National Semiconductor

## F100K ECL Logic

## Databook and Design Guide

# F100K ECL DATABOOK 

1989 Edition

## Family Overview

F100K Datasheets
11C Datasheets
10K and 100K Memory Datasheets
Design Guide
Ordering Information and
Physical Dimensions

## TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

| Abuseable ${ }^{\text {TM }}$ | Fairtech ${ }^{\text {TM }}$ | MSTTM | SCXTM |
| :---: | :---: | :---: | :---: |
| Anadig ${ }^{\text {M }}$ | FAST* | Naked-8TM | SERIES/800TM |
| ANS-R-TRANTM | 5-Star ServicetM | National ${ }^{(8)}$ | Series $900{ }^{\text {TM }}$ |
| APPSTM | GENIXTM | National Semiconductor ${ }^{\text {® }}$ | Series 3000тM |
| ASPECTTM | GNXTM | National Semiconductor | Series 32000 ${ }^{\text {® }}$ |
| Auto-Chem DeflasherTM | HAMRTM | Corp. ${ }^{\text {® }}$ | Shelf $\sim$ Chek ${ }^{\text {TM }}$ |
| ВСРтм | HandiScantm | NAX 800 ${ }^{\text {m }}$ | SofChekTM |
| BI-FETTM | HEX 3000'M | Nitride Plus ${ }^{\text {TM }}$ | SPIRETM |
| BI-FET IITM | HPCTM | Nitride Plus OxideTM | STARTM |
| BI-LINETM | ${ }^{13} \mathrm{~L}$ © | NMLTM | Starlink ${ }^{\text {TM }}$ |
| BIPLANTM | ICM ${ }^{\text {TM }}$ | NOBUSTM | STARPLEXTM |
| BLCTM | INFOCHEXTM | NSC800TM | SuperChip ${ }^{\text {TM }}$ |
| BLXTM | Integral ISETM | NSCISETM | SuperScript ${ }^{\text {TM }}$ |
| Brite-Lite ${ }^{\text {TM }}$ | Intelisplay ${ }^{\text {TM }}$ | NSX-16TM | SYS32TM |
| BTLTM | ISETM | NS-XC-16TM | TapePak ${ }^{\text {® }}$ |
| CheckTrack ${ }^{\text {TM }}$ | ISE/06TM | NTERCOM ${ }^{\text {TM }}$ | TDSTM |
| CIM ${ }^{\text {TM }}$ | ISE/08TM | NURAM ${ }^{\text {TM }}$ | TeleGate ${ }^{\text {TM }}$ |
| CIMBUSTM | ISE/16TM | OXISSTM | The National Anthem ${ }^{(8)}$ |
| CLASICTM | ISE32TM | $\mathrm{P}^{2} \mathrm{CMOSTM}$ | TimenChek ${ }^{\text {TM }}$ |
| Clock $\sim_{\text {Chek }}{ }^{\text {TM }}$ | ISOPLANARTM | PC Master ${ }^{\text {TM }}$ | TINATM |
| СОМВО'м | ISOPLANAR-ZTM | Perfect Watch ${ }^{\text {TM }}$ M | TLCTM |
| COMBO ITM | KeyScantM | PharmanChekTM | TrapezoidalTM |
| COMBO ITM | LMCMOSTM | PLANTM | TRI-CODETM |
| COPSTM microcontrollers | M ${ }^{2} \mathrm{CMOSTM}$ | PLANARTM | TRI-POLYTM |
| Datachecker ${ }^{\text {® }}$ | Macrobus ${ }^{\text {TM }}$ | Polycraftm | TRI-SAFETM |
| DENSPAKTM | Macrocomponent ${ }^{\text {TM }}$ | POSilink ${ }^{\text {TM }}$ | TRI-STATE ${ }^{\text {® }}$ |
| DIBTM | MAXI-ROM ${ }^{\text {® }}$ | POSitalker ${ }^{\text {TM }}$ | TURBOTRANSCEIVERTM |
| Digitalker® ${ }^{\text {® }}$ | Meat $\mathrm{CLh}^{\text {Ch }}$ TM | Power + Controlm | VIPTM |
| DISCERNTM | MenuMasterTM | POWERplanar ${ }^{\text {TM }}$ | VR32TM |
| DISTILLTM | Microbus ${ }^{\text {TM }}$ data bus | QUAD3000TM | WATCHDOGTM |
| DNR ${ }^{\text {® }}$ | MICRO-DACTM | QUIKLOOKTM | XMOSTM |
| DPVM ${ }^{\text {™ }}$ | $\mu$ talkerTM | RATTM | XPUTM |
| ELSTARTM | MicrotalkerTM | RTX16TM | Z STARTM |
| E-Z-LINKTM | MICROWIRETM | SABRTM | 883B/RETSTM |
| FACTM | MICROWIRE/PLUSTM | ScriptnChekTM | 883S/RETSTM |
| FAIRCADTM | MOLETM |  |  |

MOLETM

MULTIWIRE ${ }^{\circledR}$ is a registered trademark of Multiwire Corporation
MYLAR ${ }^{\circledR}$ and TEFLON ${ }^{\circledR}$ are registered trademarks of E.l. duPont de Nemours Company SENTRY ${ }^{(8}$ is a registered trademark of Schlumberger Limited

## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000 TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

## Introduction

National's F100K ECL family has gained acceptance as the standard subnanosecond logic and memory family used in high-speed, next generation systems. Utilizing the advanced Isoplanar-Z process, F100K circuits offer specification of DC and AC parameters over a -4.2 V to $-4.8 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}$ at $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ case temperature, full voltage and temperature compensation, and ease-of-use features, providing a high performance, cost-effective ECL logic family.

## F100K Data Book

## Product Index and Selection Guide

The Product Index is a numerical list of all device types contained in this book. The Selection Guide groups the products by function.

## Section 1 Family Overview

Discusses F100K design philosophy and actualization and summarizes the key F100K features and advantages in high speed systems. Also included is the F100K military process flow.

## Section 2 F100K Data Sheets <br> 2-1

Contains individual data sheets for F 100 K devices.Section 3 11C Data Sheets ..... 3-1Contains individual data sheets for 11 C devices.

## Section 4 100K and 10K Memory Data

 Sheets4-1Contains abbreviated information on 100 K and 10 K memory devices. For further information see National's Memory Databook.

## F100K Design Guide-Section 5

## Chapter 1 Circuit Basics <br> 5-3

Discusses internal circuitry and logic function formation. Also, a sample analysis of noise margins is outlined.

Chapter 2 Logic Design 5-9
Features brief applications of F100K logic arranged according to function.

Chapter 3 Transmission Line Concepts .5-23
Reviews the concepts of characteristic impedance and propagation delay and discusses termination, mismatch, reflections and associated waveforms.

Chapter 4 System Considerations 5-37
Extends the transmission line approach to the specific configurations, signal levels and parameter values of ECL. Various methods of driving and terminating signal lines are discussed.

## Chapter 5 Power Distribution and Thermal Considerations 5-51 <br> Discusses power supply, decoupling and system cooling requirements.

## Chapter 6 Testing Techniques 5-59

Discusses various methods and techniques used in testing ECL devices (intended for those concerned with customer incoming inspection.)
Chapter 7 Quality Assurance and Reliability ..... 5-63

Reviews the quality and reliability programs currently in use.
Section 6 Ordering Information andPackage Outlines6-1

## Product Status Definitions

## Definition of Terms

| Data Sheet Identification | Product Status | Definition |
| :---: | :---: | :---: |
| Advance Information | Formative or In Design | This data sheet contains the design specifications for product development. Specifications may change in any manner without notice. |
| Preliminary | First Production | This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. |
| No <br> Identification <br> Noted | Full <br> Production | This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. |

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

## Alpha-Numeric Index

11C01 Dual Input OR/NOR Gate ..... 3-3
11C05 1 GHz Divide-by-Four Counter ..... 3-6
11 C 06750 MHz D-Type Flip-Flop ..... 3-10
11 C70 Master-Slave D-Type Flip-Flop ..... 3-14
11 C 90650 MHz Prescalers ..... 3-20
11 C 91650 MHz Prescalers ..... 3-20
$10014516 \times 4$-Bit Register File (RAM) ..... 4-7
$1004151024 \times 1$-Bit RAM ..... 4-8
$100422256 \times 4$-Bit RAM ..... 4-9
10145A $16 \times 4$-Bit Register File (RAM) ..... 4-3
$1040216 \times 4$-Bit Register File (RAM) ..... 4-4
$104151024 \times 1$-Bit Static RAM ..... 4-5
$10422256 \times 4$-Bit Static RAM ..... 4-6
F100101 Triple 5 -Input OR/NOR Gate ..... 2-3
F100102 Quint 2-Input OR/NOR Gate ..... 2-6
F100104 Quint 2-Input AND/NAND Gate ..... 2-9
F100107 Quint Exclusive OR/NOR Gate ..... 2-13
F100112 Quad Driver ..... 2-17
F100113 Quad Driver ..... 2-21
F100114 Quint Differential Line Receiver ..... 2-25
F100115 Low Skew Quad Driver ..... 2-29
F100117 Triple 2-Wide OA/OAI Gate ..... 2-30
F100118 5-Wide 5-4-4-4-2 OA/OAI Gate ..... 2-33
F100121 9-Bit Inverter ..... 2-37
F100122 9-Bit Buffer ..... 2-40
F100123 Hex Bus Driver ..... 2-43
F100124 Hex TTL-to-100K ECL Translator ..... 2-47
F100125 Hex 100K ECL-to-TTL Translator ..... 2-51
F100126 9-Bit Backplane Driver ..... 2-55
F100128 Octal Bidirectional ECL/TTL Translator ..... 2-58
F100130 Triple D Latch ..... 2-67
F100131 Triple D Flip-Flop ..... 2.73
F100135 Triple JK Flip-Flop ..... 2-81
F100136 4-Stage Counter/Shift Register ..... 2-87
F100141 8-Bit Shift Register ..... 2-97
F100142 $4 \times 4$ Content Addressable Memory ..... 2-103
F100150 Hex D Latch ..... 2-110
F100151 Hex D Flip-Flop ..... 2-116
F100155 Quad Multiplexer/Latch ..... 2-122
F100156 Mask/Merge Latch ..... 2-128
F100158 8-Bit Shift Matrix ..... 2-134
F100160 Dual Parity Checker/Generator ..... 2-142
F100163 Dual 8-Input Multiplexer ..... 2-147
F100164 16-Input Multiplexer ..... 2-152
F100165 Universal Priority Encoder ..... 2-157
F100166 9-Bit Comparator ..... 2-163
F100170 Universal Demultiplexer/Decoder ..... 2-168
F100171 Triple 4-Input Multiplexer with Enable ..... 2-173
F100175 Quint 100K-to-10K Latch ..... 2-178
F100179 Carry Lookahead Generator ..... 2-184
F100180 High-Speed 6-Bit Adder ..... 2-191
Alpha-Numeric Index ${ }_{\text {(Continueq) }}$
F100181 4-Bit Binary/BCD ALU ..... 2-196
F100182 9-Bit Wallace Tree Adder ..... 2-203
F100183 $2 \times 8$-Bit Recode Multiplier ..... 2-211
F100250 Quint Full Duplex Line Transceiver ..... 2-223
F100324 Low Power Hex TTL-to-100K ECL Translator ..... 2-230
F100325 Low Power Hex 100K ECL-to-TTL Translator ..... 2-231
F100350 Low Power Hex D Latch ..... 2-232
F100351 Low Power Hex D Flip-Flop ..... 2-233


## Flip-Flops

| Function | Device | Clock <br> Edge | Direct <br> Set | Direct <br> Clear | Complementary <br> Outputs | Leads |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Triple D Flip-Flop | 100131 | - | Yes | Yes | Yes | 24 |
| Triple J-K Flip-Flop | 100135 | - | Yes | Yes | Yes | 24 |
| Hex D Flip-Flop | 100151 | - | No | Yes | Yes | 24 |
| 750 MHz D Flip-Flop | 11006 | - | No | No | Yes | 16 |
| Master-Slave D Flip-Flop | $11 C 70$ | - | Yes | Yes | Yes | 16 |
| Low Power Hex D Flip-Flop | 100351 | $\Omega$ | No | Yes | Yes | 24 |

## Latches

| Function | Device | Enable <br> Inputs | Complementary <br> Outputs | Direct <br> Set | Direct <br> Clear | Leads |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Triple D Latch | 100130 | $4(L)$ | Yes | Yes | Yes | 24 |
| Hex D Latch | 100150 | $2(L)$ | Yes | No | Yes | 24 |
| Quad 2-Input Mux/Latch | 100155 | $2(L)$ | Yes | No | Yes | 24 |
| Mask-Merge Latch | 100156 | 1(L) | No | No | No | 24 |
| Quint 100K-to-10K Latch | 100175 | 2(L) | No | No | Yes | 24 |
| Low Power Hex D Latch | 100350 | 2(L) | Yes | No | Yes | 24 |

## Multiplexers/Demultiplexers/Decoders

| Function | Device | Enable <br> Inputs | Complementary <br> Outputs | Leads |
| :--- | :---: | :---: | :---: | :---: |
| Multiplexers |  |  |  |  |
| Dual 8-Input | 100163 |  | No | 24 |
| Triple 4-Input | 100171 | $1(L)$ | Yes | 24 |
| Quad 2-Input Mux/Latch | 100155 | $2(L)$ | Yes | 24 |
| 16-Input | 100164 |  |  | 24 |
| Decoders/Demultiplexers |  |  | No | 24 |
| Dual 1 of 4/Single 1 of 8 | 100170 | $2(L) \& 2(L)$ |  |  |

## Translators

| Function | Device | Enable <br> Inputs | Latch | Complementary | Leads |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Hex TTL-to-100K ECL | 100124 | $1(H)$ | No | Outputs | 24 |
| Hex 100K ECL-to-TTL | 100125 |  | No | Inputs | 24 |
| Octal Bidirectional ECL/TTL | 100128 | $1(H)$ | Yes |  | 24 |
| Quint 100K-to-10K | 100175 | $2(H)$ | Yes |  | 24 |
| Low Power Hex TTL-to-100K ECL | 100324 | $1(H)$ | No | Outputs | 24 |
| Low Power Hex 100K ECL-to-TTL | 100325 |  | No | Inputs | 24 |

## Registers/Shift Registers

| Function | Device | Clock <br> Inputs | Complementary <br> Outputs | Leads |
| :--- | :---: | :---: | :---: | :---: |
| Shift Registers |  |  |  |  |
| 4-Bit Bidirectional Shift Reg <br> 8-Bit Shift Register | 100136 | $\sim$ | Yes | 24 |

## Buffers/Drivers/Receivers

| Function | Device | Output <br> Polarity | $\mathbf{2 5 \Omega}$ <br> Drive | Output <br> Cut-Off | Leads |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Buffers/Inverters | 100121 | Inverting | No | No | 24 |
| 9-Bit Inverter | 100122 | Non-Inverting | No | No | 24 |
| 9-Bit Buffer | 100112 | Differential | No | No | 24 |
| Drivers/Bus Drivers | 100113 | Differential | No | No | 24 |
| Quad Line Driver | 100115 | Differential | No | No | 16 |
| Quad Line Driver | 100123 | Non-Inverting | Yes | Yes | 24 |
| Low Skew Quad Driver | 100126 | Non-Inverting | No | No | 24 |
| Hex Bus Driver |  |  |  |  |  |
| 9-Bit Backplane Driver |  | Differential | No | No | 24 |
| Receivers/Transceivers | 100114 | Differential | No | No | 24 |
| Quint Differential Line Receiver | 100250 |  |  |  |  |
| Quint Full Duplex Line Transceiver |  |  |  |  |  |

## Counters/Prescalers

| Function | Device | Parallel <br> Entry | Reset | Up/Down | Leads |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Counters |  |  |  |  |  |
| 4 -Bit Binary Counter | 100136 | S | $\mathrm{~S} / \mathrm{A}$ | Yes | 24 |
| 1 GHz Divide-by-Four Counter | 11 C 05 |  | No | No | 16 |
| Prescalers |  |  | No | No |  |
| 650 MHz Prescaler | 11 C 90 |  | No | No | 16 |
| 650 MHz Prescaler | $11 C 91$ |  |  |  |  |

## Arithmetic Operators

| Function | Device | Features | Leads |
| :--- | :--- | :--- | :---: |
| High Speed 6-Bit Adder | 100180 |  | 24 |
| Carry Lookahead | 100179 |  | 24 |
| 4-Bit Binary/BCD ALU | 100181 | 8 Logic/8 Arithmetic Ops | 24 |
| 9-Bit Wallace Tree Adder | 100182 | Expandable | 24 |
| 2x 8-Bit Recode Multiplier | 100183 |  | 24 |
| Dual 9-Bit Parity Checker/Generator | 100160 | Expandable | 24 |
| 9-Bit Comparator | 100166 | Expandable | 24 |
| 8-Input Priority Encoder | 100165 | Dual 4-Bit/Single 8-Bit | 24 |
| 8-Bit Shift Matrix | 100158 | Barrel Shift, Backfill | 24 |
| 4-Bit Mask-Merge/Latch | 100156 | Bit-Selectable Merge | 24 |
| $4 \times$ 4-Bit Content Addressable Memory | 100142 |  | 24 |

## Memories

| Function | Device | Leads |
| :--- | :--- | :--- |
| Register Files/RAMs |  |  |
| $16 \times 4$-Bit RAM | 100145 | 24 |
| $16 \times 4$-Bit RAM | 10145 A | 16 |
| $16 \times 4$-Bit RAM | 10402 | 16 |
| $1024 \times 1$-Bit RAM | 100415 | 16 |
| $1024 \times 1$-Bit RAM | 10415 | 16 |
| $256 \times 4$-Bit RAM | 100422 | 24 |
| $256 \times 4-$ Bit RAM | 10422 | 24 |
| Specialty Memories |  |  |
| $4 \times 4$-Bit Content Addressable Memory | 100142 | 24 |

Section 1
Family Overview

## Section 1 Contents

Family Overview ..... 1-3
Introduction. ..... 1-3
Design Philosophy ..... 1-3
Process Technology ..... 1-4
Compensation Network ..... 1-4
Characteristics ..... 1-6
System Aspects ..... 1-7
Features ..... 1-7
System Benefits ..... 1-8
Packaging ..... 1-9
Mil/Aero Product Line ..... 1-9
Definitions of Terms and Symbols ..... 1-10

## Family Overview

## Introduction

Systems designers have found that Emitter Coupled Logic (ECL) circuits offer significant advantages to high-speed systems. These advantages include high switching rates with moderate power consumption, low propagation delays with moderate edge rates, and the ability to drive low impedance transmission lines. Most F100K devices have $50 \mathrm{k} \Omega$ pull-down resistors on all the inputs.
The F100K ECL family is the realization of refinements made on ECL design to produce a family of ultrafast logic and memory components. These components are capable of providing ultimate performance for packaged SSI/MSI, are easy to use, and cost effective.
F100K ECL has been accepted as the standard subnanosecond logic and memory family used in high-speed, next generation systems. The advance into complex LSI and gate arrays is fully supported by the F100K SSI/MSI parts.

## Design Philosophy

F100K was designed to meet four key requirements: high speed at reduced power, high level of on-chip integration, flexible logic functions, and optimum I/O pin assignment.

## Subnanosecond Gate Delays

The subnanosecond internal gate delays of F100K are obtained by the use of ECL design techniques and the advanced Isoplanar-Z process. Many circuit approaches were carefully considered prior to selecting the optimum gate configuation for the F100K family. The emitter-follower cur-rent-switch ( $E^{2} \mathrm{CL}$ ) and current-mode logic (CML) gates were eliminated mainly because of poor capacitive drive and lack of output wired-OR capability; the CML gate has low noise margins. The $2-1 / 2 \mathrm{D}, \mathrm{EFL}, \mathrm{DCTTL}$ and hysteresis gates were eliminated due to the lack of simultaneous complementary outputs along with difficult temperature and voltage compensation characteristics that lead to the loss of system noise immunity.
The choice narrowed down to the current-switch emitter-follower ECL gate which offers the following characteristics:

- High fan-out capability
- Simultaneous complementary outputs
- Excellent AC characteristics
- Compatibility with existing ECL logic and memories
- Internal series gating capability
- Good noise immunity
- Amenable full compensation and extended temperature characteristics
- External wired-OR capability

In order to ease drive requirements all circuit inputs were designed to have similar loading characteristics; i.e., buffers
are incorporated where an input pin would normally drive more than one on-chip gate. The on-chip delay incurred by buffering is less than the system delay caused by an output which drives a capacitance of higher than three unit loads. Full compensation was selected for the F100K Family to provide improved switching characteristics. Full compensation results in relatively constant signal levels and thresholds and in improved noise margins over temperature and voltage variations from chip to chip, and thus a tighter AC window in the system environment. A comparison of fully compensated ECL to conventional ECL shows a $2: 1$ improvement in system AC performance due solely to full compensation (Figure 1-1). And, the improved speed has been achieved at reduced power. Power reduction is accomplished by the use of advanced process technology that reduces parasitic capacitances and improves tolerances, by optimum circuit designs using series gating and collector and emitter dotting, and by designing for the use of a -4.5 V $\mathrm{V}_{\mathrm{EE}}$ power supply. F100K is specified at a $\mathrm{V}_{\mathrm{EE}}$ power supply of -4.2 V to -4.8 V , but a $-5.2 \mathrm{~V} \pm 10 \%$ power supply can be used to interface with 2 ns ECL families.


TL/F/9908-1
FIGURE 1-1. Comparison of Propagation Delays
High On-Chip Integration
Higher on-chip integration is made possible by using the 24pin package to increase the number of signal pins by $62 \%$ over the conventional 16 -pin package. The emphasis in F100K is to minimize the number of SSI functions and maximize the use of MSI and LSI to reduce wiring delays and thus make more efficient use of the fast on-chip switching technology. Only 10 SSI functions are needed to serve the system needs presently requiring 25 functions in the ECL 10K family.

## Flexibility and Pin Assignment

F100K was planned to minimize to total number of logic functions by increasing the flexibility of each function and by making use of more I/O pins. Since next-generation system
performance and ease of system designs are major F100K goals, pin assignment is important and was planned to minimize crosstalk, noise coupling and feedthrough, to facilitate OR-ties and to ease power-bus routing. Some of the key considerations in selecting the F100K pin assignments were:

- Locate power pins in the center on opposite sides of the DIP package to ease system design and to provide lowinductance connections to the chip.
- Provide two $V_{C C}$ pins, one for the internal circuit and one for the output buffers, to minimize noise coupling.
- Locate inverting outputs of logically independent gates adjacent to each other. This provides the ability to wire AND-OR-Invert functions with ease.
- Locate common pins such as common Reset and common Clock at pin number 22 and Address or control inputs at pins 19 and 20 for flatpaks. This is to maximize use of Computer Aided Design (CAD) for board layouts.
- When feasible, mode control pins are used to create multipurpose devices.


## Process Technology

The F100K ECL family is fabricated using an advanced isoplanar technology called FAST-Z. Devices in the family that feature higher performance and sizes of 1.25 microns are fabricated with a scaled FAST-Z Fineline process. These processes make possible subnanosecond logic delays and very highly controlled switching characteristics for consistent device-to-device high-speed performance.
The technology can best be described by reviewing the evolution of the transistor structure from the conventional planar and the original Isoplanar II processes to the FAST-Z and FAST-Z Fineline processes (Figure 1-2). The top view shows the area needed for each structure; the dashed area is the center of the isolation region.

As in all Isoplanar technologies, the FAST-Z processes selectively grow a thick oxide between devices instead of the $\mathrm{P}+$ region that is present in the planar process. The oxide needs no separation from the base-collector regions, resulting in a substantial reduction in device and chip size. The base and emitter ends terminate in the oxide wall. The mask openings can therefore overlap onto the isolation oxide making them self-aligned in that direction. This overlap feature means that base and emitter masking does not have to meet the extremely close tolerances that might otherwise be necessary. In addition, the FAST-Z transistor contacts are defined on a single mask layer making them self-aligned in the other direction.
Both the self-alignment feature and the ability to overlap the mask openings onto the isolation oxide provide improved process control. The need to meet extremely close tolerances that otherwise might be necessary is therefore avoided.
The FAST-Z "walled emitter" structures provide a reduction in transistor silicon area of 400 percent as compared to the planar structure. The collector-substrate therefore is also reduced by 400 percent. The collector-base area is reduced by 540 percent. These area reductions, combined with the shallower junctions achieved by well controlled ion implantation processes, provide significantly reduced capacitance and resistance values within the FAST-Z transistor structure. This, is turn, allows higher speeds.

## Compensation Network

The heart of F100K is fully compensated ECL. ${ }^{1}$ The basic gate consists of three blocks-the current switch, the output emitter-followers, and the reference or bias network (Figure 1-3). The current switch allows both conjunctive and disjunctive logic. The output emitter-followers provide high drive capability through impedance transformation and allows for increased logic swing. The bias network sets DC
1963


PLANAR


Began IC Revolution

1972
1973


FAST-Z
Area $=.22$ MIL $^{2}$



11C

FIGURE 1-2. Evolution of Bipolar Transistor Structures
thresholds and current-source bias voltages. Temperature compensation at the gate output is achieved by incorporating a cross-connect branch between the complementary collector nodes of the current switch and driving the current source with a temperature insensitive bias network ${ }^{2}$ (Figure 1-4).


TL/F/9908-8

As junction temperature increases and the forward baseemitter voltage of the output emitter-follower decreases, the collector node of the current switch must become more negative. Since the current-source bias voltage, $\mathrm{V}_{\mathrm{CS}}$, is independent of temperature, the switch curent increases with temperature due to the temperature dependence of $\mathrm{V}_{\mathrm{BEC}}$. The combination of temperature controlled current, $\mathrm{I}_{\mathrm{E}}$, and the cross-connect branch current, $\mathrm{I}_{\mathrm{X}}$, forces the proper temperature coefficient at the collector node of the current switch to null out the $\mathrm{V}_{\mathrm{BEO}}$ tracking coefficient. ${ }^{3}$
The schematic for the reference network displays a $V_{B E 1}$ amplifier in the bottom left corner (Figure 1-5). Two baseemitter junctions are operated at different current densities, J 1 and J 2 . The resulting voltage difference, $\mathrm{V}_{\mathrm{BE}}$ minus $\mathrm{V}_{\mathrm{BE} 2}$, appears across R1 and is amplified by the ratio R2/ R1. Note that R2 is used twice, once to generate $V_{C S}$ and once to generate $\mathrm{V}_{\mathrm{BB}}$. The different current densities, J1 and J 2 , result in a positive temperature tracking coefficient across R2, which cancels the negative diode-tracking coefficient of $\mathrm{V}_{\mathrm{BE} 3}$ and $\mathrm{V}_{\mathrm{BE} 4}$. The $\mathrm{V}_{\mathrm{CS}}$ and the $\mathrm{V}_{\mathrm{BE}}$ thus generated are temperature insensitive at the extrapolated bandgap voltage of silicon ${ }^{1,2}$ (approximately 1300 mV ). ${ }^{4} \mathrm{R}_{\mathrm{X}}$ in the $V_{B E}$ amplifier compensates for process variations of $\beta$ and $\Delta \mathrm{V}_{\mathrm{BE}} .{ }^{5}$ Voltage regulation is achieved through a shunt regulator shown at the right side of the schematic.

FIGURE 1-4. Temperature Compensation


TL/F/9908-7
FIGURE 1-3. ECL Gate


TL/F/9908-9
FIGURE 1-5. Reference Network

## Characteristics

F100K compatibility with existing ECL logic families and memories permit direct interface with slower logic families and ensures immediate memory availability. The typical logic swing is 800 mV (Figure 1-6) and all voltage levels are specified with a $50 \Omega$ load to -2 V at all outputs to provide transmission line drive capability. However, the inherently low output impedance (Figure 1-7) and maximum specified output current, 50 mA , make $25 \Omega$ drive possible at any or all outputs. Alternately, of course, higher termination impedances or other termination schemes are also useful.


FIGURE 1-6. Transfer Characteristics


TL/F/9908-11
FIGURE 1-7. Output Characteristics vs Output Terminations
F100K exhibits relatively constant output levels and thresholds over the $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ specified temperature range and -4.2 V to -4.8 V specified voltage range (Figure $1-8$ ). $\mathrm{V}_{\mathrm{EE}}$ power supply current is also constant over the specified voltage range (Figure 1-9); therefore:

## Uncompensated ECL



TL/F/9908-12
Fully Compensated ECL


TL/F/9908-14
Uncompensated ECL


TL/F/9908-13
FIGURE 1-8. Transfer Characteristics

## Fully Compensated ECL



TL/F/9908-15
FIGURE 1-8. Transfer Characteristics (Continued)

- Propagation delay is relatively constant versus power supply voltage variations thus tightening the $A C$ window.
- Power dissipation is a linear function of the supply voltage, reducing worst-case power consumption.
The typical propagation delay of an SSI gate function driving a $50 \Omega$ transmission line is 0.75 ns , including package, with a power dissipation of 40 mW resulting in a speed-power product of 30 pJ . For optimized MSI functions, the internal gates can dissipate $<10 \mathrm{~mW}$ with average propagation delay of $<0.5 \mathrm{~ns}$, giving a power-speed product of $<5 \mathrm{pJ}$.


FIGURE 1-9. Change in $\mathrm{I}_{\mathrm{EE}}$ vs Change in $\mathrm{V}_{\mathrm{EE}}$
F100K has a tighter AC window over the wide range of environmental conditions; thus, the system timing requirements are eased and maximum system clock rates are increased. At the sacrifice of AC performance, the small-signal input impedance was conservatively designed to be positive-real over the frequency range encountered by any circuit input. This provides adequate damping to insure AC stability within the system.

## System Aspects

F100K provides high-density digital functions that outperform all other families on the market today. How does this increased circuit performance and higher on-chip density improve system performance?
Propagation delay and transition times vary (AC windows) when functions are operated at the extremes of the specified environmental ranges. With F100K, these variations are reduced and more predictable system timing is achieved.

For synchronous machines and very high speed asynchronous systems, timing and its predictability are of utmost importance. Due to F 100 K constant supply current versus power supply voltage and because of nearly constant levels and thresholds with respect to temperature, voltage variations and gradients, speed skews are minimized.
Not only timing but also maximum system clock rate is affected by the tighter AC window. Thus, with F100K the system designer can use a higher speed value in his worstcase calculations. This can be translated into higher possible system clock rates. Therefore, a machine can perform at up to twice the frequency, solely due to the F100K compensation features. Noise immunity will be of utmost importance in next generation computers, since much of the noise generated within the system is inversely proportional to the switching transition time of the circuits. The F100K transition time is typically 0.7 ns as compared to 2.0 ns in other ECL families and should therefore increase system crosstalk by the same ratio.
F100K combats the increased system noise by maintaining a virtually invariant noise immunity with variations and gradients in power supply voltage, ambient and junction temperatures. The variation in junction temperatures is much larger than in earlier computer systems because of the mixture of LSI and SSI functions on the same boards.

## Features

F100K ECL logic components are designed to be used in high-speed, low-noise systems and offer significant advantages over other logic families. Some of the important features and advantages are summarized below.

## Low Propagation Delay

F100K ECL features gate delays that are typically 0.75 ns (750 picoseconds) with counters, registers and flip-flops operating in the 400-500 MHz range. When compared to other logic families such as Schottky TTL or slower ECL families, system performance can be doubled or tripled. Tighter AC distribution helps system timing requirements and increases system clock rates.

## Moderate Edge Rates

Because of the nature of current mode switching which uses differential comparison techniques and avoids transistor storage delays, rise times can be controlled by internal time constants without sacrificing throughout delays. Slower rise times minimize ringing and reflections on interconnection wiring and simplify physical design. The typical edge rate for F 100 K ECL is $1 \mathrm{~V} / \mathrm{ns}$, only about $80 \%$ of the edge rate of Schottky TTL. It can be shown that for ECL circuits, the natural rise and fall times are approximately equal to the propagation delay. This relationship is considered optimum for use in high-speed systems.

## Wired-OR Capability

ECL outputs can be wired together where wiring rules permit, to form the positive logic-OR function, thus achieving an extra level of gating at no parts count expense. Data bussing and party line operations are facilitated by this features.

## Complementary Outputs

A majority of F100K ECL logic elements have complementary outputs, providing numerous opportunities for reduction of package count and power consumption when mechanizing logic equations. Further, the system incurs no extra penalty in time delay since the complementary ECL outputs switch simultaneously.

A significant advantage to complementary outputs is that, since both the true and complement logic functions are available, I ICC imbalance can be minimized either by using both outputs in the design or merely terminating unused outputs. In this way, the constant current characteristic of ECL is not compromised and power supply noise is minimized.

## Low Output Impedance, High Current Capacity

As operating speeds are increased to achieve the higher performance levels demanded of digital systems, ordinary wiring begins to exhibit distributed parameter characteristics, as opposed to a lumped capacitance nature at low speeds.
Characteristic impedances of normal wiring and printed circuit interconnections generally fall in the $50 \Omega$ to $250 \Omega$ range. With these low impedance lines and fast transitions, the signals are attenuated by the voltage divider action between the circuit output impedance and the characteristic impedance of the interconnection.
Voltage mode circuits have a HIGH state output impedance of from $50 \Omega$ to $150 \Omega$ and thus exhibit an output stepped characteristic, first reaching about $50 \%$ of final value and later reaching the final value in another step. F100K ECL output impedances under $10 \Omega$ insure a complete, full valued, signal into a transmission line. Also, F100K ECL outputs are specified to drive a $50 \Omega$ load (some devices are specified to drive a $25 \Omega$ load). Outputs are capable of supply 50 mA or more and can thus support the quiescent current required for passive terminations.

## Convenient Data Transmission

The complementary high-current outputs of F100K ECL elements are well suited for driving twisted pair or other balanced lines in a differential mode, thereby enhancing field cancellation and minimizing crosstalk between subsystems.

## High Common-Mode Noise Rejection

Differential line receivers provide common-mode noise rejection of 1 V or more for induced and ground noise. Differential receiving requires less signal swing than single ended and thus allows more reliable interpretation of low signal swings.

## Constant Supply Current

The supply current drain of F100K ECL elements is governed by one or more internal constant current sources supplying operating current for differential switches and level shifting networks. Since the current drain is the same regardless of the state of the switches, F100K ECL circuits present constant currents loads to power supplies (see Complementary Outputs).

## Low Power Loss in Stray Capacitance

Energy is consumed each time a capacitor is charged or discharged so the energy loss rate, or power, goes up with switching frequency. Since the energy stored in a capacitor is proportional to the square of the voltage and F100K ECL signal swings are four to five times less than those of TTL, power loss in stray capacitance may be an order of magnitude less than that of TTL.

## Low Noise Generation

In ECL systems, power supply lines are not subjected to the large current spikes common with TTL designs. Inherently, ECL is a constant current family without the totem-pole structures found in TTL circuits which generate the large current spikes. Since ECL voltage swings are much smaller than TTL, the current spikes caused by charging and dis-
charging stray capacitances are much smaller with ECL than with TTL of comparable edge rates.

## Low Crosstalk

Induced noise signals are proportional to signal swings and edge rates. The lower swing and slower edge rate of F100K ECL results in low levels of crosstalk.

## System Benefits

The National F100K ECL Family offers improvements over other ECL families such as voltage and temperature compensation, higher integration levels, improved packaging, planned pinouts, lower propagation delay and more complementary outputs. These improvements offer measurable advantages to the design(er) of high-performance systems.

## Easier Engineering

Designers have increased confidence that designs realized in F100K will operate with good margins over voltage and temperature variations in prototypes, production models and field installations. Less effort need be expended doing detailed voltage and temperature calculations and testing. With noncompensated ECL, noise margins cannot be guaranteed unless both the receiving and transmitting circuit operate at the same temperature and $\mathrm{V}_{\mathrm{EE}}$. This can cause a problem when attempting to transfer a breadboard or prototype system to production.
Since output swings and input thresholds remain almost constant over temperature and $\mathrm{V}_{E E}$ variations, complex control systems for power supply levels and more-than-adquate cooling are not necessary with F100K. This results in a more economical and better operating system.

## Circuit Design

F100K ECL benefits from sound, well-engineered circuit designs. All input pins exhibit positive/real input impedance to eliminate system oscillations. Input buffering is used to reduce loads on lines which drive multiple internal gates.

## High Performance

The regulation and control of DC and AC parameters achieved by F100K ECL assures that signal timing and propagation delays in critical paths are relatively insensitive to changes or gradients of temperature and supply voltage. Guardbands can be narrower, yet provide a higher degree of confidence due to the elimination of skew between output levels at one location and input threshold at another.
The consistency of response and security of noise margins permit operation at higher clock rates and thus increase system performance.

## Easier Debugging

With F100K, debugging of systems can proceed more rapidly than with uncompensated ECL. When a cabinet or enclosure is opened for access in debugging, the resultant change in thermal conditions has almost no effect on F100K signal swings, propagation delays, edge rates or noise margins.

## Flexibility

F100K is designed to operate at -4.5 V for reduced power dissipation. If compatibility with other ECL families is a requirement, F100K will operate between -4.2 V and -5.7 V due to the unique voltage compensation features. When operating at voltages other than $-4.5 \mathrm{~V}, \mathrm{AC}$ and DC parameters will vary slightly from specified values.

## Fan-In/Fan-Out

All F100K ECL outputs are specified to drive $50 \Omega$ transmission lines; this makes them suitable for driving very-high fanout loads. In addition, some F100K outputs are specified to drive $25 \Omega$ lines, which would be the case if a $50 \Omega$ party-line bus terminated at both ends were being driven.

## System Design

F100K ECL was designed to be the ultimate standard packaged IC logic family. System design constraints were considered and the F100K family was designed for overall ease of system design and use while making the maximum use of the very fast propagation delay available.

## Packaging

The initial package selected for the F100K family was a 24 pin Flatpak, 0.375 inches square, with leads on 50 -mil centers, 6 leads per side. This package was chosen because its electrical characteristics minimized performance degradations of the circuit and its small footprint optimized board packing density. For customers who desire to use conventional through-hole assembly technology, the 24-pin ceramic dual in-line package is available as well. By utilizing the available F100K packages, and high chip complexities within the family, the user can achieve system densities two to three times higher than that possible with other ECL logic families.
A 28-pin plastic leaded chip carrier package is now in development for the F100K family. This package is approximately 0.490 inches square, with J-bend leads on 50 -mil centers, 7 leads per side. This package, which features better electrical characteristics than the Flatpak, will improve the AC performance of a typical F100K device by an average of 200300 ps as compared with the Flatpak. The leadframe has been designed with extra thermal paths which will provide junction-ambient thermal resistances of approximately $45^{\circ} \mathrm{C} / \mathrm{Wt}$ in air flow of 500 linear feet per minute.
For information on thermal resistance please see section on Power Distribution and Thermal Considerations.

## F100K ECL Mil/Aero Product Line

To help meet the growing need for higher speed components in many of todays military and aerospace applications, National Semiconductor has introduced a new line of military processed F100K ECL products. The new F100K ECL product line is processed to an extensive flow developed to meet the requirements of many military applications. This new process flow was designed to provide military system designers with the most reliable, highest quality 100 K ECL products available.
The excellent AC characteristics of F100K ECL, recognized as the standard for commercial subnanosecond logic, are now available for next generation military applications. The AC and DC electrical characteristics (specified with an operating case temperature range of $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ) of the military product line, are identical to the characteristics speci-
fied in the data sheets of their commercial counterparts. The military system designer can now work with the same high speed tools as the commercial world to assure a continued edge in technology.

## FEATURES

National's new F100K ECL Mil/Aero Product Line is the fastest military processed logic family available today. The excellent AC characteristics of ECL circuits will enable military system designers to overcome the speed limitations which have for so long hindered next generation design considerations. Some of the features and advantages are summarized below:
*Maintains Commercial Electrical Characteristics-Mil/ Aero F100K ECL devices will maintain the same AC and DC characteristics specified in their commercial equivalent data sheets. The additional processing will not affect the electrical performance of the military products. All of the features discussed in the Family Overview section of this book, System Considerations, Power Distribution and Thermal Considerations, and Testing Techniques can be applied for military applications without modifications or special considerations.
*SCD Support-To fully support the needs of our military customers, National Semiconductor will accept Source Control Drawings (SCDs) submitted for review. This review shall be based upon the basic Mil/Aero F100K ECL product datasheet described in Table I format. For any additional testing, processing or special requirements, please contact your local sales office for further information.
*Two Package Types-The entire Mil/Aero F100K ECL product line will be available in both 24 -Pin 400 mil CDIP and 24 -Pin Quad FLATPAK packages. Both packages are hermetically sealed and subjected to the entire military process flow. Both packages offer excellent thermal characteristics for system design considerations.
*Highest Performance-F100K ECL is currently the only subnanosecond military processed logic family available. Typical gate delays of 0.75 ns allow system designers to use components up to several times faster than other logic families. The improved performance of F100K ECL opens the door to next generation, high performance military systems.

## MILITARY PROCESSING

In order to help contractors meet many of the strict processing and test requirements imposed by the military, National Semiconductor has developed a special military process flow (Table I). National subjects $100 \%$ of the F100K ECL Mil/Aero Logic Family to this process flow.
Internal circuit design limitations, necessary for achieving the high performance of the F100K ECL logic family, currently prevent these devices from qualifying to all of the requirements of MIL-STD-883. National employs many of the industry-accepted MIL-STD-883 methods as identified in Table I as part of the Mil/Aero F100K ECL Process Flow.

TABLE I. Mil/Aero F100K ECL. Process Flow

| Process | MIL-STD-883 |  |
| :---: | :---: | :---: |
|  | Method | Condition |
| *Internal Visual Inspection | 2010 | Test Condition B |
| Quality Assurance Sample Testing Internal Visual Inspection | 2010 | Test Condition B |
| *Stabilization Bake | 1008 | Test Condition C |
| *Temperature Cycling | 1010 | Test Condition C |
| *Constant Acceleration | 2001 | Test Condition E |
| *Pre-Burn-In Electrical Parameters |  | 100\% DC Test @ $25^{\circ} \mathrm{C}$ |
| *Burn-In | 1015 | 160 hrs © $125^{\circ} \mathrm{C}$ or <br> Equivalent Unless <br> Otherwise Specified |
| *Post Burn-In Electrical Parameters |  | 100\% DC test @ $25^{\circ} \mathrm{C}$ |
| Percent Defective Allowable (PDA) |  | 5\% |
| *AC Electrical Parameters |  | $100 \%$ AC Test @ $25^{\circ} \mathrm{C}$ per <br> Table I Specification |
| Quality Assurance Sample Testing DC Tests @ 25, 85, $0^{\circ} \mathrm{C}$ LTPD 2\% AC Tests @ 25, 85, $0^{\circ} \mathrm{C}$ LTPD 2\% |  |  |
| *Seal (Hermiticity) |  |  |
| (a) Fine | 1014 | Test Condition B |
| (b) Gross | 1014 | Test Condition C |
| Quality Assurance Sample Testing (Flatpak only) Seal |  |  |
| (a) Fine | 1014 | Test Condition B |
| (b) Gross | 1014 | Test Condition C |
| *External Visual Inspection | 2009 |  |
| Quality Assurance Sample Testing External Visual LTPD 2\% |  |  |

*-Devices are subjected to $100 \%$ testing per applicable test method.

In addition to the above tests National Semiconductor also performs periodic quality assurance and reliability inspection tests. These tests are performed on a lot-by-lot, quarterly (die-related tests), and semi-annual (package related tests) basis. Testing is performed on a random sampling of devices, from randomly selected lots. Test data is available for review upon request.
The majority of National Semiconductor's F100K ECL Logic Family is now available in the expanded military process flow version. The remainder will become available based on the individual device demand and function. Please contact the factory or local sales office for the latest listing of available military processed F100K ECL devices.

## Definitions of Symbols and Terms

## AC Switching Parameters

fcount (Count Frequency/Toggle Frequency/Operating Frequency): The maximum repetition rate at which clock pulses may be applied to sequential circuit. Above this frequency the device may cease to function.
$\mathbf{t}_{\text {AA }}$ (Address Access Time): $50 \%$ points of address input pulse to data output pulse.
$\mathbf{t}_{\text {ACS }}$ (Chip Select Access Time): $50 \%$ points of select pulse to data output pulse/leading edges.
$t_{h}$ (Hold Time): The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which the data to be recognized must be maintained at the input to ensure its continued recognition.
tpli (Propagation Delay Time): The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined LOW level to the defined HIGH level.
$t_{\text {PHL }}$ (Propagation Delay Time): The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined HIGH level to the defined LOW level.
$\mathbf{t}_{\text {RCS }}$ (Chip Select Recovery Time): Data output pulse/ trailing edges.
$t_{S}$ (Setup Time): The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which the data to be recognized must be maintained at the input to ensure its recognition.
$t_{S}$ (Release Time): The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which the master set or reset must be released (inactive) to ensure valid data is recognized.
$t_{\text {TLH }}$ (Transition Time, LOW to HIGH): The time between two specified reference points on a waveform which is changing from LOW to HIGH.
$t_{\text {THL }}$ (Transition Time, HIGH to LOW): The time between two specified reference points on a waveform which is changing from HIGH to LOW.
$\mathbf{t}_{\mathbf{w}}$ (Pulse Width): The time between 50 percent amplitude points on the leading and trailing edges of a pulse.
$t_{W}$ (Write Pulse Width): $50 \%$ points of write enable input pulse.
${ }^{\text {twh }}$ (Address Hold Time): 50\% points of address pulse to trailing edge of write enable pulse.
$\mathbf{t}_{\text {WHCS }}$ (Chip Select Hold Time): 50\% points of trailing edges of chip select pulse to write enable pulse.
$t_{\text {WHD }}$ (Data Hold Time after Write): $50 \%$ points of trailing edges of data input pulse to write enable pulse.
$t_{\text {WR }}$ (Write Recovery Time): $50 \%$ points of trailing edges of write enable pulse to data output pulse.
${ }^{\mathbf{t}}$ Ws (Write Disable Time): $50 \%$ points of leading edges of write enable pulse to data output puise.
${ }^{\text {twSA }}$ (Address Setup Time): $50 \%$ points of address pulse to leading edge of write enable pulse.
twscs (Chip Select Setup Time): 50\% points of leading edges of chip select pulse to write enable pulse.
$t_{\text {WSD }}$ (Data Setup Time Prior to Write): 50\% points of leading edges of data input pulse to write enable pulse.

## Currents

Positive current is defined as conventional current flow into a device lead. Negative current is defined as conventional curent flow out of a device lead.
Iee (Power Supply Current): The current required by each device from the $V_{E E}$ supply. This value represents only the internal current required by the specified device, and does not include the current required for loads or terminations.
$\mathrm{I}_{\mathrm{IH}}$ (Input Current HIGH): The current flowing into a device lead with the specified $V_{I H}$ applied to the input. This value represents the worst case DC input load that a device presents to a driving element.
IIL (Input Current LOW): The current flowing into a device lead with the specified $V_{\text {IL }}$ applied to the input.

## Voltages

All voltage values are referenced to $V_{C C}$ (or ground) which is the most positive potential in an ECL system.
$\mathbf{V}_{\mathrm{BB}}$ (Blas Voltage): The internally generated reference voltage which is used to set the input and output threshold levels.
$V_{C C}$ (Circult Ground): This is the most positive potential in the ECL system and it is used as the reference level for other voltages.
$\mathbf{V}_{\text {CS }}$ (Current Source Voltage): The internally generated potential used to control the level of the active current source.
$\mathrm{V}_{\mathrm{EE}}$ (Power Supply Voltage): This potential is the system power supply voltage and it is the most negative potential in the system.
$\mathbf{V}_{1 \mathrm{H}}$ (Input Voltage HIGH): The range of input voltages that represents a logic HIGH level in the system.
$\mathbf{V}_{\mathbf{I H} \text { (Max): }}$ : The most positive $\mathrm{V}_{\mathrm{IH}}$.
$\mathrm{V}_{\mathrm{IH}(\mathrm{MIn})}$ : The most negative $\mathrm{V}_{\mathrm{IH}}$. This value represents the guaranteed input HIGH threshold for the device.
$\mathbf{V}_{\text {IL }}$ (Input Voltage LOW): The range of input voltages that represents a logic LOW level in the system.
$V_{I L}$ (Max): The most positive $V_{I L}$. This value represents the guaranteed input LOW threshold for the device.
$\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ : The most negative $\mathrm{V}_{\mathrm{IL}}$.
$\mathrm{V}_{\mathrm{OH}}$ (Output Voltage HIGH): The range of voltages at an output terminal with the specified output loading and with the inputs conditioned to establish a HIGH level at the output.
$\mathrm{V}_{\mathrm{OH}}$ (Max): The most positive $\mathrm{V}_{\mathrm{OH}}$ under the specified input and loading conditions.
$\mathrm{V}_{\mathrm{OH}}$ (MIn): The most negative $\mathrm{V}_{\mathrm{OH}}$ under the specified input and loading conditions.
$V_{\text {OHC: }}$ The output HIGH corner point or guaranteed HIGH threshold voltage with the inputs set to their respective threshold levels.
VoL (Output Voltage LOW): The range of voltages at an output terminal with the specified output loading and with the inputs conditioned to establish a LOW level at the output.
$\mathbf{V}_{\text {OL (Max) }}$ : The most positive $\mathrm{V}_{\mathrm{OL}}$ under the specified input and loading conditions.
$V_{\text {OL (Min) }}$ : The most negative $V_{O L}$ under the specified input and loading conditions.
$V_{\text {OLC: }}$ The output LOW corner point or guaranteed LOW threshold voltage with the inputs set to their respective threshold levels.
$\mathbf{V}_{\text {NH }}$ (HIGH Level Noise Margin): Noise margin between the output HIGH level of a driving circuit and the input HIGH threshold level of its driven load. A conservative value for $\mathrm{V}_{\mathrm{NH}}$ is the difference between $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{IH}}$ (Min).
$\mathrm{V}_{\mathrm{NL}}$ (LOW Level Noise Margin): Noise margin between the output LOW level of a driving circuit and the input LOW threshold level of its driven load. A conservative value for $V_{N L}$ is the difference between $V_{I L}$ (Max) and $V_{O L C}$.

## References

1. H.H. Muller, W.K. Owens, and P.W.J. Verhofstadt, "Fully Compensated Emitter-Coupled Logic: Eliminating the Drawbacks of Conventional ECL', IEEE Journal of SolidState Circuits, October 1973, pp. 362-367.
2. R.R. Marley, "On-Chip Temperature Compensation for ECL", Electronic Products, March 1, 1971.
3. V.A. Dhaka, J.E. Muschinske, and W.K. Owens, "Subnanosecond Emitter-Coupled Logic Gate Circuit Using Isoplanar II', IEEE Journal of Solid-State Circuits, October 1973, pp. 368-372.
4. R.J. Widlar, "New Developments in IC Voltage Regulators", ISSCC Digital Technical Papers, February 1970, pp. 157-159.
5. W.K. Owens, "Temperature Compensated Voltage Regulator Having Beta Compensating Means", United States Patent, No. 3,731,648, December 25, 1973.

Section 2 F100K Datasheets

## Section 2 Contents

F100101 Triple 5-Input OR/NOR Gate ..... 2-3
F100102 Quint 2-Input OR/NOR Gate ..... 2-6
F100104 Quint 2-Input AND/NAND Gate ..... 2-9
F100107 Quint Exclusive OR/NOR Gate ..... 2-13
F100112 Quad Driver ..... 2-17
F100113 Quad Driver ..... 2-21
F100114 Quint Differential Line Receiver ..... 2-25
F100115 Low Skew Quad Driver ..... 2-29
F100117 Triple 2-Wide OA/OAI Gate ..... 2-30
F100118 5-Wide 5-4-4-4-2 OA/OAI Gate ..... 2-33
F100121 9-Bit Inverter ..... 2-37
F100122 9-Bit Buffer ..... 2-40
F100123 Hex Bus Driver ..... 2-43
F100124 Hex TTL-to-100K ECL Translator ..... 2-47
F100125 Hex 100K ECL-to-TTL Translator ..... 2-51
F100126 9-Bit Backplane Driver ..... 2-55
F100128 Octal Bidirectional ECL/TTL Translator ..... 2-58
F100130 Triple D Latch ..... 2-67
F100131 Triple D Flip-Flop ..... 2-73
F100135 Triple JK Flip-Flop ..... 2-81
F100136 4-Stage Counter/Shift Register ..... 2-87
F100141 8-Bit Shift Register ..... 2-97
F100142 $4 \times 4$ Content Addressable Memory ..... 2-103
F100150 Hex D Latch ..... 2-110
F100151 Hex D Flip-Flop ..... 2-116
F100155 Quad Multiplexer/Latch ..... 2-122
F100156 Mask/Merge Latch ..... 2-128
F100158 8-Bit Shift Matrix ..... $2-134$
F100160 Dual Parity Checker/Generator ..... 2-142
F100163 Dual 8-Input Multiplexer ..... 2-147
F100164 16-Input Multiplexer ..... 2-152
F100165 Universal Priority Encoder ..... 2-157
F100166 9-Bit Comparator ..... 2-163
F100170 Universal Demultiplexer/Decoder ..... 2-168
F100171 Triple 4-Input Multiplexer with Enable ..... 2-173
F100175 Quint 100K-to-10K Latch ..... 2-178
F100179 Carry Lookahead Generator ..... 2-184
F100180 High-Speed 6-Bit Adder ..... 2-191
F100181 4-Bit Binary/BCD ALU ..... 2-196
F100182 9-Bit Wallace Tree Adder ..... 2-203
F100183 $2 \times 8$-Bit Recode Multiplier ..... 2-211
F100250 Quint Full Duplex Line Transceiver ..... 2-223
F100324 Low Power Hex TTL-to-100K ECL Translator ..... 2-230
F100325 Low Power Hex 100K ECL-to-TTL Translator ..... 2-231
F100350 Low Power Hex D Latch ..... 2-232
F100351 Low Power Hex D Flip-Flop ..... 2-233

## F100101

## Triple 5-Input OR/NOR Gate

## General Description

The F100101 is a monolithic triple 5-input OR/NOR gate. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Ordering Code: See Section 6

## Logic Symbol



TL/F/9835-3

Connection Diagrams



TL/F/9835-2

(19 20 21 22 23 24 25 $D_{5 b} D_{1 c} D_{2 c} V_{E E S} D_{3 c} D_{4 c} D_{5 c}$

| Pin Names | Description |
| :--- | :--- |
| $\mathrm{D}_{\mathrm{na}}, \mathrm{D}_{\mathrm{nb}}, \mathrm{D}_{\mathrm{nc}}$ | Data Inputs |
| $\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{b}}, \mathrm{O}_{\mathrm{c}}$ | Data Outputs |
| $\overline{\mathrm{O}}_{\mathrm{a}}, \overline{\mathrm{O}}_{\mathrm{b}}, \overline{\mathrm{O}}_{\mathrm{c}}$ | Complementary Data Outputs |

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{j}\right) \quad+150^{\circ} \mathrm{C}$

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{\text {IN }}=V_{\text {IH }(\text { Min })} \\ & \text { or } V_{\text {IL }}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{\mathrm{IL}} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

[^0]
## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{I H}$ | Input HIGH Current |  |  | 350 | $\mu A$ | $V_{I N}=V_{I H}$ (Max) |
| $I_{E E}$ | Power Supply Current | -38 | -26 | -18 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Data to Output | 0.50 | 1.15 | 0.50 | 1.15 | 0.55 | 1.30 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{T} H \mathrm{H}} \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.30 | 0.45 | 1.20 | 0.45 | 1.20 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay Data to Output | 0.50 | 0.95 | 0.50 | 0.95 | 0.55 | 1.10 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathbf{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.20 | 0.45 | 1.10 | 0.45 | 1.10 | ns |  |



FIGURE 1. AC Test Circuit

## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
L 1 and L2 $=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$


TL/F/9835-6
FIGURE 2. Propagation Delay and Transition Times

National Semiconductor

## F100102

Quint 2-Input OR/NOR Gate

## General Description

The F100102 is a monolithic quint 2-input OR/NOR gate with common enable. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Ordering Code: See Section 6

Logic Symbol


TL/F/9836-3


| Pin Names | Description |
| :--- | :--- |
| $\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{ne}}$ | Data Inputs |
| E | Enable Input |
| $\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{e}$ | Data Outputs |
| $\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$ | Complementary Data Outputs |

TABLE 1. F100102 Truth Table

| $\mathbf{D}_{\mathbf{1 X}}$ | $\mathbf{D}_{\mathbf{2 X}}$ | $\mathbf{E}$ | $\mathbf{O}_{\mathbf{X}}$ | $\mathbf{O}_{\mathbf{X}}$ |
| :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | $H$ |
| L | L | $H$ | $H$ | L |
| L | $H$ | L | $H$ | L |
| L | $H$ | $H$ | $H$ | L |
| $H$ | L | L | $H$ | L |
| $H$ | L | $H$ | $H$ | L |
| $H$ | $H$ | L | $H$ | L |
| $H$ | $H$ | $H$ | $H$ | L |

[^1]TL/F/9836-1
Connection Diagrams


28-Pin PCC (Preliminary)
$\mathrm{D}_{2 \mathrm{a}} \mathrm{D}_{\mathrm{ia}} \mathrm{O}_{\mathrm{a}} \mathrm{V}_{\text {Ess }} \overline{\mathrm{O}}_{\mathrm{a}} \overline{\mathrm{O}}_{\mathrm{b}} \mathrm{O}_{\mathrm{b}}$
(1) 回回 8 군


$\mathrm{D}_{1 d} \mathrm{D}_{2 d} \mathrm{D}_{19} V_{\text {EES }} \mathrm{D}_{2} \mathrm{O}_{\mathrm{c}} \bar{o}_{0}$
TL/F/9836-4

## Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)

If Military/Aerospace speclfled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $T_{\mathrm{J}}$ ) $\quad+150^{\circ} \mathrm{C}$
Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ )
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\text {IL(Min) }}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 | mV |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })}$ or $\mathrm{V}_{\mathrm{IL}(\text { Max })}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OLC}}$ | Output LOW Voltage |  |  | -1610 | mV |  |  |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL(Min) }}$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditlons (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HiGH Voltage | -1020 |  | -870 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 | mV |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\text {IL(Max }}$ | Loading with $50 \Omega$ to -2.0 V |
| V OLC | Output LOW Voltage |  |  | -1595 | mV |  |  |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min }}$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditlons (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VOH | Output HIGH Voltage | -1035 |  | -880 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min }}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{VOL}^{\text {l }}$ | Output LOW Voltage | -1830 |  | -1620 | mV |  |  |
| VOHC | Output HIGH Voltage | -1045 |  |  | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ or $\mathrm{V}_{\text {IL(Max }}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| V ${ }_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 | mV |  |  |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  |  |
|  | Data |  |  |  |  |  |
|  | Enable |  |  | 350 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max}}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -80 | -55 | -38 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay <br> Data to Output | 0.45 | 1.35 | 0.45 | 1.15 | 0.45 | 1.40 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Enable to Output | 0.95 | 2.15 | 0.95 | 2.15 | 0.95 | 2.20 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.30 | 0.45 | 1.20 | 0.45 | 1.20 | ns |  |

## Cerpak AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay Data to Output | 0.45 | 1.15 | 0.45 | 0.95 | 0.45 | 1.20 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Enable to Output | 0.95 | 1.95 | 0.95 | 1.95 | 0.95 | 2.00 | ns |  |
| ${ }^{\boldsymbol{t}} \mathrm{t}_{\mathrm{T}} \mathrm{H} \mathrm{H}$ <br> ${ }^{\mathrm{t}_{\text {THL }}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.20 | 0.45 | 1.10 | 0.45 | 1.10 | ns |  |



FIGURE 1. AC Test CIrcult

## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines $\mathrm{R}_{\boldsymbol{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$


TL/F/9836-6
FIGURE 2. Propagation Delay and Transition Times

F100104
Quint AND/NAND Gate

## General Description

The F100104 is monolithic quint AND/NAND gate. The Function output is the wire-NOR of all five AND gate outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

## Logic Symbol



TL/F/9837-3

## Connection Diagrams

24-Pin Quad Cerpak


TL/F/9837-2

TL/F/9837-1

TL/F/9837-4


## Logic Equation

$$
\frac{\left.F=\left(\overline{D_{1 a} \bullet D_{2 a}}\right)+\left(D_{1 b} \bullet D_{2 b}\right)+D_{1 c} \bullet D_{2 \mathrm{c}}\right)+\left(D_{1 d} \bullet D_{2 d}\right)}{+\left(D_{1 e} \bullet D_{2 \mathrm{e}}\right)} .
$$

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallabllity and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V OH | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{\text {IN }}=V_{I H(\text { Min })} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditlons (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{VOL}^{\text {l }}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| Volc | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditio | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max). } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

| DC Electrical Characteristics |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  | $V_{I N}=V_{I H}(\mathrm{Max})$ |
|  | $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}}$ |  |  | 250 | $\mu \mathrm{~A}$ |  |
| $\mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}}$ |  |  | 350 |  |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -96 | -66 | -46 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> ${ }^{\text {tpHL }}$ | Propagation Delay $D_{n a}-D_{n e} \text { to } O, \bar{O}$ | 0.40 | 1.75 | 0.40 | 1.65 | 0.40 | 1.75 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Data to F | 1.00 | 2.60 | 1.00 | 2.60 | 1.15 | 3.20 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.35 | 1.70 | 0.35 | 1.55 | 0.35 | 1.70 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ $t_{\mathrm{PHL}}$ | Propagation Delay $D_{n a}-D_{n e}$ to $\mathrm{O}, \bar{O}$ | 0.40 | 1.55 | 0.40 | 1.45 | 0.40 | 1.55 | ns | Figures 1 and 2 |
| tpLH $t_{\text {PHL }}$ | Propagation Delay Data to F | 1.00 | 2.40 | 1.00 | 2.40 | 1.15 | 3.00 | ns |  |
| ${ }^{\text {t }}$ TLH ${ }^{\text {t }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.35 | 1.60 | 0.35 | 1.45 | 0.35 | 1.60 | ns |  |



TL/F/9837-5
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit


FIGURE 2. Propagation Delay and Transition Times

## F100107

## Quint Exclusive OR/NOR Gate

## General Description

The F100107 is monolithic quint exclusive-OR/NOR gate. The Function output is the wire-OR of all five exclusive-OR outputs.

## Ordering Code: See Section 6

## Logic Symbol



## Connection Diagrams



## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

## DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V OH | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { Min) } \\ & \text { or } V_{\mathrm{IL}} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| Volc | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VOH | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL ( }}^{\text {Min }}$ ) |  |

## DC Electrical Characteristics

$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{1 \mathrm{H}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional nusse immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | MIn | Typ | Max | Units | Conditlons |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  | $V_{I N}=V_{I H}(\mathrm{Max})$ |
|  | $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{e}}$ |  |  | 250 | $\mu \mathrm{~A}$ |  |
| $\mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}}$ |  |  | 350 |  |  |  |
|  | Power Supply Current | -96 | -66 | -46 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $D_{2 a}-D_{2 \theta} \text { to } O, \overline{0}$ | 0.55 | 1.90 | 0.55 | 1.80 | 0.55 | 1.90 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $D_{1 a}-D_{1 \theta} \text { to } O, \bar{O}$ | 0.55 | 1.70 | 0.55 | 1.60 | 0.55 | 1.70 | ns |  |
| tpLH <br> $t_{\text {PHL }}$ | Propagation Delay Data to F | 1.15 | 2.75 | 1.15 | 2.75 | 1.15 | 3.00 | ns |  |
| ${ }^{\mathrm{t}} \mathrm{T}$ LH <br> $t_{\text {THL }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.80 | 0.45 | 1.65 | 0.45 | 1.80 | ns |  |

## Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \theta} \text { to } \mathrm{O}, \overline{\mathrm{O}}$ | 0.55 | 1.70 | 0.55 | 1.60 | 0.55 | 1.70 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $D_{1 a}-D_{1 \theta} \text { to } O, \bar{O}$ | 0.55 | 1.50 | 0.55 | 1.40 | 0.55 | 1.50 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Data to F | 1.15 | 2.55 | 1.15 | 2.55 | 1.15 | 2.80 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{LL} \\ & \hline \end{aligned}$ | Transition Time <br> $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.70 | 0.45 | 1.55 | 0.45 | 1.70 | ns |  |



TL/F/9838-5

## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$\mathrm{L1}$ and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ All unused outputs are loaded with $50 \Omega$ to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$


TL/F/9838-6
FIGURE 2. Propagation Delay and Transition Times

## F100112

Quad Driver

## General Description

The F100112 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the $D$ inputs are
not used the Enable can be used to drive sixteen $50 \Omega$ lines. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Ordering Code: See Section 6

## Logic Symbol



Connection Diagrams


24-Pin Quad Cerpak


| Pin Names | Description |
| :--- | :--- |
| $\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{d}}$ | Data Inputs |
| E | Enable Input |
| $\mathrm{O}_{n a}-\mathrm{O}_{n d}$ | Data Outputs |
| $\overline{\mathrm{O}}_{n a}-\overline{\mathrm{O}}_{n d}$ | Complementary Data Outputs |



TL/F/9839-4

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallabllity and specifications.

| Storage Temperature | $-65^{\circ} \mathrm{C}$ to |
| :--- | ---: |
| Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ |  |
|  | $+150^{\circ} \mathrm{C}$ |
|  |  |


| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VOH | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{\text {IN }}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditi | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | $-880$ | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL ( }}^{\text {(Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  | $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max}}$ |
|  | Data |  |  | 550 | $\mu \mathrm{~A}$ |  |
|  | Enable |  |  | 450 |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -106 | -73 | -51 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics <br> $V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Data to Output | 0.55 | 1.50 | 0.55 | 1.40 | 0.45 | 1.60 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Enable to Output | 0.65 | 2.00 | 0.65 | 1.90 | 0.65 | 2.00 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.45 | 1.60 | 0.45 | 1.50 | 0.45 | 1.60 | ns |  |

## Cerpak AC Electrical Characteristics <br> $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {tpHL }} \\ & \hline \end{aligned}$ | Propagation Delay Data to Output | 0.55 | 1.30 | 0.55 | 1.20 | 0.45 | 1.40 | ns | Figures 1 and 2 |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$ | Propagation Delay Enable to Output | 0.65 | 1.80 | 0.65 | 1.70 | 0.65 | 1.80 | ns |  |
| ${ }^{\text {t }}$ TLH <br> ${ }_{t}{ }_{\text {THI }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.50 | 0.45 | 1.40 | 0.45 | 1.50 | ns |  |



TL/F/9839-5
FIGURE 1. AC Test Circuit

## Notes:

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol


FIGURE 2. Propagation Delay and Transition Times

## F100113

## Quad Driver

## General Description

The F100113 is a monolithic quad driver with two OR and two NOR outputs and common enable. The common input is buffered to minimize input loading. If the $D$ inputs are not used the Enable can be used to drive sixteen $50 \Omega$ lines. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Ordering Code: See Section 6

## Logic Symbol



## Connection Diagrams

## 24-Pin DIP <br>  <br> TL/F/9840-1

24-Pin Flatpak


28-Pin PCC (Preliminary)
$0_{1 a} 0_{2 a} \overline{0}_{1 \mathrm{a}} \mathrm{V}_{\text {Ess }} \overline{0}_{2 \mathrm{a}} \overline{0}_{2 \mathrm{~b}} \overline{\mathrm{o}}_{1 \mathrm{~b}}$


[19 20 21 23 [23 [24 25
$0_{1 d} 0_{2 d} \overline{0}_{1 d}{ }^{\gamma} E \mathrm{Ess} \overline{\mathrm{O}}_{2 d} \overline{\mathrm{o}}_{2 \mathrm{c}} \overline{\mathrm{o}}_{\mathrm{ic}}$
TL/F/9840-4

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| VoLC | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | - 1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditio | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| $1 / 2$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | MIn | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  |  |
|  | Data |  |  |  |  |  |
|  | Enable |  |  | 550 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (max) |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -116 | -80 | -56 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{t}_{\text {PLH }}$ $t_{\mathrm{PHL}}$ | Propagation Delay Data to Output | 0.45 | 1.40 | 0.45 | 1.35 | 0.45 | 1.40 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Enable to Output | 0.55 | 1.90 | 0.55 | 1.90 | 0.55 | 1.90 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{T} H L} \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.60 | 0.45 | 1.50 | 0.45 | 1.60 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PH}}$ | Propagation Delay Data to Output | 0.45 | 1.20 | 0.45 | 1.15 | 0.45 | 1.20 | ns | Figures 1 and 2 |
| tPLH $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Enable to Output | 0.55 | 1.70 | 0.55 | 1.70 | 0.55 | 1.70 | ns |  |
| ${ }^{t_{T} L H}$ <br> ${ }^{\text {t }}$ HL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.50 | 0.45 | 1.40 | 0.45 | 1.50 | ns |  |



FIGURE 1. AC Test Clircuit


FIGURE 2. Propagation Delay and Transition Times

## F100114 <br> Quint Differential Line Receiver

## General Description

The F100114 is a monolithic quint differential line receiver with emitter-follower outputs. An internal reference supply $\left(V_{B B}\right)$ is available for single-ended reception. When used in single-ended operation the apparent input threshold of the true inputs is 25 mV to 30 mV higher (positive) than the threshold of the complementary inputs. Unlike other F100K ECL devices, the inputs do not have input pull-down resistors.

Active current sources provide common-mode rejection of 1.0 V in either the positive or negative direction. A defined output state exists if both inverting and non-inverting inputs are at the same potential between $V_{E E}$ and $V_{C C}$. The defined state is logic HIGH on the $\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$ outputs.

Ordering Code: See Section 6

## Logic Symbol






$D-v_{\mathrm{BB}}$

TL/F/9841-3

| Pin Names | Description |
| :--- | :--- |
| $\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{e}}$ | Data Inputs |
| $\overline{\mathrm{D}}_{\mathrm{a}}-\overline{\mathrm{D}}_{\mathrm{e}}$ | Inverting Data Inputs |
| $\mathrm{O}_{\mathrm{a}}-\mathrm{O}_{\mathrm{e}}$ | Data Outputs |
| $\overline{\mathrm{O}}_{\mathrm{a}}-\overline{\mathrm{O}}_{\mathrm{e}}$ | Complementary Data Outputs |

## Connection Diagrams




TL/F/9841-2

28-Pin PCC (Preliminary)
$\bar{D}_{a} D_{a} O_{a} v_{E E S} \bar{O}_{a} O_{b} \bar{O}_{b}$



19 20 21 22 23 24 23
$D_{d} \bar{D}_{d} D_{0} V_{E E S} \bar{D}_{\theta} \bar{O}_{0} O_{0}$
TL/F/9841-4

## Absolute Maximum Ratings

Above which the useful life may be impaired (Note 1)

If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

| Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ ) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $V_{B B}$ | Output Reference Voltage | -1380 | -1320 | -1260 | mV | $\mathrm{l}_{\mathrm{VBB}}=-250 \mu \mathrm{~A}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Single-Ended Input HIGH Voltage | -1165 |  |  | mV | Guaranteed HIGH Signal for All Inputs (with one input tied to $V_{B B}$ ) |  |
| VIL | Single-Ended Input LOW Voltage |  |  | -1475 | mV | Guaranteed LOW Signal for All Inputs (with one input tied to $V_{B B}$ ) |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| V OL | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Reference Voltage | -1396 | -1320 | -1244 | mV | $\mathrm{IVBB}=-250 \mu \mathrm{~A}$ |  |
| $\mathrm{V}_{\text {IH }}$ | Single-Ended Input HIGH Voltage | -1150 |  |  | mV | Guaranteed HIGH Signal for All Inputs (with one input tied to $V_{B B}$ ) |  |
| $\mathrm{V}_{\text {IL }}$ | Single-Ended Input LOW Voltage |  |  | -1490 | mV | Guaranteed LOW Signal for All Inputs (with one input tied to $V_{B B}$ ) |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Condit | ote 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| VOL | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| V OHC | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $V_{B B}$ | Output Reference Voltage | -1396 | -1320 | -1244 | mV | $I_{\text {VBB }}=-250 \mu \mathrm{~A}$ |  |
| $\mathrm{V}_{\mathrm{H}}$ | Single-Ended Input HIGH Voltage | -1150 |  |  | mV | Guaranteed HIGH Signal for All Inputs (with one input tied to $V_{B B}$ ) |  |
| $\mathrm{V}_{\text {IL }}$ | Single-Ended Input LOW Voltage |  |  | -1490 | mV | Guaranteed LOW Signal for All Inputs (with one input tied to $V_{B B}$ ) |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

| DC Electrical Characteristics |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| $\mathrm{V}_{\text {DIFF }}$ | Input Voltage Differential | 150 |  |  | mV | Required for Full Output Swing |
| $\mathrm{V}_{\mathrm{CM}}$ | Common Mode Voltage |  |  | 1.0 | V | Permissible $\pm V_{C M}$ with Respect to $V_{B B}$ |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH Current |  |  | 50 | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}), D_{a}-D_{e}=V_{B B}, \\ & \bar{D}_{a}-\bar{D}_{e}=V_{\mathrm{IL}(\text { Min })} \end{aligned}$ |
| I'bo | Input Leakage Current | -10 |  |  | $\mu \mathrm{A}$ | $\begin{aligned} & V_{I N}=V_{E E}, D_{a}-D_{\theta}=V_{B B}, \\ & \bar{D}_{\mathrm{a}}-\bar{D}_{\mathrm{e}}=V_{\mathrm{IL}}(\text { Min) }) \end{aligned}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -106 | -73 | -51 | mA | $\mathrm{D}_{\mathrm{a}}-\mathrm{D}_{\mathrm{e}}=\mathrm{V}_{\mathrm{BB}}, \overline{\mathrm{D}}_{\mathrm{a}}-\overline{\mathrm{D}}_{\mathrm{e}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |

## Ceramic Dual-In-Line Package AC Electrical Characteristics <br> $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbal | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> ${ }^{\text {t }}{ }^{\text {PHL }}$ | Propagation Delay Data to Output | 0.55 | 1.90 | 0.60 | 2.00 | 0.70 | 2.40 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.55 | 1.30 | 0.45 | 1.20 | 0.45 | 1.40 | ns |  |

## Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Data to Output | 0.55 | 1.70 | 0.60 | 1.80 | 0.70 | 2.20 | ns | Figures 1 and 2 |
| $\overline{t_{\mathrm{T} L \mathrm{H}}}$ $\mathrm{t}_{\mathrm{THL}}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$ | 0.55 | 1.20 | 0.45 | 1.10 | 0.45 | 1.30 | ns |  |



## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
FIGURE 1. AC Test Circuit


FIGURE 2. Propagation Delay and Transition Times

## F100115 <br> Low-Skew Quad Driver

## General Description

The F100115 contains four low skew differential drivers, designed for generation of multiple, minimum skew differential clocks from a single differential input. This device also has the capability to select a secondary single-ended clock source for use in lower frequency system level testing.

Logic Diagram


TL/F/9842-2

| Pin Names | Description |
| :--- | :--- |
| CLKIN, $\overline{\text { CLKIN }}$ | Differential Clock Inputs |
| CLK $_{1-4}, \overline{\mathrm{CLK}}_{1-4}$ | Differential Clock Outputs |
| TCLK | Test Clock Input |
| CLKSEL | Clock Input Select |

Connection Diagram

SOIC


## F100117

Triple 2－Wide OA／OAI Gate

## General Description

The F100117 is a monolithic triple 2－wide OR／AND gate with true and complement outputs．All inputs have $50 \mathrm{k} \Omega$ pull－down resistors and all outputs are buffered．

Ordering Code：See Section 6

## Logic Symbol



Connection Diagrams


24－Pin Quad Cerpak


TL／F／9843－2

28－Pin PCC（Preliminary）
$\mathrm{D}_{4 \mathrm{a}} \mathrm{D}_{3 \mathrm{a}} \mathrm{D}_{2 \mathrm{a}} \mathrm{V}_{\text {EES }} \mathrm{D}_{1 \mathrm{a}} \mathrm{O}_{\mathrm{a}} \overline{\mathrm{O}}_{\mathrm{a}}$四回回困国


回团国国圂国 $D_{3 b} D_{4 b} D_{1 c} V_{E E S} D_{2 c} D_{3 c} D_{4 c}$

TL／F／9843－4

Absolute Maximum Ratings<br>Above which the useful life may be impaired. (Note 1)



## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditio | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(M a x) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V OH | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| 1 IL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathbb{I H}}$ | Input HIGH Current <br> All Inputs |  | 260 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}}$ (Max) |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -79 | -54 | -37 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $T_{C}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| ${ }^{\text {tpLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay Data to Output | 0.90 | 2.60 | 0.90 | 2.50 | 0.90 | 2.60 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Enable to Output | 0.45 | 1.40 | 0.45 | 1.30 | 0.45 | 1.40 | ns |  |
| ${ }^{\text {t }}$ TLH <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.30 | 0.45 | 1.20 | 0.45 | 1.30 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay Data to Output | 0.90 | 2.40 | 0.90 | 2.30 | 0.90 | 2.40 | ns |  |
| tpLH <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Enable to Output | 0.45 | 1.20 | 0.45 | 1.10 | 0.45 | 1.20 | ns | Figures 1 and 2 |
| ${ }^{\text {t }}$ LLH <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.20 | 0.45 | 1.10 | 0.45 | 1.20 | ns |  |



FIGURE 1. AC Test CIrcuit

## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and L2 $=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$


TL/F/9843-6
FIGURE 2. Propagation Delay and Transition Times

## National Semiconductor

## F100118

5-Wide 5, 4, 4, 4, 2 OA/OAI Gate

## General Description

The F100118 is a monolithic 5 -wide $5,4,4,4,2$ OR/AND gate with true complementary outputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Ordering Code: See Section 6

## Logic Symbol



TL/F/9844-3

## Connection Diagrams



TL/F/9844-1


TL/F/9844-4

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Milltary/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{\text {IN }}=V_{\text {IH(Min) }} \\ & \text { or } V_{\mathrm{IL}} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| VOHC | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Condit | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| V OL | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| Volc | Output LOW Voitage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current <br> All Inputs |  |  | 350 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -92 | -69 | -42 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Data to Output | 0.85 | 2.50 | 0.95 | 2.50 | 0.95 | 2.70 | ns | Figures 1 and 2 |
| $\mathbf{t}_{\mathrm{T} L \mathrm{H}}$ $t_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.60 | 0.45 | 1.50 | 0.45 | 1.60 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Data to Output | 0.85 | 2.30 | 0.95 | 2.30 | 0.95 | 2.50 | ns | Figures 1 and 2 |
| ${ }^{\text {t }}$ tLH <br> ${ }^{\text {thHL }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.50 | 0.45 | 1.40 | 0.45 | 1.50 | ns |  |



FIGURE 1. AC Test Circuit

## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are ioaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$


FIGURE 2. Propagation Delay and Transition Times

## F100121

## 9-Bit Inverter

## General Description

The F100121 is a monolithic 9-bit inverter. The device contains nine inverting buffer gates with single input and output. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

## Logic Symbol



TL/F/9845-3

| Pin Names | Description |
| :--- | :--- |
| $\mathrm{D}_{1}-\mathrm{D}_{9}$ | Data Inputs |
| $\overline{\mathrm{O}}_{1}-\overline{\mathrm{O}}_{9}$ | Data Outputs |

## Connection Diagrams



## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature ( $\mathrm{T}_{j}$ )

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{I H}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\text { Min }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Min })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | $-880$ | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  | 350 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -96 | -70 | -46 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Data to Output | 0.45 | 1.60 | 0.45 | 1.45 | 0.45 | 1.60 | ns | Figures 1 and 2 |
| ${ }^{t_{T L H}}$ <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.50 | 0.45 | 1.40 | 0.45 | 1.40 | ns |  |

## Cerpak AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Data to Output | 0.45 | 1.40 | 0.45 | 1.25 | 0.45 | 1.40 | ns | Figures 1 and 2 |
| ${ }^{\mathrm{t}} \mathrm{T}_{\mathrm{T}} \mathrm{H}$ <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.40 | 0.45 | 1.30 | 0.45 | 1.30 | ns |  |



FIGURE 1. AC Test Circuit
Notes:
$V_{C C} . V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope.
Decoupling $0.1 \mu \mathrm{~F}$ from $G N D$ to $V_{C C}$ and $V_{E E}$.
All unused outputs are loaded with $50 \Omega$ to GND.
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$.

TL/F/9845-5


TL/F/9845-6
FIGURE 2. Propagation Delay and Transition Times

## F100122

## 9-Bit Buffer

## General Description

The F100122 is a monolithic 9-bit buffer. The device contains nine non-inverting buffer gates with single input and output. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors and all outputs are buffered.

Ordering Code: See Section 6

Logic Symbol


TL/F/9846-3

| Pin Names | Description |
| :--- | :--- |
| $D_{1}, D_{9}$ | Data Inputs |
| $O_{1}, O_{9}$ | Data Outputs |

## Connection Diagrams



TL/F/9846-1

24-Pin Quad Cerpak


TL/F/9846-2
28-Pin PCC (Preliminary)


## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Offlce/Distributors for avallability and specifications.
Storage Temperature
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ )
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)

$$
\begin{array}{r}
0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\
\mathrm{VEE} \text { to }+0.5 \mathrm{~V} \\
-50 \mathrm{~mA} \\
-5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V}
\end{array}
$$

## DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{\text {IN }}=V_{\text {IH(Min) }} \\ & \text { or } V_{\text {IL }}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| V OLC | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| If | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (Min) }}$ |  |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| VOLC | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\text {IL }} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| V OLC | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  | 350 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max}}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -96 | -70 | -46 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-2.4 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ $t_{\mathrm{PHL}}$ | Propagation Delay Data to Output | 0.45 | 1.60 | 0.45 | 1.45 | 0.45 | 1.60 | ns | Figures 1 and 2 |
| ${ }^{\boldsymbol{t}}{ }^{\text {TLLH}}$ <br> ${ }^{\text {t }}$ HL | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.45 | 1.50 | 0.45 | 1.40 | 0.45 | 1.40 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Data to Output | 0.45 | 1.40 | 0.45 | 1.25 | 0.45 | 1.40 | ns | Figures 1 and 2 |
| ${ }^{\text {t }}$ TLL <br> ${ }_{\mathrm{t}}^{\mathrm{T} H \mathrm{~L}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.40 | 0.45 | 1.30 | 0.45 | 1.30 | ns |  |



FIGURE 1. AC Test Circult
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$


TL/F/9846-6
FIGURE 2. Propagation Delay and Transition Times

## F100123

Hex Bus Driver

## General Description

The F100123 is a monolithic device containing six bus drivers capable of driving terminated lines with terminations as low as $25 \Omega$. To reduce crosstalk, each output has its respective ground connection. Transition times were designed to be longer than on other F100K devices. The driver itself performs the positive logic AND of a data input ( $D_{1}-D_{6}$ ) and the OR of two select inputs ( E and either $\mathrm{DE}_{1}, \mathrm{DE}_{2}$ or $D E_{3}$ ).

Enabling of data is possible in multiples of two, i.e., 2, 4 or all 6 paths. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.
The output voltage LOW level is designed to be more negative than normal ECL outputs (cut off state). This allows an emitter-follower output transistor to turn off when the termination supply is -2.0 V and thus present a high impedance to the data bus.

Ordering Code: See Section 6

## Logic Symbol



Connection Diagrams

\section*{24-Pin DIP <br> 

24-Pin Quad Cerpak


TL/F/9847-3

| Pin Names | Description |
| :--- | :--- |
| $D_{1}-D_{6}$ | Data Inputs |
| $D E_{1}-D E_{3}$ | Dual Enable Inputs |
| $E$ | Common Enable Input |
| $O_{1}-O_{6}$ | Data Outputs |



```
Absolute Maximum Ratings
Above which the useful life may be impaired (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
```

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )

$$
+150^{\circ} \mathrm{C}
$$

Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ )
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{\text {EE }}$ Pin Potential to Ground Pin

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$ Input Voltage (DC)

Output Current (DC Output HIGH) Operating Range (Note 2)

$$
\mathrm{V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$

$$
-5.7 V \text { to }-4.2 V
$$

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$ |
| V ${ }_{\text {OHC }}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage Cut-Off State |  |  | -2200 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $25 \Omega \text { to }-2.3 \mathrm{~V}$ |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| 112 | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$ |  |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $25 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage Cut-Off State |  |  | -2200 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $25 \Omega \text { to }-2.3 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \\ & \hline \end{aligned}$ | Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { (Min) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$ | Loading with $25 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage Cut-Off State |  |  | -2200 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $25 \Omega \text { to }-2.3 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL ( }}$ Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  |  |
|  | Common Enable |  |  | 330 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ |
|  | Data and Dual Enable |  |  | 260 |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -235 | -170 | -113 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| ${ }_{\text {tPLH }}$ | Propagation Delay | 2.00 | 4.30 | 1.95 | 4.30 | 2.00 | 4.60 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\text {PHL }}$ | Data to Output | 1.00 | 2.40 | 1.00 | 2.40 | 1.10 | 2.60 |  |  |
| ${ }^{\text {tPLH }}$ | Propagation Delay | 2.30 | 4.70 | 2.00 | 4.70 | 2.30 | 5.10 | ns |  |
| $\mathrm{tpHL}^{\text {che }}$ | Dual Enable to Output | 1.40 | 3.00 | 1.40 | 3.00 | 1.40 | 3.40 |  |  |
| $t_{\text {PLLH }}$ | Propagation Delay | 2.60 | 5.40 | 2.50 | 5.30 | 2.80 | 5.80 | ns |  |
| $\mathrm{tpHL}^{\text {P }}$ | Common Enable to Output | 1.50 | 3.20 | 1.50 | 3.30 | 1.50 | 3.60 |  |  |
| ${ }_{\text {t }}^{\text {tiH }}$ | Transition Time | 0.70 | 2.10 | 0.70 | 1.80 | 0.70 | 2.20 | ns |  |
| $\mathrm{t}_{\text {THL }}$ | 20\% to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.40 | 0.45 | 1.30 | 0.45 | 1.40 |  |  |

## Cerpak AC Electrical Characteristics <br> $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| ${ }_{\text {tpLH }}$ | Propagation Delay | 2.00 | 4.10 | 1.95 | 4.10 | 2.00 | 4.40 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\text {PHL }}$ | Data to Output | 1.00 | 2.20 | 1.00 | 2.20 | 1.10 | 2.40 |  |  |
| tpLH | Propagation Delay | 2.30 | 4.50 | 2.00 | 4.50 | 2.30 | 4.90 | ns |  |
| $\mathrm{t}_{\mathrm{PHL}}$ | Dual Enable to Output | 1.40 | 2.80 | 1.40 | 2.80 | 1.40 | 3.20 |  |  |
| $\mathrm{t}_{\mathrm{PL}}$ | Propagation Delay | 2.60 | 5.20 | 2.50 | 5.10 | 2.80 | 5.60 | ns |  |
| $t_{\text {PHL }}$ | Common Enable to Output | 1.50 | 3.00 | 1.50 | 3.10 | 1.50 | 3.40 |  |  |
| ${ }_{\text {trith }}$ | Transition Time | 0.70 | 2.00 | 0.70 | 1.70 | 0.70 | 2.10 | ns |  |
| ${ }_{\text {t }}^{\text {THL }}$ | 20\% to 80\%, $80 \%$ to $20 \%$ | 0.45 | 1.30 | 0.45 | 1.20 | 0.45 | 1.30 |  |  |

Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.


## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$C_{L}=$ Fixture and stray capacitiance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9847-5
FIGURE 1. AC Test Circuit


FIGURE 2. Propagation Delay and Transition Times

## F100124

Hex TTL－to－ECL Translator

## General Description

The F100124 is a hex translator，designed to convert TTL logic levels to 100 K ECL logic levels．The inputs are com－ patible with standard or Schottky TTL．A common Enable input（E），when LOW，holds all inverting outputs HIGH and holds all true outputs LOW．The differential outputs allow each circuit to be used as an inverting／non－inverting transla－
tor or as a differential line driver．The output levels are volt－ age compensated．All inputs have $50 \mathrm{k} \Omega$ pull－down resis－ tors．
When the circuit is used in the differential mode，the F100124，due to its high common mode rejection，over－ comes voltage gradients between the TTL and ECL ground systems．The $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\text {TTL }}$ power may be applied in either order．

Ordering Code：See Section 6

## Logic Symbol

24－Pin DIP


TL／F／9848－1

24－Pin Quad Cerpak


TL／F／9848－2

28－PIn PCC（Preliminary）
$D_{5} Q_{5} \bar{a}_{5} v_{\text {EES }} Q_{4} \bar{a}_{4} \bar{a}_{3}$
四回回困困


## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallabillty and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| $V_{\text {EE }}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| :--- | ---: |
| $\mathrm{~V}_{\text {TLL }}$ Pin Potential to Ground Pin | +6.0 V to -0.5 V |
| Input Voltage (DC) | -0.5 V to $\mathrm{V}_{T T L}$ |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (VEE) (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditlo | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| V OL | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV . | $\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| Volc | Output LOW Voltage |  |  | -1610 |  |  |  |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditio | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| Volc | Output LOW Voltage |  |  | -1595 |  |  |  |

DC Electrical Characteristics
$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditi | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | 2.0 |  | 5.0 | V | Guaranteed HIGH Signal for All Inputs |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | 0 |  | 0.8 | V | Guaranteed LOW Signal for All Inputs |
| $V_{C D}$ | Input Clamp Diode Voltage | -1.5 |  |  | V | $\mathrm{I}_{\mathrm{N}}=-10 \mathrm{~mA}$ |
| IIH | Input HIGH Current <br> Data <br> Enable |  |  | $\begin{gathered} 20 \\ 120 \\ \hline \end{gathered}$ | $\mu \mathrm{A}$ | $V_{\mathbb{I N}}=+2.4 \mathrm{~V}$ <br> All Other Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ |
|  | Input HIGH Current Breakdown Test, All Inputs |  |  | 1.0 | mA | $V_{I N}=+5.5 \mathrm{~V}$ <br> All Other Inputs $=$ GND |
| IIL | Input LOW Current Data <br> Enable | $\begin{aligned} & -1.6 \\ & -9.6 \end{aligned}$ |  |  | mA | $\mathrm{V}_{\mathrm{IN}}=+0.4 \mathrm{~V}$ <br> All Other Inputs $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ |
| $\mathrm{IEE}^{\text {e }}$ | $\mathrm{V}_{\text {EE }}$ Power Supply Current | -140 | -96 | -52 | mA | All Inputs $\mathrm{V}_{\mathrm{IN}}=+4.0 \mathrm{~V}$ |
| $I_{\text {TTL }}$ | $\mathrm{V}_{\text {TTL }}$ Power Supply Current |  | 44 | 75 | mA | All Inputs $\mathrm{V}_{\mathbb{N}}=\mathrm{GND}$ |

## Ceramic Dual-In-Line Package AC Electric Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay <br> Data and Enable to Output | 0.50 | 3.00 | 0.50 | 2.90 | 0.50 | 3.00 | ns | Figures 1 and 2 |
| ${ }^{\boldsymbol{t}}{ }^{\text {tiLH }}$ <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.80 | 0.45 | 1.80 | 0.45 | 1.80 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay <br> Data and Enable to Output | 0.50 | 2.80 | 0.50 | 2.70 | 0.50 | 2.80 | ns | Figures 1 and 2 |
| $t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.70 | 0.45 | 1.70 | 0.45 | 1.70 | ns |  |



FIGURE 1. AC Test Circuit

## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}, V_{T \mathrm{LL}}=+7.0 \mathrm{~V}, V_{I H}=+6.0 \mathrm{~V}$
$L 1, L 2$ and $L 3=$ equal length $50 \Omega$ impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{TTL}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$


FIGURE 2. Propagation Delay and Transition Times

## F100125

## Hex ECL－to－TTL Translator

## General Description

The F100125 is a hex translator for converting F100K logic levels to TTL logic levels．Differential inputs allow each cir－ cuit to be used as an inverting，non－inverting or differential receiver．An internal reference voltage generator provides $V_{B B}$ for single－ended operation or for use in Schmitt trigger applications．All inputs have $50 \Omega$ pull－down resistors；there－ fore，the outputs will go LOW when the inputs are left un－ connected．

When used in the differential mode，the inputs have a com－ mon mode rejection of +1 V ，making this device tolerant of ground offsets and transients between the signal source and the translator．The $V_{E E}$ and $V_{T T L}$ power may be applied in either order．

Ordering Code：See Section 6

## Logic Symbol








TL／F／9849－3

| Pin Names | Description |
| :--- | :--- |
| $D_{0}-D_{5}$ | Data Inputs |
| $\bar{D}_{0}-\bar{D}_{5}$ | Inverting Data Inputs |
| $Q_{0}-Q_{5}$ | Data Outputs |

## Connection Diagrams




28－Pin PCC（Preliminary）
$\overline{D_{2}} D_{1} \bar{D}_{1} v_{E E S} D_{0} \bar{D}_{0} Q_{0}$
困回国困国


$\bar{D}_{4} D_{5} \bar{D}_{5} v_{E E S} Q_{5} a_{4} a_{3}$
TL／F／9849－4

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ ) $+150^{\circ} \mathrm{C}$
Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ )

| $V_{\text {EE }}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| :--- | ---: |
| $\mathrm{~V}_{\text {TTL }}$ Pin Potential to Ground Pin | +6.0 V to -0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

-7.0 V to +0.5 V
+6.0 V to -0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

## DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Reference Voltage | -1380 | -1320 | -1260 | mV | $\mathrm{I}_{\mathrm{VBB}}=-2.1 \mathrm{~mA}$ |
| $\mathrm{V}_{\mathrm{IH}}$ | Single-Ended Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs (with One Input Tied to $V_{B B}$ ) |
| VIL | Single-Ended Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs (with One Input Tied to $V_{B B}$ ) |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL ( }}^{\text {Min }}$ ) |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Reference Voltage | -1396 | -1320 | -1244 | mV | IVBB $=-2.1 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{IH}}$ | Single-Ended Input <br> HIGH Voltage | -1150 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs <br> (with One Input Tied to $V_{B B}$ ) |
| $\mathrm{V}_{\mathrm{IL}}$ | Single-Ended Input <br> LOW Voltage | -1810 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs <br> (with One Input Tied to $V_{B B}$ ) |
| $\mathrm{I}_{\mathrm{IL}}$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |
| :--- | :--- | :---: | :---: | :---: | :---: | :--- |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Reference Voltage | -1396 | -1320 | -1244 | mV | IVBB $=-2.1 \mathrm{~mA}$ |
| $\mathrm{~V}_{\mathrm{IH}}$ | Single-Ended Input <br> HIGH Voltage | -1150 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs <br> (with One Input Tied to $\left.V_{B B}\right)$ |
| $\mathrm{V}_{\mathrm{IL}}$ | Single-Ended Input <br> LOW Voltage | -1810 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs <br> (with One Input Tied to $V_{B B}$ |
| $\mathrm{I}_{\mathrm{IL}}$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.


## Truth Table

| Inputs |  | Outputs |
| :---: | :---: | :---: |
| $\mathbf{D}_{\boldsymbol{n}}$ | $\overline{\mathbf{D}}_{\boldsymbol{n}}$ | $\mathbf{Q}_{\boldsymbol{n}}$ |
| L | H | L |
| H | L | H |
| L | L | U |
| H | H | U |
|  |  |  |
| Open | Open | L |
| $\mathrm{V}_{\mathrm{EE}}$ | $\mathrm{V}_{\mathrm{EE}}$ | L |
| L | $V_{B B}$ | L |
| $H$ | $V_{B B}$ | $H$ |
| $V_{B B}$ | L | H |
| $\mathrm{V}_{\mathrm{BB}}$ | H | L |

[^2]

FIGURE 1. AC Test Circuit
Notes:
$V_{C C}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{TTL}}$
All unused outputs are loaded with $500 \Omega$ to GND
$C_{L}=$ Fixture and stray capacitance $=15 \mathrm{pF}$


TL/F/9849-6
FIGURE 2. Propagation Delay and Transition Times

## F100126

## 9-Bit Backplane Driver

## General Description

The F100126 contains nine independent, high-speed, buffer gates each with a single input and a single output. The gates are non-inverting. These buffers are useful in bus-oriented systems where minimal output loading or bus isola-
tion is desired. The output transition times are longer to minimize noise when used as a backplane driver. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

## Logic Symbol



| Pin Names | Description |
| :--- | :--- |
| $D_{1}-D_{9}$ | Data Inputs |
| $O_{1}-O_{9}$ | Data Outputs |

Connection Diagrams



28-Pin PCC (Preliminary)
$\mathrm{D}_{5} \mathrm{D}_{4} V_{\text {cca }} \mathrm{V}_{\text {es }} \mathrm{O}_{4} \mathrm{O}_{5} \mathrm{O}_{6}$



## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Maximum Junction Temperature $\left(T_{\mathrm{J}}\right)$ | $+150^{\circ} \mathrm{C}$ |


| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditl | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{I H} \text { (Max) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | 1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I iL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V OH | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| Volc | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  | 350 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\operatorname{Max})}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -96 | -70 | -46 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t} P \mathrm{PLH} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Data to Output | 1.05 | 2.75 | 1.05 | 2.75 | 1.05 | 2.75 | ns | Figures 1 and 2 |
| ${ }^{\text {t }}$ tLH <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 1.15 | 3.40 | 1.15 | 3.40 | 1.05 | 3.40 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $T_{C}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Data to Output | 1.05 | 2.55 | 1.05 | 2.55 | 1.05 | 2.55 | ns | Figures 1 and 2 |
| ${ }^{t_{\text {TLL }}}$ <br> ${ }^{\text {t }}$ thL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 1.15 | 3.30 | 1.15 | 3.30 | 1.05 | 3.30 | ns |  |



TL/F/9850-5
FIGURE 1. AC Test Circuit


TL/F/9850-6
FIGURE 2. Propagation Delay and Transition Times

## Notes:

$V_{C C,} V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and L2 $=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ All unused outputs are loaded with $50 \Omega$ to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

## F100128

ECL/TTL Bi-Directional Translator

## General Description

The F100128 is an octal latched bi-directional translator designed to convert TTL logic levels to 100 K ECL logic levels and vice versa. The direction of this translation is determined by the DIR input. A LOW on the output enable input (OE) holds the ECL outputs in a cut-off state and the TTL outputs at a high impedance level. A HIGH on the latch enable input (LE) latches the data at both inputs even though only one output is enabled at the time. A LOW on LE makes the F100128 transparent.
The cut-off state is designed to be more negative than a normal ECL LOW level. This allows the output emitter-followers to turn off when the termination supply is -2.0 V , presenting a high impedance to the data bus. This high im-
pedance reduces termination power and prevents loss of low state noise margin when several loads share the bus.
The F100128 is designed with FAST® TTL output buffers, featuring optimal DC drive and capable of quickly charging and discharging highly capacitive loads.

## Features

- Bi-directional translation

■ ECL high impedance outputs

- Latched outputs
- FAST® TTL outputs
- TRI-STATE ${ }^{\circledR}$ outputs


## Ordering Code: See Section 6

Logic Symbol


TL/F/9851-3

| Pin Names | Descriptlon |
| :--- | :--- |
| $\mathrm{E}_{0}-\mathrm{E}_{7}$ | ECL Data I/O |
| $\mathrm{T}_{0}-\mathrm{T}_{7}$ | TTL Data I/O |
| OE | Output Enable Input |
| LE | Latch Enable Input |
| DIR | Direction Control Input |

All pins function at 100 K ECL levels except for $\mathrm{T}_{0}-\mathrm{T}_{7}$.

Connection Diagrams


24-Pin Quad Cerpak


TL/F/9851-2

Functional Diagram


TL/F/9851-4

## Detail



## Truth Table

| OE | DIR | LE | ECL <br> Port | TTL <br> Port | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | X | L | LOW <br> (Cut-Off) | Z |  |
| L | L | H | Input | Z | 1,3 |
| L | H | H | LOW <br> (Cut-Off) | Input | 2,3 |
| H | L | L | L | L | 1,4 |
| H | L | L | H | H | 1,4 |
| H | L | H | X | Latched | 1,3 |
| H | H | L | L | L | 2,4 |
| H | H | L | H | H | 2,4 |
| H | H | H | Latched | X | 2,3 |

H = HIGH Voltage Level
$L=$ LOW Voltage Level
X = Don't Care
Z = High Impedance
Note 1: ECL input to TTL output mode.
Note 2: TTL input to ECL output mode.
Note 3: Retains data present before LE set HIGH.
Note 4: Latch is transparent.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature
Case Temperature under Bias
$V_{\text {EE }}$ Pin Potential to Ground Pin
$V_{\text {TTL }}$ Pin Potential to Ground Pin
ECL Input Voltage (DC)
ECL Output Current
(DC Output HIGH)
TTL Input Voltage (Note 2)
TTL Input Current (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
\begin{array}{r}
+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \\
+6.0 \mathrm{~V} \text { to }-0.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{EE}} \text { to }+0.5 \mathrm{~V} \\
-50 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output in HIGH State
TRI-STATE Output $\quad-0.5 \mathrm{~V}$ to +5.5 V
Current Applied to TTL
Output in LOW State (Max) Twice the Rated IOL (mA)
Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

## Recommended Operating Conditions

| Case Temperature | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage (Note 1) |  |
| $\mathrm{V}_{\mathrm{EE}}$ | -5.7 V to -4.2 V |
| $\mathrm{~V}_{\mathrm{TTL}}$ | +4.5 V to +5.5 V |

Note 1: Parametric values specified at $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V .

## TTL-to-ECL DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage | $\begin{aligned} & -1020 \\ & -1025 \\ & -1035 \end{aligned}$ | -955 | $\begin{aligned} & -870 \\ & -880 \\ & -880 \end{aligned}$ | mV <br> mV <br> mV | $\begin{aligned} & V_{E E}=-4.2 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Low Voltage | $\begin{aligned} & -1810 \\ & -1810 \\ & -1830 \end{aligned}$ | -1705 | $\begin{aligned} & -1605 \\ & -1620 \\ & -1620 \end{aligned}$ | mV <br> mV <br> mV | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \hline \end{aligned}$ |
|  | Cutoff Voltage |  | $\begin{aligned} & -2000 \\ & -2000 \\ & -2000 \end{aligned}$ | $\begin{aligned} & -1930 \\ & -1950 \\ & -1950 \end{aligned}$ | mV <br> mV <br> mV | OE or DIR Low, $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output High Voltage Corner Point High | $\begin{aligned} & -1030 \\ & -1035 \\ & -1045 \\ & \hline \end{aligned}$ |  |  | mV <br> mV <br> mV | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \hline \end{aligned}$ |
| Volc | Output Low Voltage Corner Point Low |  |  | $\begin{array}{r} -1595 \\ -1610 \\ -1610 \\ \hline \end{array}$ | mV <br> $m V$ <br> mV | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, 50 \Omega \text { to }-2 \mathrm{~V} \\ & \hline \end{aligned}$ |
| $\mathrm{V}_{\text {IH }}$ | Input High Voltage | 2.0 |  |  | V | Over $V_{\text {TTL }}, V_{E E}, T_{C}$ Range |
| $\mathrm{V}_{\text {IL }}$ | Input Low Voltage |  |  | 0.8 | V | Over $\mathrm{V}_{\text {TTL }}, \mathrm{V}_{\mathrm{EE}}, T_{C}$ Range |
| $\mathrm{IIH}^{\text {H }}$ | Input High Current |  |  | 70 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=+2.7 \mathrm{~V}$ |
|  | Breakdown Test |  |  | 1.0 | mA | $\mathrm{V}_{\text {IN }}=+5.5 \mathrm{~V}$ |
| IIL | Input Low Current |  |  | -1.0 | mA | $\mathrm{V}_{\text {IN }}=+0.5 \mathrm{~V}$ |
| $V_{\text {FCD }}$ | Input Clamp Diode Voltage |  |  | -1.2 | V | $\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | $\mathrm{V}_{\text {EE }}$ Supply Current | -250 | -175 | -125 | mA | LE Low, OE and DIR High |

ECL-to-TTL DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage | $\begin{aligned} & 2.7 \\ & 2.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.1 \\ & 2.9 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{TTL}}=4.50 \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Low Voltage |  | 0.3 | 0.5 | V | $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}, \mathrm{~V}_{\text {TTL }}=4.50 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{tH}}$ | Input High Voltage | $\begin{aligned} & -1150 \\ & -1165 \\ & -1165 \end{aligned}$ |  | $\begin{array}{r} -870 \\ -880 \\ -880 \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V} \end{aligned}$ |
| $V_{\text {IL }}$ | Input Low Voltage | $\begin{aligned} & -1810 \\ & -1810 \\ & -1810 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & -1475 \\ & -1475 \\ & -1490 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$ | $\begin{aligned} & V_{\mathrm{EE}}=-4.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.8 \mathrm{~V} \\ & \hline \end{aligned}$ |
| $\mathrm{IIH}^{\text {H }}$ | Input High Current |  |  | 200 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}(\mathrm{Max})$ |
| ILL | Input Low Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |
| lozht | TRI-STATE Current Output High |  |  | 70 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OUT }}=+2.7 \mathrm{~V}$ |
| lozlt | TRI-STATE Current Output Low |  |  | -1.0 | mA | $\mathrm{V}_{\text {OUT }}=+0.5 \mathrm{~V}$ |
| los | Output Short-Circuit Current | -60 |  | -225 | mA | $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}, \mathrm{~V}_{\text {TTL }}=+5.5 \mathrm{~V}$ |
| $I_{\text {TTL }}$ | $\mathrm{V}_{\mathrm{TTL}}$ Supply Current |  | $\begin{gathered} \hline 155 \\ 90 \\ 120 \\ \hline \end{gathered}$ | $\begin{aligned} & 200 \\ & 120 \\ & 160 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$ | TTL Outputs Low <br> TTL Outputs High <br> TTL Outputs in TRI-STATE |

## Cerpak TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{TTL}}=+4.5 \mathrm{~V}$ to +5.5 V

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$ | $T_{n}$ to $E_{n}$ <br> (Transparent) | $\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 3.3 \\ & 3.7 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.3 \\ & 3.7 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3.3 \\ & 4.3 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ | Figures 1 \& 2 |
| tpLH <br> $\mathrm{t}_{\mathrm{PHL}}$ | LE to $\mathrm{E}_{\mathrm{n}}$ | $\begin{aligned} & 2.2 \\ & 2.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 4.6 \\ & 4.3 \\ & \hline \end{aligned}$ | $\begin{array}{r} 2.2 \\ 2.0 \\ \hline \end{array}$ | $\begin{aligned} & 4.6 \\ & 4.3 \\ & \hline \end{aligned}$ | $\begin{array}{r} 2.7 \\ 2.4 \\ \hline \end{array}$ | $\begin{aligned} & 5.4 \\ & 5.0 \\ & \hline \end{aligned}$ | ns | Figures $1 \& 2$ |
| $t_{\text {PzH }}$ | OE to $\mathrm{E}_{\mathrm{n}}$ (Cutoff to High) | 1.4 | 4.5 | 1.4 | 4.5 | 1.5 | 5.0 | ns | Figures 1\&2 |
| tPHZ | DIR to $E_{n}$ <br> (High to Cutoff) | 1.0 | 4.0 | 1.0 | 4.0 | 1.0 | 4.0 | ns | Figures 1\&2 |
| $t_{\text {PHZ }}$ | OE to $\mathrm{E}_{\mathrm{n}}$ <br> (High to Cutoff) | 1.0 | 3.5 | 1.0 | 3.5 | 1.0 | 4.0 | ns | Figures 1\&2 |
| $t_{\text {set }}$ | $T_{n}$ to LE | 1.0 |  | 1.0 |  | 1.0 |  | ns | Figures 1\&2 |
| $\mathrm{t}_{\text {hold }}$ | $\mathrm{T}_{\mathrm{n}}$ to LE | 2.0 |  | 2.0 |  | 2.0 |  | ns | Figures 1\&2 |
| $t_{T L H}$ $\mathrm{t}_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.6 |  | 1.0 |  | 1.6 |  | ns | Figures 1\&2 |

## Cerpak ECL-to-TTL AC Electrical Characteristics

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | $E_{n}$ to $T_{n}$ <br> (Transparent) | $\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$ | ns | Figures 3 \& 4 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$ | LE to $T_{n}$ | $\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$ | ns | Figures 3 \& 4 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$ | OE to $T_{n}$ <br> (Enable Time) | $\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$ | $\begin{gathered} 8.5 \\ 10.0 \end{gathered}$ | ns | Figures 3 \& 4 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$ | OE to $T_{n}$ (Disable Time) | $\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$ | ns | Figures 3 \& 4 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$ | DIR to $T_{n}$ <br> (Disable Time) | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{gathered} 10.0 \\ 8.5 \end{gathered}$ | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{gathered} 10.0 \\ 8.5 \end{gathered}$ | $\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$ | ns | Figures 3 \& 4 |
| $\mathrm{t}_{\text {set }}$ | $E_{n}$ to LE | 1.5 |  | 1.5 |  | 1.5 |  | ns | Figures 3\&4 |
| $t_{\text {hold }}$ | $E_{n}$ to LE | 3.5 |  | 3.5 |  | 3.5 |  | ns | Figures 3 \& 4 |

## Ceramic Dual-In-Line Package TTL-to-ECL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{TLL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | $T_{N}$ to $E_{n}$ <br> (Transparent) | $\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 3.3 \\ & 3.7 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 3.3 \\ & 3.7 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.4 \end{aligned}$ | $\begin{aligned} & 3.3 \\ & 4.3 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ | Figures 1 \& 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $L E$ to $E_{n}$ | $\begin{aligned} & 2.2 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 4.6 \\ & 4.3 \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 4.6 \\ & 4.3 \end{aligned}$ | $\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$ | $\begin{aligned} & 5.4 \\ & 5.0 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$ | Figures 1\&2 |
| ${ }_{\text {tPZH }}$ | OE to $E_{n}$ (Cutoff to High) | 1.4 | 4.5 | 1.4 | 4.5 | 1.5 | 5.0 | ns | Figures 1 \& 2 |
| ${ }_{\text {tPHZ }}$ | DIR to $E_{n}$ (High to Cutoff) | 1.0 | 4.0 | 1.0 | 4.0 | 1.0 | 4.0 | ns | Figures 1\&2 |
| ${ }^{\text {tPHZ }}$ | OE to $\mathrm{E}_{\mathrm{n}}$ (High to Cutoff) | 1.0 | 3.5 | 1.0 | 3.5 | 1.0 | 4.0 | ns | Figures 1\&2 |
| $t_{\text {set }}$ | $\mathrm{T}_{\mathrm{n}}$ to LE | 1.0 |  | 1.0 |  | 1.0 |  | ns | Figures 1\&2 |
| $\mathrm{t}_{\text {hold }}$ | $\mathrm{T}_{\mathrm{n}}$ to LE | 2.0 |  | 2.0 |  | 2.0 |  | ns | Figures 1\&2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$ | 0.6 |  | 1.0 |  | 1.6 |  | ns | Figures 1\&2 |

## Ceramic Dual-In-Line Package ECL-to-TTL AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{TL}}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| tpl. <br> $t_{\text {PHL }}$ | $E_{n}$ to $T_{n}$ <br> (Transparent) | $\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$ | ns | Figures 3 \& 4 |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | LE to $\mathrm{T}_{\mathrm{n}}$ | $\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$ | ns | Figures 3 \& 4 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$ | OE to $T_{n}$ <br> (Enable Time) | $\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$ | $\begin{gathered} \hline 8.5 \\ 10.0 \end{gathered}$ | ns | Figures 3 \& 4 |
| $\begin{aligned} & \mathrm{tpHZ}^{\text {tpLZ }} \\ & \hline \end{aligned}$ | OE to $T_{n}$ (Disable Time) | $\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 9.5 \\ & 8.0 \end{aligned}$ | $\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$ | ns | Figures 3 \& 4 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$ | DIR to $T_{n}$ (Disable Time) | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{gathered} 10.0 \\ 8.5 \end{gathered}$ | $\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$ | $\begin{gathered} 10.0 \\ 8.5 \end{gathered}$ | $\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$ | ns | Figures 3 \& 4 |
| $t_{\text {set }}$ | $\mathrm{E}_{\mathrm{n}}$ to LE | 1.5 |  | 1.5 |  | 1.5 |  | ns | Figures 3 \& 4 |
| thold | $E_{n}$ to LE | 3.5 |  | 3.5 |  | 3.5 |  | ns | Figures 3\&4 |


$F_{\text {TLL }}=$ TLL FORCING FUNCTION
$F_{\text {ECL }}-E C L$ FORCING FUNCTION
TL/F/9851-6


TL/F/9851-12
FIGURE 1. TTL to ECL AC Test Circult


TL/F/9851-7
*ECL cut-off transitions use $50 \%$ point between $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$
FIGURE 2. TTL to ECL. Transition-Propagation Delay and Transition Times

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ including stray and jig capacitance.
Note: $50 \Omega$ to ground termination must be included on ECL I/O pins not monitored by a $50 \Omega$ scope to prevent oscillatory feedback.
FIGURE 3. ECL-to-TTL AC Test Circult


FIGURE 4. ECL-to-TTL Transition-Propagation Delay and Transition Times


FIGURE 5. Applications Dlagram—MOS/TTL SRAM Interface Using F100128 ECL-TTL Latched Translator

## F100130

## Triple D Latch

## General Description

The F100130 contains three D-type latches with true and complement outputs and with Common Enable ( $\overline{\mathrm{E}}_{\mathrm{C}}$ ), Master Set (MS) and Master Reset (MR) inputs. Each latch has its own Enable ( $\bar{E}_{n}$ ), Direct Set $\left(S D_{n}\right)$ and Direct Clear ( $C_{n}$ ) inputs. The Q output follows its Data (D) input when both $\bar{E}_{\mathrm{n}}$ and $\mathrm{E}_{\mathrm{C}}$ are LOW (transparent mode). When either $\bar{E}_{n}$ or $\bar{E}_{C}$
(or both) are HIGH, a latch stores the last valid data present on its $D_{n}$ input before $\bar{E}_{n}$ or $\bar{E}_{C}$ goes HIGH.
Both Master Reset (MR) and Master Set (MS) inputs override the Enable inputs. The individual $C D_{n}$ and $S D_{n}$ also override the Enable inputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

Logic Symbol


TL/F/9852-3

## Connection Diagrams




28-Pin PCC (Preliminary)
$S D_{0} C D_{0} \bar{E}_{0} V_{\text {EsS }} D_{0} a_{0} \bar{o}_{0}$


$\bar{E}_{1} C D_{1} S O_{2} V_{\text {EsS }} C D_{2} \bar{E}_{2} \quad D_{2}$
TL/F/9852-4

Logic Diagram


TL/F/9852-5

## Truth Tables (Each Latch)

| Latch Operation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inputs |  |  |  |  | Outputs |
| $\mathrm{D}_{\mathrm{n}}$ | $\bar{E}_{n}$ | $\bar{E}_{C}$ | $\begin{gathered} M S \\ S D_{\mathrm{n}} \end{gathered}$ | $\begin{gathered} M R \\ C D_{\mathrm{n}} \end{gathered}$ | $Q_{n}$ |
| L | L | L | L | L | L |
| H | L | L | L | L | H |
| X | H | X | L | L | Latched* |
| X | X | H | L | L | Latched* |


| Asynchronous Operation |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Inputs |  |  |  |  |  |
| $\mathrm{D}_{\mathbf{n}}$ | $\bar{E}_{\mathbf{n}}$ | $\overline{\mathbf{E}}_{\mathbf{C}}$ | MS <br> $\mathbf{S D}_{\mathbf{n}}$ | MR <br> $\mathbf{C D}_{\mathbf{n}}$ | $\mathbf{Q}_{\boldsymbol{n}}$ |
| X | X | X | H | L | H |
| X | X | X | L | H | L |
| X | X | X | H | H | U |

[^3]
## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1) If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
$+150^{\circ} \mathrm{C}$

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\text {IL. (Min) }} \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\operatorname{Min})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| $1 / 12$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL. }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{\mathrm{IL}} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{1 / \mathrm{H}}$ | ```Input HIGH Current D CD E E``` |  |  | $\begin{aligned} & 350 \\ & 530 \\ & 240 \\ & 450 \end{aligned}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |
| $\mathrm{IEE}^{\text {E }}$ | Power Supply Current | -149 | -106 | -74 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $T_{C}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tPLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$ | Propagation Delay $D_{n}$ to Output (Transparent Mode) | 0.50 | 1.80 | 0.50 | 1.70 | 0.50 | 1.90 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $\mathrm{E}_{\mathrm{C}}$ to Output | 0.65 | 2.10 | 0.75 | 2.00 | 0.75 | 2.10 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{CD}_{n}, S D_{n}, \bar{E}_{\mathrm{n}}$ to Output | 0.50 | 2.00 | 0.60 | 1.75 | 0.60 | 2.00 | ns | Figures 1, 2 and 3 |
| tpLH $t_{\mathrm{PHL}}$ | Propagation Delay MS, MR to Output | 1.10 | 2.50 | 1.10 | 2.40 | 1.10 | 2.60 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.60 | 0.45 | 1.60 | 0.45 | 1.60 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\text {s }}$ | Setup Time $\begin{aligned} & D_{0}-D_{2} \\ & C D_{n}, S D_{n} \text { (Release Time) } \\ & \text { MR, MS (Release Time) } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.90 \\ & 1.20 \\ & 1.90 \end{aligned}$ |  | $\begin{aligned} & 0.70 \\ & 1.10 \\ & 1.90 \end{aligned}$ |  | $\begin{aligned} & 0.90 \\ & 1.40 \\ & 2.00 \\ & \hline \end{aligned}$ |  | ns | Figures 3 and 4 |
| $t_{n}$ | Hold Time $\mathrm{D}_{0}-\mathrm{D}_{2}$ | 0.60 |  | 0.60 |  | 0.80 |  | ns | Figure 4 |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$ | Pulse Width LOW $\bar{E}_{n}, \bar{E}_{C}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |
| $t_{p w}(H)$ | Pulse Width HIGH $C D_{n}, S D_{n}, M R, M S$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |


| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathbf{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | MIn | Max |  |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}}$ to Output (Transparent Mode) | 0.50 | 1.60 | 0.50 | 1.50 | 0.50 | 1.70 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}_{C}$ to Output | 0.65 | 1.90 | 0.75 | 1.80 | 0.75 | 1.90 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $C_{n}, S D_{n}, \bar{E}_{n}$ to Output | 0.50 | 1.80 | 0.60 | 1.55 | 0.60 | 1.80 | ns | Figures 1, 2 and 3 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay MS, MR to Output | 1.10 | 2.30 | 1.10 | 2.20 | 1.10 | 2.40 | ns | Figures 1 and 3 |
| $\mathrm{t}_{\mathrm{TLH}}$ ${ }^{\mathrm{t}_{\mathrm{THL}}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.50 | 0.45 | 1.50 | 0.45 | 1.50 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\text {s }}$ | Setup Time $\begin{aligned} & D_{0}-D_{2} \\ & C D_{n}, S D_{n} \text { (Release Time) } \\ & \text { MR, MS (Release Time) } \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 1.10 \\ & 1.80 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.60 \\ & 1.00 \\ & 1.80 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.80 \\ & 1.30 \\ & 2.00 \end{aligned}$ |  | ns | Figures 3 and 4 |
| $t_{\text {h }}$ | Hold Time $\mathrm{D}_{0}-\mathrm{D}_{2}$ | 0.50 |  | 0.50 |  | 0.70 |  | ns | Figure 4 |
| $t_{p w}(\mathrm{~L})$ | Pulse Width LOW $\bar{E}_{n}, \bar{E}_{C}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |
| $t_{p w}(H)$ | Pulse Width HIGH $\mathrm{CD}_{\mathrm{n}}, \mathrm{SD}_{\mathrm{n}}, \mathrm{MR}, \mathrm{MS}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |



Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ All unused outputs are loaded with $50 \Omega$ to GND $C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/9852-6
FIGURE 1. AC Test Circult


TL/F/9852-7
FIGURE 2. Enable Timing


Notes:
$t_{s}$ is the minimum time before the transition of the enable that information must be present at the data input.
$t_{h}$ is the minimum time after the transition of the enable that information must remain unchanged at the data input.

TL/F/9852-9
FIGURE 4. Data Setup and Hold Time

## F100131 <br> Triple D Flip-Flop

## General Description

The F100131 contains three D-type, edge-triggered master/ slave flip-flops with true and complement outputs, a Common Clock ( $\mathrm{CP}_{\mathrm{C}}$ ), and Master Set (MS) and Master Reset (MR) inputs. Each flip-flop has individual Clock ( $\mathrm{CP}_{\mathrm{n}}$ ), Direct Set ( $S D_{n}$ ) and Direct Clear ( $C D_{n}$ ) inputs. Data enters a mas-
ter when both $C P_{n}$ and $C P_{C}$ are LOW and transfers to a slave when $\mathrm{CP}_{\mathrm{n}}$ or $\mathrm{CP}_{\mathrm{C}}$ (or both) go HIGH. The Master Set, Master Reset and individual $\mathrm{CD}_{\mathrm{n}}$ and $\mathrm{SD}_{\mathrm{n}}$ inputs override the Clock inputs. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

## Logic Symbol



## Connection Diagrams



24-Pin Quad Cerpak


TL/F/9853-2


TL/F/9853-5
Truth Tables (Each Flip-Flop)

| Inputs |  |  |  |  | Outputs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{\mathrm{n}}$ | CP ${ }_{\text {n }}$ | $\mathrm{CP}_{\mathrm{c}}$ | $\begin{gathered} M S \\ S D_{n} \end{gathered}$ | $\begin{gathered} M R \\ C D_{n} \end{gathered}$ | $Q_{n}(t+1)$ |
| L | $\checkmark$ | L | L | L | L |
| H | $\checkmark$ | L | L | L | H |
| L | L | $\checkmark$ | L | L | L |
| H | L | $\checkmark$ | L | L | H |
| X | L | L | L | L | Qn(t) |
| X | H | X | L | L | Qn(t) |
| X | X | H | L | L | Qn(t) |

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$\mathrm{U}=$ Undefined
$t=$ Time before CP Positive Transition
$\mathrm{t}+1=$ Time after CP Positive Transition
$\mathcal{L}=$ LOW to HIGH Transition

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
$+150^{\circ} \mathrm{C}$

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{\text {IH (Max) }} \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H(\operatorname{Min})} \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| 1 L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V OH | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| $1 / 12$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{1 / H}$ | $\begin{aligned} & \text { Input HIGH Current } \\ & \text { CP } P_{n}, D_{n} \\ & M S, M R, P_{C} \\ & C D_{n}, \mathrm{SD}_{n} \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & 240 \\ & 450 \\ & 530 \\ & \hline \end{aligned}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |
| $\mathrm{IEE}^{\text {E }}$ | Power Supply Current | -149 | -106 | -74 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |  |
| $\mathrm{f}_{\text {max }}$ | Toggle Frequency | 325 |  | 325 |  | 325 |  | MHz | Figures 2 and 3 |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay CPC to Output | 0.75 | 2.40 | 0.75 | 2.15 | 0.70 | 2.30 | ns | Figures 1 and 3 |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $C P_{n}$ to Output | 0.70 | 2.20 | 0.70 | 2.00 | 0.70 | 2.20 | ns |  |  |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay $C D_{n}, S D_{n}$ to Output | 0.70 | 1.90 | 0.70 | 1.70 | 0.70 | 1.80 | ns | $\mathrm{CP}_{\mathrm{n}}, \mathrm{CP}_{\mathrm{C}}=\mathrm{L}$ | Figures <br> 1 and 4 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ |  | 0.70 | 2.10 | 0.70 | 2.00 | 0.70 | 2.20 |  | $\mathrm{CP}_{\mathrm{n}}, \mathrm{CP} \mathrm{C}_{\mathrm{C}}=\mathrm{H}$ |  |
| $\begin{aligned} & \mathbf{t}_{\mathrm{tPLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay MS, MR to Output | 1.10 | 2.70 | 1.10 | 2.60 | 1.10 | 2.70 | ns | $\mathrm{CP}_{\mathrm{n}}, \mathrm{CP} \mathrm{C}_{\mathrm{C}}=\mathrm{L}$ |  |
| $\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$ |  | 1.05 | 3.05 | 1.05 | 2.95 | 1.05 | 3.05 |  | $\mathrm{CP}_{\mathrm{n}}, \mathrm{CP} \mathrm{C}_{\mathrm{C}}=\mathrm{H}$ |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time 20\% to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 2.20 | 0.45 | 1.80 | 0.45 | 1.90 | ns | Figures 1, 3 and 4 |  |
| $\mathrm{t}_{\text {s }}$ | Setup Time $D_{n}$ | 0.90 |  | 0.70 |  | 0.90 |  |  | Figure 5 |  |
|  | $C D_{n}, S D_{n}$ (Release Time) <br> MS, MR (Release Time) | $1.50$ |  | $1.30$ $2.30$ |  | $1.50$ $2.50$ |  | ns | Figure 4 |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $t_{h}$ | Hold Time $\mathrm{D}_{\mathrm{n}}$ | 0.60 |  | 0.60 |  | 0.80 |  | ns | Figure 5 |  |
| $t_{p w}(H)$ | Pulse Width HIGH $\begin{aligned} & C P_{n}, C P_{c}, C D_{n}, \\ & S D_{n}, M R, M S \end{aligned}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figures 3 and 4 |  |




TL/F/9853-6
FIGURE 1. AC Test Circuit


FIGURE 2. Toggle Frequency Test Circuit
Note:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length $50 \Omega$ impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$


FIGURE 3. Propagation Delay (Clock) and Transition Times


FIGURE 4. Propagation Delay (Resets)


FIGURE 5. Data Setup and Hold Time
Note:
$\mathrm{t}_{\mathrm{g}}$ is the minimum time before the transition of the clock that information must be present at the data input. $t_{h}$ is the minimum time after the transition of the clock that information must remain unchanged at the data input.

## F100135

Triple J－K Flip－Flop

## General Description

The F100135 contains three J－K，edge－triggered master－ slave flip－flops with true and complement outputs．All have individual Clock（ $\mathrm{CP}_{n}$ ），Clear（ $\mathrm{C}_{n}$ ），and Set（ $\mathrm{S}_{n}$ ）inputs． Clocking occurs on the rising edge of $C P_{n}$ ．All inputs have $50 \mathrm{k} \Omega$ pull－down resistors．

## Features

－Toggle frequency 750 MHz Typical
－Propagation delay 2.2 ns max
－Outputs specified to drive a $50 \Omega$ load

Ordering Code：See Section 6

Logic Symbol


Connection Diagrams


TL／F／9854－1

| Pin Names | Description |
| :--- | :--- |
| $\mathrm{J}_{0}-\mathrm{J}_{2}$ | J Inputs |
| $\mathrm{K}_{0}-\mathrm{K}_{2}$ | K Inputs |
| $\mathrm{S}_{0}-\mathrm{S}_{2}$ | Direct Set Inputs |
| $\mathrm{C}_{0}-\mathrm{C}_{2}$ | Direct Clear Inputs |
| $\mathrm{CP}_{0}-\mathrm{CP}_{2}$ | Clock Inputs |
| $\mathrm{Q}_{0}-\mathrm{Q}_{2}$ | Data Outputs |
| $\mathrm{Q}_{0}-\mathrm{Q}_{2}$ | Complementary Data Outputs |



TL／F／9854－4

## Logic Diagram



Truth Tables (Each Flip-Flop)
Synchronous Operation

| Inputs |  |  |  |  | Outputs |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $J_{n}$ | $K_{n}$ | $\mathrm{CP}_{\mathrm{n}}$ | $S_{n}$ | $\mathrm{C}_{\mathrm{n}}$ | $Q_{n}(t+1)$ |
| L | L | ת | L | L | $Q_{n}(t)$ |
| L | H | $\sim$ | L | L | L |
| H | L | $\checkmark$ | L | L | H |
| H | H | $\sim$ | L | L | $\overline{Q_{n}(t)}$ |
| X | X | H | L | L | $Q_{n}(t)$ |
| X | X | L | L. | L | $Q_{\mathrm{n}}(\mathrm{t})$ |

Asynchronous Operation

| Inputs |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs |  |  |  |  |  |
| $J_{\boldsymbol{n}}$ | $K_{\boldsymbol{n}}$ | $\mathbf{C P}_{\boldsymbol{n}}$ | $\mathbf{S}_{\boldsymbol{n}}$ | $\mathbf{C}_{\boldsymbol{n}}$ | $\mathbf{Q}_{\boldsymbol{n}}$ |
| X | X | X | H | L | H |
| X | X | X | L | H | L |
| X | X | X | H | H | U |

[^4]
## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

| Case Temperature under Bias $\left(T_{\mathrm{C}}\right)$ | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{\text {IN }}=V_{I H(\text { Min })} \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | $-880$ | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL ( }}^{\text {Min }}$ ) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current <br> All Inputs |  | 350 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -195 | -150 | -90 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Toggle Frequency | 600 |  | 600 |  | 600 |  | MHz | Figure 1 |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL }^{2} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{CP}_{\mathrm{n}}$ to Output | 0.70 | 2.20 | 0.70 | 2.00 | 0.70 | 2.20 | ns | Figures 2 and 3 |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{C}_{n}, \mathrm{~S}_{\mathrm{n}}$ to Output | 0.90 | 1.80 | 0.90 | 2.00 | 0.90 | 2.40 | ns | $C P_{n}=L, C P_{n}=H$ |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.30 | 1.40 | 0.30 | 1.40 | 0.30 | 1.40 | ns | Figures 2 and 3 |
| ts | Setup Time $J_{n}, K_{n} \text { to } C P_{n}$ <br> $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ (Release Time) | $\begin{aligned} & 0.90 \\ & 1.50 \end{aligned}$ |  | $\begin{aligned} & 0.70 \\ & 1.30 \end{aligned}$ |  | $\begin{aligned} & 0.90 \\ & 1.50 \end{aligned}$ |  | ns |  |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time $J_{n}, K_{n} \text { to } C P_{n}$ | 0.80 |  | 0.80 |  | 0.80 |  | ns |  |
| $t_{p w}(\mathrm{H})$ | Pulse Width HIGH $C P_{n}, C_{n}, S_{n}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns |  |

## Cerpak AC Characteristics

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| ${ }_{\text {max }}$ | Toggle Frequency | 650 |  | 650 |  | 650 |  | MHz | Figure 1 |
| ${ }^{\text {tpLH}}$ <br> ${ }^{\text {tpHL }}$ | Propagation Delay $\mathrm{CP}_{\mathrm{n}}$ to Output | 0.70 | 2.00 | 0.70 | 1.80 | 0.70 | 2.00 | ns | Figures 2 and 3 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ to Output | 0.90 | 1.60 | 0.90 | 1.80 | 0.90 | 2.20 | ns | $C P_{n}=L, C P_{n}=H$ |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.30 | 1.30 | 0.30 | 1.30 | 0.30 | 1.30 | ns |  |
| ts | Setup Time $J_{n}, K_{n}$ to $C P_{n}$ $\mathrm{C}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ (Release Time) | $\begin{aligned} & 0.80 \\ & 1.40 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.60 \\ & 1.20 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.80 \\ & 1.40 \end{aligned}$ |  | ns | Figures 2 and 3 |
| ${ }^{\text {H }} \mathrm{H}$ | Hold Time $J_{n}, K_{n} \text { to } C P_{n}$ | 0.70 |  | 0.70 |  | 0.70 |  | ns |  |
| $t_{p w}(H)$ | Pulse Width HIGH $C P_{n}, C_{n}, S_{n}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns |  |



TL/F/9854-6
FIGURE 1. Toggle Frequency Test Circuit


TL/F/9854-7
FIGURE 2. AC Test Circuit

Notes:
$V_{C C}=V_{C C A}=+2 V$
$V_{E E}=-2.5 \mathrm{~V}$

* $=$ equal electrical length $50 \Omega$ lines
$R_{T}=50 \Omega$ termination
Decouple power supplies with $0.1 \mu \mathrm{~F}$ from $\mathrm{V}_{\mathrm{CC}}$ and $V_{E E}$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$ Load all unused outputs with $50 \Omega$ to GND
Set pulse generator output level for 740 mV p-p at a frequency of 10 MHz as measured at the clock input pin of the device under test. Do not readjust this voltage for frequencies up to $f_{\text {max }}$. The pad isolates the generator output for D.U.T. input impedance variations. Signal voltage measured at the D.U.T. input will vary as input impedance varies with frequency.


## Notes:

$V_{C C}=V_{C C A}=+2 V$
$V_{E E}=-2.5 \mathrm{~V}$
Decouple power supplies with $0.1 \mu \mathrm{~F}$ from $\mathrm{V}_{\mathrm{CC}}$ and $V_{E E}$ to $G N D$
$R_{T}=50 \Omega$ termination
Load all unused outputs with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

* $=$ equal electrical length $50 \Omega$ lines
\# = Connect Scope CHAN A to pulse generator as required
$t=$ Connect pulse generator to input under test; else connect input to voltage source set to +1.05 volts for logic HIGH or +0.31 volts for logic LOW
Consult truth table for appropriate logical condition


TEST
CHARACTERISTICS


FIGURE 3. Propagation Delays and Setup and Hold Time

## 行 National Semiconductor

## F100136

## 4-Stage Counter/Shift Register

## General Description

The F100136 operates as either a modulo-16 up/down counter or as a 4-bit bidirectional shift register. Three Select $\left(\mathrm{S}_{\mathrm{n}}\right)$ inputs determine the mode of operation, as shown in the Function Select table. Two Count Enable ( $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ ) inputs are provided for ease of cascading in multistage counters. One Count Enable ( $\overline{\mathrm{CET}}$ ) input also doubles as a Serial Data ( $\mathrm{D}_{0}$ ) input for shift-up operation. For shift-down operation, $\mathrm{D}_{3}$ is the Serial Data input. In counting operations the Terminal Count ( $\overline{\mathrm{TC}}$ ) output goes LOW when the counter reaches 15 in the count/up mode or 0 (zero) in the count/down mode. In the shift modes, the TC output re-
peats the $Q_{3}$ output. The dual nature of this $\overline{T C} / Q_{3}$ output and the $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ input means that one interconnection from one stage to the next higher stage serves as the link for multistage counting or shift-up operation. The individual Preset $\left(P_{n}\right)$ inputs are used to enter data in parallel or to preset the counter in programmable counter applications. A HIGH signal on the Master Reset (MR) input overrides all other inputs and asynchronously clears the flip-flops. In addition, a synchronous clear is provided, as well as a complement function which synchronously inverts the contents of the flip-flops. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

## Logic Symbol

## Connection Diagrams



TL/F/9855-3


28-PIn PCC (Preliminary)




TL/F/9855-5

## Function Select Table

| $\mathbf{S}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{0}}$ | Function |
| :--- | :--- | :--- | :--- |
| L | L | L | Parallel Load |
| L | L | H | Complement |
| L | H | L | Shift Left |
| L | H | H | Shift Right |
| H | L | L | Count Down |
| H | L | H | Clear |
| H | H | L | Count Up |
| H | H | H | Hold |

## Truth Table



## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specifled devices are required,
please contact the National Semiconductor Sales Office/Distributors for avallablility and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
$+150^{\circ} \mathrm{C}$

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL ( }}^{\text {Min }}$ ) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditlons (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| V ${ }_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IIH | Input HIGH Current |  |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ |
|  | $\mathrm{P}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ |  |  | 180 |  |  |
|  | $\overline{\text { CEP }}$ |  |  | 200 |  |  |
|  | MR |  |  | 240 |  |  |
|  | $\mathrm{D}_{3}$ |  |  | 280 |  |  |
|  | CP |  |  | 390 |  |  |
|  | $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ |  |  | 530 |  |  |
| IEE | Power Supply Current | -283 | -195 | -136 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {shift }}$ | Shift Frequency | 250 |  | 250 |  | 250 |  | MHz | Figures 2 and 3 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $C P$ to $Q_{n}, \bar{Q}_{n}$ | 0.85 | 2.10 | 0.85 | 2.10 | 0.85 | 2.25 | ns | Figures 1 and 3 |
| ${ }^{t_{\text {PLH }}}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay CP to $\overline{T C}$ | 1.90 | 4.80 | 1.90 | 4.60 | 1.90 | 5.20 | ns |  |
| $\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $M R$ to $Q_{n}, \bar{Q}_{n}$ | 1.20 | 2.95 | 1.35 | 2.95 | 1.20 | 3.10 | ns | Figures 1 and 4 |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay MR to TC | 2.20 | 4.80 | 2.20 | 4.80 | 2.20 | 5.30 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$ | 1.40 | 3.20 | 1.40 | 3.20 | 1.40 | 3.50 | ns | Figures 1 and 5 |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $S_{n}$ to $\overline{T C}$ | 0.90 | 3.80 | 1.00 | 3.80 | 1.00 | 4.30 | ns |  |
| ${ }^{\text {t }}$ tLH <br> ${ }^{t_{T H L}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.80 | 0.45 | 1.80 | 0.45 | 1.80 | ns | Figures 1 and 3 |
| $\mathrm{t}_{\text {s }}$ | Setup Time <br> $\mathrm{D}_{3}$ <br> $\mathrm{P}_{\mathrm{n}}$ <br> $\mathrm{D}_{0} / \overline{\mathrm{CET}}, \overline{\mathrm{CEP}}$ <br> $\mathrm{S}_{\mathrm{n}}$ <br> MR (Release Time) | $\begin{aligned} & 1.20 \\ & 1.70 \\ & 1.45 \\ & 3.30 \\ & 2.60 \end{aligned}$ |  | $\begin{aligned} & 1.20 \\ & 1.70 \\ & 1.45 \\ & 3.30 \\ & 2.60 \end{aligned}$ |  | $\begin{aligned} & 1.20 \\ & 1.70 \\ & 1.45 \\ & 3.30 \\ & 2.60 \end{aligned}$ |  | ns | Figure 6 |
| $t_{\text {h }}$ | $\begin{aligned} & \text { Hold Time } \\ & D_{3} \\ & P_{n} \\ & D_{0} / \overline{\text { CET }}, \text { CEP } \\ & S_{n} \\ & \hline \end{aligned}$ | $\begin{gathered} 0.20 \\ 0.10 \\ 0.20 \\ -0.90 \\ \hline \end{gathered}$ |  | $\begin{gathered} 0.20 \\ 0.10 \\ 0.20 \\ -0.90 \\ \hline \end{gathered}$ |  | $\begin{gathered} 0.20 \\ 0.10 \\ 0.20 \\ -0.90 \\ \hline \end{gathered}$ |  | ns | Figure 6 |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$ | Pulse Width HIGH CP, MR | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figures 3 and 4 |

Cerpak AC Electrical Characteristics $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {shift }}$ | Shift Frequency | 250 |  | 250 |  | 250 |  | MHz | Figures 2 and 3 |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay $C P$ to $Q_{n}, \bar{Q}_{n}$ | 0.85 | 1.90 | 0.85 | 1.90 | 0.85 | 2.05 | ns | Figures 1 and 3 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay CP to TC | 1.90 | 4.60 | 1.90 | 4.40 | 1.90 | 5.00 | ns |  |
| $t_{\text {PLH }}$ <br> ${ }^{\text {tpHL }}$ | Propagation Delay $M R$ to $Q_{n}, \bar{Q}_{n}$ | 1.20 | 2.75 | 1.35 | 2.75 | 1.20 | 2.90 | ns | Figures 1 and 4 |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay MR to TC | 2.20 | 4.60 | 2.20 | 4.60 | 2.20 | 5.10 | ns |  |
| tpLH $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{D}_{0} / \overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$ | 1.40 | 3.00 | 1.40 | 3.00 | 1.40 | 3.30 | ns | Figures 1 and 5 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $S_{n} \text { to } \overline{T C}$ | 0.90 | 3.60 | 1.00 | 3.60 | 1.00 | 4.10 | ns |  |
| ${ }^{\text {t }}$ tLH <br> $t_{\text {THL }}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.45 | 1.70 | 0.45 | 1.70 | 0.45 | 1.70 | ns | Figures 1 and 3 |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time <br> $\mathrm{D}_{3}$ <br> $P_{n}$ <br> $\mathrm{D}_{0} / \overline{\mathrm{CET}}, \overline{\mathrm{CEP}}$ <br> $S_{n}$ <br> MR (Release Time) | $\begin{aligned} & 1.10 \\ & 1.60 \\ & 1.35 \\ & 3.20 \\ & 2.50 \end{aligned}$ |  | $\begin{aligned} & 1.10 \\ & 1.60 \\ & 1.35 \\ & 3.20 \\ & 2.50 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 1.10 \\ & 1.60 \\ & 1.35 \\ & 3.20 \\ & 2.50 \\ & \hline \end{aligned}$ |  | ns | Figure 6 |
| $t_{n}$ | $\begin{aligned} & \text { Hold Time } \\ & D_{3} \\ & P_{n} \\ & D_{0} / \overline{C E T}, \overline{C E P} \\ & S_{n} \\ & \hline \end{aligned}$ | $\begin{gathered} 0.10 \\ 0 \\ 0.10 \\ -1.00 \\ \hline \end{gathered}$ |  | $\begin{gathered} 0.10 \\ 0 \\ 0.10 \\ -1.00 \end{gathered}$ |  | $\begin{gathered} 0.10 \\ 0 \\ 0.10 \\ -1.00 \end{gathered}$ |  | ns | Figure 6 |
| $t_{p w}(H)$ | Pulse Width HIGH CP, MR | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figures 3 and 4 |



## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$\mathrm{L} 1, \mathrm{~L} 2$ and L. $3=$ equal length $50 \Omega$ impedance lines
$\mathrm{R}_{\boldsymbol{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak;
for DIP see logic symbol

TL/F/9855-6
FIGURE 1. AC Test Circuit


TL/F/9855-7
FIGURE 2. Shift Frequency Test Circuit (Shift Left)

## Notes:

For shift right mode, +1.05 V is applied at $\mathrm{S}_{0}$
The feedback path from output to input should be as short as possible.


FIGURE 3. Propagation Delay (Clock) and Transition Times


FIGURE 4. Propagation Delay (Reset)


FIGURE 5. Propagation Delay (Serial Data, Selects)


## Notes:

$t_{s}$ is the minimum time before the transition of the clock that information must be present at the data input. $t_{h}$ is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 6. Setup and Hold TIme

## Applications



Note:
TL/F/9855-12
If $S_{0}=S_{1}=S_{2}=$ LOW, then $T_{C}=$ LOW


TL/F/9855-15

## F100141

8－Bit Shift Register

## General Description

The F100141 contains eight edge－triggered，D－type flip－ flops with individual inputs $\left(P_{n}\right)$ and outputs $\left(Q_{n}\right)$ for parallel operation，and with serial inputs $\left(D_{n}\right)$ and steering logic for bidirectional shifting．The flip－flops accept input data a setup time before the positive－going transition of the clock pulse and their outputs respond a propagation delay after this ris－ ing clock edge．

The circuit operating mode is determined by the Select in－ puts $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ ，which are internally decoded to select either ＂parallel entry＂，＂hold＂，＂shift left＂or＂shift right＂as de－ scribed in the Truth Table．All inputs have $50 \mathrm{k} \Omega$ pull－down resistors．

Ordering Code：See Section 6

## Logic Symbol



Connection Diagrams


TL／F／9856－2


TL／F／9856－3

28－Pin PCC（Preliminary）
$P_{5} P_{6} P_{7} V_{\text {EES }} D_{7} Q_{7} Q_{6}$




## Truth Table

| Function | Inputs |  |  |  |  | Outputs |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{D}_{7}$ | $\mathrm{D}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | CP | $\mathrm{Q}_{7}$ | $Q_{6}$ | $Q_{5}$ | $\mathbf{Q}_{4}$ | $\mathrm{Q}_{3}$ | $Q_{2}$ | $Q_{1}$ | $\mathbf{Q}_{0}$ |
| Load Register | X | X | L | L | $\Gamma$ | $\mathrm{P}_{7}$ | $\mathrm{P}_{6}$ | $\mathrm{P}_{5}$ | $\mathrm{P}_{4}$ | $\mathrm{P}_{3}$ | $\mathrm{P}_{2}$ | $\mathrm{P}_{1}$ | $\mathrm{P}_{0}$ |
| Shift Left <br> Shift Left | $\begin{aligned} & x \\ & x \end{aligned}$ | L | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\widetilde{\Gamma}$ | $\begin{aligned} & Q_{6} \\ & Q_{6} \end{aligned}$ | $\begin{aligned} & Q_{5} \\ & Q_{5} \end{aligned}$ | $\begin{aligned} & Q_{4} \\ & Q_{4} \end{aligned}$ | $\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$ | $\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$ | $\begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}$ | $\begin{aligned} & Q_{0} \\ & Q_{0} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| Shift Right Shift Right | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | X <br>  | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | L | $\widetilde{r}$ | $\begin{gathered} \mathrm{L} \\ \mathrm{H} \end{gathered}$ | $\begin{aligned} & Q_{7} \\ & Q_{7} \end{aligned}$ | $\begin{aligned} & Q_{6} \\ & Q_{6} \\ & \hline \end{aligned}$ | $\begin{aligned} & Q_{5} \\ & Q_{5} \\ & \hline \end{aligned}$ | $\mathrm{Q}_{4}$ $\mathrm{Q}_{4}$ | $\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$ | $\begin{aligned} & Q_{2} \\ & Q_{2} \end{aligned}$ | $\begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}$ |
| Hold <br> Hold <br> Hold | $\begin{aligned} & x \\ & x \\ & x \end{aligned}$ | x x x x | H X X X | H X X | X H L | No Change |  |  |  |  |  |  |  |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care
$\Omega=$ LOW-to-HIGH transition

## Absolute Maximum Ratings

Above which the useful life may be impaired．（Note 1）

If Military／Aerospace specified devices are required
please contact the National Semiconductor Sales Office／Distributors for availability and specifications．
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature（ $T_{J}$ ）

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$（Note 3）

| Symbol | Parameter | Min | Typ | Max | Units | Conditions（Note 4） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | －1025 | －955 | －880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | －1810 | －1705 | －1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | －1035 |  |  | mV | $\begin{aligned} & V_{\text {IN }}=V_{\text {IH(Min) }} \\ & \text { or } V_{\text {IL }} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | －1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | －1165 |  | －880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | －1810 |  | －1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$（Min） |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$（Note 3）

| Symbol | Parameter | Min | Typ | Max | Units | Conditions（Note 4） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | －1020 |  | －870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | －1810 |  | －1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | －1030 |  |  | mV | $\begin{aligned} & V_{\mathbb{I N}}=V_{\mathbb{I H}} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | －1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | －1150 |  | －870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | －1810 |  | －1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL． | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL（Min）}}$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$（Note 3）

| Symbol | Parameter | Min | Typ | Max | Units | Conditions（Note 4） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | －1035 |  | －880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | －1830 |  | －1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | －1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | －1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | －1165 |  | －880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | －1830 |  | －1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL（Min）}}$ |  |

Note 1：Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Note 2：Parametric values specified at -4.2 V to -4.8 V ．
Note 3：The specified limits represent the＂worst case＂value for the parameter．Since these＂worst case＂values normally occur at the temperature extremes， additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges．
Note 4：Conditions for testing shown in the tables are chosen to guarantee operation under＂worst case＂conditions．

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified， $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text {（Max）}}$ |
|  | $\mathrm{D}_{\mathrm{n}}, \mathrm{P}_{\mathrm{n}}, \mathrm{S}_{\mathrm{n}}$ |  |  | 220 | $\mu \mathrm{~A}$ |  |
| $\mathrm{I}_{\mathrm{EE}}$ | CP |  |  | 550 | $\mu \mathrm{~A}$ |  |
|  | Power Supply Current | -238 | -170 | -119 | mA | Inputs Open |

## Ceramic Dual－In－Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=\mathrm{O}^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {shift }}$ | Shift Frequency | 275 |  | 275 |  | 255 |  | MHz | Figures 2 and 3 |
| $\begin{gathered} \text { tpLH } \\ t_{\text {tPHL }} \\ \hline \end{gathered}$ | Propagation Delay CP to Output | 0.90 | 2.40 | 1.10 | 2.30 | 1.10 | 2.50 | ns | Figures 1 and 3 |
| $\begin{gathered} \mathrm{t}_{\mathrm{T} L \mathrm{LH}} \\ \mathrm{t}_{\mathrm{THL}} \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$ | 0.45 | 1.50 | 0.45 | 1.40 | 0.45 | 1.50 | ns |  |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time $D_{n}, P_{n}$ <br> $S_{n}$ | $\begin{aligned} & 0.85 \\ & 2.20 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.85 \\ & 2.20 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.85 \\ & 2.20 \\ & \hline \end{aligned}$ |  | ns | Figure 4 |
| $t_{n}$ | Hold <br> $D_{n}, P_{n}$ <br> $S_{n}$ | $\begin{array}{r} 0.60 \\ 0.10 \\ \hline \end{array}$ |  | $\begin{array}{r} 0.60 \\ 0.10 \\ \hline \end{array}$ |  | $\begin{array}{r} 0.60 \\ 0.10 \\ \hline \end{array}$ |  | ns |  |
| $t_{p w}(H)$ | Pulse Width HIGH CP | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {shift }}$ | Shift Frequency | 300 |  | 300 |  | 280 |  | MHz | Figures 2 and 3 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay CP to Output | 0.90 | 2.20 | 1.10 | 2.10 | 1.10 | 2.30 | ns | Figures 1 and 3 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.45 | 1.40 | 0.45 | 1.30 | 0.45 | 1.40 | ns |  |
| $\mathrm{t}_{\text {s }}$ | $\begin{aligned} & \text { Setup Time } \\ & D_{n}, P_{n} \\ & S_{n} \\ & \hline \end{aligned}$ | $\begin{array}{r} 0.75 \\ 2.10 \\ \hline \end{array}$ |  | $\begin{array}{r} 0.75 \\ 2.10 \\ \hline \end{array}$ |  | $\begin{array}{r} 0.75 \\ 2.10 \\ \hline \end{array}$ |  | ns | Figure 4 |
| $t_{n}$ | Hold <br> $D_{n}, P_{n}$ <br> $\mathrm{S}_{\mathrm{n}}$ | $\begin{gathered} 0.50 \\ 0 \\ \hline \end{gathered}$ |  | $\begin{gathered} 0.50 \\ 0 \\ \hline \end{gathered}$ |  | $\begin{gathered} 0.50 \\ 0 \\ \hline \end{gathered}$ |  | ns |  |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$ | Pulse Width HIGH CP | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |



FIGURE 1. AC Test Circuit


Notes:
TL/F/9856-7
For shift right mode pulse generator connected to $S_{0}$ is moved to $S_{1}$.
Pulse generator connected to $S_{1}$ has a LOW frequency $99 \%$ duty cycle, which allows occasional parallel load.
The feedback path from output to input should be as short as possible.
FIGURE 2. Shift Frequency Test Circuit (Shift Left)


FIGURE 3. Propagation Delay and Transition Times


TL/F/9856-9
FIGURE 4. Setup and Hold Times

## F100142 <br> $4 \times 4$-Bit Content Addressable Memory

## General Description

The F100142 is a 4 word by 4 -bit Content Addressable Memory (CAM). Reading is accomplished when an address select input ( $A_{0}, A_{7}, A_{2}, A_{3}$ ) is LOW and the write strobe input ( $\overline{W S}$ ) is HIGH. The corresponding stored word appears on the data outputs ( $Q_{0}-Q_{3}$ ). Writing can be performed to individual bits of a word or to the whole word. (A LOW on an address select input enables a 4-bit word.) A LOW on a bit mask input ( $\mathrm{MK}_{0}, \mathrm{MK}_{1}, \mathrm{MK}_{2}, \mathrm{MK}_{3}$ ) enables a bit within all four 4-bit words. Write data is presented on the data inputs ( $\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ ) and is latched into the addressed bit latch when the write strobe input ( $\overline{\mathrm{WS}}$ ) is LOW. Hence, the bit
mask inputs are used to selectively store data bit-wise within an addressed word. During writing, the data input word is simultaneously compared to each of the stored memory words. A search/compare is performed by placing a LOW on the bit mask inputs and presenting a data pattern to the data inputs. Corresponding to the bit mask inputs, the match outputs $\left(M_{0}-M_{3}\right)$ go LOW if a data bit of the pattern matches the respective stored bit. A HIGH on any bit mask input forces a LOW on the respective match output. Each input has a $50 \mathrm{k} \Omega$ (typical) pull-down resistor to $\mathrm{V}_{\mathrm{EE}}$.

## Ordering Code: See Section 6

## Logic Symbol

## Connection Diagrams

## 24-Pin DIP <br>  <br> TL/F/9857-1




| Truth Table |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operation | Inputs |  |  |  | Flip-Flop | Outputs |  |
|  | WS | $A_{i}$ | $\mathrm{D}_{\mathrm{L}}$ | $\mathrm{MK}_{\text {J }}$ | $\mathrm{Q}_{1}$ | $M_{1}$ | $Q_{j}$ |
|  | WS | $\begin{aligned} & A_{0} \\ & A_{1} \\ & A_{2} \\ & A_{3} \end{aligned}$ | $\begin{aligned} & \mathrm{D}_{0} \\ & \mathrm{D}_{1} \\ & \mathrm{D}_{2} \\ & \mathrm{D}_{3} \end{aligned}$ | $\mathrm{MK}_{0}$ <br> $\mathrm{MK}_{1}$ <br> $\mathrm{MK}_{2}$ <br> $\mathrm{MK}_{3}$ |  | $\begin{aligned} & M_{0} \\ & M_{1} \\ & M_{2} \\ & M_{3} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{Q}_{0} \\ & \mathrm{Q}_{1} \\ & \mathrm{Q}_{2} \\ & \mathrm{Q}_{3} \end{aligned}$ |
| Write Disabled | $\begin{array}{r} x \\ x \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \mathrm{X} \\ \mathrm{x} \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$ | $x$ | $\begin{gathered} \mathrm{L} \\ \mathrm{Q}_{\mathrm{ij}} \mathrm{n}-1 \\ \hline \end{gathered}$ |
| Write | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | L | H |
| Read | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{gathered} H \\ L \end{gathered}$ | $\begin{array}{r} x \\ \times \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ |
| Match Masked | H | X | X | H | NC | L | X |
| Match Not Satisfied | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ |
| Match <br> Satisfied | H H H H | $L$ $H$ $H$ $L$ | H $H$ $L$ $L$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | L L L L | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ |
| $\begin{aligned} & H=H I G H \text { Voltage Level } \\ & L=\text { LOW Voltage Level } \\ & X=\text { Don't Care } \\ & N C=\text { No Change from Previous State } \\ & \hline W S=\text { Write Strobe } \\ & A_{i}=\text { Address for ith Word } \\ & D_{i}=\text { Data for jth Bit } \end{aligned}$ |  | $\begin{aligned} & M_{K_{\mathrm{i}}}=\text { Data Mask for jth Bit } \\ & \mathrm{H}=\text { Mask } \\ & \mathrm{Q}_{\mathrm{ij}}=\text { Cell State for ith Word, jth Bit } \\ & M_{\mathrm{i}}=\text { Match Output of tith Word } \\ & \quad \mathrm{L}=\text { True } \\ & \mathrm{Q}_{\mathrm{i}}=\text { Data Output of jth Bit } \\ & \mathrm{Q}_{\mathrm{n}-1}=\text { Previous Cell State } \end{aligned}$ |  |  |  |  |  |

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )

| Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ ) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{I H}(\operatorname{Max}) \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(M a x) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| Volc | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current <br> All Inputs |  | 200 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathbb{I N}}=\mathrm{V}_{\mathbb{I H} \text { (Max) }}$ |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -288 | -190 | -114 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {AD }}$ | Address to Data Out | 1.20 | 4.40 | 1.20 | 4.30 | 1.20 | 4.50 | ns | Figures 2 and 3 |
| $t_{\text {DM }}$ | Data In to Match Out Time | 1.60 | 3.70 | 1.60 | 3.60 | 1.60 | 3.80 | ns | Figure 5 |
| $\mathrm{t}_{\text {MM }}$ | Mask In to "Enable Partial" Match Out Time | 1.20 | 3.90 | 1.20 | 3.90 | 1.20 | 4.00 | ns |  |
| $\mathrm{t}_{\mathrm{DD}}$ | Data In to New Data Out | 1.70 | 4.40 | 1.70 | 4.40 | 1.70 | 4.60 | ns | Figure 2 |
| $t_{\text {WD }}$ | Write to New Data Out | 2.50 | 5.40 | 2.50 | 5.20 | 2.30 | 5.10 | ns |  |
| $t_{\text {AM }}$ | Address to Match | 2.50 | 4.60 | 2.50 | 4.60 | 2.50 | 4.90 | ns |  |
| $\mathrm{t}_{\text {MD }}$ | Mask to Data | 2.20 | 4.90 | 2.20 | 4.80 | 2.20 | 5.00 | ns |  |
| twSM | $\overline{\text { WS }}$ to Match | 2.80 | 4.90 | 2.80 | 4.80 | 2.80 | 5.10 | ns |  |
| tw | Write Pulse Width | 1.30 |  | 1.30 |  | 1.30 |  | ns | Figuro 1 |
| $t_{\text {AS }}$ | Address Setup before Write Time | 1.40 |  | 1.40 |  | 1.40 |  | ns |  |
| $t_{\text {AH }}$ | Address Hold after Write Time | 1.40 |  | 1.40 |  | 1.40 |  | ns |  |
| $t_{\text {DS }}$ | Data In Setup before Write Time | 0.60 |  | 0.60 |  | 0.60 |  | ns |  |
| $\mathrm{t}_{\mathrm{DH}}$ | Data In Hold after Write Time | 1.10 |  | 1.10 |  | 1.10 |  | ns |  |
| $\mathrm{t}_{\mathrm{MH}}$ | Mask In Hold Write Time | 2.50 |  | 2.50 |  | 2.50 |  | ns |  |
| $\mathrm{t}_{\text {MS }}$ | Mask In Setup Write Time | 1.10 |  | 1.10 |  | 1.10 |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$ | 0.50 | 2.30 | 0.50 | 2.30 | 0.50 | 2.30 | ns | Figure 2 |

## Cerpak AC Electrical Characteristics

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{A D}$ | Address to Data Out | 1.20 | 4.20 | 1.20 | 4.10 | 1.20 | 4.30 | ns | Figures 2 and 3 |
| $\mathrm{t}_{\text {DM }}$ | Data In to Match Out Time | 1.60 | 3.50 | 1.60 | 3.40 | 1.60 | 3.60 | ns | Figure 5 |
| $\mathrm{t}_{\text {MM }}$ | Mask In to "Enable <br> Partial" Match Out Time | 1.20 | 3.70 | 1.20 | 3.70 | 1.20 | 3.80 | ns |  |
| $\mathrm{t}_{\mathrm{DD}}$ | Data In to New Data Out | 1.70 | 4.20 | 1.70 | 4.20 | 1.70 | 4.40 | ns | Figure 2 |
| two | Write to New Data Out | 2.50 | 5.20 | 2.50 | 5.00 | 2.30 | 4.90 | ns |  |
| $t_{\text {AM }}$ | Address to Match | 2.50 | 4.40 | 2.50 | 4.40 | 2.50 | 4.70 | ns |  |
| $t_{\text {MD }}$ | Mask to Data | 2.20 | 4.70 | 2.20 | 4.60 | 2.20 | 4.80 | ns |  |
| twSM | $\overline{\text { WS }}$ to Match | 2.80 | 4.70 | 2.80 | 4.60 | 2.80 | 4.90 | ns |  |
| tw | Write Pulse Width | 1.20 |  | 1.20 |  | 1.20 |  | ns | Figure 1 |
| $t_{\text {AS }}$ | Address Setup before Write Time | 1.30 |  | 1.30 |  | 1.30 |  | ns |  |
| $t_{\text {AH }}$ | Address Hold after Write Time | 1.30 |  | 1.30 |  | 1.30 |  | ns |  |
| $t_{\text {D }}$ | Data In Setup before Write Time | 0.50 |  | 0.50 |  | 0.50 |  | ns |  |
| $t_{\text {DH }}$ | Data In Hold after Write Time | 1.00 |  | 1.00 |  | 1.00 |  | ns |  |
| $\mathrm{t}_{\mathrm{MH}}$ | Mask In Hold Write Time | 2.40 |  | 2.40 |  | 2.40 |  | ns |  |
| $\mathrm{t}_{\text {MS }}$ | Mask In Setup Write Time | 1.00 |  | 1.00 |  | 1.00 |  | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$ | 0.50 | 2.20 | 0.50 | 2.20 | 0.50 | 2.20 | ns | Figure 2 |

Switching Waveforms


FIGURE 1. AC Test Circuit
Note:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
$\mathrm{L} 1, \mathrm{~L} 2$ and $\mathrm{L} 3=$ equal length $50 \Omega$ impedance lines $R_{\top}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ All unused outputs are loaded with $50 \Omega$ to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$


TL/F/9857-7
FIGURE 2. Output Rise and Fall Times and Waveforms


FIGURE 3. Write Mode and Read/Write Mode Waveforms

## Switching Waveforms (Continued)



FIGURE 4. Read Mode Waveforms

## Application

The F100142 is an ideal choice for the register file unit of a bit-slice processor. Figure 5 shows the configuration of four $F 100145$ s into a $16 \times 16$ register file. The write enbles ( $W_{1}$, $\left.W E_{2}\right)$ and output enables $\left(\mathrm{OE}_{1}, \mathrm{OE}_{2}\right)$ are configured to allow access to one array of sixteen 16 -bit registers or two arrays of sixteen 8 -bit registers. Simultaneous read and write addressing is made possible with separate buses. Also, reading and then writing to the same address is easily and efficiently done by tying one write enable to an output enable.


TL/F/9857-10
FIGURE 5. Search Mode Waveforms


TL/F/9857-11
FIGURE 5. $16 \times 16$ Register File (Two $16 \times 8$ Register Files)

F100150
Hex D Latch

## General Description

The F100150 contains six D-type latches with true and complement outputs, a pair of common Enables ( $\overline{\mathrm{E}}_{\mathrm{a}}$ and $\mathrm{E}_{\mathrm{b}}$ ), and a common Master Reset (MR). A Q output follows its D input when both $\bar{E}_{a}$ and $\bar{E}_{b}$ are LOW. When either $\bar{E}_{a}$ or $\bar{E}_{b}$
(or both) are HIGH, a latch stores the last valid data present on its D input before $\bar{E}_{\mathrm{a}}$ or $\bar{E}_{\mathrm{b}}$ went HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

Logic Symbol


TL/F/9858-1


TL/F/9858-2

28-Pin PCC (Preliminary)
$D_{1} D_{0} Q_{0} V_{E S} \bar{Q}_{0} Q_{1} \bar{Q}_{1}$



TL/F/9858-4

## Logic Diagram



## Truth Tables (Each Latch)

Latch Operation

| Inputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Outputs |  |  |  |  |
| $\mathbf{D}_{\mathbf{n}}$ | $\overline{\mathbf{E}}_{\mathbf{a}}$ | $\overline{\mathbf{E}}_{\mathbf{b}}$ | $\mathbf{M R}$ | $\mathbf{Q}_{\boldsymbol{n}}$ |
| L | L | L | L | L |
| H | L | L | L | H |
| X | H | X | L | Latched* $^{*}$ |
| X | X | H | L | Latched* $^{*}$ |

*Retains data present before $\overline{\mathrm{E}}$ positive transition
H $=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Don't Care
Asynchronous Operation

| Inputs |  |  |  | Outputs |
| :---: | :---: | :---: | :---: | :---: |
| $D_{\boldsymbol{n}}$ | $\bar{E}_{\mathbf{a}}$ | $\overline{\mathrm{E}}_{\mathrm{b}}$ | MR | $\mathbf{Q}_{\boldsymbol{n}}$ |
| X | X | X | H | L |

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1) If Milltary/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{\mathrm{IL}}(\mathrm{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| $\mathrm{I}_{\text {IL }}$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IfL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $I_{I H}$ | Input HIGH Current |  |  |  |  |  |
|  | $M R$ |  |  | 450 | $\mu A$ | $V_{I N}=V_{I H}(M a x)$ |
|  | $\mathrm{D}_{\mathrm{n}}$ |  |  |  |  |  |
|  | $\mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}}$ |  |  | 540 |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -159 | -113 | -79 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $D_{n}$ to Output (Transparent Mode) | 0.45 | 1.50 | 0.50 | 1.40 | 0.50 | 1.50 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}_{a}, \bar{E}_{b}$ to Output | 0.75 | 2.05 | 0.75 | 1.85 | 0.75 | 2.05 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay MR to Output | 0.80 | 2.40 | 0.90 | 2.40 | 0.90 | 2.60 | ns | Figures 1 and 3 |
| $\begin{aligned} & t_{\mathrm{TLH}} \\ & t_{\mathrm{tHL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.70 | 0.45 | 1.60 | 0.45 | 1.60 | ns | Figures 1 and 2 |
| $\mathrm{t}_{s}$ | $\begin{aligned} & \hline \text { Setup Time } \\ & D_{0}-D_{5} \\ & \text { MR (Release Time) } \end{aligned}$ | $\begin{array}{r} 0.70 \\ 2.10 \\ \hline \end{array}$ |  | $\begin{array}{r} 0.70 \\ 2.10 \\ \hline \end{array}$ |  | $\begin{array}{r} 0.70 \\ 2.10 \\ \hline \end{array}$ |  | ns | Figures 3 and 4 |
| $t_{n}$ | Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{5}$ | 0.70 |  | 0.70 |  | 0.70 |  | ns | Figure 4 |
| $t_{\text {pw }}(\mathrm{L})$ | $\begin{aligned} & \text { Pulse Width LOW } \\ & \bar{E}_{a}, \bar{E}_{b} \\ & \hline \end{aligned}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$ | Pulse Width HIGH, MR | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay <br> $D_{n}$ to Output <br> (Transparent Mode) | 0.45 | 1.30 | 0.50 | 1.20 | 0.50 | 1.30 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}_{a}, \bar{E}_{b}$ to Output | 0.75 | 1.85 | 0.75 | 1.65 | 0.75 | 1.85 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay MR to Output | 0.80 | 2.20 | 0.90 | 2.20 | 0.90 | 2.40 | ns | Figures 1 and 3 |
| $\begin{aligned} & \mathbf{t}_{\mathrm{T} L \mathrm{LH}} \\ & \mathbf{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$ | 0.45 | 1.60 | 0.45 | 1.50 | 0.45 | 1.50 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time <br> $\mathrm{D}_{0}-\mathrm{D}_{5}$ <br> MR (Release Time) | $\begin{array}{r} 0.60 \\ 2.00 \\ \hline \end{array}$ |  | $\begin{array}{r} 0.60 \\ 2.00 \\ \hline \end{array}$ |  | $\begin{array}{r} 0.60 \\ 2.00 \\ \hline \end{array}$ |  | ns | Figures 3 and 4 |
| $t_{n}$ | Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{5}$ | 0.60 |  | 0.60 |  | 0.60 |  | ns | Figure 4 |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$ | Pulse Width LOW $\bar{E}_{a}, \bar{E}_{b}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |
| $t_{\text {pw }}(\mathrm{L})$ | Pulse Width HIGH, MR | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |



## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ All unused outputs are loaded with $50 \Omega$ to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test CIrcult


TL/F/9858-7
FIGURE 2. Enable Timing


## Notes:

## F100151

## Hex D Flip-Flop

## General Description

The F100151 contains six D-type edge-triggered, master/ slave flip-flops with true and complement outputs, a pair of common Clock inputs ( $\mathrm{CP}_{\mathrm{a}}$ and $\mathrm{CP}_{\mathrm{b}}$ ) and common Master Reset (MR) input. Data enters a master when both $\mathrm{CP}_{\mathrm{a}}$ and
$\mathrm{CP}_{\mathrm{b}}$ are LOW and transfers to the slave when $\mathrm{CP}_{\mathrm{a}}$ and $\mathrm{CP}_{\mathrm{b}}$ (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

## Logic Symbol



## Connection Diagrams




| Pin Names | Description |
| :--- | :--- |
| $D_{0}-D_{5}$ | Data Inputs |
| $C P_{a}, C P_{b}$ | Common Clock Inputs |
| $M R$ | Asynchronous Master Reset Input |
| $Q_{0}-Q_{5}$ | Data Outputs |
| $\bar{Q}_{0}-\bar{Q}_{5}$ | Complementary Data Outputs |



## Logic Diagram



Truth Table (Each Flip-filop)
Synchronous Operation

| Inputs |  |  |  | Outputs |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{\mathrm{n}}$ | $\mathrm{CPa}_{\mathrm{a}}$ | $\mathrm{CP}_{\mathrm{b}}$ | MR | $Q_{n}(t+1)$ |
| L | $\bigcirc$ | L | L | L |
| H | $\checkmark$ | L | L | H |
| L | L | $\checkmark$ | L | L |
| H | L | $\checkmark$ | L | H |
| X | H | $\sim$ | L | $\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$ |
| X | $\checkmark$ | H | L | $\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$ |
| X | L | L | L | $Q_{n}(t)$ |

Asynchronous Operation

| Inputs |  |  |  | Outputs |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{D}_{\mathrm{n}}$ | $\mathbf{C P}$ | $\mathbf{C P}_{\mathbf{b}}$ | $\mathbf{M R}$ | $\mathbf{Q}_{\mathbf{n}}(\mathbf{t + 1})$ |
| X | X | X | H | L |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
$\mathrm{t}=$ Time before CP positive transition
$\mathbf{t + 1}=$ Time after CP positive transition
$\mathcal{L}=$ LOW-to-HIGH transition

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

| Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ ) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL ( }}^{\text {Min) }}$ ) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL. (Min) }} \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current MR $D_{0}-D_{5}$ $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ |  |  | $\begin{aligned} & 450 \\ & 225 \\ & 520 \end{aligned}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |
| IEE | Power Supply Current | -210 | -155 | -98 | mA | Inputs Open |

Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Toggle Frequency | 375 |  | 375 |  | 375 |  | MHz | Figures 2 and 3 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output | 0.80 | 2.20 | 0.80 | 2.20 | 0.90 | 2.40 | ns | Figures 1 and 3 |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay MR to Output | 1.20 | 2.90 | 1.30 | 3.00 | 1.20 | 3.10 | ns | Figures 1 and 4 |
| $t_{\mathrm{T} L \mathrm{H}}$ $\mathrm{t}_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.80 | 0.45 | 1.70 | 0.45 | 1.80 | ns | Figures 1 and 3 |
| $\mathrm{t}_{\text {s }}$ | Setup Time$\begin{aligned} & D_{0}-D_{5} \\ & \text { MR (Release Time) } \end{aligned}$ | $\begin{aligned} & 0.70 \\ & 2.30 \end{aligned}$ |  | $\begin{aligned} & 0.70 \\ & 2.30 \end{aligned}$ |  | $\begin{aligned} & 0.70 \\ & 2.60 \end{aligned}$ |  | ns | Figure 5 |
|  |  |  |  | Figure 4 |  |  |  |  |
| $t_{n}$ | Hold Time $D_{0}-D_{5}$ | 0.70 |  |  |  | 0.70 |  | 0.70 |  | ns | Figure 5 |
| ${ }^{\text {tpw }}$ (H) | Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figures 3 and 4 |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mln | Max | Min | Max | Min | Max |  |  |
| $\mathrm{f}_{\text {max }}$ | Toggle Frequency | 375 |  | 375 |  | 375 |  | MHz | Figures 2 and 3 |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}$ to Output | 0.80 | 2.00 | 0.80 | 2.00 | 0.90 | 2.20 | ns | Figures 1 and 3 |
| $t_{\text {PLH }}$ <br> ${ }^{\text {t }}{ }^{\text {PHL }}$ | Propagation Delay MR to Output | 1.20 | 2.70 | 1.30 | 2.80 | 1.20 | 2.90 | ns | Figures 1 and 4 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.70 | 0.45 | 1.60 | 0.45 | 1.70 | ns | Figures 1 and 3 |
| $\mathrm{t}_{\text {s }}$ | Setup Time$\begin{aligned} & D_{0}-D_{5} \\ & \text { MR (Release Time) } \end{aligned}$ | $\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$ |  | $\begin{aligned} & 0.60 \\ & 2.20 \end{aligned}$ |  | $\begin{aligned} & 0.60 \\ & 2.50 \end{aligned}$ |  | ns | Figure 5 |
|  |  |  |  | Figure 4 |  |  |  |  |
| $t_{\text {h }}$ | Hold Time $D_{0}-D_{5}$ | 0.60 |  |  |  | 0.60 |  | 0.60 |  | ns | Figure 5 |
| $t_{p w}(H)$ | Pulse Width HIGH $\mathrm{CP}_{\mathrm{a}}, \mathrm{CP}_{\mathrm{b}}, \mathrm{MR}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figures 3 and 4 |



Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ All unused outputs are loaded with $50 \Omega$ to GND $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

TL/F/9859-6
FIGURE 1. AC Test CIrcult


Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ All unused outputs are loaded with $50 \Omega$ to GND $\mathrm{C}_{\mathrm{L}}=$ Jig and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 2. Toggle Frequency Test Circuit


FIGURE 3. Propagation Delay (Clock) and Transition Times


FIGURE 4. Propagation Delay (Reset)


## Notes:

$t_{s}$ is the minimum time before the transition of the clock that information must be present at the data input. $t_{h}$ is the minimum time after the transition of the clock that information must remain unchanged at the data input.

FIGURE 5. Setup and Hold Time

National Semiconductor

## F100155

Quad Multiplexer/Latch

## General Description

The F100155 contains four transparent latches, each of which can accept and store data from two sources. When both Enable ( $\bar{E}_{n}$ ) inputs are LOW, the data that appears at an output is controlled by the Select $\left(\mathrm{S}_{n}\right)$ inputs, as shown in the Operating Mode table. In addition to routing data from either $D_{0}$ or $D_{1}$, the Select inputs can force the outputs LOW for the case where the latch is transparent (both En-
ables are LOW) and can steer a HIGH signal from either $D_{0}$ or $D_{1}$ to an output. The Select inputs can be tied together for applications requiring only that data be steered from either $D_{0}$ or $D_{1}$. A positive-going signal on either Enable input latches the outputs. A HIGH signal on the Master Reset (MR) input overrides all the other inputs and forces the $Q$ outputs LOW. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

## Logic Symbol



$$
\begin{aligned}
& \text { 24-PIn DIP }
\end{aligned}
$$

24-Pin Quad Cerpak


TL/F/9860-2

TL/F/9860-1

| Pin Names | Description |
| :--- | :--- |
| $\bar{E}_{1}, \bar{E}_{2}$ | Enable Inputs (Active LOW) |
| $\bar{S}_{0}, S_{2}$ | Select Inputs |
| $M R$ | Master Reset |
| $\mathrm{D}_{n a}-D_{n d}$ | Data Inputs |
| $Q_{a}-Q_{d}$ | Data Outputs |
| $\bar{Q}_{a}-\bar{Q}_{d}$ | Complementary Data Outputs |



19 20 21 22 232425
$D_{0 c} D_{1 c} D_{O d} V_{E E S} D_{1 d} a_{d} \bar{a}_{d}$

TL/F/9860-5

| Controls |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{\mathbf{1}}$ | $\overline{\mathbf{E}}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\overline{\mathbf{S}}_{\mathbf{0}}$ | Qutputs $_{\mathbf{n}}$ |
| $H$ | X | X | X | Latched $^{*}$ |
| X | H | X | X | Latched $^{*}$ |
| L | L | L | L | $\mathrm{D}_{0 \mathrm{x}}$ |
| L | L | H | L | $\mathrm{D}_{0 \mathrm{x}}+\mathrm{D}_{1 \mathrm{x}}$ |
| L | L | L | H | L |
| L | L | H | H | $\mathrm{D}_{1 \times}$ |

*Stores data present before $\overline{\mathrm{E}}$ went HIGH
H = HIGH Voltage Level
$L=$ LOW Voltage Level
X = Don't Care

Truth Table

| Inputs |  |  |  |  |  |  |  | Outputs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MR | $\bar{E}_{\mathbf{1}}$ | $\overline{\mathbf{E}}_{\mathbf{2}}$ | S $_{\mathbf{1}}$ | $\overline{\mathbf{S}}_{\mathbf{0}}$ | $\mathbf{D}_{\mathbf{1 x}}$ | $\mathbf{D}_{\mathbf{0 x}}$ | $\overline{\mathbf{Q}}_{\mathbf{x}}$ | $\mathbf{Q}_{\mathbf{x}}$ |  |
| H | X | X | X | X | X | X | H | L |  |
| L | L | L | H | H | H | X | L | H |  |
| L | L | L | H | H | L | X | H | L |  |
| L | L | L | L | L | X | H | L | H |  |
| L | L | L | L | L | X | L | H | L |  |
| L | L | L | L | H | X | X | H | L |  |
| L | L | L | H | L | H | X | L | H |  |
| L | L | L | H | L | X | H | L | H |  |
| L | L | L | H | L | L | L | H | L |  |
| L | H | X | X | X | X | X | Latched* |  |  |
| L | X | H | X | X | X | X | Latched* |  |  |

## Absolute Maximum Ratings

Above which the usefui life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, V_{C C}=V_{C C A}=G N D, T_{C}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { (Max })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L}(M a x) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{\text {IN }}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OLC}}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| 112 | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditio | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| $1 / 1$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  |  |
|  | $\bar{S}_{0}, \mathrm{~S}_{1}$ |  | 220 |  |  |  |
|  | $\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$ |  | 350 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |  |
|  | $\mathrm{D}_{\text {na }}-\mathrm{D}_{\text {nd }}$ |  |  | 340 |  |  |
|  | MR |  |  | 430 |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -133 | -95 | -66 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristic

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{D}_{\text {na }}-\mathrm{D}_{\text {nd }}$ to Output (Transparent Mode) | 0.50 | 1.90 | 0.60 | 1.85 | 0.50 | 1.90 | ns |  |
| $\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $\bar{S}_{0} S_{1}$ to Output (Transparent Mode) | 1.50 | 3.50 | 1.50 | 3.40 | 1.50 | 3.50 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}_{1}, \bar{E}_{2}$ to Output | 0.90 | 2.50 | 1.00 | 2.40 | 1.00 | 2.50 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay MR to Output | 0.90 | 3.00 | 0.90 | 2.90 | 0.90 | 3.00 | ns | Figures 1 and 3 |
| $\mathrm{t}_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.60 | 2.30 | 0.60 | 2.20 | 0.45 | 2.30 | ns | Figures 1 and 2 |
| $\mathrm{t}_{5}$ | Setup Time $D_{n a}-D_{n d}$ <br> $\bar{S}_{0}, S_{1}$ | $\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$ |  | $\begin{aligned} & 0.90 \\ & 2.40 \\ & 1.50 \end{aligned}$ |  | $\begin{aligned} & 0.90 \\ & 2.70 \\ & 1.50 \end{aligned}$ |  | ns | Figure 4 |
|  | MR (Release Time) |  |  | Figure 3 |  |  |  |  |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time <br> $D_{n a}-D_{n d}$ <br> $\bar{S}_{0}, S_{1}$ | $\begin{gathered} 0.40 \\ -0.70 \end{gathered}$ |  |  |  | $\begin{gathered} 0.40 \\ -0.70 \end{gathered}$ |  | $\begin{gathered} 0.40 \\ -0.70 \end{gathered}$ |  | ns | Figure 4 |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$ | Pulse Width LOW $\bar{E}_{1}, \overline{\mathrm{E}}_{2}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$ | Pulse Width HIGH MR | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> ${ }^{\mathrm{t}} \mathrm{PHL}$ | Propagation Delay $\mathrm{D}_{\mathrm{na}}-\mathrm{D}_{\mathrm{nd}}$ to Output (Transparent Mode) | 0.50 | 1.70 | 0.60 | 1.65 | 0.50 | 1.70 | ns |  |
| $\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $\bar{S}_{1}, S_{1}$ to Output (Transparent Mode) | 1.50 | 3.30 | 1.50 | 3.20 | 1.50 | 3.30 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ <br> ${ }_{\mathrm{t}}^{\mathrm{PHL}}$ | Propagation Delay $\bar{E}_{1}, \bar{E}_{2}$ to Output | 0.90 | 2.30 | 1.00 | 2.20 | 1.00 | 2.30 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ (Continued)

| Symbol | Parameter | $\mathrm{T}_{\mathbf{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay MR to Output | 0.90 | 2.80 | 0.90 | 2.70 | 0.90 | 2.80 | ns | Figures 1 and 3 |
| ${ }^{\mathrm{t}} \mathrm{T}_{\mathrm{L}} \mathrm{H}$ <br> ${ }^{\text {tTHL }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.60 | 2.20 | 0.60 | 2.10 | 0.45 | 2.20 | ns | Figures 1 and 2 |
| ${ }^{\text {ts }}$ | Setup Time <br> $D_{n a}-D_{n d}$ <br> $\bar{S}_{0}, S_{1}$ <br> MR (Release Time) | $\begin{aligned} & 0.80 \\ & 2.30 \\ & 1.40 \end{aligned}$ |  | $\begin{aligned} & 0.80 \\ & 2.30 \\ & 1.40 \end{aligned}$ |  | $\begin{aligned} & 0.80 \\ & 2.60 \\ & 1.40 \\ & \hline \end{aligned}$ |  | ns | Figure 4 |
|  |  |  |  |  |  |  |  |  | Figure 3 |
| ${ }_{\text {th }}$ | Hold Time $\begin{aligned} & D_{\mathrm{na}}-D_{\mathrm{nd}} \\ & \bar{S}_{0}, \mathrm{~S}_{1} \\ & \hline \end{aligned}$ | $\begin{gathered} 0.30 \\ -0.80 \\ \hline \end{gathered}$ |  | $\begin{gathered} 0.30 \\ -0.80 \end{gathered}$ |  | $\begin{gathered} 0.30 \\ -0.80 \end{gathered}$ |  | ns | Figure 4 |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$ | Pulse Width LOW $\bar{E}_{1}, \bar{E}_{2}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{H})$ | Pulse Width HIGH MR | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |



TL/F/9860-6
FIGURE 1. AC Test Circuit

## Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol


TL/F/9860-7
FIGURE 2. Enable Timing


TL/F/9860-8
FIGURE 3. Reset Timing


Notes:
$t_{s}$ is the minimum time before the transition of the enable that information must be present at the data input.
$t_{h}$ is the minimum time after the transition of the enable that information must remain unchanged at the data input.

National Semiconductor

## F100156

Mask-Merge/Latch

## General Description

The F100156 merges two 4-bit words to form a 4-bit output word. The $A M_{n}$ enable allows the merge of $A$ into $B$ by one, two or three places (per the $A S_{n}$ value) from the left. The $B M_{n}$ enable similarly allows the merge of $B$ into $A$ from the left (per the $\mathrm{BS}_{n}$ value). The B merge overrides the A merge when both are enabled. This means $A$ first merges into $B$ and $B$ then merges into the $A$ merge. If the $B$ address is
equal to or greater than the $A$ address, then outputs are forced to $B$.
The merge outputs feed four latches, which have a common enable ( $\overline{\mathrm{E}}$ ) input. All inputs have a $50 \mathrm{k} \Omega$ (typical) pull-down resistor tied to $\mathrm{V}_{\mathrm{EE}}$.

Ordering Code: See Section 6

Logic Symbol


|  | 24-Pin DIP |
| :---: | :---: |
| $\mathrm{AM}_{1}-1$ | $24-\mathrm{BM}_{1}$ |
| $\mathrm{A}_{3}-2$ | $23-\mathrm{AM}_{0}$ |
| $\mathrm{B}_{3}-3$ | $22-8 \mathrm{M}_{0}$ |
| $a_{3}-4$ | $21-\mathrm{AS}_{1}$ |
| $a_{2}-5$ | $20-85_{1}$ |
| $\mathrm{v}_{\mathrm{cc}}-6$ | $19-2 S_{0}$ |
| $\mathrm{V}_{\mathrm{CCA}}-7$ | $18-\mathrm{V}_{\mathrm{EE}}$ |
| $Q_{1}-8$ | 17 - $\overline{\text { E }}$ |
| $\mathrm{a}_{0}-9$ | $16-\mathrm{BS}_{0}$ |
| $\mathrm{B}_{0}-10$ | $15-A_{2}$ |
| $\mathrm{A}_{0}-11$ | $14-B_{2}$ |
| $\mathrm{B}_{1}-12$ | $13-\mathrm{A}_{1}$ |

## Connection Diagrams



28-Pin PCC (Preliminary)

(1) 10 回 8 [75


TL/F/9861-4

## Logic Diagram



TL/F/9861-5

Truth Table

| Inputs |  |  |  |  |  |  |  |  | Outputs |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Merge Enables |  |  |  | Addresses |  |  |  |  |  |  |  |  |  |
| $\mathrm{BM}_{1}$ | $\mathrm{BM}_{0}$ | $\mathrm{AM}_{1}$ | $\mathrm{AM}_{0}$ | $\mathrm{BS}_{1}$ | BS ${ }_{0}$ | $\mathrm{AS}_{1}$ | $\mathrm{AS}_{0}$ | $\overline{\mathrm{E}}$ | $\mathbf{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ |  |
| $\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$ | $\begin{aligned} & H \\ & X \\ & \hline \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$ | $\begin{aligned} & x \\ & x \end{aligned}$ | $\begin{aligned} & \mathbf{L} \\ & \mathbf{L} \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \hline \end{aligned}$ | Select B |
| L | L | L | L | X | X | X | X | L | $\mathrm{A}_{0}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | Select A |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$ | $\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~A}_{0} \\ & \mathrm{~A}_{0} \\ & \mathrm{~A}_{0} \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~A}_{1} \\ & \mathrm{~A}_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~A}_{2} \\ & \hline \end{aligned}$ | $\begin{aligned} & B_{3} \\ & B_{3} \\ & B_{3} \\ & B_{3} \end{aligned}$ | Merge $\mathrm{A} \rightarrow \mathrm{B}$ |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$ | $\begin{aligned} & L \\ & L \\ & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$ | $\begin{aligned} & x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{A}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & A_{1} \\ & A_{1} \\ & B_{1} \\ & B_{1} \end{aligned}$ | $\mathrm{A}_{2}$ <br> $\mathrm{A}_{2}$ <br> $\mathrm{A}_{2}$ <br> $B_{2}$ | $\mathrm{A}_{3}$ <br> $\mathrm{A}_{3}$ <br> $\mathrm{A}_{3}$ <br> $\mathrm{A}_{3}$ | Merge $\mathrm{B} \rightarrow \mathrm{A}$ |
| $\begin{aligned} & L \\ & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | L | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | L | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & L \\ & L \\ & L \end{aligned}$ | $\mathrm{A}_{0}$ <br> $\mathrm{A}_{0}$ <br> $A_{0}$ | $\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~A}_{1} \\ & \mathrm{~A}_{1} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~A}_{2} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$ | Merge $\mathrm{A} \rightarrow \mathrm{B}$ |
| $\begin{aligned} & L \\ & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & H \\ & H \\ & \text { L } \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{A}_{1} \\ & \mathrm{~A}_{1} \\ & \mathrm{~B}_{1} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~A}_{2} \\ & \mathrm{~A}_{2} \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Merge } A \rightarrow B \\ \text { then } \\ \text { Merge } B \rightarrow A \end{gathered}$ |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$ | $\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$ | B Address $\geq$ A Address |
| $\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & L \\ & L \\ & L \\ & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \mathrm{~B}_{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \\ & \mathrm{~B}_{1} \end{aligned}$ | $\begin{aligned} & \mathrm{B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \\ & \mathrm{~B}_{2} \end{aligned}$ | $\begin{aligned} & B_{3} \\ & \hline \end{aligned}$ | B Address 2 A Address |
| X | X | X | X | X | X | X | X | H | $Q_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathrm{Q}_{3}$ | Latch |
| Before Start | At Start | After End | At <br> End |  |  |  |  |  |  |  |  |  |  |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care

```
Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specifled devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature ( \(T_{j}\) )
```


## DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL ( }}^{\text {Min }}$ ) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV . | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IfL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL (Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

| Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ ) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current <br> $\mathrm{A}_{n}, \mathrm{~B}_{\mathrm{n}}, \mathrm{BM}_{\mathrm{n}}, \mathrm{AM}_{\mathrm{n}}, \mathrm{BS}_{\mathrm{n}}, \mathrm{AS}_{\mathrm{n}}, \overline{\mathrm{E}}$ |  |  | 265 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -235 | -161 | -107 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {th }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $A_{n}, B_{n}$ to Outputs (Transparent Mode) | 0.45 | 1.90 | 0.50 | 1.80 | 0.50 | 2.00 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}$ to Outputs | 1.00 | 2.50 | 1.00 | 2.40 | 1.00 | 2.50 | ns |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ to Outputs (Transparent Mode) | 1.20 | 3.70 | 1.20 | 3.70 | 1.20 | 3.80 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.90 | 0.45 | 1.80 | 0.45 | 1.90 | ns |  |
| ts | Setup Time $\begin{aligned} & A_{n}, B_{n} \\ & A M_{n}, B M_{n}, A S_{n}, B S_{n} \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 2.90 \end{aligned}$ |  | $\begin{aligned} & 0.80 \\ & 2.90 \end{aligned}$ |  | $\begin{aligned} & 0.80 \\ & 2.90 \end{aligned}$ |  | ns | Figure 3 |
| ${ }^{\text {H }} \mathrm{H}$ | Hold Time <br> $A_{n}, B_{n}$ <br> $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ | $\begin{aligned} & 2.10 \\ & 0.80 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 2.10 \\ & 0.80 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 2.10 \\ & 0.80 \\ & \hline \end{aligned}$ |  | ns |  |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$ | Pulse Width LOW $\bar{E}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| tple <br> ${ }^{\text {tpHL }}$ | Propagation Delay $A_{n}, B_{n}$ to Outputs (Transparent Mode) | 0.45 | 1.70 | 0.50 | 1.60 | 0.50 | 1.80 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}$ to Outputs | 1.00 | 2.30 | 1.00 | 2.20 | 1.00 | 2.30 | ns |  |
| tple <br> ${ }^{\text {tpHL }}$ | Propagation Delay $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ to Outputs (Transparent Mode) | 1.20 | 3.50 | 1.20 | 3.50 | 1.20 | 3.60 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.80 | 0.45 | 1.70 | 0.45 | 1.80 | ns |  |
| $\mathrm{ts}_{5}$ | Setup Time <br> $A_{n}, B_{n}$ $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ | $\begin{aligned} & 0.70 \\ & 2.80 \end{aligned}$ |  | $\begin{aligned} & 0.70 \\ & 2.80 \end{aligned}$ |  | $\begin{aligned} & 0.70 \\ & 2.80 \end{aligned}$ |  | ns | Figure 3 |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time <br> $A_{n}, B_{n}$ <br> $A M_{n}, B M_{n}, A S_{n}, B S_{n}$ | $\begin{aligned} & 2.00 \\ & 0.70 \end{aligned}$ |  | $\begin{aligned} & 2.00 \\ & 0.70 \end{aligned}$ |  | $\begin{aligned} & 2.00 \\ & 0.70 \\ & \hline \end{aligned}$ |  | ns |  |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$ | Pulse Width LOW $\bar{E}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |



FIGURE 1. AC Test Circuit


FIGURE 2. Enable Timing


TL/F/9861-8

## Notes:

$t_{s}$ is the minimum time before the transition of the enable that information must be present at the designated input. $t_{h}$ is the minimum time after the transition of the enable that information must remain unchanged at the designated input.

FIGURE 3. Data Setup and Hold Times

## F100158

## 8－Bit Shift Matrix

## General Description

The F100158 contains a combinatorial network which per－ forms the function of an 8 －bit shift matrix．Three control lines $\left(S_{n}\right)$ are internally decoded and define the number of places which an 8 －bit word present at the inputs $\left(D_{n}\right)$ is shifted to the left and presented at the outputs $\left(\mathrm{Z}_{n}\right)$ ．A Mode Control input（M）is provided which，if LOW，forces LOW all out－
puts to the right of the one that contains $\mathrm{D}_{7}$ ．This operation is sometimes referred to as LOW backfill．If $M$ is HIGH，an end－around shift is performed such that $D_{0}$ appears at the output to the right of the one that contains $\mathrm{D}_{7}$ ．This opera－ tion is commonly referred to as barrel shifting．All inputs have $50 \mathrm{k} \Omega$ pull－down resistors．

Ordering Code：See Section 6

## Logic Symbol



## Connection Diagrams



TL／F／9862－4

## Logic Diagram



## Truth Table

| Inputs |  |  |  | Outputs |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{Z}_{0}$ | $\mathrm{Z}_{1}$ | $\mathrm{Z}_{2}$ | $\mathrm{Z}_{3}$ | $\mathrm{Z}_{4}$ | $\mathrm{Z}_{5}$ | $\mathrm{Z}_{6}$ | $\mathrm{Z}_{7}$ |
| X | L. | L | L | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ |
| L | H | L | L | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | L |
| L | L | H | L | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | L | L |
| L | H | H | L | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | L | L | L |
| L | L | L | H | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | L | L | L | L |
| L | H | L | H | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | L | L | L | L | L |
| L | L | H | H | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | L | L | L | L | L | L |
| L | H | H | H | $\mathrm{D}_{7}$ | L | L | L | $L$ | L | L | L |
| H | H | L | L | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | $\mathrm{D}_{0}$ |
| H | L | H | L | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ |
| H | H | H | L | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ |
| H | L | L | H | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ |
| H | H | L | H | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ |
| H | L | H | H | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ |
| H | H | H | H | $\mathrm{D}_{7}$ | $\mathrm{D}_{0}$ | $\mathrm{D}_{1}$ | $\mathrm{D}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{D}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ |

H $=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care

Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.
Storage Temperature

| Maximum Junction Temperature ( $T_{J}$ ) | $-65^{\circ} \mathrm{C}$ to |
| :--- | ---: |
| $150^{\circ} \mathrm{C}$ |  |
| $+150^{\circ} \mathrm{C}$ |  |


| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{IH}} \text { (Max) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}} 0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | MIn | Typ | Max | UnIts | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current <br> All Inputs |  |  | 220 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -205 | -140 | -95 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | MIn | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}}$ to Output | 1.10 | 2.80 | 1.10 | 2.70 | 1.10 | 2.80 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay M to Output | 1.15 | 4.20 | 1.25 | 4.20 | 1.15 | 4.20 | ns |  |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay $\mathrm{S}_{\mathrm{n}}$ to Output | 1.70 | 4.20 | 1.70 | 4.20 | 1.70 | 4.20 | ns |  |
| $t_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.50 | 2.30 | 0.50 | 2.30 | 0.50 | 2.30 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay <br> $\mathrm{D}_{\mathrm{n}}$ to Output | 1.10 | 2.60 | 1.10 | 2.50 | 1.10 | 2.60 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ $t_{\text {PHL }}$ | Propagation Delay M to Output | 1.15 | 4.00 | 1.25 | 4.00 | 1.15 | 4.00 | ns |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay <br> $\mathrm{S}_{\mathrm{n}}$ to Output | 1.70 | 4.00 | 1.70 | 4.00 | 1.70 | 4.00 | ns |  |
| ${ }^{t_{T}} \mathbf{t h}$ <br> ${ }^{\text {t }}{ }^{\text {thL }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.50 | 2.20 | 0.50 | 2.20 | 0.50 | 2.20 | ns |  |



TL/F/9862-6
Notes:
$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$.
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines.
$R_{T}=50 \Omega$ terminator internal to scope.
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$.
All unused outputs are loaded with $50 \Omega$ to GND.
$\mathrm{C}_{\mathrm{L}}=$ fixture and stray capacitance $\leq 3 \mathrm{pF}$.
Pin numbers shown are for flatpak; for DIP refer to logic symbol.
FIGURE 1. AC Test Circult


TL/F/9862-7

FIGURE 2. Propagation Delay and Transition Times

## Applications

The following technique uses two ranks of F100158s to shift a 64-bit word from 0 to 63 places. Although two stage delays are required (one for each rank), the total shift takes only about 4 ns . This technique performs a bit shift on each 8 -bit byte in the first rank and then a modulo- 8 byte shift on the 64-bit word in the second rank.

## Basic 16-Bit 0-7 Place Shifter

Figure 3 shows the basic $0-7$ place shift technique which can be expanded to accommodate any word length.

Each 8 -bit byte requires a pair of $F 100158$ s operating in the LOW backfill mode. The address lines for each pair of ICs are driven out of phase by three OR gates. Inputs for the two ICs are taken from two bytes transposed in order; outputs are transposed and emitter-OR tied. One device shifts right from location 0 and the other shifts left from location 7. The bits shifted off one pair are picked up by the next pair of F100158s or-in the case of the last one in the rank-returned to the first device. The net result is a $0-7$ place shift of the entire word.

## Applications (Continued)

## Expanding to 64-Bit Word and 64-Place Shift

The basic 0-7 place shift technique can be expanded to accommodate a 64 -bit word shifted from 0 to 63 places, however, two ranks of F100158s are required (Figure 4). The first rank is identical to the one illustrated in Figure 3 except it contains a total of 16 devices. The second rank consists of eight additional F100158s connected in the modulo-8 configuration shown in Figure 5.
The modulo-8 rank is used to simulate an 8 -bit simultaneous shift since the F100158 cannot shift in 8 -bit jumps. The modulo- 8 configuration is achieved by wiring the first rank and the output device to the second rank as illustrated in Figure 5. The LSB of each output byte in the first rank is wired to one of the eight inputs of the first F100158 in the
second rank. The next least significant bit of each first-rank F100158 pair, however, is connected to the inputs of the second F100158 in the second rank. The other first-ranked outputs are connected in a similar fashion to the remainder of the second-rank inputs. Ultimately, the outputs of the second rank must then be connected to reform the final usable 64-bit word so that the bits are again ordered from 0-63.
The effect is that each single-location shift in the second rank appears to be an eight place shift in the final word due to the way the inputs and outputs of the second rank are connected. The combination of the two ranks produces the 64-place shift of the entire word.


TL/F/9862-9
FIGURE 4. 64-Bit 0-63 Place Barrel Shifter

## Applications (Continued)



FIGURE 5. Modulo-8 Shift

## F100160 <br> Dual Parity Checker/Generator

## General Description

The F100160 is a dual parity checker/generator. Each half has nine inputs; the output is HIGH when an even number of inputs are HIGH. One of the nine inputs ( $l_{a}$ or $I_{b}$ ) has the shorter through-put delay and is therefore preferred as the expansion input for generating parity for 16 or more bits.

The F100160 also has a Compare ( $\overline{\mathrm{C}}$ ) output which allows the circuit to compare two 8 -bit words. The $\overline{\mathrm{C}}$ output is LOW when the two words match, bit for bit. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

## Logic Symbol

## Connection Diagrams



TL/F/9863-3

| Pin Names | Description |
| :--- | :--- |
| $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{na}}, I_{\mathrm{nb}}$ | Data Inputs |
| $\mathrm{Z}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{b}}$ | Parity Odd Outputs |
| $\overline{\mathrm{C}}$ | Compare Output |



## Logic Diagram



## Truth Table (Each Half)

| Sum of <br> HIGH Inputs | Output <br> $\mathbf{Z}$ |
| :---: | :---: |
| Even | HIGH |
| Odd | LOW |

Comparator Function
$\bar{C}=\left(I_{a} \oplus I_{1 a}\right)+\left(I_{2 a} \oplus I_{3 a}\right)+\left(I_{4 a} \oplus I_{5 a}\right)+$
$\left(I_{6 a} \oplus I_{7 a}\right)+\left(l_{b b} \oplus I_{1 b}\right)+\left(I_{2 b} \oplus I_{3 b}\right)+$
$\left(I_{4 b} \oplus I_{5 b}\right)+\left(I_{6 b} \oplus I_{7 b}\right)$

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specifled devices are required,
please contact the National Semiconductor Sales
Office/Dlstributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{\mathrm{IL}}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |  |

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V OH | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\text { Min }) \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL. }}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{IH}_{\mathrm{H}}$ | Input HIGH Current <br> $I_{a}, I_{b}$ <br> $I_{n a}, I_{n b}$ |  |  | $\begin{array}{r} 340 \\ 240 \\ \hline \end{array}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max) |
| $l_{\text {eE }}$ | Power Supply Current | -115 | -82 | -57 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $T_{C}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $I_{n a}, I_{n b}$ to $Z_{a}, Z_{b}$ | 1.30 | 4.30 | 1.30 | 4.10 | 1.30 | 4.30 | ns | Figures 1 \& 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $I_{\text {na }}, I_{n b}$ to $\overline{\mathrm{C}}$ | 1.20 | 3.30 | 1.20 | 3.10 | 1.20 | 3.30 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $l_{a}, I_{b} \text { to } Z_{a}, Z_{b}$ | 0.50 | 1.60 | 0.50 | 1.50 | 0.50 | 1.60 | ns |  |
| $t_{T L H}$ $t_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.60 | 0.45 | 1.50 | 0.45 | 1.60 | ns |  |

## Cerpak AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $I_{n a}, I_{n b}$ to $Z_{a}, Z_{b}$ | 1.30 | 4.10 | 1.30 | 3.90 | 1.30 | 4.10 | ns | Figures 1 \& 2 |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $I_{n a}, I_{n b}$ to $\bar{C}$ | 1.20 | 3.10 | 1.20 | 2.90 | 1.20 | 3.10 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $l_{a}, l_{b}$ to $Z_{a}, Z_{b}$ | 0.50 | 1.40 | 0.50 | 1.30 | 0.50 | 1.40 | ns |  |
| ${ }^{\text {t }}$ th <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.50 | 0.45 | 1.40 | 0.45 | 1.50 | ns |  |



FIGURE 1. AC Test CIrcult
Notes:
$V_{C C} . V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol


FIGURE 2. Propagation Delay and Transition TImes

## F100163

Dual 8-Input Multiplexer

## General Description

The F100163 is a dual 8 -input multiplexer. The Data Select $\left(S_{n}\right)$ inputs determine which bit $\left(A_{n}\right.$ and $\left.B_{n}\right)$ will be presented at the outputs ( $Z_{a}$ and $Z_{b}$ respectively). The same bit
(0-7) will be selected for both the $Z_{a}$ and $Z_{b}$ output. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

## Logic Symbol



TL/F/9864-1

## Connection Diagrams

Data Select Inputs A Data Inputs B Data Inputs Data Outputs

24-Pin Quad Cerpak


TL/F/9864-2

28-Pin PCC (Preliminary)
$A_{6} A_{5} A_{4} V_{E E S} A_{3} A_{2} A_{1}$



TL/F/9864~4
Logic Diagram


## Truth Table

| Inputs |  |  |  |  |  |  |  |  |  |  | Outputs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Select |  |  | Data |  |  |  |  |  |  |  |  |
| $\mathbf{S}_{2}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | $\begin{aligned} & A_{7} \\ & B_{7} \end{aligned}$ | $\begin{aligned} & \mathbf{A}_{6} \\ & \mathbf{B}_{6} \\ & \hline \end{aligned}$ | $\begin{aligned} & A_{5} \\ & B_{5} \end{aligned}$ | $\begin{aligned} & \mathbf{A}_{4} \\ & \mathbf{B}_{4} \end{aligned}$ | $\begin{aligned} & \mathbf{A}_{\mathbf{3}} \\ & \mathbf{B}_{\mathbf{3}} \end{aligned}$ | $\begin{aligned} & \mathbf{A}_{2} \\ & B_{2} \end{aligned}$ | $\begin{aligned} & \mathbf{A}_{\mathbf{1}} \\ & \mathbf{B}_{1} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathbf{A}_{0} \\ & \mathbf{B}_{0} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{a} \\ & \mathbf{z}_{b} \end{aligned}$ |
| L | L | L |  |  |  |  |  |  |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| L | L | $\begin{aligned} & H \\ & H \end{aligned}$ |  |  |  |  |  |  | L |  | $\begin{aligned} & L \\ & H \end{aligned}$ |
| L | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | L |  |  |  |  |  | L |  |  | $\begin{aligned} & L \\ & H \end{aligned}$ |
| L | $\begin{aligned} & H \\ & H \end{aligned}$ | $\begin{aligned} & H \\ & H \end{aligned}$ |  |  |  |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |  |  |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| H H | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |  |  |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |  |  |  |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ |  |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |  |  |  |  |  | $\begin{aligned} & L \\ & H \end{aligned}$ |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & H \\ & H \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |  |  |  |  |  |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| $H$ $H$ | H H | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & L \\ & H \end{aligned}$ |

H = HIGH Voltage Level
L = LOW Voltage Level
Blank $=\mathrm{X}=$ Don't Care

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specifled devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )

| Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ ) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ )
to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{EE}}$ to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(M a x) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voitage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditio | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(M a x) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  | . | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{IIH}^{\text {H}}$ | Input HIGH Current $S_{n}$ <br> $A_{n}, B_{n}$ |  |  | $\begin{aligned} & 265 \\ & 340 \end{aligned}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }}(\mathrm{Max})$ |
| $l_{\text {EE }}$ | Power Supply Current | -153 | -110 | -76 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics <br> $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$ | Propagation Delay <br> $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output | 0.55 | 1.65 | 0.60 | 1.70 | 0.65 | 1.80 | ns | Figures 1 \& 2 |
| tpLH <br> $\mathrm{t}_{\mathrm{pHL}}$ | Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output | 1.10 | 2.80 | 1.10 | 2.80 | 1.20 | 3.10 | ns |  |
| ttilh <br> $t_{\text {THL }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.50 | 1.85 | 0.55 | 1.80 | 0.50 | 1.80 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$ to Output | 0.55 | 1.45 | 0.60 | 1.50 | 0.65 | 1.60 | ns | Figures 1 \& 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $\mathrm{S}_{0}-\mathrm{S}_{2}$ to Output | 1.10 | 2.60 | 1.10 | 2.60 | 1.20 | 2.90 | ns |  |
| ${ }^{\text {t }}$ TLH <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.50 | 1.75 | 0.55 | 1.70 | 0.50 | 1.70 | ns |  |



FIGURE 1. AC Test Circult

## Notes:

$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 $=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol


FIGURE 2. Propagation Delay and Transition Times

## F100164

## 16-Input Multiplexer

## General Description

The F100164 is a 16 -input multiplexer. Data paths are controlled by four Select lines $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$. Their decoding is shown in the truth table. Output data polarity is the same as the selected input data. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

Logic Symbol


## Connection Diagrams

## 24-Pin DIP <br> 

24-Pin Quad Cerpak


TL/F/9865-2

28-Pin PCC (Preliminary)


TL/F/9865-4

## Logic Diagram



TL/F/9865-5
Truth Table

| Select Inputs |  |  |  | Output |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | $\mathrm{S}_{3}$ | Z |
| L | L | L | L | $I_{0}$ |
| H | L | L | L | $l_{1}$ |
| L | H | L | L | $\mathrm{I}_{2}$ |
| H | H | L | L | $\mathrm{I}_{3}$ |
| L | L | H | L | $\mathrm{I}_{4}$ |
| H | L | H | L | 15 |
| L | H | H | L | $\mathrm{I}_{6}$ |
| H | H | H | L | 17 |
| L | L | L | H | 18 |
| H | L | L | H | 19 |
| L | H | L | H | $l_{10}$ |
| H | H | L | H | $l_{11}$ |
| L | L | H | H | $l_{12}$ |
| H | L | H | H | $\mathrm{I}_{13}$ |
| L | H | H | H | 114 |
| H | H | H | H | $l_{15}$ |

$H=$ HIGH Voltage Level

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

## DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max })} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | $-1610$ |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Condit | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{\mathbb{I N}}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| V ${ }_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL ( }}^{\text {Min }}$ ) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditio | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| 11. | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  |  |
|  | $\mathrm{I}_{\mathrm{n}}$ |  |  | 280 |  |  |
|  | $\mathrm{~S}_{0}, \mathrm{~S}_{1}$ |  |  | 240 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max }}$ |
|  | $\mathrm{S}_{2}, \mathrm{~S}_{3}$ |  |  | 200 |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -105 | -70 | -49 | mA | Inputs Open |

Ceramic Dual-In-Line Package AC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\mathrm{t}_{\mathrm{PLL}}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{15}$ to Output | 0.80 | 2.20 | 0.90 | 2.35 | 0.90 | 2.55 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output | 1.45 | 3.10 | 1.45 | 3.20 | 1.55 | 3.60 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output | 1.10 | 2.45 | 1.10 | 2.50 | 1.20 | 2.80 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.45 | 1.70 | 0.45 | 1.70 | 0.45 | 1.70 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{15}$ to Output | 0.80 | 2.00 | 0.90 | 2.15 | 0.90 | 2.35 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output | 1.45 | 2.90 | 1.45 | 3.00 | 1.55 | 3.40 | ns |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{S}_{2}, \mathrm{~S}_{3}$ to Output | 1.10 | 2.25 | 1.10 | 2.30 | 1.20 | 2.60 | ns |  |
| ttin <br> ${ }_{\text {tTHL }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.60 | 0.45 | 1.60 | 0.45 | 1.60 | ns |  |



FIGURE 1. AC Test Circuit


TL/F/9865-7
FIGURE 2. Propagation Delay and Transition Times

## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$\mathrm{R}_{\mathbf{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

## F100165

Universal Priority Encoder

## General Description

The F100165 contains eight input latches with a common Enable ( $\bar{E}$ ) followed by encoding logic which generates the binary address of the highest priority input having a HIGH signal. The circuit operates as a dual 4 -input encoder when the Mode Control $(M)$ input is LOW, and as a single 8 -input encoder when $M$ is HIGH. In the 8 -input mode, $Q_{0}, Q_{1}$ and $Q_{2}$ are the relevant outputs, $I_{0}$ is the highest priority input and $\mathrm{GS}_{1}$ is the relevant Group Signal output. In the dual mode, $Q_{0}, Q_{1}$ and $G S_{1}$ operate with $I_{0}-I_{3} . Q_{2}, Q_{3}$ and $G S_{2}$
operate with $I_{4}-I_{7}$. A GS output goes LOW when its pertinent inputs are all LOW.
Inputs are latched when $\bar{E}$ goes HIGH. A HIGH signal on the Output Enable ( $\overline{\mathrm{OE}}$ ) input forces all Q outputs LOW and GS outputs HIGH. Expansion to accommodate more inputs can be done by connecting the GS output of a higher priority group to the $\overline{O E}$ input of the next lower priority group. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

## Ordering Code: See Section 6

## Logic Symbol



## Connection Diagrams

## 24-Pin DIP <br>  <br> TL/F/9866-1



TL/F/9866-2

| Pin Names | Description |
| :--- | :--- |
| $\mathrm{I}_{0}-\mathrm{I}_{7}$ | Data Inputs |
| $\overline{\mathrm{E}}$ | Enable Input (Active LOW) |
| $\overline{\mathrm{OE}}$ | Output Enable Input (Active LOW) |
| M | Mode Control Input |
| $\mathrm{GS} \mathrm{S}_{1}-\mathrm{GS}_{2}$ | Group Signal Outputs |
| $\mathrm{Q}_{0}-\mathrm{Q}_{3}$ | Data Outputs |
| $\mathrm{Q}_{0}-\overline{\mathrm{Q}}_{3}$ | Complementary Data Outputs |



TL/F/9866-4


TL/F/9866-5

## Truth Table

|  |  |  |  |  | puts |  |  |  |  |  |  |  |  | puts |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}$ | $\overline{O E}$ | M | $\mathrm{I}_{0}$ | $\mathrm{I}_{1}$ | $\mathrm{I}_{2}$ | $\mathrm{I}_{3}$ | $\mathrm{I}_{4}$ | $\mathrm{I}_{5}$ | $\mathrm{I}_{6}$ | 17 | $\mathrm{Q}_{0}$ | $\mathrm{Q}_{1}$ | $\mathrm{Q}_{2}$ | $\mathbf{Q}_{3}$ | $\mathrm{GS}_{1}$ | $\mathbf{G S}_{2}$ |
| L | L | L |  | X | X | X |  |  |  |  | L | L |  |  | H |  |
| L | L | L | L | H | X | X |  |  |  |  | H | L |  |  | H |  |
| L | L | L | L | L | H | X |  |  |  |  | L | H |  |  | H |  |
| L | L | L | L | L | L | H |  |  |  |  | H | H |  |  | H |  |
| L | $L$ | L | L | L | L | L |  |  |  |  | L | L |  |  | L |  |
| L | L | L |  |  |  |  | H | X | $x$ | $x$ |  |  | L | L |  | H |
| L | L | L |  |  |  |  | L | H | X | X |  |  | H | L |  | H |
| L | L | L |  |  |  |  | L | L | H | X |  |  | L | H |  | H |
| L | L | L |  |  |  |  | L | L | L | H |  |  | H | H |  | H |
| L | L | L |  |  |  |  | L | L | L | L |  |  | L | L |  | L |
| L | L | H | H | X | X | X | X | X | X | $x$ | L | L | L | L | H | H |
| L | $L$ | H | L | H | X | X | X | X | X | X | H | L | L | L | H | H |
| L | L | H | L | L | H | X | X | X | X | $x$ | L | H | L | L | H | H |
| L | L | H | L | L | L | H | X | X | X | X | H | H | L | L | H | H |
| L | L | H | L | $L$ | L | L | H | X | X | $x$ | L | L | H | $L$ | H | H |
| L | L | H | L | L | L | L | L | H | X | $x$ | H | L | H | L | H | H |
| L | L | H | L | L | L | L | L | L | H | X | L | H | H | L | H | H |
| L | L | H | L | L | L | L | L | L | L | H | H | H | H | L | H | H |
| L | L | H | L | L | L | L | L | L | L | L | L | L | L | L | L | H |
| X | H | X | X | X | X | X | X | X | X | $x$ | Given by $I_{0}-I_{7}$ when $\bar{E}$ was LOW and $M=L$ Given by $\mathrm{I}_{0}-\mathrm{I}_{7}$ when $\bar{E}$ was LOW and $\mathrm{M}=\mathrm{H}$ |  |  |  |  |  |
| H | L | L | x | x | X | X | $x$ | X | x | $x$ | Given by $\mathrm{I}_{0}-\mathrm{I}_{7}$ when $\bar{E}$ was LOW and $\mathrm{M}=\mathrm{L}$ <br> Given by $I_{0}-I_{7}$ when $E$ was LOW and $M=H$ |  |  |  |  |  |
| H | L | H | X | X | X | X | X | X | X | X |  |  |  |  |  |  |

[^5]
## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Storage Temperature
Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ )
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$V_{E E}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)
-7.0 V to +0.5 V
$\mathrm{V}_{\mathrm{EE}}$ to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Condit | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OL }}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILI | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{C C A}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | CondItlons |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $I_{I H}$ | Input HIGH Current <br> All Inputs |  |  | 230 | $\mu A$ | $V_{I N}=V_{I H}(M a x)$ |
| $l_{E E}$ | Power Supply Current | -200 | -140 | -77 | $m A$ | Inputs Open |

## Ceramic Dual-In-Line Package AC Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{c}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Condition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| ${ }^{\text {tpLH }}$ ${ }^{t_{\text {PHL }}}$ | Propagation Delay $I_{0}-I_{7} \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$ <br> (Transparent Mode) | 1.10 | 4.10 | 1.10 | 4.10 | 1.10 | 4.60 | ns | Figures 1 and 3 |
| ${ }^{\text {tpLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{7}$ to $\mathrm{GS}_{1}-\mathrm{GS}_{2}$ <br> (Transparent Mode) | 1.30 | 3.90 | 1.30 | 3.90 | 1.30 | 4.20 | ns |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$ | 1.00 | 3.00 | 1.00 | 3.00 | 1.10 | 3.30 | ns | Figures 1 and 2 |
| tpLH $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{GS}_{1}-\mathrm{GS}_{2}$ | 1.10 | 2.60 | 1.10 | 2.60 | 1.20 | 2.80 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $M \text { to } Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$ | 0.90 | 3.60 | 1.00 | 3.60 | 1.00 | 3.80 | ns |  |
| $t_{\text {PLH }}$ $t_{\mathrm{PHL}}$ | Propagation Delay $\bar{E}$ to $Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$ | 1.50 | 4.70 | 1.50 | 4.60 | 1.50 | 5.00 | ns | Figures 1 and 3 |
| $t_{\text {TLH }}$ <br> ${ }^{\text {t }}$ HL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.50 | 0.45 | 1.40 | 0.45 | 1.50 | ns | Figures 1,2 and 3 |
| ts | Setup Time $I_{0}-I_{7}$ | 1.00 |  | 0.90 |  | 1.00 |  | ns | Figure 4 |
| ${ }_{\text {th }}$ | Hold Time $I_{0}-I_{7}$ | 1.20 |  | 1.20 |  | 1.20 |  | ns |  |
| $t_{p w}(\mathrm{~L})$ | Pulse Width LOW E | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |


| Cerpak AC Electrical Characteristics <br> $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
|  |  | MIn | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{tPLH}^{\text {tpHL }} \\ & \mathrm{t}^{2} \\ & \hline \end{aligned}$ | Propagation Delay <br> $I_{0}-I_{7}$ to $Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$ <br> (Transparent Mode) | 1.10 | 3.90 | 1.10 | 3.90 | 1.10 | 4.40 | ns | Figures 1 and 3 |
| $\begin{aligned} & \mathrm{tPLH}^{\text {tpHL }} \end{aligned}$ | Propagation Delay $\mathrm{I}_{0}-\mathrm{I}_{7}$ to $\mathrm{GS}_{1}-\mathrm{GS}_{2}$ (Transparent Mode) | 1.30 | 3.70 | 1.30 | 3.70 | 1.30 | 4.00 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}, \overline{\mathrm{Q}}_{0}-\overline{\mathrm{Q}}_{3}$ | 1.00 | 2.80 | 1.00 | 2.80 | 1.10 | 3.10 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$ | Propagation Delay $\overline{\mathrm{OE}}$ to $\mathrm{GS}_{1}-\mathrm{GS}_{2}$ | 1.10 | 2.40 | 1.10 | 2.40 | 1.20 | 2.60 | ns |  |
| $\begin{aligned} & t_{\text {PLLH }} \\ & t_{\text {PHLL }} \end{aligned}$ | Propagation Delay $M$ to $Q_{0}-Q_{3}, \bar{Q}_{0}-\bar{Q}_{3}$ | 0.90 | 3.40 | 1.00 | 3.40 | 1.00 | 3.60 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{pHLL}} \\ & \hline \end{aligned}$ | Propagation Delay <br> $\bar{E}$ to $Q_{0}-Q_{3}, \bar{Q}_{0}-Q_{3}$ | 1.50 | 4.50 | 1.50 | 4.40 | 1.50 | 4.80 | ns | Figures 1 and 3 |
| ${ }_{\substack{\text { tTLLL }}}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$ | 0.45 | 1.40 | 0.45 | 1.30 | 0.45 | 1.40 | ns | Figures 1, 2 and 3 |
| $\mathrm{ts}_{s}$ | Setup Time $I_{0}-I_{7}$ | 0.90 |  | 0.80 |  | 0.90 |  | ns | Figure 4 |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time $I_{0}-I_{7}$ | 1.10 |  | 1.10 |  | 1.10 |  | ns |  |
| $\mathrm{t}_{\mathrm{pw}}(\mathrm{L})$ | Pulse Width LOW $\bar{E}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 3 |
| FIGURE 1. AC Test Circuit |  |  |  |  |  |  |  |  |  |



TL/F/9866-7
FIGURE 2. Propagation Delay ( $M, \overline{\mathrm{OE}}$ ) and Transition Times

## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{C C}$ and $V_{E E}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol


TL/F/9866-8
FIGURE 3. Enable Timing


FIGURE 4. Setup and Hold Times

## Notes:

$t_{s}$ is the minimum time before the transition of the enable that information must be present at the data input. $t_{h}$ is the minimum time after the transition of the enable that information must remain unchanged at the data input.

## F100166

## 9-Bit Comparator

## General Description

The F100166 is a 9-bit magnitude comparator which compares the arithmetic value of two 9 -bit words and indicates whether one word is greater than, or equal to, the other.

Other functions can be generated by the wire-OR of the outputs. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

## Ordering Code: See Section 6

## Logic Symbol

## Connection Diagrams



| Pin Names | Description |
| :--- | :--- |
| $A_{0}-A_{8}$ | $A$ Data Inputs |
| $B_{0}-B_{8}$ | $B$ Data Inputs |
| $A>B$ | $A$ Greater than $B$ Output |
| $B>A$ | $B$ Greater than $A$ Output |
| $A=B$ | Complement $A$ Equal to B Output <br>  <br>  <br> (Active LOW) |



TL/F/9867-4

## Logic Diagram



## Truth Table

| Inputs |  |  |  |  |  |  |  |  | Outputs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{8} \mathrm{~B}_{8}$ | $\mathrm{A}_{7} \mathrm{~B}_{7}$ | $\mathrm{A}_{6} \mathrm{~B}_{6}$ | $\mathrm{A}_{5} \mathrm{~B}_{5}$ | $\mathrm{A}_{4} \mathrm{~B}_{4}$ | $\mathrm{A}_{3} \mathrm{~B}_{3}$ | $\mathrm{A}_{2} \mathrm{~B}_{2}$ | $\mathrm{A}_{1} \mathrm{~B}_{1}$ | $\mathrm{A}_{0} \mathrm{~B}_{0}$ | A>B | B > A | $\bar{A}=\mathbf{B}$ |
| $\begin{gathered} H \quad L \\ L \\ A_{8}=B_{8} \\ A_{8}=B_{8} \end{gathered}$ | $\begin{aligned} & H \quad L \\ & L \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & H \\ & L \\ & H \\ & H \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ |
| $\begin{aligned} & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \end{aligned}$ | $\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$ | $\begin{array}{ccc} H & L \\ L & H \\ A_{6}= & B_{6} \\ A_{6}= & B_{6} \\ \hline \end{array}$ | $\begin{array}{ll} H & L \\ L & H \end{array}$ |  |  |  |  |  | $\begin{aligned} & H \\ & L \\ & H \\ & H \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | H H H H |
| $\begin{aligned} & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \end{aligned}$ | $\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & \hline \end{aligned}$ | $\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$ | $\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & \hline \end{aligned}$ | $\begin{array}{cc} H & L \\ L & H \\ A_{4}=B_{4} \\ A_{4} & =B_{4} \end{array}$ | $\begin{aligned} & \mathrm{H} L \\ & \mathrm{~L} \\ & \hline \end{aligned}$ |  |  |  | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \text { L } \\ & H \\ & L \\ & H \end{aligned}$ | H H H H |
| $\begin{aligned} & \mathrm{A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \\ & \mathrm{~A}_{8}=\mathrm{B}_{8} \end{aligned}$ | $\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$ | $\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$ | $\begin{aligned} & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \\ & A_{5}=B_{5} \end{aligned}$ | $\begin{aligned} & \mathrm{A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \\ & \mathrm{~A}_{4}=\mathrm{B}_{4} \end{aligned}$ | $\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & \hline \end{aligned}$ | $\begin{array}{cc} \hline H & L \\ L & H \\ A_{2} & =B_{2} \\ A_{2} & =B_{2} \\ \hline \end{array}$ | $\begin{aligned} & H \quad L \\ & L \end{aligned}$ |  | $\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$ |
| $\begin{aligned} & A_{8}=B_{8} \\ & A_{8}=B_{8} \\ & A_{8}=B_{8} \end{aligned}$ | $\begin{aligned} & A_{7}=B_{7} \\ & A_{7}=B_{7} \\ & A_{7}=B_{7} \end{aligned}$ | $\begin{aligned} & A_{6}=B_{6} \\ & A_{6}=B_{6} \\ & A_{6}=B_{6} \end{aligned}$ | $\begin{aligned} A_{5} & =B_{5} \\ A_{5} & =B_{5} \\ A_{5} & =B_{5} \end{aligned}$ | $\begin{aligned} & A_{4}=B_{4} \\ & A_{4}=B_{4} \\ & A_{4}=B_{4} \end{aligned}$ | $\begin{aligned} & A_{3}=B_{3} \\ & A_{3}=B_{3} \\ & A_{3}=B_{3} \end{aligned}$ | $\begin{aligned} & A_{2}=B_{2} \\ & A_{2}=B_{2} \\ & A_{2}=B_{2} \end{aligned}$ | $\begin{aligned} & A_{1}=B_{1} \\ & A_{1}=B_{1} \\ & A_{1}=B_{1} \end{aligned}$ | $\begin{gathered} H \quad L \\ L \\ A_{0}= \\ A_{0} \end{gathered}$ | $\begin{aligned} & H \\ & L \\ & L \end{aligned}$ | H | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ |
| $\begin{aligned} & \mathrm{H}=\mathrm{HIOH} \\ & \mathrm{~L}=\mathrm{LOW} \\ & \text { lank }=\mathrm{D} \end{aligned}$ | Voltage Lev Voltage Leve on't Care |  |  |  |  |  |  |  |  |  |  |

## Absolute Maximum Ratings <br> Above which the useful life may be impaired. (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. <br> $\begin{array}{lr}\text { Storage Temperature } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Maximum Junction Temperature }\left(\mathrm{T}_{\mathrm{J}}\right) & +150^{\circ} \mathrm{C}\end{array}$

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\text {EE }}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voitage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{iH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { (Min) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current <br> All Inputs |  |  | 250 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -238 | -170 | -119 | mA | Inputs Open |

Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{c}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Data to Output | 1.40 | 3.50 | 1.40 | 3.50 | 1.40 | 3.90 | ns | Figures 1 and 2 |
| ${ }^{\text {t }}$ TLH <br> ${ }^{t_{\text {THL }}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.55 | 0.45 | 1.50 | 0.45 | 1.50 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay Data to Output | 1.40 | 3.30 | 1.40 | 3.30 | 1.40 | 3.70 | ns | Figures 1 and 2 |
| ${ }^{\prime}{ }_{\text {TLL }}$ <br> ${ }^{\text {tTHL }}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.45 | 1.45 | 0.45 | 1.40 | 0.45 | 1.40 | ns |  |



FIGURE 1. AC Test Circuit

## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol


TL/F/9867-7
FIGURE 2. Propagation Delay and Transition Times

## F100170

## Universal Demultiplexer/Decoder

## General Description

The F100170 universal demultiplexer/decoder functions as either a dual 1-of-4 decoder or as a single 1-of-8 decoder, depending on the signal applied to the Mode Control (M) input. In the dual mode, each half has a pair of active-LOW Enable ( $\overline{\mathrm{E}}$ ) inputs. Pin assignments for the $\overline{\mathrm{E}}$ inputs are such that in the $1-0 f-8$ mode they can easily be tied together in pairs to provide two active-LOW enables $\left(\bar{E}_{1 a}\right.$ to $\bar{E}_{1 b}, \bar{E}_{2 a}$ to
$\bar{E}_{2 b}$ ). Signals applied to auxiliary inputs $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$ and $\mathrm{H}_{\mathrm{c}}$ determine whether the outputs are active HIGH or active LOW. In the dual 1-of-4 mode the Address inputs are $A_{0 a}, A_{1 a}$ and $A_{0 b}, A_{1 b}$ with $A_{2 a}$ unused (i.e., left open, tied to $V_{E E}$ or with LOW signal applied). In the 1-of-8 mode, the Address inputs are $A_{0 a}, A_{1 a}, A_{2 a}$ with $A_{0 b}$ and $A_{1 b}$ LOW or open. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

## Logic Symbols



## Connection Diagrams

## 24-Pin DIP <br>  <br> TL/F/9868-1

24-Pin Quad Cerpak


TL/F/9868-2


TL/F/9868-3

## Logic Diagram



Note: $\left(Z_{n}\right)$ for 1-of-4 applications.
Truth Tables
Dual 1-of-4 Mode ( $M=A_{2 a}=H_{c}=$ LOW $)$

| Inputs |  |  |  | Active HIGH Outputs ( $\mathrm{H}_{\mathrm{a}}$ and $\mathrm{H}_{\mathrm{b}}$ Inputs HIGH) |  |  |  | Active LOW Outputs ( $\mathrm{H}_{\mathrm{a}}$ and $\mathrm{H}_{\mathrm{b}}$ Inputs LOW) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \bar{E}_{1 a} \\ & \bar{E}_{1 b} \end{aligned}$ | $\begin{aligned} & \bar{E}_{2 a} \\ & \bar{E}_{2 b} \end{aligned}$ | $\begin{aligned} & \mathbf{A}_{1 a} \\ & \mathbf{A}_{1 b} \end{aligned}$ | $\mathrm{A}_{\mathrm{0a}}$ <br> $A_{0 b}$ | $\begin{aligned} & Z_{0 a} \\ & Z_{0 b} \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{1 a} \\ & \mathbf{z}_{1 b} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathbf{Z}_{2 a} \\ & \mathbf{Z}_{2 b} \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{3 a} \\ & \mathbf{z}_{3 b} \end{aligned}$ | $\begin{aligned} & Z_{0 a} \\ & Z_{0 b} \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{1 a} \\ & \mathbf{z}_{1 b} \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{2 a} \\ & \mathbf{Z}_{2 b} \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{3 a} \\ & \mathbf{z}_{3 b} \end{aligned}$ |
| H | X | X | X | L | L | L | L | H | H | H | H |
| X | H | X | X | L | L | L | L | H | H | H | H |
| L | L | L | L | H | L | L | L | L | H | H | H |
| L | L | L | H | L | H | L | L | H | L | H | H |
| L | L | H | L | L | L | H | L | H | H | L | H |
| L | L | H | H | L | L | L | H | H | H | H | L |

Single 1-of-8 Mode ( $M=$ HIGH; $A_{0 b}=A_{1 b}=H_{a}=H_{b}=L O W$ )

| Inputs |  |  |  |  | ActIve HIGH Outputs* <br> ( $\mathrm{H}_{\mathrm{c}}$ Input HIGH) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{1}$ | $\mathrm{E}_{2}$ | $\mathrm{A}_{2 \mathrm{a}}$ | $\mathrm{A}_{1 \mathrm{a}}$ | $A_{0 a}$ | $\mathrm{Z}_{0}$ | $Z_{1}$ | $\mathrm{Z}_{2}$ | $Z_{3}$ | $\mathrm{Z}_{4}$ | $\mathrm{Z}_{5}$ | $\mathrm{Z}_{6}$ | $\mathrm{Z}_{7}$ |
| H | X | X | $x$ | $x$ | L | L | L | L | L | L | L | L |
| X | H | X | X | X | L | L | L | L | L | L | L | L |
| L | L | L | L | L | H | L | L | L | L | L | L | L |
| L | L | L | L | H | L | H | L | L | L | L | L | L |
| L | L | L | H | L | L | L | H | L | L | L | L | L |
| L | L | L | H | H | L | L | L | H | L | L | L | L |
| L | L | H | L | L | L | L | L | L | H | L | L | L |
| L | L | H | L | H | L | L | L | L | L | H | L | L |
| L | L | H | H | L | L | L | L | L | L | L | H | L |
| L | L | H | H | H | L | L | L | L | L | L | L | H |

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Don't Care
for $\mathrm{H}_{\mathrm{c}}=$ LOW, output states are complemented
$\bar{E}_{1}=\bar{E}_{1 \mathrm{a}}$ and $\overline{\mathrm{E}}_{1 \mathrm{~b}}$ wired; $\overline{\mathrm{E}}_{2}=\overline{\mathrm{E}}_{2} 2 \mathrm{a}$ and $\overline{\mathrm{E}}_{2 \mathrm{~b}}$ wired

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1) If Milltary/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Dlstributors for avallability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $T_{J}$ )
$+150^{\circ} \mathrm{C}$

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| If | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { (Max) } \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditio | Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

| DC Electrical Characteristics |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current <br> $\mathrm{H}_{\mathrm{c}}, \mathrm{A}_{0 \mathrm{a}} \mathrm{A}_{1 \mathrm{a}}, \mathrm{A}_{2 \mathrm{a}}$ <br> All Others |  |  | $\begin{aligned} & 310 \\ & 250 \end{aligned}$ | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$ |
| $I_{E E}$ | Power Supply Current | -153 | -109 | -76 | mA | Inputs Open |

Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}_{n a}, \bar{E}_{n b}$ to Output | 0.90 | 2.30 | 0.90 | 2.20 | 0.90 | 2.30 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ <br> ${ }^{\mathrm{t}} \mathrm{PHL}$ | Propagation Delay $A_{n a}, A_{n b}$ to Output | 1.00 | 2.80 | 1.00 | 2.70 | 1.00 | 2.90 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output | 1.00 | 3.00 | 1.00 | 2.90 | 1.00 | 3.00 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay M to Output | 1.50 | 3.90 | 1.60 | 3.80 | 1.60 | 3.90 | ns |  |
| ${ }^{t_{\mathrm{TLH}}}$ <br> t $_{\text {THL }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.70 | 0.45 | 1.70 | 0.45 | 1.80 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathbf{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}_{n a}, \bar{E}_{n b}$ to Output | 0.90 | 2.10 | 0.90 | 2.00 | 0.90 | 2.10 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $A_{\text {na }}, A_{\text {nb }}$ to Output | 1.00 | 2.60 | 1.00 | 2.50 | 1.00 | 2.70 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$ to Output | 1.00 | 2.80 | 1.00 | 2.70 | 1.00 | 2.80 | ns |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay M to Output | 1.50 | 3.70 | 1.60 | 3.60 | 1.60 | 3.70 | ns |  |
| ${ }^{t_{T L H}}$ $\mathrm{t}_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.60 | 0.45 | 1.60 | 0.45 | 1.70 | ns |  |



TL/F/9868-7
FIGURE 1. AC Test Circuit
Notes:
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol


FIGURE 2. Propagation Delay and Transition Times

## F100171

## Triple 4-Input Multiplexer with Enable

## General Description

The F100171 contains three 4-input multiplexers which share a common decoder (inputs $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ ). Output buffer gates provide true and complement outputs. A HIGH on the Enable input ( $\bar{E}$ ) forces all true outputs LOW (see Truth Table). All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

## Logic Symbol



## Connection Diagrams



24-Pin Quad Cerpak


| Pin Names | Description |
| :--- | :--- |
| $I_{0 x}-I_{3 x}$ | Date Inputs |
| $S_{0}, S_{0}$ | Select Inputs |
| $\overline{\mathrm{E}}$ | Enable Input (Active LOW) |
| $Z_{a}-Z_{c}$ | Data Outputs |
| $\bar{Z}_{\mathrm{a}}-\bar{Z}_{\mathrm{c}}$ | Complementary Data Outputs |



Logic Diagram


TL/F/9869-5

## Truth Table

| Inputs |  |  | Outputs |
| :---: | :---: | :---: | :---: |
| $\bar{E}$ | $S_{0}$ | $S_{1}$ | $Z_{n}$ |
| $L$ | $L$ | $L$ | $I_{0 x}$ |
| $L$ | $H$ | $L$ | $I_{1 x}$ |
| $L$ | $L$ | $H$ | $I_{2 x}$ |
| $L$ | $H$ | $H$ | $I_{3 x}$ |
| $H$ | $X$ | $X$ | $L$ |

[^6]
## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for availability and specifications.

| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ | $+150^{\circ} \mathrm{C}$ |

Case Temperature under Bias (TC)
$V_{E E}$ Pin Potential to Ground Pin Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range (Note 2)
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-7.0 V to +0.5 V
$\mathrm{V}_{\mathrm{EE}}$ to +0.5 V
$-50 \mathrm{~mA}$
-5.7 V to -4.2 V

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{1 H}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$V_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VOH | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| I/L | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  |  |
|  | $\mathrm{I}_{0 x}-I_{3 x}$ |  |  | 340 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{max})$ |
| $\mathrm{S}_{0}, \mathrm{~S}_{1}, \overline{\mathrm{E}}$ |  |  | 300 | $\mu \mathrm{~A}$ |  |  |
|  | Power Supply Current | -114 | -80 | -56 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{I}_{0 x}-\mathrm{I}_{3 x}$ to Output | 0.45 | 1.70 | 0.45 | 1.60 | 0.50 | 1.70 | ns | Figures 1 and 2 |
| $t_{\mathrm{PLH}}$ $t_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output | 0.90 | 2.40 | 0.90 | 2.60 | 1.00 | 3.00 | ns |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\bar{E}$ to Output | 0.65 | 2.40 | 0.65 | 2.30 | 0.75 | 2.40 | ns |  |
| $\mathbf{t}_{\mathrm{TLH}}$ $\mathbf{t}_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.80 | 0.45 | 1.60 | 0.45 | 1.60 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $1_{0 x}-l_{3 x}$ to Output | 0.45 | 1.50 | 0.45 | 1.40 | 0.50 | 1.50 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to Output | 0.90 | 2.20 | 0.90 | 2.40 | 1.00 | 2.80 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay E to Output | 0.65 | 2.20 | 0.65 | 2.10 | 0.75 | 2.20 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.45 | 1.70 | 0.45 | 1.50 | 0.45 | 1.50 | ns |  |



FIGURE 1. AC Test Clircuit


FIGURE 2. Propagation Delay and Transition Times

## Notes:

$\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{C C}$ and $V_{E E}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

## F100175 <br> Quint Latch 100K In/10K Out

## General Description

The F100175 is a 5 -bit latch with temperature and voltage compensated 100 K compatible inputs and voltage compensated 10 K compatible outputs. Each latch has one data input and one output. All five latches share a common clear input and two enable inputs. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

Logic Symbol


TL/F/9870-2

| Pin Names | Description |
| :--- | :--- |
| $D_{0}-D_{4}$ | 100 K Data Inputs |
| $E_{1}, E_{2}$ | 100K Enable Inputs |
| $C$ | 100K Common Clear Input |
| $Q_{0}-Q_{4}$ | 10K Data Outputs |

## Logic Diagram



## Features

- Outputs specified to drive a $50 \Omega$ load
- Available in 16 -pin ceramic DIP
- 100 K compatible inputs/10K compatible outputs


## Connection Diagram



TL/F/9870-1

## Truth Table

| Inputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $D_{n}$ | $E_{\mathbf{1}}$ | $E_{\mathbf{2}}$ | $C$ | $Q_{n}$ |
| $H$ | $L$ | $L$ | $X$ | $H$ |
| $L$ | $L$ | $L$ | $X$ | $L$ |
| $X$ | $H$ | $X$ | $L$ | $Q_{n-1}$ |
| $X$ | $X$ | $H$ | $L$ | $Q_{n-1}$ |
| $X$ | $H$ | $X$ | $H$ | $L$ |
| $X$ | $X$ | $H$ | $H$ | $L$ |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care
$Q_{n-1}=$ Previous State

Absolute Maximum Ratings
Above which the useful life may be impaired

| If Military/Aerospace specified devices are required, |  |
| :--- | ---: |
| please contact the National Semiconductor Sales |  |
| Office/Distributors for availability and specifications. |  |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Ambient Temperature Under Bias $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Maximum Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$ | $+150^{\circ} \mathrm{C}$ |
| Supply Voltage | -8 V |
| Input Voltage (DC) | -5.2 V to +0 V |
| Output Current (DC Output HIGH) | -55 mA |
| Operating Range | -5.72 V to -4.68 V |
| Lead Temperature (Soldering, 10 sec.$)$ | $300^{\circ} \mathrm{C}$ |

## Recommended Operating Conditions

|  | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$ | -5.72 V | -5.2 V | -4.68 V |
| Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $0^{\circ} \mathrm{C}$ |  | $+75^{\circ} \mathrm{C}$ |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 2)

| Symbol | Parameter | Temp | Min | Typ | Max | Units | Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ | -1000 |  | -840 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -960 |  | -810 | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ | -900 |  | -720 | mV |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ | -1870 |  | -1665 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1850 |  | -1650 | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ | -1830 |  | -1625 | mV |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ | -1020 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -980 |  |  | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ | -920 |  |  | mV |  |  |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |  | -1645 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | -1630 | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ |  |  | -1605 | mV |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage |  | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| ${ }_{1 / 1}$ | Input HIGH Current |  |  |  | 290 |  | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max) |  |
| ILL | Input LOW Current |  | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |
| $\mathrm{I}_{\text {EE }}$ | $V_{\text {EE }}$ Supply Current |  | -125 | -90 | -50 | mA | Inputs Open |  |

Note 1: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 2: The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters $/ \mathrm{s}$ ( 500 linear feet $/ \mathrm{min}$ ) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

## DC Electrical Characteristics

$V_{E E}=-4.68 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1,2 )

| Symbol | Parameter | Temp | Min | Typ | Max | Units | Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ | -1000 |  | -840 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{\mathrm{IL} \text { (Min) }} \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -960 |  | -810 | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ | -900 |  | -720 | mV |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ |  | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ | -1870 |  | -1665 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1850 |  | -1650 | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ | -1830 |  | -1625 | mV |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ | -1020 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -980 |  |  | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ | -920 |  |  | mV |  |  |
| VoLC | Output LOW Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |  | -1645 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | -1630 | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ |  |  | -1605 | mV |  |  |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH Voltage |  | -1150 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\mathrm{IL}}$ | Input LOW Voltage |  | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH Current |  |  |  | 290 |  | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH ( }}$ Max) |  |
| I/L | Input LOW Current |  | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |
| lee | $\mathrm{V}_{\text {EE }}$ Supply Current |  | -125 | -90 | -50 | mA | Inputs Open |  |

Note 1: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 2: The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters/s ( 500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.72 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Notes 1, 2)

| Symbol | Parameter | Temp | Min | Typ | Max | Units | Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ | -1000 |  | -840 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -960 |  | -810 | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ | -900 |  | -720 | mV |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ | -1870 |  | -1665 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\text {IL (Min) }} \end{aligned}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1850 |  | -1650 | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ | -1830 |  | -1625 | mV |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ | -1020 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -980 |  |  | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ | -920 |  |  | mV |  |  |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  |  | -1645 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | -1630 | mV |  |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ |  |  | -1605 | mV |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  | $-1165$ |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage |  | -1810 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH Current |  |  |  | 290 |  | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |  |
| IIL | Input LOW Current |  | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{Min})$ |  |
| lee | $V_{\text {EE }}$ Supply Current |  | -125 | -90 | -50 | mA | Inputs Open |  |

Note t: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 2: The specified limits shown in the DC Characteristics can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least 2 minutes while maintaining transverse air flow of 2.5 meters $/ \mathrm{s}$ ( 500 linear feet/min) over the device either mounted in the test socket or on the printed circuit board. Test voltage values are given in the DC Operating Conditions and defined in Figure 4.

## AC Electrical Characteristics

$V_{E E}=-5.2 \mathrm{~V} \pm 10 \%, V_{C C}=V_{C C A}=G N D$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathbf{A}}=+75^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| tpDLH <br> tpDHL | Propagation Delay Data to Output | 1.10 | 2.60 | 1.10 | 2.75 | 1.10 | 3.00 | ns | Figures 1 \& 2 |
| $t_{\text {PDLL }}$ <br> $t_{\text {PDHL }}$ | Propagation Delay Enable to Output | 1.20 | 3.40 | 1.20 | 3.50 | 1.20 | 3.75 | ns | Figures 1 \& 3 |
| ${ }_{\text {tPDHL }}$ | Propagation Delay Clear to Output | 1.30 | 3.20 | 1.30 | 3.20 | 1.30 | 3.20 | ns | Figures 1, 3 \& 4 |
| ts | Setup Time $\mathrm{D}_{0}-\mathrm{D}_{4}$ |  | 2.50 |  | 2.50 |  | 2.50 | ns | Figures 1 \& 5 |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time $\mathrm{D}_{0}-\mathrm{D}_{4}$ |  | 0.50 |  | 0.50 |  | 0.50 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 1.10 | 3.25 | 1.20 | 3.25 | 1.20 | 3.50 | ns | Figures 1, 2, 3 \& 4 |



TL/F/9870-5
FIGURE 2. Data Propagation Delay @ $T_{A}=+25^{\circ} \mathrm{C}$


TL/F/9870-6
FIGURE 3. Enable Propagation Delay © $\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$
$\mathrm{E}_{1}$ or $\mathrm{E}_{2}$ (


TL/F/9870-7
FIGURE 4. Clear Propagation Delay @ $T_{A}=+25^{\circ} \mathrm{C}$


FIGURE 5. Data Setup and Hold Time

## F100179 <br> Carry Lookahead Generator

## General Description

The F100179 is a high-speed Carry Lookahead Generator intended for use with the F100180 6-bit fast Adder and the F100181 4-bit ALU. All inputs have $50 \mathrm{k} \Omega$ pulldown resistors.

Ordering Code: See Section 6

## Logic Symbol



24-Pin Quad Cerpak


TL/F/9871-1

| Pin Names | Description |
| :--- | :--- |
| $\overline{\mathrm{C}}_{\mathrm{n}}$ | Carry Input (Active LOW) |
| $\overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$ | Carry Propogate Inputs (Active LOW) |
| $\overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}$ | Carry Generate Inputs (Active LOW) |
| $\overline{\mathrm{C}}_{n}+2, \overline{\mathrm{C}}_{\mathrm{n}}+4$ | Carry Outputs |
| $\overline{\mathrm{C}}_{\mathrm{n}}+6, \overline{\mathrm{C}}_{\mathrm{n}}+8$ |  |



## Logic Diagram



TL/F/9871-5
Truth Tables

| $\overline{\mathbf{C}}_{\mathrm{n}+2}$ Inputs |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Output |  |  |  |  |  |
| $\overline{\mathbf{C}}_{\mathrm{n}}$ | $\overline{\mathrm{G}}_{0}$ | $\overline{\mathbf{P}}_{\mathbf{0}}$ | $\overline{\mathrm{G}}_{1}$ | $\overline{\mathbf{P}}_{1}$ | $\overline{\mathbf{C}}_{\mathrm{n}}+\mathbf{2}$ |
| X | X | X | L | X | L |
| X | L | X | X | L | L |
| L | X | L | X | L | L |
| H |  |  |  |  |  |

$\overline{\mathrm{C}}_{\mathrm{n}}+2=\overline{\mathrm{G}}_{1} \cdot\left(\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right) \cdot\left(\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{\mathrm{n}}\right)$
H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care

| $\bar{C}_{n+4}$ Output |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inputs |  |  |  |  |  |  |  |  | Output |
| $\bar{C}_{n}$ | $\bar{G}_{0}$ | $\bar{P}_{0}$ | $\overline{\mathrm{G}}_{1}$ | $\bar{P}_{1}$ | $\bar{G}_{2}$ | $\bar{P}_{2}$ | $\overline{\mathbf{G}}_{3}$ | $\bar{P}_{3}$ | $\bar{C}_{n+4}$ |
| X | X | X | X | X | X | X | L | X | L |
| X | X | X | X | X | L | X | X | L | L |
| X | X | X | L | X | X | L | X | L | L |
| X | L | X | X | L | X | L | X | L | $L$ |
| L | X | L | X | L | X | L | X | L | L |
| All other combinations |  |  |  |  |  |  |  |  | H |

$$
\begin{aligned}
\overline{\mathrm{C}}_{n+4}= & \overline{\mathrm{G}}_{3} \cdot\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{G}}_{2}\right) \bullet\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{G}}_{1}\right) \cdot\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right) \\
& \bullet\left(\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{n}\right)
\end{aligned}
$$

Truth Tables (Continued)
$\overline{\mathbf{c}}_{\mathrm{n}+6}$ Output

| Inputs |  |  |  |  |  |  |  |  |  |  |  |  | Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{C}_{n}$ | $\bar{G}_{0}$ | $\bar{P}_{0}$ | $\bar{G}_{1}$ | $\overline{\mathbf{P}}_{1}$ | $\overline{\mathbf{G}}_{2}$ | $\overline{\mathbf{G}}_{2}$ | $\bar{G}_{3}$ | $\bar{P}_{3}$ | $\bar{G}_{4}$ | $\bar{P}_{4}$ | $\bar{G}_{5}$ | $\bar{P}_{5}$ | $\bar{C}_{n+6}$ |
| X | X | X | X | X | X | X | X | X | X | X | L | X | L |
| X | X | X | X | X | X | X | X | X | L | X | X | L | L |
| X | X | X | X | X | X | $x$ | L | X | X | L | X | L | L |
| X | X | $x$ | X | X | L | X | X | $L$ | X | L | X | L | L |
| X | X | X | L | X | X | L | X | L | X | L | X | L | L |
| X | L | X | X | L | X | L | X | $L$ | X | L | X | $L$ | L |
| $L$ | X | $L$ | X | L | X | L | X | L | X | L | X | $L$ | L |
| All other combinations |  |  |  |  |  |  |  |  |  |  |  |  | H |

$$
\begin{aligned}
\overline{\mathrm{C}}_{\mathrm{n}+6}= & \overline{\mathrm{G}}_{5} \cdot\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{G}}_{4}\right) \cdot\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{G}}_{3}\right) \cdot\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{G}}_{2}\right) \\
& \cdot\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{G}}_{1}\right) \cdot\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{P}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{G}}_{0}\right) \\
& \cdot\left(\overline{\mathrm{P}}_{5}+\overline{\mathrm{P}}_{4}+\overline{\mathrm{F}}_{3}+\overline{\mathrm{P}}_{2}+\overline{\mathrm{P}}_{1}+\overline{\mathrm{P}}_{0}+\overline{\mathrm{C}}_{n}\right)
\end{aligned}
$$

$\overline{\mathbf{c}}_{\mathrm{n}+8}$ Output

| Inputs |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{C}_{n}$ | $\bar{G}_{0}$ | $\bar{P}_{0}$ | $\bar{G}_{1}$ | $\bar{P}_{1}$ | $\bar{G}_{2}$ | $\bar{P}_{2}$ | $\overline{\mathbf{G}}_{3}$ | $\bar{P}_{3}$ | $\overline{\mathbf{G}}_{4}$ | $\bar{P}_{4}$ | $\bar{G}_{5}$ | $\bar{P}_{5}$ | $\overline{\mathbf{G}}_{6}$ | $\bar{P}_{6}$ | $\overline{\mathrm{G}}_{7}$ | $\bar{P}_{7}$ | $\bar{C}_{n+8}$ |
| X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | L | X | L |
| X | X | X | X | X | X | X | X | X | X | $x$ | X | X | L | X | X | L | L |
| X | X | X | X | X | X | X | X | X | X | X | L | X | X | L | X | L | L |
| X | X | X | X | X | X | X | X | X | L | X | X | L | X | L | X | L | L |
| X | X | X | X | X | X | X | L | X | X | L | X | L | X | L | X | L | L |
| X | X | X | X | X | L | X | X | L | X | L | X | L | X | L | X | L | L |
| X | X | X | L | X | X | L | $x$ | L | X | L | X | L | X | L | X | L | L |
| X | L | X | X | L | X | L | X | L | X | L | X | L | X | L | X | L | L |
| L | X | L | X | L | X | L | X | L | X | L | X | L | X | $L$ | X | L | L |
| All other combinations |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | H |

$$
\begin{aligned}
\bar{C}_{n+8}= & \bar{G}_{7} \cdot\left(\bar{P}_{7}+\bar{G}_{6}\right) \cdot\left(\bar{P}_{7}+\bar{P}_{6}+\bar{G}_{5}\right) \bullet\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{G}_{4}\right) \\
& \bullet\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{G}_{3}\right) \bullet\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{G}_{2}\right) \\
& \bullet\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{G}_{1}\right) \\
& \bullet\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{G}_{0}\right) \\
& \bullet\left(\bar{P}_{7}+\bar{P}_{6}+\bar{P}_{5}+\bar{P}_{4}+\bar{P}_{3}+\bar{P}_{2}+\bar{P}_{1}+\bar{P}_{0}+\bar{C}_{n}\right)
\end{aligned}
$$

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
X = Don't Care

Absolute Maximum Ratings
Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

$$
\begin{array}{lr}
\text { Storage Temperature } & -65^{\circ} \mathrm{C} \text { to }
\end{array}+150^{\circ} \mathrm{C},
$$

| Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ ) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { ( } \mathrm{Min})}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  |  |
|  | $\overline{\mathrm{C}}_{\mathrm{N}}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}$ |  | 250 |  |  |  |
|  | $\overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$ |  |  | 340 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -220 | -150 | -100 | mA | Inputs Open |

Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{C}}_{n}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}, \overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7}$ to $\overline{\mathrm{C}}_{\mathrm{n}}+\mathrm{x}$ | 1.10 | 2.90 | 1.10 | 2.90 | 1.10 | 3.00 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} L \mathrm{H}} \\ & \mathrm{t}_{\mathrm{TH}} \mathrm{~L} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.45 | 1.80 | 0.45 | 1.80 | 0.45 | 1.80 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}, \overline{\mathrm{G}}_{0}-\overline{\mathrm{G}}_{7}, \overline{\mathrm{P}}_{0}-\overline{\mathrm{P}}_{7} \text { to } \overline{\mathrm{C}}_{\mathrm{n}+\mathrm{x}}$ | 1.10 | 2.70 | 1.10 | 2.70 | 1.10 | 2.80 | ns | Figures 1 and 2 |
| $t_{\text {TLH }}$ <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.70 | 0.45 | 1.70 | 0.45 | 1.70 | ns |  |



FIGURE 1. AC Test Circuit

## Notes:

$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$R_{T}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol


FIGURE 2. Propagation Delay and Transition Times

Fast Adder and Carry Lookahead


TL/F/9871-8


TL/F/9871-9

## National Semiconductor

## F100180 <br> High-Speed 6-Bit Adder

## General Description

The F100180 is a high-speed 6-bit adder capable of performing a full 6-bit addition of two operands. Inputs for the adder are active-LOW Carry, Operand A, and Operand B; outputs are Function, active-LOW Carry Generate, and ac-
tive-LOW Carry Propagate. When used with the F100179 Full Carry Lookahead as a second order lookahead block, the F100180 provides high-speed addition of very long words. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

## Logic Symbol



Connection Diagrams


24-Pin Quad Cerpak


TL/F/9872-2

## 28-Pin PCC (Preliminary)

$A_{4} B_{4} A_{5} V_{E E S} B_{5} \bar{G} \bar{p}$



TL/F/9872-4

Logic Diagram


## Logic Equations

$P_{i}=A_{i} \oplus B_{i}$
$\mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}$
$i=0,1,2,3,4,5$
$F_{0}=P_{0} \oplus C_{n}$
$F_{1}=P_{1} \oplus\left(G_{0}+P_{0} C_{n}\right)$
$F_{2}=P_{2} \oplus\left(G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n}\right)$
$F_{3}=P_{3} \oplus\left(G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}\right)$
$F_{4}=P_{4} \oplus\left(G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{n}\right)$
$F_{5}=P_{5} \oplus\left(G_{4}+P_{4} G_{3}+P_{4} P_{3} G_{2}+P_{4} P_{3} P_{2} G_{1}+P_{4} P_{3} P_{2} P_{1} G_{0}+P_{4} P_{3} P_{2} P_{1} P_{0} C_{n}\right)$
$\overline{\mathrm{P}}=\overline{\mathrm{P}_{0} \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{5}}$
$\bar{G}=\overline{G_{5}+P_{5} G_{4}+P_{5} P_{4} G_{3}+P_{5} P_{4} G_{3} G_{2}+P_{5} P_{4} P_{3} P_{2} G_{1}+P_{5} P_{4} P_{3} P_{2} P_{1} G_{0}}$

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.

Storage Temperature<br>$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$<br>Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )<br>$+150^{\circ} \mathrm{C}$

| Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ ) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Min}) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{Min})$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\operatorname{Min}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | MIn | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current <br> All Inputs |  |  | 220 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -290 | -195 | -135 | mA | Inputs Open |

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $A_{n}, B_{n}$ to $F_{n}$ | 1.10 | 4.70 | 1.10 | 4.60 | 1.10 | 4.70 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $A_{n}, B_{n}$ to $\bar{P}$ | 1.00 | 3.00 | 1.00 | 3.00 | 1.00 | 3.30 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $A_{n}, B_{n}$ to $\bar{G}$ | 1.40 | 3.90 | 1.40 | 3.80 | 1.40 | 3.90 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{C}_{n}$ to $F_{n}$ | 1.10 | 4.00 | 1.10 | 3.90 | 1.10 | 4.00 | ns |  |
| $\text { țLH }^{\prime}$ $\mathrm{t}_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 2.40 | 0.45 | 2.30 | 0.45 | 2.40 | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{P L H}$ $\mathrm{t}_{\mathrm{p} H}$ | Propagation Delay $A_{n}, B_{n}$ to $F_{n}$ | 1.10 | 4.50 | 1.10 | 4.40 | 1.10 | 4.50 | ns | Figures 1 and 2 |
| tpLH <br> $t_{\text {PHL }}$ | Propagation Delay $A_{n}, B_{n}$ to $\bar{P}$ | 1.00 | 2.80 | 1.00 | 2.80 | 1.00 | 3.10 | ns |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $A_{n}, B_{n}$ to $\bar{G}$ | 1.40 | 3.70 | 1.40 | 3.60 | 1.40 | 3.70 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{C}}_{n}$ to $\mathrm{F}_{\mathrm{n}}$ | 1.10 | 3.80 | 1.10 | 3.70 | 1.10 | 3.80 | ns |  |
| ${ }^{\text {t }}$ TLH <br> ${ }^{\text {t }}$ THL | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 2.30 | 0.45 | 2.20 | 0.45 | 2.30 | ns |  |



FIGURE 1. AC Test Circuit


TL/F/9872-7
FIGURE 2. Propagation Delay and Transition Times
Notes:
$V_{C C}, V_{C C A}=+2 \mathrm{~V}, V_{\mathrm{EE}}=-2.5 \mathrm{~V}$
$L 1$ and $L 2=$ equal length $50 \Omega$ impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$
All unused outputs are loaded with $50 \Omega$ to GND
$\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$
Pin numbers shown are for flatpak; for DIP see logic symbol

## F100181

## 4－Bit Binary／BCD Arithmetic Logic Unit

## General Description

The F100181 performs eight logic operations and eight arithmetic operations on a pair of 4 －bit words．The operating mode is determined by signals applied to the Select $\left(\mathrm{S}_{\mathrm{n}}\right)$ inputs，as shown in the Function Select table．In addition to performing binary arithmetic，the circuit contains the neces－ sary correction logic to perform BCD addition and subtrac－ tion．Output latches are provided to reduce overall package count and increase system operating speed．When the latches are not required，leaving the Enable（ $\overline{\mathrm{E}}$ ）input LOW makes the latches transparent．

The circuit uses internal lookahead carry to minimize delay to the $F_{n}$ outputs and to the ripple Carry output， $\bar{C}_{n+4}$ ． Group Carry Lookahead Propagate（ $\overline{\mathrm{P}}$ ）and Generate（ $\overline{\mathrm{G}}$ ） outputs are also provided，which are independent of the Carry input $\bar{C}_{n}$ ．The $\overline{\mathrm{P}}$ output goes LOW when a plus opera－ tion produces fifteen（nine for BCD）or when a minus opera－ tion produces zero．Similarly，$\overline{\mathrm{G}}$ goes LOW when the sum of $A$ and $B$ is greater than fifteen（nine for $B C D$ ）in a plus mode，or when their difference is greater than zero in a minus mode．All inputs have $50 \mathrm{k} \Omega$ pull－down resistors．

Ordering Code：See Section 6

## Logic Symbol



Connection Diagrams

## 24－Pin DIP <br>  <br> TL／F／9873－1

| Pin Names | Description |
| :--- | :--- |
| $A_{0}-A_{3}$ | Word A Operand Inputs |
| $B_{0}-B_{3}$ | Word B Operand Inputs |
| $\bar{C}_{n}$ | Carry Input（Active LOW） |
| $S_{0}-S_{3}$ | Function Select Inputs |
| $\bar{E}$ | Latch Enable Input（Active LOW） |
| $\overline{\mathrm{P}}$ | Carry Lookahead Propagate Output |
|  | （Active LOW） |
| $\overline{\mathrm{G}}$ | Carry Lookahead Generate Output |
|  | （Active LOW） |
| $\bar{C}_{n+4}$ | Carry Output |
| $\mathrm{F}_{0}-\mathrm{F}_{3}$ | Function Outputs |

28－Pin PCC（Preliminary）
24－Pin Quad Cerpak


TL／F／9873－2
$\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~V}_{\text {EES }} \mathrm{B}_{0} \overline{\mathrm{c}}_{\mathrm{n}} \overline{\mathrm{c}}$


TL／F／9873－3

## Logic Diagram



Block Diagram


## Functional Description

There are two modes of operation: Arithmetic and Logic.
The $\mathrm{S}_{3}$ input controls these two modes:
$S_{3}=$ LOW for Arithmetic mode
$S_{3}=$ HIGH for Legic mode
The arithmetic mode includes decimal and binary arithmetic operations. $\mathrm{S}_{2}$ is the control input: with $\mathrm{S}_{3}=$ LOW,
$\mathrm{S}_{2}=$ LOW for Decimal Arithmetic (BCD)
$\mathrm{S}_{2}=$ HIGH for Binary Arithmetic

## DECIMAL ARITHMETIC OPERATION

Addition
$F=A$ plus $B$ plus $C_{n}$. Arguments $A$ and $B$ are directly applied to the inputs. The circuit automatically performs the " +6 " and " -6 " logic correction internally.

## Subtraction

$\mathrm{F}=\mathrm{A}$ minus B plus $\mathrm{C}_{\mathrm{n}}$. Arguments A and B are directly applied to the inputs. The circuit automatically takes the nines complement of $B$ and adds " +6 ". $A$ " -6 " adjustment is made if the subtraction algorithm calls for it. If there is a carry out, the result is a positive number. With no carry out, the result is a negative number expressed in its nines complement form. Therefore, to perform a subtraction with
results in the tens complement form, an initial carry should be forced into the lowest order bit, i.e., set $\overline{\mathrm{C}}_{\mathrm{n}}=$ LOW.
(tens complement of $B$ ) $=$ (nines complement of $B$ ) +1
$F=B$ minus $A$ plus $C_{n}$. Operation is similar to and results are the same as $F=A$ minus $B$ plus $C_{n}$.

## BINARY ARITHMETIC OPERATION

## Addition

$F=A$ minus $B$ plus $C_{n}$. Arguments $A$ and $B$ are directly applied to the inputs.

## Subtraction

$F=A$ minus $B$ plus $C_{n}$. Arguments $A$ and $B$ are directly applied to the inputs. The circuit automatically takes the ones complement of $B$ (by inverting $B$ internally). If there is a carry out the result is a positive number. With no carry out, the result is a negative number expressed in its ones complement form. Therefore, to perform a subtraction with results in the twos complement form, an initial carry should forced into the lowest order bit, i.e., set $\overline{\mathrm{C}}_{\mathrm{n}}=$ L.OW.
(twos complement of $B$ ) $=$ (ones complement of $B$ ) +1
$\mathrm{F}=\mathrm{B}$ minus A plus $\mathrm{C}_{\mathrm{n}}$. Operation is similar and results are the same as $F=A$ minus $B$ plus $C_{n}$.

## Function Table


$H=$ HIGH Voltage Level
$\mathrm{L}=$ Low Voltage Level
$\overline{\mathrm{P}}=\overline{\mathrm{P}}_{0}+\overline{\mathrm{P}}_{1}+\bar{P}_{2}+\bar{P}_{3}$
$\bar{G}=\overline{G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}}$
Internal Equations for Carry Lookahead
$\bar{C}_{n+4}=\bar{G} \bullet\left(\bar{P}+\bar{C}_{n}\right)$
Arithmetic Operations
$F_{n}=\overline{G_{n}+\bar{P}_{n}} \oplus C_{i} \quad i=0$ to 3
( $i=0,1,2,3$ )
$\mathrm{C}_{0}=\mathrm{C}_{\mathrm{n}}+\mathrm{S}_{3}$
$C_{1}=G_{0}+P_{0} C_{n}+S_{3}$
$\mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{G}_{0}+\mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{\mathrm{n}}+\mathrm{S}_{3}$
$C_{3}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}+S_{3}$

## Logic Operations

$F_{n}=G_{n}+\bar{P}_{n}$
Internal Equations for +6 Logic
$D_{0}=B_{0}$
$D_{1}=\bar{B}_{1}$
$D_{2}=B_{1} B_{2}+\bar{B}_{1} \bar{B}_{2}$
$D_{3}=B_{1}+B_{2}+B_{3}$
$\bar{G}_{x}=\bar{G}_{3} P_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}$

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)
If Military/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Offlce/Dlstributors for avallability and speciflcations.
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $T_{J}$ ) $+150^{\circ} \mathrm{C}$

| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| $\mathrm{I}_{1}$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signa! for All Inputs |  |
| 1 IL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{I H} \text { (Max) } \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| ILL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL ( }}^{\text {Min }}$ ) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.

Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Condltions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current |  |  |  |  |  |
|  | $\mathrm{S}_{n}, \overline{\mathrm{E}}$ |  |  | 350 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{I N}=\mathrm{V}_{\mathrm{IH}}$ (Max) |
|  | All Others |  |  | 250 |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -300 | -210 | -130 | mA | Inputs Open |

Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $A_{n}, B_{n}$ to $F_{n}$ | 2.00 | 6.90 | 2.10 | 6.80 | 2.30 | 7.40 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $A_{n}, B_{n}$ to $\bar{P}, \bar{G}$ | 1.40 | 4.70 | 1.40 | 4.40 | 1.40 | 4.70 | ns |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $A_{n}, B_{n}$ to $\bar{C}_{n+4}$ | 2.00 | 6.50 | 2.00 | 6.50 | 2.10 | 6.80 | ns |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\bar{C}_{n}$ to $F_{n}$ | 1.60 | 5.10 | 1.60 | 5.20 | 1.60 | 5.50 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to $\overline{\mathrm{C}}_{\mathrm{n}}+4$ | 1.30 | 3.00 | 1.40 | 3.00 | 1.40 | 3.10 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $S_{n}$ to $F_{n}$ | 1.40 | 8.80 | 1.50 | 8.60 | 1.50 | 9.00 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $S_{n}$ to $\bar{P}, \bar{G}$ | 1.70 | 7.40 | 2.00 | 5.90 | 2.00 | 6.50 | ns |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $S_{n} \text { to } \bar{C}_{n+4}$ | 2.70 | 10.10 | 2.80 | 8.50 | 2.90 | 8.70 | ns |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\bar{E}$ to $F_{n}$ | 1.00 | 3.40 | 0.90 | 3.60 | 1.10 | 3.80 | ns | Figures 1 and 2 |
| $t_{\mathrm{TLH}}$ $\mathrm{t}_{\mathrm{THL}}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 2.70 | 0.45 | 2.60 | 0.45 | 2.70 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\text {s }}$ | Setup Time <br> $A_{n}, B_{n}$ <br> $\mathrm{S}_{\mathrm{n}}$ <br> $\overline{\mathrm{C}}_{\mathrm{n}}$ | $\begin{array}{r} 7.60 \\ 8.70 \\ 4.80 \\ \hline \end{array}$ |  | $\begin{aligned} & 7.60 \\ & 8.50 \\ & 5.00 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 8.10 \\ & 9.60 \\ & 5.30 \\ & \hline \end{aligned}$ |  | ns | Figure 3 |
| $t_{h}$ | Hold Time <br> $A_{n}, B_{n}$ <br> $\mathrm{S}_{\mathrm{n}}$ <br> $\overline{\mathrm{C}}_{\mathrm{n}}$ | $\begin{aligned} & 0.10 \\ & 0.60 \\ & 0.60 \end{aligned}$ |  | $\begin{aligned} & 0.10 \\ & 0.60 \\ & 0.60 \end{aligned}$ |  | $\begin{aligned} & 0.10 \\ & 0.60 \\ & 0.60 \end{aligned}$ |  | ns |  |
| ${ }^{\text {t }}$ w ${ }^{\text {(L) }}$ | Pulse Width LOW $\bar{E}$ | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |

Cerpak AC Electrical Characteristics $\mathrm{v}_{\mathrm{EE}}=-4.2 \mathrm{vto}-4 . \mathrm{BV}, \mathrm{v}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $A_{n}, B_{n}$ to $F_{n}$ | 2.00 | 6.70 | 2.10 | 6.60 | 2.30 | 7.20 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $A_{n}, B_{n}$ to $\bar{P}, \bar{G}$ | 1.40 | 4.50 | 1.40 | 4.20 | 1.40 | 4.50 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay $A_{n}, B_{n}$ to $\bar{C}_{n+4}$ | 2.00 | 6.30 | 2.00 | 6.30 | 2.10 | 6.60 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to $\mathrm{F}_{\mathrm{n}}$ | 1.60 | 4.90 | 1.60 | 5.00 | 1.60 | 5.30 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\overline{\mathrm{C}}_{\mathrm{n}}$ to $\overline{\mathrm{C}}_{\mathrm{n}+4}$ | 1.30 | 2.80 | 1.40 | 2.80 | 1.40 | 2.90 | ns |  |
| $\mathbf{t}_{\text {PLH }}$ $\mathbf{t}_{\mathrm{PHL}}$ | Propagation Delay $S_{n}$ to $F_{n}$ | 1.40 | 8.60 | 1.50 | 8.40 | 1.50 | 8.80 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{S}_{\mathrm{n}}$ to $\overline{\mathrm{P}}, \overline{\mathrm{G}}$ | 1.70 | 7.20 | 2.00 | 5.70 | 2.00 | 6.30 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $S_{n} \text { to } \overline{\mathrm{C}}_{\mathrm{n}+4}$ | 2.70 | 9.90 | 2.80 | 8.30 | 2.90 | 8.50 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}$ to $F_{n}$ | 1.00 | 3.20 | 0.90 | 3.40 | 1.10 | 3.60 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 2.60 | 0.45 | 2.50 | 0.45 | 2.60 | ns | Figures 1 and 2 |
| $\mathrm{t}_{\text {s }}$ | Setup Time <br> $A_{n}, B_{n}$ <br> $\mathrm{S}_{\mathrm{n}}$ <br> $\overline{\mathrm{C}}_{\mathrm{n}}$ | $\begin{aligned} & 7.50 \\ & 8.60 \\ & 4.70 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 7.50 \\ & 8.40 \\ & 4.90 \end{aligned}$ |  | $\begin{aligned} & 8.00 \\ & 9.50 \\ & 5.20 \end{aligned}$ |  | ns | Figure 3 |
| $t_{n}$ | Hold Time <br> $A_{n}, B_{n}$ <br> $S_{n}$ <br> $\overline{\mathrm{C}}_{\mathrm{n}}$ | $\begin{gathered} 0 \\ 0.50 \\ 0.50 \\ \hline \end{gathered}$ |  | $\begin{gathered} 0 \\ 0.50 \\ 0.50 \\ \hline \end{gathered}$ |  | $\begin{gathered} 0 \\ 0.50 \\ 0.50 \\ \hline \end{gathered}$ |  | ns |  |
| $t_{p w}(\mathrm{~L})$ | Pulse Width LOW E | 2.00 |  | 2.00 |  | 2.00 |  | ns | Figure 2 |



## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 \mathrm{~V}$
L1 and L2 = equal length $50 \Omega$ impedance lines $R_{T}=50 \Omega$ terminator internal to scope Decoupling $0.1 \mu \mathrm{~F}$ from GND to $V_{\mathrm{CC}}$ and $V_{E E}$ All unused outputs are loaded with $50 \Omega$ to GND
$C_{L}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$ Pin numbers shown are for flatpak; for DIP see logic symbol

TL/F/9873-7
FIGURE 1. AC Test Clircult


TL/F/9873-8
FIGURE 2. Enable TIming


FIGURE 3. Setup and Hold Times

## Notes:

$\mathbf{t}_{\mathbf{s}}$ is the minimum time before the transition of the enable that information must be present at the data input. $t_{h}$ is the minimum time after the transition of the enable that information must remain unchanged at the data input.

## National Semiconductor

## F100182

9-Bit Wallace Tree Adder

## General Description

The F100182 is a 9-bit Wallace tree adder. It is designed to assist in performing high-speed hardware multiplication. The device is designed to add 9 bits of data 1-bit-slice wide and handle the carry-ins from the previous slices. The F100182 is easily expanded and still maintains four levels of delay regardless of input string length. In conjunction with the

F100183 Recode Multiplier, the F100179 Carry Lookahead, and the F100180 High-speed Adder, the F100182 assists in performing parallel multiplication of two signed numbers to produce a signed twos complement product. See F100183 data sheet for additional information. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

Logic Symbol


## Connection Diagrams

19 20 29 223232
$D_{4} \quad D_{3} \quad D_{2} \vee_{E E S} D_{1} D_{0} C O_{n+2}$
TL/F/9874-4


Logic Diagram


Adder Logic Diagram


TL/F/9874-6
Adder Truth Table

| Inputs |  |  | Outputs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | S | CO |  |
| L | L | L | L | L |  |
| L | L | H | H | L |  |
| L | H | L | H | L |  |
| L | H | H | L | H |  |
| H | L | L | H | L |  |
| H | L | H | L | H |  |
| H | H | L | L | H |  |
| H | H | H | H | H |  |

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

| If Military/Aerospace specified devices are required, |
| :--- |
| please contact the National Semiconductor Sales |
| Office/Distributors for availability and specifications. |
| Storage Temperature |
| Maximum Junction Temperature $\left(T_{J}\right)$ |
| $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
|  |


| Case Temperature under Bias (TC) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Max) } \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{\text {IN }}=V_{I H(M i n)} \\ & \text { or } V_{I L}(M a x) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L}(\text { Min }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\text {OHC }}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Min }) \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\text { Max }) \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $V_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| $1 / 2$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL ( }}^{\text {Min }}$ ) |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{IIH}^{\text {H}}$ | Input HIGH Current $\begin{aligned} & \mathrm{Cl}_{1}-\mathrm{Cl}_{3}, \mathrm{Cl}_{\mathrm{n}-2} \\ & \mathrm{D}_{1}, \mathrm{D}_{3}, \mathrm{D}_{4}, \mathrm{D}_{5}, \mathrm{D}_{6}, \mathrm{D}_{8} \end{aligned}$ |  |  | 300 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$ |
|  | $\mathrm{D}_{0}, \mathrm{D}_{2}, \mathrm{D}_{7}$ |  |  | 250 |  |  |
| $\mathrm{IEE}^{\text {E }}$ | Power Supply Current | -260 | -180 | -125 | mA | Inputs Open |

Ceramic Dual-In-Line Package AC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{\mathrm{n}+2}$ | 1.40 | 4.50 | 1.40 | 4.50 | 1.50 | 4.70 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ <br> tpHL | Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{1}$ | 1.30 | 4.80 | 1.30 | 4.70 | 1.50 | 5.00 | ns |  |
| $t_{\text {PLH }}$ <br> ${ }^{\text {tpHL }}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{2}$ | 2.20 | 6.20 | 2.20 | 6.10 | 2.30 | 6.40 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{3}$ | 1.30 | 4.70 | 1.40 | 4.70 | 1.50 | 5.00 | ns |  |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}}$ to PS, PC | 2.50 | 7.20 | 2.50 | 7.20 | 2.70 | 7.40 | ns |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1} \text { to } \mathrm{CO}_{2}$ | 1.00 | 3.50 | 1.00 | 3.40 | 1.10 | 3.70 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1}$ to $\mathrm{PS}, \mathrm{PC}$ | 1.50 | 4.50 | 1.50 | 4.45 | 1.60 | 4.60 | ns |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{Cl}_{3}, \mathrm{Cl}_{2}$ to $\mathrm{PS}, \mathrm{PC}$ | 0.80 | 3.30 | 0.80 | 3.20 | 0.90 | 3.60 | ns |  |
| ${ }^{\text {trith }}$ <br> $t_{\text {thL }}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.60 | 0.45 | 1.60 | 0.45 | 1.60 | ns | Figures 1 and 2 |


| Cerpak AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | $T_{C}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
|  |  | Min | Max | MIn | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{\mathrm{n}+2}$ | 1.40 | 4.30 | 1.40 | 4.30 | 1.50 | 4.50 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{1}$ | 1.30 | 4.60 | 1.30 | 4.50 | 1.50 | 4.80 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}}$ to $\mathrm{CO}_{2}$ | 2.20 | 6.00 | 2.20 | 5.90 | 2.30 | 6.20 | ns |  |
| $\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CO}_{3}$ | 1.30 | 4.50 | 1.40 | 4.50 | 1.50 | 4.80 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $D_{n}$ to PS, PC | 2.50 | 7.00 | 2.50 | 7.00 | 2.70 | 7.20 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1} \text { to } \mathrm{CO}_{2}$ | 1.00 | 3.30 | 1.00 | 3.20 | 1.10 | 3.50 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{Cl}_{\mathrm{n}-2}, \mathrm{Cl}_{1}$ to $\mathrm{PS}, \mathrm{PC}$ | 1.50 | 4.30 | 1.50 | 4.25 | 1.60 | 4.40 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{Cl}_{3}, \mathrm{Cl}_{2}$ to $\mathrm{PS}, \mathrm{PC}$ | 0.80 | 3.10 | 0.80 | 3.00 | 0.90 | 3.40 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 1.50 | 0.45 | 1.50 | 0.45 | 1.50 | ns | Figures 1 and 2 |



FIGURE 2. Propagation Delay and Transition Times

## Application

Typlcal Horizontal Interconnection of 9-Blt Wallace Tree Adders F100182

MSB


Application (Continued)
16-Bit Vertical Expansion of Wallace Tree Adders


TL/F/9874-10

## F100183

$2 \times 8$-Bit Recode Multiplier

## General Description

The F100183 is a $2 \times 8$-bit recode multiplier designed to perform high-speed hardware multiplication. In conjunction with the F100182 Wallace Tree Adder, the F100179 Carry Lookahead, and the F100180 High-speed Adder, the

F100183 performs parallel multiplication of two signed numbers in twos complement form to produce a signed twos complement product. All inputs have $50 \mathrm{k} \Omega$ pull-down resistors.

Ordering Code: See Section 6

## Logic Symbol



## Connection Diagrams



TL/F/9875-1


TL/F/9875-2

28-Pin PCC (Preliminary)

| Pin Names | Description |
| :--- | :--- |
| $A_{0}-A_{2}$ | Multiplier (Recode) Inputs |
| $B_{0}-B_{8}$ | Multiplicand Inputs |
| $F_{0}-F_{7}$ | Partial Product Outputs |
| $\bar{F}_{8}$ | Sign Extension Output |

Logic Diagram


TL/F/9875-5

## Truth Table

| Inputs |  |  | Recode <br> Mode | Outputs |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{2}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{0}$ |  | $\mathrm{F}_{8}$ | $\mathrm{F}_{7}$ | $F_{6}$ | F5 | $F_{4}$ | $F_{3}$ | $\mathrm{F}_{2}$ | $F_{1}$ | $\mathrm{F}_{0}$ |
| L | L | L | 0 | H | L | L | L | L | L | L | L | L |
| L | $L$ | H | +1 | $\bar{B}_{8}$ | $\mathrm{B}_{8}$ | $\mathrm{B}_{7}$ | $\mathrm{B}_{6}$ | $\mathrm{B}_{5}$ | $\mathrm{B}_{4}$ | $\mathrm{B}_{3}$ | $\mathrm{B}_{2}$ | $\mathrm{B}_{1}$ |
| L | H | L | +1 | $\bar{B}_{8}$ | $\mathrm{B}_{8}$ | $B_{7}$ | $B_{6}$ | $\mathrm{B}_{5}$ | $\mathrm{B}_{4}$ | $B_{3}$ | $\mathrm{B}_{2}$ | $\mathrm{B}_{1}$ |
| L | H | H | +2 | $\bar{B}_{8}$ | $\mathrm{B}_{7}$ | $\mathrm{B}_{6}$ | $\mathrm{B}_{5}$ | $\mathrm{B}_{4}$ | $\mathrm{B}_{3}$ | $\mathrm{B}_{2}$ | $\mathrm{B}_{1}$ | $\mathrm{B}_{0}$ |
| H | L | L | -2 | $\mathrm{B}_{8}$ | $\bar{B}_{7}$ | $\bar{B}_{6}$ | $\bar{B}_{5}$ | $\bar{B}_{4}$ | $\bar{B}_{3}$ | $\bar{B}_{2}$ | $\bar{B}_{1}$ | $\bar{B}_{0}$ |
| H | L | H | -1 | $\mathrm{B}_{8}$ | $\bar{B}_{8}$ | $\bar{B}_{7}$ | $\overline{\mathrm{B}}_{6}$ | $\bar{B}_{5}$ | $\bar{B}_{4}$ | $\bar{B}_{3}$ | $\overline{\mathrm{B}}_{2}$ | $\mathrm{B}_{1}$ |
| H | H | L | -1 | $\mathrm{B}_{8}$ | $\bar{B}_{8}$ | $\bar{B}_{7}$ | $\bar{B}_{6}$ | $\bar{B}_{5}$ | $\bar{B}_{4}$ | $\bar{B}_{3}$ | $\bar{B}_{2}$ | $\bar{B}_{1}$ |
| H | H | H | 0 | H | L | L | L | L | L | L | L | L |

## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.

## Storage Temperature

Maximum Junction Temperature $\left(T_{J}\right) \quad+150^{\circ} \mathrm{C}$

| Case Temperature under Bias ( $\mathrm{T}_{\mathrm{C}}$ ) | $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| :--- | ---: |
| $\mathrm{V}_{\text {EE P Pin Potential to Ground Pin }}$ | -7.0 V to +0.5 V |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to +0.5 V |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range (Note 2) | -5.7 V to -4.2 V |

## DC Electrical Characteristics

$V_{E E}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VOH | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| Volc | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ (Min) |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1020 |  | -870 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\text { Max }) \\ & \text { or } V_{I L} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L} \text { (Max) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 |  |  |  |
| $\mathrm{V}_{\mathrm{H}}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ (Min) |  |

DC Electrical Characteristics
$\mathrm{V}_{\mathrm{EE}}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H}(\operatorname{Max}) \\ & \text { or } V_{\mathrm{IL}} \text { (Min) } \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 |  |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H} \text { (Min) } \\ & \text { or } V_{I L}(\operatorname{Max}) \end{aligned}$ | Loading with $50 \Omega$ to -2.0 V |
| $V_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| VIL | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL ( }}^{\text {Min) }}$ |  |

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## DC Electrical Characteristics

$V_{E E}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| $I_{I H}$ | Input HIGH Current |  |  |  |  |  |
|  | $B_{0}-B_{8}$ |  |  | 215 |  |  |
|  | $\mathrm{~A}_{0}$ |  |  | 215 | $\mu \mathrm{~A}$ | $V_{I N}=V_{I H}(\operatorname{Max})$ |
|  | $\mathrm{A}_{1}$ |  | 285 |  |  |  |
|  | $\mathrm{~A}_{2}$ |  | 310 |  |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -250 | -170 | -115 | mA | Inputs Open |

Ceramic Dual-In-Line Package AC Electrical Characteristics
$V_{E E}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$ | 1.10 | 3.90 | 1.10 | 3.80 | 1.10 | 4.20 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ $t_{\mathrm{PHL}}$ | Propagation Delay $A_{0}-A_{2}$ to $\bar{F}_{8}$ | 0.90 | 3.20 | 1.00 | 3.10 | 1.00 | 3.60 | ns |  |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay $\mathrm{B}_{0}-\mathrm{B}_{8}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$ | 0.80 | 2.20 | 0.90 | 2.15 | 0.90 | 2.50 | ns | Figures 1 and 2 |
| $t_{\text {PLH }}$ $t_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{B}_{8}$ to $\mathrm{F}_{8}$ | 0.80 | 2.00 | 0.90 | 2.00 | 0.90 | 2.50 | ns |  |
| $\begin{aligned} & \mathbf{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | Transition Time $20 \%$ to $80 \%, 80 \%$ to $20 \%$ | 0.45 | 2.50 | 0.45 | 2.40 | 0.45 | 2.60 | ns | Figures 1 and 2 |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{A}_{0}-\mathrm{A}_{2}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$ | 1.10 | 3.70 | 1.10 | 3.60 | 1.10 | 4.00 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $A_{0}-A_{2}$ to $\bar{F}_{8}$ | 0.90 | 3.00 | 1.00 | 2.90 | 1.00 | 3.40 | ns |  |
| $t_{\text {PLH }}$ $t_{\mathrm{PHL}}$ | Propagation Delay $\mathrm{B}_{0}-\mathrm{B}_{8}$ to $\mathrm{F}_{0}-\mathrm{F}_{7}$ | 0.80 | 2.00 | 0.90 | 1.95 | 0.90 | 2.30 | ns | Figures 1 and 2 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{B}_{8}$ to $\mathrm{F}_{8}$ | 0.80 | 1.80 | 0.90 | 1.80 | 0.90 | 2.30 | ns |  |
| $\begin{aligned} & \mathbf{t}_{\mathrm{TLLH}} \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{aligned}$ | 0.45 | 2.40 | 0.45 | 2.30 | 0.45 | 2.50 | ns | Figures 1 and 2 |




FIGURE 2. Propagation Delay and Transition Times

## Application

F100183 is a $2 \times 8$-bit recode multiplier that performs parallel multiplication using twos complement arithmetic. In multiplying, the multiplier is partitioned into recode groups, then each recode group operates on the multiplicand to provide a partial product at the same time. The F100183, $2 \times 8$-bit recode multiplier provides partial products in 3.6 ns .
The F100182, 9-Bit Wallace Tree Adder combines the partial products to obtain the partial sum and partial carries in an additional 10.7 ns . Then the Carry Lookahead generator and 6 -bit adder combine the results of a $16 \times 16$-bit multiply
for a total of 24.3 ns . The propagation delays and package count for implementing various size multipliers are listed in Tables I and II.
Multiplication of twos complement binary numbers is accomplished by first obtaining all the partial products. Then the weighted partial products are added together to yield the final result. In the Wallace Tree method of multiplication the sign bit is treated the same as the rest of the bits to obtain a signed result.

TABLE I. Propagation Delay Summation*

| Array <br> SIze | Recode <br> Multiplier <br> 100183 | Wallace <br> Tree Adder <br> 100182 | High-speed <br> Adder <br> 100180 | Carry <br> Lookahead <br> 100179 |  | Total (Max) <br> Delay |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $16 \times 16$ | 3.6 | 10.7 | 7.3 | 2.7 | $=$ | 24.3 ns |
| $17 \times 17$ <br> thru <br> $24 \times 24$ | 3.6 | 21.4 | 7.3 | 2.7 | 35.0 ns |  |
| $25 \times 25$ <br> thru <br> $48 \times 48$ | 3.6 | 21.4 | 7.3 | 8.4 | $=$ | 37.7 ns |
| $49 \times 49$ <br> thru <br> $72 \times 72$ | 3.6 | 21.4 | 7.3 | 8.1 | $=$ | 40.4 ns |
| $73 \times 73$ | 3.6 | 32.1 | 7.3 | 10.8 | $=$ | 53.8 ns |

*Worst case, Flatpak

Application (Continued)
TABLE II. Package Count

|  | 100102 <br> 100117 | 100183 | 100182 | 100180 | 100179 |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $16 \times 16$ | 6 | 16 | 32 | 6 | 2 | $=$ | 62 |
| $18 \times 18$ | 7 | 27 | 38 | 6 | 2 | $=$ | 70 |
| $24 \times 24$ | 9 | 36 | 60 | 8 | 2 | $=$ | 115 |
| $32 \times 32$ | 11 | 64 | 96 | 11 | 4 | $=$ | 186 |
| $36 \times 36$ | 13 | 80 | 116 | 12 | 4 | $=$ | 225 |
| $64 \times 64$ | 24 | 256 | 328 | 22 | 6 | $=$ | 634 |

For a quick review of the twos complement number format see Table III. Note that subtraction is accomplished by adding the negative number. An example of changing from a positive number to a negative number is shown.
1011 negative number-5
0100 bits inverted
+0001 add one
0101 Results 5

TABLE III. Twos Complement Format

| Sign <br> Blt | $\mathbf{2}^{\mathbf{2}}$ | Magnitude <br> $\mathbf{2 1}$ | $\mathbf{2 0}^{\mathbf{0}}$ | Decimal <br> Number |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 1 | +7 |
| 0 | 1 | 1 | 0 | +6 |
| 0 | 1 | 0 | 1 | +5 |
| 0 | 1 | 0 | 0 | +4 |
| 0 | 0 | 1 | 1 | +3 |
| 0 | 0 | 1 | 0 | +2 |
| 0 | 0 | 0 | 1 | +1 |
| 0 | 0 | 0 | 0 | +0 |
| 1 | 1 | 1 | 1 | -1 |
| 1 | 1 | 1 | 0 | -2 |
| 1 | 1 | 0 | 1 | -3 |
| 1 | 1 | 0 | 0 | -4 |
| 1 | 0 | 1 | 1 | -5 |
| 1 | 0 | 1 | 0 | -6 |
| 1 | 0 | 0 | 1 | -7 |
| 1 | 0 | 0 | 0 | -8 |

## Multiplication Algorithm

In the multiplication algorithm used, the multiplier $\left(\mathrm{Y}_{\mathrm{n}} \ldots \mathrm{Y}_{0}\right)$ is partitioned into recode groups and each recode group operates on the multiplicand ( $X_{n} \ldots X_{0}$ ) as in Figure 4. The F100183, $2 \times 8$-bit recode multiplier partitions the multiplier ( $X_{n} \ldots X_{0}$ ) into groups of eight and the multiplicand ( $Y_{n} \ldots$ $Y_{0}$ ) into groups of two. Each recode group is two bits wide but requires three bits to determine the partial products. Table IV lists the significance of the various recode groups. The partial product is $\pm 0$, $\pm$ multiplicand, or $\pm$ two times the multiplicand. A forced zero is required to establish the least significant bit of the first recode group. By connecting recode multipliers in parallel the partial products are available at the same time. The weighted partial products ( $A_{n} \ldots A_{0}$, $\left.B_{n} \ldots B_{0}\right) \ldots$ are added together using F100182, 9-bit Wallace Tree Adders. The results of the partial sum and partial

TABLE IV. Recode Product

| Recode Group |  |  | Recode | Partial Product |
| :---: | :---: | :---: | :---: | :--- |
| $\mathbf{Y}_{\mathbf{I}+\mathbf{1}}$ | $\mathbf{Y}_{\mathbf{I}}$ | $\mathbf{Y}_{\mathbf{I}-\mathbf{1}}$ | Value |  |
| 0 | 0 | 0 | +0 | Add zero |
| 0 | 0 | 1 | +1 | Add multiplicand |
| 0 | 1 | 0 | +1 | Add multiplicand |
| 0 | 1 | 1 | +2 | Add twice the <br> multiplicand <br> Subtract twice the <br> multiplicand |
| 1 | 0 | 0 | -2 | Subtract the <br> multiplicand <br> Subtract the |
| 1 | 0 | 1 | -1 | multiplicand <br> Subtract zero |

carry are combined together using Carry Lookahead generators and 6 -bit adders. An example of using recode multiplication is shown in Figure 3: multiplier (11710) 01110101 times multiplicand $\left(105_{10}\right) 01101001$. The first recode group 010 requires adding the multiplicand; the second recode group 010 also requires adding the multiplicand; the third group 110 requires subtracting the multiplicand (the same as inverting each digit and adding 1); the fourth group 011 requires adding twice the multiplicand. Combining the results of four groups, $12285_{10}$, we have the correct answer.


TL/F/9875-8
FIGURE 3. Recode Multiplication Example


## Hardware Implementation

For the hardware implementation of the F100183 recode multiplier the sign bit is connected to the $\mathrm{B}_{8}$ input, and $\mathrm{B}_{7}$ through $\mathrm{B}_{0}$ are the magnitude bits. Two extend the word length greater than eight bits, the $\mathrm{B}_{0}$ and $\mathrm{B}_{8}$ inputs of adjacent devices are connected together (see Figure 7). The device outputs $F_{0}$ through $F_{7}$ are used as the partial products; these correspond to $A_{0}$ through $A_{7}$, or $A_{8}$ through $A_{15}$, or $B_{0}$ through $B_{7}$, etc. To reduce the hardware, the $\bar{F}_{8}$ bit ( $\mathrm{A}_{16}$ in Figure 7 ) is used as the sign bit of the partial product. The sign bits are extended by using hardware wired logic "1s". The ones are located in front of each partial product with an extra " 1 " at the sign bit of the first partial product as in Figure 4. The logic "1s" are wired as inputs into the Wallace Tree Adders as shown in Figure 6. If the recode group requires the multiplicand to be added, then the F100183 outputs the correct partial products to be added. But when the recode group requires that the multiplicand be subtracted, then the F100183 outputs the ones complement. External gates are required to generate a " 1 " to be added to the ones complement to complete the twos complement for the partial product (Figure 7). These external gates generate the rounding bits, $\mathrm{K}_{0} \ldots \mathrm{~K}_{\mathrm{n}}$, which are input to the Wallace Tree Adder. Figures 4, 6 and 7 show the location. An example of multiplication which has the rounding bits and the hardware wired logic " 1 s " is shown in Figure 5.
The weighted partial products are added together using F100182, 9-bit Wallace Tree Adders as shown in Figure 6. The output is a partial sum and partial carry which can be reduced to the final product using Carry Lookahead and 6bit adders. See Figure 8.


TL/F/9875-10
FIGURE 5. Example of Multiplication Using Rounding Bits

Hardware Implementation (Continued)


TL/F/9875-11
FIGURE 6. F100182 Hook-up for $16 \times 16$ Multiplier

Hardware Implementation (Continued)


TL/F/9875-12
FIGURE 7. F100183 Hook-Up for $16 \times 16$ Multiplier

Hardware Implementation (Continued)


FIGURE 8. Final Summation for $16 \times 16$ Multiplier

## F100250

## Quint Line Transceiver

## General Description

The F100250 is a quint line transceiver capable of simultaneously transmitting and receiving differential mode signals on a twisted pair line. Each transceiver has a signal input $\mathrm{S}_{\mathrm{IN}}$, a signal output $\mathrm{S}_{\text {OUT }}$ and two differential line inputs/ outputs $L$ and $\bar{L}$. Signals received from the lines $L$ and $\bar{L}$ can be stored in an internal latch. The line outputs are designed to drive twisted pair lines. The ENABLE input is common to all five transceivers.

## Features

- Full duplex operation
- Common mode noise immunity of $\pm 1 \mathrm{~V}$

Ordering Code: See Section 6

## Logic Symbol



| Pin Names | Description |
| :--- | :--- |
| $\bar{E}$ | Common Enable |
| $S_{\text {ln }}$ | 100 K Signal Inputs |
| $S_{O_{n}}$ | 100 K Signal Outputs |
| $L_{n}, \bar{L}_{n}$ | Differential Line |
|  | Inputs/Outputs |

Connection Diagrams



TL/F/9876-2

(19) 20 25 22 23 24 25
$S I_{1} \bar{L}_{1} L_{1} V_{E E S} L_{2} \bar{L}_{2} S I_{2}$
TL/F/9876-4

Logic Diagram


TL/F/9876-7

Truth Table

| $\overline{\mathrm{E}}$ | $S_{\text {IA }}$ | $\mathrm{S}_{\text {IB }}$ | $\mathrm{S}_{\mathrm{OA}}$ | $\mathrm{S}_{\mathrm{OB}}$ | L | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | X | X | $\mathrm{SOA}^{(n-1)}$ | $\mathrm{SOB}^{(n-1)}$ | * | * |
| L | L | L | L | L | $U_{L}$ | $U_{H}$ |
| L | L | H | H | L | $\left(U_{L}+U_{H}\right) / 2$ | $\left(U_{L}+U_{H}\right) / 2$ |
| L | H | L | L | H | $\left(U_{L}+U_{H}\right) / 2$ | $\left(U_{L}+U_{H}\right)^{\prime} / 2$ |
| L | H | H | H | H | $U_{H}$ | $\mathrm{U}_{\mathrm{L}}$ |

H = HIGH Voltage Level
L = LOW Voltage Level
$U_{L} \approx-1.27 \mathrm{~V}$
$X=$ Don't Care
$U_{H} \approx-0.27 \mathrm{~V}$
$n-1=$ Previous State

* $=$ Dependent on $\mathrm{S}_{\mathrm{IA}}$ and $\mathrm{S}_{1 \mathrm{~B}}$


## Absolute Maximum Ratings

Above which the useful life may be impaired. (Note 1)

If Military/Aerospace specifled devices are required, please contact the Natlonal Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $\left(T_{\mathrm{J}}\right) \quad+150^{\circ} \mathrm{C}$

Case Temperature under Bias (TC)
$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{EE}}$ Pin Potential to Ground Pin
Input Voltage (DC)
Output Current (DC Output HIGH)

$$
-7.0 \mathrm{~V} \text { to }+0.5 \mathrm{~V}
$$

$$
V_{E E} \text { to }+0.5 \mathrm{~V}
$$

$$
-50 \mathrm{~mA}
$$ Operating Range (Note 2)

$$
-5.7 \mathrm{~V} \text { to }-4.2 \mathrm{~V}
$$

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -4.8 V unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{IH}}$ | Input HIGH Current | $\mathrm{S}_{\text {In }}$ |  |  | 200 | $\mu \mathrm{~A}$ | $\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ |
|  |  |  |  | 250 | $\mu \mathrm{~A}$ |  |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Enable |  |  |  |  |  |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{VOH}_{\mathrm{OH}}$ | Output HIGH Voltage | -1025 | -955 | -880 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 | -1705 | -1620 | mV | or $V_{\text {IL(Min) }}$ |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1035 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H(\text { Min })} \\ & \text { or } V_{I L(M a x)} \end{aligned}$ |  |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 | mV |  |  |
| $\mathrm{V}_{\text {KH }}$ | Line Output HIGH Voltage | -370 |  | -220 | mV | No Load |  |
| $\mathrm{V}_{\mathrm{KL}}$ | Line Output LOW Voltage | -1400 |  | -1090 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH(Max }}$ or $\mathrm{V}_{\text {IL(Min) }}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ILI (Min) }}$ |  |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VOH | Output HIGH Voltage | -1020 |  | -870 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\operatorname{Max}}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1810 |  | -1605 | mV | or $\mathrm{V}_{\text {IL(Min) }}$ |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1030 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H(\operatorname{Min})} \\ & \text { or } V_{I L(M a x)} \end{aligned}$ |  |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1595 | mV |  |  |
| $\mathrm{V}_{\text {KH }}$ | Line Output HIGH Voltage | -350 |  | -200 | mV | No Load |  |
| $\mathrm{V}_{\mathrm{KL}}$ | Line Output LOW Voltage | -1300 |  | -990 | mV | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL} \text { (Min) }}$ |  |
| $\mathrm{V}_{\text {IH }}$ | Input HIGH Voltage | -1150 |  | -870 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1810 |  | -1475 | mV | Guaranteed LOW Signal for All Inputs |  |
| IIL | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL(Min }}$ |  |

## DC Electrical Characteristics

$V_{E E}=-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Note 3)

| Symbol | Parameter | Min | Typ | Max | Units | Conditions (Note 4) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage | -1035 |  | -880 | mV | $\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{I L(M i n)} \end{aligned}$ | Loading with$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage | -1830 |  | -1620 | mV |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output HIGH Voltage | -1045 |  |  | mV | $\begin{aligned} & V_{I N}=V_{I H(M i n)} \\ & \text { or } V_{I L(M a x)} \end{aligned}$ |  |
| $\mathrm{V}_{\text {OLC }}$ | Output LOW Voltage |  |  | -1610 | mV |  |  |
| $\mathrm{V}_{\text {KH }}$ | Line Output HIGH Voltage | -400 |  | -250 | mV | No Load |  |
| $\mathrm{V}_{\mathrm{KL}}$ | Line Output LOW Voltage | -1500 |  | -1190 | mV | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Max})}$ or $\mathrm{V}_{\mathrm{IL}(\text { Min })}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | -1165 |  | -880 | mV | Guaranteed HIGH Signal for All Inputs |  |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | -1830 |  | -1490 | mV | Guaranteed LOW Signal for All Inputs |  |
| $\mathrm{I}_{\text {IL }}$ | Input LOW Current | 0.50 |  |  | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL(Min }}$ |  |

Note 1: Unless specified otherwise on individual data sheet.
Note 2: Parametric values specified at -4.2 V to -4.8 V .
Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## Ceramic Dual-In-Line Package AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Unlts | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $t_{\text {PLH }}$ <br> $t_{\text {PHL }}$ | Propagation Delay $S_{1}$ to $S_{0}$ | 2.0 | 6.0 | 2.0 | 6.2 | 2.0 | 6.2 | ns | Figures 4 and 8 |
| $\begin{aligned} & \hline \mathrm{tpLH}^{\prime} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}$ to $\mathrm{So}_{0}$ | 1.4 | 2.9 | 1.2 | 2.7 | 1.2 | 2.7 | ns | Figures 5 and 8 |
| $\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$ | Propagation Delay S , to $\mathrm{L}, \overline{\mathrm{L}}$ | 1.2 | 2.9 | 1.2 | 2.7 | 1.2 | 2.7 | ns | Figures 2, 3 and 7 |
| $t_{\text {PLH }}$ <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay L, Lto $\mathrm{S}_{\mathrm{O}}$ | 1.0 | 4.0 | 1.0 | 4.3 | 1.0 | 4.3 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{THL}} \\ & \mathbf{t}_{\mathrm{T} L \mathrm{LH}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$ | 0.5 | 2.0 | 0.5 | 2.0 | 0.5 | 2.0 | ns |  |
| ts | Setup Time L, $\bar{L}$ | 1.3 |  | 1.3 |  | 1.5 |  | ns | Figure 6 |
| ${ }_{\text {t }}$ | Hold Time L, $\bar{L}$ | 1.3 |  | 1.3 |  | 1.5 |  | ns |  |

## Cerpak AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

| Symbol | Parameter | $\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ |  | $\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$ |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max | Min | Max | Min | Max |  |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \\ & \hline \end{aligned}$ | Propagation Delay $\mathrm{S}_{1}$ to So | 2.0 | 6.0 | 2.0 | 6.0 | 2.0 | 6.0 | ns | Figures 4 and 8 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$ | Propagation Delay $\bar{E}$ to $S_{o}$ | 1.4 | 2.5 | 1.4 | 2.5 | 1.4 | 2.5 | ns | Figures 5 and 8 |
| $\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$ | Propagation Delay S, to L, L | 1.2 | 2.5 | 1.2 | 2.5 | 1.2 | 2.5 | ns | Figures 2, 3 and 7 |
| $\begin{aligned} & \hline \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay L, $\bar{L}$ to $S_{0}$ | 1.0 | 4.1 | 1.0 | 4.1 | 1.0 | 4.1 | ns |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{HL}} \\ & \mathrm{t}_{\mathrm{TLH}} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { Transition Time } \\ & 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \\ & \hline \end{aligned}$ | 0.5 | 1.9 | 0.5 | 1.9 | 0.5 | 1.9 | ns |  |
| ts | Setup Time L, $\overline{\text { L }}$ | 1.3 |  | 1.3 |  | 1.5 |  | ns | Figure 6 |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time L, L | 1.3 |  | 1.3 |  | 1.5 |  | ns |  |



FIGURE 1. Interconnection of Two F100250 Circuits


TL/F/9876-8
FIGURE 2. $\mathrm{S}_{\mathrm{I}}$ to Differential Line


FIGURE 3. Differential Line to $S_{0}$


TL/F/9876-10
FIGURE 4. SI to So


TL/F/9876-11
FIGURE 5. $\bar{E}$ to $\mathrm{S}_{\mathrm{o}}$


## Notes:

Is is the minimum time before the transition of the clock that information must be present at the data input.
$t_{H}$ is the minimum time after the transition of the clock that information must remain unchanged at the data input.
FIGURE 6. Line Data Setup and Hold Time


## Notes:

$V_{C C}, V_{C C A}=+2 V_{,} V_{E E}=-2.5 \mathrm{~V}$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines. $R_{T}=50 \Omega$ terminator internal to scope. Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$. All unused outputs are loaded with $50 \Omega$ to GND. $C_{L}=$ fixture and stray capacitance $\leq 3 \mathrm{pF}$.

FIGURE 7. AC Test Circuit Differential Line to $\mathrm{S}_{\mathrm{O}}$


## Notes:

$V_{C C}, V_{C C A}=+2 V, V_{E E}=-2.5 V$
L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines.
$R_{T}=50 \Omega$ terminator internal to scope.
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$.
All unused outputs are loaded with $50 \Omega$ to GND.
$C_{L}=$ fixture and stray capacitance $\leq 3 \mathrm{pF}$.
All differential line outputs on AC fixture should be cut
open as close to the DUT as possible.

## F100324

## Low Power Hex TTL-to-ECL Translator

## General Description

The F100324 is a hex translator, designed to convert TTL logic levels to 100K ECL logic levels. The F100324 is pin and function compatible with the F100124 with similar AC performance but features power dissipation roughly half of the F100124 to ease system cooling requirements.

## Logic Diagram

## Connection Diagrams



## F100325

Low Power Hex ECL－to－TTL Translator

## General Description

The F100325 is a hex translator，designed to convert 100 K ECL logic levels to TTL logic levels．The F100325 is pin and function compatible with the F100125 with similar AC per－ formance but features power dissipation roughly half of the F100125 to ease system cooling requirements．

## Logic Diagram

## Connection Diagrams



## F100350

## Low Power Hex D-Latch

## General Description

The F100350 contains six D-type latches with true and complement outputs. The F100350 is pin and function compatible with the F100150 with similar AC performance but
features power dissipation roughly two-thirds of the F100150 to ease system cooling requirements.

## Connection Diagrams




TL/F/9884-2

Logic Diagram


TL/F/9884-4

## F100351

Low Power Hex D Flip-Fiop

## General Description

The F100351 contains six D-type flip-flops with true and complement outputs. The F100351 is pin and function compatible with the F100151 with similar AC performance but features power dissipation roughly two-thirds of the F100150 to ease system cooling requirements.

## Connection Diagrams




TL/F/9885-2


TL/F/9885-3

Logic Diagram


## Section 3

11C Datasheets

## Section 3 Contents

11C01 Dual Input OR/NOR Gate ..... 3-3
11C05 1 GHz Divide-by-Four Counter ..... 3-6
$11 \mathrm{C06} 750 \mathrm{MHz}$ D-Type Flip-Flop ..... 3-10
11C70 Master-Slave D-Type Flip-Flop ..... 3-14
11C90/11C91 650 MHz Prescalers ..... 3-20

## 11C01 <br> Dual 5-4 Input OR/NOR Gate

## General Description

The 11C01 is a voltage-compensated ECL dual 5-4 input OR/NOR gate. The circuit has standard internal voltage compensation with DC parameters identical to 10K ECL devices.

Ordering Code: See Section 6

## Logic Symbol



TL/F/9888-2

| Pin Names | Description |
| :---: | :--- |
| $\mathrm{D}_{1 \mathrm{a}}-\mathrm{D}_{1 \mathrm{e}}, \mathrm{D}_{2 \mathrm{a}}-\mathrm{D}_{2 \mathrm{~d}}$ | Data Inputs |
| $\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{2}$ | Outputs |

Connection Diagrams
16-Pin DIP


TL/F/9888-1
16-Pin Flatpak

$$
\begin{array}{rrr|r}
\mathrm{D}_{1 \mathrm{a}}-1 & 16 & -\mathrm{D}_{1 \mathrm{~b}} \\
\bar{Q}_{1}-1 & 15 & -\mathrm{D}_{1 \mathrm{c}} \\
\mathrm{Q}_{1}-3 & 14 & -\mathrm{D}_{1 \mathrm{~d}} \\
\mathrm{~V}_{\mathrm{CC} 2}-4 & 13 & -\mathrm{D}_{1 \mathrm{e}} \\
\mathrm{~V}_{\mathrm{CC1}}-5 & 12 & -\mathrm{V}_{\mathrm{EE}} \\
\mathrm{Q}_{2}-6 & 11 & -\mathrm{D}_{2 \mathrm{~d}} \\
\overline{\mathrm{Q}}_{2}-7 & 10 & -\mathrm{D}_{2 \mathrm{c}} \\
\mathrm{D}_{2 \mathrm{a}}-8 & 9-D_{2 \mathrm{~b}}
\end{array}
$$

## Truth Tables

| In |  |  |  |  | Out |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}_{1 \mathbf{a}}$ | $\mathrm{D}_{1 \mathrm{~b}}$ | $\mathrm{D}_{1 \mathrm{c}}$ | $\mathrm{D}_{1 \mathrm{~d}}$ | $\mathrm{D}_{1}$ | $\mathrm{Q}_{1}$ | $\overline{\mathbf{Q}}_{1}$ |
| L | L | L | L | L | L | H |
| H | X | X | X | X | H | L |
| X | H | X | X | X | H | L |
| X | X | H | X | X | H | L |
| X | X | X | H | X | H | L |
| X | X | X | X | H | H | L |


| In |  |  |  |  | Out |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $D_{\mathbf{2 a}}$ | $D_{\mathbf{2 b}}$ | $D_{\mathbf{2 c}}$ | $D_{\mathbf{2 d}}$ | $\mathbf{Q}_{\mathbf{2}}$ | $\bar{Q}_{\mathbf{2}}$ |  |
| $L$ | $L$ | $L$ | $L$ | $L$ | $H$ |  |
| $H$ | $X$ | $X$ | $X$ | $H$ | $L$ |  |
| $X$ | $H$ | $X$ | $X$ | $H$ | $L$ |  |
| $X$ | $X$ | $H$ | $X$ | $H$ | $L$ |  |
| $X$ | $X$ | $X$ | $H$ | $H$ | $L$ |  |

[^7]L = LOW Voltage Level
X = Don't Care

| Absolute Maximum Ratings |  |
| :--- | ---: |
| Above which the useful life may be impaired |  |
| If Military/Aerospace specified devices are required, |  |
| please contact the National Semiconductor Sales |  |
| Office/Distributors for availability and specifications. |  |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ ) | $+150^{\circ} \mathrm{C}$ |
| Supply Voltage Range | -7.0 V to GND |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to GND |
| Output Current (DC Output HIGH) | -50 mA |
| Operating Range | -5.5 V to -4.75 V |
| Lead Temperature (Soldering, 10 sec.) | $300^{\circ} \mathrm{C}$ |

Recommended Operating Conditions

|  | Min | Typ | Max | Units |
| :--- | :---: | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{E E}\right)$ | -5.5 | -5.2 | -4.75 | V |
| Ambient Temperature $\left(T_{A}\right)$ | 0 |  | +75 | ${ }^{\circ} \mathrm{C}$ |

## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\mathbf{A}}$ | Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage HIGH | $\begin{gathered} -1000 \\ -960 \\ -900 \end{gathered}$ |  | $\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$ | mV | $\begin{array}{r} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$ | $\begin{aligned} & V_{I N}=V_{I H(M a x)} \\ & \text { or } V_{\text {IL(Min) }} \\ & \text { per Truth Table } \end{aligned}$ | Loading is$50 \Omega \text { to }-2.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Voltage LOW | $\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$ |  | $\begin{aligned} & -1665 \\ & -1650 \\ & -1625 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| $\mathrm{V}_{\mathrm{OHC}}$ | Output Voltage HIGH | $\begin{gathered} -1020 \\ -980 \\ -920 \end{gathered}$ |  |  | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})} \\ & \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{Max})} \\ & \text { per Truth Table } \end{aligned}$ |  |
| $\mathrm{V}_{\text {OLC }}$ | Output Voltage LOW |  |  | $\begin{aligned} & -1645 \\ & -1630 \\ & -1605 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input Voltage HIGH | $\begin{aligned} & -1145 \\ & -1105 \\ & -1045 \end{aligned}$ |  | $\begin{array}{r} -840 \\ -810 \\ -720 \\ \hline \end{array}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input Voltage HIGH for All Inputs |  |
| $V_{\text {IL }}$ | Input Voltage LOW | $\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$ |  | $\begin{aligned} & -1490 \\ & -1475 \\ & -1450 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input Voltage LOW for All Inputs |  |
| $\mathrm{IIH}^{\text {H}}$ | Input Current HIGH |  |  | 350 | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\text { Max }}$ |  |
| ILL | Input Current LOW | 0.5 |  |  | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}(\mathrm{Min})}$ |  |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | -30 | -24 |  | mA | $+25^{\circ} \mathrm{C}$ | Inputs and Outputs Open |  |

## AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| Symbol | Parameter | Flatpak |  |  | DIP |  |  | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max |  |  |
| ${ }^{\text {t }}$ LH | Propagation Delay LOW to HIGH | 0.45 | 0.7 | 0.95 | 0.60 | 0.90 | 1.15 | ns | See Figure 1 |
| ${ }_{\text {t }}^{\text {PHL }}$ | Propagation Delay HIGH to LOW | 0.45 | 0.7 | 0.95 | 0.60 | 0.90 | 1.15 | ns |  |
| ${ }^{\text {tiLH }}$ | Output Transition Time <br> LOW to HIGH (20\% to 80\%) |  | 0.7 | 0.95 |  | 0.90 | 1.15 | ns |  |
| ${ }^{\text {t }}$ HL | Output Transition Time HIGH to LOW ( $80 \%$ to $20 \%$ ) |  | 0.7 | 0.95 |  | 0.90 | 1.15 | ns |  |



## Notes:

L 1 and $\mathrm{L} 2=$ equal length $50 \Omega$ impedance lines
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ Termination of scope
Decoupling $0.1 \mu \mathrm{~F}$ from GND to $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{CC}}$
$C_{L} \leq 3 \mathrm{pF}$


## Notes:

Jig setup with no circuit under test
$V_{C C 1}=V_{C C 2}=+2.0 \mathrm{~V}$
$V_{E E}=-3.2 \mathrm{~V}$
FIGURE 1. Switching Circuit and Waveforms

## 11C05

1 GHz Divide-By-Four Counter

## General Description

The $11 \mathrm{C05}$ is an ECL Divide-By-Four Counter with a maximum operating frequency above 1 GHz over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range. The input may be DC or AC (capacitively) coupled to the signal source. The emitter follower
outputs ( $Q$ and $\bar{Q}$ ) are capable of driving $50 \Omega$ lines. The outputs are voltage-compensated and provide standard ECL output levels.

Ordering Code: See Section 6

Logic Symbol


TL/F/9889-1

| Pin Names | Description |
| :--- | :--- |
| CP | Clock Input |
| $V_{\text {REF }}$ | Reference Input |
| $\mathrm{Q}, \overline{\mathrm{Q}}$ | Counter Outputs |

Connection Diagram


TL/F/9889-2

## Logic Diagram



| Absolute Maximum Ratings |  |
| :--- | ---: |
| Above which the useful life may be impaired |  |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ ) | $+150^{\circ} \mathrm{C}$ |
| Supply Voltage Range | -7.0 V to GND |
| Input Voltage (DC) | $\mathrm{V}_{\mathrm{EE}}$ to GND |
| Output Current (DC Output HIGH ) | -50 mA |
| Operating Range | -5.5 V to -4.75 V |
| Lead Temperature (Soldering, 10 sec.) | $300^{\circ} \mathrm{C}$ |

## Recommended Operating Conditions

|  | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| Supply Voltage (VEE) |  |  |  |
| $\quad$ Commercial | -5.25 V | -5.0 V | -4.75 V |
| Military | -5.5 V | -5.0 V | -4.75 V |
| Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ |  |  |  |
| $\quad$ Commercial | $0^{\circ} \mathrm{C}$ |  | $+75^{\circ} \mathrm{C}$ |
| Military | $-55^{\circ} \mathrm{C}$ |  | $+125^{\circ} \mathrm{C}$ |

## Commercial DC Electrical Characteristics

$V_{E E}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\text {A }}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V OH | Output Voltage HIGH | $\begin{aligned} & -1060 \\ & -1025 \\ & -980 \end{aligned}$ | $\begin{aligned} & -995 \\ & -960 \\ & -910 \end{aligned}$ | $\begin{aligned} & -910 \\ & -880 \\ & -830 \\ & \hline \end{aligned}$ | mV <br> mV <br> mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | $V_{I N}=V_{I H} \text { or } V_{I L}$ <br> Loading $50 \Omega$ to -2 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Voltage LOW | -1810 | -1705 | -1620 | mV | $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input Voltage HIGH | $\begin{aligned} & -2.45 \\ & -2.50 \\ & -2.60 \end{aligned}$ |  |  | $\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$ | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input HIGH |
| $V_{\text {IL }}$ | Input Voltage LOW |  |  | $\begin{aligned} & -3.25 \\ & -3.30 \\ & -3.40 \end{aligned}$ | $\begin{aligned} & v \\ & v \\ & v \end{aligned}$ | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input LOW |
| $l_{\text {EE }}$ | Power Supply Current | -90 | -65 |  | mA | $+25^{\circ} \mathrm{C}$ | Input Open |
| $\mathrm{V}_{\mathrm{EE}}$ | Supply Voltage Range | -5.25 | -5.0 | -4.75 | V | $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\text {REF }}$ | Input Reference Voltage |  | -2.9 |  | V | $+25^{\circ} \mathrm{C}$ |  |

## Military DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\text {A }}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V OH | Output Voltage HIGH | $\begin{aligned} & -1100 \\ & -980 \\ & -910 \end{aligned}$ | $\begin{gathered} -1030 \\ -910 \\ -820 \end{gathered}$ | $\begin{aligned} & -950 \\ & -820 \\ & -720 \end{aligned}$ | mV <br> mV <br> mV | $\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$ | $V_{I N}=V_{\text {IH }} \text { or } V_{\mathrm{IL}},$ <br> Loading $100 \Omega$ to -2 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Voltage LOW | -1810 | -1705 | -1620 | mV | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input Voltage HIGH | $\begin{aligned} & -2.35 \\ & -2.50 \\ & -2.70 \end{aligned}$ |  |  | $\begin{aligned} & v \\ & v \\ & v \end{aligned}$ | $\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$ | Guaranteed Input HIGH |
| $V_{\text {IL }}$ | Input Voltage LOW |  |  | $\begin{aligned} & -3.15 \\ & -3.30 \\ & -3.50 \end{aligned}$ | $\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ | $\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \end{array}$ | Guaranteed Input LOW |
| leE | Power Supply Current | -90 | -65 |  | mA | $+25^{\circ} \mathrm{C}$ | Input Open |
| $V_{\text {EE }}$ | Supply Voltage Range | -5.5 | -5.0 | -4.75 | V | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| $V_{\text {REF }}$ | Input Reference Voltage |  | -2.9 |  | V | $+25^{\circ} \mathrm{C}$ |  |

## Commercial and Military AC Electrical Characteristics

$V_{E E}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fcount | Maximum Sinusoidal Input Frequency | 1000 |  |  | MHz | $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ | AC Coupled 800 mV |
|  |  | 950 |  |  |  | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |
| f COUNT | Minimum Sinusoidal Input Frequency |  | 25 |  | MHz |  | Input <br> (Note 2) |
| $\mathrm{SR}_{\text {MIN }}$ | Slew Rate of Squareware |  | 50 |  | $\mathrm{V} / \mu \mathrm{s}$ | (Not |  |

Note 1: Very low frequency operation is possible as long as sufficient slew rate of the input pulse edges is maintained.
Note 2: Input drive shall not exceed 1.5 V peak-to-peak max.


TL/F/9889-4
FIGURE 1. AC Test Circuit



FIGURE 2. AC Input Requirements
Note: Trigger amplitudes refer to the circuit end of the input cable as opposed to the signal generator end.

A DC coupled input should be designed to provide specified $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ levels. For AC coupling, an external resistor may or may not be necessary depending on the application. If an input signal is always present, only the capacitor is required because an internal $400 \Omega$ resistor connected between CP and VREF centers the AC signal about midthreshold. For applications in which an input signal is not
always present, $A C$ coupling requires that an external 10 $\mathrm{K} \Omega$ resistor be connected between CP and $\mathrm{V}_{\mathrm{EE}}$. This offsets the input sufficiently to avoid extreme sensitivity to noise when no signal is present. Otherwise, noise triggering can lead to oscillation at about 450 MHz . For best operation, both outputs should be equally loaded.

## 11C06

## 750 MHz D-Type Flip-Flop

## General Description

The 11C06 is a high-speed ECL D-Type Master-Slave FlipFlop capable of toggle rates over 750 MHz . Designed primarily for high-speed prescaling, it can also be used in any application which does not require preset inputs. The circuit is voltage-compensated, which makes input thresholds and
output levels insensitive to $V_{E E}$ variations. Complementary Q and $\overline{\mathrm{Q}}$ outputs are provided, as are two Data inputs, Clock and Clock Enable inputs. The 11C06 is pin-compatible with the Motorola MC1690L but is a higher-frequency replacement.

Ordering Code: See Section 6

## Logic Symbol




## Truth Table

| Pin Names | Description |
| :--- | :--- |
| $D_{n}$ | Data Input |
| $C P$ | Clock Input |
| $\overline{C E}$ | Clock Enable (Active LOW) |
| $Q, \bar{Q}$ | Outputs |


| $\overline{\mathbf{C E}}$ | $\mathbf{C P}$ | $\mathbf{D}$ | $\mathbf{Q}_{\boldsymbol{n}}$ |
| :---: | :---: | :---: | :---: |
| $L$ | L | X | $\mathrm{Q}_{\mathrm{n}-1}$ |
| L | H | X | $\mathrm{Q}_{\mathrm{n}-1}$ |
| L | - | L | L |
| L | - | $H$ | $H$ |
| $H$ | $X$ | $X$ | $Q_{n-1}$ |

[^8]
## Absolute Maximum Ratings

Above which the useful life may be impaired


## DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\text {A }}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Voltage HIGH | $\begin{aligned} & -1000 \\ & -960 \\ & -900 \end{aligned}$ |  | $\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$ | mV <br> mV <br> mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}\left(\text { Max }^{\prime}\right)}$ or $\mathrm{V}_{\mathrm{IL}}$ (Min) per Truth Table Loading $50 \Omega$ to -2 V |
| $\mathrm{V}_{\text {OL }}$ | Output Voltage LOW | $\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$ |  | $\begin{aligned} & -1635 \\ & -1620 \\ & -1595 \end{aligned}$ | mV <br> mV <br> mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ |  |
| VOHC | Output Voltage HIGH | $\begin{aligned} & -1020 \\ & -980 \\ & -920 \end{aligned}$ |  |  | mV <br> mV <br> mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | $V_{i N}=V_{I H}$ (Min) or $V_{I L}$ (Max) for $D_{n}$ Inputs Loading $50 \Omega$ to -2 V |
| Volc | Output Voltage LOW |  |  | $-1615$ <br> $-1600$ <br> $-1575$ | mV <br> mV <br> mV | $\begin{array}{r}  \\ 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input Voltage HIGH | $\begin{aligned} & -1135 \\ & -1095 \\ & -1035 \end{aligned}$ |  | $\begin{aligned} & -840 \\ & -810 \\ & -720 \\ & \hline \end{aligned}$ | mV <br> mV <br> mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$ | Guaranteed Input Voltage HIGH for All Inputs |
| $\mathrm{V}_{\text {IL }}$ | Input Voltage LOW | $\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$ |  | $\begin{aligned} & -1500 \\ & -1485 \\ & -1460 \end{aligned}$ | mV <br> mV <br> mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input Voltage LOW for All Inputs |
| IIH | Input Current HIGH <br> Clock Input <br> Data Input |  |  | $\begin{aligned} & 250 \\ & 270 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ | $\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}($ Max $)$ |
| IIL | Input Current LOW | 0.5 |  |  | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Min) |
| $\mathrm{IEE}^{\text {E }}$ | Power Supply Current | -59 | -40 |  | mA | $+25^{\circ} \mathrm{C}$ | All Inputs Open |

## AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay (CP-Q) | 0.7 | 1.0 | 1.2 | ns | See Figure 1 |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay (CP-Q) | 0.7 | 1.0 | 1.2 | ns |  |
| ${ }_{\text {t }}^{\text {tLH }}$ | Transition Time 20\% to 80\% | $0.5$ | 0.8 | $1.0$ | ns |  |
| t ${ }_{\text {THL }}$ | Transition Time 80\% to 20\% | 0.5 | 0.8 |  | ns |  |
| ts | Set-up Time |  | 0.2 |  | ns |  |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time |  | 0.2 |  | ns |  |
| $\mathrm{f}_{\text {TOG ( MAX) }}$ | Toggle Frequency (CP) | 650 | 750 |  | MHz | See Figure 2, No |

Note: The device is guaranteed for fTOG $(C P) \geq 600 \mathrm{MHz}, \mathrm{fTOG}(\mathrm{CE}) \geq 550 \mathrm{MHz}$ over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range.

## Functional Description

While the clock is LOW, the slave is held steady and the information on the $D$ input is permitted to enter the master. The next transition from LOW to HIGH locks the master in its present state making it insensitive to the D input. This transition simultaneously connects the slave to the master causing the new information to appear on the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous
master-slave changes when the clock has slow rise or fall times.
The CP and $\overline{C E}$ inputs are logically identical, but physical constraints associated with the Dual-In-Line package make the $\overline{\mathrm{CE}}$ input slower at the upper end of the toggle range. To prevent new data from entering the master on the next $C P$ LOW cycle, CE should go HIGH while CP is still HIGH.

$R_{T}=50 \Omega$ termination of scope
$L_{1}=50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
FIGURE 1. Propagation Delay (CP to $\mathbf{Q}$ )

$\mathrm{R}_{\mathrm{r}}=50 \Omega$ termination of scope
$L_{1}=50 \Omega$ impedance lines
Adjust $\mathrm{V}_{\text {BIAS }}$ for +0.7 V baseline of 800 mV peak-to-peak sinewave input. All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$

FIGURE 2. Toggle Frequency Test Circuit

## Typical Waveforms



700 MHz Operation

Horizontal Scale $=1.0 \mathrm{~ns} /$ div
Vertical Scale $=200 \mathrm{mV} / \mathrm{div}$

## $11 \mathrm{C70}$

## Master-Slave D-Type Flip-Flop

## General Description

The 11C70 is a high-speed ECL D-Type Master-Slave FlipFlop capable of toggle rates over 650 MHz . Designed primarily for communications and instrumentation, it can also be used in other digital applications and is fully compatible with 10K ECL. Asynchronous Direct Set and Direct Clear inputs are provided which override the clock.
The circuit is voltage-compensated, which makes output levels and input thresholds insensitive to $V_{E E}$ variations.

This also allows operation with ECL supply voltage $\mathrm{V}_{\mathrm{EE}}$ of -5.2 V or with TTL supply $\mathrm{V}_{\mathrm{CC}}$ of +5.0 V . Each input has an internal $50 \mathrm{k} \Omega$ pull-down resistor, which allows unused inputs to be left open. Open emitter-follower outputs accommodate a variety of loading and terminating schemes. The 11 C70 is pin-compatible with the Motorola MC1670 but is a higher-frequency replacement.

## Ordering Code: See Section 6

## Logic Symbol



## Connection Diagram



TL/F/9891-1

TL/F/9891-2

## Truth Table

| Inputs |  |  |  |  | $Q_{t+1}$ | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{S}_{\mathrm{D}}$ | $C_{\text {D }}$ | D | $\overline{\text { CE }}$ | CP |  |  |
| H | L | X | X | X | H | Direct Set |
| L | H | X | X | X | L | Direct Clear |
| H | H | X | X | X | - | Intermediate |
| L | L | X | H | $\sim$ | $Q_{t}$ | Disable Clock |
| L | L | H | L | $\checkmark$ | H | Clocked Set |
| L | L | L | L | $\Omega$ | L | Clocked Clear |

[^9]```
Absolute Maximum Ratings
Above which the useful life may be impaired
If Mllitary/Aerospace specified devices are required,
please contact the Natlonal Semlconductor Sales
Office/Distributors for avallability and specifications.
```

Storage Temperature
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
Supply Voltage Range
Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range
Lead Temperature (Soldering, 10 sec .)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $+150^{\circ} \mathrm{C}$
-7.0 V to GND
$V_{E E}$ to GND
$-50 \mathrm{~mA}$
-5.7 V to -4.7 V
$300^{\circ} \mathrm{C}$

## Recommended Operating Conditions

|  | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$ | -5.7 V | -5.2 V | -4.7 V |
| Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $0^{\circ} \mathrm{C}$ |  | $+75^{\circ} \mathrm{C}$ |

## DC Electrical Characteristics

$V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

| Symbol | Parameter | Min | Typ | Max | Units | $T_{A}$ | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $V_{\text {OH }}$ | Output Voltage HIGH | -1000 |  | -840 | mV | $0^{\circ} \mathrm{C}$ | $V_{\text {IN }}=V_{\text {IHA }}$ or $V_{\text {ILB }}$ per Truth |
|  |  | -960 |  | -810 | mV | $+25^{\circ} \mathrm{C}$ | Table Loading $50 \Omega$ to -2 V |
|  |  | -900 |  | -720 | mV | $+75^{\circ} \mathrm{C}$ |  |$)$

## AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{tPLH}^{\text {, }}$ tPHL | Propagation Delay (CP-Q) |  | 1.1 | 1.4 | ns | See Figures 3 and 4 |
| $\mathrm{tPLH}^{\text {, }}$ PHL | Propagation Delay ( $\mathrm{S}_{\mathrm{D}}-\overline{\mathrm{Q}}, \mathrm{C}_{\mathrm{D}}-\mathrm{Q}$ ) |  | 1.3 | 1.7 | ns |  |
| $\mathrm{t}_{\text {TLH }}$ | Transition Time 20\% to 80\% |  | 0.9 | 1.3 | ns |  |
| $\mathrm{t}_{\text {THL }}$ | Transition Time 80\% to 20\% |  | 0.9 | 1.3 | ns |  |
| $\mathrm{f}_{\text {TOG ( MAX) }}$ | Toggle Frequency (CP) | 550 | 650 |  | MHz | See Figure 2 |

Note: This device is guaranteed for froG(max) $\geq 500 \mathrm{MHz}$ over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range.

## Functional Description

Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous master-slave changes when the clock has slow rise or fall times. While the clock is LOW, the slave is in a HOLD condition and information present on the $\mathbf{D}$ input is gated into the master. When the clock goes HIGH, it locks the master into its present state, making it insensitive to the D input, causing the new information to appear on the outputs.
The CP and $\overline{C E}$ inputs are logically identical, but physical constraints associated with the Dual In-Line package make the $\overline{\mathrm{CE}}$ input slower at the upper end of the toggle range. To prevent new data from entering the master on the next CP LOW cycle, $\overline{C E}$ should be HIGH while CP is still HIGH.
A HIGH signal on $S_{D}$ or $C_{D}$ will override the clocked inputs and force $Q$ or $\bar{Q}$, respectively, to go HIGH. If both $C_{D}$ and $S_{D}$ are HIGH, the two output voltages will be somewhere between the HIGH and LOW levels and thus, cannot be usefully defined.
When the input signals for the $11 \mathrm{C70}$ come from other ECL circuits, either 11CXX series or 10K types, these circuits will automatically provide appropriate signal swings, provided, of course, that these circuits are operated within their ratings and that due consideration is given to terminations appropriate to the particular application, as discussed in the F100K ECL Design Guide (Section 5 of Databook).
For applications where the clock signal comes from a circuit type other than ECL (in high frequency prescaling, for example) it is generally necessary to use external components to shift the signal levels and center them about the 11C70 input threshold region. A typical biasing scheme is shown in Figure 1. Resistors R1 and R2 are chosen such that the
quiescent voltage at the CP input is -1.3 V with respect to the $V_{C C}$ terminal of the 11C70. Also indicated is the coupling from $\bar{Q}$ back to the D input to make a simple toggle. The clock source should be designed to provide a signal swing in the range of 400 mV to 1200 mV , peak-to-peak, over the specified frequency and temperature range. To avoid saturating the input transistor, and thus limiting the frequency capability, the positive peak of the clock should not be more positive than -0.4 V with respect to $\mathrm{V}_{\mathrm{Cc}}$. The 11C70 outputs have no internal pull-down resistors. When driving a microstrip line terminated at the far end by a resistor returned to -2 V (w.r.t. $\mathrm{V}_{\mathrm{CC}}$ ), the quiescent $\mathrm{IOH}_{\mathrm{OH}}$ current in the line performs the pull-down function when the output starts to go LOW. For series termination or for short unterminated lines, a $270 \Omega$ resistor to $V_{E E}$ will provide adequate pull-down current. The outputs switch slightly faster when both outputs are equally loaded than if only one output is loaded. Equal and opposite changes in $Q$ and $\bar{Q}$ load currents tend to cancel the effects of the small inductance of the $\mathrm{V}_{\mathrm{CC}}$ pin.
The test arrangements illustrate the use of split power supplies, with a $2 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and $-3.2 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}$. This is done as a matter of instrumentation convenience, since it allows the outputs to be connected via $50 \Omega$ cables directly to the sampling scope inputs, which have $50 \Omega$ internal terminations. By thus avoiding the use of probes, test correlation problems between supplier and user are minimized. In actual applications, only a single power supply is needed, and ground can be assigned to $\mathrm{V}_{\mathrm{CC}}$, as in ECL systems or to $\mathrm{V}_{\mathrm{EE}}$ side as in TTL systems. RF bypass capacitors are recommended in either case.


TL/F/9891-3

FIGURE 1. Input Blasing for AC Coupled Triggering

$R_{T}=50 \Omega$ termination of scope
$\mathrm{L}_{1}=50 \Omega$ impedance lines
Adjust $V_{\text {BIAS }}$ for $\pm 0.7 \mathrm{~V}$ baseline of 800 mV peak-to-peak sinewave input


$V_{C C 1}=V_{C C 2}=+2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{EE}}=-3.2 \mathrm{~V}$
$R_{T}=50 \Omega$ termination of scope
$L_{1}, L_{2}=$ equal $50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$


FIGURE 3. Propagation Delay and $C_{D}$ Test Circuit

$V_{C C 1}=V_{C C 2}=+2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{EE}}=-3.2 \mathrm{~V}$
$R_{T}=50 \Omega$ termination of scope
$L_{1}, L_{2}=$ equal $50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$


FIGURE 4. Propagation Delay and $\mathrm{S}_{\mathrm{D}}$ Test Circult

11C90/11C91 650 MHz Prescalers

## General Description

The 11C90 and 11C91 are high-speed prescalers designed specifically for communication and instrumentation applications. All discussions and examples in this data sheet are applicable to the 11C91 as well as the 11C90.
The 11C90 will divide by 10 or 11 and the 11C91 by 5 or 6 , both over a frequency range from DC to typically 650 MHz . The division ratio is controlled by the Mode Control. The divide-by-10 or -11 capability allows the use of pulse swallowing techniques to control high-speed counting modulos by lower-speed circuits. The 11C90 may be used with either ECL or TTL power supplies.
In addition to the ECL outputs $Q$ and $\bar{Q}$, the 11C90 contains an ECL-to-TTL converter and a TTL output. The TTL output operates from the same $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ levels as the counter, but a separate pin is used for the TTL circuit $\mathrm{V}_{\text {EE }}$. This minimizes noise coupling when the TTL output switches and
also allows power consumption to be reduced by leaving the separate $V_{E E}$ pin open if the TTL output is not used.
To facilitate capacitive coupling of the clock signal, a $400 \Omega$ resistor ( $V_{\text {REF }}$ ) is connected internally to the $V_{B B}$ reference. Connecting this resistor to the Clock Pulse input (CP) automatically centers the input about the switching threshold. Maximum frequency operation is achieved with a $50 \%$ duty cycle.
Each of the Mode Control inputs is connected to an internal $2 \mathrm{k} \Omega$ resistor with the other end uncommitted ( $\mathrm{RM}_{1}$ and $\mathrm{RM}_{2}$ ). An M input can be driven from a TTL circuit operating from the same $V_{C C}$ by connecting the free end of the associated $2 \mathrm{k} \Omega$ resistor to $V_{C C A}$. When an $M$ input is driven from the ECL circuit, the $2 \mathrm{k} \Omega$ resistor can be left open or, if required, can be connected to $V_{E E}$ to act as a pull-down resistor.

## Ordering Code: See Section 6

Logic Symbol


Connection Diagram


TL/F/9892-1

| Pin Names | Description |
| :--- | :--- |
| $\overline{C E}$ | Count Enable Input (Active LOW) |
| CP | Clock Pulse Input |
| $M_{n}$ | Count Modulus Control Input |
| $M S$ | Asynchronous Master Set Input |
| $Q, \bar{Q}$ | ECL Outputs |
| $Q T T L$ | TTL Output |
| $R M_{n}$ | $2 \mathrm{k} \Omega$ Resistor to $M_{n}$ |
| $V_{R E F}$ | $400 \Omega$ Resistor to $V_{B B}$ |

## Absolute Maximum Ratings

Above which the useful life may be impaired
If Military/Aerospace speclfied devices are required, please contact the National Semiconductor Sales Office/Distributors for avallability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ( $\mathrm{T}_{\mathrm{J}}$ )
Supply Voltage Range
Input Voltage (DC)
Output Current (DC Output HIGH)
Operating Range
$+150^{\circ} \mathrm{C}$
-7.0 V to GND
$V_{E E}$ to GND
$-50 \mathrm{~mA}$

Lead Temperature
(Soldering, 10 sec.$) \quad 300^{\circ} \mathrm{C}$

Recommended Operating Conditions

|  | Min | Typ | Max |
| :--- | :---: | :---: | :---: |
| Ambient Temperature $\left(T_{A}\right)$ |  |  | $+75^{\circ} \mathrm{C}$ |
| $\quad$ Commercial | $0^{\circ} \mathrm{C}$ |  | $+125^{\circ} \mathrm{C}$ |
| $\quad$ Military | $-55^{\circ} \mathrm{C}$ |  |  |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$ |  |  | -4.7 V |
| $\quad$ Commercial | -5.7 V | -5.2 V | -4.7 V |
| Military | -5.7 V | -5.2 V | -4. |

## TTL Input/Output Operation

## DC Electrical Characteristics

Over Operating Temperature and Voltage Range unless otherwise noted, Pins 12 and $13=$ GND

| Symbol | Parameter | Min | Typ <br> (Note 3) | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ Inputs |  | 4.1 |  | V | Guaranteed Input HIGH Threshold Voltage (Note 4), $V_{C C}=V_{C C A}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage $M_{1}$ and $M_{2}$ Inputs |  | 3.3 |  | V | Guaranteed Input LOW Threshold Voltage (Note 4), $V_{C C}=V_{C C A}=5.0 \mathrm{~V}$ |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage QTTL Output | 2.3 | 3.3 |  | V | $\begin{aligned} & V_{C C}=V_{C C A}=M i n \\ & I_{O H}=-640 \mu \mathrm{~A} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage QTTL Output |  | 0.2 | 0.5 | V | $\begin{aligned} & V_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{Min}, \\ & \mathrm{l}_{\mathrm{OL}}=20.0 \mathrm{~mA} \end{aligned}$ |
| IIL | Input LOW Current $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ Inputs |  | -2.3 | -5.0 | mA | $\begin{aligned} & V_{C C}=V_{C C A}=M a x, \\ & V_{I N}=0.4 \mathrm{~V}, \text { Pins } 6,7=V_{C C} \end{aligned}$ |
| Isc | Output Short Circuit Current | -20 | -35 | -80 | mA | $\begin{aligned} & V_{C C}=V_{C C A}=M a x, \\ & V_{\text {OUT }}=0.0 \mathrm{~V}, \operatorname{Pin} 14=V_{C C} \end{aligned}$ |

## AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=5.0 \mathrm{~V}$ Nominal, $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

| Symbol | Parameter | Min | Typ | Max | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay, (50\% to 50\%) CP to QTTL | 6 | 10 | 14 | ns | See Figure 1 |
| $t_{\text {PLH }}$ | Propagation Delay, (50\% to 50\%) MS to QTTL |  | 12 | 17 | ns |  |
| $\mathrm{t}_{\text {s }}$ | Mode Control Setup Time | 4 | 2 |  | ns |  |
| $t_{h}$ | Mode Control Hold Time | 0 | -2 |  | ns |  |
| ${ }_{\text {t }}^{\text {TLH }}$ | Output Rise Time <br> (20\% to $80 \%$ ) |  | 10 |  | ns |  |
| $\mathrm{t}_{\text {THL }}$ | Output Fall Time ( $80 \%$ to $20 \%$ ) |  | 2 |  | ns |  |
| $\mathrm{f}_{\text {MAX }}$ | Count Frequency | $\begin{aligned} & 550 \\ & 600 \end{aligned}$ | $\begin{aligned} & 650 \\ & 650 \end{aligned}$ |  | MHz | $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ <br> $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ <br> Clock Input AC Coupled 350 mV Peak-to-Peak Sinewave (Note 5) |

ECL Operation-Commercial Version
DC Electrical Characteristics
$V_{C C}=V_{C C A}=G N D, V_{E E}=-5.2 \mathrm{~V}$

| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\text {A }}$ | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage $Q$ and $\bar{Q}$ | $\begin{aligned} & -1060 \\ & -1025 \\ & -980 \end{aligned}$ | $\begin{aligned} & -995 \\ & -960 \\ & -910 \end{aligned}$ | $\begin{aligned} & -905 \\ & -880 \\ & -805 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Load $=50 \Omega$ to -2 V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage $Q$ and $\bar{Q}$ | -1820 | -1705 | -1620 | mV | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage | $\begin{aligned} & -1135 \\ & -1095 \\ & -1035 \end{aligned}$ |  | $\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$ | Guaranteed Input HIGH Signal (Note 6) |
| VIL | Input LOW Voltage | $\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$ |  | $\begin{aligned} & -1500 \\ & -1485 \\ & -1460 \end{aligned}$ | mV | $\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{gathered}$ | Guaranteed Input LOW Signal |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current <br> CP Input (Note 1) MS Input <br> $\mathrm{M}_{1}$ and $\mathrm{M}_{2}$ Input |  |  | $\begin{array}{r} 400 \\ 400 \\ 250 \\ \hline \end{array}$ | $\mu \mathrm{A}$ | $\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHA}}$ |
| I/L | Input LOW Current | 0.5 |  |  | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$ |
| $\mathrm{I}_{\mathrm{EE}}$ | Power Supply Current | $\begin{array}{r} -110 \\ -119 \end{array}$ | -75 |  | mA | $\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$ | Pins 6, 7, 13 not connected |
| $\mathrm{V}_{\mathrm{EE}}$ | Operating Supply Voltage Range | -5.7 | -5.2 | -4.7 | V | $\begin{array}{r} 0^{\circ} \mathrm{C} \text { to } \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$ |  |
| $V_{\text {REF }}$ | Reference Voltage | -1550 |  | -1150 | mV | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & V_{R M_{1}}=V_{R M_{2}}=-5.2 \mathrm{~V} \\ & I_{\mathrm{N}}=-10.0 \mu \mathrm{~A} \end{aligned}$ |

## AC Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$

| Symbol | Parameter | $\begin{aligned} & 0^{\circ} \mathrm{C} \\ & \text { Typ } \end{aligned}$ | $+25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} +75^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$ | Propagation Delay, ( $50 \%$ to $50 \%$ ) CP to Q | 1.8 | 1.3 | 2.0 | 3.0 | 2.5 | ns | Output: $R_{L}=50 \Omega \text { to }-2.0 \mathrm{~V}$ <br> Input: $\mathrm{t}_{\mathrm{ri}}=\mathrm{t}_{\mathrm{fi}}=2.0 \pm 0.1 \mathrm{~ns}$ $\text { ( } 20 \% \text { to } 80 \% \text { ) }$ <br> See Figure 1 |
| ${ }_{\text {tpLH }}$ | Propagation Delay, (50\% to 50\%) MS to Q | 3.7 |  | 4.0 | 6.0 | 4.5 | ns |  |
| $\mathrm{t}_{\text {s }}$ | Setup Time, M to CP | 2.0 | 4.0 | 2.0 |  | 2.0 | ns |  |
| $t_{n}$ | Hold Time, M to CP | -2.0 | 0.0 | -2.0 |  | -2.0 | ns |  |
| ${ }_{\text {t }}^{\text {LLH }}$ | Output Rise Time ( $20 \%$ to $80 \%$ ) | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| ${ }_{\text {t }}$ | Output Fall Time ( $80 \%$ to 20\%) | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency | 650 | 600 | 650 |  | 625 | MHz | AC Coupled Input 350 mV Peak-to-Peak. $\mathrm{f}_{\mathrm{MAX}}$ is Guaranteed to be 575 MHz Min at $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. |


| ECL Operation—Military Version DC Electrical Characteristics$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Min | Typ | Max | Units | $\mathrm{T}_{\text {A }}$ | Condiltions |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage $Q$ and $\overline{\mathrm{Q}}$ | $\begin{aligned} & -1100 \\ & -980 \\ & -910 \end{aligned}$ | $\begin{aligned} & -1030 \\ & -910 \\ & -820 \end{aligned}$ | $\begin{aligned} & -900 \\ & -820 \\ & -670 \end{aligned}$ | mV | $\begin{aligned} & -55^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Load $=100 \Omega$ to -2 V |
| VoL | Output LOW Voltage $Q$ and $\bar{Q}$ | -1820 | -1705 | -1620 | mV | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ |  |
| $\mathrm{V}_{\mathrm{H}}$ | Input HIGH Voltage | $\begin{aligned} & -1190 \\ & -1095 \\ & -975 \end{aligned}$ |  | $\begin{aligned} & -905 \\ & -810 \\ & -690 \end{aligned}$ | mV | $\begin{aligned} & -55^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \end{aligned}$ | Guaranteed Input HIGH Signal (Note 6) |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage | $\begin{aligned} & -1890 \\ & -1850 \\ & -1800 \end{aligned}$ |  | $\begin{aligned} & -1525 \\ & -1485 \\ & -1435 \end{aligned}$ | mV | $\begin{array}{r} -55^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \\ \hline \end{array}$ | Guaranteed Input LOW Signal |
| ${ }^{1} \mathrm{H}$ | Input HIGH Current <br> CP Input (Note 1) MS Input <br> $M_{1}$ and $M_{2}$ Input |  |  | $\begin{aligned} & 400 \\ & 400 \\ & 250 \\ & \hline \end{aligned}$ | $\mu \mathrm{A}$ | $\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHA }}$ |
| ILL | Input LOW Current | 0.5 |  |  | $\mu \mathrm{A}$ | $+25^{\circ} \mathrm{C}$ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ILB }}$ |
| $\mathrm{IEE}^{\text {e }}$ | Power Supply Current | -110 | -75 |  | mA | $+25^{\circ} \mathrm{C}$ | Pins 6, 7, 13 not connected |
|  |  |  | -119 |  | mA | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ |  |
| $\mathrm{V}_{\text {EE }}$ | Operating Supply Voltage Range | -5.7 | -5.2 | -4.7 | V | $\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$ |  |
| $\mathrm{V}_{\text {REF }}$ | Reference Voltage | -1550 |  | -1150 | mV | $+25^{\circ} \mathrm{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{RM}_{1}}=\mathrm{V}_{\mathrm{RM}_{2}}=-5.2 \mathrm{~V} \\ & \mathrm{IN}_{1}=-10.0 \mu \mathrm{~A} \end{aligned}$ |

## AC Electrical Characteristics

$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}$

| Symbol | Parameter | $\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { Tyр } \end{gathered}$ | $+25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} +125^{\circ} \mathrm{C} \\ \text { Typ } \end{gathered}$ | Units | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |  |
| $t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay, ( $50 \%$ to $50 \%$ ) CP to Q | 1.5 | 1.3 | 2.0 | 3.0 | 3.0 | ns | Output: $\mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2.0 \mathrm{~V}$ <br> Input: $t_{\mathrm{ri}}=\mathrm{t}_{\mathrm{fi}}=2.0 \pm 0.1 \mathrm{~ns}$ <br> ( $20 \%$ to $80 \%$ ) <br> See Figure 1 |
| ${ }_{\text {tpLH }}$ | Propagation Delay, ( $50 \%$ to $50 \%$ ) MS to Q | 3.5 |  | 4.0 | 6.0 | 5.0 | ns |  |
| $\mathrm{t}_{\mathrm{s}}$ | Setup Time, M to CP | 2.0 | 4.0 | 2.0 |  | 2.0 | ns |  |
| $t_{n}$ | Hold Time, M to CP | -2.0 | 0.0 | -2.0 |  | -2.0 | ns |  |
| ${ }^{\text {t }}$ L LH | Output Rise Time (20\% to 80\%) | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| ${ }^{\text {t }}$ HL | Output Fall Time ( $80 \%$ to $20 \%$ ) | 1.0 |  | 1.0 | 2.0 | 1.0 | ns |  |
| ${ }_{\text {f MAX }}$ | Maximum Clock Frequency | $700$ | 600 | 650 |  | 600 | MHz | AC Coupled Input 350 mV Peak-to-Peak. $f_{\text {MAX }}$ is Guaranteed to be 550 MHz Min at $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. |

Note 1: Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
Note 2: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature and supply voltage extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
Note 3: Typical limits are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 4: The $M_{1}$ and $M_{2}$ threshold specifications are normally referenced to the $V_{C C}$ potential, as shown in the ECL operation tables. Using $V_{E E}$ (GND) as the reference, as in normal TTL practice, effectively makes the threshold vary directly with $\mathrm{V}_{C C}$. Threshold is typically 1.3 V below $\mathrm{V}_{\mathrm{CC}}$ (e.g., +3.7 V at $\mathrm{V}_{C C}=+5 \mathrm{~V}$ ). A signal swing about threshold of $\pm 0.4 \mathrm{~V}$ is adequate, which gives the state $\mathrm{V}_{I H}$ and $\mathrm{V}_{\mathrm{IL}}$ values. The internal $2 \mathrm{k} \Omega$ resistors are intended to pull $\mathrm{T} T \mathrm{~L}$ outputs up to the required $\mathrm{V}_{\mathbb{H}}$ range, as discussed in the Functional Description and shown in Figure 5.
Note 5: TTL Output Signal swing is guaranteed at $\mathrm{f}_{\text {MAX }}$ over temperature range.
Note 6: $M_{1}$ or $M_{2}$ can be tied to $V_{C C}$ for fixed divide-by-ten operation.


TL/F/9892-3

## Conditions:

$V_{C C}=+2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{EE}}=-3.2 \mathrm{~V}$
$\mathrm{R}_{\mathrm{T}}=50 \Omega$ (scope input impedance)
$\mathrm{C}_{\mathrm{L}}=$ Jig and stray capacitance $<5.0 \mathrm{pF}$
$\mathrm{I}_{1}=\mathrm{L}_{2}=$ equal $50 \Omega$ impedance lines
$C=0.1 \mathrm{pF}$
Note 7: Use high impedance to test QTTL. Connect pin 13 to $\mathrm{V}_{\mathrm{EE}}$.
Note 8: For High frequency test use AC coupled input as in Figure 3. Adjust input amplitude to 350 mV peak-to-peak.

FIGURE 1. AC Test CIrcuit

## Functional Description

The 11C90 contains four ECL Flip-Flops, an ECL to TTL converter and a Schottky TTL output buffer with an active pull-up. Three of the Flip-Flops operate as a synchronous shift counter driving the fourth Flip-Flop operating as an asynchronous toggle. The internal feedback logic is such that the TTL output and the Q ECL output are HIGH for six clock periods and LOW for five clock periods. The Mode Control (M) inputs can modify the feedback to make the output HIGH for five clock periods and LOW for five clock periods, as indicated in the Count Sequence Table.
The feedback logic is such that the instant the output goes HIGH, the circuit is already committed as to whether the output period will be 10 or 11 clock periods long. This means that subsequent changes in an $M$ input signal, including decoding spikes, will have no effect on the current output period. The only timing restriction for an $M$ input signal is that it be in the desired state at least a setup time before the clock that follows the HHLL state shown in the table. The allowable propagation delay through external logic to an $M$ input is maximized by designing it to use the positive transition of the 11C90 output as its active edge. This gives an allowable delay of ten clock periods, minus the $C P$ to $Q$ delay of the 11 C 90 and the $M$ to $C P$ setup time. If the external logic uses the negative output transition as its active edge, the allowable delay is reduced to five clock periods minus the previously mentioned delay and setup time.
Capacitively coupled triggering is simplified by the $400 \Omega$ resistor which connects pin 15 to the internal $\mathrm{V}_{\mathrm{BB}}$ reference. By connecting this to the CP input, as shown in Figure 3, the clock is automatically centered about the input threshold. A clock duty cycle of $50 \%$ provides the fastest operation, since the Flip-Flops are Master-Slave types with offset clock thresholds between master and slave. This feature ensures that the circuit will operate with clock waveforms having very slow rise and fall times, and thus, there is no maximum frequency restriction. Recommended minimum and maximum clock amplitude as a function of a frequency and temperature are shown in the graph labeled Figure 2. When the CP or any other input is driven from another ECL circuit, normal ECL termination methods are recommended. One method is indicated in Figure 4. Other ECL termination methods are discussed in the F100K ECL Design Guide (Section 5 of Databook).


TL/F/9892-5
FIGURE 2. AC Coupled Triggering Characteristics


FIGURE 3. Capacitively Coupled Clocking


TL/F/9892-11

| $Z_{0} \Omega$ | 50 | 75 | 100 |
| :---: | :---: | :---: | :---: |
| $R_{1} \Omega$ | 80.6 | 121 | 162 |
| $R_{2} \Omega$ | 130 | 196 | 261 |

$V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{TT}}=-2.0 \mathrm{~V}$

## FIGURE 4. Clocking by ECL Source via Terminated Line

When an $M$ input is to be driven from a TTL output operating from the same $V_{C C}$ and ground ( $V_{E E}$ ), the internal $2 \mathrm{k} \Omega$ resistor can be used to pull the TTL output up as shown in Figure 5. Some types of TTL outputs will only pull up to within two diode drops of $V_{\mathrm{CC}}$, which is not high enough for 11 C90 inputs. The resistor will pull the signal up through the threshold region, although this final rise may be somewhat slow, depending on wiring capacitance. A resistor network that gives faster rise and also lower impedance is shown in Figure 6.


TL/F/9892-12
FIGURE 5. Using Internal Pull-Up with TTL Source


TL/F/9892-13
FIGURE 6. Faster Low Impedance TTL to ECL Interface

## Functional Description (Continued)

The ECL outputs have no pull-down resistors and can drive series or parallel terminated transmission lines. For short interconnections that do not require impedance matching, a $270 \Omega$ to $510 \Omega$ resistor to $V_{\text {EE }}$ can be used to establish the $V_{O L}$ level. Both $V_{C C}$ pins must always be used and should
be connected together as close to the package as possible. Pin 12 must always be connected to the $\mathrm{V}_{\mathrm{EE}}$ side of the supply, while pin 13 is required only if the TTL output is used. Low impedance $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ distribution and RF bypass capacitors are recommended to prevent crosstalk.

## Logic Diagram 11C90



TL/F/9892-6
Note: This diagram is provided for understanding of logic operation only. It should not be used for evaluation of propagation delays as many internal functions are achieved more efficiently than shown.

Count Sequence Table 11C90

|  | $Q_{1}$ | $\mathbf{Q}_{2}$ | $\mathbf{Q}_{3}$ | $\mathrm{Q}_{4}$ (QTTL) |
| :---: | :---: | :---: | :---: | :---: |
| $\div 10$ | H | H | H | $\mathrm{H}+$ |
|  | L | H | H | H |
|  | $L$ | L | H | H |
|  | L | L | L | H |
|  | H | L | $L$ | H |
|  | H | H | L | H |
|  | L | H | H | L |
|  | $L$ | L | H | $L$ |
|  | L | L | L | $L$ |
|  | H | L | L | $L$ |
|  |  | H | L | L |

TL/F/9892-7
Note: A HIGH on MS forces all Qs HIGH.

## Logic Diagram 11C91



|  | $\mathbf{Q}_{1}$ | $\mathbf{Q}_{2}$ | $\mathbf{Q}_{3}$ (QTTL) |
| :---: | :---: | :---: | :---: |
| $\div 5$ | H | H | $H \longleftrightarrow \div 6$ |
|  | L | H | H |
|  | L | L | H |
|  | L | L | L |
|  | H | L | L |
|  | H | H | L |

Note: A HIGH on MS forces all Qs HIGH.

Operating Mode Table 11C91

| Inputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- |
| Output <br> Response |  |  |  |  |
|  | $\overline{\text { CE }}$ | $\mathbf{M}_{\mathbf{1}}$ | $\mathbf{M}_{\mathbf{2}}$ |  |
| H | X | X | X | Set HIGH |
| L | H | X | X | Hold |
| L | L | L | L | $\div 6$ |
| L | L | X | H | $\div 5$ |
| L | L | H | X | $\div 5$ |

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Don't Care

## Section 4 10K and 100K Memory Datasheets

This section contains first page only of datasheets previously found in the F100K ECL Databook. For complete information on these and other ECL memory devices, refer to the National Memory Databook (Lit\# 400088).
行
Section 4 Contents
10145A $16 \times 4$-Bit Register File (RAM) ..... 4-3
$1040216 \times 4$-Bit Register File (RAM) ..... 4-4
$104151024 \times 1$-Bit Static RAM ..... 4-5
$10422256 \times 4$-Bit Static RAM ..... 4-6
$10014516 \times 4$-Bit Register File (RAM) ..... 4-7
$1004151024 \times 1$-Bit RAM ..... 4-8
$100422256 \times 4$-Bit RAM ..... 4-9

## National <br> Semiconductor

## 10145A

$16 \times 4$ Register File (Random Access Memory)

## General Description

The 10145A is a high-speed 64-bit Random Access Memory organized as a 16 -word by 4 -bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data bussing are facilitated by the output disabling features of the Chip Select (CS) and Write Enable (WS) inputs.
A HIGH signal on $\overline{\mathrm{CS}}$ prevents read and write operations and forces the outputs to the LOW state. When $\overline{\mathrm{CS}}$ is LOW,
the $\overline{\text { WE }}$ input controls chip operations. A HIGH signal on $\overline{\text { WE }}$ disables the Data input ( $D_{n}$ ) buffers and enables readout from the memory location determined by the Address $\left(\mathrm{A}_{n}\right)$ inputs. A LOW signal on $\overline{W E}$ forces the $Q_{n}$ outputs LOW and allows data on the $D_{n}$ inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, i.e., the memory is non-inverting.

Connection Diagram
16-Pin Ceramic Dual-in-Line Package


TL/D/9742-2
Top View
Order Number 10145ADC
See NS Package Number J16A*
*For most current package information, contact product marketing.
Optional Processing
QR=Burn-In

PIn Names

| $\overline{\mathrm{CS}}$ | Chip Select |
| :--- | :--- |
| $A_{0}-A_{3}$ | Address |
| $D_{0}-D_{3}$ | Data Inputs |
| $\overline{W E}$ | Write Enables |
| $Q_{0}-Q_{3}$ | Data Outputs |

## 1040216 x 4-Bit Register File (Random Access Memory)

## General Description

The 10402 is a high-speed 64-bit Random Access Memory (RAM) organized as a 16 -word by 4 -bit array. External logic requirements are minimized by internal address decoding, while memory expansion and data busing are facilitated by the output disabling features of the Chip Select ( $\overline{\mathrm{CS}}$ ) and Write Enable ( $\overline{\mathrm{WE}}$ ) inputs.
A HIGH signal on $\overline{C S}$ prevents read and write operations and forces the outputs to the LOW state. When $\overline{\mathrm{CS}}$ is LOW,
the $\overline{W E}$ input controls chip operations. A HIGH signal on $\overline{W E}$ disables the Data input $\left(D_{n}\right)$ buffers and enables readout from the memory location determined by the Address $\left(A_{n}\right)$ inputs. A LOW signal on WE forces the $Q_{n}$ outputs LOW and allows data on the $D_{n}$ inputs to be stored in the addressed location. Data exists in the same logical sense as presented at the data inputs, i.e., the memory is non-inverting.

## Connection Diagrams

16-Pin Ceramic Dual-In-Line Package


Top View
Order Number 10402DC
See NS Package Number J16A*
*For most current package information, contact product marketing.

Optlonal Processing QR = Burn-In

$$
V_{E E}=\operatorname{Pin} 8
$$

FIGURE 1. Logic Symbol
Pin Names

| $\overline{C S}$ | Chip Select Input |
| :--- | :--- |
| $A_{0}-A_{3}$ | Address Inputs |
| $D_{0}-D_{3}$ | Data Inputs |
| $\overline{W E}$ | Write Enable Input |
| $Q_{0}-Q_{3}$ | Data Outputs |

Order Number 10402FC See NS Package Number W16A*
*For most current package information, contact product marketing.

Optional Processing QR = Burn-In

$$
V_{C C}=\operatorname{Pin} 16
$$



TL/D/9640-1

## 7 National Semiconductor

## $104151024 \times 1$-Bit Static Random Access Memory

## General Description

The 10415 is a 1024 -bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data input and non-inverting Data output lines, as well as an active-LOW Chip Select line.

## Features

- Address access time-10 ns max
- Chip select access time-5 ns max
- Open-emitter output for easy memory expansion
- Power dissipation-0.92 mW/Bit Typ
- Power dissipation decreases with increasing temperature
■ Polyimide die coat for alpha immunity


## Connection Diagrams

## 16-Pin Ceramic Dual-In-Line Package



Top View
Order Number 10415DC10 See NS Package Number J16A*
*For most current package information, contact product marketing.
Optional Processing QR = Burn-In

16-Pin Ceramic Flatpack


TL/D/9641-11
Top View
Order Number 10415FC10 See NS Package Number W16A*
"For most current package information, contact product marketing
Optional Processing QR = Burn-In

## $10422256 \times 4$-Bit Static RAM 10 ns, 7 ns, 5 ns

## General Description

The 10422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control, and buffer storage applications. The device features full on-chip address decoding, separate Data Input and non-inverting Data Output lines, as well as four active-LOW Bit Select lines.

## Features

- Address access time- $5 \mathrm{~ns} / 7 \mathrm{~ns} / 10 \mathrm{~ns}$ Max
- Bit select access time-4 ns/5 ns/5 ns Max
- Four bits can be independently selected
- Open-emitter outputs for easy memory expansion
- Polyimide die coat for alpha immunity


## Connection Diagrams

24-Pin Ceramic Dual-In-Line Package


Top View
Order Number 10422DC5, 10422DC7 or 10422DC10 See NS Package Number J24E*
*For most current package information, contact product marketing


TL/D/9642-3

## Logic Symbol


$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$V_{E E}=\operatorname{Pin} 18(21)$
( ) = Flatpak

Pin Names

| Symbol | Description |
| :--- | :--- |
| $\overline{\mathrm{WE}}$ | Write Enable Input (Active LOW) |
| $\overline{\mathrm{BS}}_{0}-\overline{\mathrm{BS}}_{3}$ | Bit Select Inputs (Active LOW) |
| $\mathrm{A}_{0}-\mathrm{A}_{7}$ | Address Inputs |
| $\mathrm{D}_{0}-\mathrm{D}_{3}$ | Data Inputs |
| $\mathrm{O}_{0}-\mathrm{O}_{3}$ | Data Outputs |

## 10014516 x 4-Bit Register File Random Access Memory

## General Description

The 100145 is a 64 -bit register file organized as 16 words of four bits each. Separate address inputs for Read $\left(\mathrm{AR}_{n}\right)$ and Write ( $A W_{n}$ ) operations reduce overall cycle time by allowing one address to be setting up while the other is being executed. Operating speed is also enhanced by four output latches which store data from the previous read operation while writing is in progress. When both Write Enable ( $\overline{\mathrm{WE}}$ ) inputs are LOW, the circuit is in the Write mode and the latches are in a Hold mode. When either $\overline{W E}$ input is HIGH, the circuit is in the Read mode, but the outputs can
be forced LOW by a HIGH signal on either of the Output Enable ( $\overline{\mathrm{OE}}$ ) inputs. This makes it possible to tie one $\overline{\mathrm{WE}}$ input and one $\overline{O E}$ input together to serve as an active-LOW Chip Select ( $\overline{\mathrm{CS}}$ ) input. When this wired $\overline{\mathrm{CS}}$ input is HIGH, reading will still take place internally and the resulting data will enter the latches and become available as soon as the $\overline{\mathrm{CS}}$ signal goes LOW, provided that the other $\overline{\mathrm{OE}}$ input is LOW. A HIGH signal on the Master Reset (MR) input overrides all other inputs, clears all cells in the memory, resets the output latches, and forces the outputs LOW.

## Connection Diagrams

24-Pin Ceramic Dual-In-Line Package


Top View
Order Number 100145DC See NS Package Number J24E*

Optional Processing QR = Burn-In
*For most current package information, contact product marketing.

## Logic Symbol


$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$V_{E E}=\operatorname{Pin} 18$ (21)
() = Flatpak

24-Pin Ceramic Flatpak

TL/D/9638-2

Top View

Pin Names

| $A R_{0}-A R_{3}$ | Read Address Inputs |
| :--- | :--- |
| $A W_{0}-A W_{3}$ | Write Address Inputs |
| $\overline{W E}_{1}, \overline{W E}_{2}$ | Read Enable Inputs (Active LOW) |
| $\overline{O E}_{1}, \overline{O E} 2$ | Output Enable Inputs (Active LOW) |
| $D_{0}-D_{3}$ | Data Inputs |
| $M R$ | Master Reset Input |
| $Q_{0}-Q_{3}$ | Data Outputs |

TL/D/9638-1 Data Outputs

> Order Number 100145FC
> See NS Package Number W24B*
> Optional Processing QR $=$ Burn-In
> *For most current package information, contact product marketing.
$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$V_{E E}=\operatorname{Pin} 18(21)$
()$=$ Flatpak


2

## $1004151024 \times 1$-Bit Random Access Memory

## General Description

The 100415 is a 1024-bit read/write Random Access Memory (RAM), organized as 1024 words by one bit per word and designed for high-speed scratchpad, control and buffer storage applications. The device includes full on-chip address decoding, separate Data Input and non-inverting Data Output lines, as well as an active-LOW Chip Select line.

## Features

- Address access time-10 ns max
- Chip select access time-5.0 ns max
- Open-emitter output for easy memory expansion
- Power dissipation- $0.79 \mathrm{~mW} /$ bit typ
- Power dissipation decreases with increasing temperature
■ Polyamide die coat for alpha immunity


## Connection Diagrams



TL/D/9639-11

Order Number 100415FC10 See NS Package Number W16A*

16-Pin Ceramic Dual-In-Line Package


Top View
Order Number 100415DC10 See NS Package Number J16A*
*For most current package information, contact product marketing.

## Optional Processing QR $=$ Burn-In

Pin Names

| $\overline{\text { WE }}$ | Write Enable Input (Active LOW) |
| :--- | :--- |
| $\overline{C S}$ | Chip Select Input (Active LOW) |
| $A_{0}-A_{9}$ | Address Inputs |
| $D$ | Data Input |
| $O$ | Data Output |

## $100422256 \times 4$-Bit Static RAM $10 \mathrm{~ns}, 7 \mathrm{~ns}, 5 \mathrm{~ns}$

## General Description

The 100422 is a 1024-bit read/write Random Access Memory (RAM), organized 256 words by four bits per word. It is designed for high-speed scratchpad, control and buffer storage applications. The device features full on-chip address decoding, separate Data Input and non-inverting Data Output lines, as well as four active-LOW Bit Select lines.

## Features

- Address access time-5 ns/7 ns/10 ns max
- Bit select access time-4 ns/5 ns/5 ns max

■ Four bits can be independently selected
■ Open-emitter outputs for easy memory expansion

- Polyimide die coat for alpha immunity


## Connection Diagrams

## 24-Pin Ceramic Dual-In-Line Package



Top View
Order Number 100422DC5, 100422DC7 or 100422DC10 See NS Package Number J24E*

TL/D/9643-2

## Top View <br> Order Number 100422FC5, 100422FC7 or 100422FC10 See NS Package Number W24B*

*For most current package information, contact product marketing.
Optional Processing, QR = Burn-In
*For most current package information, contact product marketing.

## Logic Symbol



## Pin Names

| $\overline{\mathrm{WE}}$ | Write Enable Input (Active LOW) |
| :--- | :--- |
| $\overline{\mathrm{BS}}_{0}-\overline{\mathrm{BS}}_{3}$ | Bit Select Inputs (Active LOW) |
| $\mathrm{A}_{0}-\mathrm{A}_{7}$ | Address Inputs |
| $\mathrm{D}_{0}-\mathrm{D}_{3}$ | Data Inputs |
| $\mathrm{O}_{0}-\mathrm{O}_{3}$ | Data Outputs |

$V_{C C}=\operatorname{Pin} 6(9)$
$V_{C C A}=\operatorname{Pin} 7(10)$
$V_{E E}=\operatorname{Pin} 18$ (21)
() = Flatpak

Section 5
Design Guide

## Section 5 Contents

Chapter One-Circuit Basics ..... 5-3
Chapter Two-Logic Design ..... 5-9
Chapter Three-Transmission Line Concepts ..... 5-23
Chapter Four-System Considerations ..... 5-37
Chapter Five-Power Distribution and Thermal Considerations ..... 5-51
Chapter Six-Testing Techniques ..... 5-59
Chapter Seven-Quality Assurance and Reliability ..... 5-63

## Chapter 1 Circuit Basics

## Introduction

ECL circuits, except for the simplest elements, are schematically formidable and many of the specified parameters are relatively unfamiliar to system designers. The relationships between external parameters and internal circuitry are best determined by individually examining the fundamental subcircuits of a simple element. System variables such as supply voltage tolerances and temperature have predictable effects on circuit parameters, thus allowing a systematic evaluation of noise margins.

## Basic ECL Switch

At the bottom of every ECL circuit, literally and figuratively, is a current source. In the basic ECL switch (Figure 1-1), a logic operation consists of steering the current through either of two return paths to $\mathrm{V}_{\mathrm{CC}}$; the state of the switch can be detected from the resultant voltage drop across R1 or R2. The net voltage swing is determined by the value of the resistors and the magnitude of the current. Further, these two values are chosen to accomplish the charging and discharging of all of the parasitic capacitances at the desired switching rate.

## Required Input Signal

The voltage swing required to control the state of the switch is relatively small due to the exponential change of emitter current with base-emitter voltage and to the differential mode of operation. For example, starting from a condition where the two base voltages are equal, which causes the current to divide equally between Q1 and Q2, an increase of $\mathrm{V}_{\text {IN }}$ by 125 mV causes essentially all of the current to flow through Q1. Conversely, decreasing $V_{I N}$ by 125 mV causes essentially all of the current to flow through Q2. Thus the minimum signal swing required to accomplish switching is 250 mV centered about $\mathrm{V}_{\mathrm{BB}}$. The signal swing is made larger (approximately 750 mV ) to provide noise immunity and to allow for differences between the $V_{B B}$ of one circuit and the output voltage levels of another circuit driving it.


FIGURE 1-1. Basic ECL Switch

## Transition Region

If the voltage at the collector of Q1 is monitored while varying $\mathrm{V}_{\mathrm{IN}}$ above and below the value of $\mathrm{V}_{\mathrm{BB}}$, the relationship between $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{IN}}$ appears as shown in Figure 1-2. Note that the horizontal axis of the graph is centered on $V_{B B}$; this emphasizes the importance of $\mathrm{V}_{\mathrm{BB}}$ in fixing the location of the transition region. The shape of the transition (or threshold) region is governed by the transistor characteristics and the value of current to be switched. Both of these factors are determined by the circuit designer. The shape of the transition region is essentially invariant over a broad range of conditions, due to the matching of transistor characteristics inherent with IC technology and because the transistors are at the same temperature. The inherent matching of IC resistors assures equal voltage swings at the two collectors.

## Emitter-Follower Buffers

In Figure 1-2, $\mathrm{V}_{\mathrm{C} 1}$ ranges from $\mathrm{V}_{\mathrm{CC}}$ (ground) when Q1 is off to approximately -0.90 V when Q1 is conducting all of the source current. To make these voltage levels compatible with the voltages required to drive the input of another current switch, emitter followers are added as shown in the buffered current switch (Figure 1-3). In addition to translating $V_{C 1}$ and $V_{C 2}$ downward, the emitter followers also isolate the collector nodes from load capacitance and provide current gain. Since the output impedance of the emitter followers is low (approximately $7 \Omega$ ), ECL circuits can drive transmission lines-coaxial cables, twisted pairs, and etched circuits-having characteristic impedances of $50 \Omega$ or more.


TL/F/9905-2
FIGURE 1-2. $\mathbf{V}_{\mathbf{C 1}_{1}} \mathbf{V}_{\mathbf{I N}}$ Transition Region

## Emitter-Follower Buffers (Continued)



TL/F/9905-3
FIGURE 1-3. Buffered Current Switch
In this buffered current switch, the collectors of Q3 and Q4 return to a separate ground lead, $\mathrm{V}_{\mathrm{CCA}}$. This separation insures that any changes in load currents during switching do not cause a change in $V_{C C}$ through the small but finite inductance of the $V_{\text {CCA }}$ bond wire and package lead. Outside the package, the $V_{C C}$ and $V_{C C A}$ leads should be connected to the common $V_{C C}$ distribution.
For internal functions of complex circuits where loading is minimal, the buffer transistors are scaled down to maintain high switching speeds with modest source currents. For service as output buffers, the emitter followers are designed for a maximum rated output current of 50 mA . For standardization of testing, detailed specifications on guaranteed $\mathrm{min} / \mathrm{max}$ output levels apply when an output is loaded with $50 \Omega$ returned to $-2 V$. The emitter followers have no internal pull-down resistors; consequently, there is maximum design flexibility when optimizing line terminations and using wired-OR techniques for combinatorial logic or data bussing.

## Multiple Inputs

The buffered switch of Figure $1-3$ is essentially an ECL line receiver circuit with the bases of both Q1 and Q2 available for receiving differential signals. With one input connected to the $\mathrm{V}_{\mathrm{BB}}$ terminal, the switch can receive a signal transmitted in a single-ended mode or it can act as a buffer or logic inverter. To perform the OR and NOR of two or more functions, additional transistors are connected in parallel with Q1 as indicated in Figure 1-4. When any input is HIGH, its associated transistor conducts the source current and Q2 is turned off; this causes the collector of Q1 to go LOW and the collector of Q2 to go HIGH, with the emitters of Q3 and Q4 following the collectors of Q1 and Q2 respectively. When two or more inputs are HIGH, the results are the same. Thus, with a HIGH level defined as a True or logic "1" signal, Q3 provides the NOR of the inputs while Q4 simultaneously provides the OR. In addition to the logic design flexibility afforded by the availability of both the assertion and negation, the Q3 and Q4 outputs can drive both conductors of a differential pair for data transmission. Also shown in Figure 1-4 are the pull-down resistors, nominally $50 \mathrm{k} \Omega$, connected between ECL inputs and the negative supply. These resistors serve the purpose of holding unused inputs in the LOW state by sinking ICBO current and preventing the build-up of charge on input capacitances. Accordingly, most non-essential ECL inputs are designed to be active HIGH. When such inputs are not used, the pull-down resistors eliminate the need for external wiring to hold them LOW.


TL/F/9905-4
FIGURE 1-4. Input Expansion by Parallel Transistors

## Power Conservation, Complementary Functions

Power dissipation in an ECL circuit is due in part to the output load currents and in part to the internal operating currents. Load currents depend on system design factors and are discussed in Chapter 5. In the basic switch (Figure $1-1$ ), power dissipation is fixed by the source current and the supply voltage, whether the circuit is in a quiescent or transient state. There is no mechanism for causing a current spike such as occurs in TTL circuits, and thus the power dissipation is not a function of switching frequency.
A distinct advantage of the ECL switch is the ease of forming both the assertion and negation of a function without additional time delay or complexity. This is very significant in complex MSI functions, since it helps to maximize the efficiency of the internal logic while minimizing chip area and power consumption. Since most 100K ECL devices have complementary outputs, the system designer has similar opportunities to reduce package count and power consumption while enhancing logic efficiency and reducing throughput times.

## Series Gating, Wired-AND

Quite often in ECL elements, the circuitry required to generate functions is much simpler than the detailed logic diagrams suggest. In addition to readily available complementary functions and the wired-OR option, other techniques providing high performance with low part count are series gating and wired collectors. These are illustrated in principle by the simplified schematics of Figures 1-5 and 1-6.

## Series Gating, Wired-AND (Continued)



TL/F/9905-5
FIGURE 1-5. Series/Parallel Gating


TL/F/9905-6
FIGURE 1-6. Exclusive-OR/NOR
In Figure 1-5, if both A and B are HIGH, then Q1 and Q3 conduct and IS flows through R1, making the collector of Q1 go LOW, thereby achieving the NAND of A and B. Connecting the collectors of Q2 and Q4 to the same load resistor provides the AND of A and B. If the collectors of Q3 and Q4 were interchanged, a different pair of functions of $A$ and $B$ would be produced. Similarly, a third functional pair is achieved by interchanging the collectors of Q1 and Q2. For Q3 and Q4 to operate at a lower voltage level than Q1 and Q2, the voltage level of $B$ is translated downward from the normal ECL levels and $V^{\prime}{ }_{B B}$ is similarly translated downward from the $\mathrm{V}_{\mathrm{BB}}$ voltage. In the slightly more complex circuit in Figure 1-6, another pair of transistors is added to obtain the Exclusive-OR and Exclusive-NOR functions.

Connecting transistors in series is not limited to two levels of decision making; three levels are shown in the simplified schematic of an octal decoding tree (Figure 1-7). If the three input signals are all HIGH, Q1 conducts through Q9 and Q13 to make the collector of Q1 LOW. In all, there are eight possible paths through which the source current can return to the positive supply. A LOW signal at the collector of any one of the transistors in the top row represents a unique combination of the three input signals. This 1 -of- 8 decoding circuit illustrates very clearly how ECL design techniques make the most efficient use of components and power to generate complex functions. This same set of switches, with the upper collectors wired in two sets of four collectors each, generates the binary sum and its complement of the three input signals.

## The Current Source, Output Regulation

All elements of the F100K circuits use a transistor current source illustrated in Figure 1-8. Source current is determined by an internally generated reference voltage $\mathrm{V}_{\mathrm{CS}}$, the emitter resistor $\mathrm{R}_{\mathrm{S}}$ and the base-emitter voltage of Q5. The reference voltage is designed to remain fixed with respect to the negative supply $V_{E E}$, which makes IS independent of supply voltage.


TL/F/9905-7
FIGURE 1-7. Octal Decoding Tree


TL/F/9905-8
FIGURE 1-8. Constant Current Source for a Switch
Regulating the current source (Is) simplifies system design because output voltage and switching parameters are not sensitive to $\mathrm{V}_{\mathrm{EE}}$ changes. Output voltage levels are determined primarily by the voltage drops across R1 and R2 resulting from the collector currents of Q1 and Q2. Since the collector current of the conducting transistor (Q1 or Q2) is determined by Is and the transistor $\alpha$, the voltage drop across the collector load resistor is not sensitive to $\mathrm{V}_{\mathrm{EE}}$ variations. For example, a 1 V change in $\mathrm{V}_{\mathrm{EE}}$ changes the output level $\mathrm{V}_{\mathrm{OL}}$ by only 30 mV .
Switching parameters are affected by transistor characteristics, the collector resistor (R1 or R2), stray capacitances, and the amount of current being switched. In other forms of ECL where source currents change with $\mathrm{V}_{\mathrm{EE}}$, switching parameters are directly affected. This sensitivity is essentially eliminated in F100K circuits by regulating Is against $V_{E E}$ changes.
Power dissipation in an ECL switch is the product of $I_{S}$ and $\mathrm{V}_{\mathrm{EE}}$. By holding IS constant with $\mathrm{V}_{\mathrm{EE}}$, incremental changes in dissipation are linear with $V_{E E}$ changes. In non-regulated ECL, Is increases with $V_{E E}$ causing switch dissipation to change more rapidly with $\mathrm{V}_{\mathrm{EE}}$.

## Threshold Regulation

As previously discussed, the input threshold region of an $E C L$ switch is centered on the internal reference $V_{B B}$. In F100K circuits, the on-chip bias driver holds $\mathrm{V}_{\mathrm{BB}}$ constant with respect to $V_{\mathrm{CC}}$, thus minimizing changes in input thresholds with $V_{E E}$. For a $V_{E E}$ change of $1 V$, for example, $\mathrm{V}_{\mathrm{BB}}$ changes by approximately 25 mV .
With output voltage levels and input thresholds regulated, F100K circuits tolerate large differences in $\mathrm{V}_{\mathrm{EE}}$ between a driving and a receiving circuit and still maintain good noise margins. For example, a driving circuit operated with -4.2 V and receiving circuit operated with -5.7 V experience a LOW state noise margin loss of only 30 mV to 40 mV compared to the ideal case of both circuits with $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$. This insensitivity to $V_{E E}$ simplifies the design of system power distribution and regulation.

## Temperature Compensation

In F100K circuits, input thresholds are made insensitive to temperature by regulating $\mathrm{V}_{\mathrm{BB}}$. Output voltage levels are made insensitive to temperature by a correction factor designed into the current source and by a simple network connected between the bases of the output transistors as shown in Figure 1-9.


TL/F/9905-9
FIGURE 1-9. Temperature Compensation
With Q1 conducting and Q2 off, most of the source current flows through R1, while a small amount flows through R2, D1 and R3. If the chip temperature increases, the source current is made to increase, causing an increase in the voltage drop of sufficient magnitude across R1 to offset the decrease in base-emitter voltage of Q3. The voltage drop across R1 increases with temperature at the rate of approximately $1.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, while the voltage drop across D 1 decreases at the same rate. This means that there is a net voltage increase of $3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ across the series combination of R2 and R3. This increase is equally divided between the two resistors since R3 is equal to R2 (and R1); thus the voltage at the base of Q 4 goes negative by $1.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, offsetting the decrease in the base-emitter voltage of Q4. When Q2 is on and Q1 is off, the same relationships apply except that most of the current flows through R2, and D2 conducts instead of D1. F100K change rates for $\mathrm{V}_{\mathrm{OH}}, \mathrm{V}_{\mathrm{BB}}$, and $V_{O L}$ are approximately $0.06,0.08$ and $0.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, respectively.

The stabilization of output levels against changes in temperature provides significant advantages to both the user and manufacturer. In testing, an extended thermal stabilization period is not required, nor is an elaborate air cooling arrangement necessary to obtain correlation of test results between user and supplier. In a system, the output signal swing of a circuit does not depend on its temperature, therefore temperature differences do not cause a mismatch in signal levels between various locations. With temperature gradients thus eliminated as a system constraint, the design of the cooling system is greatly simplified.

## Noise Margins

The most conservative values of ECL noise margins are based on the DC test conditions and limits listed on the data sheets. Acceptance limits on $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ are identified on a symbolic waveform in Figure 1-10, with the boundaries of the input threshold region also identified. The HIGH-state noise margin is usually defined as the difference between $\mathrm{V}_{\mathrm{OH}(\mathrm{Min})}$ and $\mathrm{V}_{1 \mathrm{H}(\text { Min })}$, with the LOW-state margin defined as the difference between $\mathrm{V}_{\mathrm{OL}(\mathrm{Max})}$ and $\mathrm{V}_{\mathrm{iL}(\text { Max })}$. These two differences are identified as $\mathrm{V}_{\mathrm{NH}}$ and $\mathrm{V}_{\mathrm{NL}}$ respectively. The worst case input and output test points are also identified on the OR gate transfer function shown in Figure 1-11. The transition region indicated by the solid line is applicable when the internal reference $V_{B B}$ has the design center value of -1.32 V for F 100 K circuits. The transition regions indicated by the dashed lines represent the lot-to-lot displacement resulting from the normal production tolerances on $V_{B B}$, which amount to $\pm 40 \mathrm{mV}$ for F100K circuits. Using F100K circuit values as an example, the dashed curve on the right correlates with a $V_{B B}$ value of -1.280 V , and the input test voltage $\mathrm{V}_{\mid H(\mathrm{Min})}$ is -1.165 V , for a net difference of 115 mV . Similarly, the dashed curve on the left applies when $V_{B B}$ is -1.360 V with $\mathrm{V}_{I L(M a x)}$ specified as -1.475 V , which also gives a net difference of 115 mV . The points $V_{\text {OHC }}$ and $V_{\text {OLC }}$ are commonly referred to as the corner points because of their location on the transfer function of worst case circuits.


TL/F/9905-10
FIGURE 1-10. Identifying Specification Limits on Input and Output Voltage Levels
In actual system operation, the noise margins $\mathrm{V}_{\mathrm{NH}}$ and $\mathrm{V}_{\mathrm{NL}}$ are quite conservative because of the way $\mathrm{V}_{\mathrm{iH}(\mathrm{Min})}$ and $\mathrm{V}_{1 \mathrm{~L}}(\mathrm{Max})$ are defined. From the transfer function of Figure 1-11, for example, $\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$ is defined as a value of input voltage which causes a worst-case output to decrease from $\mathrm{V}_{\mathrm{OH}(\text { Min })}$ to $\mathrm{V}_{\mathrm{OHC}}$ This change in $\mathrm{V}_{\mathrm{OH}}$ amounts to only 10 mV for F 100 K circuits. Thus, if a worst case OR gate has a quiescent input of $\mathrm{V}_{\mathrm{OH}(\mathrm{Min})}$, a superimposed negative-going disturbance of amplitude $\mathrm{V}_{\mathrm{NH}}$ causes an output change of only 10 mV , assuming that the time duration of the disturbance is sufficient for the OR gate to respond fully. In

## Noise Margins (Continued)

contrast, a system fault does not occur unless the superimposed noise at the OR input is of sufficient amplitude to cause the output response to extend into the threshold region(s) of the load(s) driven by the OR gate. In general, noise becomes intolerable when it propagates through a string of gates and arrives at the input of a regenerative circuit (flip-flop, counter, shift register, etc.) with sufficient amplitude to reach the $\mathrm{V}_{\mathrm{BB}}$ level.
The critical requirement for propagating either a signal or noise through a string of gates is that each output must exhibit an excursion to the $V_{B B}$ level of the next gate in the string, assuming, of course, that the time duration is sufficient to allow full response. If the excursion at the input of a particular gate either falls short or exceeds $\mathrm{V}_{\mathrm{BB}}$, the effect on its output response is magnified by the voltage gain of the gate. On the voltage transfer function of a gate, the slope in the transition region is not, strictly speaking, constant. However, for input signal excursions of about $\pm 50 \mathrm{mV}$ on either side of $\mathrm{V}_{\mathrm{BB}}$, a value of 5.5 may be used for the voltage gain. For example, if the noise (or signal) excursion at the input of a gate falls short of $\mathrm{V}_{\mathrm{BB}}$ by 20 mV , the gate output response is 110 mV less. Another useful relationship is that if the input voltage of a gate is equal to $V_{B B}$, the output voltage is also equal to $V_{B B}$, within perhaps 30 mV .
To determine the combined effects of circuit and system parameters on noise propagation through a string of gates, refer to Figure 1-12. The voltages $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ represent differences in ground potential, while $\mathrm{V}_{3}$ and $\mathrm{V}_{4}$ are $\mathrm{V}_{\text {EE }}$ differences. The output of gate $A$ is in the quiescent LOW state and $V_{\text {PL }}$ is a positive-going disturbance voltage. Now, how large can $V_{P L}$ be without causing propagation through gate C? For a starting point, assume all three gates are identical with typical parameters; $\mathrm{V}_{\mathrm{EE}}$ is -4.5 V , the ground drops are zero, and there are no temperature gradients. Voltage parameters of F100K circuits are used. With typical circuits and the idealized environment, the maximum tolerable value of $\mathrm{V}_{\mathrm{PL}}$ for propagation is the difference between the nominal $\mathrm{V}_{\mathrm{BB}}$ of -1.320 V and nominal $\mathrm{V}_{\mathrm{OL}}$ of -1.705 V , or 385 mV . The following steps treat each non-ideal factor separately and the required reduction in $V_{P L}$ is calculated.


TL/F/9905-11
FIGURE 1-11. Locatlon of Test Points and Threshold on a Transfer Function


FIGURE 1-12. Arrangement for Noise
Propagation Analysis
Non-Typlcal $\mathrm{V}_{\mathrm{BB}}$ of Gate B: Specifications provide for $\mathrm{V}_{\mathrm{BB}}$ variations of $\pm 40 \mathrm{mV}$. If the $V_{B B}$ of gate $B$ is 40 mV more negative than nominal, $V_{\text {PL }}$ must be reduced by the same amount.
$\Delta V_{P L}=-40 \mathrm{mV}$
$V_{P L}=385-40=345 \mathrm{mV}$
Non-Typlcal $V_{O L}$ of Gate $A: V_{O L}$ limits are -1.620 V to -1.810 V corresponding to the $\pm 3 \sigma$ points on the distribution. Statistically, this means that $98 \%$ of the circuits have $V_{\text {OL }}$ values of -1.650 V or lower. Since this value differs from the nominal $\mathrm{V}_{\mathrm{OL}}$ by $55 \mathrm{mV}, \mathrm{V}_{\mathrm{PL}}$ must be reduced accordingly.
$\Delta \mathrm{V}_{\mathrm{PL}}=-55 \mathrm{mV}$
$V_{P L}=345-55=290 \mathrm{mV}$
Difference in Ground (VCc) Potential between Gates A and $B$ : Since the $V_{C C}$ lead of Gate $B$ is the reference potential for input voltages, $\mathrm{V}_{1}$ in the polarity shown effectively makes the $V_{O L}$ of Gate A more positive. Minimizing ground drops is one of the system designer's tasks (Chapter 5) and its effect on noise margins emphasizes its importance. For this analysis, a value of 30 mV is assumed.
$\Delta V_{P L}=30 \mathrm{mV}$
$V_{P L}=290-30=260 \mathrm{mV}$
Difference in $V_{E E}$ between Gates $A$ and $B$ : In the polarity shown, $V_{3}$ reduces the supply voltage for Gate $A$ since it is assumed that Gate B has $\mathrm{V}_{\mathrm{EE}}$ of -4.5 V . The indicated polarities of $V_{1}$ and $V_{3}$ seem to be in conflict if it is assumed that $V_{3}$ represents only ohmic drops along the $V_{\text {EE }}$ bus. Since $V_{3}$ may, however, be caused by the use of different power supplies or regulators as well as by ohmic drops, the polarities may exist as indicated. In any actual situation, the designer can usually predict the directions of supply current flow by observation of the physical arrangement. As mentioned earlier, a 1 V change in $\mathrm{V}_{\mathrm{EE}}$ causes a $\mathrm{V}_{\mathrm{OL}}$ change 30 mV , or $3 \%$. Assuming a value of 0.5 V for $\mathrm{V}_{3}$ and adding the 30 mV of $\mathrm{V}_{1}$, the net reduction in supply voltage for Gate A is 0.53 V . Using $3 \%$ of this reduction as the change in $\mathrm{V}_{\mathrm{OL}}$ gives a positive $V_{O L}$ shift of 16 mV , which is a reduction of noise margin.
$\Delta V_{P L}=-16 \mathrm{mV}$
$V_{\mathrm{PL}}=260-16=244 \mathrm{mV}$
If the net supply voltage of Gate $A$ is assumed to be -4.5 V , then $V_{1}$ and $V_{3}$ cause Gate $B$ to have a greater supply voltage. This, in turn, causes the $V_{B B}$ of Gate $B$ to go more negative at the rate of $25 \mathrm{mV} / \mathrm{V}$ of $\mathrm{V}_{\mathrm{EE}}$ change, or $2.5 \%$.

Noise Margins (Continued)
Thus, for the same values of $V_{1}$ and $V_{3}$, the required reduction of $V_{\mathrm{PL}}$ is only 13 mV instead of the 16 mV computed above.
Non-Typical $V_{B B}$ of Gate B: This was considered earlier for its effect at the input of Gate B. It must also be considered for its effect on the excursions of the output voltage of Gate B . Since the net input voltage of Gate $\mathrm{B}\left(\mathrm{V}_{\mathrm{OL}}+\mathrm{V}_{\mathrm{PL}}\right)$ reaches the $V_{B B}$ level of Gate $B$, the output excursion also extends to the $V_{B B}$ level and perhaps 30 mV beyond (more negative). This means that the output excursion of Gate B could be 90 mV more negative than the nominal $V_{B B}$ of Gate C . This excess excursion must be divided by the voltage gain of Gate B to determine exactly how much $\mathrm{V}_{\mathrm{PL}}$ must be reduced as compensation.
$\Delta V_{\mathrm{PL}}=-90 / 5.5=-16 \mathrm{mV}$
$V_{P L}=244-16=228 \mathrm{mV}$
Non-Typical $V_{B B}$ of Gate C: The $V_{B B}$ of Gate C could be 40 mV more positive than the nominal value of -1.320 V . Dividing by the voltage gain of Gate B gives the necessary reduction of $V_{P L}$.
$\Delta V_{P L}=-40 / 5.5=-7 \mathrm{mV}$
$\mathrm{V}_{\mathrm{PL}}=228-7=221 \mathrm{mV}$
Difference in $V_{\text {cc }}$ Potentlal between Gates B and C: For the polarity shown, $\mathrm{V}_{2}$ makes the net voltage at the C input more negative with respect to the $V_{C C}$ lead of Gate $C$. Assume 30 mV for $\mathrm{V}_{2}$ as was done for $\mathrm{V}_{1}$.
$\Delta V_{P L}=-30 / 5.5=-5.0 \mathrm{mV}$
$V_{P L}=217-5=212 \mathrm{mV}$
Difference in $\mathrm{V}_{\mathrm{EE}}$ between Gates B and C : In the polarity shown, $V_{4}$ reduces the supply voltage for Gate $C$, as does $\mathrm{V}_{2}$. As previously mentioned, $\mathrm{V}_{\mathrm{BB}}$ changes with $\mathrm{V}_{\mathrm{EE}}$ at a rate of $25 \mathrm{mV} / \mathrm{V}$, or $2.5 \%$. Assuming a value of 0.5 V for $\mathrm{V}_{4}$,
as was done for $V_{2}$, adding $V_{2}$ gives a net $V_{E E}$ reduction of 0.53 V . This makes the $\mathrm{V}_{\mathrm{BB}}$ of Gate C about 13 mV more positive, with respect to its own $V_{C C}$ lead. This must be divided by the gain of Gate B to determine the effect on the permissible value of $\mathrm{V}_{\mathrm{PL}}$.
$\Delta V_{P L}=-13 / 5.5 \cong-2 \mathrm{mV}$
$V_{P L}=212-2=210 \mathrm{mV}$
At this point the more conservatively defined $\mathrm{V}_{\mathrm{NL}}$ (Figure 1-10) should be evaluated and compared with $V_{P L}$. Subtracting the values of $\mathrm{V}_{\mathrm{OL}(\mathrm{Max})}$ and $\mathrm{V}_{\mathrm{IL}(\mathrm{Max})}$, a value of 145 mV for $\mathrm{V}_{\mathrm{NL}}$ is obtained.
The primary advantage of using $V_{N H}$ and $V_{N L}$ as the limits of tolerable noise is that they provide for simultaneous appearance of noise on inputs and outputs. Whatever the system designer's preference regarding noise margin definitions, the important factor is to recognize that the $\Delta V_{C C}$ and $\Delta V_{E E}$ between devices decrease the noise margins and therefore should be minimized.

## References

1. Marley, R.R., "On-Chip Temperature Compensation for ECL", Electronic Products, (March 1, 1971).
2. Marley, R.R., "Design Considerations of Temperature Compensated ECL," IEEE International Convention, (March, 1971).
3. Widlar, R.J., "Local IC Regulator for Logic Circuits," Computer Design, (May, 1971).
4. Widlar, R.J., "New Developments in IC Voltage Regulators," ISSCC Digest of Technical Papers, (February, 1970).
5. Muller, H.H., Owens, W.K., Verhofstadt, P.W.J., "Fully Compensated ECL," ISSCC Digest of Technical Papers, (February, 1973).

## Chapter 2 <br> Logic Design

## Introduction

The F100K family comprises SSI, MSI, LSI, gate arrays, RAMs and PROMs. This chapter covers basic gates and flip-flops, as well as applications using MSI. Gate arrays and LSI are covered in separate publications and memory applications are included in the Bipolar Memory Data Book.
National F100K ECL logic symbols use the positive logic or "active-HIGH" option of MIL-STD-806B. Logic ' 1 ' is the more positive voltage, nearest ground (typically -0.955 V ). Logic ' 0 ' or "active LOW" is the more negative level, nearest $\mathrm{V}_{\mathrm{EE}}$ (typically -1.705 V ).

## OR/NOR Gates

The most basic F100K ECL circuit is the OR/NOR gate (Figure 2-1). If the input ( A or B ) voltages are more negative than the reference voltage $\mathrm{V}_{\mathrm{BB}}$, Q1 and Q2 are cut off (nonconducting) and Q3 conducts, holding the collector of Q3 LOW. Since the base of Q4 is LOW, the pull-down resistor or terminator connected to its emitter makes the OR output LOW. The base of Q5 is HIGH (near ground) and its emitter pulls the NOR output HIGH. If either input is more positive than $\mathrm{V}_{\mathrm{BB}}$, Q1 or Q2 conducts and Q3 is cut off. This makes the base of Q4 HIGH, resulting in a HIGH at the OR output. At the same time, the base of Q5 is LOW and the pull-down resistors or terminator pulls the NOR output LOW. Detailed information concerning F100K ECL circuit basics may be found in Chapter 1.


The F100K family includes two OR/NOR-gate devices. The F100101 is a triple 5 -input OR/NOR and the F100102 is a quint 2 -input OR/NOR with common enable. One element of the F100102 is shown in Figure 2-2; the corresponding truth table is Table 2-1.


TL/F/9899-2
FIGURE 2-2. F100102 OR/NOR Gate
TABLE 2-1. F100102 Truth Table

| $\mathbf{D}_{1 \mathbf{x}}$ | $\mathbf{D}_{\mathbf{2 x}}$ | $\mathbf{E}$ | $\mathbf{O}_{\mathbf{x}}$ | $\overline{\mathbf{O}}_{\mathbf{x}}$ |
| :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | $H$ |
| L | L | $H$ | $H$ | L |
| L | $H$ | L | $H$ | L |
| L | $H$ | $H$ | $H$ | L |
| $H$ | L | L | $H$ | L |
| $H$ | L | $H$ | $H$ | L |
| $H$ | $H$ | L | $H$ | L |
| $H$ | $H$ | $H$ | $H$ | L |

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level

## Wired-OR Function

A wired-OR function can be implemented simply by connecting the appropriate outputs external to the package (see Figure 2-3). Each output is buffered so that the internal logic is not affected by the wire-OR. This is a positive logic OR, not to be confused with a DTL wired-AND or the internal series gating used for some ECL functions. This wiredOR is especially useful in implementing data busses. For further information see Chapter 4.

Wired-OR Function (Continued)

$F=(A+B)+(C+D)$
$=A+B+C+D$
$=\overline{\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}} \cdot \overline{\mathrm{D}}}$

TL/F/9899-3


TL/F/9899-4

$G=(\overline{A+B})+(C+D)$
$=(\bar{A} \bar{B})+C+D$
$F=A+B+\overline{C+D}$
$=A+B+(\bar{C} D)$

TL/F/9899-5
FIGURE 2-3. Wired-OR Function

## AND Function

The positive logic AND function is directly available in F100K ECL (F100104). There are two other approaches which can be taken to solve the problem of implementing an AND.
The first solution is indicated in Figure 2-4. A positive logic OR gate can be redrawn as a negative logic AND gate. To take advantage of this requires active-LOW input terms; but, since practically every F100K circuit provides complementary outputs, this should not be a problem.


TL/F/9899-6
FIGURE 2-4. F100101 Redrawn as AND/NAND Gate
The second possible solution is to use devices in a manner other than that intended, at the cost of package efficiency. The F100117 may be used as a triple 3-input AND/NAND by connecting only one input on each of the OR gates. The F100179 may be used as a single 9 -input AND gate by connecting the inputs to $\overline{\mathrm{C}}_{\mathrm{n}}$ and $\overline{\mathrm{G}}_{7}$ through $\overline{\mathrm{G}}_{0}$. The $\overline{\mathrm{P}}_{\mathrm{n}}$ inputs are left open (LOW) and the output is taken from $\overline{\mathrm{C}}_{\mathrm{n}}+8$.

## OR-AND, OR-AND-Invert Gates

The F100117 is a triple 2-wide OR-AND, OR-AND-Invert Gate. The logic diagram and truth table for one section of the F100117 are shown in Figure 2-5 and Table 2-2, respectively. The F100118 5 -wide OA/OAI has OR inputs of 5,4 , 4,4 , and 2 .


TL/F/9899-7
FIGURE 2-5. F100117 OA/OAI Gate
TABLE 2-2. F100117 Truth Table

| $E_{\mathbf{x}}$ | $\mathbf{D}_{\mathbf{1 x}}$ | $\mathbf{D}_{\mathbf{2 x}}$ | $\mathbf{D}_{\mathbf{3 x}}$ | $\mathbf{D}_{\mathbf{4 x}}$ | $\mathbf{O}_{\mathbf{x}}$ | $\overline{\mathbf{0}}_{\mathbf{x}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $H$ | $H$ | $X$ | $H$ | $X$ | $H$ | $L$ |
| $H$ | $X$ | $H$ | $X$ | $H$ | $H$ | L |
| $X$ | $L$ | $L$ | $X$ | $X$ | $L$ | $H$ |
| $X$ | $X$ | $X$ | $L$ | $L$ | $L$ | $H$ |
| $L$ | $X$ | $X$ | $X$ | $X$ | $L$ | $H$ |

$H=H I G H$ Voltage Level
L = LOW Voltage Level
X = Don't Care

## Exclusive-OR/Exclusive-NOR Gate

The F100107 is a quint exclusive OR/NOR gate. In addition to providing the exclusive-OR/exclusive-NOR of the five input pairs, a comparison output is available. If the five pairs of inputs are identical, bit by bit, then the common output will be L.OW.

## Flip-Flops and Latches

Flip-flops and latches are treated together due to their similarity. The only difference is that latch outputs follow the inputs whenever the enable is LOW, whereas a flip-flop changes output states only on the LOW-to-HIGH clock transition.
The advantage of an edge-triggered flip-flop is that the outputs are stable except while the clock is rising; a latch has better data-to-output propagation delay while the enable is kept active.
Both latches and flip-flops are available three to a package with individual as well as common controls and six to a package with only common controls. There are a total of four parts as indicated below.

|  | Triple w/Individual <br> Controls | Hex w/Common <br> Controls |
| :--- | :---: | :---: |
| Fllp-Flops | F100131 | F100151 |
| Latches | F100130 | F100150 |

Figure 2-6 shows the equivalent logic diagram of $1 / 3$ of an F100131. The internal clock is the OR of two clock inputs, one common to the other two flip-flops. The OR clock input permits common or individual control of the three flip-flops. In addition, one input may be used as a clock input and the other as an active-LOW enable.

Flip-Flops and Latches (Continued)


When the clock is LOW, the slave is held steady and the information on the $D$ input is permitted to enter the master. The transition from LOW to HIGH locks the master in its present state making it insensitive to the $D$ input. This transition simultaneously connects the slave to the master, causing the new information to appear at the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous master/slave changes when the clock has slow rise or fall times.

The Clear and Set Direct for each flip-flop are the OR of two inputs, one common to the other two flip-flops. The output levels of a flip-flop are unpredictable if both the Set and Clear Direct inputs are active.
The outputs of all F100K flip-flops and latches are buffered. This means that they can be OR-wired; noise appearing on the outputs cannot affect the state of the internal latches.
Table 2-3 is the truth table for the F100131 flip-flop. The truth table for the F100130 latch is similar except the enables are active LOW whereas the F100131 clocks are edge triggered.

TABLE 2-3. F100131 Truth Table

| $\mathrm{D}_{\mathrm{n}}$ | $\mathrm{CP}_{\mathrm{n}}$ | $\mathrm{CP}_{\mathrm{c}}$ | $\begin{aligned} & \mathrm{MS} \\ & S D_{\mathrm{n}} \end{aligned}$ | $\begin{aligned} & M R \\ & C D_{n} \end{aligned}$ | $Q_{n(t+1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | $\sqrt{5}$ | $L$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| L | $\begin{aligned} & L \\ & L \end{aligned}$ | $\sqrt{\Omega}$ | L | L | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ |
| $\begin{aligned} & \hline x \\ & x \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{X} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & L \\ & L \end{aligned}$ | $\begin{aligned} & Q_{n}(t) \\ & Q_{n}(t) \end{aligned}$ |
| X <br>  <br>  <br> $X$ <br> $X$ | $\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$ | $\begin{aligned} & \hline X \\ & X \\ & X \end{aligned}$ |  | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $H$ $L$ $U$ |

$\mathrm{H}=$ HIGH Voltage Level
L = LOW Voltage Level
X $=$ Don't Care
$\mathrm{U}=$ Undefined
$\mathrm{t}, \mathrm{t}+1=$ Time before and after CP positive transition
If eight flip-flops are desired, such as for pipeline register applications, the F100141 Shift Register can be used. Nei-
ther reset nor complementary outputs are available. The Seapplications, the F100141 Shift Register can be used. Nei-
ther reset nor complementary outputs are available. The Select inputs may be used to mechanize a clock enable as shown in Figure 2-7.
$\begin{aligned} H & =\text { HIGH Voltage Level } \\ & =\text { LOW Voltage Level }\end{aligned}$

FIGURE 2-6. F100131 D Flip-Flop

Flip-Flops and Latches (Continued)


FIGURE 2-7. F100141 as Octal D Flip-Flop

## Counters

The F100136 operates either as a modulo-16 up/down counter or as a 4-bit bidirectional shift register. It has three Select inputs which determine the mode of operation as shown in Table 2-4. In addition, a Terminal Count output, and two Count Enables are provided for easy expansion to longer counters. A detailed truth table for the F100136 is included in the specification sheet. To achieve the highest possible speed, complementary outputs should be equally terminated, i.e., if $Q_{2}$ is used, $\bar{Q}_{2}$ should be equally terminated even if not used. If neither output of a particular stage is used, then both outputs can be left open.

TABLE 2-4. F100136 Function Select Table

| $\mathbf{S}_{0}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{2}}$ | Function |
| :--- | :--- | :--- | :--- |
| L | L | L | Load |
| L | L | H | Count Down |
| L | H | L | Shift Left |
| L | H | H | Count Up |
| H | L | L | Complement |
| H | L | H | Clear |
| H | H | L | Shift Right |
| H | H | H | Hold |

$H=$ HIGH Voltage Level
L = Low Voltage Level

## VARIABLE MODULUS COUNTERS

An F100136 can act as a programmable divider by presetting it via the parallel inputs, counting down to minimum and then presetting it again to start the next cycle. Figure 2-8 shows a one-stage counter capable of dividing by 2 to 15. $\mathrm{S}_{0}$ and $\mathrm{S}_{1}$ are unconnected (therefore LOW) and the counter thus is in either the Count Down or Parallel Load mode, depending on whether $S_{2}$ is HIGH or LOW, respectively. $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ are also LOW, enabling counting when $\mathrm{S}_{2}$ is HIGH. Immediately after the counter is preset to $N$, which must be greater than one, the LOAD signal goes HIGH and the F100136 starts counting down on the next clock. When it counts down to one, the LOAD signal goes LOW and presetting will occur on the next clock rising edge. Generating the LOAD signal on the count of one, rather than zero, makes up for the clock pulse used in presetting.


TL/F/9899-10
FIGURE 2-8. 1-Stage Counter
A 3 -stage programmable divider is shown in Figure 2-9. The $\overline{\mathrm{TC}}$ output of the first stage enables counting in the upper stages, while the $\overline{T C}$ output of the second stage also enables counting in the third stage. The D-input signal to the flip-flop is normally HIGH and thus $\overline{\mathrm{Q}}$ is normally LOW. When both the second and third stage counters have counted down to zero, the TC output of the third stage goes LOW. When the first stage subsequently counts down to one, the D signal goes LOW, as does LOAD. Presetting thus occurs on the next clock and $\bar{Q}$ goes HIGH to end the $\overline{\text { LOAD }}$ signal and permit counting to resume on the next clock.
In Figure 2-8, the maximum clock frequency is determined by the sum of the propagation delays from $C P$ to $Q$ and the OR gate, plus the setup time from $S$ to $C P$. The maximum frequency is approximately 220 MHz for typical units or 170 MHz for worst-case units. In Figure 2-9 the critical path is $C P$ to $Q$ of the first stage plus both OR gates, plus the $S$ to CP set-up time of the counters. Typical and worst-case maximum frequencies are 190 MHz and 140 MHz respectively.

## INTERCONNECTING COUNTERS

The terminal count and count enable connections provide an easy method of interconnecting the F100136 counter to achieve longer counts. Figure $2-10$ shows a method that uses few connections but has a drawback. The counters are fully synchronous, since the clock arrives at all devices at the same time; the only drawback is that the count enables have to "trickle" down the chain. This results in a lower maximum counting rate since it drastically increases the setup time from enable to clock.
Figure 2-11 shows a method for partially overcoming these drawbacks. The enable to clock set-up is now one $\overline{C E T}$ to $\overline{T C}$ propagation delay plus one CEP to CP set-up. The count speed is thus increased. This is best seen by assuming that all stages except the second are at terminal count. At the next clock pulse, the second counter reaches terminal count and the first stage exits terminal count. The command to suppress counting in the third and fourth (and subsequent) stages arrives very quickly (via CEP). The terminal count from the second stage propagates via $\overline{T C}$ and $\overline{C E P}$ to the high order stages, but has a full 15 counts to do so.

Counters (Continued)


TL/F/9899-11
FIGURE 2-9. 3-Stage Programmable Divider


FIGURE 2-10. Slow Expansion Scheme


TL/F/9899-29
FIGURE 2-11. Fast Expansion Scheme

## Counters (Continued)

## DECODING OUTPUTS

Since the complementary outputs from each stage are available, it is an easy matter to decode any value. (Clearly, if many values needed to be decoded one would choose a decoder chip.) Figure $2-12$ shows an F100136 and 1/3 F100101 interconnected to decode 1001 (NINE). Both complementary outputs of NINE are available and there is a spare input on the decoding gate.


TL/F/9899-13
FIGURE 2-12. Decoding States of F100136

## Shift Registers

The F100141 is an 8-bit universal shift register. It can be used for parallel-to-serial or serial-to-parallel conversion and it will shift left or right. The truth table is shown in Table 2-5.

TABLE 2-5. F100141 Truth Table

| $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | CP | Mode |
| :---: | :---: | :---: | :---: |
| L | L | $\checkmark$ | Parallel Load |
| L | H | $\checkmark$ | Shift Left ( $Q_{0} \rightarrow Q_{7}$ ) |
| H | L | $\checkmark$ | Shift Right ( $\mathrm{Q}_{7} \rightarrow \mathrm{Q}_{0}$ ) |
| H | H | X | Hold |

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{x}=$ Don't Care
Figure 2-13 shows the F100141 used as a 7-bit serial-toparallel converter. When Initialize (INIT) becomes active, the next clock pulse presets the register to '10000000', and Register-Full (REG-FULL) becomes inactive. Each time a data bit becomes available, Data-Available (DATA-AVAIL) must be made active during one clock LOW-to-HIGH tran-
sition. This clocks the bit into the register moves the flag bit closer to $Q_{0}$. When the seventh data bit is entered, the flag bit reaches $Q_{0}$ and REG-FULL becomes active. The seven data bits may be removed at this time $\left(Q_{1}\right.$ to $\left.Q_{7}\right)$ and the conversion is complete.


FIGURE 2-13. Serial-to-Parallel Conversion
Table 2-6 summarizes the control inputs and corresponding F100141 modes for this circuit.

TABLE 2-6. Select Inputs Truth Table

| INIT | DATA-AVAIL | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{0}}$ | Mode |
| :---: | :---: | :---: | :--- | :--- |
| L | L | H | H | Hold |
| L | H | H | L | Shift Right |
| H | L | L | L | Preset |
| H | H | L | L | (Illegal) |

H $=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
Figure $2-15$ shows a parallel-to-serial converter using the F100136 counter. Figure $2-14$ shows the associated timing diagram. Each time the external device has taken a bit of data, it makes the signal Serial-Data-Accept (SERIAL-DATA-ACPT) HIGH. The shift register shifts right which makes the next bit available and the counter counts up. The Serial-Data-Accept term must be synchronized with the clock. The counter counts to eight after the eighth data bit has been accepted and Parallel-Data-Request (PARALLEL-DATA-RQST) becomes active HIGH. When the device supplying data makes the next byte available, Parallel-DataReady (PARALLEL-DATA-RDY) goes HIGH. On the next clock pulse the shift register loads the new data byte and the counter clears to zero. Table 2-7 shows the operating mode as a function of the control inputs.


TL/F/9899-15
FIGURE 2-14. Timing Diagram Parallel-to-Serial Converter

Shift Registers (Continued)
TABLE 2-7. Parallel-to-Serlal Converter Truth Table

| PARALLEL-DATA-RDY | SERIAL-DATA-ACPT | Shift Register |  |  | Counter |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{S}_{1}$ | $\mathrm{S}_{0}$ | Mode | $\mathrm{S}_{0}$ | $\mathrm{S}_{1}$ | $\mathrm{S}_{2}$ | Mode |
| L | L | H | H | Hold | H | H | H | Hold |
| L | H | H | L | Shift Right | L | H | H | Count Up |
| H | L | L | L | Load | H | L | H | Clear |

$H=H I G H$ Voltage Level
$L=$ LOW Voltage Level


TL/F/9899-16
FIGURE 2-15. Parallel-to-Serlal Converter

## Multiplexers

Multiplexers send one of several inputs to a single output. The function can be implemented with standard gates or bus drivers and the wired-OR connection. Figure 2-16 shows the F100123 Hex Bus Driver used as a wired-OR multiplexer. The F100123 devices could be in physically different parts of the system, since they can drive double-terminated busses.
The F100155 is a quad 2-input multiplexer with transparent latches. The device has two select terms and can accept data from either, neither, or both (OR) sources.


FIGURE 2-16. Wired-OR Multiplexer
The F100163 is a dual 8-input multiplexer with common selects. The F100164 is a single 16 -input multiplexer.
The F100163 and F100164 do not feature complementary outputs or an enable for wired-ORing. The F100171 is a triple 4-input multiplexer with enable and complementary outputs.
Figure 2-17 shows an F100164 multiplexer and F100136 connected to convert 16 -bit parallel data to single-bit serial data. A gate is added to provide complementary serial data. If the input data is stable, then the output data is stable from 6.4 ns after a clock until 2.5 ns after the next clock. This would insure valid data $50 \%$ of the time at a clock rate of 100 MHz . Terminal Count on the counter can be used as a term to indicate the last bit is being transmitted. This can be used as a clock enable to the register containing the parallel data. The propagation delay through the register is masked by the propagation delay through the counter.


FIGURE 2-17. Parallel-to-Serial Data Transmission

## Decoder

The F100170 is a universal demultiplexer/decoder. It can function as either a dual 1-of-4 decoder or as a single 1-of-8 decoder. The outputs can be either active HIGH or active LOW.
If the M input is LOW, then the F100170 is configured as a dual 1-of-4 decoder. Both $\mathrm{A}_{2 a}$ and $\mathrm{H}_{\mathrm{c}}$ must be LOW. Table 2-8 is a truth table for each half of the F100170; the two halves are completely independent. The truth table is shown for active-HIGH outputs; for active-LOW outputs, $\mathrm{H}_{\mathrm{x}}$ is made LOW.

TABLE 2-8. Dual 1-of-4 Mode Truth Table

| Inputs |  |  |  | Active-HIGH Outputs ( $\mathrm{H}_{\mathrm{a}}$ and $\mathrm{H}_{\mathrm{b}}$ Inputs HIGH) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \bar{E}_{1 \mathrm{a}} \\ & \bar{E}_{1 \mathrm{~b}} \end{aligned}$ | $\begin{aligned} & \bar{E}_{2 a} \\ & \bar{E}_{2 b} \end{aligned}$ | $\begin{aligned} & \mathbf{A}_{1 a} \\ & \mathbf{A}_{1 \mathrm{~b}} \end{aligned}$ | $\mathrm{A}_{0}$ <br> $A_{0 b}$ | $\begin{aligned} & Z_{0 a} \\ & Z_{0 b} \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{1 a} \\ & \mathbf{z}_{1 \mathrm{~b}} \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{2 a} \\ & \mathbf{z}_{2 b} \end{aligned}$ | $\begin{aligned} & \mathbf{z}_{3 a} \\ & \mathbf{z}_{3 \mathrm{~b}} \end{aligned}$ |
| H | X | X | X | L | L | L | L |
| X | H | X | X | L | L | L | L |
| L | L | L | L | H | L | L | L |
| L | L | L | H | L | H | L | L |
| L | L | H | L | L | L | H | L |
| L | L | H | H | L | L | L | H |

[^10]TABLE 2-9. Single 1-of-8 Mode Truth Table

| Inputs |  |  |  | Actlve-HIGH Outputs <br> ( $\mathrm{H}_{\mathrm{c}}$ Input HIGH) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{E}_{1} \bar{E}_{2}$ | $A_{2 a}$ | $A_{1 a}$ | $\mathrm{A}_{0 \mathrm{a}}$ | $Z_{0}$ | $\mathrm{Z}_{1}$ | $\mathrm{Z}_{2}$ | $\mathrm{Z}_{3}$ | $\mathrm{Z}_{4}$ | $\mathrm{Z}_{5}$ | $\mathrm{Z}_{6}$ | $\mathbf{Z}_{7}$ |
| H X | X | $X$ | $X$ | L | L | L | L | L | L | L | L |
| X H | X | X | X | L | L | L | L | L | L | L | L |
| L L | L | L | L | H | L | L | L | L | L | L | L |
| L L | L | L | H | L | H | L | L | L | L | L | L |
| L L | L | H | L | L | L | H | L | L | L | L | L |
| L L | L | H | H | L | L | L | H | L | L | L | L |
| L L | H | L | L | L | L | L | L | H | L | L | L |
| L L | H | L | H | L | L | L | L | L | H | L | L |
| L L | H | H | L | L | L | L | L | L | L | H | L |
| L L | H | H | H | L | L | L | L | L | L | L | H |

$M=\mathrm{HIGH} ;$
$A_{0 b}=A_{1 b}=H_{a}=H_{b}=L O W$
$E_{1}=E_{1 a}$ and $E_{1 b}$ Wired; $E_{2}=E_{2 \mathrm{a}}$ and $E_{2 b}$ Wired
H = HIGH Voltage Level
L = LOW Voltage Level
X $=$ Don't Care
If the M input is HIGH, then the F 100170 is configured as a single 1-of-8 decoder. $A_{0 b}, A_{1 b}, H_{a}$, and $H_{b}$ must all be LOW. Table 2-9 is a truth table for the F100170 in single 1of 8 mode. The truth table is shown for active-HIGH outputs; for active-LOW outputs, $\mathrm{H}_{\mathrm{C}}$ is mode LOW.
Figure 2-18 and Table 2-10 show a universal decimal decoder and the decode table, respectively. The sense of the outputs can be easily modified. The entire decoder may be enabled with a LOW at the Function input.

Decoder (Continued)
TABLE 2-10. Output Selection

| $\mathbf{A}_{\mathbf{0}}-A_{\mathbf{3}}$ <br> Welghted <br> Input | Selected Output per Input Code |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{8 4 2 1}$ | $\mathbf{5 4 2 1}$ | Excess <br> $\mathbf{3}$ | Excess <br> $\mathbf{3}$ Gray | $\mathbf{2 4 2 1}$ |
| 0 | 0 | 0 | 3 | 2 | 0 |
| 1 | 1 | 1 | 4 | 6 | 1 |
| 2 | 2 | 2 | 5 | 7 | 2 |
| 3 | 3 | 3 | 6 | 5 | 3 |
| 4 | 4 | 4 | 7 | 4 | 4 |
| 5 | 5 | 8 | 8 | 12 | 11 |
| 6 | 6 | 9 | 9 | 13 | 12 |
| 7 | 7 | 10 | 10 | 15 | 13 |
| 8 | 8 | 11 | 11 | 14 | 14 |
| 9 | 9 | 12 | 12 | 10 | 15 |

Figure $2-19$ shows a scheme to decode five lines with a 1 -of-32 decoder. Inputs $A_{0}, A_{1}$, and $A_{2}$ are connected to the address select inputs of all four decoders in parallel. Both the true and complement of the two high order addresses are formed and then ANDed together at the decoder enable inputs.
Figure $2-20$ shows a 1-of-64 decoder which uses the LOW outputs of one F100170 to enable one-of-eight F100170 devices whose address inputs are connected together. The unused enable inputs may be used to enable ail 64 outputs. The 64 outputs may be either active HIGH or LOW. The propagation delay from address to any output is 4.5 ns maximum.


FIGURE 2-18. Universal Decimal Decoder


TL/F/9899-20
FIGURE 2-19. 1-of-32 Decoder

Decoder (Continued)


TL/F/9899-21
FIGURE 2-20. 1-of-64 Decoder

## Register File

The F100145 is a $16 \times 4$ register file with typical Read access time of 5.5 ns . It has separate addresses for Read $\left(\mathrm{AR}_{n}\right)$ and Write ( $\mathrm{AW}_{n}$ ) operations. This reduces effective cycle time by allowing one address to be setting up while the other is being used.
Internal output latches are present which store data from a prevous Read while a Write is in progress. Any time a Write is not in progress, the data in the latches are updated from the array.

Active-LכW output enables are available, allowing the F100145 to be OR-wired for easy expansion. A HIGH on the Master Reset (MR) input, which overrides all other inputs, resets the output latches, forces the outputs LOW, and clears all cells in the memory.
Figure 2-21 indicates a method of connecting one or more F100145 devices with F100136 devices to form a very fast FIFO. This FIFO can be expanded horizontally (to form wider words) by merely adding more register files. The inputs and outputs must be synchronized to a common clock.


FIGURE 2-21. FIFO Diagram

## Register File (Continued)

During the first half of the clock cycle, data are written into the FIFO in the case of a WRITE command, or presented on the outputs in the case of a READ command. During the second half of the cycle, either the Write or Read (or neither) address is updated. In addition, the data at the current Read address is accessed in case it will be used during the next cycle. This means that Read data is available very early in the cycle.
The FIFO timing diagram is shown in Figure 2-22. The minimum timing of the LOW portion of the clock may be determined as follows. The Write pulse width is 4 ns typical and the data set-up to trailing edge of Write is 6 ns typical. As-
suming the Write data are available at the beginning of the period, the 6 ns would be the longest path.
The worst case for the HIGH portion of the clock is when a Read is followed by a Read. In this case, the counter must be incremented and the data read from a new location. This is $1.6 \mathrm{~ns}+5.5 \mathrm{~ns}$ typical. Allowing for non-typical devices, clock skew, and interconnection delays could bring these numbers to 10 ns each, for a total (Read or Write) cycle time of 20 ns . Since a Read and a Write are required to move one piece of data through the FIFO, the actual transfer rate is 25 M words/second.


FIGURE 2-22. FIFO Timing

## Comparators

The F100166 is a 9-bit magnitude comparator which compares the arithmetic value of two 9 -bit words and indicates either $\mathrm{A}>\mathrm{B}, \mathrm{A}<\mathrm{B}$, or $\overline{\mathrm{A}=\mathrm{B}}$.
The unequal outputs are active HIGH so that expansion is simple, Figure 2-23 indicates how two 64-bit words may be compared in 5.4 ns typical. If desired, the $\overline{A=B}$ outputs of the first rank may be OR-wired to obtain an active-LOW $\overline{A=B}$ in 2.7 ns typical.
The F100107 Quint Exclusive-OR/NOR may be used as a 5 -bit identity comparator with a propagation delay of 2.0 ns typical. The F100160 Parity Checker/Generator may also be used as an identity comparator.


TL/F/9899-24
FIGURE 2-23. 64-Bit Magnitude Comparator

## Parity Generator/Checker

The F100160 is a dual 9-bit parity checker/generator. The output (of each section) is HIGH when an even number of inputs are HIGH. Thus, to generate odd parity on eight bits, the ninth input would be held HIGH. One of the nine inputs on each half has a shorter propagation ( $l_{a}, l_{b}$ ) delay and is thus preferred for expansion.

Figure 2-24 shows how to build a 16-bit parity checker using a single F100160. The typical propagation delay from the longest input is 4.05 ns . This circuit can be turned into a parity generator by replacing "P" at input $\mathrm{I}_{\mathrm{b}}$ with a LOW or HIGH for even or odd parity, respectively.


FIGURE 2-24. 16-Bit Parity Checker/Generator

## Arithmetic Logic Unit

The F100181 is a 4-bit binary/BCD ALU with a typical propagation delay of 4.5 ns . Output latches are provided to reduce system package count. When the latches are not required, they may be made transparent. Table 2-11 summarizes the functions available in the F100181. Table 2-12 is a summary of add times as a function of word width using the F100181 and, optionally, the F100179 Lookahead Carry Generator. These are calculated using maximum times for flatpak at $25^{\circ} \mathrm{C}$ from the data sheets and assume zero interconnection times. Further, it is assumed that the S (function select) inputs are available very early; their delay paths are ignored. The F100181 specification sheet indicates how the parts are interconnected.

TABLE 2-11. F100181 Functions

| $\mathrm{S}_{3}$ | $\mathrm{S}_{2}$ | $S_{1}$ | $\mathrm{S}_{0}$ | Function | Note |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | L | L | A Plus B BCD |  |
| L | L | L | H | A Minus B BCD |  |
| L | L | H | L | B Minus A BCD |  |
| L | L | H | H | O Minus A BCD |  |
| L | H | L | L | A Plus B Binary |  |
| L | H | L | H | A Minus B Binary |  |
| L | H | H | L | B Minus A Binary |  |
| L | H | H | H | O Minus B Binary |  |
| H | L | L | L | Identity | $F=A \cdot B+\bar{A} \bullet \bar{B}$ |
| H | L | L | H | XOR | $F=A \bullet \bar{B}+\bar{A} \bullet B$ |
| H | L | H | L | OR | $F=A+B$ |
| H | L | H | H | A | $F=A$ |
| H | H | L | L | Inverse | $\mathrm{F}=\overline{\mathrm{B}}$ |
| H | H | L | H | B | $F=B$ |
| H | H | H | L | AND | $F=A \cdot B$ |
| H | H | H | H | Zero | F = LOW |

[^11]
## Arithmetic Logic Unit <br> (Continued)

TABLE 2-12. Summary of Add Times Using F100181

| Bits | Ripple <br> Carry | 1 F100179 <br> Lookahead <br> Carry | 2 F100179 <br> Lookahead <br> Carrles |
| :---: | :---: | :---: | :---: |
| 8 | 11.3 | $\mathrm{n} / \mathrm{a}$ | $\mathrm{n} / \mathrm{a}$ |
| 16 | 16.9 | 11.9 | $\mathrm{n} / \mathrm{a}$ |
| 32 | 28.1 | 14.7 | 14.6 |
| 64 | 50.5 | $\mathrm{n} / \mathrm{a}$ | 17.4 |

Ripple Carry $=\quad\left(A\right.$ or $B$ to $\left.C_{n}+4\right)+\left(C_{n}\right.$ to $\left.F\right)+$ ( $(\mathrm{D}-2) \mathrm{C}_{n}$ to $\mathrm{C}_{n+4}$ )
where $D=$ number of 100181 devices
16-Bit, 1 Lookahead $=(A$ or $B$ to $P$ or $G)+\left(C_{n}\right.$ to $\left.F\right)+$ ( $\mathrm{t} p$ of 100179)
32-Bit, 1 Lookahead $=\left(A\right.$ or B to P or G) $+\left(C_{n}\right.$ to $\left.F\right)+$ ( $t_{p}$ of 100179) $+\left(C_{n}\right.$ to $C_{n+4}$ of last stage)
32-Bit, 2 Lookaheads $=(A$ or B to $P$ or $G)+\left(C_{n}\right.$ to $\left.F\right)+$ ( $2 t_{p}$ of 100179)
64-Bit, 2 Lookaheads $=\left(A\right.$ or B to P or G) $+\left(C_{n}\right.$ to $\left.F\right)+$ (2tp of 100179) $+\left(C_{n}\right.$ to $C_{n+4}$ of last stage)

## Multipliers

The F100182 Wallace Tree Adder and F100183 Recode Multiplier can be combined to build extremely fast parallel multipliers. The F100183 data sheet has detailed applications information; Table 2-13 is a summary of delay times and package counts for various operand sizes. The times are typical and do not include interconnection delays.

TABLE 2-13. Multiplier Summary

| Operand Size | Delay (ns) | Device Count |
| :---: | :---: | :---: |
| $16 \times 16$ | 16 | 62 |
| $24 \times 24$ | 22 | 115 |
| $32 \times 32$ | 24 | 186 |
| $64 \times 64$ | 26 | 634 |

## TTL/F100K Interfacing

The F100124 is a hex translator, designed to convert TTL logic levels to F100K ECL logic levels. A common Enable input ( $E_{c}$ ), when LOW, holds all true outputs LOW. Complementary outputs are available on each translator, allowing the circuits to be used as inverting, non-inverting, or differential translators. The TTL inputs present the loading factors indicated in Table 2-14.

TABLE 2-14. F100124 Input Loading

| Load | Current | Standard <br> TTL Unit Loads |
| :--- | :---: | :---: |
| HIGH | $50 \mu \mathrm{~A}$ | 1.25 |
| HIGH (Enable) | $300 \mu \mathrm{~A}$ | 7.5 |
| LOW | -3.2 mA | 2 |
| LOW (Enable) | -16.0 mA | 10 |

The F100125 is a hex F100K ECL-to-TTL translator. Differential inputs allow each circuit to be used as an inverting, non-inverting, or differential translator. An internal reference voltage generator provides $\mathrm{V}_{\mathrm{BB}}$ for single-ended operation. The outputs of the F100125 have a fan-out of 50 standard TTL Unit Loads (U.L.) in the HIGH state and 12.5 in the LOW state.

## 10K/F100K Interfacing

The problem caused by mixing 10 K ECL and F100K ECL is illustrated in Figures 2-25 and 2-26. 10K output levels and input thresholds vary with temperature whereas F 100 K levels and thresholds remain essentially constant. This means that the noise margins vary with temperature, even if the temperatures of the driving and receiving circuits track. Perhaps the worst case is shown in Figure 2-26, which illustrates F100K driving 10K.


TL/F/9899-26
FIGURE 2-25. 10K ECL Driving 100K ECL


TL/F/9899-27
FIGURE 2-26. 100K ECL Driving 10K ECL

## 10K/F100K Interfacing (Continued)

At $+75^{\circ} \mathrm{C}$, the high margins are seen to be less than 100 mV . Clearly this would not represent acceptable DC margins in any real system.
If the use of 10K ECL in an F100K system is unavoidable, it is recommended that all interfacing be done differentially. This is illustrated in Figure 2-27 which is applicable for either direction.


TL/F/9899-28
FIGURE 2-27. Interfacing 10K and 100K

National Semiconductor

## Chapter 3 Transmission Line Concepts

## Introduction

The interactions between wiring and circuitry in high-speed systems are more easily determined by treating the interconnections as transmission lines. A brief review of basic concepts is presented and simplified methods of analysis are used to examine situations commonly encountered in digital systems. Since the principles and methods apply to any type of logic circuit, normalized pulse amplitudes are used in sample waveforms and calculations.

## Simplifying Assumptions

For the great majority of interconnections in digital systems, the resistance of the conductors is much less than the input and output resistance of the circuits. Similarly, the insulating materials have very good dielectric properties. These circumstances allow such factors as attenuation, phase distortion, and bandwidth limitations to be ignored. With these simplifications, interconnections can be dealt with in terms of characteristic impedance and propagation delay.

## Characteristic Impedance

The two conductors that interconnect a pair of circuits have distributed series inductance and distributed capacitance between them, and thus constitute a transmission line. For any length in which these distributed parameters are constant, the pair of conductors have a characteristic impedance $Z_{0}$. Whereas quiescent conditions on the line are determined by the circuits and terminations, $Z_{0}$ is the ratio of transient voltage to transient current passing by a point on the line when a signal charge or other electrical disturbance occurs. The relationship between transient voltage, transient current, characteristic impedance, and the distributed parameters is expressed as follows:
$\frac{V}{l}=Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}}$
where $L_{0}=$ inductance per unit length, $\mathrm{C}_{0}=$ capacitance per unit length. $Z_{0}$ is in ohms, $L_{0}$ in Henries, $C_{0}$ in Farads.

## Propagation Velocity

Propagation velocity $v$ and its reciprocal, delay per unit length $\delta$, can also be expressed in terms of $L_{0}$ and $C_{0}$. $A$ consistent set of units is nanoseconds, microhenries and picofarads, with a common unit of length.
$\nu=\frac{1}{\sqrt{L_{0} C_{0}}} \quad \delta=\sqrt{L_{0} C_{0}}$
Equations 3-1 and 3-2 provide a convenient means of determining the $L_{0}$ and $C_{0}$, of a line when delay, length and impedance are known. For a length/and delay T, $\delta$ is the ratio $\mathrm{T} /$. To determine $\mathrm{L}_{0}$ and $\mathrm{C}_{0}$, combine Equations 3-1 and 3-2.

$$
\begin{align*}
& L_{0}=\delta Z_{0}  \tag{3-3}\\
& C_{0}=\frac{\delta}{Z_{0}} \tag{3-4}
\end{align*}
$$

More formal treatments of transmission line characteristics, including loss effects, are available from many sources. ${ }^{1-3}$

## Termination and Reflection

A transmission line with a terminating resistor is shown in Figure 3-1. As indicated, a positive step function voltage travels from left to right. To keep track of reflection polarities, it is convenient to consider the lower conductor as the voltage reference and to think in terms of current flow in the top conductor only. The generator is assumed to have zero internal impedance. The initial current $I_{1}$ is determined by $V_{1}$ and $\mathrm{Z}_{0}$.


TL/F/9900-1
FIGURE 3-1. Assigned Polarities and Directions for Determining Reflections
If the terminating resistor matches the line impedance, the ratio of voltage to current traveling along the line is matched by the ratio of voltage to current which must, by Ohm's law, always prevail at $R_{T}$. From the viewpoint of the voltage step generator, no adjustment of output current is ever required; the situation is as though the transmission line never existed and $R_{T}$ had been connected directly across the terminals of the generator. From the $R_{T}$ viewpoint, the only thing the line did was delay the arrival of the voltage step by the amount of time T .
When $R_{T}$ is not equal to $Z_{0}$, the initial current starting down the line is still determined by $\mathrm{V}_{1}$ and $\mathrm{Z}_{0}$ but the final steady state current, after all reflections have died out, is determined by $V_{1}$ and $R_{T}$ (ohmic resistance of the line is assumed to be negligible). The ratio of voltage to current in the initial wave is not equal to the ratio of voltage to current demanded by $\mathrm{R}_{\mathrm{T}}$. Therefore, at the instant the initial wave arrives at $R_{T}$, another voltage and current wave must be generated so that Ohm's law is satisfied at the lineload interface. This reflected wave, indicated by $V_{r}$ and $I_{r}$ in Figure 3-1, starts to return toward the generator. Applying

Termination and Reflection (Continued)
Kirchoff's laws to the end of the line at the instant the initial wave arrives, results in the following.
$I_{1}+I_{r}=I_{T}=$ current into $R_{T}$
Since only one voltage can exist at the end of the line at this instant of time, the following is true:
thus

$$
V_{1}+V_{r}=V_{T}
$$

$$
\begin{equation*}
I_{T}=\frac{V_{T}}{R_{T}}=\frac{V_{1}+V_{r}}{R_{T}} \tag{3-6}
\end{equation*}
$$

also

$$
I_{1}=\frac{V_{1}}{Z_{0}} \text { and } I_{r}=-\frac{V_{r}}{Z_{0}}
$$

with the minus sign indicating that $V_{r}$ is moving toward the generator.
Combining the foregoing relationships algebraically and solving for $V_{r}$ yields a simplified expression in terms of $V_{1}$, $Z_{0}$ and $R_{T}$.
$\frac{V_{1}}{Z_{0}}-\frac{V_{r}}{Z_{0}}=\frac{V_{1}+V_{r}}{R_{T}}=\frac{V_{1}}{R_{T}}+\frac{V_{r}}{R_{T}}$
$V_{1}\left(\frac{1}{Z_{0}}-\frac{1}{R_{T}}\right)=V_{r}\left(\frac{1}{R_{T}}+\frac{1}{Z_{0}}\right)$
$V_{r}=V_{1}\left(\frac{R_{T}-Z_{0}}{R_{T}+Z_{0}}\right)=\rho_{L} V_{1}$
The term in parenthesis is called the coefficient of reflection $\rho$. With $R_{T}$ ranging between zero (shorted line) and infinity (open line), the coefficient ranges between -1 and +1 respectively. The subscript $L$ indicates that $\rho$ refers to the coefficient at the load end of the line.
Equation 3-7 expresses the amount of voltage sent back down the line, and since

$$
\begin{equation*}
V_{T}=V_{1}+V_{r} \tag{3-8}
\end{equation*}
$$

then $\quad V_{T}=V_{1}\left(1+\rho_{L}\right)$.
$V_{T}$ can also be determined from an expression which does not require the preliminary step of calculating $\rho_{\mathrm{L}}$. Manipulating $\left(1+\rho_{L}\right)$ results in
$1+\rho_{L}=1+\frac{R_{T}-Z_{0}}{R_{T}+Z_{0}}=2\left(\frac{R_{T}}{R_{T}+Z_{0}}\right)$
Substituting in Equation 3-8 gives
$V_{T}=2\left(\frac{R_{T}}{R_{T}+Z_{0}}\right) V_{1}$
The foregoing has the same form as a simple voltage divider involving a generator $V_{1}$ with internal impedance $Z_{0}$ driving a load $R_{T}$, except that the amplitude of $V_{T}$ is doubled.
The arrow indicating the direction of $V_{r}$ in Figure 3-1 correctly indicates the $V_{r}$ direction of travel, but the direction of $I_{r}$ flow depends on the $V_{r}$ polarity. If $V_{r}$ is positive, $I_{r}$ flows toward the generator, opposing $I_{1}$. This relationship between the polarity of $V_{r}$ and the direction of $I_{r}$ can be deduced by noting in Equation 3-7 that if $V_{r}$ is positive it is because $R_{T}$ is greater than $Z_{0}$. In turn, this means that the initial current $I_{r}$ is larger than the final quiescent current, dictated by $V_{1}$ and $R_{T}$. Hence, $I_{r}$ must oppose $I_{1}$ to reduce the line current to the final quiescent value. Similar reasoning shows that if $V_{r}$ is negative, $I_{r}$ flows in the same direction as $l_{1}$.

It is sometimes easier to determine the effect of $V_{r}$ on line conditions by thinking of it as an independent voltage generator in series with $R_{T}$. With this concept, the direction of $I_{r}$ is immediately apparent; its magnitude, however, is the ratio of $V_{r}$ to $Z_{0}$, i.e., $R_{T}$ is already accounted for in the magnitude of $V_{r}$. The relationships between incident and reflected signals are represented in Figure 3-2 for both cases of mismatch between $R_{T}$ and $Z_{0}$.
The incident wave is shown in Figure 3-2a, before it has reached the end of the line. In Figure $3-2 b$, a positive $V_{r}$ is returning to the generator. To the left of $V_{r}$ the current is still $l_{1}$, flowing to the right, while to the right of $V_{r}$ the net current in the line is the difference between $\mathrm{I}_{1}$ and $\mathrm{I}_{\mathrm{r}}$. In Figure 3-2c, the reflection coefficient is negative, producing a negative $V_{r}$. This, in turn, causes an increase in the amount of current flowing to the right behind the $V_{r}$ wave.

a. Incident Wave

b. Reflected Wave for $\mathrm{R}_{\boldsymbol{T}}>\mathbf{Z}_{\mathbf{0}}$

c. Reflected Wave for $\mathrm{R}_{\mathbf{T}}<\mathrm{Z}_{\mathbf{0}}$ FIGURE 3-2. Reflections for $\mathrm{R}_{\mathrm{T}} \neq \mathbf{Z}_{\mathbf{0}}$

## Source Impedance, Multiple Reflections

When a reflected voltage arrives back at the source (generator), the reflection coefficient at the source determines the response to $V_{r}$. The coefficient of reflection at the source is governed by $Z_{0}$ and the source resistance $R_{s}$.
$\rho_{\mathrm{s}}=\frac{R_{\mathrm{S}}-Z_{0}}{R_{\mathrm{S}}+Z_{0}}$
If the source impedance matches the line impedance, a reflected voltage arriving at the source is not reflected back toward the load end. Voltage and current on the line are stable with the following values.
$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{1}+\mathrm{V}_{\mathrm{r}}$ and $\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}-\mathrm{I}_{\mathrm{r}}$
If neither source impedance nor terminating impedance matches $Z_{0}$, multiple reflections occur; the voltage at each end of the line comes closer to the final steady state value with each succeeding reflection. An example of a line mismatched on both ends is shown in Figure 3-3. The source is a step function of 1 V amplitude occurring at time $\mathrm{t}_{0}$. The initial value of $V_{1}$ starting down the line is 0.75 V due to the voltage divider action of $Z_{0}$ and $R_{s}$. The time scale in the photograph shows that the line delay is approximately 6 ns . Since neither end of the line is terminated in its characteristic impedance, multiple reflections occur.
The amplitude and persistence of the ringing shown in Figure 3-3 become greater with increasing mismatch between the line impedance and source and load impedances. Re-


TL/F/9900-5
$\rho_{S}=\frac{31-93}{31+93}=-0.5$
$P_{L}=\frac{\infty-93}{\infty+93}=+1$
Initially: $V_{1}=\frac{Z_{0}}{Z_{0}+R_{S}} \cdot V_{0}=\frac{93}{124} \bullet 1=0.75 \mathrm{~V}$


TL/F/9900-6
FIGURE 3-3. Multiple Reflections Due to Mismatch at Load and Source
ducing RS (Figure 3-3) to $13 \Omega$ increases $\rho_{S}$ to -0.75 V , and the effects are illustrated in Figure 3-4. The initial value of $\mathrm{V}_{\mathrm{T}}$ is 1.8 V with a reflection of 0.9 V from the open end. When this reflection reaches the source, a reflection of $0.9 \mathrm{~V} \times$ -0.75 V starts back toward the open end. Thus, the second increment of voltage arriving at the open end is negative going. In turn, a negative-going reflection of $0.9 \mathrm{~V} \times-0.75 \mathrm{~V}$ starts back toward the source. This negative increment is again multiplied by -0.75 at the source and returned toward the open end. It can be deduced that the difference in amplitude between the first two positive peaks observed at the open end is

$$
\begin{align*}
V_{T}-V^{\prime} T & =\left(1+\rho_{L}\right) V_{1}-\left(1+\rho_{L}\right) V_{1} \rho^{2} L \rho^{2} S  \tag{3-12}\\
& =\left(1+\rho_{L}\right) V_{1}\left(1-\rho^{2} L \rho^{2} S\right) .
\end{align*}
$$

The factor ( $1-\rho^{2} \mathrm{~L} \rho^{2} \mathrm{~S}$ ) is similar to the damping factor associated with lumped constant circuitry. It expresses the attenuation of successive positive or negative peaks of ringing.


FIGURE 3-4. Extended Ringing when Rs of Figure $3-3$ is Reduced to $13 \Omega$

## Lattice Diagram

In the presence of multiple reflections, keeping track of the incremental waves on the line and the net voltage at the ends becomes a bookkeeping chore. A convenient and systematic method of indicating the conditions which combines magnitude, polarity and time utilizes a graphic construction called a lattice diagram. ${ }^{4}$ A lattice diagram for the line conditions of Figure $3-3$ is shown in Figure 3-5.
The vertical lines symbolize discontinuity points, in this case the ends of the line. A time scale is marked off on each line in increments of $2 T$, starting at $t_{0}$ for $V_{1}$ and $T$ for $V_{T}$. The diagonal lines indicate the incremental voltages traveling between the ends of the line; solid lines are used for positive voltages and dashed lines for negative. It is helpful to write the reflection and transmission multipliers $\rho$ and $(1+\rho)$ at each vertical line, and to tabulate the incremental and net voltages in columns alongside the vertical lines. Both the lattice diagram and the waveform photograph show that $V_{1}$ and $V_{T}$ asymptotically approach 1 V , as they must with a $1 V$ source driving an open-ended line.


FIGURE 3-5. Lattice Diagram for the Circult of Figure 3-3

## Shorted Line

The open-ended line in Figure 3-3 has a reflection coefficient of +1 and the successive reflections tend toward the steady state conditions of zero line current and a line voltage equal to the source voltage. In contrast, a shorted line has a reflection coefficient of $\mathbf{- 1}$ and successive reflections must cause the line conditions to approach the steady state conditions of zero voltage and a line current determined by the source voltage and resistance.
Shorted line conditions are shown in Figure 3-6a with the reflection coefficient at the source end of the line also negative. A negative coefficient at both ends of the line means that any voltage approaching either end of the line is reflected in the opposite polarity. Figure $3-6 b$ shows the response to an input step-function with a duration much longer than the line delay. The initial voltage starting down the line is about +0.75 V , which is inverted at the shorted end and returned toward the source as -0.75 V . Arriving back at the source end of the line, this voltage is multiplied by ( $1+\mathrm{PS}_{\mathrm{S}}$ ), causing a -0.37 V net change in $\mathrm{V}_{1}$. Concurrently, a reflected voltage of $+0.37 \mathrm{~V}\left(-0.75 \mathrm{~V}\right.$ times $\rho_{\mathrm{S}}$ of -0.5$)$ starts back toward the shorted end of the line. The voltage at $\mathrm{V}_{1}$ is reduced by $50 \%$ with each successive round trip of reflections, thus leading to the final condition of zero volts on the line.
When the duration of the input pulse is less than the delay of the line, the reflections observed at the source end of the line constitute a train of negative pulses, as shown in Figure $3-6 c$. The amplitude decreases by $50 \%$ with each successive occurrence as it did in Figure 3-6b.

TL/F/9900-9
$\rho_{S}=-0.5$

$$
\rho_{L}=\frac{0-93}{0+93}=-1
$$

a. Reflectlon Coefficients for Shorted Line

FIGURE 3-6. Reflections of Long and Short Pulses on a Shorted Line

## Series Termination

Driving an open-ended line through a source resistance equal to the line impedance is called series termination. It is particularly useful when transmitting signals which originate on a PC board and travel through the backplane to another board, with the attendant discontinuities, since reflections coming back to the source are absorbed and ringing thereby controlled. Figure $3-7$ shows a $93 \Omega$ line driven from a $1 V$ generator through a source impedance of $93 \Omega$. The photograph illustrates that the amplitude of the initial signal sent down the line is only half of the generator voltage, while the voltage at the open end of the line is doubled to full amplitude ( $1+\rho_{L}=2$ ). The reflected voltage arriving back at the source raises $\mathrm{V}_{1}$ to the full amplitude of the generator signal. Since the reflection coefficient at the source is zero, no further changes occur and the line voltage is equal to the generator voltage. Because the initial signal on the line is only half the normal signal swing, the loads must be connected at or near the end of the line to avoid receiving a 2step input signal.
An ECL output driving a series terminated line requires a pull-down resistor to $\mathrm{V}_{\text {EE }}$, as indicated in Figure 3-8. The resistor $\mathrm{R}_{0}$ shown in Figure $3-8$ symbolizes the output resistance of the ECL gate. The relationships between $\mathrm{R}_{0}, \mathrm{R}_{\mathrm{S}}, \mathrm{R}_{\mathrm{E}}$ and $Z_{0}$ are discussed in Chapter 4.


TL/F/9900-12
 $\mathrm{V}=0.4 \mathrm{~V} / \mathrm{div}$

TL/F/9900-13
FIGURE 3-7. Series Terminated Line and Waveforms


TL/F/9900-14
FIGURE 3-8. ECL Element Driving a Series Terminated Line

## Extra Delay with Termination Capacitance

Designers should consider the effect of the load capacitance at the end of the line when using series termination. Figure 3-9 shows how the output waveform changes with increasing load capacitance. Figure $3-9 b$ shows the effect of load capacitances of $0,12,24,48 \mathrm{pF}$. With no load, the delay between the $50 \%$ points of the input and output is just the line delay T. A capacitive load at the end of the line causes an extra delay $\Delta T$ due to the increase in rise time of the output signal. The midpoint of the output is used as a criterion because the propagation delay of an ECL circuit is measured between the $50 \%$ points of the input and output signals.

a. Series Terminated Line with Load Capacitance


TL/F/9900-16
b. Output Rise Time Increase with Increasing Load Capacitance


TL/F/9900-17
c. Extra Delay $\Delta T$ Due to Rise Time Increase

FIGURE 3-9. Extra Delay with Termination Capacitance

Extra Delay with Termination Capacitance (Continued)

a. Thevenin Equivalent for Series Terminated Case

$v_{\text {in }}(t)=\frac{v}{a}[t u(t)-(t-a) u(t-a)]$
$u(t)=\frac{0 \text { for } t<0}{1 \text { for } t>0}$
$u(t-a)=\begin{gathered}0 \text { for } t \\ 1 \text { for } t>a, ~\end{gathered}>a$
$\mathrm{V}_{\mathrm{IN}}(\mathrm{S})=\frac{\mathrm{V}}{\mathrm{as}^{2}}\left(1-e^{-\mathrm{as}}\right)$
$V_{C}(S)=\frac{V}{\mathrm{ar}^{2}} \cdot \frac{1}{\mathrm{~s}^{2}(\mathrm{~s}+1 / \tau)}\left(1-\mathrm{e}^{-\mathrm{as})}\right.$
$v_{C}(t)=\frac{v}{a}\left[t-\tau\left(1-e^{-t / \tau)] u(t)}\right.\right.$
$-\frac{V}{a}[(t-a)$
$\left.-\tau\left(1-e^{-\frac{t-a}{\tau}}\right)\right] u(t-a)$
c. Equations for Input and Output Voltages

FIGURE 3-10. Determining the Effect of End-of-Line Capacitance

The increase in propagation delay can be calculated by using a ramp approximation for the incident voltage and characterizing the circuit as a fixed impedance in series with the load capacitance, as shown in Figure 3-10. One general solution serves both series and parallel termination cases by using an impedance $Z^{\prime}$ and a time constant $\tau$, defined in Figure 3-10a and 3-10b. Calculated and observed increases in delay time to the $50 \%$ point show close agreement when $\tau$ is less than half the ramp time. At large ratios of $\tau /$ a ( $\mathbf{w h e r e} \mathbf{a}=$ ramp time), measured delays exceed calculated values by approximately $7 \%$. Figure 3-11, based on measured values, shows the increase in delay to the $50 \%$ point as a function of the $Z^{\prime} C$ time constant, both normalized to the $10 \%$ to $90 \%$ rise time of the input signal. As an example of using the graph, consider a $100 \Omega$ series terminated line with 30 pF load capacitance at the end of the line and a noload rise time of 3 ns for the input signal. From Figure 3-10a, $Z^{\prime}$ is equal to $100 \Omega$; the ratio $Z^{\prime} C / t_{r}$ is 1 . From the graph, the ratio $\Delta T / t_{r}$ is 0.8 . Thus the increase in the delay to the $50 \%$ point of the output waveform is $0.8 \mathrm{t}_{\mathrm{r}}$, or 2.4 ns , which is then added to the no-load line delay T to determine the total delay.
Had the $100 \Omega$ line in the foregoing example been parallel rather than series terminated at the end of the line, $Z^{\prime}$ would be $50 \Omega$. The added delay would be only 1.35 ns with the same 30 pF loading at the end. The added delay would be only 0.75 ns if the line were $50 \Omega$ and parallel terminated. The various trade-offs involving type of termination, line impedance, and loading are important considerations for critical delay paths.


TL/F/9900-21
FIGURE 3-11. Increase in 50\% Point Delay Due to Capacitive Loading at the End of the Line, Normalized to $\mathrm{T}_{\mathrm{r}}$

## Distributed Loading Effects on Line Characteristics

When capacitive loads such as ECL inputs are connected along a transmission line, each one causes a reflection with a polarity opposite to that of the incident wave. Reflections from two adjacent loads tend to overlap if the time required for the incident wave to travel from one load to the next is equal to or less than the signal rise time. 5 Figure 3-12a illustrates an arrangement for observing the effects of capacitive loading, while Figure $3-12 b$ shows an incident wave followed by reflections from two capacitive loads. The two capacitors causing the reflections are separated by a distance requiring a travel time of 1 ns . The two reflections return to the source 2 ns apart, since it takes 1 ns longer for the incident wave to reach the second capacitor and an additional 1 ns for the second reflection to travel back to the source. In the upper trace of Figure 3-12b, the input signal rise time is 1 ns and there are two distinct reflections, although the trailing edge of the first overlaps the leading edge of the second. The input rise time is longer in the middle trace, causing a greater overlap. In the lower trace, the 2 ns input rise time causes the two reflections to merge and appear as a single reflection which is relatively constant (at $\approx-10 \%$ ) for half its duration. This is about the same reflection that would occur if the $93 \Omega$ line had a middle section with an impedance reduced to $75 \Omega$.
With a number of capacitors distributed all along the line of Figure 3-12a, the combined reflections modify the observed input waveform as shown in the top trace of Figure 3-12c. The reflections persist for a time equal to the 2-way line delay ( 15 ns ), after which the line voltage attains its final value. The waveform suggests a line terminated with a resistance greater than its characteristic impedance ( $\mathrm{R}_{\mathrm{T}}>$
$\left.Z_{0}\right)$. This analogy is strengthened by observing the effect of reducing $R_{T}$ from $93 \Omega$ to $75 \Omega$, which leads to the middle waveform of Figure 3-12c. Note that the final (steady state) value of the line voltage is reduced by about the same amount as that caused by the capacitive reflections. In the lower trace of Figure 3-12c the source resistance $R_{S}$ is reduced from $93 \Omega$ to $75 \Omega$, restoring both the initial and final line voltage values to the same amplitude as the final value in the upper trace. From the standpoint of providing a desired signal voltage on the line and impedance matching at either end, the effect of distributed capacitive loading can be treated as a reduction in line impedance.
The reduced line impedance can be calculated by considering the load capacitance $C_{L}$ as an increase in the intrinsic line capacitance $\mathrm{C}_{0}$ along that portion of the line where the loads are connected. 6 Denoting this length of line as $/$, the distributed value $C_{D}$ of the load capacitance is as follows.
$C_{D}=\frac{C_{L}}{l}$
$C_{D}$ is then added to $C_{0}$ in Equation 3.1 to determine the reduced line impedance $Z_{0}$.
$Z^{\prime}{ }_{0}=\sqrt{\frac{L_{0}}{C_{0}+C_{D}}}=\sqrt{\frac{L_{0}}{C_{0}\left(1+\frac{C_{D}}{C_{0}}\right)}}$
$Z^{\prime} 0+\frac{\sqrt{\frac{L_{0}}{C_{0}}}}{\sqrt{1+\frac{C_{D}}{C_{0}}}}=\frac{Z_{0}}{\sqrt{1+\frac{C_{D}}{C_{0}}}}$


a. Arrangement for Observing Capacitive Loading Effects


FIGURE 3-12. Capacitive Reflections and Effects on Line Characteristics

## Distributed Loading Effects on

 Line Characteristics (Continued)In the example of Figure 3-12c, the total load capacitance is 33 pF while the total intrinsic line capacitance $/ \mathrm{C}_{0}$ is 60 pF . (Note that the ratio $\mathrm{C}_{\mathrm{D}} / \mathrm{C}_{0}$ is the same as $\mathrm{C}_{\mathrm{L}} / / \mathrm{C}_{0}$.) The calculated value of the reduced impedance is thus
$Z^{\prime}{ }_{0}=\frac{93}{\sqrt{1+\frac{33}{60}}}=\frac{93}{\sqrt{1.55}}=75 \Omega$
This correlates with the results observed in Figure 3-12c when $R_{T}$ and $R_{S}$ are reduced to $75 \Omega$.
The distributed load capacitance also increases the line delay, which can be calculated from Equation 3-2.

$$
\begin{align*}
\delta^{\prime} & =\sqrt{L_{0}\left(C_{0}+C_{D}\right)}=\sqrt{L_{0} C_{0}} \sqrt{1+\frac{C_{D}}{C_{0}}}  \tag{3-15}\\
& =\delta \sqrt{1+\frac{C_{D}}{C_{0}}}
\end{align*}
$$

The line used in the example of Figure $3-12 c$ has an intrinsic delay of 6 ns and a loaded delay of 7.5 ns which checks with Equation 3-15.
$\delta^{\prime}=/ \delta \sqrt{1.55}=6 \sqrt{1.55}=7.5 \mathrm{~ns}$
Equation 3-15 can be used to predict the delay for a given line and load. The ratio $C_{D} / C_{0}$ (hence the loading effect) can be minimized for a given loading by using a line with a high intrinsic capacitance $\mathrm{C}_{0}$.
A plot of $Z^{\prime}$ and $\delta^{\prime}$ for a $50 \Omega$ line as a function of $C_{D}$ is shown in Figure 3-13. This figure illustrates that relatively modest amounts of load capacitance will add appreciably to the propagation delay of a line. In addition, the characteristic impedance is reduced significantly.


TL/F/9900-25
FIGURE 3-13. Capacitive Loading Effects on Line Delay and Impedance
Worst case reflections from a capacitively loaded section of transmission line can be accurately predicted by using the modified impedance of Equation 3-9.6 When a signal originates on an unloaded section of line, the effective reflection coefficient is as follows.
$\rho=\frac{Z^{\prime}{ }_{0}-Z_{0}}{Z_{0}^{\prime}+Z_{0}}$

## Mismatched Lines

Reflections occur not only from mismatched load and source impedances but also from changes in line impedance. These changes could be caused by bends in coaxial cable, unshielded twisted-pair in contact with metal, or mismatch between PC board traces and backplane wiring. With the coax or twisted-pair, line impedance changes run about $5 \%$ to $10 \%$ and reflections are usually no problem since the percent reflection is roughly half the percent change in impedance. However, between PC board and backplane wiring, the mismatch can be 2 or 3 to 1 . This is illustrated in Figure 3-14 and analyzed in the lattice diagram of Figure $3-15$. Line 1 is driven in the series terminated mode so that reflections coming back to the source are absorbed.
The reflection and transmission at the point where impedances differ are determined by treating the downstream line as though it were a terminating resistor. For the example of Figure 3-14, the reflection coefficient at the intersection of lines 1 and 2 for a signal traveling to the right is as follows.
$\rho_{12}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}=\frac{93-50}{143}=+0.3$
Thus the signal reflected back toward the source and the signal continuing along line 2 are, respectively, as follows.
$V_{1 r}=\rho_{12} V_{1}=+0.3 V_{1}$
$V_{2}=\left(1+\rho_{12}\right) V_{1}=+1.3 V_{1}$
At the intersection of lines 2 and 3 , the reflection coefficient for signals traveling to the right is determined by treating $\mathrm{Z}_{3}$ as a terminating resistor.
$\rho_{23}=\frac{Z_{3}-Z_{2}}{Z_{3}+Z_{2}}=\frac{39-93}{132}=-0.41$
When $V_{2}$ arrives at this point, the reflected and transmitted signals are as follows.

$$
\begin{align*}
\mathrm{V}_{2 \mathrm{r}} & =\rho_{23} \mathrm{~V}_{2}=-0.41 \mathrm{~V}_{2} \\
& =(-0.41)(1.3) \mathrm{V}_{1}  \tag{3-21a}\\
& =-0.53 \mathrm{~V}_{1} \\
V_{3} & =\left(1+\rho_{23}\right) \mathrm{V}_{2}=0.59 \mathrm{~V}_{2} \\
& =(0.59)(1.3) \mathrm{V}_{1}  \tag{3-21b}\\
& =0.77 \mathrm{~V}_{1}
\end{align*}
$$

Voltage $V_{3}$ is doubled in magnitude when it arrives at the open-ended output, since $\rho_{L}$ is +1 . This effectively cancels the voltage divider action between $\mathrm{R}_{\mathrm{S}}$ and $\mathrm{Z}_{1}$.

$$
\begin{align*}
V_{4} & =\left(1+\rho_{\mathrm{L}}\right) V_{3}=\left(1+\rho_{\mathrm{L}}\right)\left(1+\rho_{23}\right) V_{2} \\
& =\left(1+\rho_{\mathrm{L}}\right)\left(1+\rho_{23}\right)\left(1+\rho_{12}\right) V_{1}  \tag{3-22}\\
& =\left(1+\rho_{\mathrm{L}}\right)\left(1+\rho_{23}\right)\left(1+\rho_{12}\right) \frac{V_{0}}{2}
\end{align*}
$$

$\mathrm{V}_{4}=\left(1+\rho_{23}\right)\left(1+\rho_{12}\right) \mathrm{V}_{\mathrm{O}}$
Thus, Equation 3-22 is the general expression for the initial step of output voltage for three lines when the input is series terminated and the output is open-ended.

Mismatched Lines (Continued)
Note that the reflection coefficients at the intersections of lines 1 and 2 and lines 2 and 3 in Figure 3-15 have reversed signs for signals traveling to the left. Thus the voltage reflected from the open output and the signal reflecting back and forth on line 2 both contribute additional increments of output voltage in the same polarity as $\mathrm{V}_{\mathrm{O}}$. Lines 2 and 3 have the same delay time; therefore, the two aforementioned increments arrive at the output simultaneously at time 5T on the lattice diagram (Figure 3-15).
In the general case of series lines with different delay times, the vertical lines on the lattice diagram should be spaced apart in the ratio of the respective delays. Figure 3-16 shows this for a hypothetical case with delay ratios 1:2:3. For a sequence of transmission lines with the highest im-
pedance line in the middle, at least three output voltage increments with the same polarity as $\mathrm{V}_{\mathrm{O}}$ occur before one can occur of opposite polarity. On the other hand, if the middle line has the lowest impedance, the polarity of the second increment of output voltage is the opposite of $\mathrm{V}_{\mathrm{O}}$. The third increment of output voltage has the opposite polarity, for the time delay ratios of Figure 3-16.
When transmitting logic signals, it is important that the initial step of line output voltage pass through the threshold region of the receiving circuit, and that the next two increments of output voltage augment the initial step. Thus in a series terminated sequence of three mismatched lines, the middle line should have the highest impedance.



TL/F/9900-27
FIGURE 3-14. Reflections from Mismatched Lines


FIGURE 3-15. Lattice Diagram for the Circuit of Figure 3-14

## Mismatched Lines (Continued)



TL/F/9900-29
FIGURE 3-16. Lattice Diagram for Three Lines with Delay Ratios 1:2:3

## Rise Time versus Line Delay

When the 2-way line delay is less than the rise time of the input wave, any reflections generated at the end of the line are returned to the source before the input transition is completed. Assuming that the generator has a finite source resistance, the reflected wave adds algebraically to the input wave while it is still in transition, thereby changing the shape of the input. This effect is illustrated in Figure 3-17, which shows input and output voltages for several comparative values of rise time and line delay.
In Figure 3-17b where the rise time is much shorter than the line delay, $\mathrm{V}_{1}$ rises to an initial value of 1 V . At time T later, $\mathrm{V}_{\mathrm{T}}$ rises to 0.5 V , i.e., $1+\rho_{\mathrm{L}}=0.5$. The negative reflection arrives back at the source at time 2 T , causing a net change of -0.4 V , i.e., $\left(1+\rho_{\mathrm{S}}\right)(-0.5)=-0.4$.
The negative coefficient at the source changes the polarity of the other 0.1 V of the reflection and returns it to the end of the line, causing $V_{T}$ to go positive by another 50 mV at time 3 T . The remaining 50 mV is inverted and reflected back to the source, where its effect is barely distinguishable as a small negative change at time 4 T .
In Figure $3-17 c$, the input rise time ( $0 \%$ to $100 \%$ ) is increased to such an extent that the input ramp ends just as the negative reflection arrives back at the source end. Thus the input rise time is equal to 2 T .
The input rise time is increased to 4T in Figure 3-17d, with the negative reflection causing a noticeable change in input slope at about its midpoint. This change in slope is more visible in the double exposure photo of Figure 3-17e, which shows $\mathrm{V}_{1}$ ( $\mathrm{t}_{\mathrm{r}}$ still set for 4T) with and without the negative reflection. The reflection was eliminated by terminating the line in its characteristic impedance.

The net input voltage at any particular time is determined by adding the reflection to the otherwise unaffected input. It must be remembered that the reflection arriving back at the input at a given time is proportional to the input voltage at a time 2T earlier. The value of $\mathrm{V}_{1}$ in Figure 3-17d can be calculated by starting with the 1 V input ramp.
$V_{1}=\frac{1}{t_{r}} \bullet t \quad$ for $0 \leq t \leq 4 T$
$=1 \mathrm{~V}$ for $\mathrm{t} \geq 4 \mathrm{~T}$
The reflection from the end of the line is
$V_{r}=\frac{\rho_{L}(t-2 T)}{t_{r}} ;$
the portion of the reflection that appears at the input is
$V_{r}^{\prime}=\frac{\left(1+\rho_{S}\right) \rho_{L}(t-2 T)}{t_{r}} ;$
the net value of the input voltage is the sum.
$V_{1}^{\prime}=\frac{t}{t_{r}}+\frac{\left(1+\rho_{S}\right)+\rho_{L}(t-2 T)}{t_{r}}$
The peak value of the input voltage in Figure 3-17d is determined by substituting values and letting t equal 4 T .

$$
\begin{align*}
\mathrm{V}^{\prime}{ }_{1} & =1+\frac{(0.8)(-0.5)(4 \mathrm{~T}-2 \mathrm{~T})}{\mathrm{t}_{\mathrm{r}}}  \tag{3-27}\\
& =1-0.4(0.5)=0.8 \mathrm{~V}
\end{align*}
$$

After this peak point, the input ramp is no longer increasing but the reflection is still arriving. Hence the net value of the input voltage decreases. In this example, the later reflections are too small to be detected and the input voltage is thus stable after time 6 T . For the general case of repeated reflections, the net voltage $V_{1 \text { (t) }}$ seen at the driven end of the line can be expressed as follows, where the signal caused by the generator is $V_{1(t)}$.

Rise Time versus Line Delay (Continued)

$$
\begin{align*}
V_{1(t)}^{\prime}= & V_{1(t)} \\
& \text { for } 0<t<2 T \\
V_{1(t)}^{\prime}= & V_{1(t)}+\left(1+\rho_{S}\right) \rho_{L} V_{1(t-2 T)} \\
& \text { for } 2 T<t<4 T \\
V_{1(t)}^{\prime}= & V_{1(t)}+\left(1+\rho_{S}\right) \rho_{L} V_{1(t-2 T)} \\
& +\left(1+\rho_{S}\right) \rho_{S P} \rho^{2} V_{1(t-4 T)}  \tag{3-28}\\
& \text { for } 4 T<t<6 T \\
V_{1(t)}^{\prime}= & V_{1(t)}+\left(1+\rho_{S}\right) \rho_{L} V_{1(t-2 T)} \\
& +\left(1+\rho_{S}\right) \rho_{S \rho_{2}}{ }^{2} V_{1(t-4 T)} \\
& +\left(1+\rho_{S}\right) \rho S^{2} \rho_{L}^{3} V_{1(t-6 T)} \\
& \text { for } 6 T<t<8 T, \text { etc. }
\end{align*}
$$

The voltage at the output end of the line is expressed in a similar manner.
$V_{T(t)}=0$
for $0<\mathrm{t}<\mathrm{T}$
$V_{T(t)}=\left(1+\rho_{L}\right) V_{1(t-T)}$ for $T<t<3 T$
$V_{T(t)}=\left(1+\rho_{L}\right) V_{1(t-T)}$
$+\left(1+\rho_{L}\right) \rho_{S} \rho_{\mathrm{L}} V_{1(t-3 T)}$
for $3 T<t<5 T$
$V_{T(t)}=\left(1+\rho_{L}\right) V_{1(t-T)}$
$+\left(1+\rho_{\mathrm{L}}\right) \rho_{\mathrm{S}} \rho_{\mathrm{L}} \mathrm{V}_{1(\mathrm{t}-3 \mathrm{~T})}$
$+\left(1+\rho_{L}\right) \rho_{S}{ }^{2} \rho_{L}{ }^{2} V_{1(t-5 T)}$ for $5 \mathrm{~T}<\mathrm{t}<7 \mathrm{~T}$, etc.


## Ringing

Multiple reflections occur on a transmission line when neither the signal source impedance nor the termination (ioad) impedance matches the line impedance. When the source reflection coefficient $\rho_{S}$ and the load reflection coefficient $\rho_{\mathrm{L}}$ are of opposite polarity, the reflections alternate in polarity. This causes the signal voltage to oscillate about the final steady state value, commonly recognized as ringing.
When the signal rise time is long compared to the line delay, the signal shape is distorted because the individual reflections overlap in time. The basic relationships among rise time, line delay, overshoot and undershoot are shown in a simplified diagram, Figure 3-18. The incident wave is a ramp of amplitude B and rise duration A . The reflection coefficient at the open-ended line output is +1 and the source reflection coefficient is assumed to be -0.8 , i.e., $R_{0}=Z_{0} / 9$.

Figure 3-18b shows the individual reflections treated separately. Rise time A is assumed to be three times the line delay $T$. The time scale reference is the line output and the first increment of output voltage $\mathrm{V}_{0}$ rises to 2 B in the time interval A. Simultaneously, a positive reflection (not shown) of amplitude B is generated and travels to the source, whereupon it is multiplied by -0.8 and returns toward the end of the line. This negative-going ramp starts at time $2 T$ (twice the line delay) and doubles to -1.6 B at time $2 \mathrm{~T}+\mathrm{A}$. The negative-going increment also generates a reflection of amplitude -0.8 B which makes the round trip to the source and back, appearing at time 4 T as a positive ramp rising to +1.28 B at time $4 \mathrm{~T}+\mathrm{A}$. The process of reflection and rereflection continues, and each successive increment changes in polarity and has an amplitude of $80 \%$ of the preceding increment.


## Ringing (Continued)

In Figure 3-18c, the output increments are added algebraically by superposition. The starting point of each increment is shifted upward to a voltage value equal to the algebraic sum of the quiescent levels of all the preceding increments (i.e., $0,2 \mathrm{~B}, 0.4 \mathrm{~B}, 1.68 \mathrm{~B}$, etc.). For time intervals when two ramps occur simultaneously, the two linear functions add to produce a third ramp that prevails during the overlap time of the two increments.
It is apparent from the geometric relationships, that if the ramp time $A$ is less than twice the line delay, the first output increment has time to rise to the full $2 B$ amplitude and the second increment reduces the net output voltage to 0.4 B . Conversely, if the line delay is very short compared to the ramp time, the excursions about the final value $V_{G}$ are small.

Figure $3-18 \mathrm{c}$ shows that the peak of each excursion is reached when the earlier of the two constituent ramps reaches its maximum value, with the result that the first peak occurs at time $A$. This is because the earlier ramp has a greater slope (absolute value) than the one that follows. Actual waveforms such as produced by ECL or TTL do not have a constant slope and do not start and stop as abruptly as the ramp used in the example of Figure 3-18. Predicting the time at which the peaks of overshoot and undershoot occur is not as simple as with ramp excitation. A more rigorous treatment is required, including an expression for the driving waveform which closely simulates its actual shape. In the general case, a peak occurs when the sum of the slopes of the individual signal increment is zero.

## Summary

The foregoing discussions are by no means an exhaustive treatment of transmission line characteristics. Rather, they
are intended to focus attention on the general methods used to determine the interactions between high-speed logic circuits and their interconnections. Considering an interconnection in terms of distributed rather than lumped inductance and capacitance leads to the line impedance concept, i.e., mismatch between this characteristic impedance and the terminations causes reflections and ringing.
Series termination provides a means of absorbing reflections when it is likely that discontinuities and/or line impedance changes will be encountered. A disadvantage is that the incident wave is only one-half the signal swing, which limits load placement to the end of the line. ECL input capacitance increases the rise time at the end of the line, thus increasing the effective delay. With parallel termination, i.e., at the end of the line, loads can be distributed along the line. ECL input capacitance modifies the line characteristics and should be taken into account when determining line delay.

## References

1. Metzger, G. and Vabre, J., Transmission Lines with Pulse Excitation, Academic Press, (1969).
2. Skilling, H., Electric Transmission Lines, McGraw-Hill, (1951).
3. Matick, R., Transmission Lines for Digital and Communication Networks, McGraw-Hill, (1969).
4. Millman, J. and Taub, H., Pulse Digital and Switching Waveforms, McGraw-Hill, (1965).
5. "Time Domain Reflectometry", Hewlett-Packard Journal, Vol. 15, No. 6, (February 1964).
6. Feller, A., Kaupp H., and Digiacoma, J., "Crosstalk and Reflections in High-Speed Digital Systems", Proceedings, Fall Joint Computer Conference, (1965).

## CHAPTER 4 System Considerations

## Introduction

All of National's ECL input and output impedances are designed to accommodate various methods of driving and terminating interconnections. Controlled wiring impedance makes it possible to use simplified equivalent circuits to determine limiting conditions. Specific guidelines and recommendations are based on assumed worst-case combinations. Many of the recommendations may seem conservative, compared to typical observations, but the intent is to help the designer achieve a reliable system in a reasonable length of time with a minimum amount of redesign.

## PC Board Transmission Lines

Strictly speaking, transmission lines are not always required for F100K ECL but, when used, they provide the advantages of predictable interconnect delays as well as reflection and ringing control through impedance matching. Two common types of PC board transmission lines are microstrip and stripline, Figure 4-1. Stripline requires multilayer construction techniques; microstrip uses ordinary double-clad boards. Other board construction techniques are wire wrap, stitch weld and discrete wired.


Stripline, Figure $4-1 b$, is used where packing density is a high priority because increasing the interconnect layers provides short signal paths. Boards with as many as 14 layers have been used in ECL systems.
Microstrip offers easier fabrication and higher propagation velocity than stripline, but the routing for a complex system may require more design effort. In Figure 4-1a, the ground plane can be a part of the $V_{E E}$ distribution as long as adequate bypassing from $V_{E E}$ to $V_{C C}$ (ground) is provided. Also, signal routing is simplified and an extra voltage plane is obtained by bonding two microstrip structures back to back, Figure 4-1c.

## Microstrip

Equation 4-1 relates microstrip characteristic impedance to the dielectric constant and dimensions. ${ }^{1}$ Electric field fringing requires that the ground extend beyond each edge of the signal trace by a distance no less than the trace width.

$$
\begin{align*}
Z_{0} & =\left(\frac{60}{\sqrt{0.475 \epsilon_{\mathrm{r}}+0.67}}\right) \ln \left(\frac{4 h}{0.67(0.8 w+t)}\right)  \tag{4-1}\\
& =\left(\frac{87}{\sqrt{\epsilon_{\mathrm{r}}+1.41}}\right) \ln \left(\frac{5.98 \mathrm{~h}}{0.8 w+t}\right)
\end{align*}
$$

where $h=$ dielectric thickness, $w=$ trace width, $t=$ trace thickness, $\epsilon_{\mathrm{r}}=$ board material dielectric constant relative to air.


TL/F/9901-2
b. Stripline


FIGURE 4-1. Transmission Lines on Circuit Boards

## PC Board Transmission Lines (Continued)

Equation 4-1 was developed from the impedance formula for a wire over ground plane transmission line, Equation 4-2.

$$
\begin{equation*}
Z_{0}=\left(\frac{60}{\sqrt{\epsilon_{\mathrm{r}}}}\right) \ln \left(\frac{4 h}{d}\right) \tag{4-2}
\end{equation*}
$$

where $\mathrm{d}=$ wire diameter, $\mathrm{h}=$ distance from ground to wire center.
Comparing Equation 4-1 and 4-2, the term $0.67(0.8 w+t)$ shows the equivalence between a round wire and a rectangular conductor. The term $0.475 \epsilon_{\mathrm{r}}+0.67$ is the effective dielectric constant for microstrip $\epsilon_{\mathrm{e}}$, considering that a microstrip line has a compound dielectric consisting of the board material and air. The effective dielectric constant is determined by measuring propagation delay per unit of line length and using the following relationship.

$$
\begin{equation*}
\delta=1.016 \cdot \sqrt{\epsilon_{\mathrm{e}}} \mathrm{~ns} / \mathrm{ft} \tag{4-3}
\end{equation*}
$$

where $\delta=$ propagation delay, $\mathrm{ns} / \mathrm{ft}$.
Propagation delay is a property of the dielectric material rather than line width or spacing. The coefficient 1.016 is the reciprocal of the velocity of light in free space. Propagation delay for microstrip lines on glass-filled G-10 epoxy boards is typically $1.77 \mathrm{~ns} / \mathrm{ft}$, yielding an effective dielectric constant of 3.04 .


TL/F/9901-4
FIGURE 4-2. Microstrip Impedance Versus Trace Width, G-10 Epoxy
Using $\epsilon_{r}=5.0$ in Equation 4-1, Figure $4-2$ provides microstrip line impedance as a function of width for several G-10 epoxy board thicknesses. Figure 4-3 shows the related $\mathrm{C}_{0}$ values, useful for determining capacitive loading effects on line characteristics, (Equation 3-15).
System designers should ascertain tolerances on board dimensions, dielectric constant and trace width etching in order to determine impedance variations. If conformal coating is used the effective dielectric constant of microstrip is increased, depending on the coating material and thickness.


TL/F/9901-5
FIGURE 4-3. Microstrip Distributed Capacitance Versus Impedance, G-10 Epoxy

## Stripline

Stripline conductors are totally embedded. As a result, the board material determines the dielectric constant. G-10 epoxy boards have a typical propagation delay of $2.26 \mathrm{~ns} / \mathrm{ft}$. Equation $4-4$ is used to calculate stripline impedances. 1,2

$$
\begin{equation*}
Z_{0}=\left(\frac{60}{\sqrt{\epsilon_{\mathrm{r}}}}\right) \ln \left(\frac{4 \mathrm{~b}}{0.67 \pi(0.8 w+t)}\right) \tag{4-4}
\end{equation*}
$$

where $\mathrm{b}=$ distance between ground planes, $\mathrm{w}=$ trace width, $\mathrm{t}=$ trace thickness, $\mathrm{w} /(\mathrm{b}-\mathrm{t})<0.35$ and $\mathrm{t} / \mathrm{b}<0.25$.
Figure 4-4 shows stripline impedance as a function of trace width, using Equation $4-4$ and various ground plane separations for G-10 glass-filled epoxy boards. Related values of $\mathrm{C}_{0}$ are plotted in Figure 4-5.


TL/F/9901-6
FIGURE 4-4. Stripline Impedance Versus Trace Width, G-10 Epoxy


FIGURE 4-5. Stripline Distributed Capacitance Versus Impedance, G-10 Epoxy

## Wire Wrap

Wire-wrap boards are commercially available with three voltage planes, positions for several 24 -pin Dual-In-Line Packages (DIP), terminating resistors, and decoupling capacitors. The devices are mounted on socket pins and interconnected with twisted pair wiring. One wire at each end of the twisted pair is wrapped around a signal pin, the other around a ground pin. The \#30 insulated wire is uniformly twisted to provide a nominal $93 \Omega$ impedance line. Positions for Single-In-Line Package (SIP) terminating resistors are close to the inputs to provide good termination characteristics.

## Stitch Weld

Stitch-weld boards are commercially available with three voltage planes and buried resistors between planes. The devices are mounted on terminals and interconnected with insulated wires that are welded to the backside of the terminals. The insulated wires are placed on a controlled thickness over the ground plane to provide a nominal impedance of $50 \Omega$. The boards are available for both DIPs and flatpaks. Use of flatpaks can increase package density and provide higher system performance.

## Discrete Wired

Custom Multiwire* boards are available with integral power and ground planes. Wire is placed on a controlled thickness above the ground plane to obtain a nominal impedance line of $55 \Omega$. Then holes are drilled through the wire and board. Copper is deposited in the drilled holes by an additive-electrolysis process which bonds each wire to the wall of the holes. Devices are soldered on the board to make connection to the wires.
*Multiwire is a registered trademark of the Multiwire Corporation.

## Parallel Termination

Terminating a line at the receiving end with a resistance equal to the characteristic line impedance is called parallel termination, Figure 4-6a. F100K circuits do not have internal pull-down resistors on outputs, so the terminating resistor must be returned to a voltage more negative than $\mathrm{V}_{\mathrm{OL}}$ to establish the LOW-state output voltage from the emitter follower. A -2V termination return supply is commonly used. This minimizes power consumption and correlates with standard test specifications for ECL circuits. A pair of resistors connected in series between ground ( $\mathrm{V}_{\mathrm{CC}}$ ) and the $\mathrm{V}_{\mathrm{EE}}$
supply can provide the Thevenin equivalent of a single resistor to -2 V if a separate termination supply is not available, Figure $4-6 b$. The average power dissipation in the Thevenin equivalent resistors is about 10 times the power dissipation in the single resistor returned to -2 V , as shown in Figures $5-10$ and 5-13. For either parallel termination method, decoupling capacitors are required between the supply and ground (Chapter 6).
a. Parallel Termination


TL/F/9901-8
b. Thevenin Equivalent of $R_{T}$ and $V_{T T}$


## c. Equivalent Circult for Determining Approximate $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ Levels



TL/F/9901-10
d. F100K Output Characteristic with Terminating Resistor $\mathbf{R}_{\mathbf{T}}$ Returned to $\mathbf{V}_{\mathbf{T T}}=\mathbf{- 2 . 0} \mathrm{V}$


TL/F/9901-11

FIGURE 4-6. Parallel Termination

## PC Board Transmission Lines (Continued)

F100K output transistors are designed to drive low-impedance loads and have a maximum output current rating of 50 mA . The circuits are specified and tested with a $50 \Omega$ load returned to -2 V . This gives nominal output levels of -0.955 V at 20.9 mA and -1.705 V at 5.9 mA . Output levels will be different with other load currents because of the transistor output resistance. This resistance is nonlinear with load current since it is due, in part, to the base-emitter voltage of the emitter follower, which is logarithmic with output current. With the standard $50 \Omega$ load, the effective source resistance is approximately $6 \Omega$ in the HIGH state and $8 \Omega$ in the LOW state.
The foregoing values of output voltage, output current, and output resistance are used to estimate quiescent output levels with different loads. An equivalent circuit is shown in Figure $4-6 c$. The ECL circuit is assumed to contain two internal voltage sources $\mathrm{E}_{\mathrm{OH}}$ and $\mathrm{E}_{\mathrm{OL}}$ with series resistances of $6 \Omega$ and $8 \Omega$ respectively. The values shown for $\mathrm{E}_{\mathrm{OH}}$ and $\mathrm{E}_{\mathrm{OL}}$ are -0.85 V and -1.67 V respectively.
The linearized portion of the F100K output characteristic can be represented by two equations:
For $V_{\text {OH: }}$ V $V_{\text {OUT }}=-850-6$ OUT
For $V_{\text {OL: }} V_{\text {OUT }}=-1670-8$ IOUT
where lout is in mA, VOUT is in mV .
If the range of lout is confined between 8 mA to 40 mA for $\mathrm{V}_{\mathrm{OH}}$, and 2 mA to 16 mA for $\mathrm{V}_{\mathrm{OL}}$, the output voltage can be estimated within $\pm 10 \mathrm{mV}$ (Figure 4-6d).
An ECL output can drive two or more lines in parallel, provided the maximum rated current is not exceeded. Another consideration is the effect of various loads on noise margins. For example, two parallel $75 \Omega$ terminations to -2 V (Figure $4.6 d$ ) give output levels of approximately -1.000 V and -1.716 V . Noise margins are thus 35 mV less in the HIGH state and 11 mV more in the LOW state, compared to $50 \Omega$ load conditions. Conversely, a single $75 \Omega$ load to $-2 V$ causes noise margins 38 mV greater in the HIGH state and 11 mV less in the Low state, compared to a $50 \Omega$ load.
The magnitude of reflections from the terminated end of the line depends on how well the termination resistance $R_{T}$ matches the line impedance $Z_{O}$. The ratio of the reflected voltage to the incident voltage $V_{i}$ is the reflection coefficient $\rho$.

$$
\begin{equation*}
\frac{V_{r}}{V_{i}}=\rho=\frac{R_{T}-Z_{0}}{R_{T}+Z_{0}} \tag{4-5}
\end{equation*}
$$

The initial signal swing at the termination is the sum of the incident and reflected voltages. The ratio of termination signal to incident signal is thus:

$$
\begin{equation*}
\frac{V_{T}}{V_{i}}=1+\rho=\frac{2 R_{T}}{R_{T}+Z_{0}} \tag{4-6}
\end{equation*}
$$

The degree of reflections which can be tolerated varies in different situations, but to allow for worst-case circuits, a good rule of thumb is to limit reflections to $15 \%$ to prevent excursions into the threshold region of the ECL inputs connected along the line. The range of permissible values of $\mathrm{R}_{\mathrm{T}}$ as a function of $Z_{0}$ and the reflection coefficient limitations can be determined by rearranging Equation 4-5.

$$
\begin{equation*}
R_{T}=Z_{0} \frac{1+\rho}{1-\rho} \tag{4-7}
\end{equation*}
$$

Using $15 \%$ reflection limits as examples, the range of the $R_{T} / Z_{0}$ ratio is as follows.

$$
\begin{equation*}
\frac{1.15}{0.85}>\frac{\mathrm{R}_{T}}{\mathrm{Z}_{0}}>\frac{0.85}{1.15} \quad 1.35>\frac{\mathrm{R}_{T}}{\mathrm{Z}_{0}}>0.74 \tag{4-8}
\end{equation*}
$$

The permissible range of the $R_{T} / Z_{0}$ ratio determines the tolerance ranges for $R_{T}$ and $Z_{0}$. For example, using the foregoing ratio limits, $\mathrm{R}_{\mathrm{T}}$ tolerances of $\pm 10 \%$ allow $\mathrm{Z}_{0}$ tolerance limits of $+22 \%$ and $-19 \%$; $R_{T}$ tolerances of $\pm 5 \%$ allow $Z_{0}$ tolerance limits of $+28 \%$ and $-23 \%$.
An additional requirement on the maximum value of $R_{T}$ is related to the value of quiescent $\mathrm{IOH}_{\mathrm{O}}$ current needed to insure sufficient negative-going signal swing when the ECL driver switches from the HIGH state to the LOW state. The npn emitter-follower output of the ECL circuit cannot act as a voltage source driver for negative-going transitions. When the voltage at the base of the emitter follower starts going negative as a result of an internal state change, the output current of the emitter follower starts to decrease. The transmission line responds to the decrease in current by producing a negative-going change in voltage. The ratio of the voltage change to the current change is, of course, the characteristic impedance $\mathrm{Z}_{0}$. Since the maximum decrease in current that the line can experience is from $\mathrm{l}_{\mathrm{OH}}$ to zero, the maximum negative-going transition which can be produced is the product $\mathrm{IOH}_{\mathrm{OH}} \mathrm{Z}_{0}$.
If the $\mathrm{IOH}_{\mathrm{OH}} \mathrm{Z}_{0}$ product is greater than the normal negative-going signal swing, the emitter follower responds by limiting the current change, thereby controlling the signal swing. If, however, the $\mathrm{l}_{\mathrm{OH}} \mathrm{Z}_{0}$ product is too small, the emitter follower is momentarily turned off due to insufficient forward bias of its base-emitter junctions, causing a discontinuous nega-tive-going edge such as the one shown in Figure 4-14. In the output-LOW state the emitter follower is essentially nonconducting for $V_{\mathrm{OL}}$ values more positive than about -1.55 V . Using this value as a criterion and expressing IOH and $\mathrm{V}_{\mathrm{OH}}$ in terms of the equivalent circuit of Figure 4-6c, an upper limit on the value of $\mathrm{R}_{\mathrm{T}}$ can be developed.

$$
\begin{align*}
& \Delta V=I_{O H} Z_{0}>1.55-\left|V_{O H}\right| \\
& \left(\frac{E_{O H}-V_{T T}}{R_{0}+R_{T}}\right) Z_{0}>1.55-\left|\frac{V_{T T} R_{0}=E_{O H} R_{T}}{R_{0}+R_{T}}\right| \\
& R_{T}<\frac{\left(E_{O H}-V_{T T}\right) Z_{0}-\left(1.55-\left|V_{T T}\right|\right) R_{0}}{1.55-\left|E_{O H}\right|} \tag{4-9}
\end{align*}
$$

For a $\mathrm{V}_{\mathrm{TT}}$ of $-2 \mathrm{~V}, \mathrm{R}_{0}$ of $6 \Omega$ and $\mathrm{E}_{\mathrm{OH}}$ of -0.85 V , Equation 4-9 reduces to
$R_{T}<1.64 Z_{0}+3.86 \Omega$
For $Z_{0}=50 \Omega$, the emitter follower cuts off during a nega-tive-going transition if $R_{T}$ exceeds $86 \Omega$. Changing the voltage level criteria to -1.60 V to insure continuous conduction in the emitter follower gives an upper limit of $77 \Omega$ for a $50 \Omega$ line. For a line terminated at the receiving end with a resistance to -2 V , a rough rule-of-thumb is that termination resistance should not exceed line impedance by more than $50 \%$. This insures a satisfactory negatve-going signal swing to ECL inputs connected along the line. The quiescent $V_{O L}$ level, after all reflections have damped out, is determined by $\mathrm{R}_{\mathrm{T}}$ and the ECL output characteristic.

## Input Impedance

The input impedance of ECL circuits is predominately capacitive. A single-function input has an effective value of about 1.5 pF for F 100 K flatpak, as determined by its effect on reflected and transmitted signals on transmission lines.

## Input Impedance (Continued)

In practical calculations, a value of 2 pF should be used. Approximately one third of this capacitance is attributed to the internal circuitry and two thirds to the flatpak pin and internal bonding.
For F100K flatpak circuits, multiple input lines may appear to have up to 3 pF to 4 pF but never more. For example, in the F100102, an input is connected internally to all five gates, but because of the philosophy of buffering these types of inputs in the F100K family this input appears as a unit load with a capacitance of approximately 2 pF . For applications such as a data bus, with two or more outputs connected to the same line, the capacitance of a passiveLOW output can be taken as 2 pF .
Capacitive loads connected along a transmission line increase the propagation delay of a signal along the line. The modified delay can be determined by treating the load capacitance as an increase in the intrinsic distributed capacitance of the line, discussed in Chapter 3. The intrinsic capacitance of any stubs which connect the inputs to the line should be included in the load capacitance. The intrinsic capacitance per unit length for G-10 epoxy boards is shown in Figure 4-3 and 4-5 for microstrip and stripline respectively. For other dielectric materials, the intrinsic capacitance $\mathrm{C}_{0}$ can be determined by dividing the intrinsic delay $\delta$ (Equation $4-3$ ) by the line impedance $Z_{0}$.
The length of a stub branching off the line to connect an input should be limited to insure that the signal continuing along the line past the stub has a continuous rise, as opposed to a rise (or fall) with several partial steps. The point where a stub branches off the line is a low impedance point. This creates a negative coefficient of reflection, which in turn reduces the amplitude of the incident wave as it continues beyond the branch point. If the stub length is short enough, however, the first reflection returning from the end of the stub adds to the attenuated incident wave while it is still rising. The sum of the attenuated incident wave and the first stub reflection provides a step-free signal, although its rise time will be longer than that of the original signal. Satisfactory signal transitions can be assured by restricting stub lengths according to the recommendations for unterminated lines (Figure 4-10). The same considerations apply when the termination resistance is not connected at the end of the line; a section of line continuing beyond the termination resistance should be treated as an unterminated line and its length restricted accordingly.

## Series Termination

Series termination requires a resistor between the driver and transmission line, Figure 4-7. The receiving end of the line has no termination resistance. The series resistor value should be selected so that when added to the driver source resistance, the total resistance equals the line impedance. The voltage divider action between the net series resistance and the line impedance causes an incident wave of half amplitude to start down the line. When the signal arrives at the unterminated end of the line, it doubles and is thus restored to a full amplitude. Any reflections returning to the source are absorbed without further reflection since the line and source impedance match. This feature, source absorption, makes series termination attractive for interconnection paths involving impedance discontinuities, such as occur in backplane wiring.
A disadvantage of series termination is that driven inputs must be near the end of the line to avoid receiving a 2 -step
signal. The initial signal at the driver end is half amplitude, rising to full amplitude only after the reflection returns from the open end of the line. In Figure 4-7, one load is shown connected at point D, aways from the line end. This input receives a full amplitude signal with a continuous edge if the distance I to the open end of the line is within recommended lengths for unterminated line (Figure 4-10).


TL/F/9901-12

## FIGURE 4-7. Series Termination

The signal at the end has a slower rise time that the incident wave because of capacitive loading. The increase in rise time to the $50 \%$ point effectively increases the line propagation delay, since the $50 \%$ point of the signal swing is the input signal timing reference point. This added delay as a function of the product line impedance and load capacitance is discussed in Chapter 3.
Quiescent $V_{O H}$ and $V_{O L}$ levels are established by resistor $R_{E}$ (Figure 4-7), which also acts with $V_{E E}$ to provide the negative-going drive into $R_{S}$ and $Z_{0}$ when the driver output goes to the LOW state. To determine the appropriate $R_{E}$ value, the driver output can be treated as a simple mechanical switch which opens to initiate the negative-going swing. At this instant, $Z_{\mathrm{O}}$ acts as a linear resistor returned to $\mathrm{V}_{\mathrm{OH}}$. Thus the components form a simple circuit of $\mathrm{R}_{E}, \mathrm{R}_{\mathrm{S}}$ and $\mathrm{Z}_{0}$ in a series, connected between $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{OH}}$. The initial current in this series circuit must be sufficient to introduce a 0.38 V transient into the line, which then doubles at the load end to give 0.75 V swing.

$$
\begin{equation*}
I_{R E}=\frac{V_{O H}-V_{E E}}{R_{E}+P_{S}+Z_{0}} \geq \frac{0.38}{Z_{0}} \tag{4-10}
\end{equation*}
$$

Any $\mathrm{I}_{\mathrm{OH}}$ current flowing in the line before the switch opens helps to generate the negative swing. This current may be quite small, however, and should be ignored when calculating $R_{E}$.
Increasing the minimum signal swing into the line by $30 \%$ to 0.49 V insures sufficient pull-down current to handle reflection currents caused by impedance discontinuities and load capacitance. The appropriate $R_{E}$ value is determined from the following relationship.

$$
\begin{equation*}
\frac{V_{O H}-V_{E E}}{R_{E}+R_{S}+Z_{0}} \geq \frac{0.49}{Z_{0}} \tag{4-11}
\end{equation*}
$$

For the $R_{E}$ range normally used, quiescent $V_{O H}$ averages approximately 0.955 V and $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$. The value of $\mathrm{R}_{\mathrm{S}}$ is equal to $Z_{0}$ minus $R_{0}\left(R_{0}\right.$ averages $7 \Omega$ ). Inserting these values and rearranging Equation 4-11 gives the following.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{E}} \leq 5.23 \mathrm{Z}_{0}+7 \Omega \tag{4-12}
\end{equation*}
$$

Power dissipation in $R_{E}$ is listed in Figure 5-14. The power dissipation in $R_{E}$ is greater than in $R_{T}$ of a parallel termination to -2 V , but still less than the two resistors of the Thevenin equivalent parallel termination, see Figure 5-10, 5-13 and 5-14.
The number of driven inputs on a series terminated line is limited by the voltage drop across $\mathrm{R}_{\mathrm{S}}$ in the quiescent HIGH state, caused by the finite input currents of the ECL loads. $I_{I H}$ values are specified on data sheets for various types of

## Series Termination (Continued)

inputs, with a worst-case value of $265 \mu \mathrm{~A}$ for simple gate inputs. The voltage drop subtracts from the HIGH-state noise margin as outlined in Figure 4-8a.
However, there is more HIGH-state noise margin initially, because there is less $\mathrm{I}_{\mathrm{OH}}$ with the $\mathrm{R}_{\mathrm{E}}$ load than with the standard $50 \Omega$ load to -2 V . This makes $\mathrm{V}_{\mathrm{OH}}$ more positive; the increase ranges from 43 mV for a $50 \Omega$ line to 82 mV for a $100 \Omega$ line. Using this $V_{O H}$ increase as a limit on the voltage drop across $\mathrm{R}_{\mathrm{S}}$ assures that the HIGH-state noise margin is as good as in the parallel terminated case. Dividing the $\mathrm{V}_{\mathrm{OH}}$ increase by $\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{0}\left(=\mathrm{Z}_{0}\right)$ gives the allowed load input current ( 1 x in Figure 4-8a). This works out to 0.86 mA for a $50 \Omega$ line, 0.92 mA for a $75 \Omega$ line and 0.82 mA for a $100 \Omega$ line. Load input current greater than these values can be tolerated at some sacrifice in noise margin. If, for example, an additional 50 mV loss is feasible, the maximum values of current become $1.86 \mathrm{~mA}, 1.59 \mathrm{~mA}$ and 1.32 mA for $50 \Omega, 75 \Omega$ and $100 \Omega$ lines respectively.
An ECL output can drive more than one series terminated line, as suggested in Figure 4-8b, if the maximum rated output current of 50 mA is not exceeded. Also, driving two or more lines requires a lower $R_{E}$ value. This makes the quiescent $\mathrm{l}_{\mathrm{OH}}$ higher and consequently $\mathrm{VOH}_{\mathrm{OH}}$ lower, due to the voltage drop across $R_{0}$. This voltage cirop decreases the HIGH-state noise margin, which may become the limiting factor (rather than the maximum rated current), depending on the particular application.
The appropriate $R_{E}$ value can be determined using Equation $4-13$ for $V_{E E}=-4.5 \mathrm{~V}$.

$$
\begin{equation*}
\frac{1}{R_{E}} \geq \frac{1}{6.23 Z_{1}-R_{S 1}}+\frac{1}{6.23 Z_{2}-R_{S 2}}+\frac{1}{6.23 Z_{3}-T_{S 3}} \tag{4-13}
\end{equation*}
$$

Circuits with multiple outputs (such as the F100112) provide an alternate means of driving several lines simultaneous (Figure 4-8c). Note, each output should be treated individually when assiging load distribution, line impedance, and $R_{E}$ value.

## Unterminated Lines

Lines can be used without series or parallel termination if the line delay is short compared to the signal rise time. Ringing occurs because the reflection coefficient at the open (receiving) end of the line is positive (nominally +1 ) while the reflection coefficient at the driving end is negative (approximately -0.8 ). These opposite polarity reflection coefficients cause any change in signal voltage to be reflected back and forth, with a polarity change each time the signal is reflected from the driver. Net voltage change on the line is thus a succession of increments with alternating polarity and decreasing magnitude. The algebraic sum of these increments if the observed ringing. The general relationships among rise time, line delay, overshoot and undershoot are discussed in Chapter 3, using simple waveforms for clarity. Excessive overshoot on the positive-going edge of the signal drives input transistors into saturation. Although this does not damage an ECL input, it does cause excessive recovery times and makes propagation delays unpredict-


TL/F/9901-13
a. Noise Margin Loss Due to Load Input Current


TL/F/9901-14
b. Driving Several Lines from one Output


TL/F/9901-15
c. Using Multiple Output Element for Load Sharing

FIGURE 4-8. Loading Considerations for Series Termination
able. Undershoot (following the overshoot) must also be limited to prevent signal excursions into the threshold region of the loads. Such excursions could cause exaggerated transition times at the driven circuit outputs, and could also cause multiple triggering of sequential circuits. Signal swing, exclusive of ringing, is slightly greater on unterminated lines that on parallel terminated lines; $\mathrm{I}_{\mathrm{OH}}$ is less and $\mathrm{IOL}_{\mathrm{OL}}$ is greater with the $\mathrm{R}_{\mathrm{E}}$ load, (Figure 4-9a) making $\mathrm{V}_{\mathrm{OH}}$ higher and Vol lower.
For worst case combinations of driver output and load input characteristics, a $35 \%$ overshoot limit insures that system speed is not compromised either by saturating an input on overshoot or extending into the threshold region on the following undershoot.
For distributed loading, ringing is satisfactorily controlled if the 2-way modified line delay does not exceed the $20 \%$ to $80 \%$ rise time of the driver output. This relationship can be expressed as follows, using the symbols from Chapter 3 and incorporating the effects of load capacitance on line delay.

$$
\mathrm{t}_{\mathrm{r}}=2 \mathrm{~T}^{\prime}=2 \ell \delta^{\prime}=2 \ell \delta \sqrt{1+\frac{\mathrm{C}_{\mathrm{L}}}{\ell \mathrm{C}_{0}}}
$$

Solving this expression for the line length $(\ell)$ :

$$
\begin{equation*}
\ell_{\max }=\frac{1}{2} \sqrt{\left(\frac{C_{L}}{C_{0}}\right)^{2}+\left(\frac{t_{r}}{\delta}\right)^{2}}-\frac{C_{L}}{2 C_{0}} \tag{4-14}
\end{equation*}
$$

Unterminated Lines (Continued)


TL/F/9901-18
c. Load Gate Output Showing Net Propagation Increase for Increasing Values of $R_{E}: 330 \Omega, 510 \Omega, 1 \mathrm{k} \Omega$

FIGURE 4-9. Effect on RE Value on Trailing-Edge Propagation
The shorter the rise time, the shorter the premissible line length. For F100K ECL, the minimum rise time from $20 \%$ to $80 \%$ is specified as 0.5 ns . Using this rise time and 2 pF per fan-out load, calculated maximum line lengths for G-10 epoxy microstrip are listed in Figure 4-10a. The length ( $\ell$ ) in the table is the distance from the terminating resistor to the input of the device(s). For F100K ECL the case described in Figure 4-10a is the only one calculated, since all other combinations are approximately the same. For other combinations of rise time, impedance, fan-out or line char-
acteristics ( $\delta$ and $\mathrm{C}_{0}$ ), maximum lengths are calculated using Equation $4-14$. For the convenience of those who are also using 10 K ECL, maximum recommended lengths of unterminated lines are listed in Figure 4-10b to 4-10e.

FIGURE 4-10. Maximum Worst-Case Line Lengths for Unterminated Lines

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ |
| 50 | $\mathbf{1 . 3 7 *}$ | $\mathbf{1 . 1 3}$ | 0.95 | 0.81 |
| 62 | 1.33 | 1.07 | 0.87 | 0.70 |
| 75 | 1.25 | 0.95 | 0.75 | 0.61 |
| 90 | 1.18 | 0.85 | 0.66 | 0.53 |
| 100 | 1.15 | 0.82 | 0.61 | 0.49 |

*Length in inches.
Unit load $=2 \mathrm{pF}, \delta=0.148 \mathrm{~ns} / \mathrm{inch}$
FIGURE 4-10a. F100K Maximum Worst-Case Line Lengths for Unterminated Microstrip, Distributed Loading

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ |
| 50 | $4.15^{*}$ | 3.75 | 3.45 | 2.85 | 2.45 |
| 62 | 3.95 | 3.50 | 3.15 | 2.55 | 2.10 |
| 75 | 3.75 | 3.25 | 2.85 | 2.25 | 1.85 |
| 90 | 3.55 | 3.00 | 2.60 | 2.00 | 1.60 |
| 100 | 3.45 | 2.85 | 2.45 | 1.85 | 1.45 |

*Length in inches.
Unit load $=3 \mathrm{pF}, \delta=0.148 \mathrm{~ns} / \mathrm{in}$.
FIGURE 4-10b. 10K Maximum Worst-Case
Line Lengths for Unterminated
Microstrip, Distributed Loading

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ |
| 50 | $4.40^{*}$ | 3.65 | 2.60 | 1.90 | 1.40 |
| 62 | 4.30 | 3.45 | 2.30 | 1.60 | 1.15 |
| 75 | 4.20 | 3.20 | 2.05 | 1.40 | 0.95 |
| 90 | 4.05 | 2.95 | 1.75 | 1.05 | 0.65 |
| 100 | 3.90 | 2.80 | 1.60 | 0.90 | 0.50 |

*Length in inches.
Unit load $=3 \mathrm{pF}, \delta=0.148 \mathrm{~ns} / \mathrm{in}$.
FIGURE 4-10c. 10K Maximum Worst-Case
Line Lengths for Unterminated Microstrip, Concentrated Loading

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ |
| 50 | $3.30^{*}$ | 3.00 | 2.70 | 2.25 | 2.90 |
| 62 | 3.15 | 2.80 | 2.50 | 2.00 | 1.65 |
| 75 | 3.00 | 2.60 | 2.25 | 1.80 | 1.45 |
| 90 | 2.80 | 2.40 | 2.05 | 1.55 | 1.25 |

*Length in inches.
Unit load $=3 \mathrm{pF}, \delta=0.188 \mathrm{~ns} / \mathrm{in}$.
FIGURE 4-10d. 10K Maximum Worst-Case
Line Lengths for Unterminated Stripline, Distributed Loading

Unterminated Lines (Continued)

| $\mathbf{Z}_{\mathbf{0}}$ | Number of Fan-Out Loads |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{6}$ | $\mathbf{8}$ |
| 50 | $3.45^{*}$ | 2.85 | 2.00 | 1.50 | 1.10 |
| 62 | 3.40 | 2.70 | 1.80 | 1.30 | 0.90 |
| 75 | 3.30 | 2.55 | 1.60 | 1.10 | 0.75 |
| 90 | 3.15 | 2.35 | 1.40 | 0.85 | 0.50 |
| 100 | 3.10 | 2.20 | 1.25 | 0.70 | 0.40 |

*Length in inches.
Unit load $=3 \mathrm{pF}, \delta=0.188 \mathrm{~ns} / \mathrm{in}$.

## FIGURE 4-10e. 10K Maximum WorstCase Line Lengths for Unterminated Stripline, Concentrated Loading

A load capacitance concentrated at the end of the line restricts line length more than a distributed load does. Maximum recommended lengths for fiberglass epoxy dielectric and a 0.5 ns rise time are listed in Figure 4-10 for microstrip. For line impedances not listed, linear interpolation can be used to determine appropriate line lengths. Appropriate line lengths for dielectric materials with a different propagation constant $\delta$ can be determined by multiplying the listed values by the fiberglass epoxy $\delta$ and then dividing by the $\delta$ of the other material. For example, a line length for a material which has a microstrip $\delta$ of $0.1 \mathrm{~ns} /$ inch is determined by multiplying the length given in the microstrip table (for a desired impedance and load) by 0.148 and dividing by 0.1 .
Resistor $R_{E}$ must provide the current for the negative-going signal at the driver output. Line input and output waveforms are noticeably affected if $R_{E}$ is too large, as shown in Figure $4-9 b$. The negative-going edge of the signal falls in stairstep fashion, with three distinct steps visible at point $A$. The waveform at point $B$ shows a step in the middle of the nega-tive-going swing. The effect of different $R_{E}$ values on the net propagation time through the line and the driven loads is evident in Figure 4-9c which shows the output signal of one driven gate in a multiple exposure photograph. The horizontal sweep (time axis) was held constant with respect to the input signal of the driver. The earliest of the three output signals occurs with an $R_{E}$ value of $330 \Omega$. Changing $R_{E}$ to $510 \Omega$ increases the net propagation delay by 0.3 ns , the horizontal offset between the first and second signals. Changing $R_{E}$ to $1 \mathrm{k} \Omega$ produces a much greater increase in net propagation delay, indicating that the negative-going signal at B contains several steps. In practice, a satisfactory negative-going signal results when the $R_{E}$ value is chosen to give an initial negative-going step of 0.6 V at the driving end of the line. This gives an upper limit on the value of $\mathrm{R}_{E^{\prime}}$ as shown in Equation 4-15.

$$
\begin{align*}
\text { initial step } & =\Delta \ell \bullet Z_{0}=\frac{\left(V_{\mathrm{OH}}-V_{\mathrm{EE}}\right) \mathrm{Z}_{0}}{\mathrm{R}_{\mathrm{E}}+\mathrm{Z}_{0}} \geq 0.6 \\
R_{\mathrm{E}} & =\leq 6.25 \mathrm{Z}_{0} \tag{4-15}
\end{align*}
$$

An ECL output can drive two or more unterminated lines, provided each line length and loading combination is within the recommended constraints. The appropriate $R_{E}$ value is determined from Equation 4-15, using the parallel impedance of the two or more lines for $\mathrm{Z}_{0}$.
An ECL output can simultaneously drive terminated and unterminated lines, although the negative-going edge of the signal shows two or more distinct steps when the stubs are long unless some extra pull-down current is provided. Figure 4-11a shows an ECL circuit driving a parallel terminated line, with provision for connecting two worst-case untermi-
nated lines to the driver output. Waveforms at the termination resistor (point A) are shown in the multiple exposure photograph of Figure 4-11b. The upper trace shows a normal signal without stubs connected to the driver. The middle trace shows the effect of connecting one stub to the driver. The step in the negative-going edge indicates that the quiescent $\mathrm{l}_{\mathrm{OH}}$ current through $\mathrm{R}_{\mathrm{T}}$ is not sufficient to cause a full signal for both lines. The relationship between the quiescent $I_{\mathrm{OH}}$ current through $\mathrm{R}_{\mathrm{T}}$ and the negative-going signal swing was discussed earlier in connection with parallel termination.
The bottom trace in Figure $4-11$ shows the effect of connecting two stubs to the driver output. The steps in trailing edge are smaller and more pronounced. The deteriorated trailing edge of either the middle or lower waveform increas-


## b. Waveforms at Termination Point A



TL/F/9901-20
c. Equivalent Circuit for Determining Initial Negative Voltage Step at the Driver Output


TL/F/9901-21
FIGURE 4-11. Driving Terminated and Unterminated Lines in Parallel

## Unterminated Lines (Continued)

es the switching time of the cirucit connected to point A. If this extra delay cannot be tolerated, additional pull-down current must be provided. One method uses a resistor to $V_{E E}$ as suggested in Figure 4-11a. The initial negative-going step at point A should be about 0.7 V to insure a good fall rate through the threshold region of the driven gate. The initial step at the driver output should also be 0.7 V . If the driver output is treated as a switch that opens to initiate the negative-going signal, the equivalent circuit of Figure 4-11c can be used to determine the initial voltage step at the driver output (point $X$ ). The value of the current source $I_{R T}$ is the quiescent $\mathrm{IOH}_{\mathrm{OH}}$ current through $\mathrm{R}_{\mathrm{T}}$. Using $Z$ ' to denote the parallel impedance of the transmission lines and $\Delta V$ for the desired voltage step at $X$, the appropriate value of $R_{E}$ can be determined from the following equation, using absolute values to avoid polarity confusion.

$$
R_{E}=\left(\left|V_{E E}\right|-\left|V_{O H}\right|-\Delta V \mid\right) \cdot\left(\frac{Z^{\prime}}{|\Delta V|-\left|I_{\mathrm{RT}}\right| Z^{\prime}}\right)
$$

For a sample calculation, assume that $R_{T}$ and the line impedances are each $100 \Omega, \mathrm{~V}_{\mathrm{OH}}$ is $-0.955 \mathrm{~V}, \Delta \mathrm{~V}$ is 0.750 V , $\mathrm{V}_{E E}$ is -4.5 V and $\mathrm{V}_{T T}$ is -2 V . $\mathrm{I}_{\mathrm{RT}}$ is thus 10.45 mA and the calculated value of $R_{E}$ is $232 \Omega$. In practice, this value is on the conservative side and can be increased to the next larger ( $10 \%$ ) standard value with no appreciable sacrifice in propagation through the gate at point $A$.
Again, the foregoing example is based on worst-case stub lengths (the longest permissible). With shorter stubs, the effects are less pronounced and a point is reached where extra pull-down current is not required because the reflection from the end of the stub arrives back at the driver while the original signal is still falling. Since the reflection is also negative going, it combines with and reinforces the falling signal at the driver, eliminating the steps. The net result is a smoothly falling signal but with increased fall time compared to the stubless condition.
The many combinations of line impedance and load make it practically impossible to define just with stub length begins to cause noticeable steps in the falling signal. A rough rule-of-thumb would be to limit the stub length to one-third of the values given in Figure 4-10.

## Data Bussing

Data bussing involves connecting two or more outputs and one or more inputs to the same signal line, (Figure 4-12). Any one of the several drivers can be enabled and can apply data to the line. Load inputs connected to the line thus receive data from the selected source. This method of steering data from place to place simplifies wiring and tends to minimize package count. Only one of the drivers can be enabled at a given time; all other driver outputs must be in the LOW state. Termination resistors matching the line impedance are connected to both ends of the line to prevent reflections. For calculating the modified delay of the line (Chapter 3) the capacitance of a LOW (unselected) driver output should be taken as 2 pF .
An output driving the line sees an impedance equal to half the line impedance. Similarly, the quiescent $\mathrm{I}_{\mathrm{OH}}$ current is higher than with a single termination. For line impedance less than $100 \Omega$, the $\mathrm{I}_{\mathrm{OH}}$ current is greater than the data sheet test value, with a consequent reduction of HIGH-state noise margin. This loss can be eliminated if necessary by


TL/F/9901-22
FIGURE 4-12. Data Bus or Party Line
using multiple output gates ( $\mathrm{F}_{1}$ 100112) and paralleling two outputs for each driver. In the quiescent LOW state, termination current is shared among all the output transistors on the line. This sharing makes $V_{O L}$ more positive than if only one output were conducting all of the current. For example, a $100 \Omega$ line terminated at both ends represents a net $50 \Omega$ DC load, which is the same as the data sheet condition for $\mathrm{V}_{\mathrm{OL}}$. If one worst-case output were conducting all the current, the $V_{O L}$ would be -1.705 V . If another output with identical DC characteristics shares the load current equally, the $V_{\text {OL }}$ level shifts upward by about 25 mV . Connecting two additional outputs for a total of four with the same characteristics shifts $V_{O L}$ upward another 22 mV . Connecting four more identical outputs shifts $\mathrm{V}_{\mathrm{OL}}$ upward another 20 mV . Thus the $V_{\mathrm{OL}}$ shift for eight outputs having identical worstcase $\mathrm{V}_{\mathrm{OL}}$ characteristics is approximately 67 mV . In practice, the probability of having eight circuits with worst-case $V_{O L}$ characteristics is quite low. The output with the highest $\mathrm{V}_{\mathrm{OL}}$ tends to conduct most of the current. This limits the upward shift to much less than the theoretical worst-case value. In addition, the LOW-state noise margin is specified greater than the HIGH-state margin to allow for $\mathrm{V}_{\mathrm{OL}}$ shift when outputs are paralleled.
In some instances a single termination is satisfactory for a data bus, provided certain conditions are fulfilled. The single termination is connected in the middle of the line. This requires that for each half of the line, from the termination to the end, the line length and loading must comply with the same restrictions as unterminated lines to limit overshoot and undershoot to acceptable levels. The termination should be connected as near as possible to the electrical mid-point of the line, in terms of the modified line delay from the termination to either end. Another restriction is that the time between successive transitions, i.e., the nominal bit time, should not be less than 15 ns . This allows time for the major reflections to damp out and limits additive reflections to a minor level.

## Wired-OR

In general-purpose wired-OR logic connections, where two or more driver outputs are expected to be in the HIGH state simultaneously, it is important to minimize the line length between the participating driver outputs, and to place the termination as close as possible to the mid-point between the two most widely separated sources. This minimizes the negative-going disturbances which occur when one HIGH output turns off while other outputs remain HIGH. The driver output going off represents a sudden decrease in line current, which in turn generates a negative-going voltage on the line. A finite time is required for the other driver outputs (quiescently HIGH) to supply the extra current. The net re-

## Wired-OR (Continued)

sult is a " V " shaped negative glitch whose amplitude and duration depend on three factors: current that the off-going output was conducting, the line impedance, and the line length between outputs. If the separation between outputs is kept within about one inch, the transient will not propagate through the driven load circuits.
If a wired-OR connection cannot be short, it may be necessary to design the logic so that the signal on the line is not sampled for some time after the normal propagation delay (output going negative) of the element being switched. Normal propagation delay is defined as the case where the element being switched is the only one on the line in the HIGH state, resulting in the line going LOW when the element switches. In this case, the propagation delay is measured from the $50 \%$ point on the input signal of the off-going element to the $50 \%$ point of the signal at the input farthest away from the output being switched. The extra wiring time required in the case of a severe negative glitch is, in a worst-case physical arrangement, twice the line delay between the off-going output and the nearest quiescently HIGH output, plus 2 ns .
An idea of how the extra waiting time varies with physical arrangement can be obtained by qualitatively comparing the signal paths in Figure 4-13. With the outputs at A and B quiescently HIGH, the duration of the transient observed at $C$ is longer if $B$ is the off-going output than if $A$ is the off-going element. This is because the negative-going voltage generated at B must travel to A, whereupon the corrective signal is generated, which subsequently propagates back toward C . Thus the corrective signal lags behind the initial transient, as observed at C, by twice the line delay between $A$ and $B$. On the other hand, if the output at $A$ generates the negative-going transient, the corrective response starts
when the transient reaches point $B$. Consequently, the transient duration observed at $C$ is shorter by twice the line delay from A to B .


TL/F/9901-23
FIGURE 4-13. Relative to Wired-OR Propagation

## Backplane Interconnections

Several types of interconnections can be used to transmit a signal between logic boards. The factors to be considered when selecting a particular interconnection for a given application are cost, impedance discontinuities, predictability of propagation delay, noise environment, and bandwidth. Sin-gle-ended transmission over an ordinary wire is the most economical but has the least predictable impedance and propagation delay. At the opposite end of the scale, coaxial cable is the most costly but has the best electrical characteristics. Twisted pair and similar parallel wire interconnection cost and quality fall in between.
For single-wire transmission through the backplane, a ground plane or ground screen (Chapter 5) should be provided to establish a controlled impedance. A wire over a ground plane or screen has a typical impedance of $150 \Omega$ with variations on the order of $\pm 33 \%$, depending primarily on the distance from ground and the configuration of the ground. Figure 4-14 illustrates the effects of impedance variations with a 15 -inch wire parallel terminated with $150 \Omega$ to $-2 V$. Figure $4-14 b$ shows source and receiver waveforms when the wire is in contact with a continuous ground plane.

a. Wire over Ground Plane or Screen


FIGURE 4-14. Parallel Terminated Backplane Wire

## Backplane Interconnections (Continued)

The negative-going signal at the source shows an initial step of only $80 \%$ of a full signal swing. This occurs because the quiescent HIGH-state current $\mathrm{I}_{\mathrm{OH}}$ (about 7 mA ) multiplied by the impedance of the wire (approximately $90 \Omega$ ) is less than the normal signal swing, and this condition allows the driver emitter follower to turn off. The negative-going signal at the receiving end is greater by $25 \%(1+\rho=1.25)$. The receiving end mismatch causes a negative-going reflection which returns to the source and establishes the $\mathrm{V}_{\mathrm{OL}}$ level. The positive-going signal at the source shows a normal signal swing, with the receiving end exhibiting approximately $25 \%$ overshoot.
Figure 4-14c shows waveforms for a similar arrangement, but with the wire about $1 / 8$ inch from a ground screen. The impedance of the wire is greater than $150 \Omega$ termination, but small variations in impedance along the wire cause intermediate reflections which tend to lengthen the rise and fall times of the signal. As a result, the received signal does not exhibit pronounced changes in slope as would be expected if a $200 \Omega$ constant impedance line were terminated with $150 \Omega$.
Series source resistance can also be used with single wire interconnections to absorb reflection. Figure 4-15a shows a 16 -inch wire with a ground screen driven through a source resistance of 100 . The waveforms (Figure 4-15b) show that although reflections are generated, they are largely $a b-$ sorbed by the series resistor, and the signal received at the load exhibits only slight changes and overshoot. Series termination techniques can also be used when the signal into the wire comes from the PC board transmission line. Figure 4 -16a illustrates a 12 -inch wire over a ground screen, with 12 -inch microstrip lines at either end of the wire. The output is heavily loaded (fan-out of 8 ) and the combination of impedances produces a variety of reflections at the input to the first microstrip line, shown in the upper trace of Figure 4-16b. The lower trace shows the final output; a comparison between the two traces shows the effectiveness of damping in maintaining an acceptable signal at the output. Figure $4-16 c$ shows the signals at the input to the driving gate and at the output of the load gate, with a net through-put time of 8.5 ns . The circuit in Figure $4-16 a$ is a case of mismatched transmission lines, discussed in Chapter 3.

Signal propagation along a single wire tends to be fast because the dielectric medium is mostly air. However, impedance variations along a wire cause intermediate reflections which tend to increase rise and fall times, effectively increasing propagation delay. Effective propagation delays are in the range of 1.5 to 2.0 ns per foot of wire. Load capacitance at the receiving end also increases rise and fall time (Chapter 3), further increasing the effective propagation delay.

a. Wire over Ground Screen

b. Series Terminated Waveform

FIGURE 4-15. Series Terminated Backplane Wire

Backplane Interconnections (Continued)

a. Backplane Wire Interconnecting PC Board LInes


TL/F/9901-30
b. Signals Into the First Microstrip and at the Loads


TL/F/9901-31
c. Input to Driving Gate and Output of Load Gate

FIGURE 4-16. Signal Path with Sequence of Microstrip, Wire, Microstrip
Better control of line impedance and faster propagation can be achieved with a twisted pair. A twisted pair of AWG 26 Teflon* insulated wires, two twists per inch, exhibits a propagation delay of $1.33 \mathrm{~ns} / \mathrm{ft}$ and an impedance of $115 \Omega$. Twisted pair lines are available in a variety of sizes, impedances and multiple-pair cables. Figure 4-17a illustrates sin*Teflon is a registered trademark of E.I. du Pont de Nemours Conpany.


TL/F/9901-32
a. Single-ended Twisted Pair


TL/F/9901-33
b. Differential Transmission Reception

c. Backplane Data Bus

FIGURE 4-17. Twisted Pair Connections
gle-ended driving and receiving. In addition to improved propagation velocity, the magnetic fields of the two conductors tend to cancel, minimizing noise coupled into adjacent wiring.
Differential line driving and receiving complementary gates as the driver and an F100114 line receiver is illustrated in Figure 4-17b. Differential operation provides high noise immunity, since common mode input voltages between -0.55 V and -3.0 V are rejected. The differential mode is recommended for communication between different parts of a system, because it effectively nullifies ground voltage differences. For long runs between cabinets or near high power transients, interconnections using shielded twisted pair are recommended.
Twisted pair lines can be used to implement party line type data transfer in the backplane, as indicated in Figure 4-17c. Only one driver should be enabled at a given time; the other outputs must be in the $\mathrm{V}_{\mathrm{OL}}$ state. The $\mathrm{V}_{\mathrm{BB}}$ reference voltage is available on pin 22 of the flatpak and pin 19 of the dual-in-line package for the F100114.
In the differential mode, a twisted pair can send high-frequency symmetrical signals, such as clock pulses, of 100 MHz over distances of 50 to 100 feet. For random data, however, bit rate capability is reduced by a factor of four or five due to line rise effects on time jitter. ${ }^{3}$

## Backplane Interconnections (Continued)

Coaxial cable offers the highest frequency capability. In addition, the outer conductor acts as a shield against noise, while the uniformity of characteristics simplifies the task of matching time delays between different parts of the system. In the single-ended mode, Figure 4-18a, 50 MHz signals can be transferred over distances of 100 feet. For 100 MHz operation, lengths should be 50 feet or less. In the differential mode, Figures $4-18 b, c$, the line receiver can recover smaller signals, allowing 100 MHz signals to be transferred up to 100 feet. The dual cable arrangement of Figure 4-18c provides maximum noise immunity. The delay of coaxial cables depends on the type of dielectric material, with typical delays of $1.52 \mathrm{~ns} / \mathrm{ft}$ for polyethylene and $1.36 \mathrm{~ns} / \mathrm{ft}$ for cellular polyethylene.

a. Single-Ended Coaxial Transmission


TL/F/9901-36
b. Differential Coaxial Transmission


TL/F/9901-37
c. Differential Transmission with Grounded Shields

FIGURE 4-18. Coaxial Cable Connections

## References

1. Kaupp, H. R., "Characteristics of Microstrip Transmission Lines," IEEE Transaction on Electronic Computers, Vol. EC-16 (April, 1967).
2. Harper, C. A., Handbook of Wiring, Cabling and Interconnections for Electronics. New York: McGraw-Hill, 1972.
3. True, K. M., "Transmission Line Interface Elements," The TTL Applications Handbook, Chapter 14 (August 1973), pp. 14-1-14-14.

# Chapter 5 Power Distribution and Thermal Considerations 

## Introduction

High-speed circuits generally consume more power than similar low-speed circuits. At the system level, this means that the power supply distribution system must handle the larger current flow; the larger power dissipation places a greater demand on the cooling system. The direct current (DC) voltage drop along ground busses affects noise margins for all types of ECL circuits. Voltage drops along $\mathrm{V}_{\mathrm{EE}}$ busses have only a slight effect on F100K circuits, but they require consideration to obtain the performance available from the family.

## Logic Circuit Ground, $\mathbf{V}_{\mathbf{C C}}$

The positive potential $V_{C C}$ and $V_{C C A}$ in ECL circuits is the reference voltage for output voltages and input thresholds and should therefore be the ground potential. When two circuits are connected in a single-ended mode, any difference in ground potentials decreases the noise margins, as discussed in Chapter 1. This effect for TTL/DTL circuits, as well as for ECL circuits, is illustrated in Figure 5-1. The following analysis assumes some average value of current flowing through the distributed resistance along the ground path between two circuits. For the indicated direction of $\mathrm{I}_{\mathrm{G}}$, the shift in ground potential decreases the LOW-state noise margin of the TTL/DTL circuits and the HIGH-state noise margin of the ECL circuits. If $\mathrm{I}_{\mathrm{G}}$ is flowing in the opposite direction, it increases these noise margins, but decreases the noise margins when the drivers are in the opposite state. For tabulation of ground currents in ECL, the designs must include termination currents as well as IEE operating currents. ECL logic boards which use microstrip or stripline techniques generally have large areas of ground metal. This causes the ground resistance to be quite low and thus minimizes noise margin loss between pairs of circuits on the same board.


TTL/DTL
$V^{\prime}{ }^{\prime}=V_{O L}=+I_{G} R_{G}$
$\mathrm{V}^{\prime} \mathrm{OH}^{\prime}=\mathrm{V}_{\mathrm{OH}}+\mathrm{I}_{\mathrm{G}} \mathrm{R}_{\mathrm{G}}$
FIGURE 5-1. Effect of Ground Resistance on Noise Margins

$$
\mathrm{I}_{\mathrm{G}} R_{\mathrm{G}}=\left(\mathrm{V}^{\prime} \mathrm{OL}-\mathrm{V}_{\mathrm{O}}\right)^{\prime}=\text { Noise Margin Decrease }=\mathrm{I}_{\mathrm{G}} R_{\mathrm{G}}=\left(V_{O H}^{\prime}-V_{O H}\right)
$$

$\mathrm{I}_{G} R_{G}=\left(V_{O L}-V_{O L}=\right.$ Noise Margin Decrease $=I_{G} R_{G}=\left(V_{O H}{ }^{\prime}-V_{O H}\right)$
FIGURE 5-1.

In practice, two communicating circuits might be located on widely separated PC cards with other PC cards in between. The net resistance then includes the incremental resistance of the ground distribution bus from card to card, while the ground current is successively increased by the contribution from each card. Figure 5-2 illustrates a distribution bus for a row of cards with incremental resistances along the bus.

$r=$ Incremental Bus Resistance between Positions
$i=$ Average Ground Current per Card
FIGURE 5-2. Ground Shift Along a Row of PC Cards
The ground shift can be estimated by first determining an average value of current per card based on the number of packages, the mix of SSI and MSI, and the number and types of terminations. With $n$ cards in the row, an average ground current (i) per card, and an incremental bus resistance ( $r$ ) between card positions, the bus voltage drops between the various positions can be determined as follows:
between positions 1 and 2: $v_{1-2}=(n-1)$ ir
between positions 1 and 3: $v_{1-3}=(n-1)$ ir +

$$
(n-2) \text { ir }
$$

between positions 1 and 4: $\mathrm{v}_{1-4}=(n-1) \mathrm{ir}+$

$$
\begin{aligned}
& (n-2) \text { ir }+ \\
& (n-3) \text { ir }
\end{aligned}
$$

between 1 and n :

$$
\begin{aligned}
v_{1-n}= & \operatorname{ir}\{(n-1)+ \\
& (n-2)+(n-3) \\
& +\ldots+[n-(n-1)]\} \\
& =\operatorname{ir}[1+2+3 \\
& +\ldots+(n-1)] \\
& v_{1-n}= \\
& \text { ir } \sum_{1}^{n-1} n
\end{aligned}
$$

For a row of 15 cards, for example, the total ground shift between positions 1 and 15 is expressed as in Equation 5-1.

$$
\begin{align*}
v_{1-15} & =\operatorname{ir} \sum_{1}^{14} n=\operatorname{ir}(1+2+3+\ldots+13+14)  \tag{5-1}\\
& =105 \mathrm{ir}
\end{align*}
$$

## Logic Circuit Ground, VCC (Continued)

The ground shift between any two card positions $j$ and $k$ can be determined as follows for the general case.
$v_{j-k}=(n-j) i r+[n-(j+1)] i r+$

$$
[n-(j+2)] i r
$$

$$
+\ldots+\{n-[j+(k-j-1)]\} \text { ir }
$$

$$
\begin{equation*}
=(k-j) \text { nir }- \text { ir }\{j+(j+1)+(j+2) \tag{5-2}
\end{equation*}
$$

$v_{j-k}=(k-j) n i r-i r \sum_{j}^{k-1} n=i r\left[(k-j) n-\sum_{j}^{k-1} n\right]$
In a row of 15 cards, the ground shift between positions four and nine, for example, is determined as follows.
$\begin{aligned} \mathrm{v}_{\mathrm{j}-\mathrm{k}} & =\operatorname{ir}[(9-4) 15-(4+5+6+7+8)] \\ & =\operatorname{ir}(75-30)=45 \mathrm{ir}\end{aligned}$
The ground shift between the same number of positions further down the row is less because of the decreasing current along the row. Consider the ground shift between card positions 10 and 15.

$$
\begin{align*}
\mathrm{v}_{10-15}= & \operatorname{ir}[(15-10) 15- \\
& (10+11+12+13+14)]  \tag{5-4}\\
= & \operatorname{ir}(75-60)=15 \mathrm{ir}
\end{align*}
$$

These examples illustrate several principles the designer should consider regarding the ground distribution bus and assignment of card positions. The bus resistance should be kept as low as possible by making the cross-sectional areas as large as practical. Logic cards which represent the heaviest current drain should be located nearest the end where ground comes into the row of cards. Cards with single-ended logic wiring between them should be assigned to positions as close together as possible. Conversely, if the ground shift between two card positions represents an unacceptable loss of noise margin, then the differential transmission and reception method i.e., twisted pair, should be used for logic wiring between them, thereby eliminating ground shift as a noise margin factor.

## Conductor Resistances

Conductors with large cross-sectional areas are required to maintain low voltage drops along power busses. For convenience, Figure 5-3 lists the resistance per foot and the cross-sectional area for more common sizes of annealed copper wire. Other characteristics and a complete list of sizes can be found in standard wire tables. A useful rule-ofthumb regarding resistances and, hence, areas is: as gauge numbers increase, resistance doubles with every third gauge number; e.g., the resistance per foot of \#10 wire is $1 \mathrm{~m} \Omega$, for \#13 wire it is $2 \mathrm{~m} \Omega$. Similarly, the resistance per foot of \# 0 wire is $0.078 \mathrm{~m} \Omega$, which is half that of \# 2 wire.
For calculations involving conductors having rectangular cross sections, it is often convenient to work with sheet resistance, particularly for power distribution on PC cards. Copper resistivity is usually given in ohm-centimeters, indicating the resistance between opposing faces of a 1 cm cube. The sheet resistance of a conductor is obtained by dividing the resistivity by the conductor thickness. These relationships follow.

| AWG <br> B \& S <br> Gauge | Resistance <br> $\mathbf{m} \Omega$ Per Foot | Cross-Sectional <br> Area <br> Square Inches |
| :---: | :---: | :---: |
| $\# 2$ | 0.156 | $5.213 \times 10^{-2}$ |
| $\# 6$ | 0.395 | $2.062 \times 10^{-2}$ |
| $\# 10$ | 0.999 | $8.155 \times 10^{-3}$ |
| $\# 12$ | 1.588 | $5.129 \times 10^{-3}$ |
| $\# 18$ | 6.385 | $1.276 \times 10^{-3}$ |
| $\# 22$ | 16.14 | $5.046 \times 10^{-4}$ |
| $\# 26$ | 40.81 | $1.996 \times 10^{-4}$ |
| $\# 30$ | 103.2 | $7.894 \times 10^{-5}$ |

FIGURE 5-3. Resistance and Cross-Sectional Area of Several Sizes of Annealed Copper Wire

Copper resistivity $=\rho=1.724 \times 10^{-6} \Omega \mathrm{~cm} @ 20^{\circ} \mathrm{C}$
Resistance of a conductor $=\rho \frac{1}{\mathrm{~A}}=\rho \frac{1}{\mathrm{tw}}$
where: $I=$ length $\quad t=$ thickness $\quad w=$ width
Sheet resistance $\rho_{S}=\frac{\rho}{t} \Omega$ per $\frac{1}{w}$
The length/width ratio $(1 / w)$ is dimensionless; therefore, the resistance of a length of conductor of uniform thickness can be calculated by first determining the number of "squares," then multiplying by the sheet resistance. For example, a conductor one-eighth inch wide and three inches long has 24 squares; its resistance is 24 times the sheet resistance. Since many thickness dimensions are given in inches, it is convenient to express the resistivity in ohm-inch, as follows. $\rho(\Omega \mathrm{in})=.\rho(\Omega \mathrm{cm}) \div 2.54=6.788 \times 10^{-7} \Omega \mathrm{in}$.
The use of sheet resistance and the "squares" concept is illustrated by calculating the resistance of the conductor shown in Figure 5-4. Assume the conductor is a 1 oz . copper cladding with a 0.0012 inch minimum thickness on a PC card.


TL/F/9902-3
FIGURE 5-4. Conductor of Uniform Thickness but Non-Uniform Cross Section

$$
\begin{aligned}
\text { Sheet resistance } & =\rho_{\mathrm{S}}=\frac{\rho}{\mathrm{t}} \\
& =5.657 \times 10^{-4} \Omega \text { per square }
\end{aligned}
$$

The number of squares $S$ for the rectangular sections are as follows.
$S 1=\frac{l_{1}}{w_{1}}=8 \quad S_{3}=\frac{l_{3}}{w_{2}}=3$
The middle average segment of the conductor has a trapeziodal shape. The average of $w_{1}$ and $w_{2}$ can be used as the effective width, within $1 \%$ accuracy, if the $w_{2} / w_{1}$ ratio is 1.5 or less. Otherwise, a more exact result is obtained as follows.
$S_{2}=\frac{l_{2}}{w_{2}-w_{1}} \ln \left(\frac{w_{2}}{w_{1}}\right)=4 \ln 2=2.77$ squares
Total $R=R_{1}+R_{2}+R_{3}=\rho_{s}\left(S_{1}+S_{2}+S_{3}\right)$

$$
=7.51 \mathrm{~m} \Omega
$$

## Conductor Resistances <br> (Continued)

As another example, assume that a 1 oz . trace must carry a 200 mA current six inches with a voltage drop less than 10 mV .
$R_{\text {max }}=\frac{\mathrm{V}_{\text {max }}}{\mathrm{I}}=\frac{0.01}{0.2}=0.05 \Omega$
$0.05=\mathrm{p}_{\mathrm{s}} \frac{\mathrm{l}}{\mathrm{w}}$
$\frac{\mathrm{w}}{\mathrm{l}}=20 \rho_{\mathrm{s}}$
$\mathrm{w}=120 \rho_{\mathrm{s}}=(120) 5.657 \times 10^{-4}=67.9 \times 10^{-3}$
$\therefore$ minimum trace width, $\mathrm{w}=68$ mils
At a higher current level, consider the voltage drop in a conductor 20 mils thick, 1.25 inches wide and 3 feet long carrying a 50 A current.
$\rho_{\mathrm{s}}=\frac{6.788 \times 10^{-7}}{2 \times 10^{-2}}=3.364 \times 10^{-5} \Omega$ per square

$$
\begin{align*}
V & =I R-(50)\left(3.364 \times 10^{-5}\right) \frac{36}{1.25}  \tag{5-7}\\
& =0.0484=48.4 \mathrm{mV}
\end{align*}
$$

Sheet resistances for various copper thicknesses are listed in Figure 5-5. Standard thicknesses and tolerances for copper cladding are tabulated in Figure 5-6 and resistance per foot as a function of width is shown in Figure 5-7.

| Weight <br> or <br> Thickness | Sheet <br> Resistance <br> $\Omega$ per <br> Square | Thickness | Sheet <br> Resistance <br> $\Omega$ per Square |
| :---: | :---: | :---: | :---: |
| 2 oz. | $2.715 \times 10^{-4}$ | 0.02 in. | $3.364 \times 10^{-5}$ |
| 3 oz. | $1.886 \times 10^{-4}$ | 0.05 in. | $1.358 \times 10^{-5}$ |
| 5 oz. | $1.077 \times 10^{-4}$ | $1 / 16 \mathrm{in}$. | $1.086 \times 10^{-5}$ |
| 0.01 in. | $6.788 \times 10^{-5}$ | $1 / 4 \mathrm{in}$. | $2.715 \times 10^{-6}$ |

FIGURE 5-5. Sheet Resistance for Various Thicknesses of Copper

| Nominal Thickness |  | Nominal <br> Weight | Tolerances <br> By |  |
| :---: | :---: | :---: | :---: | :---: |
| in. | $\mathbf{m m}$ | oz/ft ${ }^{2}$ | Weight, \% | in. |
| 0.0007 | 0.0178 | $1 / 2$ | +10 | +0.0002 |
| 0.0014 | 0.0355 | 1 | +10 | +0.0004 |
|  |  |  |  | -0.0002 |
| 0.0028 | 0.0715 | 2 | +10 | +0.0007 |
|  |  |  |  | -0.0003 |
| 0.0042 | 0.1065 | 3 | +10 | +0.0006 |
| 0.0056 | 0.1432 | 4 | +10 | +0.0006 |
| 0.0070 | 0.1780 | 5 | +10 | +0.0007 |
| 0.0084 | 0.2130 | 6 | +10 | +0.0008 |
| 0.0098 | 0.2460 | 7 | +10 | +0.001 |
| 0.014 | 0.3530 | 10 | +10 | +0.0014 |
| 0.0196 | 0.4920 | 14 | +10 | +0.002 |

FIGURE 5-6. Thickness and Tolerances for Copper Cladding


TL/F/9902-4
FIGURE 5-7. Conductor Resistance vs Thickness and Width

## Temperature Coefficient

The resistances in Figures 5-3, 5-5, and 5-7, as well as those used in the sample calculations, are $20^{\circ} \mathrm{C}$ values. Since copper resistivity has a temperature coefficient of approximately $0.4 \% /{ }^{\circ} \mathrm{C}$, the resistance at a temperature ( T ) can be determined as follows.
$R_{T}=R_{20^{\circ} \mathrm{C}}\left[1+0.004\left(\mathrm{~T}+20^{\circ} \mathrm{C}\right)\right]$
At $55^{\circ} \mathrm{C}$ :
$\mathrm{R}=\mathrm{R}_{20^{\circ} \mathrm{C}}\left[1+0.004\left(55^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)\right]=1.14 \mathrm{R}_{20^{\circ} \mathrm{C}}$
When specifying power bus dimensions for PC cards containing many IC packages, designers should bear in mind that excessive current densities can cause the copper temperature to rise appreciably. Figure 5-8 illustrates the ohmic heating effect of various current densities. ${ }^{1}$


TL/F/9902-5
FIGURE 5-8. Temperature Rise with Current Density in PC Board Traces

## Distribution Impedance

Power busses should have low AC impedance, as well as low DC resistance, to prevent propagation of extraneous disturbances along the distribution system. As far as current or voltage changes are concerned, power and ground busses appear as transmission lines; thus their impedances can be affected by shape, spacing and dielectric. The effect of geometry on impedance is illustrated in the two arrangements of Figure 5-9. The same cross-sectional area of copper is used, but the two round wires have an impedance of about $75 \Omega$ while the flat conductors have an impedance determined as follows.
$Z_{0}=\frac{377 d}{\sqrt{\epsilon} h}$ for $\frac{d}{h}<0.1$
With a Mylar®* or Teflon ${ }^{\circledR *}$ dielectric $(\epsilon=2.3)$ two mils thick, impedance of the flat conductor pair is only $0.5 \Omega$. Power line impedance can be reduced by periodically connecting RF-type capacitors across the line.


## FIGURE 5-9. Effect of Geometry on Power Bus Impedance

*Mylar and Tefton are registered trademarks of E.I. du Pont de Nemours Company.

## Ground on PC Cards

It is essential to assign one layer of copper cladding almost exclusively to ground. This provides low-impedance, non-interfering return paths for the current changes which travel along signal traces when the IC outputs change state. These currents flow from the $V_{C C A}$ pins of the IC packages, through the output transistors, then into the loads and the stray capacitances. These stray capacitances exist from an output to $\mathrm{V}_{\mathrm{EE}}$, output to ground, and to other signal lines. Thus, displacement currents through stray capacitances flow in many paths, but must ultimately return through ground to the output transistor where they originated. To reduce the length and impedance of the return path, the ground metal should cover as large an area as possible and one decoupling capacitor should be provided for every one to two IC packages. Additional capacitors may be needed for multiple output devices. These capacitors should be ceramic, monolithic or other RF types in the $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ range.
The load current returning to an IC package through ground metal is predictable, both in magnitude and in the return path. Since the magnetic and capacitive coupling between a signal trace and the underlying ground provides the transmission line characteristic, it follows that the load current flowing through the signal trace is accompanied by a ground return current equal in magnitude but opposite in direction. For example, in a $50 \Omega$ terminator $\mathrm{l}_{\mathrm{OL}}$ is $5.9 \mathrm{~mA}, \mathrm{I}_{\mathrm{OH}}$ is 20.9 mA . Then signal change will cause about 15 mA current change and, as this current change propagates along the signal trace, a current of -15 mA advances along the
ground directly underneath the signal trace. Therefore, if there is an interruption in the ground, the return current is forced to go around it. The 15 mA current change can be reduced by terminating the complementary output of the signal. Then a signal change will direct the current from true output to the complement output reducing the $\Delta$ currents in the ground plane. When it is necessary to interrupt the ground plane, the interruptions should be kept as short as possible; every effort should be made to locate them away from overlying signal lines. When the ground plane is interrupted for short signal lines between packages, these lines should be at right angles to signal lines on the other side to minimize coupling. $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\mathrm{TT}}$ distribution lines can also act as the return side of transmission lines, as long as decoupling capacitors to ground are placed in the immediate areas where the signal return current must continue through ground.
Several connections along the edge of a PC card should be assigned to ground to accommodate backplane signal ground. These should be spaced at one-half to one inch intervals to minimize the average path length for signal return currents and to simulate a distributed connection to the backplane signal ground.
Not enough emphasis can be placed on the requirement for a good ground. All input signals are referenced to internal $V_{B B}$ and the $V_{B B}$ is referenced to $V_{C C}$ (ground). Any variation from one side of the board to the other affects the noise margins. To help eliminate some of the variations a separate $\mathrm{V}_{\text {CCA }}$ is provided on F100K ECL circuits to power the output drivers and leave the $V_{C C}$ going to internal circuitry unaffected.

## Backplane Construction

In order to take complete advantage of the speeds inherent in F100K ECL it is desirable to construct the backplane as a multilayer printed circuit board. Generally, two internal layers are devoted to ground and $\mathrm{V}_{\mathrm{EE}}$ and the signals occupy the outside layers. Where power densities are very high, it may be necessary to supplement the power layers with external busses (see Backplane Interconnections, Chapter 4 ). If it is necessary to use wires to augment the interconnection provided by the traces, less critical signals should use the wires. The wires will exhibit an impedance which can be calculated with the wire-over-ground formula
$Z_{0}=\frac{138}{\sqrt{\epsilon}} \log _{10} \frac{4 h}{d}$
where d is diameter, h is distance to ground, and $\epsilon$ is dielectric constant.
Bear in mind that if the ground plane is buried inside the board, then both h and $\epsilon$ are made up of multiple components.

## Termination Supply, $\mathbf{V}_{\text {TT }}$

A separate return voltage for the termination resistors offers a way to minimize power dissipation in systems extensively using parallel termination techniques. $\mathrm{A}-2 \mathrm{~V} \mathrm{~V}_{\mathrm{TT}}$ value represents an optimum speed/power trade-off, allowing sufficient termination current to discharge load capacitances while minimizing the average power consumption. Figure $5-10$ shows the average values of current, IC power dissipation and resistor power dissipation for various values of the termination resistor $\mathrm{R}_{\mathrm{T}}$ returned to -2 V . Average values are determined by calculating the output HIGH and output LOW values, then taking the average. These $50 \%$ duty cy-

## Termination Supply, $\mathbf{V}_{\mathrm{TT}}$ (Continued)

cle values are useful in determining the current drain on the -2V supply and the contribution to dissipation on the logic boards. Peak values of termination current are approximately $60 \%$ greater than the average values listed.
DC regulation of the -2 V supply is not critical; a variation of $\pm 5 \%$ causes a change in output levels of $\pm 12 \mathrm{mV}$ for $50 \Omega$ terminations or $\pm 7 \mathrm{mV}$ for $100 \Omega$ terminations.
The high frequency characteristics of the $V_{T T}$ distribution are extremely important. Ideally, a solid voltage plane should be devoted to $V_{T T}$. If this is not feasible, the $V_{T T}$ distribution should form a grid using orthogonal traces. In any case, decoupling capacitors to ground should be used to reduce the high frequency impedance.

$V_{T T}=-2.0 \mathrm{~V}$
TL/F/9902-7

| $\mathbf{R}_{\mathbf{T}}$ | $\mathbf{l}_{\text {avg }}$ | $\mathbf{P}_{\mathbf{D} \text { (avg) }} \mathbf{m W}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | IC Output | Resistor |
| 50 | 14 | 14 | 13 |
| 62 | 11 | 12 | 11 |
| 75 | 9.3 | 9.5 | 9.1 |
| 90 | 8.1 | 8.2 | 7.9 |
| 100 | 7.3 | 7.3 | 7.1 |
| 150 | 5.0 | 4.9 | 5.0 |

FIGURE 5-10. Average Current and Power Dissipation for Parallel Termination to -2V

If the terminators used are in Single In-line Packages (SIP) or Dual-In-line Packages (DIP) as opposed to discrete resistors, particular attention must be given to decoupling in order to maintain a solid $\mathrm{V}_{\mathrm{TT}}$ voltage inside the package. This is necessary to avoid crosstalk due to mutual inductance to $V_{T T}$. SIPs have been developed which have multiple $V_{T T}$ connections and on-board decoupling capacitors.

## $V_{\text {EE }}$ Supply

The value of $\mathrm{V}_{\mathrm{EE}}$ is not critical for F 100 K since all circuits in the family operate over the range of -4.2 V to -5.7 V . Decoupling capacitors to ground should be used on each card, as previously discussed in connection with the ground on PC cards. In addition, each card should used $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ decoupling capacitors near the points where $V_{E E}$ enters the card.
The current drain for the $\mathrm{V}_{\mathrm{EE}}$ supply for each circuit type can be determined from the data sheet specifications. For $\mathrm{V}_{\mathrm{EE}}$ values other than -4.5 V , the current drain varies as shown in Figure $5-11$ and $5-12$ for SSI and MSI elements respectively. These graphs are made from data from the F100101 and F100179.


## FIGURE 5-12. Supply Current vs Supply Voltage for F100179

Series dividers used to obtain Thevenin equivalent parallel terminations increase the current load on the $\mathrm{V}_{\mathrm{EE}}$ supply, as do the pull-down resistors to $V_{E E}$ used with series termination. Average $\mathrm{V}_{\mathrm{EE}}$ current and resistor dissipation for Thevenin equivalent terminations are listed in Figure 5-13 for several representative values of equivalent resistance. The average values apply for $50 \%$ duty cycle. Peak current values are approximately $11 \%$ greater. Dissipation in the IC output transistor is the same as in Figure 5-10. Average dissipation and $\mathrm{I}_{\mathrm{EE}}$ current for several values of pull-down resistance to $\mathrm{V}_{\mathrm{EE}}$ are listed in Figure 5-14. The $\mathrm{R}_{\mathrm{E}}$ values are appropriate for series termination of transmission lines with impedances listed in the $Z_{0}$ column, determined from Equation 4-12. Peak current values are approximately $12 \%$ greater than average values.
Figures 5-10, 13 and 14 show that the Thevenin equivalent parallel termination method leads to ten times as much dissipation in the resistors as in the single resistor returned to -2V. Similarly, the dissipation in $R_{E}$ for series termination is three times the dissipation in the parallel termination resistor to -2 V .
$\mathrm{V}_{\mathrm{EE}}$ Supply (Continued)

|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathbf{R}_{\mathbf{T}} \\ \Omega \end{gathered}$ | $\begin{aligned} & R_{1 \Omega} \\ = & 1.80 R_{T} \end{aligned}$ | $\begin{aligned} & R_{2 \Omega} \\ = & 2.25 R_{T} \end{aligned}$ | $\begin{gathered} \text { IEE (avg) } \\ \mathrm{mA} \end{gathered}$ | $P_{D(a v g)} \mathrm{mW}$ Resistors |
| 50 | 90 | 113 | 28.2 | 109 |
| 62 | 112 | 140 | 22.7 | 87.9 |
| 75 | 135 | 169 | 18.8 | 72.7 |
| 82 | 148 | 185 | 17.2 | 66.5 |
| 90 | 162 | 203 | 15.7 | 60.5 |
| 100 | 180 | 225 | 14.1 | 54.5 |
| 120 | 216 | 270 | 11.7 | 45.4 |
| 150 | 270 | 338 | 9.4 | 36.3 |

FIGURE 5-13. Series Divider for Thevenin Equivalent Terminations


TL/F/9902-11

| $\begin{gathered} \mathrm{z}_{0} \\ \Omega \end{gathered}$ | $\begin{gathered} \mathbf{R}_{\mathbf{E}} \\ \Omega \\ \hline \end{gathered}$ | $\begin{gathered} \text { IEE (avg) } \\ \mathrm{mA} \end{gathered}$ | $\mathrm{PD}_{\text {(avg) }} \mathrm{mW}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | IC Output | $\mathrm{R}_{\mathrm{E}}$ |
| 50 | 269 | 9.8 | 12.9 | 25.8 |
| 62 | 331 | 7.9 | 10.4 | 20.6 |
| 75 | 399 | 6.5 | 8.6 | 16.8 |
| 90 | 477 | 5.4 | 7.1 | 13.9 |
| 100 | 530 | 4.9 | 6.5 | 12.7 |
| 120 | 634 | 4.1 | 5.4 | 10.6 |
| 150 | 791 | 3.2 | 4.2 | 8.1 |

FIGURE 5-14. Average Current and Power Dissipation Using Pull-Down Resistor to $\mathrm{V}_{\mathrm{EE}}$

## Thermal Considerations

System cooling requirements for ECL circuits are based on three considerations: (1) the need to minimize temperature gradients between circuits communicating in the single-ended mode, (2) the need to control the temperature environment of each circuit to assure that the parameters stay within guaranteed limits, and (3) the need to insure that the maximum rated junction temperature is not exceeded.
Temperature gradients are of no practical concern with F100K circuits since they are temperature compensated;
their output voltage levels and input thresholds change very little with temperature, as discussed in Chapter 1. With uncompensated ECL circuits, output voltage levels and input thresholds vary with temperature. This causes a loss of noise margin when driving and receiving circuits are operating at different temperatures. Loss of HIGH-state noise margin occurs when the receiving circuit is at the higher temperature, amounting to approximately $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ of temperature gradient. When the driving circuit is at the higher temperature, the LOW-state margin decreases by approximately $0.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ of gradient. The system designer must consider noise margin loss, due to temperature gradients.
Each DC parameter limit on the F100K data sheets applies over the entire $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ case temperature. For uncompensated ECL circuits, parameter limits have different values for different ambient temperatures. Further, ambient temperature specifications are based on a minimum air flow rate of 400 linear feet per minute. Thermal equilibrium must be established for incoming test results of uncompensated ECL circuits to be valid. The time required to attain equilibrium can vary considerably, depending on the internal dissipation of the particular IC type and details of the thermal arrangement. Normally, an adequate waiting time is three to five minutes after power is applied.
The maximum rated junction temperature of F100K circuits is $+150^{\circ} \mathrm{C}$. An individual IC junction temperature can be determined by multiplying power dissipation by the junction-to-air thermal resistance $\theta_{\mathrm{JA}}$ and adding the result to the ambient air temperature. The power dissipation is $V_{E E}$ times $\mathrm{l}_{\mathrm{EE}}$, from the data sheet, plus the dissipation in the output transistors from Figure $5-10$ or $5-14$. Thermal resistance is shown in Figure $5-15$ as a function of cooling air flow rate. This figure applies when the IC is mounted on a board with the air flowing in a plane parallel to the board and perpendicular to the long axis of the IC package. When air temperature, flow rate and package power dissipation are known, junction temperature is determined as follows.

$$
\begin{equation*}
T_{J}=T_{A}+P_{D} \theta_{J A} \tag{5-10}
\end{equation*}
$$



TL/F/9902-12
FIGURE 5-15. Junction-to-Air Thermal Resistance vs Air Flow Rate

## Thermal Considerations (Continued)

Conversely, when the maximum rate junction temperature $\left(+150^{\circ} \mathrm{C}\right)$, the package power dissipation, and the air temperature are known, the minimum flow rate can be determined by first determining the maximum thermal resistance.
Maximum $\theta_{J A}=\frac{\left(150^{\circ}-T_{A}\right)}{P_{D}}$
For this value of $\theta_{\mathrm{JA}}$ the minimum flow rate is determined from Figure 5-15.
When the system designer plans to depend on natural convection for cooling, it is recommended that thermal tests be conducted to determine actual conditions. The effectiveness of natural convection for cooling varies greatly. For
instance, on a densely packed logic board in a horizontal attitude in still air, the effective ambient temperature for an IC varies with its position. An IC in the middle of the board is subjected to air that is partially heated by surrounding ICs. Additionally, the temperature of the board rises due to heat flow through the component leads. These effects can cause a much higher junction temperature than might be expected.

## Reference

1. Harper, C.A., Editor, Handbook of Wiring, Cabling and Interconnecting for Electronics, McGraw-Hill, 1972.

## Chapter 6 Testing Techniques

## Introduction

The purpose of this chapter is to assist personnel involved with incoming inspection and qualification testing, by discussing the various methods and techniques used in testing ECL devices.
Testing includes verifying functionality, checking DC parametric limits and measuring AC performance. These tasks are particularly difficult for ECL devices in light of the broad range of products: RAMs, PROMs, gate arrays, and logic circuits. Correlation between supplier and user is extremely important. Recognizing the differences between high-volume instantaneous testing, as performed by the supplier, and the user's concern for long term performance in a given operating environment, National guarantees the data sheet limits as specified, although testing may be performed by alternate methods.

## Tester Selection

Although many makes and types of automatic test systems are available and in use today, not all are capable of testing ECL RAMs, PROMs, logic and gate arrays.
Logic and gate array testers require DC Accuracy, subnanosecond AC test capability, and the ability to change software for each device. Software capability and the number of test pins available are major considerations in choosing a gate array tester. Functional, DC and threshold tests are successfully performed on automatic test equipment, but subnanosecond propagation delays are difficult to measure accurately.
The use of dedicated testers to perform high-volume memory testing is very common. Testers containing hardware addressing capability are usually the most efficient. Although basic DC testing is similar for any device type, RAM and PROM functional testing usually require special addressing capabilities to test for pattern sensitivity. The pattern generators and output comparators must have minimum skew to obtain maximum tester accuracy. Functional and AC tests are performed simultaneously; then, DC and threshold tests are performed.
The following considerations must be taken into account when selecting a tester.

## Noise

Since the voltage swing on ECL input and output levels is only about 800 mV , it is very important that the power supplies and voltage drivers be extremely clean and free of spikes, hum, or any other type of noise.

## DC Resolution

The threshold measurements $\left(\mathrm{V}_{\mathrm{IH}}\left(\mathrm{Min}^{2}\right), \mathrm{V}_{\mathrm{IL}}\left(\mathrm{Max}^{\prime}\right)\right.$ require that input voltage be extremely accurate and repeatable,
i.e., if the $\mathrm{V}_{\mathrm{IL}}$ (Max) is specified as -1.475 V , a voltage source of $-1.475 \pm 5 \mathrm{mV}$ is not adequate to accurately test the part. Ideally, the driver and the output comparators should have an accuracy of $\pm 1 \mathrm{mV}$.

## Current Capability

Since ECL is noted for high current requirements, power supplies for $\mathrm{V}_{\text {EE }}$ should be capable of supplying current with a $25 \%$ reserve over the highest powered parts. This reserve should be included because power supplies tend to get noisy when approaching the current clamp. Some ECL LSI parts dissipate over 4.5 W ; therefore, with a $\mathrm{V}_{\mathrm{EE}}$ of -4.5 V , the power supply must provide well over 1A.

## Edge Rates

When testing edge-triggered sequential logic parts such as flip-flops and shift registers, it is important that the rise and fall times of the clock pulses be fast, clean and free from overshoot. If the clock edges are not adequate, the deficiency can be overcome using a Schmitt trigger as shown in Figure 6-1.


TL/F/9903-1
FIGURE 6-1. Typical Schmitt Trigger Circuit
The $68 \Omega$ resistor provides hysteresis by positive feedback, thus improving the edge rates. When energized, the relay provides a path to bypass the Schmitt trigger, so the input currents of the device under test can be measured.

## Functional Testing

The functional operation and truth table for all device types are checked using automatic test equipment. For memory devices, pattern sensitivity and AC characteristics are also tested automatically. Functional testing is usually performed before DC testing. Logic parts are functionally tested in all modes of operation. The inputs are driven using typical $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ values. The outputs are compared against relaxed $\mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ limits. The $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{OH}}$ and $\mathrm{V}_{\mathrm{OL}}$ limits are tested during DC testing.

## DC Testing

An automatic tester is used to test all DC parameters listed on the individual data sheet for each input and output. The device may have to be preconditioned to obtain the correct output logic state. The cable length should be kept to a minimum to insure signal integrity.

## Threshold Measurements

Threshold measurement on an automatic tester is probably the most difficult $D C$ test and the test most prone to oscillation. When testing, take one input at a time to threshold; all other inputs remain at full $\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}}$ levels. For example, to test a flip-flop, make sure the output is LOW before test, take the data pin to HIGH threshold, and apply the clock pulse. Verify that the HIGH has been transferred to the output. Next, apply LOW threshold to the data input and clock it through; use hard levels on the clock (full $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ ). Check that the output pin goes LOW.

## Bench Testing

Occasionally, it is necessary to obtain data not easily available from an automatic tester. This is accomplished by testing devices in a universal test board. The typical test circuit board is double-clad copper. All input/output pins go to sin-gle-pole, triple-throw switches so that $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ or a $50 \Omega$ terminating resistor can be connected. Leadless $0.05 \mu \mathrm{~F}$ capacitors decouple all pins to $\mathrm{V}_{\mathrm{CC}}(+2 \mathrm{~V})$ at the socket pins. Access to the device under test is made via banana sockets to the X-Y plotter.
$\mathrm{V}_{\mathbf{1 H}} / \mathrm{V}_{\text {OUT }}$ Plot-The input ramp supply is OV to -2 V varied by a multi-turn potentiometer. The input voltage ( $\mathrm{V}_{\mathrm{IN}}$ ) versus output voltage (VOUT) is plotted on an $X-Y$ recorder using the test setup shown in Figure 6-2.
$V_{\text {Out }} / l_{\text {OUT }}$ Plot-The output voltage (VOUT) versus output current (lout) can be plotted using the test setup shown in Figure 6-3.


TL/F/9903-2
FIGURE 6-2. $\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}$ Transfer Characteristics


FIGURE 6-3. V ${ }_{\text {OUT }} / I_{\text {OUT }}$ Characteristics

## AC Testing

Because few automatic measurements systems have sufficient accuracy to perform subnanosecond testing, AC testing of ECL is one of the most difficult tests to accomplish. To obtain subnanosecond accuracy usually requires special test fixtures and equipment. The physical location of the test fixture, the input driver and the output comparator is very important.
Depending upon the accuracy and repeatability of the automatic tester, a bench setup may be required for correlation. Comparing an air line with known propagation delay to the test setup is recommended.

## AC Test Fixtures

Test fixture design plays a pivotal role in insuring that undistorted waveforms are applied to the Device Under Test (D.U.T.) and that the device output can be monitored correctly.

## Board Construction and Layout

ECL AC bench test fixtures are built on a double-clad printed circuit board or on a multilayer printed circuit board with semi-rigid coax, Figures 6-4 and 6-5. The power planes are shorted at the device and brought out to banana sockets with the decoupling capacitors at the device. Transmission lines of $50 \Omega$ are maintained from soldered-on BNC or SMA connectors to the D.U.T. Sense lines from the D.U.T. output and input pins to the connectors must be of electrically equal length. For input pins, care must be taken to insure that the force and sense lines are brought directly to the point that makes contact with the D.U.T. For output pins, only the output sense lines are used to monitor the signals. The force lines are disconnected at the device to minimize signal distortion. Special care must be taken to minimize crosstalk and stray capacitance in the area of the D.U.T. For correlation, flatpaks are not tested in sockets but are clamped to the traces of a multilayer PC board. Dual in-line devices are plugged into individual pin sockets instead of normal test sockets. Due to equipment limitations and for correlation, the amplitude, offset, rise and fall time are set up with no device in the test socket.


TL/F/9903-4
FIGURE 6-4. Multilayer Test Fixture (Top View)
The bench test fixture to measure toggle frequency utilizes the principles described in the preceding paragraph except that the feedback path between the output and data input is as short as possible.

## Output Termination

All outputs should be terminated with $50 \Omega \pm 1 \%$ resistors. This is especially important for complementary outputs.
When bench testing, the device is offset by $+2 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}$ is $-2.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}$ is +2 V . Then the $50 \Omega$ input impedance of the sampling oscilloscope acts as the termination resistor to $O V$. The input and output coaxial cable to the oscilloscope should be cut to exactly the same electrical length.

## Decoupling

Not enough emphasis can be put on the importance of good decoupling on the D.U.T. because oscillations can give erroneous test results. A sampling scope should be used to make sure that oscillation is not occurring.
The value of capacitors used depends on the type of tester used and the frequency of test. Some testers use pulse test; in other words, for each individual test in a program, $\mathrm{V}_{\mathrm{EE}}$ is powered up and down. On this type of tester, electrolytictype (i.e., large value) capacitors cannot be used because of the time constant needed to charge the capacitor.
Always start with the minimum decoupling needed to achieve good results, perhaps merely a capacitor between $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$. Capacitors should be placed as close as possible to the D.U.T. to eliminate as much inductance as possible. Only low-inductance capacitors should be used; leadless monolithic ceramic capacitors are very effective.
There are no rigid decoupling rules, and each device type may have its own decoupling requirements. A typical decoupling technique that works well on most F100K devices is to place $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ monolithic ceramic capacitors in the following locations.

- If no offset is used: between $V_{E E}(-4.5 \mathrm{~V})$ and $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}(\mathrm{OV})$ between $V_{T T}(-2 V)$ and ground ( 0 V )
- If +2 V offset is used:
between $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}(+2 \mathrm{~V})$ and ground ( OV )
between $\mathrm{V}_{\mathrm{EE}}(-2.5 \mathrm{~V})$ and ground ( OV )
- In most cases, $\mathrm{V}_{C C A}$ and $\mathrm{V}_{\mathrm{CC}}$ should be shorted as close to the D.U.T. as possible. However, if the $V_{C C A}$ and $V_{C C}$ pins are physically separated, individual decoupling capacitors may be necessary.
- For DC test only place a $0.001 \mu \mathrm{~F}$ capacitor: between an input pin and $\mathrm{V}_{\mathrm{EE}}$ between an output pin and $V_{C C A}$


FIGURE 6-5. Multilayer Test Fixture (Bottom View)

## AC Test Fixtures (Continued)

Decoupling problems will appear mainly at threshold test. If certain outputs fail, try the decoupling technique, described in the preceding paragraph, on those outputs and the associated inputs. With testers that use the power-hold method, such as the Sentry ${ }^{\oplus}$, large electrolytics can be used in parallel with smaller ( $0.01 \mu \mathrm{~F}$ ) disk capacitors for the high-frequency bypass.

# Chapter 7 Quality Assurance and Reliability 

## Introduction

F100K ECL is manufactured to strict quality and reliability standards. Product conformance to these standards is insured by careful monitoring of the following functions: (1) incoming quality inspection, (2) process quality control, (3) quality assurance, and (4) reliability.

## Incoming Quality Inspection

Purchased piece parts and raw materials must conform to purchase specifications. Major monitoring programs are the inspection of package piece parts, inspection of raw silicon wafers, and inspection of bulk chemicals and materials. Two other important functions of incoming quality inspection are to provide real-time feedback to vendors and in-house engineering, and to define and initiate quality improvement programs.

## Package Piece Parts Inspection

Each shipment of package piece parts is inspected and accepted or rejected based on AQL sampling plans. Inspection tests include both inherent characteristics and functional use tests. Inherent characteristics include physical dimensions, color, plating quality, material purity, and material density. Functional use tests for various package piece parts include die attach, bond pull, seal, lid torque, salt atmosphere, lead fatigue, solderability, and mechanical strength. In these tests, the piece parts are sent through process steps that simulate package assembly. The units are then destructively tested to determine whether or not they meet the required quality and reliability levels.

## Silicon Wafer Inspection

Each shipment of raw silicon wafers is accepted or rejected based on AQL sampling plans. Raw silicon wafers are subjected to non-destructive and destructive tests. Included in the testing are flatness, physical dimensions, resistivity, oxygen and carbon content, and defect densities. The test results are used to accept or reject the lot.

## Bulk Chemical and Material Inspection

Bulk chemicals and materials play an important role in any semiconductor process. To insure that the bulk chemicals and materials used in processing F100K wafers are the highest quality, they are stringently tested for trace impurities and particulate or organic contamination. Mixtures are also analyzed to verify their chemical make-up.
Incoming inspection is only the first step in determining the acceptability of bulk chemicals and materials. After acceptance, detailed documentation is maintained to correlate process results to various vendors and to any variations found in mixture consistency.

## Process Quality Control

Process quality is maintained by establishing and maintaining effective controls for monitoring the wafer fabrication process, reporting the results of the monitors, and initiating valid measurement techniques for improving quality and reliability levels.

## Methods of Control

The process quality control program utilizes the following methods of control: (1) process audits, (2) environmental monitors, (3) process monitors, (4) lot acceptance inspections, (5) process qualifications, and (6) process integrity audits. These methods of control, defined below, characterize visually and electrically the wafer fabrication operation.
Process Audit-Audits concerning manufacturing operator conformance to specification. These are performed on all operations critical to product quality and reliability.
Environmental Monitor-Monitors concerning the process environment, i.e., water purity, air temperature/humidity, and particulate count.
Process Monitor-Periodic inspection at designated process steps for verification of manufacturing inspection and maintenance of process average. These inspections provide both attribute and variables data.
Lot Acceptance-Lot by lot sampling. This sampling method is reserved for those operations deemed as critical and, as such, requiring special attention.
Process Qualification-Complete distributional analysis is run to specified tolerance averages and standard deviations. These qualifications are typically conducted on deposition and evaporation processes, i.e., epi, aluminum, vapox, and backside gold.
Process Integrity Audit-Special audits conducted on oxidation and metal evaporation processes (CV drift-oxidation; SEM evaluation-metal evaporation).

## Data Reporting

Process quality control data is recorded on an attribute or variable basis as required; control charts are maintained on a regular basis. This data is reviewed at periodic intervals and serves as the basis for judging the acceptability of specific processes. Summary data from the various process quality control operations are relayed to cognizant line, engineering and management personnel in real time so that, if appropriate, the necessary corrective actions can be immediately taken.

## Process Flow

Figure $7-1$ shows the integration of the various methods of control into the wafer fabrication process flow. The process flow chart contains examples of the process quality controls and inspections utilized in the manufacturing operation.

Process Quality Control (Continued)

| MATERIAL INPUT |
| :--- |
| Photo Resist |
| Quartzware |
| Gas-Dopant and Solvents |
| Wafers |

## Process Controls (Examples)

A. Environmental
B. Chemical supplies
C. Substrate examination (resistivity, flatness, thickness, crystal perfection, etc.)
D. Photoresist evaluation
E. Mask inspections
A. Process audit
A. Process audit/qualification
B. Environmental
C. Process monitors (thickness, pinhole and crack measurements)
D. C V Plotting
E. Calibration
A. Process audits
B. Environmental
C. Visual examinations
D. Photoresist evaluation (preparation, storage, application, baking, development and removal)
E. Etchant controls
F. Exposure controls (intensity, uniformity)
A. Process audits/qualification
B. Environmental
C. Temperature profiling
D. Quartz cleaning
E. Calibration
F. Electrical tests (resistivity, breakdown voltages, etc.)
A. Process audits/qualification
B. Environmental
C. Visual examinations
D. Epitaxy controls (thickness, resistivity cleaning, visual examination)
E. Metallization controls (thickness, temperature cleaning, SEM, C V plotting)
F. Glassivation controls (thickness, dopant concentration, pinhole and crack measurements)
A. Process audit
B. Environmental
C. Visual examinations
A. Process audit
B. Inspection

## Quality Assurance

To assure that all product shipped meets both internal Na tional specifications for standard product and customer specifications in the case of negotiated specs, a number of QA inspections throughout the assembly process flow (Figure 7-2) are required. A flow, much more detailed than the one presented in Figure 7-2, governs the assembly of the devices and the performance of the environmental, mechanical and electrical tests.

## Reliability

A number of programs, among them qualification testing, reliability monitoring, failure analysis, and reliability data collection and presentation, are maintained.

## Qualificatlon Programs

All products receive reliability qualification prior to the product being released for shipment. Qualification is required for (1) new product designs, (2) new fabrication processes or

MIL-STD-883

| tion | MIL-STD-883 Method/Condition |
| :---: | :---: |
| Die Forming/Scribe |  |
| Plate |  |
| Internal Visual (2nd OPT) | 2010/B |
| QA-Internal Visual (2nd OPT) Optional | 2010/B |
| Die Attach |  |
| QA-Die Shear Strength | 2019 |
| Ultrasonic Bonding |  |
| QA-Ultrasonic Bond Strength | 2011 |
| Internal Visual (3rd OPT) | 2010 |
| QA-Internal Visual (3rd OPT) | 2010 |
| Seal-Solder or Glass |  |
| External Visual (4th OPT) | 2009 |
| QA-External Visual (4th OPT) | 2009 |
| High Temperature Storage | 1008/C, E |
| Temperature Cycling | 1010/C |
| Constant Acceleration | 2001/E |

FIGURE 7-2. Generalized Process Flow

## Reliability (Continued)

pressure pot (BPTH) test. In addition, package environment tests may be performed. Evaluations are performed on various products throughout the development stages of the new process. Units stressed are generally from split wafer runs. All processing is performed as a single wafer lot up to the new process steps, where the lot is split for the new and the current process steps. Then the wafers are recombined, and again processed as a single wafer lot. This allows for controlled evaluation of the new process against the standard process. Both significant modifications to existing process and transferring existing products to new fabrication plants are treated as a new process.
New Packages or Assembly Processes-Qualifications are performed for new package designs, changes to existing piece parts, changes in piece part vendors, and significant modification to assembly process methods. In general, samples from three assembly runs are stressed to a matrix shown in Table 7-1. In addition, $+100^{\circ} \mathrm{C}$ operating life tests, 85/85 humidity bias tests, biased pressure pot (BPTH) tests and unbiased pressure pot tests are performed.

## Reliability Monitors

Reliability testing of mature products is performed to establish device failure rates, and to identify problems occurring in production. Samples are obtained on a regular basis from production. These units are stressed with operating life tests or package environmental tests. The results of these tests are summarized and reported on a monthly basis. When a problem is identified, the respective engineering group is notified, and production is stopped until corrective action is taken.
Current testing levels are in excess of 14,000 units per year stressed with operating life tests, and 23,000 units per year stressed with package environmental tests.

## Failure Analysis

Failure analysis is performed on all units failing reliability stress tests. Failure analysis is offered as a service to support manufacturing and engineering, and to support customer returns and customer requested failure studies. The failure analysis procedure used has been established to provide a technique of sequential analysis. This technique is based on the premise that each step of analysis will provide information of the failure without destroying information to be obtained from subsequent steps. The ultimate purpose is to uncover all underlying failure mechanisms through complete, in-depth, defect analysis. The procedure places great emphasis on electrical analysis, both external before decapsulation, and internal micro-probing. Visual examinations with high magnification microscopes or SEM analysis are used to confirm failure mechanisms. Results of the failure analysis are recorded and, if abnormalities are found, reported to engineering and/or manufacturing.

## Data Collection and Presentation

Product reliability is controlled by first stressing the product, and then feeding back results to manufacturing and engineering. This feedback takes two forms. There is a formal monthly Reliability Summary distributed to all groups. The summary shows current product failure rates, highlights problem areas, and shows the status of qualification and corrective action programs. Less formal feedback is obtained by including reliability personnel at all product meetings, which gives high visibility to the reliability aspects of various products. As a customer service, product reliability data is compiled and made available upon request.

TABLE 7-1. Package Environmental Stress Matrix

| Test | MIL-STD-883 |  |
| :---: | :---: | :---: |
|  | Method | Condition |
| GROUP B |  |  |
| Subgroup 1 Physical Dimensions | 2016 |  |
| Subgroup 2 Resistance to Solvents | 2015 |  |
| Subgroup 3 Solderability | 2003 | Soldering Temperature of $260 \pm 10^{\circ} \mathrm{C}$ |
| Subgroup 5 Bond Strength <br> (1) Thermocompression <br> (2) Ultrasonic or Wedge | 2011 | (1) Test Condition C or D <br> (2) Test Condition C or D |
| GROUP C |  |  |
| Subgroup 2 <br> Temperature Cycling Constant Acceleration <br> Seal <br> (a) Fine <br> (b) Gross <br> Visual Examination <br> End-Point Electrical Parameters | $\begin{aligned} & 1010 \\ & 2001 \\ & \\ & 1014 \end{aligned}$ | Test Condition $\mathrm{C}\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$ <br> Test Condition E ( 30 kg ), $\mathrm{Y}_{1}$ Orientation and $\mathrm{X}_{1}$ Orientation <br> Test Condition D ( 20 kg ) for Packages over 5 gram weight or with Seal Ring Greater than 2 inches |

Reliability (Continued)
TABLE 7-1. Package Environmental Stress Matrix (Continued)

| Test | MIL-STD-883 |  |
| :---: | :---: | :---: |
|  | Method | Condition |
| GROUP D |  |  |
| Subgroup 1 Physical Dimensions | 2016 |  |
| Subgroup 2 Lead Integrity Seal <br> (a) Fine <br> (b) Gross <br> Lid Torque | $\begin{array}{r} 2004 \\ 1014 \\ 2024 \\ \hline \end{array}$ | Test Condition B2 (Lead Fatigue) As Applicable <br> As Applicable |
| Subgroup 3 <br> Thermal Shock <br> Temperature Cycling Moisture Resistance Seal <br> (a) Fine <br> (b) Gross <br> Visual Examination End-Point Electrical Parameters | $\begin{aligned} & 1011 \\ & 1010 \\ & 1004 \\ & 1014 \end{aligned}$ | Test Condition B $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right) 15$ Cycles Minimum Test Condition C $\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right) 100 \mathrm{Cycles}$ Minimum |
| Subgroup 4 <br> Mechanical Shock <br> Vibration, Variable <br> Frequency <br> Constant Acceleration Seal <br> (a) Fine <br> (b) Gross <br> Visual Examination <br> End-Point Electrical Parameters | $\begin{aligned} & 2002 \\ & 2007 \\ & 2001 \end{aligned}$ | Test Condition B (1500g, 0.5 ms ) <br> Test Condition A (20g) <br> Same as Group C, Subgroup 2 |
| Subgroup 5 <br> Salt Atmosphere Seal <br> (a) Fine <br> (b) Gross <br> Visual Examination | $\begin{aligned} & 1009 \\ & 1014 \end{aligned}$ | Test Condition A Minimum (24 Hours) As Applicable |
| Subgroup 6 Internal Water-Vapor Content | 1018 |  |
| Subgroup 7 Adhesion of Lead Finish | 2025 |  |

## Section 6

Ordering Information and Physical Dimensions

## Section 6 Contents

Ordering Information and Physical Dimensions ..... 6-3
Bookshelf
Distributors

## ORDER INFORMATION

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:


For most current packaging information, contact product marketing.

14 Lead Ceramic Dual In-Line Package (D) NS Package Number J14A


## 16 Lead Ceramic Dual In-Line Package (D) NS Package Number J16A



## 24 Lead Ceramic Dual In-Line Package (0.400" Wide) (D) NS Package Number J24E



## 16 Lead Ceramic Flatpak (F) NS Package Number W16A



## 24 Lead Quad Cerpak (F) NS Package Number W24B



## 28 Lead Plastic Chip Carrier (Q) NS Package Number V28A



## 行 National Semiconductor

## Bookshelf of Technical Support Information

National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.
This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.
Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this bookshelf.
We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:
Technical Communications Dept. M/S 23-200
2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090
For a recorded update of this listing plus ordering information for these books from National's Literature Distribution operation, please call (408) 749-7378.

## ALS/AS LOGIC DATABOOK—1987 <br> Introduction to Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky

# ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS—1987 <br> SSI/MSI Functions • Peripheral Functions • LSI/VLSI Functions • Design Guidelines • Packaging 

## ASIC 1.5 MICRON CMOS GATE ARRAY-1988

Library of Macros •Functional Blocks • Packaging • Design Flow • Workstation Integration Military Screening Program (MSP) • Design Guidelines
CMOS LOGIC DATABOOK—1988
CMOS AC Switching Test Circuits and Timing Waveforms •CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount
DATA COMMUNICATION/LAN/UART DATABOOK—Rev. 1—1988LAN IEEE $802.3 \bullet$ High Speed Serial/IBM Data Communications • ISDN Components • UARTsModems - Transmission Line Drivers/Receivers
DRAM MANAGEMENT HANDBOOK—1988Dynamic Memory Control • Error Detection and Correction • Microprocessor Applications for theDP8408A/09A/17/18/19/28/29 • Microprocessor Applications for the DP8420A/21A/22A
FACTTM ADVANCED CMOS LOGIC DATABOOK
Reprint of Fairchild 1987 DatabookDescription and Family Characteristics • Ratings, Specifications and WaveformsDesign Considerations • 54AC/74ACXXX • 54ACT/74ACTXXX
FAST® ${ }^{\circledR}$ ADVANCED SCHOTTKY TTL LOGIC DATABOOK—1988
Circuit Characteristics • Ratings, Specifications and Waveforms • Design Considerations•54F/74FXXX
GRAPHICS DATABOOK—1988
Advanced Graphics Chipset • Application Notes

## INTERFACE DATABOOK—1988

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers Memory Support • Microprocessor Support • Level Translators and Buffers • Frequency Synthesis • Hi-Rel Interface

## LINEAR APPLICATIONS HANDBOOK—1986

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.
LINEAR 1 DATABOOK-1988
Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators • Instrumentation Amplifiers • Surface Mount

## LINEAR 2 DATABOOK-1988

Active Filters • Analog Switches/Multiplexers • Analog-to-Digital • Digital-to-Analog • Sample and Hold Sensors • Voltage References • Surface Mount

## LINEAR 3 DATABOOK-1988

Audio Circuits • Radio Circuits • Video Circuits • Motion Control • Special Functions • Surface Mount

## LS/S/TTL DATABOOK—1987

Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL • Low Power

## MASS STORAGE HANDBOOK-1988

Winchester Disk Preamplifiers • Winchester Disk Servo Control • Winchester Disk Pulse Detectors Winchester Disk Data Separators/Synchronizers and ENDECs • Winchester Disk Data Controller SCSI Bus Interface Circuits • Floppy Disk Controllers
MEMORY DATABOOK—1988
PROMs, EPROMs, EEPROMs • Flash EPROMs and EEPROMs • TTLI/O SRAMs
ECL I/O SRAMs • ECL I/O Memory Modules

## MICROCONTROLLER DATABOOK—1988

COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications
MICROWIRE and MICROWIRE/PLUS Peripherals • Display/Terminal Management Processor (TMP)
Microcontroller Development Tools

## SERIES 32000 MICROPROCESSORS DATABOOK—1988

Series 32000 Overview • Central Processing Units • Slave Processors • Peripherals • Board Level Products Development Systems and Tools • Software Support • Application Notes • NSC800 Family

## RELIABILITY HANDBOOK-1986

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices
Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization
Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device
European Reliability Programs • Reliability and the Cost of Semiconductor Ownership
Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program
883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products
Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging
Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms
Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

## TELECOMMUNICATIONS—1987

Line Card Components • Integrated Services Digital Network Components • Modems Analog Telephone Components • Application Notes

National Semiconductor 2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090
Tel: (408) 721-5000
TWX: (910) 339-9240

## SALES OFFICES (Continued)

## INTERNATIONAL OFFICES

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: 52-5-524-9402
National Semicondutores Do Brasil Ltda.
Av. Brig. Faria Lima, 1383
6.0 Andor-Conj. 62

01451 Sao Paulo, SP, Brasil
Tel: (55/11) 212-5066
Fax: (55/11) 211-1181 NSBR BR
National Semiconductor GmbH
Industriestrasse 10
D-8080 Furstenfeldbruck
West Germany
Tel: 49-08141-103-0
Telex: 527649
National Semiconductor (UK) Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 ITR
United Kingdom
Tel: (02 34) 270027
Telex: 826209
National Semiconductor Benelux Vorstlaan 100
B-1170 Brussels
Belgium
Tel: (02) 6725360
Telex: 61007

National Semiconductor (UK) Ltd.
1, Bianco Lunos Alle
DK-1868 Fredriksberg C
Denmark
Tel: (01) 213211
Telex: 15179
National Semiconductor
Expansion 10000
28, rue de la Redoute
F-92260 Fontenay-aux-Roses
France
Tel: (01) 46608140
Telex: 250956
National Semiconductor S.p.A.
Strada 7, Palazzo R/3
20089 Rozzano
Milanofiori
Italy
Tel: (02) 8242046/7/8\%
National Semiconductor AB
Box 2016
Stensatravagen 13
S-12702 Skarholmen
Sweden
Tel: (08) 970190
Telex: 10731
National Semiconductor
Calle Agustin de Foxa, 27
28036 Madrid
Spain
Tel: (01) 733-2958
Telex: 46133

## National Semiconductor

## Switzerland

Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zurich
Switzerland
Tel: (01) 830-2727
Telex: 59000
National Semiconductor
Kauppakartanonkatu 7
SF-00930 Helsinki
Finland
Tel: (0) 338033
Telex: 126116
National Semiconductor Japan Ltd.
Sanseido Bldg. 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: 3-299-7001
Fax: 3-299-7000
National Semiconductor Hong Kong Ltd.
Southeast Asia Marketing
Austin Tower, 4th Floor 22-26A Austin Avenue
Tsimshatsui, Kowloon, H.K.
Tel: 852 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

National Semiconductor
(Australia) PTY, Ltd.
1st Floor, 441 St. Kilda Rd.
Melbourne, 3004
Victory, Australia
Tel: (03) 267-5000
Fax: 61-3-2677458
National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpoint
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P.O. Box 68-332 Taipei

7th Floor, Nan Shan Life Bldg.
302 Min Chuan East Road
Taipei, Taiwan R.O.C.
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI
National Semiconductor (Far East)
Ltd.
Korea Office
Room 612,
Korea Fed. of Small Bus. Bldg.
16-2, Yoido-Dong,
Youngdeungpo-Ku
Seoul, Korea
Tel: (02) 784-8051/3 - 785-0696-8
Telex: K24942 NSRKLO


[^0]:    Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
    Note 2: Parametric values specified at -4.2 V to -4.8 V .
    Note 3: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges.
    Note 4: Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

[^1]:    $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
    L = LOW Voltage Level

[^2]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    $\mathrm{U}=$ Undefined

[^3]:    *Retains data presented before $\overline{\mathrm{E}}$ positive transition
    H $=$ HIGH Voltage Level
    L = LOW Voltage Level
    X = Don't Care
    $U=$ Undefined

[^4]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    $X=$ Don't Care
    $U=$ Undefined
    $\mathrm{t}=$ Time before CP Positive Transition
    $t+1=$ Time after CP Positive Transition
    $\Omega=$ LOW-to-HIGH Transition

[^5]:    $H=$ HIGH Voltage Level
    $\mathrm{L}=$ LOW Voltage Level
    Blank $=\mathrm{X}=$ Don't Care

[^6]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    $X=$ Don't Care

[^7]:    H = HIGH Voltage Level

[^8]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    X = Don't Care
    $\Gamma=$ LOW to HIGH Transition
    $Q_{n-1}=$ Previous State

[^9]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    X = Don't Care
    $\widetilde{L}=$ LOW to HIGH Transition
    $\mathbf{t}, \mathbf{t + 1}=$ Time Before and After Clock Positive Transition

[^10]:    $\mathrm{M}=\mathrm{A}_{2 \mathrm{a}}=\mathrm{H}_{\mathrm{c}}=$ LOW
    $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
    L = LOW Voltage Level
    X = Don't Care

[^11]:    H = HIGH Voltage Level
    L = LOW Voltage Level

