Sealed Cover Tape)	Empty Cavities, min (Sealed Cover Tape)	Empty Cavities, min (Unsealed Cover Tape)
Small Outline IC					
SO-8 (Narrow)	2	2	2500	5	5
SO-14 (Narrow)	2	2	2500	5	5
SO-14 (Wide)	2	2	1000	5	5
SO-16 (Narrow)	2	2	2500	5	5
SO-16 (Wide)	2	2	1000	5	5
SO-20 (Wide)	2	2	1000	5	5
SO-24 (Wide)	2	2	1000	5	5
Plastic Chip Carrier IC					
PCC-20	2	2	1000	5	5
PCC-28	2	2	750	5	5
PCC-44	2	2	500	5	5

[^26]Short-Form Procurement Specification (Continued) device orientation

TL/XX/0026-8

MATERIALS

- Cavity Tape: Conductive PVC (less than 10^{5} Ohms/Sq)
- Cover Tape: Polyester
(1) Conductive cover available
- Reel:
(1) Solid 80 pt fibreboard (standard)
(2) Conductive fibreboard available
(3) Conductive plastic (PVC) available

TAPE DIMENSIONS (24 Millimeter Tape or Less)

Short-Form Procurement Specification (Continued)

	w	P	F	E	P_{2}	P_{0}	D	T	A_{0}	B_{0}	K_{0}	D_{1}	R
Small Outline IC													
$\begin{aligned} & \text { SO-8 } \\ & \text { (Narrow) } \end{aligned}$	$12 \pm .30$	$8.0 \pm .10$	$5.5 \pm .05$	$1.75 \pm .10$	$2.0 \pm .05$	$4.0 \pm .10$	$1.55 \pm .05$	$.30 \pm .10$	$6.4 \pm .10$	$5.2 \pm .10$	$2.1 \pm .10$	$1.55 \pm .05$	30
SO-14 (Narrow)	$16 \pm .30$	$8.0 \pm .10$	$7.5 \pm .10$	$1.75 \pm .10$	$2.0 \pm .05$	$4.0 \pm .10$	$1.55 \pm .05$	$.30 \pm .10$	$6.5 \pm .10$	$9.0 \pm .10$	$2.1 \pm .10$	$1.55 \pm .05$	40
$\begin{aligned} & \text { SO-14 } \\ & \text { (Wide) } \end{aligned}$	$16 \pm .30$	$12.0 \pm .10$	$7.5 \pm .10$	$1.75 \pm .10$	$2.0 \pm .05$	$4.0 \pm .10$	$1.55 \pm .05$	$.30 \pm .10$	10.9 $\pm .10$	$9.5 \pm .10$	$3.0 \pm .10$	$1.55 \pm .05$	40
SO-16 (Narrow)	$16 \pm .30$	$8.0 \pm .10$	$7.5 \pm .10$	$1.75 \pm .10$	$2.0 \pm .05$	$4.0 \pm .10$	$1.55 \pm .05$. $30 \pm .10$	$6.5 \pm .10$	$10.3 \pm .10$	$2.1 \pm .10$	$1.55 \pm .05$	40
SO-16 (Wide)	$16 \pm .30$	$12.0 \pm .10$	$7.5 \pm .10$	$1.75 \pm .10$	$2.0 \pm .05$	$4.0 \pm .10$	$1.55 \pm .05$	$.30 \pm .10$	$10.9 \pm .10$	10.76 $\pm .10$	$3.0 \pm .10$	$1.55 \pm .05$	40
$\begin{aligned} & \text { SO-20 } \\ & \text { (Wide) } \end{aligned}$	$24 \pm .30$	$12.0 \pm .10$	$11.5 \pm .10$	$1.75 \pm .10$	$2.0 \pm .05$	$4.0 \pm .10$	$1.55 \pm .05$	$.30 \pm .10$	$10.9 \pm .10$	$13.3 \pm .10$	$3.0 \pm .10$	$2.05 \pm .05$	50
$\begin{aligned} & \text { SO-24 } \\ & \text { (Wide) } \end{aligned}$	$24 \pm .30$	$12.0 \pm .10$	$11.5 \pm .10$	$1.75 \pm .10$	$2.0 \pm .05$	$4.0 \pm .10$	$1.55 \pm .05$	$.30 \pm .10$	$10.9 \pm .10$	$15.85 \pm .10$	$3.0 \pm .10$	$2.05 \pm .05$	50

Plastic Chip Carrier IC

PCC-20	$16 \pm .30$	$12.0 \pm .10$	$7.5 \pm .10$	$1.75 \pm .10$	$2.0 \pm .05$	$4.0 \pm .10$	$1.55 \pm .05$	$.30 \pm .10$	$9.3 \pm .10$	$9.3 \pm .10$	$4.9 \pm .10$	$1.55 \pm .05$	40
PCC-28	$24 \pm .30$	$16.0 \pm .10$	$11.5 \pm .10$	$1.75 \pm .10$	$2.0 \pm .05$	$4.0 \pm .10$	$1.55 \pm .05$	$.30 \pm .10$	$13.0 \pm .10$	$13.0 \pm .10$	$4.9 \pm .10$	$2.05 \pm .05$	50

Note 1: A_{0}, B_{0} and K_{0} dimensions are measured 0.3 mm above the inside wall of the cavity bottom.
Note 2: Tape with components shall pass around a mandril radius R without damage.
Note 3: Cavity tape material shall be PVC conductive (less than $10^{5} \mathrm{Ohms} / \mathrm{Sq}$).
Note 4: Cover tape material shall be polyester (30-65 grams peel-back force).
Note 5: D_{1} Dimension is centered within cavity.
Note 6: All dimensions are in millimeters.

REEL DIMENSIONS

TL/XX/0026-10

STARTM* Surface Mount Tape and Reel

Short-Form Procurement Specifications (Continued)

		A (Max)	B (Min)	C	D (Min)	N (Min)	G	T (Max)
12 mm Tape	SO-8 (Narrow)	$\frac{(13.00)}{(330)}$	$\frac{.059}{1.5}$	$\frac{.512 \pm .002}{13 \pm 0.05}$	$\frac{.795}{20.2}$	$\frac{1.969}{50}$	$\frac{0.488}{12.4}{ }_{-0}^{+.000}$	$\frac{.724}{18.4}$
16 mm Tape	SO-14 (Narrow) SO-14 (Wide) SO-16 (Narrow) SO-16 (Wide) PCC-20	$\frac{(13.00)}{(330)}$	$\frac{.059}{1.5}$	$\frac{.512 \pm .002}{13 \pm 0.05}$	$\frac{.795}{20.2}$	$\frac{1.969}{50}$	$\frac{0.646_{-000}^{+.078}}{16.4}$	$\frac{.882}{22.4}$
24 mm Tape	SO-20 (Wide) SO-24 (Wide) PCC-28	$\frac{(13.00)}{(330)}$	$\frac{.059}{1.5}$	$\frac{.512 \pm .002}{13 \pm 0.05}$	$\frac{.795}{20.2}$	$\frac{1.969}{50}$	$\frac{0.960}{24.4}{ }_{-0}^{+.000}$	$\frac{1.197}{30.4}$
32 mm Tape	PCC-44	$\frac{(13.00)}{(330)}$	$\frac{.059}{1.5}$	$\frac{.512 \pm .002}{13 \pm 0.05}$	$\frac{.795}{20.2}$	$\frac{1.969}{50}$	$\frac{1.276}{32.4}{ }_{-0}^{+.000}$ -2	$\frac{1.512}{38.4}$

LABEL

Human and Machine Readable Label is provided on reel. A variable (C.P.I) density code 39 is available. NSC STD label (7.6 C.P.I.)

FIELD

Lot Number
Date Code
Revision Level
National Part No. I.D.
Qty.

EXAMPLE

TL/XX/0026-11
Fields are separated by at least one blank space.
Future Tape-and-Reel packs will also include a smaller-size bar code label (high-density code 39) at the beginning of the tape. (This tape label is not available on current production.) National Semiconductor will also offer additional labels containing information per your specific specification.

Wave Soldering of Surface Mount Components

ABSTRACT

In facing the upcoming surge of "surface mount technology", many manufacturers of printed circuit boards have taken steps to convert some portions of their boards to this new process. However, as the availability of surface mount components is still limited, may have taken to mixing the lead-inserted standard dual-in-line packages (DIPs) with the surface mounted devices (SMDs). Furthermore, to take advantage of using both sides of the board, surface-mounted components are generally adhered to the bottom side of the board while the top side is reserved for the conventional lead-inserted packages. If processed through a wave solder machine, the semiconductor components are now subjected to extra thermal stresses (now that the components are totally immersed into the molten solder).
A discussion of the effect of wave soldering on the reliability of plastic semiconductor packages follows. This is intended to highlight the limitations which should be understood in the use of wave soldering of surface mounted components.

ROLE OF WAVE-SOLDERING IN APPLICATION OF SMDs

The generally acceptable methods of soldering SMDs are vapor phase reflow soldering and IR reflow soldering, both requiring application of solder paste on PW boards prior to placement of the components. However, sentiment still exists for retaining the use of the old wave-soldering machine.

Wave Soldering of Surface Mount Components (Continued)

The reasons being:

1) Most PC Board Assembly houses already possess wave soldering equipment. Switching to another technology such as vapor phase soldering requires substantial investment in equipment and people.
2) Due to the limited number of devices that are surface mount components, it is necessary to mix both lead inserted components and surface mount components on the same board.
3) Some components such as relays and switches are made of materials which would not be able to survive the temperature exposure in a vapor phase or IR furnace.

PW BOARD ASSEMBLY PROCEDURES

There are two considerations in which through-hole ICs may be combined with surface mount components on the PW Board:
a) Whether to mount ICs on one or both sides of the board.
b) The sequence of soldering using Vapor Phase, IR or Wave Soldering singly or combination of two or more methods.
The various processes that may be employed are:
A) Wave Solder before Vapor/IR reflow solder.

1. Components on the same side of PW Board.

Lead insert standard DIPS onto PW Board Wave solder (conventional)
Wash and lead trim
Dispense solder paste on SMD pads
Pick and place SMDs onto PW Board
Bake
Vapor phase/IR reflow
Clean
2. Components on opposite side of PW Board.

Lead insert standard DIPs onto PW Board
Wave Solder (conventional)
Clean and lead trim
Invert PW Board
Dispense solder paste on SMD pads
Dispense drop of adhesive on SMD sites (optional for smaller components)
Pick and place SMDs onto board
Bake/Cure
Invert board to rest on raised fixture
Vapor/IR reflow soldering
Clean
B) Vapor/IR reflow solder then Wave Solder.

1. Components on the same side of PW Board.

Solder paste screened on SMD side of Printed Wire Board
Pick and place SMDs
Bake
Vapor/IR reflow
Lead insert on same side as SMDs
Wave solder
Clean and trim underside of PCB
C) Vapor/IR reflow only.

1. Components on the same side of PW Board.

Trim and form standard DIPs in "gull wing" configuration
Solder paste screened on PW Board
Pick and place SMDs and DIPs
Bake
Vapor/IR reflow
Clean
2. Components on opposite sides of PW Board.

Solder paste screened on SMD-side of Printed Wire Board
Adhesive dispensed at central location of each component
Pick and place SMDs
Bake
Solder paste screened on all pads on DIP-side or alternatively apply solder rings (performs) on leads
Lead insert DIPs
Vapor/IR reflow
Clean and lead trim
D) Wave Soldering Only

1. Components on opposite sides of PW Board.

Adhesive dispense on SMD side of PW Board
Pick and place SMDs
Cure adhesive
Lead insert top side with DIPs
Wave solder with SMDs down and into solder bath Clean and lead trim
All of the above assembly procedures can be divided into three categories for I.C. Reliability considerations:

1) Components are subjected to both a vapor phase/IR heat cycle then followed by a wave-solder heat cycle or vice versa.
2) Components are subjected to only a vapor phase/IR heat cycle.
3) Components are subjected to wave-soldering only and SMDs are subjected to heat by immersion into a solder pot.
Of these three categories, the last is the most severe regarding heat treatment to a semiconductor device. However, note that semiconductor molded packages generally possess a coating of solder on their leads as a final finish for solderability and protection of base leadframe material. Most semiconductor manufacturers solder-plate the component leads, while others perform hot solder dip. In the latter case the packages may be subjected to total immersion into a hot solder bath under controlled conditions (manual operation) or be partially immersed while in a 'pallet' where automatic wave or DIP soldering processes are used. It is, therefore, possible to subject SMDs to solder heat under certain conditions and not cause catastrophic failures.

Wave Soldering of Surface Mount Components (Continued)

THERMAL CHARACTERISTICS OF MOLDED INTEGRATED CIRCUITS

Since Plastic DIPs and SMDs are encapsulated with a thermoset epoxy, the thermal characteristics of the material generally correspond to a TMA (Thermo-Mechanical Analysis) graph. The critical parameters are (a) its Linear thermal expansion characteristics and (b) its glass transition temperature after the epoxy has been fully cured. A typical TMA graph is illustrated in Figure 1. Note that the epoxy changes to a higher thermal expansion once it is subjected to temperatures exceeding its glass transition temperature. Metals (as used on lead frames, for example) do not have this characteristic and generally will have a consistent Linear thermal expansion over the same temperature range.
In any good reliable plastic package, the choice of lead frame material should be such to match its thermal expansion properties to that of the encapsulating epoxy. In the event that there is a mismatch between the two, stresses can build up at the interface of the epoxy and metal. There now exists a tendency for the epoxy to separate from the metal lead frame in a manner similar to that observed on bimetallic thermal range.
In most cases when the packages are kept at temperatures below their glass transition, there is a small possibility of separation at the expoxy-metal interface. Howerver, if the package is subjected to temprature above its glass-transition temperature, the epoxy will begin to expand much faster than the metal and the probability of separation is greatly increased.

CONVENTIONAL WAVE-SOLDERING

Most wave-soldering operations occur at temperatures between $240-260^{\circ} \mathrm{C}$. Conventional epoxies for encapsulation have glass-transition temperature between $140-170^{\circ} \mathrm{C}$. An I.C. directly exposed to these temperatures risks its long term functionality due to epoxy/metal separation.
Fortunately, there are factors that can reduce that element of risk:

1) The PW board has a certain amount of heat-sink effect and tends to shield the components from the temperature of the solder (if they were placed on the top side of the board). In actual measurements, DIPs achieve a temperature between $120-150^{\circ} \mathrm{C}$ in a 5 -second pass over the solder. This accounts for the fact that DIPs mounted in the conventional manner are reliable.
2) In conventional soldering, only the tip of each lead in a DIP would experience the solder temperature because the epoxy and die are standing above the PW board and out of the solder bath.

EFFECT ON PACKAGE PERFORMANCE BY EPOXY-METAL SEPARATION

In wave soldering, it is necessary to use fluxes to assist the solderability of the components and PW boards. Some facilities may even process the boards and components through some form of acid cleaning prior to the soldering temperature. If separation occurs, the flux residues and acid residues (which may be present owing to inadequate cleaning) will be forced into the package mainly by capillary action as the residues move away from the solder heat source. Once the package is cooled, these contaminants are now trapped within the package and are available to diffuse with moisture from the epoxy over time. It should be noted that electrical tests performed immediately after soldering generally will give no indication of this potential problem. In any case, the end result will be corrosion of the chip metallization over time and premature failure of the device in the field.

VAPOR PHASE/IR REFLOW SOLDERING

In both vapor phase and IR reflow soldering, the risk of separation between epoxy/metal can also be high. Operating temperatures are $215^{\circ} \mathrm{C}$ (vapor phase) or $240^{\circ} \mathrm{C}$ (IR) and duration may also be longer ($30 \mathrm{sec}-60 \mathrm{sec}$). On the same theoretical basis, there should also be separation. However, in both these methods, solder paste is applied to the pads of the boards; no fluxes are used. Also, the devices are not immersed into the hot solder. This reduces the possibility of solder forcing itself into the epoxy-lead frame interface. Furthermore, in the vapor phase system, the soldering environment is "oxygen-free" and considered "contaminant free". Being so, it could be visualized that as far as reliability with respect to corrosion, both of these methods are advantageous over wave soldering.

BIAS MOISTURE TEST

A bias moisture test was designed to determine the effect on package performance. In this test, the packages are pressured in a stream chamber to accelerate penetration of moisture into the package. An electrical bias is applied on the device. Should there be any contaminants trapped within the package, the moisture will quickly form an electrolyte and cause the electrodes (which are the lead fingers), the gold wire and the aluminum bond-pads of the silicon device to corrode. The aluminum bond-pads, being the weakest link of the system, will generally be the first to fail.
This proprietary accelerated bias/moisture pressure-test is significant in relation to the life test condition at $85^{\circ} \mathrm{C}$ and

FIGURE 1. Thermal Expansion and Glass Transition Temperature

Wave Soldering of Surface Mount Components (Continued)

85% relative humidity. Once cycle of approximately 100 hours has been shown to be equivalent to 2000 hours in the 85/85 condition. Should the packages start to fail within the first cycle in the test, it is anticipated that the boards with these components in the harsh operating environment ($85^{\circ} \mathrm{C} / 85 \%$ RH) will experience corrosion and eventual electrical failures within its first 2000 hours of operation.
Whether this is significant to a circuit board manufacturer will obviously be dependent on the products being manufactured and the workmanship or reliability standards. Generally in systems with a long warranty and containing many components, it is advisable both on a reputation and cost basis to have the most reliable parts available.

TEST RESULTS

The comparison of vapor phase and wave-soldering upon the reliability of molded Small-Outline packages was performed using the bias moisture test (see Table IV). It is clearly seen that vapor phase reflow soldering gave more consistent results. Wave-soldering results were based on manual operation giving variations in soldering parameters such as temperature and duration.

TABLE IV. Vapor Phase vs. Wave Solder

```
1. Vapor phase (60 sec. exposure @ 215
    = 9 failures/1723 samples
    = 0.5% (average over 32 sample lots)
2. Wave solder (2 sec total immersion @ 260'C)
    = 16 failures/1201 samples
    = 1.3% (average over 27 sample lots)
Package: SO-14 lead
Test: Bias moisture test 85% R.H.,
    85}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ for 2000 hours
Device: LM324M
```

In Table V we examine the tolerance of the Small-Outlined (SOIC) package to varying immersion time in a hot solder pot. SO-14 lead molded packages were subjected to the bias moisture test after being treated to the various soldering conditions and repeated four (4) times. End point was an electrical test after an equivalent of 4000 hours 85/85 test. Results were compared for packages by itself against packages which were surface-mounted onto a FR-4 printed wire board.

TABLE V. Summary of Wave Solder Results (85% R.H. $85^{\circ} \mathrm{C}$ Bias Moisture Test, 2000 hours) (\# Failures/Total Tested)

	Unmounted	Mounted
Control/Vapor Phase 15 sec @ 215	$0 / 114$	$0 / 84$
Solder Dip 2 sec @ 260	$2 / 144(1.4 \%)$	$0 / 85$
Solder Dip 4 sec @ 260	-	$0 / 83$
Solder Dip 6 sec @ 260	$13 / 248(5.2 \%)$	$1 / 76(1.3 \%)$
Solder Dip 10 sec @ 260	$14 / 127(11.0 \%)$	$3 / 79(3.8 \%)$
Package: SO-14 lead Device: LM324M		

Since the package is of very small mass and experiences a rather sharp thermal shock followed by stresses created by the mismatch in expansion, the results show the package being susceptible to failures after being immersed in excess of 6 seconds in a solder pot. In the second case where the packages were mounted, the effect of severe temperature excursion was reduced. In the second case where the packages were mounted, the effect of severe temperature excursion was reduced. In any case, because of the repeated treatment, the package had failures when subjected in excess of 6 seconds immersion in hot solder. The safety margin is therefore recommended as maximum 4 seconds immersion. If packages were immersed longer than 4 sec onds, there is a probable chance of finding some long term reliability failures even though the immediate electrical test data could be acceptable.
Finally, Table VI examines the bias moisture test performed on surface mount (SOIC) components manufactured by various semiconductor houses. End point was an electrical test after an equivalent of 6000 hours in a 85/85 test. Failures were analyzed and corrosion was checked for in each case to detect flaws in package integrity.

TABLE VI. U.S. Manufacturers Integrated Circuits Reliability in Various Solder Environments (\# Failure/Total Tested)

Package SO-8	Vapor Phase 30 sec	Wave Solder 2 sec	Wave Solder 4 sec	Wave Solder $\mathbf{6 ~ s e c ~}$	Wave Solder $\mathbf{1 0 ~ s e c ~}$
Manuf A	$8 / 30^{*}$	$1 / 30^{*}$	0.30	$12 / 30^{*}$	$16 / 30^{*}$
Manuf B	$2 / 30^{*}$	$8 / 30^{*}$	$2 / 30^{*}$	$22 / 30^{*}$	$20 / 30^{*}$
Manuf C	$0 / 30$	$0 / 29$	$0 / 29$	$0 / 30$	$0 / 30$
Manuf D	$1 / 30^{*}$	$0 / 30$	$12 / 30^{*}$	$14 / 30^{*}$	$2 / 30^{*}$
Manuf E	$1 / 30^{* *}$	$0 / 30$	$0 / 30$	$0 / 30$	$0 / 30$
Manuf F	$0 / 30$	$0 / 30$	$0 / 30$	$0 / 30$	$0 / 30$
Manuf G	$0 / 30$	$0 / 30$	$0 / 30$	$0 / 30$	$0 / 30$

*Corrosion-failures
**No Visual Defects-Non-corrosion failures
Test: Accelerated Bias Moisture Test; 85% R.H. $/ 85^{\circ} \mathrm{C}, 6000$ equivalent hours.

SUMMARY

Based on the results presented, it is noted that surfacemounted components are as reliable as standard molded DIP packages. Whereas DIPs were never processed by being totally immersed in a hot solder wave during printed circuit board soldering, surface mounted components such as SOICs (Small Outline) are expected to survive a total immersion in the hot solder in order to capitalize on maximum population on boards. Being constructed from a thermoset plastic of relatively low Tg compared to the soldering temperature, the ability of the package to survive is dependent on the time of immersion and also the cleanliness of material. The results indicate that one should limit the immersion time of package in the solder wave to a maximum of 4 sec onds in order to truly duplicate the reliability of a DIP. As the package size is reduced, as in a SO-8 lead, the requirement becomes even more critical. This is shown by the various manufacturers' performance. Results indicate there is room for improvement since not all survived the hot solder immersion without compromise to lower reliability.

Small Outline (SO) Package Surface Mounting MethodsParameters and Their Effect on Product Reliability

National Semiconductor

Application Note 450
Josip Huljev
W. K. Boey

The SO (small outline) package has been developed to meet customer demand for ever-increasing miniaturization and component density.

COMPONENT SIZE COMPARISON

Because of its small size, reliability of the product assembled in SO packages needs to be carefully evaluated.
SO packages at National were internally qualified for production under the condition that they be of comparable reliability performance to a standard dual in line package under all accelerated environmental tests. Figure A is a summary of accelarated bias moisture test performance on 30V bipolar and 15 V CMOS product assembled in SO and DIP (control) packages.

TL/F/8766-3
FIGURE A

In order to achieve reliability performance comparable to DIPs-SO packages are designed and built with materials and processes that effectively compensate for their small size.

All SO packages tested on 85% RA, $85^{\circ} \mathrm{C}$ were assembled on PC conversion boards using vapor-phase reflow soldering. With this approach we are able to measure the effect of surface mounting methods on reliability of the process. As illustrated in Figure A no significant difference was detected between the long term reliability performance of surface mounted S.O. packages and the DIP control product for up to 6000 hours of accelerated $85 \% / 85^{\circ} \mathrm{C}$ testing.

SURFACE-MOUNT PROCESS FLOW

The standard process flowcharts for basic surface-mount operation and mixed-lead insertion/surface-mount operations, are illustrated on the following pages.
Usual variations encountered by users of SO packages are:

- Single-sided boards, surface-mounted components only.
- Single-sided boards, mixed-lead inserted and surfacemounted components.
- Double-sided boards, surface-mounted components only.
- Double-sided boards, mixed-lead inserted and surfacemounted components.
In consideration of these variations, it became necessary for users to utilize techniques involving wave soldering and adhesive applications, along with the commonly-used vaporphase solder reflow soldering technique.

PRODUCTION FLOW

Basic Surface-Mount Production Flow

TL/F/8766-4

Mixed Surface-Mount and Axial-Leaded Insertion Components Production Flow

TL/F/8766-5

Thermal stress of the packages during surface-mounting processing is more severe than during standard DIP PC board mounting processes. Figure B illustrates package temperature versus wave soldering dwell time for surface mounted packages (components are immersed into the molten solder) and the standard DIP wave soldering process. (Only leads of the package are immersed into the molten solder).

TL/F/8766-6
FIGURE B
For an ideal package, the thermal expansion rate of the encapsulant should match that of the leadframe material in order for the package to maintain mechanical integrity during the soldering process. Unfortunately, a perfect matchup of thermal expansion rates with most presently used packaging materials is scarce. The problem lies primarily with the epoxy compound.
Normally, thermal expansion rates for epoxy encapsulant and metal lead frame materials are linear and remain fairly close at temperatures approaching $160^{\circ} \mathrm{C}$, Figure C. At lower temperatures the difference in expansion rate of the two materials is not great enough to cause interface separation. However, when the package reaches the glass-transition temperature (T_{g}) of epoxy (typically $160-165^{\circ} \mathrm{C}$), the thermal expansion rate of the encapsulant increases sharply, and the material undergoes a transition into a plastic state. The epoxy begins to expand at a rate three times or more greater than the metal leadframe, causing a separation at the interface.

FIGURE C

When this happens during a conventional wave soldering process using flux and acid cleaners, process residues and even solder can enter the cavity created by the separation and become entrapped when the material cools. These contaminants can eventually diffuse into the interior of the package, especially in the presence of moisture. The result is die contamination, excessive leakage, and even catastrophic failure. Unfortunately, electrical tests performed immediately following soldering may not detect potential flaws. Most soldering processes involve temperatures ranging up to $260^{\circ} \mathrm{C}$, which far exceeds the glass-transition temperature of epoxy. Clearly, circuit boards containing SMD packages require tighter process controls than those used for boards populated solely by DIPs.
Figure D is a summary of accelerated bias moisture test performance on the 30 V bipolar process.
Group 1 - Standard DIP package
Group 2 - SO packages vapor-phase reflow soldered on PC boards
Group 3-6 SO packages wave soldered on PC boards
Group 3 - dwell time 2 seconds
4 - dwell time 4 seconds
5 - dwell time 6 seconds
6 - dwell time 10 seconds

TL/F/8766-7
FIGURE D
It is clear based on the data presented that SO packages soldered onto PC boards with the vapor phase reflow process have the best long term bias moisture performance and this is comparable to the performance of standard DIP packages. The key advantage of reflow soldering methods is the clean environment that minimized the potential for contamination of surface mounted packages, and is preferred for the surface-mount process.
When wave soldering is used to surface mount components on the board, the dwell time of the component under molten solder should be no more than 4 seconds, preferrably under 2 seconds in order to prevent damage to the component. Non-Halide, or (organic acid) fluxes are highly recommended.

PICK AND PLACE

The choice of automatic (all generally programmable) pick-and-place machines to handle surface mounting has grown considerably, and their selection is based on individual needs and degree of sophistication.

The basic component-placement systems available are classified as:
(a) In-line placement

- Fixed placement stations
- Boards indexed under head and respective components placed
(b) Sequential placement
- Either a $X-Y$ moving table system or a θ, $X-Y$ moving pickup system used
-Individual components picked and placed onto boards
(c) Simultaneous placement
- Multiple pickup heads
- Whole array of components placed onto the PCB at the same time
(d) Sequential/simultaneous placement
- X-Y moving table, multiple pickup heads system
- Components placed on PCB by successive or simultaneous actuation of pickup heads
The SO package is treated almost the same as surfacemount, passive components requiring correct orientation in placement on the board.

Pick and Place Action

BAKE

This is recommended, despite claims made by some solder paste suppliers that this step be omitted.
The functions of this step are:

- Holds down the solder globules during subsequent reflow soldering process and prevents expulsion of small solder balls.
- Acts as an adhesive to hold the components in place during handling between placement to reflow soldering.
- Holds components in position when a double-sided sur-face-mounted board is held upside down going into a va-por-phase reflow soldering operation.
- Removes solvents which might otherwise contaminate other equipment.
- Initiates activator cleaning of surfaces to be soldered.
- Prevents moisture absorption.

The process is moreover very simple. The usual schedule is about 20 minutes in a $65^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}$ (dependent on solvent system of solder paste) oven with adequate venting. Longer bake time is not recommended due to the following reasons:

- The flux will degrade and affect the characteristics of the paste.
- Solder globules will begin to oxidize and cause solderability problems.
- The paste will creep and after reflow, may leave behind residues between traces which are difficult to remove and vulnerable to electro-migration problems.

REFLOW SOLDERING

There are various methods for reflowing the solder paste, namely:

- Hot air reflow
- Infrared heating (furnaces)
- Convectional oven heating
- Vapor-phase reflow soldering
- Laser soldering

For SO applications, hot air reflow/infrared furnace may be used for low-volume production or prototype work, but va-por-phase soldering reflow is more efficient for consistency and speed. Oven heating is not recommended because of "hot spots" in the oven and uneven melting may result. Laser soldering is more for specialized applications and requires a great amount of investment.

HOT GAS REFLOW/INFRARED HEATING

A hand-held or table-mount air blower (with appropriate orifice mask) can be used.
The boards are preheated to about $100^{\circ} \mathrm{C}$ and then subjected to an air jet at about $260^{\circ} \mathrm{C}$. This is a slow process and results may be inconsistent due to various heat-sink properties of passive components.
Use of an infrared furnace is the next step to automating the concept, except that the heating is promoted by use of IR lamps or panels. The main objection to this method is that certain materials may heat up at different rates under IR radiation and may result in damage to these components (usually sockets and connectors). This could be minimized by using far-infrared (non-focused) system.

VAPOR-PHASE REFLOW SOLDERING

Currently the most popular and consistent method, vaporphase soldering utilizes a fluoroinert fluid with excellent heat-transfer properties to heat up components until the solder paste reflows. The maximum temperature is limited by the vapor temperature of the fluid.
The commonly used fluids (supplied by 3 M Corp) are:

- FC-70, $215^{\circ} \mathrm{C}$ vapor (most applications) or FX-38
- FC-71, $253^{\circ} \mathrm{C}$ vapor (low-lead or tin-plate)

HTC, Concord, CA, manufactures equipment that utilizes this technique, with two options:

- Batch systems, where boards are lowered in a basket and subjected to the vapor from a tank of boiling fluid.
- In-line conveyorized systems, where boards are placed onto a continuous belt which transports them into a concealed tank where they are subjected to an environment of hot vapor.
Dwell time in the vapor is generally on the order of 15-30 seconds (depending on the mass of the boards and the loading density of boards on the belt).

The question of thermal shock is asked frequently because of the relatively sharp increase in component temperature from room temperature to $215^{\circ} \mathrm{C}$. SO packages mounted on representative boards have been tested and have shown little effect on the integrity of the packages. Various packages, such as cerdips, metal cans and TO-5 cans with glass seals, have also been tested.

TL/F/8766-10

Solder Joints on a SO-14 Package on PCB

TL/F/8766-12

PRINTED CIRCUIT BOARD

The SO package is molded out of clean, thermoset plastic compound and has no particular compatibility problems with most printed circuit board substrates.
The package can be reliably mounted onto substrates such as:

- G10 or FR4 glass/resin
- FR5 glass/resin systems for high-temperature applications
- Polymide boards, also high-temperature applications
- Ceramic substrates

General requirements for printed circuit boards are:

- Mounting pads should be solder-plated whenever applicable.
- Solder masks are commonly used to prevent solder bridging of fine lines during soldering.
The mask also protects circuits from processing chemical contamination and corrosion.
If coated over pre-tinned traces, residues may accumulate at the mask/trace interface during subsequent reflow, leading to possible reliability failures.
Recommended application of solder resist on bare, clean traces prior to coating exposed areas with solder.
General requirements for solder mask:
- Good pattern resolution.
- Complete coverage of circuit lines and resistance to flaking during soldering.
- Adhesion should be excellent on substrate material to keep off moisture and chemicals.
- Compatible with soldering and cleaning requirements.

SOLDER PASTE SCREEN PRINTING

With the initial choice of printed circuit lithographic design and substrate material, the first step in surface mounting is the application of solder paste.

Solder Joints on a SO-14 Package on PCB

TL/F/8766-13
The typical lithographic "footprints" for SO packages are illustrated below. Note that the $0.050^{\prime \prime}$ lead center-center spacing is not easily managed by commercially-available air pressure, hand-held dispensers.
Using a stainless-steel, wire-mesh screen stencilled with an emulsion image of the substrate pads is by far the most common and well-tried method. The paste is forced through the screen by a V-shaped plastic squeegee in a sweeping manner onto the board placed beneath the screen.
The setup for SO packages has no special requirement from that required by other surface-mounted, passive components. Recommended working specifications are:

- Use stainless-steel, wire-mesh screens, \#80 or \#120, wire diameter 2.6 mils. Rule of thumb: mesh opening should be approximately 2.5-5 times larger than the average particle size of paste material.
- Use squeegee of Durometer 70.
- Experimentation with squeegee travel speed is recommended, if available on machine used.
- Use solder paste of mesh 200-325.
- Emulsion thickness of 0.005 " usually used to achieve a solder paste thickness (wet) of about $0.008^{\prime \prime}$ typical.
- Mesh pattern should be 90 degrees, square grid.
- Snap-off height of screen should not exceed $1 / \mathrm{s}^{\prime \prime}$, to avoid damage to screens and minimize distortion.

SOLDER PASTE

Selection of solder paste tends to be confusing, due to numerous formulations available from various manufacturers. In general, the following guidelines are sufficient to qualify a particular paste for production:

- Particle sizes (see photographs below). Mesh 325 (approximately 45 microns) should be used for general purposes, while larger (solder globules) particles are preferred for leadless components (LCC). The larger particles can easily be used for SO packages.
- Uniform particle distribution. Solder globules should be spherical in shape with uniform diameters and minimum amount of elongation (visual under 100/200 \times magnification). Uneven distribution causes uneven melting and subsequent expulsion of smaller solder balls away from their proper sites.

RECOMMENDED SOLDER PADS FOR SO PACKAGES

Comparison of Particle Size/Shape of Various Solder Pastes

$200 \times$ Kester (63/37)

Solder Paste Screen on Pads

$200 \times$ Fry Metal (63/37)

TL/F/8766-20

200 ESL (63/37)

TL/F/8766-21

CLEANING

The most critical process in surface mounting SO packages is in the cleaning cycle. The package is mounted very close to the surface of the substrate and has a tendency to collect residue left behind after reflow soldering.
Important considerations in cleaning are:

- Time between soldering and cleaning to be as short as possible. Residue should not be allowed to solidify on the substrate for long periods of time, making it difficult to dislodge.
- A low surface tension solvent (high penetration) should be employed. Solvents commercially available are:

Freon TMS (general purpose)
Freon TE35/TP35 (cold-dip cleaning)
Freon TES (general purpose)
It should also be noted that these solvents generally will leave the substrate surface hydrophobic (moisture repellent), which is desirable.

Prelete or 1,1,1-Trichloroethane
Kester 5120/5121

- A defluxer system which allows the workpiece to be subjected to a solvent vapor, followed by a rinse in pure solvent and a high-pressure spray lance are the basic requirments for low-volume production.
- For volume production, a conveyorized, multiple hot solvent spray/jet system is recommended.
- Rosin, being a natural occurring material, is not readily soluble in solvents, and has long been a stumbling block to the cleaning process. In recent developments, synthetic flux (SA flux), which is readily soluble in Freon TMS solvent, has been developed. This should be explored where permissible.
The dangers of an inadequate cleaning cycle are:
- Ion contamination, where ionic residue left on boards would cause corrosion to metallic components, affecting the performance of the board.
- Electro-migration, where ionic residue and moisture present on electrically-biased boards would cause dentritic growth between close spacing traces on the substrate, resulting in failures (shorts).

REWORK

Should there be a need to replace a component or re-align a previously disturbed component, a hot air system with appropriate orifice masking to protect surrounding components may be used.

When rework is necessary in the field, specially-designed tweezers that thermally heat the component may be used to remove it from its site. The replacement can be fluxed at the

Hot-Air Solder Rework Station

TL/F/8766-23
lead tips or, if necessary, solder paste can be dispensed onto the pads using a varimeter. After being placed into position, the solder is reflowed by a hot-air jet or even a standard soldering iron.

WAVE SOLDERING

In a case where lead insertions are made on the same board as surface-mounted components, there is a need to include a wave-soldering operation in the process flow.
Two options are used:

- Surface mounted components are placed and vapor phase reflowed before auto-insertion of remaining components. The board is carried over a standard wave-solder system and the underside of the board (only lead-inserted leads) soldered.
- Surface-mounted components are placed in position, but no solder paste is used. Instead, a drop of adhesive about 5 mils maximum in height with diameter not exceeding 25% width of the package is used to hold down the package. The adhesive is cured and then proceeded to autoinsertion on the reverse side of the board (surface-mounted side facing down). The assembly is then passed over a "dual wave" soldering system. Note that the surfacemounted components are immersed into the molten solder.
Lead trimming will pose a problem after soldering in the latter case, unless the leads of the insertion components are pre-trimmed or the board specially designed to localize certain areas for easy access to the trim blade.
The controls required for wave soldering are:
- Solder temperature to be $240-260^{\circ} \mathrm{C}$. The dwell time of components under molten solder to be short (preferably kept under 2 seconds), to prevent damage to most components and semiconductor devices.
- RMA (Rosin Mildly Activated) flux or more aggressive OA (Organic Acid) flux are applied by either dipping or foam fluxing on boards prior to preheat and soldering. Cleaning procedures are also more difficult (aqueous, when OA flux is used), as the entire board has been treated by flux (unlike solder paste, which is more or less localized). Nonhalide OA fluxes are highly recommended.
- Preheating of boards is essential to reduce thermal shock on components. Board should reach a temperature of about $100^{\circ} \mathrm{C}$ just before entering the solder wave.
- Due to the closer lead spacings ($0.050^{\prime \prime}$ vs $0.100^{\prime \prime}$ for dual-in-line packages), bridging of traces by solder could occur. The reduced clearance between packages also causes "shadowing" of some areas, resulting in poor solder coverage. This is minimized by dual-wave solder systems.

Mixed Surface Mount and Lead Insertion

(a) Same Side

(b) Opposite Sides

TL/F/8766-24

A typical dual-wave system is illustrated below, showing the various stages employed. The first wave typically is in turbulence and given a transverse motion (across the motion of the board). This covers areas where "shadowing" occurs. A second wave (usually a broad wave) then proceeds to perform the standard soldering. The departing edge from the solder is such to reduce "icicles," and is still further reduced by an air knife placed close to the final soldering step. This air knife will blow off exfeess solder (still in the fluid stage) which would otherwise, cause shorts (bridging) and solder bumps.

AQUEOUS CLEANING

- For volume production, a conveyorized system is often used with a heated recirculating spray wash (water temperature $130^{\circ} \mathrm{C}$), a final spray rinse (water temperature $45-55^{\circ} \mathrm{C}$), and a hot $\left(120^{\circ} \mathrm{C}\right)$ air/air-knife drying section.
- For low-volume production, the above cleaning can be done manually, using several water rinses/tanks. Fastdrying solvents, like alcohols that are miscible with water, are sometimes used to help the drying process.
- Neutralizing agents which will react with the corrosive materials in the flux and produce material readily soluble in water may be used; the choice depends on the type of flux used.
- Final rinse water should be free from chemicals which are introduced to maintain the biological purity of the water. These materials, mostly chlorides, are detrimental to the assemblies cleaned because they introduce a fresh amount of ionizable material.

CONFORMAL COATING

Conformal coating is recommended for high-reliability PCBs to provide insulation resistance, as well as protection against contamination and degradation by moisture.
Requirements:

- Complete coating over components and solder joints.
- Thixotropic material which will not flow under the packages or fill voids, otherwise will introduce stress on solder joints on expansion.
- Compatibility and possess excellent adhesion with PCB material/components.
- Silicones are recommended where permissible in application.

FUNCTIONS
Demonstration-Introduce first-time users to surfacemounting processes.
Service-Investigate problems experienced by users on surface mounting.
Reliability Builds-Assemble surface-mounted units for reliability data acquisition.

Techniques-Develop techniques for handling different materials and processes in surface mounting.
Equipment-In conjunction with equipment manufacturers, develop customized equipments to handle high density, new technology packages developed by National.
In-House Expertise-Availability of in-house expertise on semiconductor research/development to assist users on packaging queries.

Section 8

Appendices/
 Physical Dimensions

Section 8 Contents

Appendix A General Product Marking and Code Explanation 8-3
Appendix B Application Note Referenced by Part Number 8-4
Appendix C Summary of Commercial Reliability Programs 8-10
Appendix D Military Aerospace Programs from National Semiconductor 8-11
Appendix E Understanding Integrated Circuit Package Power Capabilities 8-18
Appendix F How to Get the Right Information from a Datasheet 8-23
Appendix G Obsolete Product Replacement Guide 8-27
Physical Dimensions 8-28
Bookshelf
Distributors

National Semiconductor

National Semiconductor Appendix B

APPLICATION NOTE REFERENCED BY PART NUMBER

> National Semiconductor Linear Application notes are normally written to explain the operation and use of a particular device or family of IC's, or to present alternative technical solutions. The following PART NUMBER index references the published application notes that would offer application assistance for those specific IC's.
> The 1986 Linear Applications Handbook is a complete text for all current Application Notes for both Monolithic and Hybrid products. Specific Application Notes are available upon request through National Semiconductor Sales Offices.

DEVICE NUMBER

APPLICATION NOTE

ADCXXXX

AN-156

ADC80
AN-360
ADC0801 . AN-233, AN-271, AN-274, AN-280, AN-281, AN-294, LB-53
ADC0802 ...AN-233, AN-274, AN-280, AN-281, LB-53
ADC0803. AN-233, AN-274, AN-280, AN-281, LB-53
ADC0804... . . AN-233, AN-274, AN-276, AN-280, AN-281, LB-53
ADC0805 AN-233, AN-274, AN-280, AN-281, LB-53
ADC0808... . . AN-247, AN-280, AN-281
ADC0809 . AN-247, AN-280
ADC0816 . AN-193, AN-247, AN-258, AN-280

ADC0820 .. AN-. 237
ADC0831 . AN-280, AN-281
ADC0832 .. . AN-280, AN-281
ADC0833 . AN-280, AN-281
ADC0834 AN-280, AN-281
ADC0838 .. AN-280, AN-281
ADC1001... . . AN-276, AN-280, AN-281
ADC1005 AN-280
ADC1210 AN-245
ADC3501
ADC3511.. . AN-200
ADC3701
ADC3711 AN-200
AH0014.. . . . AN-38
AH0019..
CD4016.. . . . AB-10
DACXXXX...
DAC0830 AN-284
DAC0831

DAC1000 . AN-271, AN-275, AN-277, AN-284
DAC1001 . AN-271, AN-275, AN-277, AN-284
DAC1002 . AN-271, AN-275, AN-277, AN-284
DAC1006 AN-271, AN-275, AN-277, AN-284
DAC1007 AN-271, AN-275, AN-277, AN-284

DEVICE NUMBER

APPLICATION NOTE

DAC1008
AN-271, AN-275, AN-277, AN-284
DAC1020
DAC1021
AN-299
DAC1022
AN-269
DAC1208
AN-271, AN-284
DAC1209
AN-271, AN-284
DAC1210 AN-271, AN-284
DAC1218 AN-293
DAC1220
AN-253, AN-269
DAC1221
AN-269
DAC1222
AN-269
DAC1230
AN-284
DAC1231
AN-271, AN-284
DAC1232 AN-271, AN-284
DAC1280 AN-261, AN-263
DH0034 AN-253
DH0035
AN-49
DS8606
DS8608
AN-381, AN-382
DT1058
AN-382
DT1060
AN-287

DTSW250E2
AN-287
DTSW250GI
AN-287
INS8070
AN-287

LF311 AN-301
LF347
AN-256, AN-262, AN-263, AN-265, AN-266, AN-301, AN-344, AN-447
LF351 AN-242, AN-263, AN-266, AN-271, AN-275, AN-293, AN-447, Appendix C
LF351A
AN-240
LF351B
Appendix D
LF353 AN-256, AN-258, AN-263, AN-264, AN-271, AN-285, AN-293, AN-447, LB-44, Appendix D
LF356 . AN-253, AN-258, AN-260, AN-263, AN-266, AN-271, AN-272, AN-275, AN-293, AN-294, AN-295, AN-301, AN-447
LF357
AN-263, AN-447, LB-42
LF398. AN-247, AN-258, AN-266, AN-294, AN-298, LB-45
LF400
AN-428, AN-447
LF411 . AN-294, AN-301, AN-344, AN-447
LF412 . AN-272, AN-299, AN-301, AN-344, AN-447

LF13007 . AN-344
LF13331 . AN-294, AN-447
LF13508 . AN-289, AN-360, AN-447

LHOOO2 . AN-13, AN-63, AN-227, AN-244, AN-263, AN-272, AN-301
LH0022 . AN-63, AN-75
LH0023 . AN-245, AN-360
LH0024 . AN-253
LH0032 . AN-242, AN-244, AN-253
LH0033 . AN-48, AN-115, AN-227, AN-253
LH0042
AN-63

DEVICE NUMBER

APPLICATION NOTE

LH0043 . AN-245
LH0052 . A AN-63
LH0053 . AN-245
LH0062 . AN-75
LH0063 . AN-227
LH0070 . AN-301
LH0071 . AN-245
LH0082 . AN-244, AN-266
LH0086 . AN-245, AN-360
LH0091 .
LH0094 . AN-301
LH0101 . AN- 261
LH1605 . AN-343
LM10 . AN-211, AN-247, AN-258, AN-271, AN-288, AN-299, AN-300
LM11. AN-241, AN-242, AN-260, AN-266, AN-271
LM12
LM101 . AN-4, AN-13, AN-20, AN-24, AN-75, LB-42, Appendix A
LM101A . AN-29, AN-30, AN-31, AN-79, AN-241, LB-1, LB-2, LB-4, LB-8, LB-14, LB-16, LB-19, LB-28
LM102 . AN-4, AN-13, AN-30, LB-1, LB-5, LB-6, LB-11
LM103
.AN-110, LB-41
LM104 . AN-21, LB-3, LB-7, LB-10, LB-40
LM105 . AN-21, AN-23, AN-110, LB-3, LB-7, LB-10
LM106
AN-41, LB-6, LB-12
LM107 . AN-20, AN-31, LB-1, LB-12, LB-19, Appendix A
LM108 AN-29, AN-30, AN-31, AN-63, AN-79, AN-211, AN-241, LB-14, LB-15, LB-21
LM108A . AN-260, LB-15, LB-19
LM109 . AN-42, LB-15

LM110 . LB-11, LB-42
LM111. AN-41, AN-103, LB-12, LB-16, LB-32, LB-39
LM112 . AN-63, LB-19
LM113. AN-56, AN-110, LB-21, LB-24, LB-28, LB-37
LM117 . AN-178, AN-181, AN-182, LB-46, LB-47
LM117HV . LB-46, LB-47
LM118 . LB-17, LB-19, LB-21, LB-23, Appendix A
LM119 . AN-115, LB-23
LM120 . AN-182
LM121 .AN-79, AN-104, AN-184, AN-260, LB-22
LM121A . LB-32
LM122 . AN-97, LB-38
LM125 .AN-82
LM126 . A AN-82
LM129 . AN-173,AN-178, AN-262, AN-266
LM131 . AN-210, Appendix D
LM131A
AN-210
LM134 .
LM135 . AN-225, AN-262, AN-292, AN-298
LM137 .
LM137HV .
LM138 .
LM139 . AN-74
LM143
AN-127, AN-271
LM148 AN-260

DEVICE NUMBER	APPLICATION NOTE
LM150	.LB-46
LM158	. AN-116
LM160	. . AN-87
LM161 AN-87, AN-266
LM163	. . . AN-295
LM194	. . AN-222, LB-21
LM195	. . . AN-110
LM199	. . . AN-161, AN-260, AN-360
LM199A	. . . AN-161
LM211	. .LB-39
LM216A	. LB-37
LM231.	. AN-210
LM231A	. AN-225
LM235	. AN-225
LM239	. AN-74
LM258	. AN-116
LM260	. AN-87
LM261 AN-87
LM301A	. AN-178, AN-181, AN-222
LM304	. . . LB-40
LM308	.AN-88, AN-184, AN-272, LB-22, LB-28, Appendix D
LM308A AN-225, LB-24
LM309 AN-178, AN-182
LM311 AN-41, AN-103, AN-260, AN-263, AN-288, AN-294, AN-295, AN-307, LB-12, LB-16, LB-18, LB-39
LM313	. AN-263
LM316	. . AN-258
LM317	. AN-178, LB-35, LB-46
LM317H LB-47
LM318. AN-115, AN-299, LB-21
LM319 AN-115, AN-271, AN-293
LM320 AN-288
LM321 LB-24
LM324	. AN-88, AN-258, AN-274, AN-284, AN-301, LB-44, AB-25, Appendix C
LM329 AN-256, AN-263, AN-284, AN-295, AN-301
LM329B	. . . AN-225
LM330	. . . AN-301
LM331	240, AN-265, AN-278, AN-285, AN-311, LB-45, Appendix, C Appendix D
LM331A	. AN-210, Appendix C
LM334	. AN-242, AN-256, AN-284
LM335 AN-225, AN-263, AN-295
LM336 AN-202, AN-247, AN-258
LM337	. LB-46
LM338	. LB-49, LB-51
LM339 AN-74, AN-245, AN-274
LM340 AN-103, AN-182
LM340L. AN-256
LM342	. . . AN-288
LM346	. . . AN-202, LB-54
LM347 LB-44
LM348 AN-202, LB-42
LM349 LB-42
LM358	. AN-116, AN-247, AN-271, AN-274, AN-284, AN-298, Appendix C
LM358A .	. Appendix D

DEVICE NUMBERAPPLICATION NOTE
LM359AN-278, AB-24
LM360 AN-87
LM361 AN-87, AN-294
LM363 AN-271
LM380 AN-69, AN-146
LM381 AN-64, AN-104
LM382 AN-147
LM385 AN-242, AN-256, AN-301, AN-344
LM386 LB-54
LM389 AN-256, AN-263, AN-264, AN-274
LM391 AN-272
LM392 AN-274, AN-286
LM393 AN-271, AN-274, AN-293
LM394 AN-262, AN-263, AN-264, AN-271, AN-293, AN-299, AN-311, LB-52
LM395 AN-178, AN-181, AN-262, AN-263, AN-266, AN-301, LB-28
LM399 AN-184
LM555 AB-7
LM556 AB-7
LM565 AN-46, AN-146
LM566 AN-146
LM567 AN-46
LM709 AN-24, AN-30
LM710 AN-41, LB-12
LM725 LB-22
LM741 AN-75, AN-79, LB-19, LB-22LM832AN-386, AN-390
LM833 AN-346
LM1036 AN-390
LM1310 AN-81
LM1524 AN-272, AN-288, AN-292, AN-293
LM1800AN-81, AN-147
LM1812AB-20
LM1818 AN-407
LM1820 LB-29
LM1823 AN-391
LM1828 Appendix B
LM1830 AB-10
LM1837 AN-407
LM1845 Appendix B
LM1863 AN-381, AN-382
LM1865 AN-382, AN-390
LM1870 AN-382
LM1886 AN-402
LM1889 AN-402
LM1894 AN-384, AN-386, AN-390
LM1897 AN-407
LM2878 AN-147
LM2889 AN-391, AN-402
LM2907 AN-162
LM2917 AN-162
LM2931 $A B-12$
LM2931CT $A B-11$
DEVICE NUMBER APPLICATION NOTE
LM3045 AN-286
LM3046 AN-146, AN-299
LM3089 AN-147
LM3524 AN-272, AN-288, AN-292, AN-293
LM3820 AN-147, LB-29
LM3900 AN-72, AN-263, AN-274, AN-278, LB-20, AB-24
LM3909 AN-154
LM3911 LB-27
LM3914 LB-48, AB-25
LM3915 AN-386
LM3999 AN161
LM4250 AN-88, LB-34
LM7800 AN-178
LM78L12 AN-146
LMC835 AN-435
LP324 AN-284
MF10 AN-307
MM1458 AN-116
MM1558 AN-116
MM1558C AN-116
MM2716 LB-54
MM54104 AN-252, AN-287, LB-54
MM57110 AN-382
MM74C00 AN-88
MM74C02 AN-88
MM74C04 AN-88
MM74C948 AN-193
MM74LS138 LB-54
2N4339 AN-32
LH4101 AN-480
LM34/35 AN-460
LM32900 AN-478
LM3578 AB-30
LPXXXX AN-462
LM34 AN-462
LM35 AN-462
LM385 AN-462
LMC13334 AN-462
LP2950 AN-462
LP2951 AN-462
LP311 AN-462
LP324 AN-462
LP339 AN-462
LP365 AN-462

Appendix C Summary of Commercial Reliability Programs

General

National Semiconductor Commercial Reliability Programs provide a broad range of off-the-shelf enhanced semiconductor products that supply an extra measure of quality and reliability needed in high-stress or difficult to service applications.
National's $A+$ and $B+$ programs allow each individual customer to:

- Minimize the need for incoming electrical inspection
- Eliminate the need and associated costs of using independent testing laboratories
- Reduction in infant mortality rate
- Reduction in reworked board costs
- Reduction in warranty and service costs

A+ Product Enhancement

The A+ Product Enhancement incorporates the benefits of the Multiple-Pass and Elevated Temperature along with "BURN-IN."
The A+ Program provides:

- 100% Temperature Cycling
- 100% Electrical Testing at Room and High Temperature
- 100\% Burn-In Testing Combining Increased Temperature with Applied Voltage
- Acceptable Quality Levels Greater than Industry Norm

Typical A+Flow is:

- SEM
- Assembly and Seal
- Four Hour $150^{\circ} \mathrm{C}$ Bake
- Five Temperature Cycles $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$
- High Temperature Electrical Test
- Electrical Test
- Burn-In (160 hours at a minimum junction temperature of $125^{\circ} \mathrm{C}$)
- DC Parametric and Function Tests
- Tightened Quality Control Inspection Plans

Note: Certain products may follow slightly different process flows dictated by specific capabilities and device characteristics, consult NSC.

P+ Product Enhancement

The $\mathrm{P}+$ product enhancement program applies to regulator devices and offers an added advantage. $\mathrm{P}+$ involves a dynamic self-heating burn-in that tests the thermal shutdown of the regulator. $\mathrm{P}+$ is proven more effective than the standard $125^{\circ} \mathrm{C}$ burn-in as an early screen for infant mortality defects. It sharply reduces the cost of testing incoming components. Reliability Report L-140 further explains the P+ process. The following chart lists regulators which receive $\mathrm{P}+$ prior to shipment and at no additional cost.

Device	Package Types				
	TO-3 K STEEL	TO-39 H	TO-220 T	TO-202 P	TO-92 Z
LM109/309	X	X			
LM117/317	X	X	X	X	
LM117HV/317HV	X	X			
LM120/320	X	X	X	X	
LM123/323	X				
LM137/337	X	X	X	X	
LM137HV/337HV	X	X			
LM138/338	X				
LM140/340	X	X	X	X	
LM145/345	X				
LM150/250/350	X				
LM196/396	X				
LM2930/2935/2940/2984			X		
LM2931			X		X
LM78XX			X		

National Semiconductor

Appendix D Milititary Aerospace Programs from National Semiconoluctor

This appendix is intended to provide a brief overview of military products available from National Semiconductor. For further information, refer to our 1987 Reliability Handbook.

MMIL-M1-38510

The MIL-M-38510 Program, which is sometimes called the JAN IC Program, is administered by the Defense Electronics Supply Center (DESC). The purpose of this program is to provide the military community with standardized products that have been manufactured and screened to governmentcontrolled specifications in government-certified facilities. All 38510 manufacturers must be formally qualified and their products listed on DESC's Qualified Products List (QPL) before devices can be marked and shipped as JAN product.
There are two processing levels specified within MIL-M38510: Classes S and B. Class S is typically specified for space flight applications, while Class B is used for aircraft and ground systems. National is a major supplier of both classes of devices. Screening requirements are outlined in Table III.
Tables I and II explain the JAN device marking system.
Copies of MIL-M-38510, the QPL, and other related documents may be obtained from:

Naval Publications and Forms Center
5801 Tabor Avenue
Philadelphia, PA 19120
(212) 697-2179

DESC Specifications

DESC specifications are issued to provide standardized versions of devices which are not yet available as JAN product. MIL-STD-883 Class B screening is coupled with tightly controlled electrical specifications which have been written to allow a manufacturer to use his standard electrical tests. A current listing of National's DESC specification offerings can be obtained from our franchised distributors, sales offices, or DESC. DESC is located in Dayton, Ohio.

MIL-STD-883

Although originally intended to establish uniform test methods and procedures, MIL-STD-883 has also become the general specification for non-JAN military product. Revision C of this document defines the minimum requirements for a device to be marked and advertised as 883 -compliant. Included are design and construction criteria, documentation controls, electrical and mechanical screening requirements, and quality control procedures. Details can be found in paragraph 1.2.1 of MIL-STD-883.
National offers both 883 Class B and 883 Class S product. The screening requirements for both classes of product are outlined in Table III.
As with DESC specifications, a manufacturer is allowed to use his standard electrical tests provided that all critical parameters are tested. Also, the electrical test parameters, test conditions, test limits, and test temperatures must be clearly documented. At National Semiconductor, this information is available via our RETS (Reliability Electrical Test Specification Program). The RETS document is a complete description of the electrical tests performed and is controlled by our QA department. Individual copies are available upon request.
Some of National's older products are not completely compliant with MIL-STD-883 but are still required for use in military systems. These devices are screened to the same stringent requirements as 883 product but are marked "-MIL".

Military Screening Program (MSP)

National's Military Screening Program was developed to make screened versions of advanced products such as gate arrays and microprocessors available more quickly than is possible for JAN and 883 devices. Through this program, screened product is made available for prototypes and breadboards prior to or during the JAN or 883 qualification activities. MSP products receive the 100% screening of Table III but are not subjected to Group C and D quality conformance testing. Other criteria such as electrical testing and temperature range will vary depending upon individual device status and capability.

TABLE I. The MIL-M-38510 Part Marking

JM38510/XXXXXYYY

Cl24-1
TABLE II. JAN Package Codes

38510 Package Designation	Microcircuit Industry Description
A	14-Pin $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ (metal) flat pack
B	14-Pin 3/16" $\times 1 / 4^{\prime \prime}$ flat pack
C	14-Pin $1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$ dual-in-line
D	14-Pin 1/4" $\times 3 / 8^{\prime \prime}$ (ceramic) flat pack
E	16-Pin 1/4" $\times 3 / 8^{\prime \prime}$ dual-in-line
F	16-Pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ (metal or ceramic) flat pack
G	8-pin TO-99 can or header
H	10-pin $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ (metal) flat pack
1	10-pin TO-100 can or header
J	24-pin $1 / 2^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ dual-in-line
K	24-pin 3/8" $\times 5 / 8^{\prime \prime}$ flat pack
L	24-pin $1 / 4^{\prime \prime} \times 1-1 / 4^{\prime \prime}$ dual-in-line
M	12-pin TO-101 can or header
N	(Note 1)
P	8-pin $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}$ dual-in-line
Q	40-pin 3/16" $\times 2-1 / 16^{\prime \prime}$ dual-in-line
R	20-pin $1 / 4^{\prime \prime} \times 1-1 / 16^{\prime \prime}$ dual-in-line
S	$20-p$ in $1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}$ flat pack
T	(Note 1)
U	(Note 1)
V	18-pin $3 / 8^{\prime \prime} \times 15 / 16^{\prime \prime}$ dual-in-line
W	22-pin $3 / 8^{\prime \prime} \times 1-1 / 8^{\prime \prime}$ dual-in-line
X	(Note 1)
Y	(Note 1)
Z	(Note 1)
2	20-terminal $0.350^{\prime \prime} \times 0.350^{\prime \prime}$ chip carrier
3	28-terminal $0.450^{\prime \prime} \times 0.450^{\prime \prime}$ chip carrier

Note 1: These letters are assigned to packages by individual detail specifications and may be assigned to different packages in different specifications.

TABLE III. 100\% Screening Requirements					
Screen		Class S		Class B	
		Method	Reqmt	Method	Reqmt
1.	Wafer Lot Acceptance	5007	All Lots		-
	Nondestructive Bond Pull	2023	100\%		-
3.	Internal Visual (Note 1)	2010, Condition A	100\%	2010, Condition B	100\%
4.	Stabilization Bake	1008, Condition C, 24 hrs. Min.	100\%	1008, Condition C, 24 hrs. Min.	100\%
	Temp. Cycling (Note 2)	1010, Condition C	100\%	1010, Condition C	100\%
	Constant Acceleration	2001, Condition E (Min.) Y_{1} Orientation Only	100\%	2001, Condition E, (Min.), Y_{1} Orientation Only	100\%
	Visual Inspection (Note 3)		100\%		100\%
	Particle Impact Noise Detection (PIND)	2020, Condition A (Note 4)	100\%		-
	Serialization	(Note 5)	100\%		-
	Interim (Pre-Burn-In) Electrical Parameters	Per Applicable Device Specification (Note 13)	100\%	Per Applicable Device Specification (Note 6)	-
	Burn-In Test	1015 240 Hrs @ $125^{\circ} \mathrm{C}$ Min. (Cond. F Not Allowed)	100\%	$\begin{aligned} & 1015 \\ & 160 \mathrm{Hrs} . @ 125^{\circ} \mathrm{C} \text { Min. } \end{aligned}$	100\%
	Interim (Post-Burn-In) Electrical Parameters	Per Applicable Device Specification (Note 13)	100\%		
	Reverse Bias Burn-In (Note 7)	1015; Test Condition A, C, 72 Hrs @ $150^{\circ} \mathrm{C}$ Min. (Cond. F Not Allowed)	100\%		-
	PDA Calculation	5\% Parametric (Note 14), 3% Functional $-25^{\circ} \mathrm{C}$	All Lots	5\% Parametric (Note 14)	All Lots
	Final Electrical Test a) Static Tests 1) $25^{\circ} \mathrm{C}$ (Subgroup 1, Table I, 5005) 2) Max \& Min Rated Operating Temp. (Subgroups 2, 3, Table I, 5005) b) Dynamic Tests \& Switching Tests, $25^{\circ} \mathrm{C}$ (Subgroups 4, 9, Table I, 5005) c) Functional Test, $25^{\circ} \mathrm{C}$ (Subgroup 7, Table I, 5005)	Per Applicable Device Specification	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$	Per Applicable Device Specification	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$

TABLE III. 100\% Screening Requirements (Continued)

Screen	Class S		Class B	
	Method	Reqmt	Method	Reqmt
17. Seal Fine, Gross	1014	100\%, (Note 8)	1014	100\%, (Note 9)
18. Radiographic (Note 10)	2012 Two Views	100\%		-
19. Qualification or Quality Conformance Inspection Test Sample Selection	(Note 11)	Samp.	(Note 11)	Samp.
20. External Visual (Note 12)	2009	100\%		100\%

Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g. bond strength requirements shall apply to each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).
Note 2: For Class B devices, this test may be replaced with thermal shock method 1011, test condition A, minimum.
Note 3: At the manufacturer's option, visual inspection for catastrophic failures may be conducted after each of the thermal/mechanical screens, after the sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages, or lids off.
Note 4: The PIND test may be performed in any sequence after step 6 and prior to step 16. See MIL-M-38510, paragraph 4.6.3.
Note 5: Class S devices shall be serialized prior to interim electrical parameter measurements.
Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.
Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in may be inverted.
Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming operations on the terminals.
Note 9: For Class B devices, the fine and gross seal tests shall be performed separate or together in any sequence and order between step 6 and step 20 except that they shall be performed after all shearing and forming operations on the terminals. When 100% seal screen cannot be performed after shearing and forming (e.g. flatpacks and chip carriers) the seal screen shall be done 100% prior to these operations and a sample test (LTPD $=5$) shall be performed on each inspection lot following these operations. If the sample fails, 100% rescreening shall be required.
Note 10: The radiographic screen may be performed in any sequence after step 19.
Note 11: Samples shall be selected for testing in accordance with the specific device class and lot requirements of Method 5005
Note 12: External Visual shall be performed on the lot any time after step 19 and prior to shipment.
Note 13: Read and Record when past burn-in delta measurements are specified.
Note 14: PDA shall apply to all static, dynamic, functional, and switching measurements at either $25^{\circ} \mathrm{C}$ or maximum rated operating temperature.

Military Analog Products Available From National Semiconductor
Listed below are the military class B Analog devices available from National Semiconductor. Many of these are also available as Class S product. Additional information including new product plans can be obtained from our sales offices.

Device Type	$\begin{gathered} \text { Mil * } \\ \text { Class B } \end{gathered}$	$\begin{gathered} 883 \\ \text { Class B } \end{gathered}$	Desc	JAN	Device Type	$\begin{gathered} \text { Mil * }^{2} \\ \text { Class B } \end{gathered}$	$\begin{gathered} 883 \\ \text { Class B } \end{gathered}$	Desc	JAN
AH0014D	x				LH0032G	x		x	
AH0015D	x				LH0033AG	x			
AH0019D	x				LH0033G	x		x	
LF111H	x				LH0036G	x			
LF11201D		x			LH0038D	x			
LF11202D		x			LH0041G	x			
LF11331D		x			LH0042D	x			
LF11332D		x			LH0042H	x			
LF11333D		x			LH0043G	x			
LF11508D	x				LH0044AH	x			
LF11509D	x				LH0044H	x			
LF147D		x			LH0052H	x			
LF155AH		x			LH0053G	x			
LF155H		x		x	LH0061K	x			
LF155J-8				x	LH0062D	x			
LF155W				x	LH0062H	x			
LF156AH		x			LH0063K	x			
LF156H		x		x	LH0070-0H	x			
LF156J-8				x	LH0070-1H	x			
LF156W				x	LH0070-2H	x			
LF157AH		x			LH0071-0H	x			
LF157H		x			LH0071-1H	x			
LF198H		x			LH0071-2H	x			
LF411MH		x		x	LH0075G	x			
LF411W				x	LH0076G	x			
LF412MH		x		x	LH0082D	x			
LF441MH	x				LH0084D	x			
LF442MH		x			LH0086D	x			
LF444MD		x			LH0091D	x			
LH0002H		x	x		LH0094D	x			
LH0003H	x				LH00101AK	x			
LH0004H	x				LH0101K	x			
LH0020G	x				LH2101AD		x		
LH0021K	x				LH2108AD		x		
LH0022D	x				LH2108D		x		
LH0022H	x				LH2110D		x		
LH0023G	x				LH2111D		x		
LH0024H	x				LH2111F	x			

[^27]Military Analog Products Available From National Semiconductor
Listed below are the military class B Analog devices available from National Semiconductor. Many of these are also available as Class S product. Additional information including new product plans can be obtained from our sales offices.

Device Type	$\begin{gathered} \text { Mil * } \\ \text { Class B } \end{gathered}$	$\begin{gathered} 883 \\ \text { Class B } \end{gathered}$	Desc	JAN	Device Type	$\begin{gathered} \text { Mil * } \\ \text { Class B } \end{gathered}$	$\begin{gathered} 883 \\ \text { Class B } \end{gathered}$	Desc	JAN
LH24250F	x				LM117HVH		x	x	
LM10H		x			LM117HVKSTL		x	x	
LM101AH		x		x	LM117KSTEEL		x	x	x
LM101AJ-14		x		x	LM118H		x		x
LM101AJ		x			LM118J-8		x		x
LM101AW				x	LM118J		x		
LM102H		x			LM118W				x
LM103H-3.0		x	x		LM119H		x	x	
LM103H-3.3		x	x		LM119J		x	x	
LM103H-3.6		x	x		LM120H-12		x		
LM103H-3.9		x	x		LM120H-15		x		
LM104H		x			LM120H-5.0		x		
LM105H		x			LM120K-12		x		
LM106H		x			LM120K-15		x		
LM107H		x			LM120K-5.0		x		
LM107J-14		x			LM121AH		x		
LM107J		x			LM121H		x		
LM108AH		x		x	LM122H		x		
LM108AJ-8		x		x	LM123KSTEEL		x		
LM108AJ		x			LM124AJ		x		
LM108AW				x	LM124J		x		x
LM108H		x			LM125H		x		
LM108J-8		x			LM126H		x		
LM108J		x			LM129AH		x		
LM109H		x			LM129BH		x		
LM109KSTEEL		x			LM131AH		x		
LM11H		x			LM131H		x		
LM110H		x			LM135H		x		
LM110J-8		x			LM136AH-2.5		x	x	
LM110J		x			LM136H-2.5		x		
LM111H		x		x	LM136H-5.0		x		
LM111J		x		x	LM137H		x	x	
LM111W				x	LM137HVH		x	x	
LM112H		x			LM137HVKSTEEL		x	x	
LM113-1H		x	x		LM137KSTEEL		x	x	
LM113-2H		x	x		LM138KSTEEL		x		
LM113H		x	x		LM139AJ		x		
LM117H		x	x	x	LM139J		x		x

*Some older products are not completely compliant with MIL-STD-883 but are still required for use in military systems. These devices are screened to the same stringent requirements as 883 product but are marked "-MIL".

Military Analog Products Available From National Semiconductor

Listed below are the military class B Analog devices available from National Semiconductor. Many of these are also available as Class S product. Additional information including new product plans can be obtained from our sales offices.

Device Type	Mil * Class B	$\begin{gathered} 883 \\ \text { Class B } \end{gathered}$	Desc	JAN	Device Type	$\begin{gathered} \text { Mil * } \\ \text { Class B } \end{gathered}$	$\begin{gathered} 883 \\ \text { Class B } \end{gathered}$	Desc	JAN
LM139W				x	LM185H-1.2		x		
LM140AK-12		x			LM193AH		x		
LM140AK-15		x			LM193H		x		x
LM140AK-5.0		X			LM193J-8				x
LM140K-12		x			LM193W				\times
LM140K-15		X			LM194H		x		
LM140K-5.0		x			LM195H		x		
LM140LAH-12		x			LM195K		x		
LM140LAH-15		X			LM199AH-20		x		
LM140LAH-5.0		x			LM199AH		x		
LM143H		x	x		LM199H		x		
LM144H		x	x		LM4250H	x			
LM145K-5.0		x			LM4250J	x			
LM145K-5.2		x			LM555H		x		
LM146J		x			LM555J		x		
LM148J		x		x	LM556J	x			
LM149J		x			LM567H		x		
LM150KSTEEL	x				LM709AH		x		
LM1536H		x	x		LM709H		x		
LM1558H		x			LM710H		x		
LM1558J		x			LM723H		x		
LM158AH		x			LM723J				x
LM158AJ		x			LM725H		x		
LM158H		X			LM733H	x			
LM158J		x			LM741AJ-14		x		
LM1596H	x				LM741AJ		x		
LM160H		x			LM741H		X		x
LM160J-14		X			LM7415-14		x		
LM160J		x			LM741J		x		x
LM161F	x				LM741W				x
LM161H		x			LM747H		x		x
LM161J		x			LM747J		x		
LM185BXH-1.2		x			LM748H		x		
LM185BYH-1.2		x			LM748J		x		

*Some older products are not completely compliant with MIL-STD-883 but are still required for use in military systems. These devices are screened to the same stringent requirements as 883 product but are marked "-MIL".

Appendix E Understanding Integrated Circuit Package Power Capabilities

INTRODUCTION

The short and long term reliability of National Semiconductor's interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanical/environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress seen by the integrated circuit. Both of these stress issues are specifically addressed on every interface circuit data sheet, under the headings of Absolute Maximum Ratings and Recommended Operating Conditions.
However, through application calls, it has become clear that electrical stress conditions are generally more understood than the thermal stress conditions. Understanding the importance of electrical stress should never be reduced, but clearly, a higher focus and understanding must be placed on thermal stress. Thermal stress and its application to interface circuits from National Semiconductor is the subject of this application note.

FACTORS AFFECTING DEVICE RELIABILITY

Figure 1 shows the well known "bathtub" curve plotting failure rate versus time. Similar to all system hardware (mechanical or electrical) the reliability of interface integrated circuits conform to this curve. The key issues associated with this curve are infant mortality, failure rate, and useful life.

TL/H/9312-1
FIGURE 1. Failure Rate vs Time
Infant mortality, the high failure rate from time to to t1 (early life), is greatly influenced by system stress conditions other than temperature, and can vary widely from one application to another. The main stress factors that contribute to infant mortality are electrical transients and noise, mechanical maltreatment and excessive temperatures. Most of these failures are discovered in device test, burn-in, card assembly and handling, and initial system test and operation. Although important, much literature is available on the subject of infant mortality in integrated circuits and is beyond the scope of this application note.

Failure rate is the number of devices that will be expected to fail in a given period of time (such as, per million hours). The mean time between failure (MTBF) is the average time (in hours) that will be expected to elapse after a unit has failed before the next unit failure will occur. These two primary "units of measure" for device reliability are inversely related:

$$
\text { MTBF }=\frac{1}{\text { Failure Rate }}
$$

Although the "bathtub" curve plots the overall failure rate versus time, the useful failure rate can be defined as the percentage of devices that fail per-unit-time during the flat portion of the curve. This area, called the useful life, extends between t1 and t2 or from the end of infant mortality to the onset of wearout. The useful life may be as short as several years but usually extends for decades if adequate design margins are used in the development of a system.
Many factors influence useful life including: pressure, mechanical stress, thermal cycling, and electrical stress. However, die temperature during the device's useful life plays an equally important role in triggering the onset of wearout.

FAILURE RATES vs TIME AND TEMPERATURE

The relationship between integrated circuit failure rates and time and temperature is a well established fact. The occurrence of these failures is a function which can be represented by the Arrhenius Model. Well validated and predominantly used for accelerated life testing of integrated circuits, the Arrhenius Model assumes the degradation of a performance parameter is linear with time and that MTBF is a function of temperature stress. The temperature dependence is an exponential function that defines the probability of occurrence. This results in a formula for expressing the lifetime or MTBF at a given temperature stress in relation to another MTBF at a different temperature. The ratio of these two MTBFs is called the acceleration factor F and is defined by the following equation:

$$
F=\frac{X 1}{X 2}=\exp \left[\frac{E}{K}\left(\frac{1}{T 2}-\frac{1}{T 1}\right)\right]
$$

Where: $\mathrm{X} 1=$ Failure rate at junction temperature T 1
$\mathrm{X} 2=$ Failure rate at junction temperature T 2
$\mathrm{T}=$ Junction temperature in degrees Kelvin
$E=$ Thermal activation energy in electron volts (ev)
$\mathrm{K}=$ Boltzman's constant

However, the dramatic acceleration effect of junction temperature (chip temperature) on failure rate is illustrated in a plot of the above equation for three different activation energies in Figure 2. This graph clearly demonstrates the importance of the relationship of junction temperature to device failure rate. For example, using the 0.99 ev line, a 30° rise in junction temperature, say from $130^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$, results in a 10 to 1 increase in failure rate.

TL/H/9312-2
FIGURE 2. Failure Rate as a Function of Junction Temperature

DEVICE THERMAL CAPABILITIES

There are many factors which affect the thermal capability of an integrated circuit. To understand these we need to understand the predominant paths for heat to transfer out of the integrated circuit package. This is illustrated by Figures 3 and 4.
Figure 3 shows a cross-sectional view of an assembled integrated circuit mounted into a printed circuit board.
Figure 4 is a flow chart showing how the heat generated at the power source, the junctions of the integrated circuit
flows from the chip to the ultimate heat sink, the ambient environment. There are two predominant paths. The first is from the die to the die attach pad to the surrounding package material to the package lead frame to the printed circuit board and then to the ambient. The second path is from the package directly to the ambient air.
Improving the thermal characteristics of any stage in the flow chart of Figure 4 will result in an improvement in device thermal characteristics. However, grouping all these characteristics into one equation determining the overall thermal capability of an integrated circuit/package/environmental condition is possible. The equation that expresses this relationship is:

$$
T_{J}=T_{A}+P_{D}\left(\theta_{J A}\right)
$$

Where: $T_{J}=$ Die junction temperature

$$
\begin{aligned}
\mathrm{T}_{\mathrm{A}} & =\text { Ambient temperature in the vicinity device } \\
\mathrm{P}_{\mathrm{D}} & =\text { Total power dissipation (in watts) } \\
\theta_{\mathrm{JA}} & =\text { Thermal resistance junction-to-ambient }
\end{aligned}
$$

θ_{JA}, the thermal resistance from device junction-to-ambient temperature, is measured and specified by the manufacturers of integrated circuits. National Semiconductor utilizes special vehicles and methods to measure and monitor this parameter. All circuit data sheets specify the thermal characteristics and capabilities of the packages available for a given device under specific conditions-these package power ratings directly relate to thermal resistance junction-to-ambient or θ_{JA}.
Although National provides these thermal ratings, it is critical that the end user understand how to use these numbers to improve thermal characteristics in the development of his system using IC components.

TL/H/9312-3
FIGURE 3. Integrated Circuit Soldered into a Printed Circuit Board (Cross-Sectional View)

FIGURE 4. Thermal Flow (Predominant Paths)

DETERMINING DEVICE OPERATING JUNCTION TEMPERATURE

From the above equation the method of determining actual worst-case device operating junction temperature becomes straightforward. Given a package thermal characteristic, θ_{JA}, worst-case ambient operating temperature, $\mathrm{T}_{\mathrm{A}}(\mathrm{max})$, the only unknown parameter is device power dissipation, P_{D}. In calculating this parameter, the dissipation of the integrated circuit due to its own supply has to be considered, the dissipation within the package due to the external load must also be added. The power associated with the load in a dynamic (switching) situation must also be considered. For example, the power associated with an inductor or a capacitor in a static versus dynamic (say, 1 MHz) condition is significantly different.
The junction temperature of a device with a total package power of 600 mW at $70^{\circ} \mathrm{C}$ in a package with a thermal resistance of $63^{\circ} \mathrm{C} / \mathrm{W}$ is $108^{\circ} \mathrm{C}$.

$$
\mathrm{T}_{J}=70^{\circ} \mathrm{C}+\left(63^{\circ} \mathrm{C} / \mathrm{W}\right) \times(0.6 \mathrm{~W})=108^{\circ} \mathrm{C}
$$

The next obvious question is, "how safe is $108^{\circ} \mathrm{C}$?"

MAXIMUM ALLOWABLE JUNCTION TEMPERATURES

What is an acceptable maximum operating junction temperature is in itself somewhat of a difficult question to answer. Many companies have established their own standards based on corporate policy. However, the semiconductor industry has developed some defacto standards based on the device package type. These have been well accepted as numbers that relate to reasonable (acceptable) device lifetimes, thus failure rates.
National Semiconductor has adopted these industry-wide standards. For devices fabricated in a molded package, the maximum allowable junction temperature is $150^{\circ} \mathrm{C}$. For these devices assembled in ceramic or cavity DIP packages, the maximum allowable junction temperature is $175^{\circ} \mathrm{C}$. The numbers are different because of the differences in package types. The thermal strain associated with the die package interface in a cavity package is much less than that exhibited in a molded package where the integrated circuit chip is in direct contact with the package material.
Let us use this new information and our thermal equation to construct a graph which displays the safe thermal (power) operating area for a given package type. Figure 5 is an example of such a graph. The end points of this graph are easily determined. For a 16 -pin molded package, the maximum allowable temperature is $150^{\circ} \mathrm{C}$; at this point no power dissipation is allowable. The power capability at $25^{\circ} \mathrm{C}$ is 1.98 W as given by the following calculation:

$$
P_{D} @ 25^{\circ} \mathrm{C}=\frac{T_{J}(\max)-T_{A}}{\theta_{J A}}=\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{63^{\circ} \mathrm{C} / \mathrm{W}}=1.98 \mathrm{~W}
$$

The slope of the straight line between these two points is minus the inversion of the thermal resistance. This is referred to as the derating factor.

$$
\text { Derating Factor }=-\frac{1}{\theta_{\mathrm{JA}}}
$$

As mentioned, Figure 5 is a plot of the safe thermal operating area for a device in a 16-pin molded DIP. As long as the intersection of a vertical line defining the maximum ambient temperature ($70^{\circ} \mathrm{C}$ in our previous example) and maximum device package power (600 mW) remains below the maximum package thermal capability line the junction temperature will remain below $150^{\circ} \mathrm{C}$-the limit for a molded package. If the intersection of ambient temperature and package power fails on this line, the maximum junction temperature will be $150^{\circ} \mathrm{C}$. Any intersection that occurs above this line will result in a junction temperature in excess of $150^{\circ} \mathrm{C}$ and is not an appropriate operating condition.

TL/H/9312-5
FIGURE 5. Package Power Capability vs Temperature
The thermal capabilities of all integrated circuits are expressed as a power capability at $25^{\circ} \mathrm{C}$ still air environment with a given derating factor. This simply states, for every degree of ambient temperature rise above $25^{\circ} \mathrm{C}$, reduce the package power capability stated by the derating factor which is expressed in $\mathrm{mW} /{ }^{\circ} \mathrm{C}$. For our example-a θ_{JA} of $63^{\circ} \mathrm{C} / \mathrm{W}$ relates to a derating factor of $15.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

FACTORS INFLUENCING PACKAGE THERMAL RESISTANCE

As discussed earlier, improving any portion of the two primary thermal flow paths will result in an improvement in overall thermal resistance junction-to-ambient. This section discusses those components of thermal resistance that can be influenced by the manufacturer of the integrated circuit. It also discusses those factors in the overall thermal resistance that can be impacted by the end user of the integrated circuit. Understanding these issues will go a long way in understanding chip power capabilities and what can be done to insure the best possible operating conditions and, thus, best overall reliability.

Die Size

Figure 6 shows a graph of our 16 -pin DIP thermal resistance as a function of integrated circuit die size. Clearly, as the chip size increases the thermal resistance decreases-this relates directly to having a larger area with which to dissipate a given power.

TL/H/9312-6
FIGURE 6. Thermal Resistance vs Die Size

Lead Frame Material

Figure 7 shows the influence of lead frame material (both die attach and device pins) on thermal resistance. This graph compares our same 16-pin DIP with a copper lead frame, a Kovar lead frame, and finally an Alloy 42 type lead frame-these are lead frame materials commonly used in the industry. Obviously the thermal conductivity of the lead frame material has a significant impact in package power capability. Molded interface circuits from National Semiconductor use the copper lead frame exclusively.

TL/H/9312-7
FIGURE 7. Thermal Resistance vs Lead Frame Material

Board vs Socket Mount

One of the major paths of dissipating energy generated by the integrated circuit is through the device leads. As a result of this, the graph of Figure 8 comes as no surprise. This compares the thermal resistance of our 16-pin package soldered into a printed circuit board (board mount) compared to the same package placed in a socket (socket mount). Adding a socket in the path between the PC board and the device adds another stage in the thermal flow path, thus increasing the overall thermal resistance. The thermal capabilities of National Semiconductor's interface circuits are specified assuming board mount conditions. If the devices are placed in a socket the thermal capabilities should be reduced by approximately 5% to 10%.

TL/H/9312-8

FIGURE 8. Thermal Resistance vs

 Board or Socket Mount
Air Flow

When a high power situation exists and the ambient temperature cannot be reduced, the next best thing is to provide air flow in the vicinity of the package. The graph of Figure 9 illustrates the impact this has on thermal resistance. This graph plots the relative reduction in thermal resistance normalized to the still air condition for our 16-pin molded DIP. The thermal ratings on National Semiconductor's interface circuits data sheets relate to the still air environment.

TL/H/9312-9
FIGURE 9. Thermal Resistance vs Air Flow

Other Factors

A number of other factors influence thermal resistance. The most important of these is using thermal epoxy in mounting ICs to the PC board and heat sinks. Generally these techniques are required only in the very highest of power applications.
Some confusion exists between the difference in thermal resistance junction-to-ambient (θ_{JA}) and thermal resistance junction-to-case $\left(\theta_{\mathrm{Jc}}\right)$. The best measure of actual junction temperature is the junction-to-ambient number since nearly all systems operate in an open air environment. The only situation where thermal resistance junction-to-case is important is when the entire system is immersed in a thermal bath and the environmental temperature is indeed the case temperature. This is only used in extreme cases and is the exception to the rule and, for this reason, is not addressed in this application note.

NATIONAL SEMICONDUCTOR PACKAGE CAPABILITIES

Figures 10 and 11 show composite plots of the thermal characteristics of the most common package types in the National Semiconductor Linear Circuits product family. Figure 10 is a composite of the copper lead frame molded package. Figure 11 is a composite of the ceramic (cavity) DIP using poly die attach. These graphs represent board mount still air thermal capabilities. Another, and final, thermal resistance trend will be noticed in these graphs. As the number of device pins increase in a DIP the thermal resistance decreases. Referring back to the thermal flow chart, this trend should, by now, be obvious.

RATINGS ON INTERFACE CIRCUITS DATA SHEETS

In conclusion, all National Semiconductor Linear Products define power dissipation (thermal) capability. This information can be found in the Absolute Maximum Ratings section of the data sheet. The thermal information shown in this application note represents average data for characterization of the indicated package. Actual thermal resistance can vary from $\pm 10 \%$ to $\pm 15 \%$ due to fluctuations in assembly quality, die shape, die thickness, distribution of heat sources on the die, etc. The numbers quoted in the linear data
sheets reflect a 15% safety margin from the average numbers found in this application note. Insuring that total package power remains under a specified level will guarantee that the maximum junction temperature will not exceed the package maximum.
The package power ratings are specified as a maximum power at $25^{\circ} \mathrm{C}$ ambient with an associated derating factor for ambient temperatures above $25^{\circ} \mathrm{C}$. It is easy to determine the power capability at an elevated temperature. The power specified at $25^{\circ} \mathrm{C}$ should be reduced by the derating factor for every degree of ambient temperature above $25^{\circ} \mathrm{C}$. For example, in a given product data sheet the following will be found:
Maximum Power Dissipation* at $25^{\circ} \mathrm{C}$
Cavity Package 1509 mW
Molded Package 1476 mW

* Derate cavity package at $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$; derate molded package at $11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
If the molded package is used at a maximum ambient temperature of $70^{\circ} \mathrm{C}$, the package power capability is 945 mW .

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}} @ 70^{\circ} \mathrm{C} & =1476 \mathrm{~mW}-\left(11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right) \times\left(70^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) \\
& =945 \mathrm{~mW}
\end{aligned}
$$

Molded (N Package) DIP* Copper Leadframe-HTP Die Attach Board MountStill Air

*Packages from 8-to 20 -pin 0.3 mil width
TL/H/9312-10

$$
\begin{aligned}
& \text { 22-pin } 0.4 \text { mil width } \\
& \text { 24- to } 40 \text {-pin } 0.6 \text { mil width }
\end{aligned}
$$

FIGURE 10. Thermal Resistance vs Die Size vs Package Type (Molded Package)

Cavity (J Package) DIP* Poly Die Attach Board Mount-Still Air

*Packages from 8 - to 20 -pin 0.3 mil width
TL/H/9312-11 22-pin 0.4 mil width 24 - to 48 -pin 0.6 mil width

FIGURE 11. Thermal Resistance vs Die Size vs Package Type (Cavity Package)

FIGURE 12

APPENDIX F
 How to Get the Right Information From a Data Sheet

Not All Data Sheets Are Created Alike, and False Assumptions Could Cost an Engineer Time and Money

By Robert A. Pease

Abstract

When a new product arrives in the marketplace, it hopefully will have a good, clear data sheet with it. The data sheet can show the prospective user how to apply the device, what performance specifications are guaranteed and various typical applications and characteristics. If the data-sheet writer has done a good job, the user can decide if the product will be valuable to him, exactly how well it will be of use to him and what precautions to take to avoid problems.

SPECIFICATIONS

The most important area of a data sheet specifies the characteristics that are guaranteed-and the test conditions that apply when the tesis are done. Ideally, all specifications that the users will need will be spelled out clearly. If the product is similar to existing products, one can expect the data sheet to have a format similar to other devices.
But, if there are significant changes and improvements that nobody has seen before, then the writer must clarify what is meant by each specification. Definitions of new phrases or characteristics may even have to be added as an appendix.
For example, when fast-settling operational amplifiers were first introduced, some manufacturers defined settling time as the time after slewing before the output finally enters and stays within the error-band; but other manufacturers included the slewing time in their definition. Because both groups made their definitions clear, the user was unlikely to be confused or misled.
However, the reader ought to be on the alert. In a few cases, the data-sheet writer is playing a specsmanship game, and is trying to show an inferior (to some users) aspect of a product in a light that makes it look superior (which it may be, to a couple of users).

GUARANTEES

When a data sheet specifies a guaranteed minimum value, what does it mean? An assumption might be made that the manufacturer has actually tested that specification and has great confidence that no part could fail that test and still be shipped. Yet that is not always the case.
For instance, in the early days of op amps (20 years ago), the differential-input impedance might have been guaranteed at $1 \mathrm{M} \Omega$-but the manufacturer obviously did not measure the impedance. When a customer insisted, "I have to know how you measure this impedance," it had to be explained that the impedance was not measured, but that the base current was. The correlation between I_{b} and $\mathrm{Z}_{\text {in }}$ permitted the substitution of this simple dc test for a rather messy, noisy, hard-to-interpret test.

Every year, for the last 20 years, manufacturers have been trying to explain, with varying success, why they do not measure the $Z_{i n}$ per se, even though they do guarantee it.
In other cases, the manufacturer may specify a test that can be made only on the die as it is probed on the wafer, but cannot be tested after the die is packaged because that signal is not accessible any longer. To avoid frustrating and confusing the customer, some manufacturers are establishing two classes of guaranteed specifications:

- The tested limit represents a test that cannot be doubted, one that is actually performed directly on 100 percent of the devices, 100 percent of the time.
- The design limit covers other tests that may be indirect, implicit or simply guaranteed by the inherent design of the device, and is unlikely to cause a failure rate (on that test), even as high as one part per thousand.
Why was this distinction made? Not just because customers wanted to know which specifications were guaranteed by testing, but because the quality-assurance group insisted that it was essential to separate the tested guarantees from the design limits so that the AQL (assurance-quality level) could be improved from 0.1 percent to down below 100 ppm.
Some data sheets guarantee characteristics that are quite expensive and difficult to test (even harder than noise) such as long-term drift (20 ppm or 50 ppm over 1,000 hours).
The data sheet may not tell the reader if it is measured, tested or estimated. One manufacturer may perform a 100percent test, while another states, "Guaranteed by sample testing." This is not a very comforting assurance that a part is good, especially in a critical case where only a long-term test can prove if the device did meet the manufacturer's specification. If in doubt, question the manufacturer.

TYPICALS

Next to a guaranteed specification, there is likely to be another in a column labeled "typical".
It might mean that the manufacturer once actually saw one part as good as that. It could indicate that half the parts are better than that specification, and half will be worse. But it is equally likely to mean that, five years ago, half the parts were better and half worse. It could easily signify that a few parts might be slightly better, and a few parts a lot worse; after all, if the noise of an amplifier is extremely close to the theoretical limit, one cannot expect to find anything much better than that, but there will always be a few noisy ones. If the specification of interest happens to be the bias current (I_{b}) of an op amp, a user can expect broad variations. For example, if the specification is 200 nA maximum, there might be many parts where I_{b} is 40 nA on one batch (where the beta is high), and a month later, many parts where the l_{b} is 140 nA when the beta is low.

Absolute Maximum Ratings (Note 11)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

```
Supply Voltage
Output Voltage
Output Current
Storage Temperature,

Storage Temperature,
```

TO-46 Package

```
TO-46 Package
-76 F
-76 F
TO-92 Package
TO-92 Package
-76%F}\mathrm{ to }+30\mp@subsup{0}{}{\circ}\textrm{F
```

```
-76%F}\mathrm{ to }+30\mp@subsup{0}{}{\circ}\textrm{F
```

```

Lead Temp. (Soldering, 4 seconds)
\begin{tabular}{ll} 
TO-46 Package & \(+300^{\circ} \mathrm{C}\) \\
TO-92 Package & \(+260^{\circ} \mathrm{C}\)
\end{tabular}

Specified Operating Temp. Range (Note 2)
\begin{tabular}{lr} 
& T \(_{\text {MIN }}\) to T \(_{\text {MAX }}\) \\
LM34, LM34A & \(-50^{\circ} \mathrm{F}\) to \(+300^{\circ} \mathrm{F}\) \\
LM34C, LM34CA & \(-40^{\circ} \mathrm{F}\) to \(+230^{\circ} \mathrm{F}\) \\
LM34D & \(+32^{\circ} \mathrm{F}\) to \(+212^{\circ} \mathrm{F}\)
\end{tabular}

\section*{DC Electrical Characteristics (Note 1, Note 6)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multicolumn{3}{|c|}{LM34A} & \multicolumn{3}{|c|}{LM34CA} & \multirow[b]{2}{*}{Units (Max)} \\
\hline & & Typical & Tested Limit (Note 4) & Design Limit (Note 5) & Typical & Tested Limit (Note 4) & Design Limit (Note 5) & \\
\hline Accuracy (Note 7) & \[
\begin{aligned}
& \mathrm{T}_{A}=+77^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 0.4 \\
& \pm 0.6 \\
& \pm 0.8 \\
& \pm 0.8
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1.0 \\
& \pm 2.0 \\
& \pm 2.0
\end{aligned}
\] & & \[
\begin{aligned}
& \pm 0.4 \\
& \pm 0.6 \\
& \pm 0.8 \\
& \pm 0.8
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1.0 \\
& \pm 2.0
\end{aligned}
\] & \[
\begin{aligned}
& \pm 2.0 \\
& \pm 3.0
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{F} \\
& { }^{\circ} \mathrm{F} \\
& { }^{\circ} \mathrm{F} \\
& { }^{\circ} \mathrm{F}
\end{aligned}
\] \\
\hline Nonlinearity (Note 8) & \(\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}\) & \(\pm 0.35\) & & \(\pm 0.7\) & \(\pm 0.30\) & & \(\pm 0.6\) & \({ }^{\circ} \mathrm{F}\) \\
\hline Sensor Gain (Average Slope) & \(\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}\) & +10.0 & \[
\begin{aligned}
& +9.9 \\
& +10.1
\end{aligned}
\] & & +10.0 & & \[
\begin{array}{r}
+9.9 \\
+10.1
\end{array}
\] & \(\mathrm{mV} /{ }^{\circ} \mathrm{F}, \min\) \(\mathrm{mV} /{ }^{\circ} \mathrm{F}, \max\) \\
\hline Load Regulation (Note 3) & \[
\begin{aligned}
& \hline \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\
& 0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\pm 0.4 \\
\pm 0.5
\end{gathered}
\] & \(\pm 1.0\) & \(\pm 3.0\) & \[
\begin{gathered}
\pm 0.4 \\
\pm 0.5
\end{gathered}
\] & \(\pm 1.0\) & \(\pm 3.0\) & \(\mathrm{mV} / \mathrm{mA}\) \(\mathrm{mV} / \mathrm{mA}\) \\
\hline Line Regulation (Note 3) & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\
& 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V}
\end{aligned}
\] & \[
\begin{gathered}
\pm 0.01 \\
\pm \mathbf{0 . 0 2}
\end{gathered}
\] & \(\pm 0.05\) & \(\pm 0.1\) & \[
\begin{gathered}
\pm 0.01 \\
\pm \mathbf{0 . 0 2}
\end{gathered}
\] & \(\pm 0.05\) & \(\pm 0.1\) & \[
\begin{aligned}
& \mathrm{mV} / \mathrm{V} \\
& \mathrm{mV} / \mathrm{V}
\end{aligned}
\] \\
\hline Quiescent Current (Note 9) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},+77^{\circ} \mathrm{F} \\
& \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+77^{\circ} \mathrm{F} \\
& \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
75 \\
131 \\
76 \\
132 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 90 \\
& 92
\end{aligned}
\] & \[
\begin{aligned}
& 160 \\
& 163
\end{aligned}
\] & \[
\begin{gathered}
75 \\
116 \\
76 \\
117 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 90 \\
& 92
\end{aligned}
\] & \[
\begin{aligned}
& 139 \\
& 142
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A} \\
& \mu \mathrm{~A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Change of Quiescent Current (Note 3) & \[
\begin{aligned}
& 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+77^{\circ} \mathrm{F} \\
& 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
+0.5 \\
+\mathbf{1 . 0} \\
\hline
\end{array}
\] & 2.0 & 3.0 & \[
\begin{aligned}
& 0.5 \\
& 1.0
\end{aligned}
\] & 2.0 & 3.0 & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline Temperature Coefficient of Quiescent Current & & +0.30 & & + 0.5 & +0.30 & & + 0.5 & \(\mu \mathrm{A} /{ }^{\circ} \mathrm{F}\) \\
\hline Minimum Temperature for Rated Accuracy & In circuit of Figure 1,
\[
I_{L}=0
\] & +3.0 & & +5.0 & +3.0 & & +5.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Long-Term Stability & \(\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {MAX }}\) for 1000 hours & \(\pm 0.16\) & & & \(\pm 0.16\) & & & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}

Note 1: Unless otherwise noted, these specifications apply: \(-50^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+300^{\circ} \mathrm{F}\) for the LM34 and LM34A; \(-40^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+230^{\circ} \mathrm{F}\) for the LM34C and LM34CA; and \(+32^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+212^{\circ} \mathrm{F}\) for the LM34D. \(\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}\) and \(\mathrm{L}_{\mathrm{LOAD}}=50 \mu \mathrm{~A}\) in the circuit of Figure 2; +6 Vdc for LM34 and LM 34 A for \(230^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq\) \(300^{\circ} \mathrm{F}\). These specifications also apply from \(+5^{\circ} \mathrm{F}\) to \(\mathrm{T}_{\mathrm{MAX}}\) in the circuit of Figure 1.
Note 2: Thermal resistance of the TO-46 package is \(292^{\circ} \mathrm{F} / \mathrm{W}\) junction to ambient and \(43^{\circ} \mathrm{F} / \mathrm{W}\) junction to case. Thermal resistance of the TO-92 package is \(324^{\circ} \mathrm{F} / \mathrm{W}\) junction to ambient.
Note 3: Regulation is measured at constant junction temperature using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 4: Tested limits are guaranteed and \(100 \%\) tested in production.
Note 5: Design limits are guaranteed (but not \(100 \%\) production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 6: Specification in BOLDFACE TYPE apply over the full rated temperature range.
Note 7: Accuracy is defined as the error between the output voltage and \(10 \mathrm{mV} /{ }^{\circ} \mathrm{F}\) times the device's case temperature at specified conditions of voltage, current, and temperature (expressed in \({ }^{\circ} \mathrm{F}\) ).
Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line over the device's rated temperature range.
Note 9: Quiescent current is defined in the circuit of Figure 1.
Note 10: Contact factory for availability of LM34CAZ.
* * Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions (see Note 1).

\section*{A Point-By-Point Look}

Let's look a little more closely at the data sheet of the Na tional Semiconductor LM34, which happens to be a temperature sensor.

Note 1 lists the nominal test conditions and test circuits in which all the characteristics are defined. Some additional test conditions are listed in the column "Conditions", but Note 1 helps minimize the clutter.

Note 2 gives the thermal impedance, (which may also be shown in a chart or table).
Note 3 warns that an output impedance test, if done with a long pulse, could cause significant self-heating and thus, error.

Note 6 is intended to show which specs apply at all rated temperatures.
Note 7 is the definition of the "Accuracy" spec, and Note 8 the definition for non-linearity. Note 9 states in what test circuit the quiescent current is defined. Note 10 indicates that one model of the family may not be available at the time of printing (but happens to be available now), and Note 11 is the definition of Absolute Max Ratings.
* Note-the " 4 seconds" soldering time is a new standard for plastic packages.
** Note-the wording of Note 11 has been revised-this is the best wording we can devise, and we will use it on all future datasheets.

\section*{APPLICATIONS}

Another important part of the data sheet is the applications section. It indicates the novel and conventional ways to use a device. Sometimes these applications are just little ideas to tweak a reader's mind. After looking at a couple of applications, one can invent other ideas that are useful. Some applications may be of no real interest or use.
In other cases, an application circuit may be the complete definition of the system's performance; it can be the test circuit in which the specification limits are defined, tested and guaranteed. But, in all other instances, the performance of a typical application circuit is not guaranteed, it is only typical. In many circumstances, the performance may depend on external components and their precision and matching. Some manufacturers have added a phrase to their data sheets:
"Applications for any circuits contained in this document are for illustration purposes only and the manufacturer makes no representation or warranty that such applications will be suitable for the use indicated without further testing or modification."
In the future, manufacturers may find it necessary to add disclaimers of this kind to avoid disappointing users with circuits that work well, much of the time, but cannot be easily guaranteed.
The applications section is also a good place to look for advice on quirks-potential drawbacks or little details that may not be so little when a user wants to know if a device will actually deliver the expected performance.
For example, if a buffer can drive heavy loads and can handle fast signals cleanly (at no load), the maker isn't doing anybody any favors if there is no mention that the distortion goes sky-high if the rated load is applied.

Another example is the application hint for the LF156 family: "Exceeding the negative common-mode limit on either input will cause a reversal of the phase to output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur, since raising the input back within the common-mode range again puts the input stage and, thus the amplifier, in a normal operating mode."
That's the kind of information a manufacturer should really give to a data-sheet reader because no one could ever guess it.
Sometimes, a writer slips a quirk into a characteristic curve, but it's wiser to draw attention to it with a line of text. This is because it's better to make the user sad before one gets started, rather than when one goes into production. Conversely, if a user is going to spend more than 10 minutes using a new product, one ought to spend a full five minutes reading the entire data sheet.

\section*{FINE PRINT}

What other fine print can be found on a data sheet? Sometimes the front page may be marked "advance" or "preliminary." Then on the back page, the fine print may say something such as:
"This data sheet contains preliminary limits and design specifications. Supplemental information will be published at a later date. The manufacturer reserves the right to make changes in the products contained in this document in order to improve design or performance and to supply the best possible products. We also assume no responsibility for the use of any circuits described herein, convey no license under any patent or other right and make no representation that the circuits are free from patent infringement."
In fact, after a device is released to the marketplace in a preliminary status, the engineers love to make small improvements and upgrades in specifications and characteristics, and hate to degrade a specification from its first published value-but occasionally that is necessary.
Another item in the fine print is the manufacturer's telephone number. Usually it is best to refer questions to the local sales representative or field-applications engineer, because they may know the answer or they may be best able to put a questioner in touch with the right person at the factory.
Occasionally, the factory's applications engineers have all the information. Other times, they have to bring in product engineers, test engineers or marketing people. And sometimes the answer can't be generated quickly-data have to be gathered, opinions solidified or policies formulated before the manufacturer can answer the question. Still, the telephone number is the key to getting the factory to help.

\section*{ORIGINS OF DATA SHEETS}

Of course, historically, most data sheets for a class of products have been closely modeled on the data sheet of the forerunner of that class. The first data sheet was copied to make new versions.
That's the way it happened with the UA709 (the first monolithic op amp) and all its copies, as well as many other similar families of circuits.

Even today, an attempt is made to build on the good things learned from the past and add a few improvements when necessary. But, it's important to have real improvements, not just change for the sake of change.
So, while it's not easy to get the format and everything in it exactly right to please everybody, new data sheets are continually surfacing with new features, applications ideas, specifications and aids for the user. And, if the users complain loudly enough about misleading or inadequate data sheets, they can help lead the way to change data sheets. That's how many of today's improvements came aboutthrough customer demand.
Who writes data sheets? In some cases, a marketing person does the actual writing and engineers do the checking. In other companies, the engineer writes, while marketing people and other engineers check. Sometimes, a committee seems to be doing the writing. None of these ways is necessarily wrong.
For example, one approach might be: The original designer of the product writes the data sheet (inside his head) at the same time the product is designed. The concept here is, if one can't find the proper ingredients for a data sheet-good applications, convenient features for the user and nicely tested specifications as the part is being designed-then maybe it's not a very good product until all those ingredients are completed. Thus, the collection of raw materials for a good data sheet is an integral part of the design of a product. The actual assembly of these materials is an art which can take place later.

\section*{WHEN TO WRITE DATA SHEETS}

A new product becomes available. The applications engineers start evaluating their application circuits and the test engineers examine their production test equipment.
But how can the users evaluate the new device? They have to have a data sheet-which is still in the process of being written. Every week, as the data sheet writer tries to polish and refine the incipient data sheet, other engineers are reporting, "These spec limits and conditions have to be revised," and, "Those application circuits don't work like we thought they would; we'll have one running in a couple of days." The marketing people insist that the data sheet must be finalized and frozen right away so that they can start printing copies to go out with evaluation samples.
These trying conditions may explain why data sheets always seem to have been thrown together under panic conditions and why they have so many rough spots. Users should be aware of the conflicting requirements: Getting a data sheet "as completely as possible" and "as accurately as possible" is compromised if one wants to get the data sheet "as quickly as possible."
The reader should always question the manufacturer. What are the alternatives? By not asking the right question, a misunderstanding could arise; getting angry with the manufacturer is not to anyone's advantage.
Robert Pease has been staff scientist at National Semiconductor Corp., Santa Clara, Calif., for eleven years. He has designed numerous op amps, data converters, voltage regulators and analog-circuit functions.

\section*{Appendix G Obsolete Product Replacement Guide}

Some device types, individual temperature grades and package options have been discontinued. This guide is provided to help design engineers select and specify an appropriate alternative.
\begin{tabular}{|c|c|c|c|c|c|}
\hline NSC Part Number & Replacement & Note & NSC Part Number & Replacement & Note \\
\hline ADB1200 & ADC3711 & 2 & LM1822 & LM1823 & 3 \\
\hline DAC1200/1201 & DAC1265 & 2 & LM1828 & no replacement & \\
\hline LF352 & LM3631 & 2 & LM1848 & no replacement & \\
\hline LF13300 & ADC3711 & 2 & LM1877N-1/N-2/N-3 & LM1877N-9 & 2 \\
\hline LH0001 & LM4250 & 2 & LM2003 & no replacement & \\
\hline LH0005/LH0005A & LH0003 & 2 & LM2808 & no replacement & \\
\hline LH0037 & LH0036 & 3 & LM2831 & LM1851 & 2 \\
\hline LH0132 & LH0032 & 2 & LM3011 & no replacement & \\
\hline LH2011 & LM11 & 2 & LM3064 & no replacement & \\
\hline LH2201A & LM201A & 2 & LM3075 & no replacement & \\
\hline LH2208 & LM208 & 2 & TBA120V & no replacement & \\
\hline LH2208A & LM208A & 2 & TBA440C & LM1823 & 2 \\
\hline LH24250 & LM11 & 2 & TBA510 & no replacement & \\
\hline LM170/270/370 & LM13600N & 2 & TBA530 & no replacement & \\
\hline LM171/271/371 & no replacement & & TBA540 & no replacement & \\
\hline LM172/272/372 & no replacement & & TBA560C & no replacement & \\
\hline LM173/273/373 & no replacement & & TBA920 & no replacement & \\
\hline LM174/274/374 & no replacement & & TBA950-2 & no replacement & \\
\hline LM175/275/375 & no replacement & & TBA970 & no replacement & \\
\hline LM216/316 & LM11 & 2 & TBA990 & no replacement & \\
\hline LM388N-2/N-3 & LM388N-1 & 2 & TDA440 & no replacement & \\
\hline LM377N & LM2877P & 3 & TDA2522/23 & no replacement & \\
\hline LM378N & LM2878P & 3 & TDA2530 & no replacement & \\
\hline LM379 & LM2879T & 3 & TDA2530/31 & no replacement & \\
\hline LM1014 & no replacement & & TDA2540/41 & no replacement & \\
\hline LM1017 & no replacement & & TDA2560 & no replacement & \\
\hline LM1019 & no replacement & & TDA2590 & no replacement & \\
\hline LM1821S & LM1823 & 2 & TDA3500 & no replacement & \\
\hline
\end{tabular}

Note 1: IMPROVED REPLACEMENT: Pin for Pin replacement with superior electrical specifications.
Note 2: FUNCTIONAL REPLACEMENT: Consult datasheet to determine suitability of the replacement for specific application.
Note 3: SIMILAR DEVICE with superior performance: Consult datasheet to determine suitability of the replacement for specific application.

\section*{8 Lead Hermetic Dual-In-Line Package (D) NS Package Number D08C}


DOBC (REV C)

\section*{14 Lead Hermetic Dual-In-Line Package (D) NS Package Number D14E}


D14E (REV E)

\section*{14 Lead Hybrid Metal Can Dual-In-Line Package (D) NS Package Number D14F}


16 Lead Hermetic Dual-In-Line Package (D) NS Package Number D16C


16 Lead Hybrid Metal Can Dual-In-Line Package (D) NS Package Number D16D


\section*{24 Lead Hybrid Sidebrazed Dual-In-Line Package (D) NS Package Number D24D}


\section*{24 Lead (Hybrid Bottom Brazed) Hermetic Dual-In-Line Package (D) NS Package Number D24J}


\section*{20 Leadless Chip Carrier, Type C (E) NS Package Number E20A}


\section*{48 Pin Chip Carrier, Type C (E)}

\section*{NS Package Number E48A}


EA8A (REV A)

\section*{12 Lead ( \(0.400^{\prime \prime}\) Square Pattern) Metal Can Package (G)} NS Package Number G12B


\section*{3 Lead (0.200" Diameter P.C.) Metal Can Package (H) NS Package Number H03A}


H03A (REV B)

\section*{3 Lead (0.200" Diameter P.C.) TO-39 Metal Can Package (H)} NS Package Number H03B


\section*{8 Lead (0.230" Diameter P.C.) Metal Can Package (H) NS Package Number H08A}


\section*{8 Lead (0.230" Diameter P.C.) Metal Can Package (H) NS Package Number H08B}


\section*{8 Lead (0.200" Diameter P.C.) TO-99 Metal Can Package (H) NS Package Number H08C}


\section*{8 Lead (0.230" Diameter P.C.) Metal Can Package (H) NS Package Number H08D}


10 Lead (0.230" Diameter P.C.) TO-100 Metal Can Package (H) NS Package Number H10C


\section*{10 Lead (0.230" Diameter P.C.) Metal Can Package (H) NS Package Number H10F}


\section*{10 Lead (0.230" Diameter P.C.) Metal Can Package (H)} NS Package Number H10G


\section*{8 Lead Dual-In-Line Hybrid Package (J) NS Package Number HY08A}


\section*{8 Lead Ceramic Dual-In-Line Package (J) NS Package Number J08A}


J08A (REV J)

\section*{14 Lead Ceramic Dual-In-Line Package (J) NS Package Number J14A}


\section*{16 Lead Ceramic Dual-In-Line Package (J) NS Package Number J16A}


\section*{18 Lead Ceramic Dual-In-Line Package (J) NS Package Number J18A}


\section*{2 Lead TO-3 Aluminum Metal Can Package (K or KC) NS Package Number KC02A}


\section*{2 Lead TO-3 Metal Can Package (K) NS Package Number K02A}


\section*{2 Lead TO-3 Metal Can Package (K) NS Package Number K02B}


\section*{4 Lead TO-3 Metal Can Package (K) NS Package Number K04A}


\section*{8 Lead TO-3 Metal Can Package (K) NS Package Number K08A}


\section*{8 Lead (0.150" Wide) Small Outline Molded Package (M) NS Package Number M08A}


14 Lead (0.150" Wide) Small Outline Molded Package (M) NS Package Number M14A


14 Lead ( 0.300 " Wide) Small Outline Molded Package (WM) NS Package Number M14B


16 Lead ( \(0.150^{\prime \prime}\) Wide) Small Outline Molded Package (M)
NS Package Number M16A


\section*{16 Lead ( \(0.300^{\prime \prime}\) Wide) Small Outline Molded Package (WM) NS Package Number M16B}


\section*{20 Lead (0.300" Wide) Small Outline Molded Package (M) NS Package Number M20B}


\section*{8 Lead Molded Dual-In-Line Package (N) NS Package Number N08E}


\section*{10 Lead Molded Dual-In-Line Package (N)}

NS Package Number N10A


14 Lead Molded Dual-In-Line Package (N) NS Package Number N14A

\(\frac{0.092}{(2.337)}\) DIA \(\frac{0.030}{(0.762)}\) MAX
OPTION 1


OPTION 02


\section*{16 Lead Molded Dual-In-Line Package (N) NS Package Number N16A}


18 Lead Molded Dual-In-Line Package (N) NS Package Number N18A


\section*{20 Lead Molded Dual-In-Line Package (N) NS Package Number N20A}


N2OA (REV G)

\section*{3 Lead TO-202 Molded Package (P) NS Package Number P03A}


3 Lead TO-220 Molded Package (T)
NS Package Number T03B


\section*{5 Lead TO-220 Molded Package (T) NS Package Number T05A}


5 Lead TO-220 Molded Package (T) NS Package Number T05B


\section*{11 Lead TO-220 Molded Package (T)} NS Package Number TA11A


\section*{11 Lead TO-220 Molded Package (T) NS Package Number TA11B}


\section*{3 Lead TO-92 Molded Package (Z) NS Package Number Z03A}


\section*{NOTES}


\section*{National Semiconductor}

\author{
Bookshelf of Technical Support Information \\ National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature. \\ This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book. \\ Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this bookshelf. \\ We are interested in your comments on our technical literature and your suggestions for improvement. \\ Please send them to: \\ Technical Communications Dept. M/S 16300 \\ 2900 Semiconductor Drive \\ P.O. Box 58090 \\ Santa Clara, CA 95052-8090
}

\section*{ALS/AS LOGIC DATABOOK—1987}

Introduction to Bipolar Logic •Advanced Low Power Schottky • Advanced Schottky

\section*{ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS—1987}

SSI/MSI Functions • Peripheral Functions • LSI/VLSI Functions • Design Guidelines • Packaging

\section*{CMOS LOGIC DATABOOK—1988}

CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

\section*{DATA ACQUISITION LINEAR DEVICES-1989}

Active Filters • Analog Switches/Multiplexers • Analog-to-Digital Converters • Digital-to-Analog Converters Sample and Hold • Temperature Sensors • Voltage Regulators • Surface Mount

DATA COMMUNICATION/LAN/UART DATABOOK—Rev. 1—1988
LAN IEEE \(802.3 \bullet\) High Speed Serial/IBM Data Communications • ISDN Components • UARTs Modems • Transmission Line Drivers/Receivers

\section*{DISCRETE SEMICONDUCTOR PRODUCTS DATABOOK—1989}

Selection Guide and Cross Reference Guides • Diodes • Bipolar NPN Transistors Bipolar PNP Transistors • JFET Transistors • Surface Mount Products • Pro-Electron Series Consumer Series • Power Components • Transistor Datasheets • Process Characteristics

\section*{DRAM MANAGEMENT HANDBOOK—1988}

Dynamic Memory Control • Error Detection and Correction - Microprocessor Applications for the DP8408A/09A/17/18/19/28/29 • Microprocessor Applications for the DP8420A/21A/22A

\section*{F100K DATABOOK—1989}

Family Overview • F100K Datasheets •11C Datasheets • 10K and 100K Memory Datasheets Design Guide • Circuit Basics • Logic Design • Transmission Line Concepts • System Considerations
Power Distribution and Thermal Considerations • Testing Techniques • Quality Assurance and Reliability

\section*{FACTTM ADVANCED CMOS LOGIC DATABOOK—1989}

Description and Family Characteristics • Ratings, Specifications and Waveforms
Design Considerations • 54AC/74ACXXX • 54ACT/74ACTXXX
FAST® \({ }^{\circledR}\) ADVANCED SCHOTTKY TTL LOGIC DATABOOK—1988
Circuit Characteristics • Ratings, Specifications and Waveforms • Design Considerations • 54F/74FXXX

\author{
FAST \({ }^{\circledR}\) APPLICATIONS HANDBOOK—REPRINT \\ Reprint of 1987 Fairchild FAST Applications Handbook \\ Contains application information on the FAST family: Introduction • Multiplexers • Decoders • Encoders Operators • FIFOs • Counters • TTL Small Scale Integration • Line Driving and System Design FAST Characteristics and Testing • Packaging Characteristics • Index
}

\section*{GENERAL PURPOSE LINEAR DEVICES DATABOOK—1989}

Continuous Voltage Regulators • Switching Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators Instrumentation Amplifiers • Surface Mount

GRAPHICS HANDBOOK—1989
Advanced Graphics Chipset • DP8500 Development Tools • Application Notes

\section*{INTERFACE DATABOOK—1988}

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers
Memory Support • Microprocessor Support • Level Translators and Buffers • Frequency Synthesis • Hi-Rel Interface

\section*{LINEAR APPLICATIONS HANDBOOK-1986}

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

LS/S/TTL DATABOOK—1987
Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL • Low Power

\section*{MASS STORAGE HANDBOOK—1989}

Rigid Disk Pulse Detectors • Rigid Disk Data Separators/Synchronizers and ENDECs
Rigid Disk Data Controller • SCSI Bus Interface Circuits • Floppy Disk Controllers • Disk Drive Interface Circuits Rigid Disk Preamplifiers and Servo Control Circuits • Rigid Disk Microcontroller Circuits • Disk Interface Design Guide

\section*{MEMORY DATABOOK—1988}

PROMs, EPROMs, EEPROMs • Flash EPROMs and EEPROMs • TTL I/O SRAMs
ECL I/O SRAMs • ECL I/O Memory Modules

\section*{MICROCONTROLLER DATABOOK—1989}

COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals • Microcontroller Development Tools

\section*{PROGRAMMABLE LOGIC DATABOOK \& DESIGN MANUAL-1989}

Product Line Overview • Datasheets • Designing with PLDs • PLD Design Methodology • PLD Design Development Tools Fabrication of Programmable Logic • Application Examples

\section*{REAL TIME CLOCK HANDBOOK—1989}

Real Time Clocks and Timer Clock Peripherals • Application Notes

\author{
RELIABILITY HANDBOOK—1986 \\ Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510 \\ The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices \\ Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization \\ Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging \\ Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing
}

\section*{SERIES 32000 MICROPROCESSORS DATABOOK-1988}

Series 32000 Overview • Central Processing Units • Slave Processors • Peripherals • Board Level Products Development Systems and Tools • Software Support • Application Notes • NSC800 Family

\section*{SPECIAL PURPOSE LINEAR DEVICES DATABOOK—1989}

Audio Circuits • Radio Circuits • Video Circuits • Motion Control Circuits • Special Function Circuits Surface Mount

\section*{TELECOMMUNICATIONS-1987}

Line Card Components • Integrated Services Digital Network Components • Modems Analog Telephone Components • Application Notes

\section*{National Semiconductor}

\section*{National Semiconductor Corporation}

2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090
Tel: (408) 721-5000
TWX: (910) 339-9240

\section*{SALES OFFICES \\ (Continued)}

\section*{INTERNATIONAL OFFICES}

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: 52-5-524-9402
National Semicondutores

\section*{Do Brasil Ltda.}

Av. Brig. Faria Lima, 1383
6.0 Andor-Conj. 62

01451 Sao Paulo, SP, Brasil
Tel: (55/11) 212-5066
Fax: (55/11) 211-1181 NSBR BR
National Semiconductor GmbH
Industriestrasse 10
D-8080 Furstenfeldbruck
West Germany
Tel: (0-81-41) 103-0
Telex: 527-649
National Semiconductor (UK) Ltd.
The Maple, Kembrey Park
Swindon, Wiltshire SN2 6UT
United Kingdom
Tel: (07-93) 61-41-41
Telex: 444-674
Fax: (07-93) 69-75-22
National Semiconductor Benelux Vorstlaan 100
B-1170 Brussels
Beigium
Tel: (02) 6-61-06-80
Telex: 61007
National Semiconductor (UK) Ltd.
Ringager 4A. 3
DK-2605 Brondby
Denmark
Tel: (02) 43-32-11
Telex: 15-179
Fax: (02) 43-31-11

National Semiconductor S.A.
Centre d'Affaires-La Boursidiere
Bâtiment Champagne, B.P. 90
Route Nationale 186
F-92357 Le Plessis Robinson
France
Tel: (1) 40-94-88-88
Telex: 631065
Fax: (1) 40-94-88-11
National Semiconductor (UK) Ltd.
Unit 2A
Clonskeagh Square
Clonskeagh Road
Dublin 14
Tel: (01) 69-55-89
Telex: 91047
Fax: (01) 69-55-89
National Semiconductor S.p.A.
Strada 7. Palazzo R/3
20089 Rozzano
Milanofiori
Italy
Tel: (02) 8242046/7/8/9
National Semiconductor S.p.A.
Via del Cararaggio, 107
00147 Rome
Italy
Tel: (06) 5-13-48-80
Fax: (06) 5-13-79-47
National Semiconductor (UK) Ltd.
P.O. Box 29

N-1321 Stabekk
Norway
Tel: (2) 12-53-70
Fax: (2) 12-53-75
National Semiconductor AB
Box 2016
Stensatravagen 13
S-12702 Skarholmen
Sweden
Tel: (08) 970190
Telex: 10731

\section*{National Semiconductor}

Calle Agustin de Foxa, 27
28036 Madrid
Spain
Tel: (01) 733-2958
Telex: 46133
National Semiconductor
Switzerland
Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zurich
Switzerland
Tel: (01) 830-2727
Telex: 828-444
National Semiconductor
Kauppakartanonkatu 7 A22
SF-00930 Helsinki
Finiand
Tel: (90) 33-80-33
Telex: 126116
National Semiconductor
Postbus 90
1380 AB Weesp
The Netherlands
Tel: (0-29-40) 3-04-48
Telex: 10-956
Fax: (0-29-40) 3-04-30
National Semiconductor Japan

\section*{Ltd.}

Sanseido Bldg. 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: 3-299-7001
Fax: 3-299-7000

National Semiconductor
Hong Kong Ltd.
Suite 513, 5th Floor
Chinachem Golden Plaza,
77 Mody Road, Tsimshatsui East,
Kowloon, Hong Kong
Tel: 3-7231290
Telex: 52996 NSSEA HX =
Fax: 3-3112536
National Semiconductor
(Australia) PTY, Ltd.
1st Floor, 441 St. Kilda Rd.
Melbourne, 3004
Victory, Australia
Tel: (03) 267-5000
Fax: 61-3-2677458
National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpoint
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P.O. Box 68-332 Taipei

7th Floor, Nan Shan Life Bldg
302 Min Chuan East Road,
Taipei, Taiwan R.O.C
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI

\section*{National Semiconductor (Far East)}

Ltd.
Korea Branch
13th Floor, Dai Han Life Insurance
63 Building,
60, Yoido-dong, Youngdeungpo-ku,
Seoul, Korea 150-763
Tel: (02) 784-8051/3, 785-0696/8
Telex: 24942 NSPKLO
Fax: (02) 784-8054```


[^0]:    *With dual-in-line formed leads

[^1]:    *Zener is internal to LM109.

[^2]:    Note 1: Unless otherwise specified, these specifications apply $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+150^{\circ} \mathrm{C}$ for the $\mathrm{LM} 137,0^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+125^{\circ} \mathrm{C}$ for the LM 337 ; $\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$; and lout $=0.1 \mathrm{~A}$ for the TO-39 and TO-202 packages and lout $=0.5 \mathrm{~A}$ for the TO-3 and TO-220 packages. Although power dissipation is internally limited, these specifications are applicable for power dissipations of 2 W for the TO-39 and TO-202 and 20 W for the TO-3 and TO-220. IMAX is 1.5A for the TO-3 and TO-220 packages, and 0.5A for the TO-202 package and 0.2A for the TO-39 package.
    Note 2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Load regulation is measured on the output pin at a point $1 / \mathrm{s}^{\prime \prime}$ below the base of the TO-3 and TO-39 packages.

[^3]:    Note 1: Thermal resistance of H-package is typically $26^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{j} \mathrm{C}}, 250^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{jA}}$ still air, and $94^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{j}} 400 \mathrm{lf} / \mathrm{min}$ of air. For the Z-package is $60^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{jC}}, 232^{\circ} \mathrm{C} /$ W $\theta_{\mathrm{jA}}$ still air, and $88^{\circ} \mathrm{C} / \mathrm{W} \theta_{\mathrm{jA}}$ at $400 \mathrm{lf} / \mathrm{min}$ of air. The maximum junction temperature shall not exceed $125^{\circ} \mathrm{C}$ on electrical parameters.
    Note 2: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of tests.
    Note 3: It is recommended that a minimum load capacitor of $0.01 \mu \mathrm{~F}$ be used to limit the high frequency noise bandwidth.
    Note 4: The temperature coefficient of $\mathrm{V}_{\mathrm{OUT}}$ is typically within $0.01 \% \mathrm{~V}_{\mathrm{O}} /{ }^{\circ} \mathrm{C}$.
    Note 5: Refer to RETS140-12H for LM140LAH-12, RETS140-15H for LM140LAH-15 or RETS140-15H for LM140LAH-5.0 military specification.

[^4]:    *The factor of 1.1 is only an approximate factor accounting for load regulation of the transformer.

[^5]:    *R1-R4 from thin-film network, Beckman 694-3-R2K-D or similar

[^6]:    *Required if regulator is located far from power supply filter.
    ** $\mathrm{C}_{\text {OUT }}$ must be at least $22 \mu \mathrm{~F}$ to maintain stability. May be increased without bound to maintain regulation during transients. Locate as close as possible to the regulator. This capacitor must be rated over the same operating temperature range as the regulator. The equivalent series resistance (ESR) of this capacitor is critical; see curve.

[^7]:    *Isolation refers to the ability of the specified output to remain within the tested limits when the other output is shorted to ground.

[^8]:    Note 1: Thermal resistance of the TO-3 package ( $\mathrm{K}, \mathrm{KC}$ ) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $35^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient. Thermal resistance of the TO-220 package ( T ) is typically $4^{\circ} \mathrm{C} / \mathrm{W}$ junction to case and $50^{\circ} \mathrm{C} / \mathrm{W}$ case to ambient.
    Note 2: All characteristics are measured with capacitor across the input of $0.22 \mu \mathrm{~F}$, and a capacitor across the output of $0.1 \mu \mathrm{~F}$. All characteristics except noise voltage and ripple rejection ratio are measured using pulse techniques ( $t_{w} \leq 10 \mathrm{~ms}$, duty cycle $\leq 5 \%$ ). Output voltage changes due to changes in internal temperature must be taken into account separately.

[^9]:    Note 1: The maximum steady state usable output current and input voltage are very dependent on the heat sinking and/or lead length of the package. The data above represent pulse test conditions with junction temperatures as indicated at the initiation of tests.
    Note 2: Power Dissipation $\leq 0.75 \mathrm{~W}$.

[^10]:    *Not Specified
    Note 1: Refer to Datasheet for conditions and more detailed information.

[^11]:    $V_{O}=\frac{1 V}{R_{\text {LADDER }}} \times R_{X}$
    Where $\mathrm{R}_{\text {LADDER }}$ is the resistance from switch S 1 pole to pin 7 of the LF353.

[^12]:    ＊ $1 \times$ scale calibrate
    $\dagger 3 \times$ scale calibrate
    $\dagger \dagger$ Includes reversing switch

[^13]:    *Solid tantalum
    $\dagger$ Mylar
    $\ddagger$ Close thermal coupling between sensor and oven shell is recommended.

[^14]:    Note 1. Neither input should exceed the supply voltage by more than 50 volts nor should the voltage between one input and any other terminal exceed 80 volts for the LM12/LM12C or 60 volts for the LM12L/LM12CL.
    Note 2. Operating junction temperature is internally limited near $225^{\circ} \mathrm{C}$ within the power transistor and $160^{\circ} \mathrm{C}$ for the control circuitry.
    Note 3. The supply voltage is $\pm 40 \mathrm{~V}\left(\mathrm{~V}_{\text {MAX }}=80 \mathrm{~V}\right)$ for the LM12/LM12C and $\pm 30 \mathrm{~V}\left(\mathrm{~V}_{\text {MAX }}=60 \mathrm{~V}\right)$ for the LM12L/LM12CL, unless otherwise specified. The voltage across the conducting output transistor (supply to output) is $V_{\text {DISS }}$ and internal power dissipation is $\mathrm{P}_{\text {DISs. }}$. Temperature range is $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{C}} \leq 125^{\circ} \mathrm{C}$ for the LM12/LM12L and $0^{\circ} \mathrm{C} \leq T_{C} \leq 70^{\circ} \mathrm{C}$ for LM12C/LM12CL, where $T_{C}$ is the case temperature. Standard typeface indicates limits at $25^{\circ} \mathrm{C}$ while boldface type refers to limits or special conditions over full temperature range. With no heat sink, the package will heat at a rate of $35^{\circ} \mathrm{C} / \mathrm{sec}$ per 100 W of internal dissipation.
    Note 4. This thermal resistance is based upon a peak temperature of $200^{\circ} \mathrm{C}$ in the center of the power transistor and a case temperature of $25^{\circ} \mathrm{C}$ measured at the center of the package bottom. The maximum junction temperature of the control circuitry can be estimated based upon a dc thermal resistance of $0.9^{\circ} \mathrm{C} / \mathrm{W}$ or an ac thermal resistance of $0.6^{\circ} \mathrm{C} / \mathrm{W}$ for any operating voltage.
    Although the output and supply leads are resistant to electrostatic discharges from handing, the input leads are not. The part should be treated accordingly.

[^15]:    **Pin connections shown are for 8-pin packages.

[^16]:    **Pin connections shown are for 8-pin packages.

[^17]:    Note 1: See Maximum Power Dissipation graph.
    Note 2: Mirror gain is the current gain of the current mirror which is used as the non-inverting input. $\left(A_{I}=\frac{l_{I N}(-)}{l_{\mathbb{N}}(+)}\right) \Delta M i r r o r$ Gain is the \% change in $A_{I}$ for two
    different mirror currents at any given temperature. different mirror currents at any given temperature.
    Note 3: See Supply Rejection graphs.

[^18]:    At volume of change $= \pm 12 \mathrm{~dB}$

[^19]:    Absolute Maximum Ratings (Note 3)
    If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

    Differential Input Voltage
    Either Input beyond $\mathrm{V}^{+}$or $\mathrm{V}^{-}$
    $\pm$ Supply Voltage

    Supply Voltage
    Output Short Circuit to GND (Note 1)
    Lead Temperature (Soldering, 10 sec .)
    Storage Temp. Range
    $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

[^20]:    *For devices processed in total compliance to military specifications refer to RETSOP07X for OP-07.

[^21]:    *Previously called NH0002/NH0002C

[^22]:    Note 1: LH4063C is $100 \%$ production tested at $25^{\circ} \mathrm{C}$ only. Specifications at temperature extremes are verified by sample testing, but these limits are not used to calculate outgoing quality level.
    Note 2: Specification is at $25^{\circ} \mathrm{C}$ junction temperature due to requirements of high speed automatic testing. Actual values at operating temperature will exceed the value at $T_{J}=25^{\circ} \mathrm{C}$. When supply voltages are $\pm 15 \mathrm{~V}$, no-load operating junction temperature may rise $40-60^{\circ} \mathrm{C}$ above ambient, and more under load conditions. Accordingly, $\mathrm{V}_{\mathrm{OS}}$ may change one to several mV , and $\mathrm{I}_{\mathrm{B}}$ and $\mathrm{l}_{\mathrm{OS}}$ will change significantly during warm-up. Refer to $\mathrm{I}_{\mathrm{B}}$ and $\mathrm{I}_{\mathrm{OS}}$ vs. temperature graph for expected values.
    Note 3: Guaranteed through correlated automatic pulse testing at $T_{J}=25^{\circ} \mathrm{C}$.
    Note 4: Not $100 \%$ production tested; verified by sample testing only. Limits are not used to calculate outgoing quality level.

[^23]:    **Pin connections shown are for metal can package.

[^24]:    *Also stable for $\mathrm{C}_{\mathrm{L}} \geq 0.05 \mu \mathrm{~F}$

[^25]:    *In production (or planned) for linear products.

[^26]:    *The following diagram identifies these sections of the tape and Pin \#1 device orientation.

[^27]:    *Some older products are not completely compliant with MIL-STD-883 but are still required for use in military systems. These devices are screened to the same stringent requirements as 883 product but are marked "-MIL".

