Linear Databook 2

- Active Filters
- Analog Switches/Multiplexers
- Analog-to-Digital Converters
- Digital-to-Analog Converters
- Sample and Hold
- Temperature Sensors
- Voltage References
- Surface Mount
Linear Databook
1988 Edition
General Information
Alphanumeric
Cross Reference Guide by Part Number
Package Cross Reference
Linear Databook 1 Selection Guides
Voltage Regulators
Operational Amplifiers
Buffers
Voltage Comparators
Instrumentation Amplifiers
Linear Databook 3 Selection Guides
Audio Circuits
Radio Circuits
Video Circuits
Motion Control
Special Functions
Active Filters
Analog Switches/Multiplexers
Analog-to-Digital Converters
Digital-to-Analog Converters
Sample and Hold
Temperature Sensors
Voltage References
Surface Mount
Appendices/Physical Dimensions6

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

AbuseableTM	E-Z-LINKTM	Naked-8TM	ShelfuChekTM
AnadigTM	5-Star ServiceTM	National®	SPIRETM
ANS-R-TRANTM	GENIXTM	NAX 800тM	STARTM
APPSTM	GNXTM	Nitride PlustM	StarlinkTM
Auto-Chem DeflasherTM	HEX 3000тm	Nitride Plus OxideTM	STARPLEXTM
BI-FETTM	HPCTM	NMLTM	STARPLEX IITM
BI-FET IITM	ICMTM	NOBUSTM	SuperChiptm
BILLINETM	INFOCHEXTM	NSC800тm	SuperScriptim
BIPLANTM	Integral ISETM	NSX-16TM	SYS32TM
BLCTM	Intelisplay ${ }^{\text {TM }}$	NS-XC-16TM	TapePakTM
BLXTM	ISETM	NURAMTM	TDSTM
Brite-LiteTM	ISE/06TM	OXISSTM	TeleGateTM
BTLTM	ISE/08TM	P2CMOSTM	The National Anthem ${ }^{\text {® }}$
CheckTrack ${ }^{\text {TM }}$	ISE/16TM	Perfect Watch ${ }^{\text {TM }}$	TimeصChekTM
СІІмм	ISE32TM	PharmanChekTM	TINATM
CIMBUSTM	KeyScantM	PLANTM	TLCTM
Clock \sim ChekTM	LMCMOSTM	Polycraftim	TrapezoidalTM
СОмвотм	M²CMOSTM	POSitalkerTM	TRI-CODETM
СОМВО ${ }^{\text {ITM }}$	MacrobusTM	Power \& Controlim	TRI-POLYTM
СОМВО ІІм	Macrocomponent ${ }^{\text {TM }}$	QUAD3000TM	TRI-SAFETM
COPSTM microcontrollers	Meat Chek $^{\text {TM }}$	QUIKLOOKTM	TRI-STATE®
Datachecker*	MicrobusTM data bus	RATTM	TURBOTRANSCEIVERTM
DENSPAKTM	MICRO-DACTM	RTX16TM	VIPTM
DIBTM	μ talkerTM	SABRTM	VR32TM
Digitalker®	MicrotalkerTM	ScriptrChekTM	ХмоS'м
DISCERNTM	MICROWIRETM	SCXTM	XPUTM
DISTILLTM	MICROWIRE/PLUSTM	SERIES/800TM	Z STARTM
DNRTM	MOLETM	Series 3000тM	883B/RETSTM
DPVM ${ }^{\text {cm }}$	MSTTM	Series 32000®	883S/RETSTM

Teflon ${ }^{\circledR}$ and Mylar ${ }^{\circledR}$ are registered trademarks of E.I. DuPont Corporation
Z80® is a registered trademark of Zilog Corporation

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000 TWX (910) 339-9240

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

Linear Products Introduction

National Semiconductor Corporation first established itself as the Linear Leader in 1967 with the introduction of the FIRST MONOLITHIC VOLTAGE REGULATOR . . . LM100. In the 20 years since, many of our products were firsts in performance and function. Today, this catalog spans the traditional areas of Op Amps, Voltage Regulators, Voltage References and Temperature Sensors, to Data Acquisition, Communication, Automotive, and Power Plus Control. National Semiconductor intends to remain a leader in the traditional product areas while forging ahead into VLSI solutions for analog problems and analog systems.
You can rely on National LINEAR to develop the most comprehensive product offering for use in the commercial, computer, automotive, telecommunication, industrial or military business segments. More than 1,000 basic LINEAR products (5400 options) allow design engineers to find the optimum Linear IC solution from National Semiconductor.
The Linear product line is presented in 3 Databooks. All sections are referenced and cross-indexed to provide quick and easy access. The technical information and basic product specifications are presented in data sheet format, including maximum ratings, electrical characteristics, performance curves and package information.
Additional application information is available as specific application notes or completely compiled in the LINEAR APPLICATIONS HANDBOOK. A product cross reference to the specific application note has been provided. This handbook and the 3 -volume set of Linear Data Books represent a complete base of information to the National LINEAR product line.

Product Status Definitions

Definition of Terms

Data Sheet Identification	Product Status	Definition
Adivanced Information	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First No	This data sheet contains preliminary data and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Identifieation Full Production	This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.	

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

Table of Contents

$$
\text { Alphanumeric Index . } 1
$$

Cross Reference by Part Number 13
Package Cross Reference 19
Linear 1 Selection Guides 23
Voltage Regulators Definition of Terms 24
Voltage Regulators Selection Guide 25
Operational Amplifiers Definition of Terms 28
Operational Amplifiers Selection Guide 29
Buffers Definition of Terms 38
Buffers Selection Guide 39
Voltage Comparator Definition of Terms 40
Voltage Comparator Selection Guide 41
Instrumentation Amplifiers Definition of Terms 42
Instrumentation Amplifiers Selection Guide 43
Linear 3 Selection Guides 45
Audio Circuits Definition of Terms 46
Audio Circuits Selection Guide 47
Radio Circuits Definition of Terms 51
Radio Circuits Selection Guide 52
Video Circuits Definition of Terms 56
Video Circuits Selection Guide 58
Motion Control Selection Guide 61
Special Functions Selection Guide 62
Section 1 Active Filters
Active Filters Definition of Terms 1-3
Active Filters Selection Guide 1-4
AF100 Universal Active Filter 1-5
AF150 Universal Wideband Active Filter 1-6
AF151 Dual Universal Active Filter 1-7
LMF60 6th Order LMCMOSTM Switched Capacitor Butterworth Lowpass Filter 1-8

* LMF90 4th-Order LMCMOSTM Programmable Elliptic Notch Filter 1-9
* LMF100 Universal Monolithic Dual Switched Capacitor Filter 1-10
* LMF120 Mask Programmable Switched Capacitor Filter 1-12
MF4 4th Order Switched Capacitor Butterworth Lowpass Filter 1-13
MF5 Universal Monolithic Switched Capacitor Filter 1-26
MF6 6th Order Switched Capacitor Butterworth Lowpass Filter 1-41
* MF8 4th Order Switched Capacitor Bandpass Filter 1-59
MF10 Universal Monolithic Dual Switched Capacitor Filter 1-81
Section 2 Analog Switches/Multiplexers
Analog Switches/Multiplexers Definition of Terms 2-3
Analog Switches/Multiplexers Selection Guide 2-4
AH0014/AH0014C DPDT, AH0015C Quad SPST, AH0019/AH0019C Dual DPST- TTTL/DTLD Compatible MOS Analog Switch 2-5
AH5009/AH5010/AH5011/AH5012 Monolithic Analog Current Switch 2-6
AH5020C Monolithic Analog Current Switch 2-17
CD4016C Quad Bi-Lateral Switch 2-25
CD4051BM/CD4051BC Single 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4052BM/CD4052BC Dual 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4053BM/CD4053BC Triple 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4066BM/CD4066BC Quad Bi-Lateral Switch 2-40
CD4529BC Dual 4-Channel or 8-Channel Analog Data Election 2-46

[^0]
Table of Contents (coninueos)

Section 2 Analog Switches/Multiplexers (Continued) LF11331/LF13331/LF11332/LF1333/LF13333, LF11201/LF13201/LF11202/
LF13202 Quad SPST JFET Analog Switches 2-52
LF13508 8-Channel Analog Multiplexer 2-63
LF13509 4-Channel Analog Multiplexer 2-63

* MM54HC4016/MM74HC4016 Quad Analog Switch 2-77
* MM54HC4051/MM74HC4051 8-Channel Analog Multiplexer 2-84
* MM54HC4052/MM74HC4052 Dual 4-Channel Analog Multiplexer 2-84
* MM54HC4053/MM74HC4053 Triple 2-Channel Analog Multiplexer 2-84
* MM54HC4066/MM74HC4066 Quad Analog Switch 2-91
* MM54HC4316/MM74HC4316 Quad Analog Switch with Level Translator 2-96
Section 3 Analog-to-Digital Converters
Analog-to-Digital Converters Definition of Terms 3-3
Analog-to-Digital Converters Selection Guide 3-4
ADC0800 8-Bit A/D Converter 3-7
ADC0801, ADC0802, ADC0803, ADC0804, ADC0805 8-Bit μ P Compatible A/D Converters 3-16
ADC0808, ADC0809 8-Bit μ P Compatible A/D Converters with 8-Channel Multiplexer 3-48
ADC0811 8-Bit Serial I/O A/D Converter with 11-Channel Multiplexer 3-59
ADC0816, ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer 3-70
* ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer 3-81
ADC0820 8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function 3-91
ADC0829 μ P Compatible 8-Bit A/D with 11-Channel MUX/Digital Input 3-107
ADC0831, ADC0832, ADC0834 and ADC0838 8-Bit Serial I/O A/D Converters with Multiplexer Options 3-115
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer 3-140
* ADC0841 8-Bit μ P Compatible A/D Converter 3-158
ADC0844/ADC0848 8-Bit μ P Compatible A/D Converters with Multiplexer Options 3-171
ADC0852/ADC0854 Multiplexed Comparator with 8-Bit Reference Divider 3-188
ADC1001, ADC1021 10-Bit μ P Compatible A/D Converters 3-206
ADC1005, ADC1025 10-Bit μ P Compatible A/D Converters 3-213
ADC1205, ADC1225 12-Bit Plus Sign μ P Compatible A/D Converters 3-224
ADC1210, ADC1211 12-Bit CMOS A/D Converters 3-241
ADC3511 3½-Digit Microprocessor Compatible A/D Converter 3-252
ADC3711 33/4-Digit Microprocessor Compatible A/D Converter 3-252
ADD3501 3½-Digit DVM with Multiplexed 7-Segment Output 3-261
ADD3701 33/4-Digit DVM with Multiplexed 7-Segment Output 3-270
DM2502, DM2503, DM2504 Successive Approximation Registers 3-280
LM131A/LM131, LM231A/LM231, LM331A/LM331 Precision Voltage-to-Frequency Converters 3-285
MM74C905 12-Bit Successive Approximation Register 3-296
Section 4 Digital-to-Analog Converters
Digital-to-Analog Converters Definition of Terms 4-3
Digital-to-Analog Converters Selection Guide 4-4
DAC0800, DAC0801, DAC0802 8-Bit Digital-to-Analog Converters 4-6
DAC0808, DAC0807, DAC0806 8-Bit D/A Converters 4-15
DAC0830, DAC0831, DAC0832 8-Bit μ P Compatible Double-Buffered D to A Converters 4-23
DAC1000, DAC1001, DAC1002, DAC1006, DAC1007, DAC1008, μ P Compatible, Double-Buffered D to A Converters 4-41

Table of Contents ${ }_{\text {(continues) }}$

Section 4 Digital-to-Analog Converters (Continued)DAC1020, DAC1021, DAC1022, DAC1220, DAC1221, DAC1222 12-Bit BinaryMultiplying D/A Converters4-64
DAC1208, DAC1209, DAC1210, DAC1230, DAC1231, DAC1232 12-Bit μ P Compatible Double-Buffered D to A Converters 4-74
DAC1218, DAC1219 12-Bit Multiplying D/A Converters 4-89
DAC1265A, DAC1265 Hi-Speed 12-Bit D/A Converter with Reference 4-100
DAC1266A, DAC1266 Hi-Speed 12-Bit D/A Converter 4-109

* DAC1655 16-Bit D/A Converter 4-117
Section 5 Sample and Hold
Sample and Hold Definition of Terms 5-3
Sample and Hold Selection Guide 5-4
LF198/LF298/LF198A/LF398A Monolithic Sample and Hold Circuits 5-5
LF13006/LF13007 Digital Gain Set 5-15
LH0023/LH0023C/LH0043/LH0043C Sample and Hold Circuits 5-22
LH0053/LH0053C High Speed Sample and Hold Amplifier 5-23
LH0091 True RMS to DC Converter 5-24
LH0094 Multifunction Converter 5-29
Section 6 Temperature SensorTemperature Sensor Selection Guide6-3
LM34/LM34A/LM34C/LM34CA/LM34D Precision Fahrenheit Temperature Sensors 6-4
LM35/LM35A/LM35C/LM35EA/LM35D Precision Centigrade Temperature Sensors 6-12
LM135/LM235/LM335/LM135A/LM235A/LM335A Precision Temperature Sensors 6-21
LM3911 Temperature Controller 6-30
Section 7 Voltage Reference
Voltage Reference Selection Guide 7-3
LH0070 Series BCD Buffered Reference/LH0071 Series Precision Buffered Reference 7-7
LM103 Reference Diode 7-11
LM113/LM313 Precision Reference 7-12
LM129/LM329 Precision Reference 7-15
LM134/LM234/LM334 3-Terminal Adjustable Current Sources 7-20
LM136-2.5/LM236-2.5/LM336-2.5V Reference Diode 7-28
LM136-5.0/LM236-5.0/LM336-5.0V Reference Diode 7-35
LM168/LM268/LM368 Precision Voltage Reference 7-42
* LM169/LM369 Precision Voltage Reference 7-48
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode 7-58
LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode 7-64
LM185/LM285/LM385 Adjustable Micropower Voltage References 7-69
LM199/LM299/LM399/LM3999 Precision Reference 7-76
* LM368-2.5 Precision Voltage Reference 7-85
* LM581 Voltage Reference Precision 10-Volt 7-91
Section 8 Surface Mount
Surface Mount 8-3
Section 9 Appendices/Physical Dimensions
Appendix A General Product Marking and Code Explanation 9-3
Appendix B Application Note Referenced by Part Number 9-4
Appendix C Summary of Commercial Reliability Programs 9-10
Appendix D Military Aerospace Programs from National Semiconductor 9-11
Appendix E Understanding Integrated Circuit Package Power Capabilities 9-18
Appendix F How to Get the Right Information from a Datasheet 9-23
Appendix G Obsolete Product Replacement Guide 9-27
*Devices Not Covered In Last Publication

Table of Contents ${ }_{\text {(Continued) }}$

Section 9 Appendices/Physical Dimensions (Continued)
Appendix H Products Not Recommended for New Design 9-28
Physical Dimensions 9-29
BookshelfDistributors

Alpha-Numeric Index

ADC0800 8-Bit A/D Converter 3-7
ADC0801 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters 3-16
ADC0802 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters 3-16
ADC0803 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters 3-16
ADC0804 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters 3-16
ADC0805 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters 3-16
ADC0808 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters with 8-Channel Multiplexer 3-48
ADC0809 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters with 8-Channel Multiplexer 3-48
ADC0811 8-Bit Serial I/O A/D Converter with 11-Channel Multiplexer 3-59
ADC0816 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer 3-70
ADC0817 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters with 16-Channel Multiplexer 3-70
ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer 3-81
ADC0820 8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function 3-91
ADC0829 μ P Compatible 8-Bit A/D with 11-Channel MUX/Digital Input 3-107
ADC0831 8-Bit Serial I/O A/D Converters with Multiplexer Options 3-115
ADC0832 8-Bit Serial I/O A/D Converters with Multiplexer Options 3-115
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer 3-140
ADC0834 8-Bit Serial I/O A/D Converters with Multiplexer Options 3-115
ADC0838 8-Bit Serial I/O A/D Converters with Multiplexer Options 3-115
ADC0841 8-Bit μ P Compatible A/D Converter 3-158
ADC0844 8-Bit $\mu \mathrm{P}$ Compatible A/D Converters with Multiplexer Options 3-171
ADC0848 8-Bit μ P Compatible A/D Converters with Multiplexer Options 3-171
ADC0852 Multiplexed Comparator with 8-Bit Reference Divider 3-188
ADC0854 Multiplexed Comparator with 8-Bit Reference Divider 3-188
ADC1001 10-Bit μ P Compatible A/D Converters 3-206
ADC1005 10-Bit μ P Compatible A/D Converters 3-213
ADC1021 10-Bit μ P Compatible A/D Converters 3-206
ADC1025 10-Bit μ P Compatible A/D Converters 3-213
ADC1205 12-Bit Plus Sign μ P Compatible A/D Converters 3-224
ADC1210 12-Bit CMOS A/D Converters 3-241
ADC1211 12-Bit CMOS A/D Converters 3-241
ADC1225 12-Bit Plus Sign μ P Compatible A/D Converters 3-224
ADC3511 3½-Digit Microprocessor Compatible A/D Converter 3-252
ADC3711 33/4-Digit Microprocessor Compatible A/D Converter 3-252
ADD3501 3½-Digit DVM with Multiplexed 7-Segment Output 3-261
ADD3701 3 3/4-Digit DVM with Multiplexed 7-Segment Output 3-270
AF100 Universal Active Filter 1-5
AF150 Universal Wideband Active Filter 1-6
AF151 Dual Universal Active Filter 1-7
AH0014 Dual DPST-TTTL/DTLD Compatible MOS Analog Switch 2-5
AH0014C DPDT Dual DPST-TTTL/DTLD Compatible MOS Analog Switch 2-5
AH0015C Quad SPST Dual DPST-TTTL/DTLD Compatible MOS Analog Switch $2-5$
AH0019 Dual DPST-TTTL/DTLD Compatible MOS Analog Switch 2-5
AH0019C Dual DPST-TTTL/DTLD Compatible MOS Analog Switch 2-5
AH5009 Monolithic Analog Current Switch 2-6
AH5010 Monolithic Analog Current Switch 2-6
AH5011 Monolithic Analog Current Switch 2-6
AH5012 Monolithic Analog Current Switch 2-6
AH5020C Monolithic Analog Current Switch 2-17
CD4016C Quad Bi-Lateral Switch 2-25
CD4051BC Single 8-Channel Analog Multiplexer/Demultiplexer 2-32
Alpha-Numeric Index (Continued)
CD4051BM Single 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4052BC Dual 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4052BM Dual 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4053BC Triple 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4053BM Triple 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4066BC Quad Bi-Lateral Switch 2-40
CD4066BM Quad Bi-Lateral Switch 2-40
CD4529BC Dual 4-Channel or 8-Channel Analog Data Election 2-46
DAC0800 8-Bit Digital-to-Analog Converters 4-6
DAC0801 8-Bit Digital-to-Analog Converters 4-6
DAC0802 8-Bit Digital-to-Analog Converters 4-6
DAC0806 8-Bit D/A Converters 4-15
DAC0807 8-Bit D/A Converters 4-15
DAC0808 8-Bit D/A Converters 4-15
DAC0830 8-Bit μ P Compatible Double-Buffered D to A Converters 4-23
DAC0831 8-Bit μ P Compatible Double-Buffered D to A Converters 4-23
DAC0832 8-Bit $\mu \mathrm{P}$ Compatible Double-Buffered D to A Converters 4-23
DAC1000 μ P Compatible, Double-Buffered D to A Converters 4-41
DAC1001 $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters 4-41
DAC1002 $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters 4-41
DAC1006 $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters 4-41
DAC1007 $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters 4-41
DAC1008 μ P Compatible, Double-Buffered D to A Converters 4-41
DAC1020 12-Bit Binary Multiplying D/A Converters 4-64
DAC1021 12-Bit Binary Multiplying D/A Converters 4-64
DAC1022 12-Bit Binary Multiplying D/A Converters 4-64
DAC1208 12-Bit μ P Compatible Double-Buffered D to A Converters 4-74
DAC1209 12-Bit μ P Compatible Double-Buffered D to A Converters 4-74
DAC1210 12-Bit μ P Compatible Double-Buffered D to A Converters 4-74
DAC1218 12-Bit Multiplying D/A Converters 4-89
DAC1219 12-Bit Multiplying D/A Converters 4-89
DAC1220 12-Bit Binary Multiplying D/A Converters 4-64
DAC1221 12-Bit Binary Multiplying D/A Converters 4-64
DAC1222 12-Bit Binary Multiplying D/A Converters 4-64
DAC1230 12-Bit μ P Compatible Double-Buffered D to A Converters 4-74
DAC1231 12-Bit μ P Compatible Double-Buffered D to A Converters 4-74
DAC1232 12-Bit μ P Compatible Double-Buffered D to A Converters 4-74
DAC1265 Hi-Speed 12-Bit D/A Converter with Reference 4-100
DAC1265A Hi-Speed 12-Bit D/A Converter with Reference 4-100
DAC1266 Hi-Speed 12-Bit D/A Converter 4-109
DAC1266A Hi-Speed 12-Bit D/A Converter 4-109
DAC1655 16-Bit D/A Converter 4-117
DM2502 Successive Approximation Registers 3-280
DM2503 Successive Approximation Registers 3-280
DM2504 Successive Approximation Registers 3-280
HS7067 7 Amp, Multimode, High Efficiency Switching Regulator Linear 1
HS7107 7 Amp, Multimode, High Efficiency Switching Regulator Linear 1
HS9151 Micro-Switching Off-Line Power Converter 120/VAC/ + 5V Linear 1
LF111 Voltage Comparators Linear 1
LF147 Wide Bandwidth Quad JFET Input Operational Amplifiers Linear 1
LF155 Low Supply Current Linear 1

Alpha-Numeric Index ${ }_{\text {(Coninuead }}$

LF155 Series Monolothic JFET Input Operational Amplifiers Linear 1
LF156 Series Monolothic JFET Input Operational Amplifiers Linear 1
LF156 Wide Band Linear 1
LF157 Series Monolothic JFET Input Operational Amplifiers Linear 1
LF157 Wide Band Decompensated (AVMIN = 5) Linear 1
LF198 Monolithic Sample and Hold Circuits 5-5
LF198A Monolithic Sample and Hold Circuits 5-5
LF211 Voltage Comparators Linear 1
LF255 Low Supply Current Linear 1
LF256 Wide Band Linear 1
LF257 Wide Band Decompensated (AVMIN = 5) Linear 1
LF298 Monolithic Sample and Hold Circuits 5-5
LF311 Voltage Comparators Linear 1
LF347 Wide Bandwidth Quad JFET Input Operational Amplifiers Linear 1
LF347A Wide Bandwidth Quad JFET Input Operational Amplifiers Linear 1
LF351 Wide Bandwidth JFET Input Operational Amplifier Linear 1
LF353 Wide Bandwidth Dual JFET Input Operational Amplifier Linear 1
LF355 Low Supply Current Linear 1
LF356 Wide Band Linear 1
LF357 Wide Band Decompensated (AVMIN = 5) Linear 1
LF398A Monolithic Sample and Hold Circuits 5-5
LF400C Fast Settling JFET Input Operational Amplifier Linear 1
LF401 Precision Fast Settling JFET Input Operational Amplifier Linear 1
LF411 Low Offset, Low Drift JFET Input Operational Amplifier Linear 1
LF412 Low Offset, Low Drift Dual JFET Operational Amplifier Linear 1
LF441 Low Power JFET Input Operational Amplifier Linear 1
LF442 Dual Low Power JFET Input Operational Amplifier Linear 1
LF444 Quad Low Power JFET Input Operational Amplifier Linear 1
LF455 Series Monolithic JFET Operational Amplifier Linear 1
LF456 Series Monolithic JFET Operational Amplifier Linear 1
LF457 Series Monolithic JFET Operational Amplifier Linear 1
LF1333 Quad SPST JFET Analog Switches 2-52
LF11201 Quad SPST JFET Analog Switches 2-52
LF11202 Quad SPST JFET Analog Switches 2-52
LF11331 Quad SPST JFET Analog Switches 2-52
LF11332 Quad SPST JFET Analog Switches 2-52
LF13006 Digital Gain Set 5-15
LF13007 Digital Gain Set 5-15
LF13201 Quad SPST JFET Analog Switches 2-52
LF13202 Quad SPST JFET Analog Switches 2-52
LF13331 Quad SPST JFET Analog Switches 2-52
LF13333 Quad SPST JFET Analog Switches 2-52
LF13508 8-Channel Analog Multiplexer 2-63
LF13509 4-Channel Analog Multiplexer 2-63
LF13741 Monolithic JFET Input Operational Amplifier Linear 1
LH0002 Current Amplifier Linear 1
LH0003 Wide Bandwidth Operational Amplifier Linear 1
LH0004 High Voltage Operational Amplifier Linear 1
LH0020 High Gain Operational Amplifier Linear 1
LH0021 1.0 Amp Power Operational Amplifier Linear 1
LH0022 High Performance FET Op Amp Linear 1

Alpha-Numeric Index ${ }_{\text {(Conitiused }}$

LH0023 Sample and Hold Circuits 5-22
LH0023C Sample and Hold Circuits 5-22
LH0024 High Slew Rate Operational Amplifier Linear 1
LH0032 Ultra Fast FET-Input Operational Amplifier Linear 1
LH0033 Fast Buffer Amplifiers Linear 1
LH0036 Instrumentation Amplifier Linear 1
LH0038 True Instrumentation Amplifier Linear 1
LH0041 0.2 Amp Power Operational Amplifier Linear 1
LH0042 Low Cost FET Op Amp Linear 1
LH0043 Sample and Hold Circuits 5-22
LH0043C Sample and Hold Circuits 5-22
LH0044 Series Precision Low Noise Operational Amplifiers Linear 1
LH0045 Two Wire Transmitter Linear 1
LH0052 Precision FET Op Amp Linear 1
LH0053 High Speed Sample and Hold Amplifier 5-23
LH0053C High Speed Sample and Hold Amplifier 5-23
LH0061 0.5 Amp Wide Band Operational Amplifier Linear 1
LH0062 High Speed FET Operational Amplifier Linear 1
LH0070 Series BCD Buffered Reference 7-7
LH0071 Series Precision Buffered Reference 7-7
LH0075 Positive Precision Programmable Regulator Linear 1
LH0076 Negative Precision Programmable Regulator Linear 1
LH0082 Optical Communication Receiver/Amplifier Linear 1
LH0084 Digitally-Programmable-Gain Instrumentation Amplifier Linear 1
LH0086 Digitally-Programmable-Gain Amplifier Linear 1
LH0091 True RMS to DC Converter 5-24
LH0094 Multifunction Converter 5-29
LH0101 Power Operational Amplifier Linear 1
LH4001 Wideband Current Buffer Linear 1
LH4002 Wideband Video Buffer Linear 1
LH4003 Precision RF Closed Loop Buffer Linear 1
LH4004 Wideband FET Input Buffer/Amplifier Linear 1
LH4006 Precision RF Closed Loop Buffer Linear 1
LH4101 Wideband High Current Operational Amplifier Linear 1
LH4101C Wideband High Current Operational Amplifier Linear 1
LH4104 Fast Settling High Current Operational Amplifier Linear 1
LH4105 Precision Fast Settling High Current Operational Amplifier Linear 1
LM10 Op Amp and Voltage Reference Linear 1
LM11 Operational Amplifiers Linear 1
LM12(L) 150W Operational Amplifier Linear 1
LM34 Precision Fahrenheit Temperature Sensors 6-4
LM34A Precision Fahrenheit Temperature Sensors 6-4
LM34C Precision Fahrenheit Temperature Sensors 6-4
LM34CA Precision Fahrenheit Temperature Sensors 6-4
LM34D Precision Fahrenheit Temperature Sensors 6-4
LM35 Precision Fahrenheit Temperature Sensors 6-12
LM35A Precision Fahrenheit Temperature Sensors 6-12
LM35C Precision Fahrenheit Temperature Sensors 6-12
LM35CA Precision Fahrenheit Temperature Sensors 6-12
LM35D Precision Fahrenheit Temperature Sensors 6-12
LM78LXX Series 3-Terminal Positive Regulator Linear 1

Alpha-Numeric Index ${ }_{\text {(coninuud) }}$

LM78XX Series Voltage Regulator Linear 1
LM79LXXAC Series 3-Terminal Negative Regulator Linear 1
LM79XX Series 3-Terminal Negative Regulator Linear 1
LM101A Operational Amplifiers Linear 1
LM102 Voltage Follower Linear 1
LM103 Reference Diode 7-11
LM104 Negative Regulator Linear 1
LM105 Voltage Regulator Linear 1
LM106 Voltage Comparator Linear 1
LM107 Operational Amplifiers Linear 1
LM108 Operational Amplifiers Linear 1
LM108A Operational Amplifiers Linear 1
LM109 5-Volt Regulator Linear 1
LM110 Voltage Follower Linear 1
LM111 Voltage Comparator Linear 1
LM112 Operational Amplifiers Linear 1
LM113 Precision Reference 7-12
LM117 3-Terminal Adjustable Regulator Linear 1
LM117HV 3-Terminal Adjustable Regulator Linear 1
LM118 Operational Amplifiers Linear 1
LM119 High Speed Dual Comparator Linear 1
LM120 Series 3-Terminal Negative Regulator Linear 1
LM122 Precision Timer Linear 3
LM123 3 Amp, 5-Volt Positive Regulator Linear 1
LM124 Low Power Quad Operational Amplifiers Linear 1
LM125 Voltage Regulators Linear 1
LM126 Voltage Regulators Linear 1
LM129 Precision Reference 7-15
LM131 Precision Voltage-to-Frequency Converters 3-285
LM131A Precision Voltage-to-Frequency Converters 3-285
LM133 3-Amp Negative Adjustable Voltage Regulator Linear 1
LM134 3-Terminal Adjustable Current Sources 7-20
LM135 Precision Temperature Sensors 6-21
LM135A Precision Temperature Sensors 6-21
LM136-2.5V Reference Diode 7-28
LM136-5.0V Reference Diode 7-35
LM137 3-Terminal Negative Adjustable Regulator Linear 1
LM137HV 3-Terminal Negative Adjustable Regulators (High Voltage) Linear 1
LM138 5 Amp Adjustable Power Regulator Linear 1
LM139 Low Power Low Offset Voltage Quad Comparators Linear 1
LM140 Series 3-Terminal Positive Regulators Linear 1
LM140L Series 3-Terminal Positive Regulators Linear 1
LM143 High Voltage Operational Amplifier Linear 1
LM144 High Voltage, High Slew Rate Operational Amplifiers Linear 1
LM145 Negative 3 Amp Regulator Linear 1
LM146 Programmable Quad Operational Amplifiers Linear 1
LM148 Quad 741 Op Amps Linear 1
LM149 Wide Band Decompensated (AV(MIN) = 5) Linear 1
LM150 3 Amp Adjustable Power Regulator Linear 1
LM158 Low Power Dual Operational Amplifiers Linear 1
LM160 High Speed Differential Comparator Linear 1
Alpha-Numeric Index ${ }_{\text {(Coninuued) }}$
LM161 High Speed Differential Comparator Linear 1
LM168 Precision Voltage Reference 7-42
LM169 Precision Voltage Reference 7-48
LM185 Adjustable Micropower Voltage References 7-69
LM185-1.2 Micropower Voltage Reference Diode 7-58
LM185-2.5 Micropower Voltage Reference Diode 7-64
LM192 Low Power Operational Amplifier/Voltage Comparator Linear 1
LM193 Low Power Low Offset Voltage Dual Comparator Linear 1
LM194 Super Match Pair Linear 3
LM195 Ultra Reliable Power Transistors Linear 3
LM196 10 Amp Adjustable Voltage Regulator Linear 1
LM199 Precision Reference 7-76
LM201A Operational Amplifiers Linear 1
LM204 Negative Regulator Linear 1
LM205 Voltage Regulator Linear 1
LM206 Voltage Comparator Linear 1
LM207 Operational Amplifiers Linear 1
LM208 Operational Amplifiers Linear 1
LM208A Operational Amplifiers Linear 1
LM210 Voltage Follower Linear 1
LM211 Voltage Comparator Linear 1
LM212 Operational Amplifiers Linear 1
LM218 Operational Amplifiers Linear 1
LM219 High Speed Dual Comparator Linear 1
LM221 Precision Preamplifiers Linear 1
LM224 Low Power Quad Operational Amplifiers Linear 1
LM231 Precision Voltage-to-Frequency Converters 3-285
LM231A Precision Voltage-to-Frequency Converters 3-285
LM234 3-Terminal Adjustable Current Sources 7-20
LM235 Precision Temperature Sensors 6-21
LM235A Precision Temperature Sensors 6-21
LM236-2.5V Reference Diode 7-28
LM236-5.0V Reference Diode 7-35
LM239 Low Power Low Offset Voltage Quad Comparators Linear 1
LM246 Programmable Quad Operational Amplifiers Linear 1
LM248 Quad 741 Op Amps Linear 1
LM249 Wide Band Decompensated (AV(MIN) = 5) Linear 1
LM258 Low Power Dual Operational Amplifiers Linear 1
LM260 High Speed Differential Comparator Linear 1
LM261 High Speed Differential Comparator Linear 1
LM268 Precision Voltage Reference 7-42
LM285 Adjustable Micropower Voltage References 7-69
LM285-1.2 Micropower Voltage Reference Diode 7-58
LM285-2.5 Micropower Voltage Reference Diode 7-64
LM292 Low Power Operational Amplifier/Voltage Comparator Linear 1
LM293 Low Power Low Offset Voltage Dual Comparator Linear 1
LM295 Ultra Reliable Power Transistors Linear 3
LM299 Precision Reference 7-76
LM301A Operational Amplifiers Linear 1
LM302 Voltage Follower Linear 1
LM304 Negative Regulator Linear 1

Alpha-Numeric Index ${ }_{\text {(Conitivead }}$

LM305 Voltage Regulator Linear 1
LM305A Voltage Regulator Linear 1
LM306 Voltage Comparator Linear 1
LM307 Operational Amplifiers Linear 1
LM308 Operational Amplifiers Linear 1
LM308A Operational Amplifiers Linear 1
LM309 5-Volt Regulator Linear 1
LM310 Voltage Follower Linear 1
LM311 Voltage Comparator Linear 1
LM312 Operational Amplifiers Linear 1
LM313 Precision Reference 7-12
LM317 3-Terminal Adjustable Regulator Linear 1
LM317HV 3-Terminal Adjustable Regulator Linear 1
LM317L 3-Terminal Adjustable Regulator Linear 1
LM318 Operational Amplifiers Linear 1
LM319 High Speed Dual Comparator Linear 1
LM320 Series 3-Terminal Negative Regulator Linear 1
LM320L 3-Terminal Negative Regulator Linear 1
LM321 Precision Preamplifiers Linear 1
LM322 Precision Timer Linear 3
LM324 Low Power Quad Operational Amplifiers Linear 1
LM325 Voltage Regulators Linear 1
LM326 Voltage Regulators Linear 1
LM329 Precision Reference 7-15
LM330 3-Terminal Positive Regulator Linear 1
LM331 Precision Voltage-to-Frequency Converters 3-285
LM331A Precision Voltage-to-Frequency Converters 3-285
LM333 3-Amp Negative Adjustable Voltage Regulator Linear 1
LM334 3-Terminal Adjustable Current Sources 7-20
LM335 Precision Temperature Sensors 6-21
LM335A Precision Temperature Sensors 6-21
LM336-2.5V Reference Diode 7-28
LM336-5.0V Reference Diode 7-35
LM337 3-Terminal Negative Adjustable Regulator Linear 1
LM337HV 3-Terminal Negative Adjustable Regulators (High Voltage) Linear 1
LM337L 3-Terminal Adjustable Regulator Linear 1
LM3385 Amp Adjustable Power Regulator Linear 1
LM339 Low Power Low Offset Voltage Quad Comparators Linear 1
LM340 Series 3-Terminal Positive Regulators Linear 1
LM340L Series 3-Terminal Positive Regulators Linear 1
LM343 High Voltage Operational Amplifier Linear 1
LM344 High Voltage, High Slew Rate Operational Amplifiers Linear 1
LM345 Negative 3 Amp Regulator Linear 1
LM346 Programmable Quad Operational Amplifiers Linear 1
LM348 Quad 741 Op Amps Linear 1
LM349 Wide Band Decompensated ($\mathrm{AV}(\mathrm{MIN})=5)$ Linear 1
LM350 3 Amp Adjustable Power Regulator Linear 1
LM358 Low Power Dual Operational Amplifiers Linear 1
LM359 Dual, High Speed, Programmable Current Mode (Norton) Amplifier Linear 1
LM360 High Speed Differential Comparator Linear 1
LM361 High Speed Differential Comparator Linear 1
Alpha-Numeric Index ${ }_{\text {(Coninuog) }}$
LM363 Precision Instrumentation Amplifier Linear 1
LM368 Precision Voltage Reference 7-42
LM368-2.5 Precision Voltage Reference 7-85
LM369 Precision Voltage Reference 7-48
LM376 Voltage Regulator Linear 1
LM377 Dual 2-Watt Audio Amplifier Linear 3
LM378 Dual 4-Watt Audio Amplifier Linear 3
LM380 Audio Power Amplifier Linear 3
LM381 Low Noise Dual Preamplifier Linear 3
LM382 Low Noise Dual Preamplifier Linear 3
LM383 7-Watt Audio Power Amplifier Linear 3
LM384 5-Watt Audio Power Amplifier Linear 3
LM385 Adjustable Micropower Voltage References 7-69
LM385-1.2 Micropower Voltage Reference Diode 7-58
LM385-2.5 Micropower Voltage Reference Diode 7-64
LM386 Low Voltage Audio Power Amplifier Linear 3
LM387 Low Noise Dual Preamplifier Linear 3
LM388 1.5-Watt Audio Power Amplifier Linear 3
LM389 Low Voltage Audio Power Amplifier with NPN Transistor Array Linear 3
LM390 1-Watt Battery Operated Audio Power Amplifier Linear 3
LM391 Audio Power Driver Linear 3
LM392 Low Power Operational Amplifier/Voltage Comparator Linear 1
LM393 Low Power Low Offset Voltage Dual Comparator Linear 1
LM394 Super Match Pair Linear 3
LM395 Ultra Reliable Power Transistors Linear 3
LM396 10 Amp Adjustable Voltage Regulator Linear 1
LM399 Precision Reference 7-76
LM555 Timer Linear 3
LM555C Timer Linear 3
LM556 Dual Timer Linear 3
LM556C Dual Timer Linear 3
LM565 Phase Locked Loop Linear 3
LM565C Phase Locked Loop Linear 3
LM566C Voltage Controlled Oscillator Linear 3
LM567 Low Power Tone Decoder Linear 3
LM567C Low Power Tone Decoder Linear 3
LM581 Voltage Reference Precision 10-Volt 7-91
LM592 Differential Video Amplifier Linear 3
LM604 4 Channel MUX-Amp Linear 1
LM607 Precision Operational Amplifier Linear 1
LM611 Adjustable Micropower Floating Voltage Reference and Single-Supply Operational Amplifier Linear 1
LM614 Adjustable Micropower Floating Voltage Reference and Four Single-Supply Operational Amplifiers Linear 1
LM621 Brushless Motor Commutator TC Linear 3
LM622 Pulse Width Modulator Linear 3
LM628 Precision Motion Controller Linear 3
LM675 Power Operational Amplifier Linear 1
LM723 Voltage Regulator Linear 1
LM733 Differential Video Amplifier Linear 3
LM733C Differential Video Amplifier Linear 3

Alpha-Numeric Index ${ }_{\text {(Conitiuea) }}$

LM741 Operational Amplifier Linear 1
LM831 Low Voltage Audio Power Amplifier Linear 3
LM832 Dynamic Noise Reduction System DNR Linear 3
LM833 Dual Audio Operational Amplifier Linear 1
LM837 Low Noise Quad Operational Amplifier Linear 1
LM903 Fluid Level Detector Linear 3
LM1035 Dual DC Operated Tone/Volume/Balance Circuit Linear 3
LM1036 Dual DC Operated Tone/Volume/Balance Circuit Linear 3
LM1037 Dual Four-Channel Analog Switch Linear 3
LM1038 Dual Four-Channel Analog Switch Linear 3
LM1040 Dual DC Operated Tone/Volume/Balance Circuit with Stereo Enhancement Facility Linear 3
LM1042 Fluid Level Detector Linear 3
LM1044 Analog Video Switch Linear 3
LM1112A Dolby B-Type Noise Reduction Processor Linear 3
LM1131A Dual Dolby B-Type Noise Reduction Processor Linear 3
LM1141 Dolby B-C Type Noise Reduction Processor Linear 3
LM1201 Video Amplifier System Linear 3
LM1203 RGB Video Amplifier System Linear 3
LM1211 Broadband Demodulator System Linear 3
LM1391 Phase-Locked Loop Linear 3
LM1458 Dual Operational Amplifier Linear 1
LM1496 Balanced Modulator Demodulator Linear 3
LM1558 Dual Operational Amplifier Linear 1
LM1578 Switching Regulator Linear 1
LM1596 Balanced Modulator Demodulator Linear 3
LM1800 Phase-Locked Loop FM Stereo Demodulator Linear 3
LM1801 Battery Operated Power Comparator Linear 3
LM1812 Ultrasonic Transceiver Linear 3
LM1815 Adaptive Sense Amplifier Linear 3
LM1818 Electronically Switched Audio Tape System Linear 3
LM1819 Air-Core Meter Driver Linear 3
LM1823 Video IF Amplifier/PLL Detection System Linear 3
LM1830 Fluid Detector Linear 3
LM1837 Low Noise Preamplifier for Autoreversing Tape Playback Systems Linear 3
LM1851 Ground Fault Interrupter Linear 3
LM1863 AM Radio System for Electronically Tuned Radio Linear 3
LM1865 Advanced FM IF System Linear 3
LM1866 Low Voltage AM/FM Receiver Linear 3
LM1868 AM/FM Radio System Linear 3
LM1870 Stereo Demodulator with Blend Linear 3
LM1871 RC Encoder/Transmitter Linear 3
LM1872 Radio Control Receiver/Decoder Linear 3
LM1875 20-Watt Power Audio Amplifier Linear 3
LM1877 Dual Power Audio Amplifier Linear 3
LM1880 No-Holds Vertical/Horizontal Linear 3
LM1881 Video Sync Separator Linear 3
LM1884 TV Stereo Decoder Linear 3
LM1886 TV Video Matrix D to A Linear 3
LM1889 TV Video Modulator Linear 3
LM1893 Biline Carrier Current Transceiver Linear 3
LM1894 Dynamic Noise Reduction System DNR Linear 3
Alpha-Numeric Index ${ }_{\text {(Conitivead) }}$
LM1895 Audio Power Amplifier Linear 3
LM1896 Dual Power Audio Amplifier Linear 3
LM1897 Low Noise Preamplifier for Tape Playback Systems Linear 3
LM1921 1 Amp Industrial Switch Linear 3
LM1946 Over/Under Current Limit Diagnostic Circuits Linear 3
LM1949 Injector Drive Controller Linear 3
LM1951 Solid State 1 Amp Switch Linear 3
LM1964 Sensor Interface Amplifier Linear 3
LM1965 Advanced FM IF System Linear 3
LM2002 8-Watt Audio Power Amplifier Linear 3
LM2005 20-Watt Automotive Power Amplifier Linear 3
LM2065 Advanced FM IF System Linear 3
LM2578 Switching Regulator Linear 1
LM2877 Dual 4-Watt Power Audio Amplifier Linear 3
LM2878 Dual 5-Watt Power Audio Amplifier Linear 3
LM2879 Dual 8-Watt Audio Amplifier Linear 3
LM2889 TV Video Modulator Linear 3
LM2893 Biline Carrier Current Transceiver Linear 3
LM2900 Quad Amplifiers Linear 1
LM2901 Low Power Low Offset Voltage Quad Comparators Linear 1
LM2902 Low Power Quad Operational Amplifiers Linear 1
LM2903 Low Power Low Offset Voltage Dual Comparator Linear 1
LM2904 Low Power Dual Operational Amplifiers Linear 1
LM2905 Precision Timer Linear 3
LM2907 Frequency to Voltage Converter Linear 3
LM2917 Frequency to Voltage Converter Linear 3
LM2924 Low Power Operational Amplifier/Voltage Comparator Linear 1
LM2925 Low Drop-Out Regulator with Delayed Reset Linear 1
LM2930 3-Terminal Positive Regulator Linear 1
LM2931 Series Low Drop-Out Regulator Linear 1
LM2935 Low Drop-Out Dual Regulator Linear 1
LM2940C 1A Low Drop-Out Regulator Linear 1
LM2984C Microprocessor Power Supply System Linear 1
LM3045 Transistor Arrays Linear 3
LM3046 Transistor Arrays Linear 3
LM3080 Operational Transconductance Amplifier Linear 1
LM3080A Operational Transconductance Amplifier Linear 1
LM3086 Transistor Arrays Linear 3
LM3089 FM Receiver IF System Linear 3
LM3146 High Voltage Transistor Array Linear 3
LM3189 FM IF System Linear 3
LM3301 Quad Amplifiers Linear 1
LM3302 Low Power Low Offset Voltage Quad Comparators Linear 1
LM3361 A Low Voltage/Power Narrow Band FM IF System Linear 3
LM3401 Quad Amplifiers Linear 1
LM3578 Switching Regulator Linear 1
LM3820 AM Radio System Linear 3
LM3900 Quad Amplifiers Linear 1
LM3905 Precision Timer Linear 3
LM3909 LED Flasher/Oscillator Linear 3
LM3911 Temperature Controller 6-30

Alpha-Numeric Index ${ }_{\text {(Contiuveos) }}$

LM3914 Dot/Bar Display Driver Linear 3
LM3915 Dot/Bar Display Driver Linear 3
LM3916 Dot/Bar Display Driver Linear 3
LM3999 Precision Reference 7-76
LM4250 Programmable Operational Amplifiers Linear 1
LM4500A High Fidelity FM Stereo Demodulator with Blend Linear 3
LM6113 High Speed Operational Amplifiers Plus Power Buffer Linear 1
LM6121 High Speed Buffer Linear 1
LM6125 High Speed Buffer Linear 1
LM6161 High Speed Operational Amplifiers Linear 1
LM6161/LM6261/LM6361 High Speed Operational Amplifiers Linear 1
LM6164 High Speed Operational Amplifiers Linear 1
LM6164/LM6264/LM6364 High Speed Operational Amplifiers Linear 1
LM6165 High Speed Operational Amplifiers Linear 1
LM6165/LM6265/LM6365 High Speed Operational Amplifiers Linear 1
LM6214 High Speed Operational Amplifiers Plus Power Buffer Linear 1
LM6221 High Speed Buffer Linear 1
LM6225 High Speed Buffer Linear 1
LM6261 High Speed Operational Amplifiers Linear 1
LM6264 High Speed Operational Amplifiers Linear 1
LM6265 High Speed Operational Amplifiers Linear 1
LM6314 High Speed Operational Amplifiers Plus Power Buffer Linear 1
LM6321 High Speed Buffer Linear 1
LM6325 High Speed Buffer Linear 1
LM6361 High Speed Operational Amplifiers Linear 1
LM6364 High Speed Operational Amplifiers Linear 1
LM6365 High Speed Operational Amplifiers Linear 1
LM13080 Programmable Power Operational Amplifiers Linear 1
LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers Linear 1
LM13700 Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers Linear 1
LM18272 Dual Power Operational Amplifier Linear 1
LM18293 Four Channel Push Pull Driver Linear 3
LM18298 Dual Full-Bridge Driver Linear 3
LMC555 CMOS Timer Linear 3
LMC567 Low Power Tone Decoder Linear 3
LMC568 Low Power Phase-Locked Loop Linear 3
LMC660 CMOS Quad Operational Amplifier Linear 1
LMC668 Chopper Stabilized Operational Amplifier Linear 1
LMC669 Auto Zero Linear 1
LMC835 Digital Controlled Graphic Equalizer Linear 3
LMC1992 Computer Controlled Tone and Volume Circuits Linear 3
LMC1993 Computer Controlled Tone and Volume Circuits Linear 3
LMC7660 Switched Capacitor Voltage Converter Linear 1
LMC7669 Switched Capacitor Voltage Converter Linear 1
LMF60 6th Order LMCMOSTM Switched Capacitor Butterworth Lowpass Filter 1-8
LMF90 4th-Order LMCMOSTM Programmable Elliptic Notch Filter 1-9
LMF100 Universal Monolithic Dual Switched Capacitor Filter 1-10
LMF120 Mask Programmable Switched Capacitor Filter 1-12
LP124 Micropower Quad Operational Amplifier Linear 1
LP165 Micropower Programmable Quad Comparator Linear 1
LP311 Voltage Comparator Linear 1

Alpha-Numeric Index ${ }_{\text {(Coninuea) }}$

LP324 Micropower Quad Operational Amplifier Linear 1
LP339 Ultra-Low Power Quad Comparator Linear 1
LP365 Micropower Programmable Quad Comparator Linear 1
LP2902 Micropower Quad Operational Amplifier Linear 1
LP2950 5V Adjustable Micropower Voltage Regulator Linear 1
LP2951 Adjustable Micropower Voltage Regulator Linear 1
MF4 4th Order Switched Capacitor Butterworth Lowpass Filter 1-13
MF5 Universal Monolithic Switched Capacitor Filter 1-26
MF6 6th Order Switched Capacitor Butterworth Lowpass Filter 1-41
MF8 4th Order Switched Capacitor Bandpass Filter 1-59
MF10 Universal Monolithic Dual Switched Capacitor Filter 1-81
MM54HC4016 Quad Analog Switch 2-77
MM54HC4051 8-Channel Analog Multiplexer 2-84
MM54HC4052 Dual 4-Channel Analog Multiplexer 2-84
MM54HC4053 Triple 2-Channel Analog Multiplexer 2-84
MM54HC4066 Quad Analog Switch 2-91
MM54HC4316 Quad Analog Switch with Level Translator 2-96
MM74C905 12-Bit Successive Approximation Register 3-296
MM74HC4016 Quad Analog Switch 2-77
MM74HC4051 8-Channel Analog Multiplexer 2-84
MM74HC4052 Dual 4-Channel Analog Multiplexer 2-84
MM74HC4053 Triple 2-Channel Analog Multiplexer 2-84
MM74HC4066 Quad Analog Switch 2-91
MM74HC4316 Quad Analog Switch with Level Translator 2-96
TBA120S IF Amplifier and Detector Linear 3
TL081CP Wide Bandwidth JFET Input Operational Amplifier Linear 1
TL082CP Wide Bandwidth Dual JFET Input Operational Amplifier Linear 1

CROSS REFERENCE BY PART NUMBER

Abstract

A complete interchangeability list of Linear IC's offered by most Integrated Circuit Manufacturers are listed in this section and reference the nearest National Semiconductor Corp. direct replacement or recommended replacement with either an improved or functional replacement. The following notations are appended to assist you in finding the best option.

No reference note	DIRECT REPLACEMENT"
Note (1)	"IMPROVED REPLACEMENT" Pin-for-Pin replacement with "SUPERIOR" Electrical Specifications.
Note (2)	"FUNCTIONAL REPLACEMENT" Similar device. Consult datasheet to determine the suitability for specific application.
Note (3)	"SIMILAR DEVICE" with superior performance. Consult datasheet to determine suitability of the replacement for specific application.

ANALOG			AD624	LH0038	(2)	AD7571	ADC1025	(2)
DEVICES	NATIONAL		AD650	LM331	(2)	AD7575	ADC0820	(2)
ADOP07	LM607	(1)	AD651	LM331	(2)	AD7576	ADC0820	(2)
ADDAC-08	DAC0800		AD654	LM331	(2)	AD7578	ADC1225	(2)
ADDAC-08	DAC0801		AD673	ADC0841	(2)	AD7578	ADC1205	(2)
ADDAC-08	DAC0802		AD741	LM741		AD7820	ADC0820	
ADDAC80	DAC1280+	(1)	ADLH0032	LH0032	(2)			
ADDAC85	DAC1280+	(1)	ADLH0033	LH0033	(2)	APEX	NATIONAL	
AD101A	LM101A	(1)	AD0042	LH0042	(2)	PA01	LM12	(2)
AD201A	LM201A	(1)	AD3542	LH0042	(2)	PA01	LH0101	(2)
AD301A	LM301A	(1)	AD5035	LH0042	(2)	PA07	LM12	(2)
AD506	LH0022	(2)	AD7502	LF13509	(2)	PA10	LM12	(2)
AD509	LH0003	(2)	AD7516	CO4066B	(2)	PA10	LH0101	(2)
AD521	LM363	(2)	AD7523	DAC0832	(2)	PA11	LM12	(2)
AD521	LH0036	(2)	AD7523	DAC0831	(2)	PA51	LM12	(2)
AD524	LH0038	(2)	AD7523	DAC0830	(2)	PA73	LM12	(2)
AD537	LM331	(2)	AD7524	DAC0830	(3)			
AD562	DAC1266	(3)	AD7524	DAC0831	(3)	BURR-BROWN	NATIONAL	
AD563	DAC1265	(3)	AD7524	DAC0832	(3)	SHC80	LF398	(2)
AD565A	DAC1265		AD7533	DAC1020		SHC85	LF398	(2)
AD566A	DAC1266		AD7533	DAC1022		HOS-100	LH0033	(2)
AD567	DAC1230	(2)	AD7533	DAC1021		INA102	LH0038	(2)
AD573	ADC1005	(2)	AD7541A	DAC1218	(2)	SHC298A	LF398A	(1)
AD573	ADC1025	(2)	AD7541A	DAC1219	(2)	3507	LM6361	(2)
AD581	LM581		AD7541	DAC1219	(1)	3533	LH0033	(2)
AD581	LH0070	(1)	AD7541	DAC1218	(1)	3542	LH0042	(2)
AD582	LF398	(2)	AD7542	DAC1210	(2)	3550	LM6361	(2)
AD583	LF198	(3)	AD7542	DAC1209	(2)	3551	LM6361	(2)
AD588	LM369	(2)	AD7542	DAC1208	(2)	3553	LH0063	(2)
AD589M	LM385	(1)	AD7545	DAC1209	(2)	3554	LH0032	(2)
AD589U	LM185	(1)	AD7545	DAC1210	(2)	3571	LM675	(2)
AD590	LM135	(2)	AD7545	DAC1208	(2)	3572	LH0021	(2)
AD590	LM34	(3)	AD7548	DAC1230	(2)	3573	LM675	(2)
AD590	LM134	(2)	AD7548	DAC1232	(2)	3606A6	LH0084	(2)
AD590	LM35	(3)	AD7548	DAC1231	(2)	3606A6	LH0086	(2)
AD611K	LF411AC	(1)	AD7552	ADC1225	(2)	3626	LH0036	(2)
AD611J	LF411C	(1)	AD7552	ADC1205	(2)	3629	LH0038	(2)
AD614	LH0086	(2)	AD7571	ADC1005	(2)			

CTS	NATIONAL		$\mu \mathrm{A} 99 \mathrm{XXKC}$	LM320K-XX	(1)	$\mu \mathrm{A} 488$	LM748	(1)
CTS0002	LH0002	(1)	$\mu \mathrm{A} 79 \times \mathrm{XUC}$	LM79XXCT	(1)	$\mu \mathrm{A} 760$	LM760	(1)
CTS0004	LH0004	(1)	$\mu \mathrm{A} 101 \mathrm{~A}$	LM101A	(1)	μ A771B	LF411	(1)
CTS0021	LH0021	(1)	$\mu \mathrm{A} 102$	LM102	(1)	$\mu \mathrm{A} 71$	LF351	(1)
CTS0024	LH0024	(1)	$\mu \mathrm{A} 105 \mathrm{HM}$	LM105H	(1)	μ A771A	LF411	(1)
CTS0032	LH0032	(1)	$\mu \mathrm{A} 107$	LM107	(1)	$\mu \mathrm{A} 772 \mathrm{~B}$	LF412A	(1)
CTS0033	LH00з3	(1)	$\mu \mathrm{A} 108 \mathrm{~A}$	LM108A	(1)	$\mu \mathrm{A} 72$	LF353	(1)
CTS0041	LH0041	(1)	$\mu \mathrm{A} 108$	LM108	(1)	$\mu \mathrm{A} 772 \mathrm{~A}$	LF412A	(1)
CTS0042	LH0042	(1)	MA109KM	LM109K STEEL	(1)	μ A774	LF347	(1)
CTS2101A	LH2101A	(1)	$\mu \mathrm{A} 110$	LM110	(1)	$\mu \mathrm{A} 774 \mathrm{~B}$	LF347B	(1)
CTS2111	LH2111	(1)	$\mu \mathrm{A} 111$	LM111	(1)	μ A776	LM4250	(1)
			$\mu \mathrm{A} 124$	LM124	(1)	μ A1458	LM1458	(1)
ELANTEC	NATIONAL		$\mu \mathrm{A} 139$	LM139	(1)	$\mu \mathrm{C} 1496 \mathrm{P}$	LM1496N	(1)
ELH0002	LH0002	(1)	$\mu \mathrm{A139A}$	LM139A	(1)	$\mu \mathrm{C} 1496 \mathrm{G}$	LM1496H	(1)
ELH0021	LH0021	(1)	$\mu \mathrm{A} 201 \mathrm{~A}$	LM201A	(1)	μ A1558	LM1558	(1)
ELH0032	LH0032	(1)	$\mu \mathrm{A} 207$	LM207	(1)	$\mu \mathrm{C} 1596 \mathrm{G}$	LM1596H	(1)
ELH0033	LН0033	(1)	$\mu \mathrm{A} 208$	LM208	(1)	TDA2310	LM381	(1)
ELH0041	LH0041	(1)	μ A208A	LM208A	(1)	μ A2901	LM2901	(1)
ELH0101	LH0101	(1)	$\mu \mathrm{A} 211$	LM211	(1)	μ A2902	LM2902	(1)
EL2006C	LM6261	(2)	$\mu \mathrm{A} 224$	LM224	(1)	TCA3089	LM3089N	(1)
EL2006	LM6161	(2)	μ А239	LM239	(1)	μ АЗ301	LM3301	(1)
EHA2500	LM6161	(2)	μ A239A	LM239A	(1)	μ A3302	LM3302	(1)
EHA2502	LM6161	(2)	$\mu \mathrm{A} 248$	LM248	(1)	$\mu \mathrm{C4558CD}$	LM833CN	(1)
EHA2505	LM6361	(2)	$\mu \mathrm{A} 249$	LM249	(1)	μ A7392	LM1014	(1)
EHA2510	LM6161	(2)	$\mu \mathrm{A} 301 \mathrm{~A}$	LM301A	(1)			
EHA2512	LM6161	(2)	μ А302	LM302	(1)	HARRIS	NATIONAL	
EHA2515	LM6361	(2)	$\mu \mathrm{A} 304 \mathrm{HC}$	LM304H	(1)	HA-OP07	LM607	(1)
EHA2520	LM6164	(2)	$\mu \mathrm{A} 305 \mathrm{HC}$	LM305H	(1)	HF-10	MF10	
EHA2522	LM6164	(2)	μ A305AHC	LM305AH	(1)	H-201	LF13201	
EHA2525	LM6364	(2)	μ А307	LM307	(1)	H1-300	AH5020	(2)
EHA2600	LM6161	(2)	$\mu \mathrm{A} 308 \mathrm{~A}$	LM308A	(1)	LM741	LM741	(1)
EHA2602	LM6161	(2)	μ А308	LM308	(1)	HA2400	LM604AM	(2)
EHA2605	LM6361	(2)	$\mu \mathrm{A} 309 \mathrm{KC}$	LM309K STEEL	(1)	HA2404	LM604AM	(2)
EHA2620	LM6164	(2)	$\mu \mathrm{A} 310$	LM310	(1)	HA2405	LM604C	(2)
EHA2622	LM6164	(2)	$\mu \mathrm{A} 311$	LM311	(1)	HA2406	LM604C	(2)
EHA2625	LM6364	(2)	$\mu \mathrm{A} 317 \mathrm{KC}$	LM317K STEEL	(1)	HA2500	LM6161	(2)
			$\mu \mathrm{A} 317 \mathrm{CC}$	LM317T	(1)	HA2502	LM6161	(2)
EXAR	NATIONAL		$\mu \mathrm{A} 318$	LM318	(1)	HA2505	LM6361	(2)
XR084M	LF147	(1)	μ А324	LM324	(1)	HA2510	LM6161	(2)
XR084	LF347	(1)	μ АЗ39	LM339	(1)	HA2512	LM6161	(2)
XR146	LM146	(1)	μ Азз9А	Lм 339 A	(1)	HA2515	LM6361	(2)
XR246	LM246	(1)	$\mu \mathrm{A} 348$	LM348	(1)	HA2520	LM6164	(2)
XR346	LM346	(1)	μ - 349	LM349	(1)	HA2520	LH0003	(1)
XR-1001	MF4C-100	(1)	μ A376TC	LM376N	(1)	HA2522	LH0003	(1)
XR-1002	MF4C-50	(1)	μ A555TC	LM555CN	(1)	HA2522	LM6164	(2)
XR1458	LM1458	(1)	μ A556PC	LM556CN	(1)	HA2525	LH0003	(1)
			μ M709	LM709	(1)	HA2525	LM6364	(2)
FAIRCHILD	NATIONAL		μ H709	LM709	(1)	HA2530	LH0024	(2)
$\mu \mathrm{A} 78 \times \mathrm{XKM}$	LM140K-XX	(1)	μ A710	LM710	(1)	HA2535	LH0024	(2)
$\mu 78 \mathrm{LXXACH}$	LM78LXXACH	(1)	$\mu \mathrm{A} 710$	LM710	(1)	HA2540	LH0032	(2)
$\mu 78 \times X U C$	LM340T-XX	(1)	μ A711	LM711	(1)	HA2541-5	LM6361	(2)
$\mu 78 \mathrm{XXUC}$	LM78XXCT	(1)	μ A714	LM607	(1)	HA2541-2	LM6161	(2)
μ A78LXXACLP	LM78LXXACZ	(1)	$\mu \mathrm{A} 723 \mathrm{HM}$	LM723H	(1)	HA2542	LH0032	(2)
μ A78LXXAWC	LM78LXXACZ	(1)	$\mu \mathrm{A} 723 \mathrm{HC}$	LM723CH	(1)	HA2542-2	LM6164	(2)
$\mu 78 \mathrm{MXXCKC}$	LM78XXCK	(1)	μ A723DC	LM723CJ	(1)	HA2542-5	LM6164	(2)
$\mu 78 \mathrm{MXXCKC}$	LM78MXXCT	(1)	μ A723MJ	LM723J	(1)	HA2600	LM6161	(2)
$\mu \mathrm{A} 78 \mathrm{MXXUC}$	LM341P-XX	(1)	μ A723CJ	LM723CJ	(1)	HA2602	LM6161	(2)
μ A78MXXCKC	LM78XXCT	(1)	$\mu A 723$ DM	LM723J	(1)	HA2605	LM6361	(2)
$\mu A 78 \times X \times C$	LM340K-XX	(1)	μ A723PC	LM723CN	(1)	HA2620	LM6164	(2)
$\mu A 79 X X U C$	LM79LXXACZ	(1)	$\mu \mathrm{A} 723 \mathrm{CN}$	LM723CN	(1)	HA2622	LM6164	(2)
$\mu \mathrm{A} 79 \mathrm{XXUC}$	LM79MXXCP	(1)	$\mu \mathrm{A} 725$	LM725	(1)	HA2625	LM6364	(2)
$\mu \mathrm{A} 79 \times$ XCKC	LM79XXCT	(1)	μ A725	LM725	(1)	HA2640	LH0004	(1)
$\mu \mathrm{A} 79 \times \mathrm{XCKC}$	LM79MXXCP	(1)	$\mu \mathrm{A} 733 \mathrm{CN}$	LM733CN	(1)	HA5033	LH0033	(1)
$\mu \mathrm{A} 79 \mathrm{XXUC}$	LM79MXXCH	(1)	μ A733	LM733	(1)	HA5162	LH0062	(2)
$\mu \mathrm{A} 79 \times \times \mathrm{C}$	Lм320т-XX	(1)	μ A741	LM741	(1)	A5180	LH0052	(1)
$\mu \mathrm{A79XXCKC}$	LM79MXXCH	(1)	$\mu \mathrm{A} 411$	LM741	(1)			
$\mu \mathrm{A} 79 \times \mathrm{XCKC}$	LM79LXXACZ	(1)	μ A747	LM747	(1)	HEWLETT		
$\mu A 79 M X X A U C$	LM320MP-XX	(1)	$\mu \mathrm{A} 74$	LM747	(1)	PACKARD	NATIONAL	
μ A79XXKM	LM120K-XX	(1)	μ A748	LM748	(1)	HCTL-100	LM628	(3)

HITACHI	NATIONAL		MP156A	LF156A	(1)	LM330-XKC	LM330T-XX	(1)
HA13421A	LM18293	(3)	MP157	LF157	(1)	LM337H	LM337H	(1)
HA17082	LF353	(1)	MP157A	LF157A	(1)	LM337K	LM337K STEEL	(1)
HA17082A	LF412	(1)	MP208A	LM208A	(1)	LM337KC	LM337T	(1)
HA17084	LF347	(1)	MP208	LM208	(1)	LM337T	LM337T	(1)
HA17084A	LF347B	(1)	MP308	LM308	(1)	LM340T-XX	LM340T-XX	(1)
HA17094	LM2904	(1)	MP308A	LM308A	(1)	LM340T-XX	LM340K-XX	(1)
HA17301	LM3301	(1)	MP355A	LF355A	(1)	LM340-XXKC	LM340T-XX	(1)
HA17324	LM324	(1)	MP356A	LF356A	(1)	LM350T	LM350T	(1)
HA17339	LM339	(1)	MP357A	LF357A	(1)	LM350K	LM350K STEEL	(1)
HA17358	LM358	(1)	MP2108A	LH2108A	(1)	LM350KC	LM350T	(1)
HA17393	LM393	(1)	MP5010H	LM385		LM350KA	LM350K STEEL	(1)
HA17458	LM1458	(1)	MP5010L	LM385		LM385	LM385	
HA17741	LM741	(1)	MP5010G	LM185		AD562A	DAC1266	(2)
HA17747	LM747	(1)	MP5010H	LM185		AD563A	DAC1265	(2)
HA17901	LM2901	(1)	MP5010L	LM185		μ PC741	LM741	
HA17902	LM2902	(1)	MP5010G	LM385		MC1408	DAC0806	
HA17903	LM2903	(1)				MC1408	DAC0808	
			MOTOROLA	NATIONAL		MC1408	DAC0807	
LINEAR			DAC-08	DAC0800		MC1414	LM1414	(1)
TECHNOLOGY	NATIONAL		DAC-08	DAC0802		MC1436	LM343	(1)
REF-01	LM168	(1)	DAC-08	DAC0801		MC1458	LM1458	(1)
REF-01	LM368	(1)	MC78XXACT	LM340AT-XX	(1)	MC1496	LM1446	
LM129	LM129		MC78XXCK	LM78XXCK	(1)	MC1508	DAC0808	
LM134	LM134		MC78LXXACP	LM78LXXACZ	(1)	MC1514	LM1514	(1)
LM185	LM185		MC78MXXCT	LM78XXCK	(1)	MC1536	LM143	(1)
LM199	LM199		MC78MXXCT	LM341P-XX	(1)	MC1558	LM1558	(1)
LM234	LM234		MC78LXXACG	LM78LXXCH	(1)	MC1596G	LM1596CH	(1)
LM329	LM329		LM78XXCT	LM78LXXCH	(1)	MC1709	LM709	(1)
LM334	LM334		MC78MXXCT	LM78MXXCT	(1)	MC1709	LM709	
LM385	LM385		MC78XXCT	LM78XXCT	(1)	MC1710	LM710	
LM399	LM399		MC78LXXCP	LM78LXXACZ	(1)	MC1723CL	LM723CJ	(1)
AD581	LM581		MX78MXXCT	LM342P-XX	(1)	MC1723CG	LM723CH	(1)
AD581	LH0070		MC78LXXCG	LM78LXXACH	(1)	MC1723CP	LM723CN	(1)
LT1001	LM607A	(1)	MC79XXCK	LM320K-XX	(1)	MC1723CL	LM723CM	(1)
LT1004C	LM385		MC79MXXCKC	LM320MP-XX	(1)	MC1723L	LM723J	(1)
LT1004M	LM185		MC79XXCK	LM79XXCK	(1)	MC1723G	LM723H	(1)
LT1009M	LM136-2.5		MC79XXCKC	LM320T-XX	(1)	MC1733CG	LM723CH	(1)
LT1009C	LM336-2.5		LM79XXCP	LM79XXCT	(1)	MC1741	LM741	(1)
LT1019C	LM368	(2)	MC79XXCT	LM79MXXCH	(1)	MC1741	LM741	
LT1019M	LM168	(2)	MC79LXXCP	LM320LZ-XX	(1)	MC1747	LM747	(1)
LT1020	LP2951	(3)	MC79LXXACG	LM320H-XX	(1)	MC1747	LM747	
LT1021M	LM169	(1)	MC79LXXCLP	LM320LZ-XX	(1)	MC1748	LM748	
LT1021C	LM369	(1)	MC79XXCT	LM79MXXCP	(1)	LM2930-XKC	LM2930T-XX	(1)
LT1029M	LM136-5.0		MC79LXXACP	LM79LXXACZ	(1)	MC3301	LM3301	(1)
LT1029C	LM336-5.0		MC79LXXCP	LM79LXXCZ	(1)	MC3302	LM3302	(1)
LT1031	LH0070		MC79XXCT	LM320T-XX	(1)	MC3361	LM3361AN	(1)
			MC79XXCT	LM79XXCT	(1)	MC3401	LM3401	(1)
LSI			MC79XXCT	LM79LXXACZ	(1)	MC3410	DAC1020	(2)
COMPUTER	NATIONAL		LM79XXCP	LM79LXXACZ	(1)	MC3412	DAC1265	(1)
LS7261	LM621	(3)	LM79XXCP	LM79MXXCH	(1)	MC3510	DAC1020	(2)
LS7263	LM621	(3)	LM79XXCP	LM79MXXCP	(1)	MC4741	LM348	(1)
			LM109K	LM109K STEEL	(1)	MC14442	ADC0829	(2)
MICRA	NATIONAL		LM109H	LM109H	(1)	MC14444	ADC0830	(2)
MC0002	LH0002	(1)	LM117H	LM117K STEEL	(1)	MC34001A	LF411C	(1)
MC0003	LH0003	(1)	LM123K	LM123K STEEL		MC34001B	LF411C	(1)
MC0004	LH0004	(1)	LM137H	LM137H	(1)	MC34001	LF351	(1)
MC0032	LH0032	(1)	LM137K	LM137K STEEL	(1)	MC34002B	LF412C	(1)
MC0033	LH0033	(1)	LM140K	LM140K-XX	(1)	MC34002	LF353	(1)
MC0041	LH0041	(1)	LM150K	LM150K STEEL	(1)	MC34002A	LF412A	(1)
MC0063	LH0063	(1)	LM285	LM285		MC34004B	LF347B	(1)
			LM309H	LM309H	(1)	MC34004	LF347	(1)
MICRO POWER			LM309H	LM309K	(1)	MC34004B	LF147	(1)
SYSTEMS	NATIONAL		LM309K	LM309K STEEL	(1)	MC34004	LF147	(1)
MPOP07	LM607	(1)	LM317H	LM317H	(1)	MC35001	LF411M	(1)
MP108	LM108	(1)	LM317LZ	LM317LZ	(1)	MC35001A	LF411M	(1)
MP108A	LM108A	(1)	LM317T	LM317T	(1)	MC35001B	LF411M	(1)
MP155A	LF155A	(1)	LM317KC	LM317T	(1)	MC35002B	LF412M	(1)
MP155	LF155	(1)	LM317K	LM317K STEEL		MC35002	LF412M	(1)
MP156	LF156	(1)	LM323K	LM323K STEEL		MC35002A	LF412AM	(1)

MC145040	ADC0811	(2)	PM-725	LM725		CA358	LM358	(1)
MC145041	ADC0811		PM741	LM741	(1)	CA741	LM741	
			PM-741	LM741		CA741	LM741	(1)
PRECISION-			PM-747	LM747		CA747	LM747	(1)
MONOLITHIC			PM747	LM747	(1)	CA747	LM747	
INC.	NATIONAL		DAC888	DAC0831	(2)	CA748	LM748	(1)
REF-01J	LM368-10	(1)	DAC888	DAC0832	(2)	$\mu \mathrm{A} 748$	LM748	(1)
REF-01	LM369	(1)	DAC888	DAC0830	(2)	CA748	LM748	
AMP-01	LH0038	(2)	ADC910	ADC1005	(2)	ADC0801	ADC0801	
DAC-02	DAC1022	(2)	ADC910	ADC1025	(2)	ADC0802	ADC0802	
DAC-02	DAC1020	(2)	DAC0812	DAC1208	(2)	ADC0803	ADC0803	
REF-02	LM368-5.0	(3)	DAC0812	DAC1209		ADC0804	ADC0804	
DAC-02	DAC1021	(2)	DAC0812	DAC1210		CA1458	LM1458	(1)
DAC-03	DAC1020	(2)	DAC1408	DAC0806	(2)	CA1558	LM1558	(1)
DAC-03	DAC1022	(2)	DAC1408	DAC0808	(2)	CA3105	LM675	(2)
BUF03	LH0033	(1)	DAC1408	DAC0807	(2)	CA3290	LF393	(2)
DAC-03	DAC1021	(2)	PM2108A	LH2108A	(1)	CA3401	LM3401	(1)
OP05	LM607	(2)	PM7533	DAC1021		1H5009	AH5009	
DAC-05	DAC1020	(2)	PM7533	DAC1020		IH5010	AH5010	
DAC-05	DAC1021	(2)	PM7533	DAC1022		IH5011	AH5011	
DAC-05	DAC1022	(2)	PM7541	DAC1219		IH5012	AH5012	
SW06B	LF11333		PM7541	DAC1218		IH6108	LF13508	
SW06G	LF13333					IH6208	LF13509	
SW06F	LF13333		RAYTHEON	NATIONAL		ICL7114	ADC1205	(2)
OP07	LM607	(1)	REF-01	LM369	(1)	ICL7114	ADC1225	(2)
DAC-08	DAC0801		REF-01T	LM368	(1)	AD7520	DAC1021	
DAC-08	DAC0800		REF-02	LM368-5.0	(3)	AD7520	DAC1020	
MUX-08E	LF13508		REF-03	LM368-2.5	(1)	AD7520	DAC1022	
DAC-08	DAC0802		LP365	LP365		AD7521	DAC1221	
OP15	LF411	(1)	RC714	LM607	(1)	AD7521	DAC1220	
MUX-24E	LF13509		RC741	LM741	(1)	AD7521	DAC1222	
REF-43	LM368-2.5	(1)	RC741	LM741		AD7530	DAC1020	(3)
OP77	LM607	(1)	RC747	LM747		AD7530	DAC1021	(3)
OP100	LH0052	(2)	RC747	LM747	(1)	AD7530	DAC1022	(3)
DAC100	DAC1021	(2)	RC1458	LM1458	(1)	AD7531	DAC1220	
DAC100	DAC1020	(2)	RC1558	LM1558	(1)	AD7531	DAC1221	
DAC100	DAC1022	(2)				AD7531	DAC1222	
OP105/111	LH0052	(2)	RCA/			AD7533	DAC1020	
PM108A	LM108A	(1)	INTERSIL/G.E.	NATIONAL		AD7533	DAC1021	
PM108	LM108	(1)	CA081C	TL081C	(2)	AD7533	DAC1022	
PM139A	LM139A	(1)	CA081A	LF411C	(2)	AD7541	DAC1219	
PM139	LM139	(1)	CA081	LF411M	(2)	AD7541	DAC1218	
PM155	LF155	(1)	CA081B	LF411C	(2)	ICL7650	LMC668	(1)
PM155A	LF155A	(1)	CA082C	TL082C	(2)	ICL8069	LM385-1.2	
PM156	LF156	(1)	CA082B	LF412C	(2)	ICL8069	LM313	
PM156A	LF156A	(1)	CA082	LF412M	(2)	ICH8530	LH0101	(2)
PM157	LF157	(1)	CA082A	LF412C	(2)			
PM157A	LF157A	(1)	CA084B	LF347B	(2)	SAMSUNG	NATIONAL	
SW201G	LF13201		CA084	LF147	(2)	LM741	LM741	
SW201B	LF11201		CA084C	LF347	(2)			
SW201F	LF13201		CA124	LM124	(1)	SGS	NATIONAL	
SW202B	LF11202		CA139	LM139	(1)	L78M12CV	LM341P-12	(1)
SW202F	LF13202		CA139A	LM139A	(1)	L78M15CV	LM341P-15	(1)
SW202G	LF13202		CA158	LM158	(1)	L78S12CV	LM340T-12	(1)
PM208A	LM208A	(1)	CA158A	LM158A	(1)	L78S05CV	LM340T-5.0	(1)
PM208	LM208	(1)	DG201	LF11201		L78S15CV	LM340T-15	(1)
OP215	LF412	(1)	DG211	LF13201		L78M05CV	LM341P-5.0	(1)
PM308A	LM308A	(1)	DG212	LF13202		LM117K	LM117K	(1)
PM308	LM308	(1)	CA224	LM224	(1)	L123CB	LM723CN	(1)
DAC312	DAC1266	(2)	CA239	LM239	(1)	L272	LM18272	
PM339A	LM339A	(1)	CA239A	LM239A	(1)	L293	LM18293	
PM355	LF355	(1)	CA258	LM258	(1)	L298	LM18298	
PM355A	LF355A	(1)	CA258A	LM258A	(1)	LM317T	LM317T	(1)
PM356A	LF356A	(1)	CA301A	LM301A	(1)	LM317K	LM317K	(1)
PM356	LF356	(1)	CA307	LM307	(1)	LM748	LM748	
PM357A	LF357A	(1)	CA311	LM311	(1)	TDA2310	LM381	
PM357	LF357	(1)	CA324	LM324	(1)	LM2930A	LM2930T-5.0	(1)
PM420	LF124	(1)	CA339A	LM339A	(1)	LM2931A	LM2931AT-5.0	(1)
OPA501/3573	LH0101	(2)	CA339	LM339	(1)	TCA3089	LM3089	
PM725	LM725	(1)	CA358A	LM358A	(1)	L7805CT	LM7805CK	(1)

Linear 1 Databook Selection Guides

Voltage Regulators
Operational Amplifiers

Buffers

Voltage Comparators
Instrumentation Amplifiers

National
Semiconductor
Corporation

Voltage Regulators Definition of Terms

Current-Limit Sense Voltage: The voltage across the current limit terminals required to cause the regulator to cur-rent-limit with a short circuited output. This voltage is used to determine the value of the external current-limit resistor when external booster transistors are used.
Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reductions in input voltage.
Feedback Sense Voltage: The voltage, referred to ground, on the feedback terminal of the regulator while it is operating in regulation.
Input Voltage Range: The range of dc input voltages over which the regulator will operate within specifications.
Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.
Load Regulation: The change in output voltage for a change in load current at constant chip temperature.
Long Term Stability: Output voltage stability under accelerated life-test conditions at $125^{\circ} \mathrm{C}$ with maximum rated voltages and power dissipation for 1000 hours.
Maximum Power Dissipation: The maximum total device dissipation for which the regulator will operate within specifications.

Output-Input Voltage Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate within specifications.
Output Noise Voltage: The RMS ac voltage at the output with constant load and no inut ripple, measured over a specified frequency range.
Output Voltage Range: The range of regulated output voltages over which the specifications apply.
Output Voltage Scale Factor: The output voltage obtained for a unit value of resistance between the adjustment terminal and ground.
Quiescent Current: That par of input current to the regulator that is not delivered to the load.
Ripply Rejection: The line regulation for ac inupt signals at or above a given frequency with a specified value of bypass capacitor on the reference bypass terminal.
Standby Current Drain: That part of the operating current of the regulator which does not contribute to the load current. (See Quiescent Current)
Temperature Stability: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme.
Thermal Regulation: Percentage change in output voltage for a given change in power dissipation over a specified time period.

Fixed Positive Voltage Regulators			
Amps	Device	Output Voltage	Package
3.0	LM123K LM2943CT* LM323K	$\begin{aligned} & 5 \mathrm{~V} \\ & 5 \mathrm{~V} \\ & 5 \mathrm{~V} \end{aligned}$	TO-3 TO-220 TO-3
1.0	LM109K LM140AK LM140K LM2940CT LM309K LM340AK, T LM340K, T LM78xxCK, T	5 V 5V, 12V, 15V 5V, 12V, 15V 5V, 12V, 15V 5 V 5V, 12V, 15V 5V, 12V, 15V 5V, 12V, 15V	TO-3 TO-3 TO-3 TO-220 TO-3 TO-3, TO-220 TO-3, TO-220 TO-3, TO-220
0.5	LM2984CT LM341T, P LM78MxxCT	5V, 12V, 15V 5V, 12V, 15V $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$	$\begin{gathered} \text { TO-220, TO-202 } \\ \text { TO-220, TO-202 } \\ \text { TO-220 } \end{gathered}$
0.2	LM109H LM309H LM342P	$\begin{gathered} 5 \mathrm{~V} \\ 5 \mathrm{~V} \\ 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V} \end{gathered}$	TO-39 TO-39 TO-202
0.15	LM2930T	5V, 8V	TO-220
0.1	LM140LAH LM2931Z, T LM340LZ, H LM78LxxACZ, H, M LP2950CZ	$\begin{gathered} 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V} \\ 5 \mathrm{~V} \\ 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V} \\ 5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V} \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { TO-39 } \\ \text { TO-92, TO-220 } \\ \text { TO-92, TO-39 } \\ \text { TO-92, TO-39, SO-8 } \\ \text { TO-92 } \end{gathered}$

*Future Product

Fixed Negative Voltage Regulators

Amps	Device	Output Voltage	Package
3.0	LM145K	$-5 \mathrm{~V},-5.2 \mathrm{~V}$	TO-3
	LM345K	$-5 \mathrm{~V},-5.2 \mathrm{~V}$	TO-3
1.5	LM120K	$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	TO-3
	LM320K, T	$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	TO-3, TO-220
	LM79xxCT, K	$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	TO-3, TO-220
0.5	LM320MP	$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	TO-220
	LM79MxxCP, K	$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	TO-202, TO-3
0.2	LM120H	$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	TO-39
	LM320H	$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	TO-39
0.1	LM320LZ	$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	TO-92
	LM79LxxACZ, M	$-5 \mathrm{~V},-12 \mathrm{~V},-15 \mathrm{~V}$	TO-92, SO-8

*The LM320 has better electrical characteristics than the LM79xx.
$\begin{array}{lr}\text { LM100 Series } & +55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { LM300 Series } & 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\end{array}$

Low Dropout Regulators			
Amps	Device	Output Voltage	Package
0.100	LM2931T, Z	$5 \mathrm{~V}, \mathrm{ADJ}$	TO-220, TO-92
	LP2950CZ	TO-92	
	LP2951N, J, H	ADJ	DIP, CERDIP, HEADER
0.150	LM2930T	$5 \mathrm{~V}, 8 \mathrm{~V}$	TO-220
0.500	LM2984CT	TRIPLE 5V + WATCHDOG	TO-220, 11-LEAD
0.750	LM2925T	LM2935T WITH DELAYED RESET	TO-220, 5-LEAD
	LM2940CT	DUAL 5V	TO-220, 5-LEAD
1.5	LM2941CT*	$5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$	TO-220
	AM2943CT*	5 V	TO-220, 5-LEAD
3.0			TO-220

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.
Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.
Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. \% harmonic distortion $=$

$$
\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamental and V 2 , $\mathrm{V} 3, \mathrm{~V} 4, \ldots$ are the rms amplitudes of the individual harmonics.
Input Bias Current: The average of the two input currents. Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.
Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Output Resistance: The small signal resistance seen at the output with the output voltage near zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.
Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.
Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.
Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

General Purpose Ope Amplifier Selection								
Part \#	$\begin{gathered} \text { VOS }_{\text {O }} \\ \mathrm{mV} \text { (Max) } \end{gathered}$	$\underset{\mathrm{nA}(\mathrm{Max})}{\mathrm{I}_{\mathrm{B}}}$	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	Slew Rate $\mathrm{V} / \mu \mathrm{s}$ (Typ)	Supply Current (Note 3) mA (Max)	Supply Voltage		Special Features
						$\underset{\mathbf{V}}{\mathrm{Min}}$	$\operatorname{Max}_{\mathbf{V}}$	
Military Temperature Range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Specs at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ((${ }^{\text {ate 1) }}$								
LH0044A	0.025	15	0.4	0.06	3	± 3	± 20	
LM607A	0.025	2	1.8	0.7	1.5	*	± 22	
LH0044	0.05	30	0.4	0.06	4	± 3	± 20	
LM607B	0.05	3	1.8	0.7	1.5	*	± 22	
LM11	0.3	0.05	*	0.3	0.6	*	± 20	
LF411A	0.5	0.2	4	15	2.8	± 6	± 22	
LF441A	0.5	0.05	1	1	0.2	± 6	± 22	
LH0052	0.5	0.003	1	3	3.5	± 5	± 22	
LM108A	0.5	2	1	0.3	0.4	± 2	± 20	
LF412A	1	0.2	4	15	5.6	± 6	± 22	Dual BiFet
LF442A	1	0.05	1	1	0.4	± 6	± 22	Dual BiFet
LH0004	1	100	*	*	0.15	± 5	± 45	
LM604A	1	40	7	2	8	4	36	Multiplexed OA
LF155A	2	0.05	2.5	5	4	± 5	± 22	
LF156A	2	0.05	5	12	7	± 5	± 22	
LF157A	2	0.05	25	50	7	± 5	± 22	Minimum Gain of 5
LF411.	2	0.2	4	15	3.4	± 6	± 18	
LMC660A	2	0.02	1.5	1.7	2.2	5	15	Quad CMOS
LM10	2	20	*	*	0.4			OA + Reference
LM101A	2	75	1	0.5	3	± 3	± 22	
LM107	2	75	1	0.5	3	± 3	± 22	-
LM108	2	2	1	0.3	0.4	± 2	± 20	
LM112	2	2	1	0.2	0.6	± 2	± 20	Compensated LM108
LM124A	2	50	*	*	3	3	32	Quad
LM158A	2	50	*	*	1.2	3	32	Dual
LP124	2	4	0.1	0.05	0.13	3	32	Quad
LH0020	2.5	250	*	*	5	± 5	± 22	
LF412	3	0.2	4	15	6.8	± 6	± 22	Dual
LM741A	3	80	1.5	0.7	2.8	± 3	± 22	
LH0022	4	0.01	1	3	3.5	± 5	± 22	
LF155	5	0.1	2.5	5	4	± 5	± 22	

Part \#	$\begin{gathered} \text { VOS }_{\text {O }} \\ \mathbf{m V}(\operatorname{Max}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{nA}(\operatorname{Max}) \end{gathered}$	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	Slew Rate V/ $\mu \mathrm{s}$ (Typ)	Supply Current (Note 3) mA (Max)	Supply Voltage		Special Features
						$\underset{\mathbf{V}}{\operatorname{Min}}$	$\underset{V}{\operatorname{Max}}$	
Commercial Temperature Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) (continued)								
LF411	2	0.2	4	15	3.4	± 6	± 22	
LF412	3	0.2	4	15	6.8	± 6	± 22	Dual
LM324A	3	100	*	*	3	3	32	Quad
LM358A	3	100	*	*	2	3	32	Dual
LM604	3	60	5	7	9	4	36	Multiplexed Op Amp
LM741E	3	80	1.5	0.7	2.8	± 3	± 22	
LM10C(L)	4	30	*	*	0.5			OA and Reference
LP324	4	10	0.1	0.05	0.15	3	32	
LF347B	5	0.2	4	13	11	± 6	± 22	Quad
LF355B	5	0.1	2.5	5	4	± 5	± 22	
LF356B	5	0.1	5	12	4	± 5	± 22	
LF357B	5	0.1	20	50	7	± 5	± 22.	
LF441	5	0.1	1	1	0.25	± 6	± 22	
LF442	5	0.1	1	1	0.5	± 6	± 22	Dual
LM11CL	5	0.2	*	0.3	0.8	*	± 20	
LM392	5	250	*	*	2	3	32	
LM833	5	1000	10	5	8	*	± 18	Dual Low Noise
LMC660	6	0.02	1.5	1.7	2.7	5	15	Quad CMOS
LM346	6	250	0.5	0.4	2.5	± 1.5	± 22	(Note 5)
LM348	6	200	1	0.5	4.5	± 5	± 18	
LM349	6	200	4	2	4.5	± 5	± 18	
LM741C	6	500	1.5	0.5	2.8	± 3	± 18	
LM1458	6	500	*	*	5.6	± 3	± 18	
LM4250C	6	75	0.2	0.2	0.1	± 1	± 18	(Note 5)
LM324	7	250	*	*	3	3	32	
LM358	7	250	*	*	2	3	32	
LM301A	7.5	250	1	0.5	3	± 3	± 18	
LM307	7.5	250	1	0.5	3	± 3	± 18	
LM308	7.5	7	1	0.3	0.8	± 2	± 18	
LM312	7.5	7	1	0.2	0.8	± 2	± 18	Compensated LM308
LM343	8	40	1	2.5	5	± 4	± 34	.
LM344	8	40	1	2.5	5	± 4	± 34	Minimum Gain of 10
LF347	10	0.2	4	13	11	± 6	± 18	Quad BiFet
LF351	10	0.2	4	13	3.4	± 6	± 18	
LF353	10	0.2	4	13	6.8	± 6	± 18	Dual BiFet
LF355	10	0.2	2.5	5	4	± 5	± 18	
LF356	10	0.2	5	12	10	± 5	± 18	
LF357	10	0.2	20	50	10	± 5	± 18	Minimum Gain of 5

*Not Specified.
Note 1: Datasheet should be referred to for test conditions and more detailed information.
Note 2: Those looking for a commercial part should also look at the Industrial Temp Range guide as many Hybrids are listed there.
Note 3: Supply current is for all amplifiers in a package.
Note 4: The LM10 has 2 versions: one a high voltage part, good to 45 V and a low voltage part, good to 7 V . Refer to the datasheet for more information.
Note 5: The LM146 and LM4250 are programmable amplifiers. The data shown is for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{SET}}=10 \mu \mathrm{~A}$. Refer to the datasheets for more information.

Low IbIAS Selection Guide

$\leq 5 \mathrm{pA}$	$\leq 20 \mathrm{pA}$	$\leq 50 \mathrm{pA}$	$\leq 100 \mathrm{pA}$	$\leq 200 \mathrm{pA}$	$\leq 500 \mathrm{pA}$	$\leq 1 \mathrm{nA}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$						
LH0022	LMC668	LH0032A	LH0032	LF401A	LH4101	LH4104
LH0022C	LMC660	LF155A/156A	LF155/156	LF401	LH0032C	
LH0042		LF157A	LF157	LF400A	LH0086	
LH0042C		LF355A/356A	LF255/256	LF400	LH0086C	
LH0052		LF357A	LF257	TL081		
LH0052C		LF441A	LF355B/356B	LH0032AC		
LH0062		LF442A	LF357B	LF351		
		LF444A	LF441	LF411A/411		
		LM11	LF442	LF355/356		
			LF444	LF357		
			LM11C	LF147/347B/347		
			LH0062C	LF353		
				LF412A/412		
				LF13741		
				LM11CL		

Note: Datasheet should be referred to for conditions and more detailed information.

	onal iconduct oration	High Ampli	ed Sele	ration nu	
Part \#	Slew Rate V/ $\mu \mathrm{s}$ (Typ)	$\begin{gathered} \text { GBW } \\ \text { MHz (Typ) } \end{gathered}$	$\begin{gathered} \mathbf{V}_{\mathbf{O S}} \\ \mathbf{m V}(\text { Max }) \end{gathered}$	Is mA (Max) (Note 2)	Notes
GBW $\geq 4 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
LH0024	500	70	8	15	
LH0032	500	70	15	22	FET Input
LM6361	300	50	20	6.8	
LM6364	300	175	9	6.8	Min Gain of 5
LM6365	300	725	7	6.8	Min Gain of 25
LH4101	250	40	15	40	Medium Power JFET
LF400	70	16	2.5	12	Fast Settling JFET
LF401	70	16	0.5	12	Precision Fast Settling JFET
LH0003	70	30	3	3	
LH0062	70	15	15	12	FET Input
LM318	70	15	10	10	
LF357	50	20	10	10	Min Gain of 5, JFET
LH4104	40	16	10	25	Medium Power Fast Settling JFET
LM359	30	30	*	22	Dual Current Mode (Norton) Amp
LF411	15	4	2	3.4	JFET
LF412	15	4	3	6.8	Dual JFET
LF347	13	4	10	11	Quad JFET
LF351	13	4	10	3.4	JFET
LF353	13	4	10	6.8	Dual JFET
LF356	12	4.5	10	10	JFET
LM833	7	15	5	8	Dual Low Noise
*Not specified. Note 1: Datasheet should be referred to for conditions and more detailed information. Many versions with better DC specs are available in addition to those listed above. Note 2: Supply current is for all amplifiers in a package.					

	Medium and High Power Operational Amplifier Selection Guide (≥ 0.1 A Output)					
	Part \#	$\begin{gathered} \text { Iout } \\ \text { A (Typ) } \end{gathered}$	$\begin{gathered} V_{\text {Os }} \\ \mathrm{mV}(\operatorname{Max}) \end{gathered}$	$\begin{gathered} \text { I'S }^{\prime} \\ \mathrm{mA}(\text { Max }) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Slew Rate } \\ & \mathrm{V} / \mu \mathrm{S} \text { (Typ) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { PBW } \\ \text { kHz (Typ) } \\ \hline \end{gathered}$
	LH4104	0.1	10	25	40	*
	LH4101	0.1	15	40	250	*
	LH0041	0.2	6	4	1	20
	LH0061	0.5	15	15	25	1000
	LH0021	1.0	6	4	1	20
	LH0101A	2	3	35	10	300
	LH0101	2	10	35	10	300
	LM675	3	10	50	8	*
	LM12(L)	(Note 2)	7	80	9	60
	LM12C(L)	(Note 2)	15	120	9	60

*Not Specified
Note 1: Refer to Datasheet for conditions and more detailed information.
Note 2: lout for the LM12 is dependent on the amount of power dissipated in the output transistor. The datasheet should be referred to, to determine amount of current available.

LH0045	Two Wire Transmitter
LH0082	20 MHz Transimpedance Amplifier
LH0086	Programmable Gain Operational Amplifier
LM359	Dual Current Mode (Norton) Amplifier
LM2900, 3900,	Quad Current Mode (Norton) Amplifier
3301, 3401	
LM3080	Operational Transconductance Amplifier
LM13600	Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers
13700	Improved Dual Operational Transconductance Amplifier with Linearizing Diodes and Buffers
LM604	4 In, 1 Out Multiplexed Op Amp
Note: Refer to the datasheet for specifications.	

Buffers Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.
Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.
Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental.

$$
\begin{gathered}
\% \text { harmonic } \\
\text { distortion }
\end{gathered}=\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamental and V 2 , V3, V4, . . . are the rms amplitudes of the individual harmonics.
Input Bias Current: The average of the two input currents. Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.
Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance $\left(R_{S}\right)$ and load resistance (R_{L}).
Output Resistance: The small signal resistance seen at the output with the output voltage near zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.
Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.
Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.
Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance $\left(R_{S}\right)$ and load resistance (R_{L}).

$$
\text { Buffers Selection Guide (Notes 1and } 2 \text {) }
$$

Device Type	$\begin{gathered} -3 \mathrm{~dB} \\ \mathrm{MHz} \text { (Typ) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{OS}} \\ \mathrm{mV} \text { (Max) } \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathbf{S}} \\ \mathrm{mA}(\text { Max }) \end{gathered}$	Voltage Gain (Typ)	$\begin{aligned} & \text { VOUT } \\ & \text { V (Min) } \end{aligned}$	$\begin{gathered} \text { S. R. } \\ \text { V/ } \mu \mathrm{S} \text { (Typ) } \end{gathered}$	$\begin{gathered} \text { lout } \\ \text { mA (Typ) } \end{gathered}$
LM110, 210, 310	20	7.5	5.5	0.9999	± 10	3.0	10
LH4001	25	500	10	0.97	± 10	125	200
LH0002	30	± 30	10	0.97	± 10	100	200
LH0033	100	20	24	0.98	± 9	1400	100
LH4002	200	50	35	0.85	± 3	1250	40
LH0063	200	± 50	65	0.93	± 10	2400	250

*Not specified
Note 1: Datasheet should be referred to for test conditions and more detailed information.
Note 2: $200^{\circ} \mathrm{C}$ Temp Range Parts are available. Consult local sales office for information.

Voltage Comparators Definition of Terms

Input Blas Current: The average of the two input currents. Input Offset Current: The absolute value of the difference between the two input currents for which the output will be driven higher than or lower than specified voltages.
Input Offset Voltage: The absolute value of the voltage between the input terminals required to make the output voltage greater than or less than specified voltages.
Input Voltage Range: The range of voltage on the input terminals (common-mode) over which the offset specifications apply.
Logic Threshold Voltage: The voltage at the output of the comparator at which the loading logic circuitry changes its digital state.
Negative Output Level: The negative DC output voltage with the comparator saturated by a differential input equal to or greater than a specified voltage.
Output Leakage Current: The current into the output terminal with the output voltage within a given range and the input drive equal to or greater than a given value.
Output Resistance: The resistance seen looking into the output terminal with the DC output level at the logic threshold voltage.
Output Sink Current: The maximum negative current that can be delivered by the comparator.
Positive Output Level: The high output voltage level with a given load and the input drive equal to or greater than a specified value.
Power Consumption: The power required to operate the comparator with no output load. The power will vary with signal level, but is specified as a maximum for the entire range of input signal conditions.

Response Time: The interval between the application of an input step function and the time when the output crosses the logic threshold voltage. The input step drives the comparator from some initial, saturated input voltage to an input level just barely in excess of that required to bring the output from saturation to the logic threshold voltage. This excess is referred to as the voltage overdrive.
Saturation Voltage: The low-output voltage level with the input drive equal to or greater than a specified value.
Strobe Current: The current out of the strobe terminal when it is at the zero logic level.
Strobe Output Level: The DC output voltage, independent of input conditions, with the voltage on the strobe terminal equal to or less than the specified low state.
Strobe "ON" Voltage: The maximum voltage on either strobe terminal required to force the output to the specified high state independent of the input voltage.
Strobe "OFF" Voltage: The minimum voltage on the strobe terminal that will guarantee that it does not interfere with the operation of the comparator.
Strobe Release Time: The time required for the output to rise to the logic threshold voltage after the strobe terminal has been driven from zero to the one logic level.
Supply Current: The current required from the positive or negative supply to operate the comparator with no output load. The power will vary with input voltage, but is specified as a maximum for the entire range of input voltage conditions.
Voltage Gain: The ratio of the change in output voltage to the change in voltage between the input terminals producing it.

Voltage Comparators Selection Guide

	Response Time (Typ) ns	$\mathbf{V}_{\mathbf{O S}}$ $\mathrm{mV}($ Max $)$	$\mathbf{I}_{\mathbf{S}}$ $\mathrm{mA}($ Max $)$	$\mathbf{I}_{\mathbf{B}}$ $\mathrm{nA}($ Max $)$	Comments

$\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (Notes 1 and 2)

LM361	12	5	25	30,000	High Speed w/Strobes LM360
High Speed, Complementary Outputs					
LM306	16	5	32	20,000	High Speed, High Drive
LM319	80	5	10	25,000	High Speed Dual LF311
LM311	200	8	12.5	1000	FET Input
LM339	1300	10	7.5	0.15	Fin
LM392	1300	5	300	General Purpose Single	
LM393	1300	10	1	400	General Purpose Quad
LM2903	1300	5	400	One Comparator Plus One Op Amp	
LM2901	1300	7	2.5	250	General Purpose Dual
LP365	4000	9	2.5	250	Automotive Dual
LP311	4000	10	2	400	Automotive Quad
LP339	5000	9	0.30	200	Programmable Quad

*Not Specified
Note 1: Datasheet should be referred to for test conditions and more detailed information.
Note 2: This selection guide should be used to select for Response Time required. Industrial and Military Temperature Range types are available. The DC specs are for the lowest Commercial Grade available.

National Semiconductor Corporation

Instrumentation Amplifiers Definition of Terms

Bandwidth: That frequency at which the voltage gain is reduced to $1 / \sqrt{2}$ times the low frequency value.
Common-Mode Rejection Ratio: The ratio of the input common-mode voltage range to the peak-to-peak change in input offset voltage over this range.
Harmonic Distortion: That percentage of harmonic distortion being defined as one-hundred times the ratio of the root-mean-square (rms) sum of the harmonics to the fundamental. \% harmonic distortion $=$

$$
\frac{\left(V 2^{2}+V 3^{2}+V 4^{2}+\ldots\right)^{1 / 2}(100 \%)}{V 1}
$$

where V 1 is the rms amplitude of the fundamental and V 2 , V3, V4, . . . are the rms amplitudes of the individual harmonics.

Input Bias Current: The average of the two input currents. Input Common-Mode Voltage Range: The range of voltages on the input terminals for which the amplifier is operational. Note that the specifications are not guaranteed over the full common-mode voltage range unless specifically stated.
Input Impedance: The ratio of input voltage to input current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Input Offset Current: The difference in the currents into the two input terminals when the output is at zero.
Input Offset Voltage: That voltage which must be applied between the input terminals through two equal resistances to obtain zero output voltage.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.

Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
Output Impedance: The ratio of output voltage to output current under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).
Output Resistance: The small signal resistance seen at the output with the output voltage near zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Offset Voltage Temperature Drift: The average drift rate of offset voltage for a thermal variation from room temperature to the indicated temperature extreme.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Settling Time: The time between the initiation of the input step function and the time when the output voltage has settled to within a specified error band of the final output voltage.
Slew Rate: The internally-limited rate of change in output voltage with a large-amplitude step function applied to the input.
Supply Current: The current required from the power supply to operate the amplifier with no load and the output midway between the supplies.
Transient Response: The closed-loop step-function response of the amplifier under small-signal conditions.
Unity Gain Bandwidth: The frequency range from dc to the frequency where the amplifier open loop gain rolls off to one.
Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source resistance (R_{S}) and load resistance (R_{L}).

Instrumentation Amplifiers Selection Guide				
Part Number	Gain Error (Max)	Gain Linearity (Typ)	CMRR dB (Min)	I_{B} nA (Max)
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
LH0036 μ Power	3\%	0.03\%	46	125
LH0038	3\%	0.0001\%	86	100
LH0084	0.3\%	0.005\%	80	0.500
LM363	2.5\%	0.01\%	90	10

Note 1: Datasheet should be referred to for test conditions and more detailed information.

Linear 3 Databook Selection Guides

Audio Circuits

Radio Circuits
Video Circuits
Motion Control
Special Functions

Audio Circuits Definition of Terms

Amplifier

Class A

A class A transistor audio amplifier refers to an amplifier with a single output device that has a collector flowing for the full 360° of the input cycle.

Class B

The most common type of audio amplifier that basically consists of two output devices each of which conducts for 180° of the input cycle.

Class C

In a class C amplifier the collector current flows for less than 180°. Although highly efficient, high distortion results and the load is frequently tuned to minimize this distortion (primarily used in R.F. power amplifiers).

Class D

A switching or sampling amplifier with extremely high efficiency (approaching 100\%). The output devices are used as switches, voltage appearing across them only while they are off, and current flowing only when they are saturated.

Crossover Distortion

Distortion caused in the output stage of a class B amplifier. It can result from inadequate bias current allowing a dead zone where the output does not respond to the input as the input cycle goes through its zero crossing point. Also for 1/Cs an inadequate frequency response of the output PNP device can cause a turn-on delay giving crossover distortion for negative going transition through zero at the higher audio frequencies.

Dolby B

Dolby B is a simplified version of the Dolby A professional quality noise reduction system. The amplitude of low level signals over a selected frequency range is increased prior to recording to enhance them above tape noise. On playback the original levels are restored causing a corresponding reduction in the audible tape noise. The major difference with Dolby A which used four frequency bands, is the use of a single variable frequency band with a cut-off frequency that increases in the presence of high level high frequency signals.

Dolby Level

Because of the complementary nature of the Dolby B noise reduction system, the audio channel between the encoder and the decoder must have a fixed gain such that the decoding signal level is within 2 dB of the encoding signal level. Also if recordings are interchangeable the signals in the noise reduction system must be related to the levels in
the audio channel. Dolby level provides this reference and corresponds to a specified tape flux density when recorded with a 400 Hz tone. For reel to reel and eight track cartridge tapes this is $185 \mathrm{nWb} / \mathrm{m}$, and for cassettes Dolby level is $200 \mathrm{nWb} / \mathrm{m}$.

Large-Signal Voltage Gain

The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.

Output Resistance

The ratio of the change in output voltage to the change in output current with the output around zero.

Output Voltage Swing

The peak output voltage swing, referred to zero, that can be obtained without clipping.

Power Bandwidth

The power bandwidth of an audio amplifier is the frequency range over which the amplifier voltage gain does not fall below 0.707 of the flat band voltage gain specified for a given load and output power.
Power bandwidth also can be measured by the frequencies at which a specified level of distortion is obtained while the amplifier delivers a power output 6 dB below the rated output. For example, an amplifier rated at 60 watts with $\leq 0.25 \%$ THD, would make its power bandwidth measured as the difference between the upper and lower frequencies at which 0.25% distortion was obtained while the amplifier was delivering 30 watts.

Power Supply Rejection

The ratio of the change in input offset voltage to the change in power supply voltages producing it.

Slew Rate

The internally limited rate of change in output voltage with a large amplitude step function applied to the input.

Supply Current

The current required from the power supply to operate the amplifier with no load and the output at zero.

Thermal Resistance ($\mathbf{R}_{\mathbf{T H}}$)

An analogy for heat transfer where the ability of a heat conductive system to transfer heat is described in similar terms to those used in an electrical system for power dissipated in a resistor with a given applied voltage. The thermal resistance is given by the temperature differential established when a given amount of power is being dissipated $\left(\theta=\mathrm{T} 1-\mathrm{T} 2 / \mathrm{P}_{\mathrm{D}}\right)$ with units of ${ }^{\circ} \mathrm{C} /$ watt.

Audio Selection Guide

PREAMPLIFIERS

	Application			Package	Voltage Range	Equivalent Input Noise	THD	PSR	Input Coupling	Notes
	Portable	Home	Auto							
LM381	-	-		14 Pin DIP	$9 \mathrm{~V}-40 \mathrm{~V}$	$0.5 \mu \mathrm{~V}$	0.1\%	120 dB	AC	Stereo
LM382	-	\bullet	-	14 Pin DIP	$9 \mathrm{~V}-40 \mathrm{~V}$	$0.8 \mu \mathrm{~V}$	0.1\%	120 dB	AC	Stereo
LM387	\bullet	\bullet	\bullet	8 Pin DIP	$9 \mathrm{~V}-30 \mathrm{~V}$	$0.65 \mu \mathrm{~V}$	0.1\%	110 dB	AC	Stereo
LM1818	-	\bullet	-	20 Pin DIP	$3.5 \mathrm{~V}-18 \mathrm{~V}$	$0.85 \mu \mathrm{~V}$	0.05\%	85 dB	AC	Tape System
LM1837	\bullet	\bullet	-	18 Pin DIP	$4 \mathrm{~V}-18 \mathrm{~V}$	$0.6 \mu \mathrm{~V} \dagger$	0.03\%	105 dB	DC	Autoreverse
LM1897	-	\bullet	-	16 Pin DIP	4V-18V	$0.6 \mu \mathrm{~V} \dagger$	0.03\%	105 dB	DC	Few Externals
LM833 (Note 1)		\bullet	-	$\begin{aligned} & 8 \text { Pin DIP } \\ & 8 \text { Pin SO } \end{aligned}$	$\pm 5 \mathrm{~V}- \pm 15 \mathrm{~V}$	$0.5 \mu \mathrm{~V}$	0.002\%	100 dB	DC	Low Noise Dual Op Amp
LM837 (Note 1)		\bullet	-	14 Pin DIP 14 Pin SO	$\pm 5 \mathrm{~V}- \pm 15 \mathrm{~V}$	$0.5 \mu \mathrm{~V}$	0.002\%	100 dB	DC	Low Noise Quad Op Amp Drives 600 Load

†CCIR/ARM in DIN circuit referred to unity gain at 2 kHz .
Note 1: Data sheet in Linear 1.

AUDIO POWER AMPLIFIERS

	Application			Package	Power*			Voltage	Bridgeable	THD*	Input Noise*	Single/ Dual	Notes
	Portable	Home	Auto		8Ω	4Ω	2Ω						
LM380		\bullet		8 Pin DIP 14 Pin DIP	2.5 W			18 V		0.2\%		Single	See AN-69
LM383	\bullet		-	5 Pin TO-220		5.5W	8.6W	14.4 V	Yes	0.2\%	$2 \mu \mathrm{~V}$	Single	Protected
LM384		-		14 Pin DIP	5.5W			22 V		0.25\%		Single	Fixed Gain
LM386	-	-		$\begin{array}{\|l} 8 \text { Pin DIP } \\ 8 \text { Pin SO } \end{array}$		0.33W		6 V		0.2\%		Single	4 V Operation
LM388	\bullet			14 Pin DIP	2.2W			12V	Yes	0.1\%		Single	Minimum Externals
LM389	-			18 Pin DIP		0.33W		6 V		0.2\%		Single	Includes Transistor Array
LM390	-			14 Pin DIP		1 W		6 V	Yes	0.2\%		Single	Battery Operation
LM391		\bullet		16 Pin DIP				60V-100V		0.01\%	$3 \mu \mathrm{~V}$	Single	Power Driver
LM1877	-	-	\bullet	14 Pin DIP	3W			20 V		0.05\%	$2.5 \mu \mathrm{~V}$	Dual	6V-24V
LM2877	-	-	-	11 Pin SIP	4.5W			20 V		0.07\%	$2.5 \mu \mathrm{~V}$	Dual	Single-In-Line Package
LM1895	-	\bullet	-	8 Pin DIP		1.1W		6 V		0.2\%	$1.4 \mu \mathrm{~V}$	Single	Low AM Radiation
LM2895	\bullet	-	-	11 Pin SIP		4.3W		12V		0.15\%	$1.4 \mu \mathrm{~V}$	Single	3V-15V

AUDIO POWER AMPLIFIERS (Continued)													
	Application			Package	Power*			Voltage	Bridgeable	THD*	Input Noise*	Single/ Dual	Notes
	Portable	Home	Auto		8Ω	4Ω	2Ω						
LM1896	-	\bullet	-	14 Pin DIP		1.1W		6 V	Yes	0.1\%	$1.4 \mu \mathrm{~V}$	Dual	Low AM Radiation
LM2896	\bullet	-	\bullet	11 Pin SIP		2.5W		9 V	Yes	0.1\%	$1.4 \mu \mathrm{~V}$	Dual	No Pops
LM2002	\bullet		-	5 Pin TO-220		5.2W	8W	14.4 V	Yes	0.1\%	$2 \mu \mathrm{~V}$	Single	Protected
LM2878		-		11 Pin SIP	5.5W			22 V	Yes	0.15\%	$2.5 \mu \mathrm{~V}$	Dual	6V-32V
LM831	-			16 Pin DIP 20 Pin SO	0.44 W			3 V	Yes	0.2\%	$1.3 \mu \mathrm{~V}$	Dual	$1.8 \mathrm{~V}-6 \mathrm{~V}$
LM12 (Note 1)		\bullet		TO-3	50W	85W		$\pm 30 \mathrm{~V}$		0.01\%		Single	Power Op Amp
LM675 (Note 1)		\bullet		5 Pin TO-220	20W			$\pm 25 \mathrm{~V}$			$3 \mu \mathrm{~V}$	Single	Power Op Amp
LM1875		\bullet		5 Pin TO-220	20W			$\pm 25 \mathrm{~V}$		0.015\%	$3 \mu \mathrm{~V}$	Single	Low Crossover Distortion
LM2005			-	11 Pin TO-220		20W		14.4V	Yes	0.3\%	$1.5 \mu \mathrm{~V}$	Dual	Protected
LM2879		-		11 Pin TO-220	8W			28 V	Yes	0.05\%	$2.5 \mu \mathrm{~V}$	Dual	6V-32V

*Note that all values shown are typical. Please refer to data sheets for test conditions.
Note 1: Data sheet in Linear 1.
AUDIO CONTROLS

	Application			Package	Voltage Range	Volume Control Range	Signal to Noise	THD	Separation	Notes
	Portable	Home	Auto							
LM1035/ LM1036	-	-	-	20 Pin DIP	$8 \mathrm{~V}-18 \mathrm{~V}$	80 dB	80 dB	0.05\%	75 dB	Dual DC Controlled Tone/Volume/Balance
LM1037	-	-	-	18 Pin DIP	$5 \mathrm{~V}-30 \mathrm{~V}$		100 dB	0.04\%	100 dB	DC Audio Switch
LM1038	-	-	-	18 Pin DIP	$5 \mathrm{~V}-30 \mathrm{~V}$		100 dB	0.04\%	100 dB	BCD Logic Control
LM13600 (Note 1) LM13700 (Note 1)				16 Pin DIP 16 Pin SO	$\pm 2 \mathrm{~V}- \pm 18 \mathrm{~V}$			0.5\%	100 dB	Transconductance Amplifiers
LM3080 (Note 1)	-	\bullet	-	8 Pin DIP	$\pm 2 \mathrm{~V}- \pm 18 \mathrm{~V}$					Transconductance Amplifier
LM1040	-	\bullet	-	24 Pin DIP	$9 \mathrm{~V}-16 \mathrm{~V}$	75 dB	80 dB	0.06\%	75 dB	Dual DC Controlled Tone/Volume/Balance Stereo Enhancement
LMC835		-	-	28 Pin DIP	$\pm 2.5 \mathrm{~V}- \pm 8 \mathrm{~V}$		114 dB	*		7 Band Graphic Equalizer MICROWIRETM Controlled
LMC1992/ LMC1993 (Note 2)		-	-	28 Pin DIP	7V-15V	80 dB	105 dB	0.03\%	95 dB	Stereo Volume/ Tone/Fade/Select MICROWIRETM Controlled

*Distortion determined by external op amps.
Note 1: Data sheet in Linear 1.
Note 2: LMC1992 selects 4 inputs.
LMC1993 selects 3 inputs and has a loudness control.

Auto Radio (Manually Tuned)

Radio Circuits Definition of Terms

AGC dc Output Shift: The shift of the quiescent IC output voltage of the AGC section for a given change in AGC central voltage.
AGC Figure of Merit: The widest possible range of input signal level required to make the output signal drop by a specified amount from the specified maximum output level. Typical F.O.M. numbers are from 40 dB to 50 dB , for domestic radios and about 60 dB for automotive radios (for -10 dB output level change).
AGC Input Current: The current required to bias the central voltage input of the AGC section.
AM Rejection Ratio: The ratio of the recovered audio output produced by a desired FM signal of specified level and deviation to the recovered audio output produced by an unwanted AM signal of specified amplitude and modulating index.
Channel Separation: The level of output signal of an undriven amplifier with respect to the output level of an adjacent driven amplifier.
Detection Bandwidth: That frequency range about the free running frequency of the tone decoder/phase locked loop where a signal above a specified level will cause a detected signal condition at the output.
Detection Bandwidth Skew: The measure of how well the detection bandwidth is centered about the free running frequency. It is equal to the maximum detection bandwidth frequency plus the minimum detection bandwidth frequency minus twice the free running frequency.
Hold In Range: That range of frequencies about the free running frequency for which the phase locked loop will stay in lock if initially starting out in lock.
Input Resistance: The ratio of the change in input voltage to the change in input current on either input with the other grounded.
Input Sensitivity: The minimum level of input signal at a specified frequency required to produce a specified signal-to-noise ratio at the recovered audio output.
Input Voltage Range: The range of voltages on the input terminals for which the amplifier operates within specifications.
Large-Signal Voltage Gain: The ratio of the output voltage swing to the change in input voltage required to drive the output from zero to this voltage.
-3 dB Limiting Sensitivity: In FM the input signal level which causes the recovered audio output level to drop 3 dB from the output level with a specified large signal input.
Lock In Range: That range of frequencies about the free running frequency for which the phase locked loop will come into lock if initially starting out of lock.
Maximum Sweep Rate: The maximum rate that the VCO may be made to vary its oscillating frequency over its Sweep Range.
Output Resistance: The ratio of the change in output voltage to the change in output current with the output around zero.
Output Voltage Swing: The peak output voltage swing, referred to zero, that can be obtained without clipping.
Phase Detector Sensitivity: The change in the output voltage of the phase detector for a given change in phase between the two input signals to the phase detector.
Power Bandwidth: The power bandwidth of an audio amplifier is the frequency range over which the amplifier voltage gain does not fall below 0.707 of the flat band voltage gain specified for a given load and output power.
Power bandwidth also can be measured by the frequencies at which a specified level of distortion is obtained while the amplifier delivers a power output 6 dB below the rated output. For example, an amplifier rated a 60 W with $\leq 0.25 \%$ THD, would make its power bandwidth measured as the difference between the upper and lower frequencies at which 0.25% distortion was obtained while the amplifier was delivering 30W.
Power Supply Rejection: The ratio of the change in input offset voltage to the change in power supply voltages producing it.
Slew Rate: The internally limited rate of change in output voltage with a large amplitude step function applied to the input.
Supply Current: The current required from the power supply to operate the amplifier with no load and the output at zero.
Sweep Range: That ratio of maximum oscillating frequency to minimum operating frequency produced by varying the central voltage of the VCO from its maximum value to its minimum value with fixed values of timing resistance and capacitance.
VCO Sensitivity: The change in operating frequency for a given change in VCO central voltage.

Radio Circuits Selection Guide

AM RF/IF Detector

	Portable	Home	Auto	Synthesized	Pin Count (Dip Package)	Supply Voltage	Supply Current	Sensitivity for 20 dB S/N Ratio	AM and FM IF	Audio Power Amplifier	Internal Detector	Meter Output
LM1863	\bullet	\bullet	\bullet	\bullet	20^{*}	$7-16$	8.3 mA	$30 \mu \mathrm{~V}$			\bullet	\bullet
LM1866	\bullet	\bullet			20	$3-15$	15 mA	$25 \mu \mathrm{~V}$	\bullet		\bullet	\bullet
LM1868	\bullet	\bullet			20	$4.5-15$	22 mA	$12 \mu \mathrm{~V}$	\bullet	\bullet	\bullet	
LM3820	\bullet	\bullet	\bullet		14	$4.5-16$	18 mA	$35 \mu \mathrm{~V}$				

*SO Surface Mount Package Only

Stereo Decoder													
	Portable	Home	Auto	Pin Count Dip Package	Supply Voltage	Supply Current	THD	Separation	Blend	$\begin{gathered} \text { High } \\ \text { Cut } \end{gathered}$	Lamp Driver	Output Buffer	ARI Interference Rejection
LM1800		-		16	10-18	21 mA	0.4\%	45 dB			-	-	
LM1870	\bullet	-	-	20	7-15	26 mA	0.05\%	45 dB	-	-	-	-	
LM1884*		-		16	8-16	35 mA	0.1\%	-			-	-	
LM4500A	\bullet	-	-	16	8-16	35 mA	0.1\%	40 dB			-	-	-

*TV Stereo Decoder

Radio Remote Control

	Function	Pin Count (Dip Package)	Supply Voltage	Supply Current	Channels		Frequency Range
					Analog	Digital	
LM1871	Encoder/Transmitter	18	4.5-15V	14 mA	up to 6	2	up to 72 MHz
LM1872	Decoder/Receiver	18	$2.5-7 \mathrm{~V}$	13 mA	2	2	up to 72 MHz

FM IF/Detector

	Portable	Home	Auto	Synthesized	Pin Count Dip	$\begin{gathered} \text { Pin Count } \\ \text { s.O. } \end{gathered}$	Supply Voltage	Supply Current	-3 dB Limiting Sensitivity	THD	Mute	AGC Outputs	AFC	Meter Output	AM/ FM IF
LM1865		\bullet	\bullet	\bullet	20		7.3-16	43 mA	$60 \mu \mathrm{~V}^{*}$	0.1\%	-	Reverse	-	-	
LM1965		\bullet	-		20		7.3-16	43 mA	$60 \mu \mathrm{~V}^{*}$	0.1\%	-	Reverse	-	-	
LM2065		-	-	-	20		7.3-16	43 mA	$60 \mu \mathrm{~V}^{*}$	0.1\%	-	Forward	-	-	
LM1866	\bullet	\bullet			20		3-15	17 mA	$12 \mu \mathrm{~V}$	0.5\%	\bullet	-	-	-	\bullet
LM1868	-	\bullet			20		4.5-15	19 mA	$15 \mu \mathrm{~V}$	1.1\%					-
LM3089		\bullet	-		16		8-16	23 mA	$12 \mu \mathrm{~V}$	0.5\%	-	-	\bullet	-	
LM3189		-	-		16		8-16	31 mA	$12 \mu \mathrm{~V}$	0.5\%	-	-	-	-	
LM3361A \dagger	\bullet		-		16	16	2-9	2.8 mA	$2 \mu \mathrm{~V}$	-	-				

*Exclusive of 26 dB Buffer
\dagger Narrow-Band FM-IF

Cordless Telephone Receiver

TL/XX/0011-1

Portable Radio (Stereo)

TL/XX/0011-2

Video Definition of Terms

Aspect Ratio: The ratio of picture width to picture height. For the NTSC system this is $4: 3$.
Back Porch: The section of the composite video signal between the trailing edge of the line (horizontal) sync pulse and the end of the blanking pulse period (when picture information begins). For a monochrome signal the back porch is simply at the blanking level. For a color signal, the color burst is added within this section.
Black Level: The DC voltage level in the picture signal which corresponds to beam cut-off on the display tube. It can be at the blanking level (given by the back porch) or slightly higher (7.5% to 10% of the peak white signal above the blanking level).
Blacker-than-Black: The amplitude region in the composite video signal that extends below the reference black level in the direction of the synchronizing pulses.
Blanking: A portion of the composite video signal whose instantaneous amplitude makes the vertical and horizontal scan retrace not visible on the display tube.
Blanking Level: The level of the front and back porches of the composite video signal.
Blanking Period: The period in the composite video signal where the level is reduced to the blanking level, below which the display electron beam is cut-off. This allows nonvisible retrace of the beam from the right side of the display to the left side at the end of each scan line (horizontal blanking) and non-visible return of the electron beam from the bottom of the display to the top. Horizontal blanking occurs for approximately 11μ s between each scan line and vertical blanking for 1.2 ms between each field.
Blooming: Defocussing of the picture in regions where the brightness is too high.
Breezeway: The section in the signal blanking period between the end of the sync pulse and the start of the color burst.
C.C.I.R.: International Radio Consultative Committee-a worldwide standards organization.
Chrominance Signal: That part of the NTSC signal that contains the color information.
Clamping: A process that established a fixed DC voltage level for the picture signal. This is important for proper RF modulation and for maintaining the correct picture black level.
Color: An attribute of an object being scanned that distinguishes it from other objects, apart from shape, texture, and brightness. In television systems the color of an object is further subdivided into hue (tint) and saturation. The hue or tint refers to the dominant wavelength of a spectral color, i.e., light red is the same hue as deep red and dark red.

Deep red has more vividness or saturation (less white), whereas dark red has less brightness. Similar terms are used to describe non-spectral colors (a mixture of hues).
Color Burst: Normally refers to approximately 9 cycles of the 3.58 MHz subcarrier superimposed on the back porch of the composite video signal. The phase of this burst establishes the reference color phase for tint or hue, and the amplitude provides a reference for the color saturation level.
Color Subcarrier: A subcarrier at 3.579545 MHz (NTSC) whose modulation sidebands are added to a monochrome video signal to convey the color information. Similar subcarriers are used for SECAM and PAL.
Composite Video Signal: The complete video signal. For monochrome, it consists of blanking and synchronizing signals, with a picture signal representing the scene brightness. For color, an additional subcarrier is added for color synchronization and picture color content.
Compression: An undesired decrease in amplitude of one portion of the composite video signal relative to another portion.
Contrast: The range of dark and light values in a picture.
Cross-talk: An undesired signal interfering with a desired signal.
Definition: See resolution.
Differential Gain: The amplitude change in the 3.58 MHz color subcarrier as the picture signal varies from blanking to peak white level. This is the result of system non-linearities and is measured in percent change.
Differential Phase: The phase change, measured in degrees, of the 3.58 MHz color subcarrier as the picture signal varies from blanking to peak white level.
Equalizing Pulses: Pulses of one half the width of the line (horizontal) sync pulses, transmitted at twice the line rate for the three line periods before and after the field (vertical) sync pulse. They are used to help the vertical sync system of the receiver accommodate the half line difference in the number of scan lines on successive fields.
Field: One half of a complete picture interval. A field will contain either all the odd numbered scanning lines or all the even numbered scanning lines in the picture.
Field Frequency: The rate at which a complete field is scanned. For NTSC color signals this is nominally 59.94 Hz . Fly-back: See Horizontal Retrace.
Frame: A complete picture consisting of two interlocking fields.
Frame Frequency: The rate at which a complete frame is scanned. In the U.S. this is nominally 30 frames or pictures per second.

Front Porch: The section of the composite video signal between the end of the picture information on a scan line (start of blanking) and the start of the line synchronization pulse.
Horizontal Blanking: The blanking signal at the end of each scan line that prevents the retrace of the display tube electron beam from being visible.
Horizontal Retrace: The rapid return of the scanning electron beam from the right side of the raster to the left side.
Horizontal Hum Bars: Relatively broad horizontal bars drifting slowly up the screen as a result of interference from the 60 Hz main frequency.
Hue (Tint): Describes the color that is being represented on the screen, i.e., red, blue, magenta, green, orange, etc.
Interlace: A scanning process in which each adjacent line belongs to the alternate field.
I.R.E.: Institute of Radio Engineers. Now combined with the AIEE to form the IEEE.
I.R.E. Scale: An oscilloscope scale calibrated for composite video and divided vertically into 140 units. The picture signal occupies the range from 0 to 100 with syncs in the range 0 to -40 .
Luminance: The monochrome or brightness part of the color signal, composed of specific proportions of the three primary colors, red, blue, and green.
N.T.S.C.: National Television System Committee, used in reference to the system adopted for color television broadcasting in the U.S. at the end of 1953.
Noise: In a television picture, 'noise' refers to random interference producing a salt and pepper pattern over the picture. Heavy noise totally obscuring the picture is called "snow".
Overshoot: An (excessive) response to a unidirectional signal change. Overshoot is often used deliberately to enhance the luminance portion of a signal.
Pairing: A partial or complete failure of interlace in which scan lines of alternate fields fall in pairs, one on top of the other.
Pedestal Level: See Blanking Level.

Percentage Sync:

Video: The ratio in percent of the amplitude of the synchronizing pulse to the peak amplitude of the picture signal between blanking and reference white level. For a properly constituted composite video signal this is 40%.
RF: The ratio is a percent of the amplitude of the synchronizing pulse to the peak amplitude of the modulated
RF signal. For correct modulation this is 25%.
P.A.L.: Phase Alternation Line. A variation of the NTSC system involving phase reversal of one of the color difference signals on a line by line basis, introduced into the U.K. and Germany in 1967.
Picture Signal: That portion of the composite video signal which is above the blanking level and contains the picture information.
Pre-emphasis: An increase in the level of a band of frequency components with respect to the remainder of the
signal. For U.S. television, the audio signal is increased at a $6 \mathrm{db} /$ octave rate above 2.1 kHz .
Raster: The area on the face of the display tube that is scanned by the electron beam. This is not always entirely visible since commercial receivers employ overscan so that the edges of the raster are hidden by the faceplate.
Reference Signals: See V.I.T.S. and V.I.R.S.
Resolution (Horizontal): The amount of resolvable detail in the horizontal direction of the picture. This depends on the high frequency and phase response of the transmission system and the receiver.
Resolution (Vertical): The amount of resolvable detail in the vertical direction of the picture. This depends primarily on the number of scan lines that are used and secondarily on the size (shape) of the electron scanning beam.
Saturation (Color): The amplitude of the chrominance signal. Increased saturation means increased chrominance signal level. Visibly, this refers to a color increasing from pale or pastel to deep.
S.E.C.A.M.: Sequential Couleur Avec Memoire. The color broadcasting system used predominantly in France which utilizes sequential transmission of the color difference signals, which are FM modulated on two separate subcarriers (1967).

Setup: The difference in level between the blanking level and the reference black level expressed as a percent of the reference white level.
Smear: Smear describes a picture condition where objects appear extended in the horizontal direction producing an illdefined, blurry picture. This often occurs when the receiver is tuned slightly above the proper pix carrier frequency.
Sync: Abbreviation for synchronizing or synchronization.
Sync Level: The level of the synchronizing pulse tips.
Vertical Blanking: The blanking signal at the end of each field starting three lines before the vertical sync pulse.
Vertical Retrace: The return of the electron beam from the bottom of the display to the top after a complete field has been scanned.
V.I.R.S.: Vertical Interval Reference Signal. A quality control signal added to a horizontal scan line during the vertical blanking period. It is used to provide a chrominance, luminance and black level reference.
V.I.T.S.: Vertical Interval Test Signals. A series of test signals that are added to horizontal lines during the vertical blanking for in-service testing of the transmission equipment. They can be deleted or added at various points in the transmission link, unlike the VIRS, which is added at program origination and stays with the program material.
Vestigal Sideband Transmission: A broadcast transmission technique wherein only one side band of an amplitude modulated carrier is fully transmitted with the other sideband (usually lower) truncated.
Video: The visible portion of the transmitted signal representing the picture.

Video Selection Guide

VIDEO AMPLIFIERS

	Bandwidth	Gain	Package	Supply Voltage	Comments
LM592	120 MHz	100,400	14 Pin DIP 14 PIN SO	$\pm 3 \mathrm{~V}- \pm 6 \mathrm{~V}$	Differential IN, Differential OUT
LM733	120 MHz	$10,100,400$	14 Pin DIP	$\pm 3 \mathrm{~V}- \pm 6 \mathrm{~V}$	Differential IN, Differential OUT
LM1201 (Advanced Information)	100 MHz	$4-10$	16 Pin DIP	+12 V	Single Amplifier with Black Level and Contrast Control
LM1203	50 MHz	$4-10$	28 Pin DIP	+12 V	Triple Amplifier System with Black Level and Contrast Control
LM359 (Note 1)	400 MHz GBW $30 \mathrm{MHz} \mathrm{@} \mathrm{AV=1}$		14 Pin DIP	$5 \mathrm{~V}-22 \mathrm{~V}$	Dual Norton Amplifiers

VIDEO TIMING

	Function	Package	Supply Voltage	Comments
LM1391	PLL	8 Pin DIP	Internal Shunt Zener	-
LM1880	No-Holds Vert/Horiz	14 Pin DIP	Internal Shunt Zener	-
LM1881	Sync Separator	8 Pin DIP	$5 \mathrm{~V}-15 \mathrm{~V}$	Outputs Provided: Composite Sync Vertical
	8 Pin SO		Burst Gate Odd/Even Field	

VIDEO MODULATORS/DEMODULATORS

	Function	Package	Comments
LM1496	Balanced Modulator-Demodulator (Modulator-Suppressed Carrier, AM Demodulator-Synchronous, FM Phase Detection)	14 Pin DIP 10 Pin TO-5 14 Pin SO	Operating Frequency to 100 MHz Balanced Inputs and Outputs
LM1889	Modulates Color Difference, Luminance, Audio onto Low-VHF Channels	18 Pin DIP	DC Channel Switching Chroma Reference
LM2889	Modulates Composite Video, Audio onto Low-VHF Channels	14 Pin DIP	DC Channel Switching, Low Distortion FM Sound Modulator, Video Clamp

Note 1: Data sheet in Linear 1.
Note 2: Data sheet in Linear 3-Special Functions Chapter 5.

Note 3: Data Sheet in Linear 3.

TL/XX/0012-1

TL/XX/0012-2

FIGURE 1. Typical RGB Color Monitor Block Diagram

Application Notes* Cross Reference

Device	AN \#
LM359	AN-278, AB-24
LM1823	AN-391
LM1886	AN-402
LM1889	AN-402
LM2889	AN-391, AN-402

*National Semiconductor Corporation Linear Application Notes

Motion Control Selection Guide		
Dedicated Motor Control Functions		
Part Number	Function	Features
LM621	Brushless D.C. Motor	Deadband Timer for Direction Reversal 40V Max. Operation 35 mA Outputs for Direct Drive of Bipolar Power Transistors
LM628	High Performance Position Control for D.C. and Brushless D.C. Motors	On Board 32-Bit Incremental Shaft Encoder Interface $256 \mu \mathrm{~s}$ Loop Time Automatic Trajectory Generator Velocity Programmable "On-the-Fly" Internal Programmable PID Filter Convenient 8-Bit Host Interface 8 -Bit or 12-Bit Port to DAC (LM628) 8-Bit PWM Output (LM629)
LM622	P.W.M. Controller for Brushless and Brush D.C. Motors	Flexible Output Structure Drives H-Switches or Commutators Precision On-Board Reference Flexible Error Amp/Feedback Structure

H-Switches

Output Current (Amps)		Device	Supply Voltage (Max)	Full Current Saturation Voltage		Operating Temp. Range	Package	Description
Peak (Typical)	Continuous (Max)			Source (Max)	Sink (Max)			
4	2	LM18298	50	2.8	2.6	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	15-Pin TO-220	Quad 1 1/2 H Switch
1.5	1	LM18293	36	1.8	1.8	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Pin DIP	Dual Full H Switch

Power Op-Amps*

Output Current Amps		Device	Supply Voltage (Max)	Input Offset Voltage (Max)	Quiescent Current	Slew Rate (Typical)	Operating Temp. Range	Package	Features
Peak (Typical)	Continous (Max)								
3	1.5	LM675	60	10 mV	50 mA	$8 \mathrm{~V} / \mu \mathrm{s}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5-Pin TO-220	Thermal Parole
15	10	LM12L	60	15 mV	80 mA	$9 \mathrm{~V} / \mu \mathrm{s}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4-Pin TO-3	Fully Protected
15	10	LM12CL	60	20 mV	120 mA	$9 \mathrm{~V} / \mu \mathrm{s}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4-Pin TO-3	Fully Protected
15	10	LM12	80	15 mV	80 mA	$9 \mathrm{~V} / \mu \mathrm{s}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4-Pin TO-3	Fully Protected
15	10	LM12C	80	20 mV	120 mA	$9 \mathrm{~V} / \mu \mathrm{s}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4-Pin TO-3	Fully Protected
1	0.5	LM18272	28	100 mV	15 mA (Typ)	$0.5 \mathrm{~V} / \mu \mathrm{s}$	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin DIP	Dual (Bridge)

[^1]National Semiconductor Corporation

Building Blocks

Communications-Related Building Blocks

Modulators \& Demodulators Selection Guide				
	LM1211	LM1496	LM1889	LM2889
Typical Application	Broadband Demodulator	Balanced Modulator- Demodulator	TV Video Modulator	TV Video Modulator
Key Features	- Configurable for AM or FM Based Signals - $0 \mathrm{MHz}-70 \mathrm{MHz}$ Operating Frequency Range - 25 MHz Detector Output Bandwidth - Linear Output Phase Response	- Wide Frequency Response to 100 MHz - Fully Balanced Inputs and Outputs - Adjustable Gain and Signal Handling	- Input Signals -Audio Modulation -Color Difference -Luminance - Channel 3 (61.25 MHz) or Channel 4 (67.25 MHz) Output - Companion Circuit to LM1886 TV Video Matrix D to A	- Input Signals -Audio -Composite Video - Channel 3 (61.25 MHz) or Channel 4 (67.25 MHz) Output - Video DC Restoration

PLL's AND TONE DECODERS

General purpose PLL's and tone decoders are available for applications that include FSK demodulation, tone decoding, SAP and SCA demodulation, and telemetry reception. Both bipolar and CMOS devices are offered. Special purpose PLL's for TV synchronization and FM stereo demodulation are also available for use in other low frequency signal processing applications.

PLL and Tone Decoder Selection Guide						
	LM565	LM567	LMC567* (CMOS LM567)	LMC568	LM1391	LM1800, LM1870, LM4500A
Typical Application	PLL	Tone Decoder	Tone Decoder	PLL	TV-Horizontal PLL	FM Stereo Demodulator PLL
Center Frequency Range	$15 \mathrm{~Hz}-$ 500 kHz	$\begin{aligned} & 0.01 \mathrm{~Hz}- \\ & 500 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.01 \mathrm{~Hz}- \\ & 500 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0.01 \mathrm{~Hz}- \\ & 500 \mathrm{kHz} \end{aligned}$		
VCO Control Range	$\pm 30 \%$	$\pm 7 \%$	$\pm 7 \%$	$\pm 30 \%$	$\pm 300 \mathrm{~Hz}$	
Supply Voltage	$\pm 5 \mathrm{~V}$ to $\pm 12 \mathrm{~V}$	4.75V-9V	$2 \mathrm{~V}-9 \mathrm{~V}$	2V-9V	8V-9.2V	Lowest: 7V Highest: 16V (See Datasheets)
Supply Current (Typ)	8 mA	12 mA	0.8 mA	1.2 mA	20 mA	Lowest: 21 mA Highest: 45 mA (See Datasheet)

*The CMOS LMC567 oscillator runs at twice the frequency of the bipolar LM567 oscillator. Refer to the datasheets for additional information.

POWER LINE CARRIER

The LM2893/LM1893 Carrier-Current Transceiver performs as a power line interface for half-duplex (bi-directional) communication of serial bit streams of virtually any coding. Applications include energy management systems, inter-office control, fire alarm systems, security systems, telemetry, and remote meter reading.

TIMERS

General purpose timers are available for generating accurate time delays or oscillation. Both bipolar and CMOS devices are offered.

Timer Selection Guide

Timer Selection Guide					
	LM322	LM2905	LM555	LMC555* (CMOS LM555)	LM556 (Dual LM555)
Trigger Pulse Relative to Output Pulse	Can Be Longer	Can Be Longer	Must Be Shorter	Must Be Shorter	Must Be Shorter
Typical Application	Monostable	Monostable	Astable	Astable	Astable
Supply Voltage	$4.5 \mathrm{~V}-40 \mathrm{~V}$	$4.5 \mathrm{~V}-40 \mathrm{~V}$	$4.5 \mathrm{~V}-15 \mathrm{~V}$	$1.2 \mathrm{~V}-12 \mathrm{~V}$	$4.5 \mathrm{~V}-15 \mathrm{~V}$
Supply Current (Typical)	2.5 mA	2.5 mA	10 mA	0.15 mA	10 mA (Each Timer Section)

*The CMOS LMC555 can handle -10 mA to +50 mA of output current and the bipolar LM555 can handle up to $\pm 200 \mathrm{~mA}$ of output current.

VCO AND FUNCTION GENERATOR

The LM566 is a general purpose voltage controlled oscillator which may be used to generate square and triangle waves. Typical applications include FM modulation, signal generation, function generation, frequency shift keying, and tone generation. The LM566 has very linear modulation characteristics.

Drive-Related Building Blocks

DISPLAY DRIVERS
LED flasher/oscillator and dot/bar display drivers are offered.

Display Driver Selection Guide				
	LM3909	LM3914	LM3915	LM3916
Typical	Flasher/	Dot/Bar	Dot/Bar	Dot/Bar
Application	Oscillator	Display Driver	Display Driver	Display Driver
Display Scale	N/A	Linear	Log	VU Meter
Display Type	LED,	LED, LCD,	LED, LCD,	LED, LCD,
	Incandescent	Vacuum	Vacuum	Vacuum
		Fluorescent	Fluorescent	Fluorescent

METER DRIVERS

The LM1819 Air-Core Meter Driver is a function generator/driver for air-core (moving-magnet) meter movements in tachometers and ruggedized instruments. Driver outputs are self-centering and better than 2% linearity is guaranteed over a full 305° deflection range. Signal conditioning circuitry is included on chip.

TEMPERATURE CONTROLLER

The LM3911 (Note 1) is a temperature controller containing a precision temperature sensor, op amp, and reference. It is designed for temperature sensing and closed loop temperature control applications over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range.
Note 1: See Linear 2 for datasheet.

Precision-Related Building Blocks

CHOPPER BLOCK

The LMC669 Auto Zero Block (Note 1) is a universal commutating auto-zero block that can be used with any operational amplifier to correct offset voltage.
Note 1: See Linear 2 for datasheet.
TRANSISTOR ARRAYS
A variety of matched and power transistors are offered.
Transistor Array Selection Guide

	LM394	LM395	LM3046	LM3146
Description	NPN Transistor Pair	Power Transistor	5 NPN Transistors	5 NPN Transistors
Key Features	- Emitter-Base Voltage Matched to $50 \mu \mathrm{~V}$ - Current Gain Matched to 2\%	- Collector Current: 1A - Quiescent Current: 10 mA - Switching Time: $2 \mu \mathrm{~s}$ - Current Limit - Thermal Limit - Safe Area Protection	$\begin{aligned} & \text { - Emitter-Base } \\ & \text { Voltage Matched } \\ & \text { to } \pm 5 \mathrm{mV} \\ & \\ & \text { - Breakdown Voltages } \\ & -\mathrm{V}_{(\mathrm{BR})(\mathrm{CBO}):} 20 \mathrm{~V} \\ & -\mathrm{V}_{(\mathrm{BR})(\mathrm{CEO}):} 15 \mathrm{~V} \\ & -\mathrm{V}_{(\mathrm{BR})(\mathrm{CIO})}: 20 \mathrm{~V} \\ & -\mathrm{V}_{(\mathrm{BR})(\mathrm{EBO}):}: 5 \mathrm{~V} \\ & \text { - DC-120 MHz } \end{aligned}$	- Emitter-Base Voltage Matched to $\pm 5 \mathrm{mV}$ Breakdown Voltages $\begin{aligned} & -V_{(B R)(C B O)}: 40 \mathrm{~V} \\ & -V_{(B R)(C E O)}: 30 \mathrm{~V} \\ & -V_{(B R)(C I O):} 40 \mathrm{~V} \\ & -V_{(B R)(E B O)}: 5 \mathrm{~V} \end{aligned}$ - DC-120 MHz

Sensing-Related Building Blocks

LIQUID LEVEL SENSORS

A variety of liquid level sensing circuits are offered.

Liquid Level Sensor Selection Guide				
	LM903	LM1042	LM1812	LM1830
Output Type	Digital HI/LO	Analog	Pulse-Echo Timing	Digital HI/LO
Operation Method	Thermoresistive Probe	Thermoresistive Probe	Acoustic Transducer	Conductive Liquid

SPECIAL AMPLIFIERS A variety of special sensor amplifiers are offered.		
Special Amplifiers Selection Guide		
	LM1815	LM1964
Typical Application	Adaptive Sense Amplifier	Sensor Interface Amplifier
Sensor	Inductive Pickup	Lambda Sensor
Key Features	- Operates from 2.5 V to 12 V Supply - Adaptive Hysteresis - True Zero Crossing Timing Reference	- Normal Operation Guaranteed with Inputs up to 3 V Below Ground on a Single Supply - Fully Protected Inputs - Input Open Circuit Detection

SPECIAL COMPARATOR

The LM1801 Battery Operated Power Comparator is an extremely low power comparator with a high current, open collector output stage. Typical applications include intrusion alarms, water leak detectors, gas leak detectors, overvoltage crowbars and battery operated monitors. The LM1801 is designed to operate in a standby mode for 1 year, powered by a 9 V alkaline battery.

SPECIAL CONVERTERS

A variety of special converters for signal transformation applications are offered.
Special Converters Selection Guide

	LH0091 (Note 1)	LH0094 (Note 1)	LM331 (Note 1)	LM2907, LM2917
Converter Type	True RMS-to-DC	Multifunction	Voltage-toFrequency	Frequency-toVoltage
Key Features	- 0.1\% Accuracy with External Trim - Uncommitted Amplifier for Filtering, Gain or High Crest Factor Configuration - True RMS Conversion	$\begin{aligned} & \text { - OUT }=I N_{y}\left(\frac{I N_{z}}{I N_{\mathrm{X}}}\right) \mathrm{m}, \\ & 0.1 \leq \mathrm{m} \leq 10, \\ & \mathrm{~m} \text { Continuously } \\ & \text { Adjustable } \\ & \text { - Applications } \\ & \text {-Precision Divider, } \\ & \text { Multiplier } \\ & \text {-Square Root } \\ & \text {-Square } \\ & \text {-Trigonometric } \\ & \text { Function Generator } \\ & \text {-Companding } \\ & \text {-Linearization } \\ & \text {-Control Systems } \\ & \text {-Log Amp } \\ & \hline \end{aligned}$	- 1 Hz to 100 kHz Frequency Range - Split or Single Supply Operation	- Operates Relay, Lamp or Other Load when Input Exceeds a Selected Rate - Ground Referenced Tachometer Fully Protected from Damage Due to Swings Above Supply or Below Ground

Note 1: See Linear 2 for datasheets.

ULTRASONIC TRANSCEIVER

The LM1812 Ultrasonic Transceiver is a general purpose ultrasonic transceiver designed for use in a variety of ranging, sensing, and communications applications. Typical uses include liquid level measurement, sonar, surface profiling, data links, hydroacoustic communications, non-contact sensing and industrial process control. Depending on the acoustic transducer, typical performance capabilities include 5 feet to 100 feet in water and 4 inches to 35 feet in air.

Section 1

Active Filters

Section 1 Contents

Active Filters Definition of Terms 1-3
Active Filters Selection Guide 1-4
AF100 Universal Active Filter 1-5
AF150 Universal Wideband Active Filter 1-6
AF151 Dual Universal Active Filter 1-7
LMF60 6th Order LMCMOSTM Switched Capacitor Butterworth Lowpass Filter 1-8

* LMF90 4th-Order LMCMOSTM Programmable Elliptic Notch Filter 1-9
* LMF100 Universal Monolithic Dual Switched Capacitor Filter 1-10
* LMF120 Mask Programmable Switched Capacitor Filter 1-12
MF4 4th Order Switched Capacitor Butterworth Lowpass Filter 1-13
MF5 Universal Monolithic Switched Capacitor Filter 1-26
MF6 6th Order Switched Capacitor Butterworth Lowpass Filter 1-41
* MF8 4th Order Switched Capacitor Bandpass Filter 1-59
MF10 Universal Monolithic Dual Switched Capacitor Filter 1-81

National

Semiconductor

Corporation

Active Filters Definition of Terms

fClK: the switched capacitor filter external clock frequency. \mathbf{f}_{0} : center of frequency of the second order function complex pole pair. f_{0} is measured at the bandpass output of each $1 / 2$ MF10, and it is the frequency of the bandpass peak occurrence.
Q: quality factor of the 2nd order function complex pole pair. Q is also measured at the bandpass output of each $1 / 2$ MF10 and it is the ratio of f_{0} over the -3 dB bandwidth of the 2 nd order bandpass filter. The value of Q is not measured at the lowpass or highpass outputs of the filter, but its value relates to the possible amplitude peaking at the above outputs.
$H_{\text {OBP: }}$ the gain in (V/V) of the bandpass output at $f=f_{0}$. Holp: the gain in (V/V) of the lowpass output of each $1 / 2$ MF10 at $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$.

Hohp: $^{\text {the gain }}$ in (V/V) of the highpass output of each $1 / 2$ MF10 as $f \rightarrow$ fCLK/2.
Q_{z} : the quality factor of the 2nd order function complex zero pair, if any. (Q_{Z} is a parameter used when an allpass output is sought and unlike Q it cannot be directly measured).
f_{Z} : the center frequency of the 2nd order function complex zero pair, if any. If f_{Z} is different from f_{o}, and if the Q_{Z} is quite high it can be observed as a notch frequency at the allpass output.
$f_{\text {notch: }}$ the notch frequency observed at the notch output(s) of the MF10.
$\mathrm{H}_{\mathrm{ON}_{1} \text { : }}$ the notch output gain as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$.
$\mathrm{H}_{\mathrm{ON}_{2}}$: the notch output gain as $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{CLK}} / 2$.

Active Filter Selection Guide

Device \#	Type	Function	Max Order	Max Freq Accuracy	Freq Range	Typ. Q Accuracy	Max F x Q
MF10 (S, T)	Universal	Universal	4th	$\pm 0.6 \%$	$0.1-30 \mathrm{kHz}$	$\pm 2 \%$	200 kHz
MF8 (T)	Bandpass	Chebyshev Butterworth	4 th	$\pm 1.0 \%$	$0.1-20 \mathrm{kHz}$	$\pm 2 \%$	5 MHz
MF6 (S, T)	Lowpass	Butterworth	6 th	± 1.0	$0.1-20 \mathrm{kHz}$	N / A	N / A
MF5 (S)	Universal	Universal	2 nd	$\pm 1.0 \%$	$0.1-30 \mathrm{kHz}$	$\pm 6 \%$	200 kHz
MF4 (S)	Lowpass	Butterworth	4 th	$\pm 0.6 \%$	$0.1-20 \mathrm{kHz}$	N / A	N / A
*LMF100	Universal	Universal	4 th	$\pm 0.6 \%$	40 kHz	$\pm 2 \%$	1.8 MHz
*LMF60	Lowpass	Butterworth	6 th	$\pm 0.6 \%$	40 kHz	N / A	N / A

S Surface Mount Available
T Extended Temperature Available

* Advance Information

2
 National Semiconductor

AF100 Universal Active Filter

General Description

The AF100 state variable active filter is a general second order lumped RC network. Only four external resistors are required to program the AF100 for specific second order functions. Lowpass, highpass, and bandpass functions are available simultaneously at separate outputs. Notch and allpass functions are available by summing the outputs using the uncommitted output summing amplifier. Higher order systems are realized by cascading AF100 active filters.
Any of the classical filter configurations, such as Butterworth, Bessel, Cauer, and Chebyshev can be implemented.

Features

- Military or commercial specifications
- Independent Q, cutoff frequency
- Low sensitivity to external component variation
- Separate lowpass, highpass, bandpass outputs
- Inputs may be differential, inverting, or non-inverting
- Allpass and notch outputs may be formed using the uncommitted amplifier
- Operates to 10 kHz
- Q range to 500
- Power supply range
$\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Frequency accuracy $\pm 1 \%$ unadjusted
- Q frequency product $\leq 50,000$

Connection Diagrams

Ceramic Dual-In-Line Package

AF100-1CJ, AF100-2CJ
See NS Package Number HY13A

Plastic Dual-In-Line Package

*Note: Internally connected. Do not use.
TL/H/5642-2
AF100-1CN, AF100-2CN
See NS Package Number N16A

AF150 Universal Wideband Active Filter

General Description

The AF150 wide band active filter is a general second order lumped RC network. Only four external resistors are required to program the AF150 for specific second order functions. Low pass, high pass and band pass functions are available simultaneously at separate outputs. Notch and all pass functions can be formed by summing the outputs using an external amplifier. Higher order filters are realized by cascading AF150 active filters.
Any of the classical filter configurations, such as Butterworth, Bessel, Cauer and Chebyshev can be implemented.

Features

- Independent Q cutoff frequency
- Low sensitivity to external component variation
- Separate low pass, high pass, band pass outputs
- Inputs may be differential, inverting or non-inverting
- All pass and notch outputs may be formed
- Operates to 100 kHz
- Q range to 500
- Power supply range
$\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- High accuracy $\pm 1 \%$ unadjusted
- Q frequency product

Connection Diagram

TL/H/5643-1

Order Number AF150-1CJ or AF150-2CJ
See NS Package HY13A
*Note: Internally connected. DO NOT USE.

National Semiconductor

AF151 Dual Universal Active Filter

General Description

The AF151 consists of 2 general purpose state variable active filters in a single package. By using only 4 external resistors for each section, various second order functions may be formed. Low pass, high pass and band pass functions are available simultaneously at separate outputs. In addition, there are 2 uncommitted operational amplifiers which are available for buffering or for forming all pass and notch functions. Any of the classical filter configurations, such as Butterworth, Bessel, Cauer and Chebyshev can be easily formed.

Features

■ Independent Q, frequency and gain adjustment

- Very low sensitivity to external component variation
- Separate low pass, high pass and band pass outputs
- Operation to 10 kHz
- Q range to 500
- Wide power supply range- $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Accuracy- $\pm 1 \%$
- Fourth order function in one package

Circuit Diagrams (Unlisted pins are not connected.)

TL/H/5644-1
Ceramic Dual-In-Line Package
Order Number AF151-1CJ or AF151-2CJ
See NS Package Number HY24A

LMF60 6th Order LMCMOSTM Switched Capacitor Butterworth Lowpass Filter

General Description

The LMF60 is a high-performance precision 6th Order Butterworth lowpass active filter. It is fabricated using National's LMCMOS process, which is an improved silicon-gate CMOS process specifically designed for analog products. Switched capacitor techniques eliminate external component requirements and allow a clock tunable cutoff frequency. The ratio of the clock frequency to the lowpass cutoff frequency is internally set to 50 to 1 (LMF60-50) or 100 to 1 (LMF60-100). A Schmitt trigger clock input stage allows two clocking options, either self-clocking (via an external resistor and capacitor) for stand-alone applications, or for tighter cutoff frequency control, a TTL or CMOS logic compatible clock can be directly applied. The maximally flat passband frequency response together with a DC gain of 1 V/V allows cascading LMF60 sections for higher order filtering. In addition to the filter, two independent CMOS op amps are included on the die and are useful for any general signal conditioning applications.

Features

- Low DC offsets (less than 20 mV typical)
- Low clock feedthrough (5 mV typical)
- Cutoff frequency accuracy of $\pm 0.3 \%$
- Cutoff frequency range of 0.1 Hz to 25 kHz
- Two uncommitted op amps available
- 5 V to 14 V operation
- Cutoff frequency set by external or internal clock
- No external components

The LMF60 is pin-compatible with the MF6.

Block and Connection Diagrams

ADVANCED INFORMATION

LMF90 4th-Order LMCMOSTM Programmable Elliptic Notch Filter

General Description

The LMF90 is a fourth-order elliptic notch (band-reject) filter based on switched-capacitor techniques. No external components are needed to define the response function. The depth and width of the notch are set using two separate three-level logic inputs. Three different notch depths and three different ratios of notch width to center frequency may be programmed by connecting these pins to V^{+}, ground, or $\mathrm{V}-$. Another three-level logic pin sets the ratio of clock frequency to notch frequency.
An internal crystal oscillator is provided. Used in conjunction with a low-cost color TV crystal and the internal logic divider, a notch filter can be built with center frequency at 50 Hz , $60 \mathrm{~Hz}, 100 \mathrm{~Hz}, 120 \mathrm{~Hz}, 150 \mathrm{~Hz}$, or 180 Hz . Several LMF90s can be operated from a single crystal. An additional input is provided for an externally-generated clock signal.

Features

- Center frequency set by external clock or on-board oscillator
- No external components needed to set response characteristic
- Notch bandwidth, attenuation, and clock-to-center frequency ratio independently programmable
- Reduced aliasing compared to other switched-capacitor filter topologies

Key Specifications

range:	0.1 Hz to 30 kHz
Supply range:	4 V to 14 V
Passband ripple:	0.25 dB
Atenuation at f_{0} :	$30 \mathrm{~dB}, 40 \mathrm{~dB}$ or 50 dB
- fCLK: f_{0} ratio: 100:1, 50:1, or 33.33:1	
Notch bandwidth:	$0.1 \mathrm{f}_{0}, 0.2 \mathrm{f}_{0}$, or $0.4 \mathrm{f}_{0}$
accuracy over full temperatu	range: $\pm 1 \%$

Typical Application and Connection Diagrams

60 Hz Notch Filter

TL/H/9268-1

National

LMF100 Universal Monolithic Dual LMCMOS ${ }^{\text {TM }}$ Switched Capacitor Filter

General Description

The LMF100 consists of two independent general purpose high performance switched capacitor filters. With an external clock and 2 to 4 resistors, various second order filtering functions can be realized by each filter block. Each block has three outputs. One output can be configured to perform either an allpass, highpass or a notch function. The other two outputs perform bandpass and lowpass functions. The center frequency of each filter can be tuned by an external clock or by both an external clock and an external resistor ratio. Up to a 4th order biquadratic function can be realized with a single LMF100. Higher order filters are implemented by simply cascading additional packages and all the classical filters (such as Butterworth, Bessel, Cauer and Chebyshev) can be realized.
The LMF100 is fabricated on National Semiconductor's high performance analog silicon gate CMOS process,

LMCMOS. This allows for the production of a very low offset, high frequency filter building block.

Features

■ Wider power supply range: 4 V to 14 V
■ Operation up to 100 kHz

- Low offset voltages (50:1 or 100:1 mode)
typically $\mathrm{V}_{\mathrm{OS} 1}= \pm 5 \mathrm{mV}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OS} 2}= \pm 10 \mathrm{mV} \\
& \mathrm{~V}_{\mathrm{OS} 3}= \pm 15 \mathrm{mV}
\end{aligned}
$$

■ Low crosstalk

- Clock to center frequency ratio accuracy $\pm 0.3 \%$
- $f_{0} \times Q$ up to 1.8 MHz

■ Pin-compatible with the MF10

System Block Diagram

TL/H/9266-1

TL/H/9266-3

National Semiconductor Corporation

LMF120 Mask Programmable LMCMOS ${ }^{\text {™ }}$ Switched Capacitor Filter

ADVANCED INFORMATION

General Description

The LMF120 is a mask programmable switched capacitor filter capable of realizing up to twelve poles by using six independent biquad blocks. The three on-board sample and hold circuits and three output buffers allow the user to define three independent filtering functions on the same chip. Due to close matching of components, a center frequency tolerance as low as 0.25% typical is achievable.
The clock can be supplied externally or by a simple internal crystal oscillator. The programmable divider chain allows for different input clock frequencies. Special software has been developed to aid designers in choosing their capacitor ratios and realization of metal mask. Almost any type of filter configuration can be formed.

Features

- Virtually any filter response (up to 12th order) can be realized
- No external components
- Choice of crystal oscillator or external clock
- Three buffer amplifiers
- Three sample and hold
- Programmable divider chain
- Wide range of supply voltage $\pm 2 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$
- Wide Q range (up to 100)
- Wide clock to center/corner frequency range 10:1 to 500:1
- Wide center/corner frequency range: 0.1 Hz to 100 kHz

Key Specifications

- Maximum clock frequency: 1.5 MHz
- Center frequency accuracy 1% over full temperature range
- 16 pin package

TL/H/9267-1

National
Semiconductor Corporation

MF4 4th Order Switched Capacitor Butterworth Lowpass Filter

General Description

The MF4 is a versatile, easy to use, precision 4th order Butterworth low-pass filter. Switched-capacitor techniques eliminate external component requirements and allow a clock-tunable cutoff frequency. The ratio of the clock frequency to the low-pass cutoff frequency is internally set to 50 to 1 (MF4-50) or 100 to 1 (MF4-100). A Schmitt trigger clock input stage allows two clocking options, either selfclocking (via an external resistor and capacitor) for standalone applications, or for tighter cutoff frequency control an external TTL or CMOS logic compatible clock can be applied. The maximally flat passband frequency response together with a DC gain of $1 \mathrm{~V} / \mathrm{V}$ allows cascading MF4 sections together for higher order filtering.

Features

- Low Cost
- Easy to use
- 8-pin mini-DIP or 14 -pin wide-body S.O.
- No external components

■ 5 V to 14 V supply voltage
■ Cutoff frequency range of 0.1 Hz to 20 kHz

- Cutoff frequency accuracy of $\pm 0.3 \%$ typical
- Cutoff frequency set by external clock
- Separate TTL and CMOS/Schmitt-trigger clock inputs

Block and Connection Diagrams

Dual-In-Line Package

TL/H/5064-2
Order Number MF4CN-50 or MF4CN-100
See NS Package Number N08E

Small-Outline Wide-Body Package

Absolute Maximum Ratings (Notes 1, 2)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V^{+}- V^{-})	14 V
Voltage At Any Pin	$\mathrm{V}++0.2 \mathrm{~V}$
	$\mathrm{V}^{-}-0.2 \mathrm{~V}$
Input Current at Any Pin (Note 14)	5 mA
Package Input Current (Note 14)	20 mA
Power Dissipation (Note 15)	500 mW
Storage Temperature	$150^{\circ} \mathrm{C}$
ESD Susceptibility (Note 13)	800 V

Soldering Information:

- N Package: 10 sec.
$260^{\circ} \mathrm{C}$
- SO Package: Vapor Phase (60 sec.)
$215^{\circ} \mathrm{C}$ $220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings (Note 2)

Temperature Range MF4CN-50, MF4CN-100 MF4CWM-50, MF4CWM-100
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)

5 V to 14 V

Filter Electrical Characteristics The following specifications apply for fcLk $\leq 250 \mathrm{kHz}$ (see Note 5) unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX; }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Parameter			Conditions	MF4-50			MF4-100			Unit	
			Typical (Note 10)	$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Note 11) } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Design } \\ \text { Limit } \\ \text { (Note 12) } \\ \hline \end{array}$	Typical (Note 10)	Tested Limit (Note 11)	$\begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 12) } \\ \hline \end{gathered}$			
$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$											
f_{C}, Cutoff Freque Range (Note 3)		$\begin{aligned} & \operatorname{Min} \\ & \text { Max } \end{aligned}$					$\begin{aligned} & 0.1 \\ & 20 k \end{aligned}$			$\begin{aligned} & 0.1 \\ & 10 k \end{aligned}$	Hz
Supply Current			$\mathrm{f}_{\mathrm{clk}}=250 \mathrm{kHz}$	2.5	3.5	3.5	2.5	3.5	3.5	mA	
Maximum Clock Feedthrough (Peak-to-Peak)	Filter Output		$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	25			25			mV	
H_{0}, DC Gain			$\mathrm{R}_{\text {source }} \leq 2 \mathrm{k} \Omega$	0.0	± 0.15	± 0.15	0.0	± 0.15	± 0.15	dB	
$\mathrm{f}_{\mathrm{clk}} / \mathrm{f}_{\mathrm{c}}$, Clock to Cutoff Frequency Ratio				$\begin{gathered} 49.96 \\ \pm 0.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 49.96 \\ \pm 0.8 \% \\ \hline \end{gathered}$	$\begin{aligned} & 49.96 \\ & \pm 0.6 \% \\ & \hline \end{aligned}$	$\begin{gathered} 99.09 \\ \pm 0.3 \% \\ \hline \end{gathered}$	$\begin{gathered} 99.09 \\ \pm 1.0 \% \\ \hline \end{gathered}$	$\begin{aligned} & \hline 99.09 \\ & \pm 0.6 \% \\ & \hline \end{aligned}$		
$\mathrm{f}_{\mathrm{clk}} / \mathrm{f}_{\mathrm{c}}$ Temperature Coefficient				± 15			± 30			ppm/ ${ }^{\circ} \mathrm{C}$	
Stopband Attenuation (Min)			at $2 \mathrm{f}_{\mathrm{c}}$	-25.0	-24.0	-24.0	-25.0	-24.0	-24.0	dB	
DC Offset Voltage				-200			-400			mV	
Minimum Output Swing			$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & +4.0 \\ & -4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.5 \\ & -4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.5 \\ & -4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} +4.0 \\ -4.5 \\ \hline \end{array}$	$\begin{array}{r} +3.5 \\ -4.0 \\ \hline \end{array}$	$\begin{array}{r} +3.5 \\ -4.0 \\ \hline \end{array}$	V	
Output Short Circuit Current (Note 8)		Source Sink		$\begin{aligned} & 50 \\ & 1.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 50 \\ & 1.5 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	
Dynamic Range (Note 4)				80		.	82			dB	
Additional Magnitude Response Test Points (Note 6)$\mathrm{f}_{\mathrm{clk}}=250 \mathrm{kHz}$			$\mathrm{f}=6000 \mathrm{~Hz}$		$\begin{aligned} & -7.57 \\ & \pm 0.27 \end{aligned}$	$\begin{aligned} & -7.57 \\ & \pm 0.27 \end{aligned}$				dB	
			$\mathrm{f}=4500 \mathrm{~Hz}$		$\begin{gathered} -1.44 \\ \pm 0.12 \end{gathered}$	$\begin{aligned} & -1.44 \\ & \pm 0.12 \end{aligned}$					
			$\mathrm{f}=3000 \mathrm{~Hz}$					$\begin{gathered} -7.21 \\ \pm 0.2 \end{gathered}$	$\begin{gathered} -7.21 \\ \pm 0.2 \\ \hline \end{gathered}$	dB	
			$\mathrm{f}=2250 \mathrm{~Hz}$					$\begin{gathered} -1.39 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} -1.39 \\ \pm 0.1 \\ \hline \end{gathered}$		

Filter Electrical Characteristics The following specifications apply for faLK $\leq 250 \mathrm{kHz}$ (see Note 5) unless
otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Continued)

Parameter			Conditions	MF4-50			MF4-100			Unit	
			Typical (Note 10)	Tested Limit (Note 11)	$\begin{aligned} & \text { Design } \\ & \text { Limit } \\ & \text { (Note 12) } \\ & \hline \end{aligned}$	Typical (Note 10)	Tested Limit (Note 11)	$\begin{array}{\|c} \text { Design } \\ \text { Limit } \\ \text { (Note 12) } \\ \hline \end{array}$			
$\mathrm{V}^{+}=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$											
f_{c} Cutoff Frequen Range (Note 3)		min max					$\begin{aligned} & 0.1 \\ & 10 \mathrm{k} \end{aligned}$			$\begin{gathered} 0.1 \\ 5 \mathrm{k} \end{gathered}$	Hz
Supply Current			$\mathrm{f}_{\mathrm{clk}}=250 \mathrm{kHz}$	1.5	2.25	2.25	1.5	2.25	2.25	mA	
Maximum Clock Feedthrough (Peak-to-Peak)	Filter Output		$\mathrm{V}_{\text {in }}=0 \mathrm{~V}$	15			15			mV	
H_{0}, DC Gain			$\mathrm{R}_{\text {source }} \leq 2 \mathrm{k} \Omega$	0.0	± 0.15	± 0.15	0.0	± 0.15	± 0.15	dB	
$\mathrm{f}_{\mathrm{Clk}} / \mathrm{f}_{\mathrm{c}}$, Clock to Cutoff Frequency Ratio				$\begin{gathered} 50.07 \\ \pm 0.3 \% \end{gathered}$	$\begin{gathered} 50.07 \\ \pm 1.0 \% \\ \hline \end{gathered}$	$\begin{aligned} & 50.07 \\ & \pm 0.6 \% \end{aligned}$	$\begin{gathered} 99.16 \\ \pm 0.3 \% \end{gathered}$	$\begin{gathered} 99.16 \\ \pm 1.0 \% \end{gathered}$	$\begin{gathered} 99.16 \\ \pm 0.6 \% \end{gathered}$		
$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ Temperature Coefficient				± 25			± 60			ppm/ ${ }^{\circ} \mathrm{C}$	
Stopband Attenuation (Min)			at $2 \mathrm{f}_{\mathrm{c}}$	-25.0	-24.0	-24.0	-25.0	-24.0	-24.0	dB	
DC Offset Voltage				-150			-300			mV	
Minimum Output Swing			$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & +1.5 \\ & -2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.0 \\ -1.7 \\ \hline \end{array}$	$\begin{array}{r} +1.0 \\ -1.7 \end{array}$	$\begin{aligned} & +1.5 \\ & -2.2 \end{aligned}$	$\begin{aligned} & +1.0 \\ & -1.7 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.0 \\ -1.7 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
Output Short Circuit Current (Note 8)		Source Sink		$\begin{aligned} & 28 \\ & 0.5 \end{aligned}$			$\begin{aligned} & 28 \\ & 0.5 \end{aligned}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
Dynamic Range (Note 4)				78			78			dB	
Additional Magnitude Response Test Points (Note 6) $\left(f_{\mathrm{C}}=5 \mathrm{kHz}\right)$ Magnitude at			$\mathrm{f}_{\mathrm{clk}}=250 \mathrm{kHz}$ $f=6000 \mathrm{~Hz}$		$\begin{aligned} & -7.57 \\ & \pm 0.27 \end{aligned}$	$\begin{aligned} & -7.57 \\ & \pm 0.27 \end{aligned}$				dB	
			$\mathrm{f}=4500 \mathrm{~Hz}$		$\begin{array}{r} -1.46 \\ \pm 0.12 \\ \hline \end{array}$	$\begin{aligned} & -\mathbf{1 . 4 6} \\ & \pm 0.12 \end{aligned}$				dB	
$\left(f_{\mathrm{C}}=2.5 \mathrm{kHz}\right)$ Magnitude			$\mathrm{f}=3000 \mathrm{~Hz}$					$\begin{gathered} -7.21 \\ \pm 0.2 \\ \hline \end{gathered}$	$\begin{gathered} -7.21 \\ \pm 0.2 \end{gathered}$	dB	
			$\mathrm{f}=2250 \mathrm{~Hz}$					$\begin{gathered} -1.39 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} -1.39 \\ \pm 0.1 \end{gathered}$		

Logic Input-Output Characteristics The following specifications apply for $\mathrm{V}^{-}=\mathrm{OV}$ (see Note 7) unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	Typical (Note 10)	Tested Limit (Note 11)	Design Limit (Note 12)	Unit
SCHMITT TRIGGER						
V_{T}, Positive Going Threshold Voltage	Min Max	$V^{+}=10 \mathrm{~V}$	7.0	6.1	$\begin{aligned} & 6.1 \\ & 8.9 \end{aligned}$	V
	Min Max	$\mathrm{V}+=5 \mathrm{~V}$	3.5	$\begin{aligned} & 3.1 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 4.4 \end{aligned}$	V

Logic Input-Output Characteristics The following specifications apply for $\mathrm{V}^{-}=\mathrm{oV}$ (see Note 7) unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{t}_{\mathrm{J}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter		Conditions		Typical (Note 10)	Tested Limit (Note 11)	Design Limit (Note 12)	Unit	
SCHMITT TRIGGER (Continued)								
$\mathrm{V}_{\mathrm{T}^{-}}$, Negative Going Threshold Voltage	Min Max	$V+=10 \mathrm{~V}$		3.0	$\begin{aligned} & 1.3 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 3.8 \end{aligned}$	V	
	Min Max	$V+=5 \mathrm{~V}$		1.5	$\begin{aligned} & 0.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.9 \end{aligned}$	V	
Hysteresis ($\mathrm{V}_{\mathrm{T}^{+}} \mathrm{V}_{\mathrm{T}^{-}}$)	Min Max	$V^{+}=10 \mathrm{~V}$		4.0	$\begin{aligned} & 2.3 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 7.6 \end{aligned}$	V	
	Min Max	$\mathrm{V}^{+}=5 \mathrm{~V}$		2.0	$\begin{aligned} & 1.2 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.2 \\ 3.8 \\ \hline \end{array}$	V	
Minimum Logical "1" Output Voltage (pin 2)		$\mathrm{I}_{0}=-10 \mu \mathrm{~A}$	$V^{+}=10 \mathrm{~V}$		9.0	9.0	V	
		$\mathrm{V}+=5 \mathrm{~V}$		4.5	4.5	V		
Maximum Logical "0" Output Voltage (pin 2)			$\mathrm{I}_{0}=10 \mu \mathrm{~A}$	$V+=10 \mathrm{~V}$		1.0	1.0	V
		$\mathrm{V}+=5 \mathrm{~V}$			0.5	0.5	V	
Minimum Output Source Current (pin 2)		CLK R Shorted to Ground	$V^{+}=10 \mathrm{~V}$	6.0	3.0	3.0	mA	
		$\mathrm{V}+=5 \mathrm{~V}$	1.5	0.75	0.75	mA		
Maximum Output Sink Current (pin 2)			CLK R Shorted to V^{+}	$\mathrm{V}+=10 \mathrm{~V}$	5.0	2.5	2.5	mA
		$\mathrm{V}+=5 \mathrm{~V}$		1.3	0.65	0.65	mA	
TTL CLOCK INPUT, CLK R PIN (Note 9)								
Maximum V_{IL}, Logical "0" Input Voltage				0.8			V	
Minimum V_{IH}, Logical "1" Input Voltage				2.0			V	
Maximum Leakage Current at CLK R Pin		L. Sh Pin at Mid-Supply		2.0			$\mu \mathrm{A}$	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. AC and DC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are with respect to GND.
Note 3: The cutoff frequency of the filter is defined as the frequency where the magnitude response is 3.01 dB less than the DC gain of the filter.
Note 4: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to 2.82 Vrms (4 V peak) where the wideband noise over a 20 kHz bandwidth is typically $280 \mu \mathrm{Vrms}$ for the MF4-50 and $230 \mu \mathrm{Vrms}$ for the MF4-100. For $\pm 2.5 \mathrm{~V}$ supplies the dynamic range is referenced to 1.06 Vrms (1.5 V peak) where the wideband noise over a 20 kHz bandwidth is typically $130 \mu \mathrm{Vrms}$ for both the MF4-50 and the MF4-100.
Note 5: The specifications for the MF4 have been given for a clock frequency (fCLK) of 250 kHz or less. Above ths clock frequency the cutoff frequency begins to deviate from the specified error band of $\pm 0.6 \%$ but the filter still maintains its magnitude characteristics. See Application Hints.
Note 6: Besides checking the cutoff frequency (f_{c}) and the stopband attenuation at $2 \mathrm{f}_{\mathrm{c}}$, two additional frequencies are used to check the magnitude response of the filter. The magnitudes are referenced to a DC gain of 0.0 dB .
Note 7: For simplicity all the logic levels have been referenced to $V-=0 \mathrm{~V}$ (except for the TTL input logic levels). The logic levels will scale accordingly for $\pm 5 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V}$ supplies.
Note 8: The short circuit source current is measured by forcing the output that is being tested to its maximum positive voltage swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage and then shorting that output to the positive supply. These are worst case conditions.
Note 9: The MF4 is operating with symmetrical split supplies and L. Sh is tied to ground.
Note 10: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 11: Guaranteed to National's Average Outgoing Quality Level (AOOL).
Note 12: Guaranteed, but not 100% production tested. These limits are not used to determine outgoing quality levels.
Note 13: Human body model; 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 14: When the input voltage $\left(V_{\mathbb{I N}}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{N}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 15: Thermal Resistance
θ_{JA} (Junction to Ambient) N Package $105^{\circ} \mathrm{C} / \mathrm{W}$.
$\theta_{J A}$ M Package . $95^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Positive Voltage Swing vs Temperature

$\mathbf{f}_{\mathbf{C L K}} / \mathbf{f}_{\mathbf{c}}$ Deviation vs Power Supply Voltage

Typical Performance Characteristics (Continued)

DC Gain Deviation vs Temperature

Pin Descriptions

(Numbers in () are for 14-pin package.)
Pin Pin
\# Name

Function

1 CLK IN A CMOS Schmitt-trigger input to be used (1) with an external CMOS logic level clock. Also used for self clocking Schmitt-trigger oscillator (see section 1.1).
2
(3)

CLK R A TTL logic level clock input when in split supply operation ($\pm 2.5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$) with L . Sh tied to system ground. This pin becomes a low impedance output when L . Sh is tied to V -. Also used in conjunction with the CLK IN pin for a self clocking Schmitt-trigger oscillator (see section 1.1). The TTL input signal must not exceed the supply voltages by more than 0.2 V .
3
L. Sh Level shift pin; selects the logic threshold (5) levels for the clock. When tied to V - it enables an internal tri-state buffer stage between the Schmitt trigger and the internal clock level shift stage thus enabling the CLK IN Schmitt-trigger input and making the CLK R pin a low impedance output. When the voltage level at this input exceeds 25% $\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)+\mathrm{V}^{-}$the internal tri-state buffer is disabled allowing the CLK R pin to become the clock input for the internal clock level-shift stage. The CLK R threshold level is now 2 V above the voltage on the L . Sh pin. The CLK R pin will be compatible with TTL logic levels when the MF4 is operated on split supplies with the L. Sh pin connected to system ground.
5 FILTER The output of the low-pass filter. It will
(8) OUT typically sink 0.9 mA and source 3 mA and swing to within 1 V of each supply rail.
6
AGND The analog ground pin. This pin sets the DC bias level for the filter section and must be tied to the system ground for split supply operation or to mid-supply for single supply operation (see section 1.2). When tied to mid-supply this pin should be well bypassed.
7,4 $\quad \mathrm{V}+, \mathrm{V}-$ The positive and negative supply pins. The $(7,12) \quad$ total power supply range is 5 V to 14 V . Decoupling these pins with $0.1 \mu \mathrm{~F}$ capacitors is highly recommended.
8 FILTER The input to the low-pass filter. To minimize (14) IN gain errors the source impedance that drives this input should be less than 2 K (see section 3). For single supply operation the input signal must be biased to mid-supply or AC coupled through a capacitor.

1.0 MF4 Application Hints

The MF4 is a non-inverting unity gain low-pass fourth-order Butterworth switched-capacitor filter. The switched-capacitor topology makes the cutoff frequency (where the gain drops 3.01 dB below the DC gain) a direct ratio (100:1 or
$50: 1)$ of the clock frequency supplied to the filter. Internal integrator time constants set the filter's cutoff frequency. The resistive element of these integrators is actually a capacitor which is "switched" at the clock frequency (for a detailed discussion see Input Impedance Section). Varying the clock frequency changes the value of this resistive element and thus the time constant of the integrators. The clock-to-cutoff-frequency ratio ($\mathrm{f}_{\mathrm{CLK}} \mathrm{f}_{\mathrm{C}}$) is set by the ratio of the input and feedback capacitors in the integrators. The higher the clock-to-cutoff-frequency ratio the closer this approximation is to the theoretical Butterworth response. The MF4 is available in $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$ ratios of $50: 1$ (MF4-50) or 100:1 (MF4-100).

1.1 CLOCK INPUTS

The MF4 has a Schmitt-trigger inverting buffer which can be used to construct a simple R/C oscillator. Pin 3 is connected to V^{-}which makes Pin 2 a low impedance output. The oscillator's frequency is nominally

$$
\begin{equation*}
f_{C L K}=\frac{1}{R C \ln \left[\left(\frac{V_{C C}-V_{t^{-}}}{V_{C C}-V_{t^{+}}}\right)\left(\frac{V_{t^{+}}}{V_{t^{-}}}\right)\right]} \tag{1}
\end{equation*}
$$

which, is typically

$$
\begin{equation*}
\mathrm{f}_{\mathrm{CLK}} \cong \frac{1}{1.69 \mathrm{RC}} \tag{1a}
\end{equation*}
$$

for $V_{C C}=10 \mathrm{~V}$.
Note that $\mathrm{f}_{\mathrm{CLK}}$ is dependent on the buffer's threshold levels as well as the resistor/capacitor tolerance (see Figure 1). Schmitt-trigger threshold voltage levels can change significantly causing the R/C oscillator's frequency to vary greatly from part to part.
Where accurate cutoff frequency is required, an external clock can be used to drive the CLK R input of the MF4. This input is TTL logic level compatible and also presents a very light load to the external clock source ($\sim 2 \mu \mathrm{~A}$). With split supplies and the level shift (L. Sh) tied to system ground, the logic level is about 2V. (See the Pin Description for L. $\mathrm{Sh})$.

1.2 POWER SUPPLY

The MF4 can be powered from a single supply or split supplies. The split supply mode shown in Figure 2 is the most flexible and easiest to implement. Supply voltages of $\pm 5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$ enable the use of TTL or CMOS clock logic levels. Figure 3 shows AGND resistor-biased to $\mathrm{V}+/ 2$ for single supply operation. In this mode only CMOS clock logic levels can be used, and input signals should be capacitor-coupled or biased near mid-supply.

1.3 INPUT IMPEDANCE

The MF4 low-pass filter input (FILTER IN) is not a high impedance buffer input. This input is a switched-capacitor resistor equivalent, and its effective impedance is inversely proportional to the clock frequency. The equivalent circuit of the filter's input can be seen in Figure 4. The input capacitor charges to $\mathrm{V}_{\text {in }}$ during the first half of the clock period; during the second half the charge is transferred to the feedback capacitor. The total transfer of charge in one clock cycle is therefore $Q=C_{i n} V_{i n}$, and since current is defined as the flow of charge per unit time, the average input current becomes

$$
\mathrm{l}_{\mathrm{in}}=\mathrm{Q} / T
$$

1.0 MF4 Application Hints (Continued)

(where T equals one clock period) or

$$
\mathrm{I}_{\text {in }}=\frac{\mathrm{C}_{\text {in }} \mathrm{V}_{\text {in }}}{T}=\mathrm{C}_{\text {in }} \mathrm{V}_{\text {in }} \mathrm{CLLK}
$$

The equivalent input resistor $\left(\mathrm{R}_{\text {in }}\right)$ then can be expressed as

$$
\mathrm{R}_{\mathrm{in}}=\frac{\mathrm{V}_{\mathrm{in}}}{\mathrm{l}_{\text {in }}}=\frac{1}{\mathrm{C}_{\text {in }} \mathrm{f} \text { CLK }}
$$

The input capacitor is 2 pF for the MF4-50 and 1 pF for the MF4-100, so for the MF4-100

$$
R_{\text {in }}=\frac{1 \times 10^{12}}{f_{C L K}}=\frac{1 \times 10^{12}}{f_{\mathrm{c}} \times 100}=\frac{1 \times 1010}{f_{\mathrm{c}}}
$$

and

$$
R_{\text {in }}=\frac{5 \times 10^{11}}{f_{C L K}}=\frac{5 \times 10^{11}}{f_{c} \times 50}=\frac{1 \times 1010}{f_{c}}
$$

for the MF4-50. The above equation shows that for a given cutoff frequency $\left(\mathrm{f}_{\mathrm{c}}\right)$, the input resistance of the MF4-50 is the same as that of the MF4-100. The higher the clock-to-cutoff-frequency ratio, the greater equivalent input resistance for a given clock frequency.
This input resistance will form a voltage divider with the source impedance ($\mathrm{R}_{\text {source }}$). Since $\mathrm{R}_{\text {in }}$ is inversely proportional to the cutoff frequency, operation at higher cutoff frequencies will be more likely to load the input signal which would appear as an overall decrease in gain to the output of the filter. Since the filter's ideal gain is unity, the overall gain is given by:

$$
A_{v}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {source }}}
$$

If the MF4-50 or the MF-100 were set up for a cutoff frequency of 10 kHz the input impedance would be:

$$
\mathrm{R}_{\mathrm{in}}=\frac{1 \times 10^{10}}{10 \mathrm{kHz}}=1 \mathrm{M} \Omega
$$

In this example with a source impedance of 10 K the overall gain, if the MF4 had an ideal gain of 1 or 0 dB , would be:

$$
A_{v}=\frac{1 \mathrm{M} \Omega}{10 \mathrm{k} \Omega+1 \mathrm{M} \Omega}=0.99009 \text { or }-0.086 \mathrm{~dB}
$$

Since the maximum overall gain error for the MF4 is $\pm 0.15 \mathrm{~dB}$ with $R_{s} \leq 2 \mathrm{k} \Omega$ the actual gain error for this case would be +0.06 dB to -0.24 dB .

1.4 CUTOFF FREQUENCY RANGE

The filter's cutoff frequency (f_{c}) has a lower limit due to leakage currents through the internal switches draining the charge stored on the capacitors. At lower clock frequencies these leakage currents can cause millivolts of error, for example:

$$
\begin{gathered}
\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{~Hz}, l_{\text {leakage }}=1 \mathrm{pA}, C=1 \mathrm{pF} \\
\mathrm{~V}=\frac{1 \mathrm{pA}}{1 \mathrm{pF}(100 \mathrm{~Hz})}=10 \mathrm{mV}
\end{gathered}
$$

The propagation delay in the logic and the settling time required to acquire a new voltage level on the capacitors limit the filter's accuracy at high clock frequencies. The amplitude characteristic on $\pm 5 \mathrm{~V}$ supplies will typically stay flat until $\mathrm{f}_{\mathrm{CLK}}$ exceeds 750 kHz and then peak at about 0.5 dB at the corner frequency with a 1 MHz clock. As supply voltage drops to $\pm 2.5 \mathrm{~V}$, a shift in the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$ ratio occurs
which will become noticeable when the clock frequency exceeds 250 kHz . The response of the MF4 is still a good approximation of the ideal Butterworth low-pass characteristic shown in Figure 5.

2.0 Designing With The MF4

Given any low-pass filter specification, two equations will come in handy in trying to determine whether the MF4 will do the job. The first equation determines the order of the low-pass filter required to meet a given response specification:

$$
\begin{equation*}
n=\frac{\log \left[\left(10^{0.1} A_{\min }-1\right) /\left(10^{0.1} A_{\max }-1\right)\right]}{2 \log \left(f_{s} / f_{b}\right)} \tag{2}
\end{equation*}
$$

where n is the order of the filter, $A_{\text {min }}$ is the minimum stopband attenuation (in dB) desired at frequency f_{S}, and $\mathrm{A}_{\text {max }}$ is the passband ripple or attenuation (in dB) at cutoff frequency f_{b}. If the result of this equation is greater than 4 , more than a single MF4 is required.
The attenuation at any frequency can be found by the following equation:

$$
\begin{equation*}
\operatorname{Attn}(f)=10 \log \left[1+\left(10^{0.1} \cdot A_{\max }-1\right)\left(f / f_{b}\right)^{2 n}\right] d B \tag{3}
\end{equation*}
$$

where $\mathrm{n}=4$ for the MF4.

2.1 A LOW-PASS DESIGN EXAMPLE

Suppose the amplitude response specification in Figure 6 is given. Can the MF4 be used? The order of the Butterworth approximation will have to be determined using (1):

$$
\begin{gathered}
A_{\min }=18 \mathrm{~dB}, A_{\max }=1.0 \mathrm{~dB}, \mathrm{f}_{\mathrm{s}}=2 \mathrm{kHz} \text {, and } \mathrm{f}_{\mathrm{b}}=1 \mathrm{kHz} \\
\mathrm{n}=\frac{\log \left[\left(10^{1.8}-1\right) /\left(10^{0.1}-1\right)\right]}{2 \log (2)}=3.95
\end{gathered}
$$

Since n can only take on integer values, $n=4$. Therefore the MF4 can be used. In general, if n is 4 or less a single MF4 stage can be utilized.
Likewise, the attenuation at f_{S} can be found using (3) with the above values and $\mathrm{n}=4$:

```
Attn (2 kHz) = 10 log [1 + 100.1 - 1) (2 kHz/1 kHz)8] = 18.28 dB
```

This result also meets the design specification given in Figure 6 again verifying that a single MF4 section will be adequate.
Since the MF4's cutoff frequency (f_{c}), which corresponds to a gain attenuation of -3.01 dB , was not specified in this example, it needs to be calculated. Solving equation 3 where $f=f_{c}$ as follows:

$$
\begin{aligned}
f_{c} & =f_{b}\left[\frac{\left(10^{0.1(3.01 ~ d B)-1}\right.}{\left(10^{\left.0.1 A_{\max }-1\right)}\right.}\right]^{1 /(2 n)} \\
& =1 \mathrm{kHz}\left[\frac{100.301-1}{10^{0.1-1}}\right]^{1 / 8} \\
& =1.184 \mathrm{kHz}
\end{aligned}
$$

where $\mathrm{f}_{\mathrm{C}}=\mathrm{f}_{\mathrm{CLK}} / 50$ or $\mathrm{f}_{\mathrm{CLK}} / 100$. To implement this example for the MF4-50 the clock frequency will have to be set to $\mathrm{f}_{\mathrm{CLK}}=50(1.184 \mathrm{kHz})=59.2 \mathrm{kHz}$, or for the MF4-100, $\mathrm{f}_{\mathrm{CLK}}$ $=100(1.184 \mathrm{kHz})=118.4 \mathrm{kHz}$.

2.2 CASCADING MF4s

When a steeper stopband attenuation rate is required, two MF4s can be cascaded (Figure 7) yielding an 8th order

2.0 Designing With The MF4 (Continued)

slope of 48 dB per octave. Because the MF4 is a Butterworth filter and therefore has no ripple in its passband when MF4s are cascaded, the resulting filter also has no ripple in its passband. Likewise the DC and passband gains will remain at 1V/V. The resulting response is shown in Figure 9. In determining whether the cascaded MF4s will yield a filter that will meet a particular amplitude response specification, as above, equations 3 and 4 can be used, shown below.

$$
\begin{equation*}
\mathrm{n}=\frac{\log \left[\left(100.05 A_{\min }-1\right) /\left(10.0 .05 A_{\max }-1\right)\right]}{2 \log \left(\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{c}}\right)} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Attn}(f)=10 \log \left[1+\left(10^{\left.0.05 A \max -1)\left(f / f_{c}\right)^{2}\right] d B}\right.\right. \tag{3}
\end{equation*}
$$

where $n=4$ (the order of each filter).
Equation 2 will determine whether the order of the filter is adequate ($\mathbf{n} \leq 4$) while equation 3 can determine the actual stopband attenuation and cutoff frequency (f_{c}) necessary to obtain the desired frequency response. The design procedure would be identical to the one shown in section 2.0.

2.3 CHANGING CLOCK FREQUENCY INSTANTANEOUSLY

The MF4 will respond favorably to an instantaneous change in clock frequency. If the control signal in Figure 9 is low the

MF4-50 has a 100 kHz clock making $\mathrm{f}_{\mathrm{c}}=2 \mathrm{kHz}$; when this signal goes high the clock frequency changes to 50 kHz yielding $\mathrm{f}_{\mathrm{c}}=1 \mathrm{kHz}$. As the Figure illustrates, the output signal changes quickly and smoothly in response to a sudden change in clock frequency.
The step response of the MF4 in Figure 10 is dependent on f_{c}. The MF4 responds as a classical fourth-order Butterworth low-pass filter.

2.4 ALIASING CONSIDERATIONS

Aliasing effects have to be considered when input signal frequencies exceed half the sampling rate. For the MF4 this equals half the clock frequency ($\mathrm{f}_{\mathrm{CLK}}$). When the input signal contains a component at a frequency higher than half the clock frequency fclk/2, as in Figure 11a, that component will be "reflected" about fclk/2 into the frequency range below $\mathrm{f}_{\mathrm{CLK}} / 2$, as in Figure 11b. If this component is within the passband of the filter and of large enough amplitude it can cause problems. Therefore, if frequency components in the input signal exceed fclk 2 they must be attenuated before being applied to the MF4 input. The necessary amount of attenuation will vary depending on system requirements. In critical applications the signal components above fCLK/2 will have to be attenuated at least to the filter's residual noise level.

$$
\begin{gathered}
f=\frac{1}{F C \ln \left[\left(\frac{V_{C C}-V_{t-}}{V_{C C}-V_{t^{+}}}\right)\left(\frac{V_{t^{+}}}{V_{t^{-}}}\right)\right]} \\
f \approx \frac{1}{1.69 R C} \\
\left(V_{C C}=10 V\right)
\end{gathered}
$$

FIGURE 1. Schmitt Trigger R/C Oscillator

FIGURE 2. Split Supply Operation with CMOS Level Clock (a) and TTL Level Clock (b)

FIGURE 3. Single Supply Operation. ANGD Resistor Biased to V+/2

TL/H/5064-15
a) Equivalent Circuit for MF4 Filter Input

TL/H/5064-20
b) Actual Circuit for MF4 Filter Input

FIGURE 4. MF4 Filter Input

FIGURE 5a. MF4-100 Amplitude Response with $\pm 5 \mathrm{~V}$ Supplies

FIGURE 5b. MF4-50 Amplitude Response with $\pm 5 \mathrm{~V}$ Supplies

FIGURE 5c. MF4-100 Amplitude Response with $\pm \mathbf{2 . 5 V}$ Supplies

FIGURE 5d. MF4-50 Amplitude Response with $\pm 2.5 \mathrm{~V}$ Supplies

FIGURE 7. Cascading Two MF4s

FIGURE 8a. One MF4-50 vs Two MF4-50s Cascaded

FIGURE 9. MF4-50 Abrupt Clock Frequency Change

TL/H/5064-18
FIGURE 8b. Phase Response of Two Cascaded MF4-50s

FIGURE 10. MF4-50 Input Step Response

FIGURE 11. The phenomenon of aliasing in sampled-data systems. An input signal whose frequency is greater than one-half the sampling frequency will cause an output to appear at a frequency lower than one-half the sampling frequency. In the MF4, $\mathbf{f}_{\mathbf{s}}=\mathbf{f}_{\mathbf{C L K}}$.

MF5 Universal Monolithic Switched Capacitor Filter

General Description

The MF5 consists of an extremely easy to use, general purpose CMOS active filter building block and an uncommitted op amp. The filter building block, together with an external clock and a few resistors, can produce various second order functions. The filter building block has 3 output pins. One of the output pins can be configured to perform highpass, allpass or notch functions and the remaining 2 output pins perform bandpass and lowpass functions. The center frequency of the filter can be directly dependent on the clock frequency or it can depend on both clock frequency and external resistor ratios. The uncommitted op amp can be used for cascading purposes, for obtaining additional allpass and notch functions, or for various other applications. Higher order filter functions can be obtained by cascading several MF5s or by using the MF5 in conjuction with the MF10 (dual switched capacitor filter building block). The MF5 is functionally compatible with the MF10. Any of the classical filter configurations (such as Butterworth, Bessel, Cauer and Chebyshev) can be formed.

Features

- Low cost
- 14-pin DIP or 14 -pin Surface Mount (SO) wide-body package
- Easy to use
- Clock to center frequency ratio accuracy $\pm 0.6 \%$
- Filter cutoff frequency stability directly dependent on external clock quality
- Low sensitivity to external component variations
- Separate highpass (or notch or allpass), bandpass, lowpass outputs
- $f_{0} \times Q$ range up to 200 kHz

■ Operation up to 30 kHz (typical)

- Additional uncommitted op-amp

Block and Connection Diagrams

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)
Power Dissipation $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (note 1)
Storage Temp.

Soldering Information:

N Package:	10 sec.	$260^{\circ} \mathrm{C}$
SO Package:	Vapor phase (60 sec.)	$215^{\circ} \mathrm{C}$
	Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
Input Voltage (any pin)
Operating Temp. Range
$V^{-} \leq V_{\text {in }} \leq V^{+}$
$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$
MF5CN, MF5CWM

Electrical Characteristics $\mathrm{V}^{+}=5 \mathrm{~V} \pm 0.5 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 0.5 \%$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathbf{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter			Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
Supply Voltage$\left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)$		Min				8	V
		Max				14	V
Maximum Supply Current			Clock applied to Pin 8 No Input Signal	4.5	6.0		mA
Clock Feedthrough	Filter Output			10			mV
	Op-amp Output			10			mV

Filter Electrical Characteristics $\mathrm{v}+=5 \mathrm{~V} \pm 0.5 \%, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 0.5 \%$ unless otherwise noted. Boldace limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Filter Electrical Characteristics $\mathrm{V}+=5 \mathrm{~V} \pm 0.5 \%, \mathrm{~V}^{-}=-5 \mathrm{~V} \pm 0.5 \%$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter			$\begin{aligned} & \text { Conditions } \\ & \hline \mathrm{RL}=5 \mathrm{k} \Omega \\ & \hline \end{aligned}$	Typical (Note 6)± 4.0	Tested Limit	Design Limit (Note 8)	Units V
Output Swing (Min)	BP, LP pins				± 3.8		
	N/AP/HP		$\mathrm{RL}=3.5 \mathrm{k} \Omega$	± 4.2	± 3.8		V
Dynamic Range (Note 4)			$\begin{aligned} & V_{\text {pin9 }}=+5 V \\ & \text { (50:1 CLK ratio) } \end{aligned}$	83			dB
			$\begin{aligned} & V_{\text {pin9 }}=-5 \mathrm{~V} \\ & \text { (100:1 CLK ratio) } \end{aligned}$	80			dB
Maximum Output Short Circuit Current (Note 5)		Source		20			mA
		Sink		3.0			mA

OP-AMP Electrical Characteristics $\mathrm{v}+=+5 \mathrm{~V} \pm 0.5 \%, \mathrm{~V}-=-5 \mathrm{~V} \pm 0.5 \%$ unless other noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
Gain Bandwidth Product		2.5			MHz
Output Voltage Swing (Min)	$\mathrm{RL}=3.5 \mathrm{k} \Omega$	± 4.2	± 3.8		V
Slew Rate		7.0			$\mathrm{~V} / \mu \mathrm{s}$
DC Open-Loop Gain		80		db	
Input Offset Voltage (Max)			± 5.0		mV
Input Bias Current			10		pA
Maximum Output Short Circuit Current (Note 5)	Source		20		mA

Logic Input Characteristics Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$.

All other limits $T_{A}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
CMOS Clock Input	Min Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L} . \text { Sh. }}=0 \mathrm{~V} \end{aligned}$		3.0		V
	Max Logical "0" Input Voltage			-3.0		V
	Min Logical " 1 " Input Voltage	$\begin{aligned} & \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L} . \mathrm{Sh} .}=+5 \mathrm{~V} \end{aligned}$		8.0		V
	Max Logical "0" Input Voltage			2.0		V
TTL Clock Input	Min Logical " 1 " Input Voltage	$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{L} . \mathrm{Sh} .}=0 \mathrm{~V} \end{aligned}$		2.0		V
	Max Logical "0" Input Voltage			0.8		V

Note 1: The typical junction-to-ambient thermal resistance (θ_{JA}) of the 14 pin N package is $160^{\circ} \mathrm{C} / \mathrm{W}$, and $82^{\circ} \mathrm{C} / \mathrm{W}$ for the M package.
Note 2: The accuracy of the Q value is a function of the center frequency (f_{0}). This is illustrated in the curves under the heading "Typical Performance Characteristics".
Note 3: $\mathrm{V}_{\mathrm{os} 1}, \mathrm{~V}_{\mathrm{OS} 2}$, and $\mathrm{V}_{\mathrm{os} 3}$ refer to the internal offsets as discussed in the Application Information section 3.4.
Note 4: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to 2.82 V rms (4 V peak) where the wideband noise over a 20 kHz bandwidth is typically $200 \mu \mathrm{~V}$ rms for the MF5 with a $50: 1$ CLK ratio and $280 \mu \mathrm{~V}$ rms for the MF5 with a 100:1 CLK ratio.
Note 5: The short circuit source current is measured by forcing the output that is being tested to its maximum positive voltage swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage swing and then shorting that output to the positive supply. These are the worst case conditions.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Guaranteed and 100\% tested.
Note 8: Guaranteed, but not 100% tested. These limits are not used to calculate outgoing quality levels.

Pin Description
LP(14), BP(1), The second order lowpass, bandpass, N/AP/HP(2): and notch/allpass/highpass outputs. The LP and BP outputs can typically sink 1 mA and source 3 mA . The N/AP/HP output can typically sink 1.5 mA and source 3 mA . Each output typically swings to within 1 V of each supply.
INV1(3): The inverting input of the summing op amp of the filter. This is a high impedance input, but the non-inverting input is internally tied to AGND, making INV1 behave like a summing junction (low impedance current input).
$\mathrm{S} 1(4): \quad \mathrm{S} 1$ is a signal input pin used in the allpass filter configurations (see modes 4 and 5). The pin should be driven with a source impedance of less than $1 \mathrm{k} \Omega$. If S 1 is not driven with a signal it should be tied to AGND (mid-supply).
SA(5): \quad This pin activates a switch that connects one of the inputs of the filter's second summer to either AGND (SA tied to $\mathrm{V}-$) or to the lowpass (LP) output (SA tied to $V+$). This offers the flexibility needed for configuring the filter in its various modes of operation.
50/100(9): \quad This pin is used to set the internal clock to center frequency ratio (f_{CLK} / f_{0}) of the filter. By tying the pin to $V+$ an $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ ratio of about $50: 1$ (typically $50.11 \pm$ 0.2%) is obtained. Tying the 50/100 pin to either AGND or V - will set the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ ratio to about 100:1 (typically $100.04 \pm$ 0.2%).
AGND(11): This is the analog ground pin. This pin should be connected to the system ground for dual supply operation or biased to mid-supply for single supply operation. For a further discussion of mid-supply biasing techniques see the Applications Information (Section 3.2). For optimum filter performance a "clean" ground must be provided.
$V^{+}(6), V^{-}(10)$: These are the positive and negative supply pins. The MF5 will operate over a total supply range of 8 V to 14 V . Decoupling the supply pins with $0.1 \mu \mathrm{~F}$ capacitors is highly recommended.
CLK(8): This is the clock input for the filter. CMOS or TTL logic level clocks can be accomodated by setting the L. Sh pin to the levels described in the L. Sh pin description. For optimum filter performance a 50% duty cycle clock is recommended for clock frequencies greater than 200 kHz . This gives each op amp the maximum amount of time to settle to a new sampled input. This pin allows the MF5 to accommodate either CMOS or TTL logic level clocks. For dual supply operation (i.e., $\pm 5 \mathrm{~V}$), a CMOS or TTL logic level clock can be accepted if the L . Sh pin is tied to mid-supply (AGND), which should be the system ground. For single supply operation the L. Sh pin should be tied to mid-supply (AGND) for a CMOS logic level clock. The mid-supply bias should be a very low impedance node. See Applications Information for biasing techniques. For a TTL logic level clock the L. Sh pin should be tied to Vwhich should be the system ground.
INV2(12): This is the inverting input of the uncommitted op amp. This is a very high impedance input, but the non-inverting input is internally tied to AGND, making INV2 behave like a summing junction (low-impedance current input). This is the output of the uncommitted op amp. It will typically sink 1.5 mA and source 3.0 mA . It will typically swing to within 1 V of each supply.

Typical Performance Characteristics

OPAMP Output Voltage Swing vs Temperature

TL/H/5066-3

Typical Performance

 Characteristics (Continued)

TL/H/5066-4

1.0 Definitions of Terms

fclk: the frequency of the external clock signal applied to pin 8.
f_{0} : center frequency of the second order function complex pole pair. f_{0} is measured at the bandpass output of the MF5, and is the frequency of maximum bandpass gain. (Figure 1).
$f_{\text {notch }}$: the frequency of minimum (ideally zero) gain at the notch output.
f_{z} : the center frequency of the second order complex zero pair, if any. If f_{z} is different from f_{o} and if Q_{z} is high, it can be
observed as the frequency of a notch at the allpass output. (Figure 10).
Q: "quality factor" of the 2 nd order filter. Q is measured at the bandpass output of the MF5 and is equal to f_{0} divided by the -3 dB bandwidth of the 2nd order bandpass filter (Figure 1). The value of Q determines the shape of the 2 nd order filter responses as shown in Figure 6.
$\mathbf{Q}_{\mathbf{z}}$: the quality factor of the second order complex zero pair, if any. Q_{z} is related to the allpass characteristic, which is written:
$H_{A P}(s)=\frac{H_{O A P}\left(s^{2}-\frac{s \omega_{0}}{Q_{z}}+\omega_{0}{ }^{2}\right)}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}}$
where $Q_{Z}=Q$ for an all-pass response.
$H_{\text {OBP: }}$ the gain (in V/V) of the bandpass output at $f=f_{0}$. Holp: the gain (in V/V) of the lowpass output as $f \rightarrow 0 \mathrm{~Hz}$ (Figure 2).
$\mathrm{H}_{\text {OHP: }}$ the gain (in V/V) of the highpass output as $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{clk}} / 2$ (Figure 3).
$H_{\text {ON: }}$ the gain (in V/V) of the notch output as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$ and as $f \rightarrow f_{\text {clk }} / 2$, when the notch filter has equal gain above and below the center frequency (Figure 4). When the lowfrequency gain differs from the high-frequency gain, as in modes 2 and 3 a (Figures 11 and 8), the two quantities below are used in place of H_{ON}.
$H_{\text {ON } 1}$: the gain (in V/V) of the notch output as $f \rightarrow 0 \mathrm{~Hz}$.
$H_{\text {ON2 }}$: the gain (in V / V) of the notch output as $f \rightarrow f_{\mathrm{Clk}} / 2$.

FIGURE 1. 2nd-Order Bandpass Response

FIGURE 2. 2nd-Order Low-Pass Response

$$
\begin{aligned}
& H_{B P(s)}=\frac{H_{\mathbf{O B P S}}}{\mathbf{s}^{2}+\frac{\mathbf{s} \omega_{\mathbf{O}}}{\mathbf{Q}}+\omega_{0}^{2}} \\
& Q=\frac{f_{0}}{f_{H}-f_{L}} ; f_{0}=\sqrt{L_{L} f_{H}} \\
& f_{L}=f_{0}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& f_{H}=f_{0}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& \omega_{O}=2 \pi f_{0}
\end{aligned}
$$

$H_{L P}(\mathbf{s})=\frac{H_{O L p} \omega_{0}{ }^{2}}{\mathbf{s}^{2}+\frac{\mathbf{s} \omega_{0}}{Q}+\omega_{0}{ }^{2}}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\mathrm{o}} \times \sqrt{\left(1-\frac{1}{2 \mathrm{Q}^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}$
$\mathrm{f}_{\mathrm{p}}=\mathrm{f}_{\mathrm{o}} \sqrt{1-\frac{1}{2 \mathrm{Q}^{2}}}$
$H_{\text {OP }}=H_{\text {OLP }} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}$

FIGURE 3. 2nd-Order High-Pass Response
$H_{H P}(\mathbf{s})=\frac{H_{\mathrm{OHP}} \mathbf{s}^{2}}{\mathbf{s}^{2}+\frac{\mathbf{s} \omega_{\mathrm{O}}}{\mathrm{Q}}+\omega_{\mathrm{O}}{ }^{2}}$
$f_{C}=f_{0} \times\left[\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}\right]^{-1}$
$\mathrm{f}_{\mathrm{p}}=\mathrm{f}_{\mathrm{o}} \times\left[\sqrt{1-\frac{1}{2 Q^{2}}}\right]^{-1}$
$H_{O P}=H_{O H P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}$

1.0 Definition of Terms (Continued)

(a)

(b)

FIGURE 4. 2nd-Order Notch Response

FIGURE 5. 2nd-Order All-Pass Response

2.0 Modes of Operation

The MF5 is a switched capacitor (sampled data) filter. To fully describe its transfer functions, a time domain approach is appropriate. Since this is cumbersome, and since the MF5 closely approximates continuous filters, the following discussion is based on the well known frequency domain. Each MF5 can produce a full 2nd order function. See Table 1 for a summary of the characteristics of the various modes.

MODE 1: Notch 1, Bandpass, Lowpass Outputs:

$$
\mathbf{f}_{\text {notch }}=f_{0}(\text { See Figure } 7)
$$

$\mathrm{f}_{\mathrm{o}} \quad=$ center frequency of the complex pole pair

$$
=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \text { or } \frac{\mathrm{f}_{\mathrm{CLK}}}{50}
$$

$f_{\text {notch }}=$ center frequency of the imaginary zero pair $=f_{0}$.
$H_{\text {OLP }}=$ Lowpass gain (as $\left.f \rightarrow 0\right)=-\frac{R 2}{R 1}$
$H_{\text {OBP }}=$ Bandpass gain $\left(\right.$ at $\left.f=f_{0}\right)=-\frac{R 3}{R 1}$
$\mathrm{H}_{\mathrm{ON}}=$ Notch output gain as $\mathrm{f} \rightarrow 0$

$$
\left.\begin{array}{l}
f \rightarrow 0 \\
f \rightarrow f_{C L K} / 2
\end{array}\right\}=\frac{-R_{2}}{R_{1}}
$$

$Q=\frac{f_{0}}{B W}=\frac{R 3}{R 2}$
BW $=$ the -3 dB bandwidth of the bandpass output.
Circuit dynamics:

$$
\mathrm{H}_{\mathrm{OLP}}=\frac{\mathrm{H}_{\mathrm{OBP}}}{\mathrm{Q}} \text { or } \mathrm{H}_{\mathrm{OBP}}=\mathrm{H}_{\mathrm{OLP}} \times \mathrm{Q}=\mathrm{H}_{\mathrm{ON}} \times \mathrm{Q}
$$

$H_{\text {OLP(peak) }} \cong Q \times H_{O L P}$ (for high Q's)
MODE 1a: Non-Inverting BP, LP (See Figure 8)
$\mathrm{f}_{\mathrm{O}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50}$
Q $=\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{\text {OLP }}=-1 ; H_{O L P(\text { peak })} \cong Q \times H_{\text {OLP }}$ (for high Q's)
$\mathrm{H}_{\mathrm{OBP}_{1}}=-\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{H}_{\mathrm{OBP}_{2}}=1$ (non-inverting)
Circuit dynamics: $\mathrm{H}_{\mathrm{OBP}_{1}}=\mathrm{Q}$
Note: V_{IN} should be driven from a low impedance ($<1 \mathrm{k} \Omega$)

FIGURE 7. MODE 1

TL/H/5066-17
FIGURE 8. MODE 1a

2.0 Modes of Operation (Continued)

MODE 2: Notch 2, Bandpass, Lowpass: $f_{\text {notch }}<f_{o}$ (See Figure 9)
$\mathrm{f}_{\mathrm{o}} \quad=$ center frequency
$=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+1}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+1}$
$\mathrm{f}_{\text {notch }}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50}$
Q $\quad=$ quality factor of the complex pole pair
$=\frac{\sqrt{R 2 / R 4+1}}{R 2 / R 3}$
$H_{\text {OLP }}=$ Lowpass output gain (as $\mathrm{f} \rightarrow 0$)

$$
=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}
$$

$H_{\text {OBP }}=$ Bandpass output gain (at $f=f_{0}$) $=-R 3 / R 1$
$\mathrm{H}_{\mathrm{ON}_{1}}=$ Notch output gain (as $\mathfrak{f} \rightarrow 0$)

$$
=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}
$$

$\mathrm{H}_{\mathrm{ON}_{2}}=$ Notch output gain $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f} \mathrm{CLK}}{2}\right)=-\mathrm{R} 2 / \mathrm{R} 1$
Filter dynamics: $\mathrm{H}_{\mathrm{OBP}}=\mathrm{Q} \sqrt{\mathrm{H}_{\mathrm{OLP}} \mathrm{H}_{\mathrm{ON}}^{2}} \mathrm{a}=Q \sqrt{\mathrm{HON}_{1} \mathrm{H}_{\mathrm{ON}}^{2}}$

TL/H/5066-18
FIGURE 9. MODE 2

*In Mode 3, the feedback loop is closed around the input summing amplifier; the finite GBW product of this op amp causes a slight Q enhancement. If this is a problem, connect a small capacitor ($10 \mathrm{pF}-100 \mathrm{pF}$) across R4 to provide some phase lead.

FIGURE 10. MODE 3

2.0 Modes of Operation (Continued)

MODE 3a: HP, BP, LP and Notch with External Op amp (See Figure 11)
$\mathrm{f}_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
$\mathrm{Q}=\sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{O H P}=-\frac{R 2}{R 1}$
$H_{\text {OBP }}=-\frac{\mathrm{R} 3}{\mathrm{R}_{1}}$
$H_{\text {OLP }}=-\frac{R 4}{R 1}$
$f_{n} \quad=$ notch frequency $=\frac{f_{C L K}}{100} \sqrt{\frac{R_{h}}{R_{l}}}$ or $\frac{f_{C L K}}{50} \sqrt{\frac{R_{h}}{R_{I}}}$
$H_{\text {on }}=$ gain of notch at $f=f_{0}=\left\|Q\left(\frac{R_{g}}{R_{l}} H_{O L P}-\frac{R_{g}}{R_{h}} H_{O H P}\right)\right\|$
$H_{n 1}=$ gain of notch (as $f \rightarrow 0$) $=\frac{R_{g}}{R_{l}} \times H_{O L P}$
$H_{n 2}=$ gain of notch $\left(\right.$ as $\left.f \rightarrow \frac{f_{C L K}}{2}\right)=-\frac{R_{g}}{R_{h}} \times H_{O H P}$

MODE 4: Allpass, Bandpass, Lowpass Outputs (See Figure 12)
$\mathrm{f}_{\mathrm{o}} \quad=$ center frequency
$=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f} \text { CLK }}{50}$;
$f_{\mathbf{z}}^{*}=$ center frequency of the complex zero pair $\cong f_{0}$
$\mathrm{Q} \quad=\frac{\mathrm{f}_{\mathrm{o}}}{\mathrm{BW}}=\frac{\mathrm{R} 3}{\mathrm{R} 2}$;
$\mathrm{Q}_{\mathrm{z}}=$ quality factor of complex zero pair $=\frac{\mathrm{R} 3}{\mathrm{R} 1}$
For AP output make R1 = R2

$$
\begin{aligned}
H^{*} \text { OAP } & =\text { Allpass gain }\left(\text { at } 0<f<\frac{f C L K}{2}\right)=-\frac{R 2}{R 1}=-1 \\
H_{\text {OLP }} & =\text { Lowpass gain (as } f \rightarrow 0) \\
& =-\left(\frac{R 2}{R 1}+1\right)=-2 \\
H_{\text {OBP }} & \left.=\text { Bandpass gain (at } f=f_{0}\right) \\
& =-\frac{R 3}{R 2}\left(1+\frac{R 2}{R 1}\right)=-2\left(\frac{R 3}{R 2}\right)
\end{aligned}
$$

Circuit dynamics: $H_{O B P}=\left(H_{O L P}\right) \times Q=\left(H_{O A P}+1\right) Q$ *Due to the sampled data nature of the filter, a slight mismatch of f_{z} and f_{0} occurs causing a 0.4 dB peaking around f_{o} of the allpass filter amplitude response (which theoretically should be a straight line). If this is unacceptable, Mode 5 is recommended.

FIGURE 11. MODE 3a

TL/H/5066-21
FIGURE 12. MODE 4

2.0 Modes of Operation (Continued)

MODE 5: Numerator Complex Zeros, BP, LP
(See Figure 13)
$\mathrm{f}_{0}=\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f} \mathrm{CLK}}{50}$
$\mathrm{f}_{\mathrm{z}}=\sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}} \times \frac{\mathrm{f} \mathrm{CLK}}{100}$ or $\sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}} \times \frac{\mathrm{f} \mathrm{CLK}}{50}$
$Q=\sqrt{1+\mathrm{R} 2 / \mathrm{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{Q}_{\mathrm{Z}}=\sqrt{1-\mathrm{R} 1 / \mathrm{R} 4} \times \frac{\mathrm{R} 3}{\mathrm{R} 1}$
$\mathrm{H}_{0_{z 1}}=$ gain at C.Z. output (as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$) $=\frac{-\mathrm{R} 2(\mathrm{R} 4-\mathrm{R} 1)}{\mathrm{R} 1(\mathrm{R} 4+\mathrm{R} 2)}$
$\mathrm{H}_{0_{\mathrm{z} 2}}=$ gain at C.Z. output $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=\frac{-\mathrm{R} 2}{\mathrm{R} 1}$
$H_{\mathrm{OBP}}=-\left(=\frac{\mathrm{R} 2}{\mathrm{R} 1}+1\right) \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{\text {OLP }}=-\left(\frac{R 2+R 1}{R 2+R 4}\right) \times \frac{R 4}{R 1}$

MODE 6a: Single Pole, HP, LP Filter (See Figure 14)
$\mathrm{f}_{\mathrm{c}} \quad=$ cutoff frequency of LP or HP output
$=\frac{R 2}{\mathrm{R} 3} \frac{\mathrm{f} \mathrm{CLK}}{100}$ or $\frac{\mathrm{R} 2}{\mathrm{R} 3} \frac{\mathrm{f} \text { CLK }}{50}$
$H_{\text {OLP }}=-\frac{R 3}{R 1}$
$\mathrm{H}_{\mathrm{OHP}}=-\frac{\mathrm{R} 2}{\mathrm{R} 1}$

MODE 6b: Single Pole LP Filter (Inverting and NonInverting) (See Figure 15)
$\mathrm{f}_{\mathrm{c}} \quad=$ cutoff frequency of LP outputs
$\cong \frac{R 2}{\mathrm{R} 3} \frac{\mathrm{f} \mathrm{CLK}}{100}$ or $\frac{\mathrm{R} 2}{\mathrm{R} 3} \frac{\mathrm{fCLK}}{50}$
$\mathrm{H}_{\mathrm{OLP}_{1}}=1$ (non-inverting)
$\mathrm{H}_{\mathrm{OLP}}^{2} 2=-\frac{\mathrm{R} 3}{\mathrm{R} 2}$

FIGURE 13. MODE 5

TL/H/5066-23
FIGURE 14. MODE 6a

FIGURE 15. MODE 6b

2.0 Modes of Operation (Continued)

TABLE I. Summary of Modes. Realizable filter types (e.g. low-pass) denoted by asterisks. Unless otherwise noted, gains of various filter outputs are inverting and adjustable by resistor ratios.

Mode	BP	LP	HP	N	AP	Number of resistors	Adjustable $\mathbf{f C L K}^{\mathbf{f}} \mathrm{f}_{\mathrm{o}}$	Notes
1	*	*		*		3	No	
1a	(2) $\begin{aligned} & \mathrm{H}_{\mathrm{OBP} 1}=-\mathrm{Q} \\ & \mathrm{H}_{\mathrm{OBP} 2}=+1 \\ & \hline \end{aligned}$	$\mathrm{HOLP}^{\text {a }}+1$				2	No	May need input buffer. Poor dynamics for high Q.
2	*	*		*		3	Yes (above $f_{\text {CLK }} / 50$ or $\mathrm{f}_{\mathrm{CLK}} / 100$)	
3	*	*	*			4	Yes	Universal StateVariable Filter. Best general-purpose mode.
3a	*	*	*	*		7	Yes	As above, but also includes resistortuneable notch.
4	*	*			*	3	No	Gives Allpass response with $\mathrm{H}_{\mathrm{OAP}}=-1$ and $\mathrm{H}_{\mathrm{OLP}}=-2$.
5	*	*			*	4		Gives flatter allpass response than above if $R_{1}=R_{2}=0.02 R_{4}$.
6 a		*	*			3		Single pole.
6b		(2) $\begin{aligned} \mathrm{H}_{\mathrm{OLP}} & =+1 \\ \mathrm{H}_{\mathrm{OLP} 2} & =\frac{-\mathrm{R} 3}{\mathrm{R} 2} \end{aligned}$				2		Single pole

3.0 Applications Information

The MF5 is a general-purpose second-order state variable filter whose center frequency is proportional to the frequency of the square wave applied to the clock input (fclk). By connecting pin 9 to the appropriate DC voltage, the filter center frequency f_{0} can be made equal to either $f_{C L K} / 100$ or $\mathrm{f}_{\mathrm{CLK}} / 50$. f_{o} can be very accurately set (within $\pm 0.6 \%$) by using a crystal clock oscillator, or can be easily varied over a wide frequency range by adjusting the clock frequency. If desired, the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ ratio can be altered by external resistors as in Figures $9,10,11,13,14$, and 15. The filter Q and gain are determined by external resistors.
All of the five second-order filter types can be built using the MF5. These are illustrated in Figures 1 through 5 along with their transfer functions and some related equations. Figure 6 shows the effect of Q on the shapes of these curves. When filter orders greater than two are desired, two or more MF5s can be cascaded. The MF5 also includes an uncommitted CMOS operational amplifier for additional signal processing applications.

3.1 DESIGN EXAMPLE

An example will help illustrate the MF5 design procedure. For the example, we will design a 2nd order Butterworth low-pass filter with a cutoff frequency of 200 Hz , and a passband gain of -2 . The circuit will operate from a $\pm 5 \mathrm{~V}$ power supply, and the clock amplitude will be $\pm 5 \mathrm{v}$ (CMOS) levels).

From the specifications, the filter parameters are: $\mathrm{f}_{\mathrm{O}}=200 \mathrm{~Hz}, \mathrm{H}_{\mathrm{OLP}}=-2$, and, for Butterworth response, $\mathrm{Q}=0.707$.
In section 2.0 are several modes of operation for the MF5, each having different characteristics. Some allow adjustment of $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$, others produce different combinations of filter types, some are inverting while others are non-inverting, etc. These characteristics are summarized in Table I. To keep the example simple, we will use mode 1, which has notch, bandpass, and lowpass outputs, and inverts the signal polarity. Three external resistors determine the filter's Q and gain. From the equations accompanying Figure 7 , $Q=R_{3} / R_{2}$ and the passband gain $H_{\text {OLP }}=-R_{2} / R_{1}$. Since the input signal is driving a summing junction through R_{1}, the input impedance will be equal to R_{1}. Start by choosing a value for $R_{1} .10 \mathrm{k}$ is convenient and gives a reasonable input impedance. For HoLp $=-2$, we have:
$R_{2}=-R_{1} H_{\text {OLP }}=10 \mathrm{k} \times 2=20 \mathrm{k}$.
For $Q=0.707$ we have:
$R_{3}=R_{2} Q=20 \mathrm{k} \times 0.707=14.14 \mathrm{k}$. Use 15k.
For operation on $\pm 5 \mathrm{~V}$ supplies, $\mathrm{V}+$ is connected to +5 V , V - to -5 V , and AGND to ground. The power supplies should be "clean" (regulated supplies are preferred) and $0.1 \mu \mathrm{~F}$ bypass capacitors are recommended.

3.0 Applications Information (Continued)

FIGURE 16. 2nd-Order Butterworth Low-Pass Filter of Design
Example. For $\frac{f_{C L K}}{f_{0}}=50$, Connect Pin 9 to +5 V , and Change Clock Frequency to 10 kHz.

FIGURE 17. Butterworth Low-Pass Circuit of Example, but Designed for Single-Supply Operation

3.0 Applications Information (Continued)

TL/H/5066-27
(a) Resistive Divider with Decoupling Capaciter

TL/H/5066-28
(b) Voltage Regulator

(c) Operational Amplifier with Divider

FIGURE 18. Three Ways of Generating $\frac{\mathrm{V}^{+}}{2}$ for Single-supply Operation

For a cutoff frequency of 200 Hz , the external clock can be either 10 kHz with pin 9 connected to $\mathrm{V}^{+}(50: 1)$ or 20 kHz with pin 9 tied to $A_{G N D}$ or V^{-}(100:1). The voltage on the Logic Level Shift pin (7) determines the logic threshold for the clock input. The threshold is approximately 2 V higher than the voltage applied to pin 7 . Therefore, when pin 7 is grounded, the clock logic threshold will be 2V, making it compatible with $0-5$ volt TTL logic levels and ± 5 volt CMOS levels. Pin 7 should be connected to a clean, low-impedance (less than 1000Ω) voltage source.
The complete circuit of the design example is shown for a 100:1 clock ratio in Figure 16.

3.2 SINGLE SUPPLY OPERATION

The MF5 can also operate with a single-ended power supply. Figure 17 shows the example filter with a single-ended power supply. V^{+}is again connected to the positive power supply (8 to 14 volts), and V^{-}is connected to ground. The
 This half-supply point should be very "clean", as any noise appearing on it will be treated as an input to the filter. It can be derived from the supply voltage with a pair of resistors and a bypass capacitor (Figure 18a), or a low-impedance half-supply voltage can be made using a three-terminal voltage regulator or an operational amplifier (Figures $18 b$ and 18c). The passive resistor divider with a bypass capacitor is sufficient for many applications, provided that the time constant is long enough to reject any power supply noise. It is also important that the half-supply reference present a low impedance to the clock frequency, so at very low clock frequencies the regulator or op-amp approaches may be preferable because they will require smaller capacitors to filter the clock frequency. The main power supply voltage should be clean (preferably regulated) and bypassed with $0.1 \mu \mathrm{~F}$.

3.3 DYNAMIC CONSIDERATIONS

The maximum signal handling capability of the MF5, like that of any active filter, is limited by the power supply voltages used. The amplifiers in the MF5 are able to swing to within about 1 volt of the supplies, so the input signals must be kept small enough that none of the outputs will exceed
these limits. If the MF5 is operating on ± 5 volts, for example, the outputs will clip at about $8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$. The maximum input voltage multiplied by the filter gain should therefore be less than $8 V_{p-p}$.
Note that if the filter has high Q, the gain at the lowpass or highpass outputs will be much greater than the nominal filter gain (Figure 6). As an example, a lowpass filter with a Q of 10 will have a 20 dB peak in its amplitude response at f_{0}. If the nominal gain of the filter HOLP is equal to 1 , the gain at f_{o} will be 10 . The maximum input signal at f_{o} must therefore be less than $800 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ when the circuit is operated on ± 5 volt supplies.
Also note that one output can have a reasonable small voltage on it while another is saturated. This is most likely for a circuit such as the notch in Mode 1 (Figure 7). The notch output will be very small at f_{0}, so it might appear safe to apply a large signal to the input. However, the bandpass will have its maximum gain at f_{o} and can clip if overdriven. If one output clips, the performance at the other outputs will be degraded, so avoid overdriving any filter section, even ones whose outputs are not being directly used. Accompanying Figures 7 through 15 are equations labeled "circuit dynamics", which relate the Q and the gains at the various outputs. These should be consulted to determine peak circuit gains and maximum allowable signals for a given application.

3.4 OFFSET VOLTAGE

The MF5's switched capacitor integrators have a higher equivalent input offset voltage than would be found in a typical continuous-time active filter integrator. Figure 19 shows an equivalent circuit of the MF5 from which the output dc offsets can be calculated. Typical values for these offsets are:
$\mathrm{V}_{\text {os } 1}=$ opamp offset $= \pm 5 \mathrm{mV}$
$V_{\text {os2 }}=-185 \mathrm{mV}$ @ 50:1 $\quad-310 \mathrm{mV} @ 100: 1$
$V_{\text {os } 3}=+115 \mathrm{mV}$ @ 50:1 +240 mV @ 100:1
The dc offset at the BP output is equal to the input offset of the lowpass integrator $\left(V_{0 s 3}\right)$. The offsets at the other outputs depend on the mode of operation and the resistor ratios, as described in the following expressions.

3.0 Applications Information (Continued)

Mode 1 and Mode 4

$V_{\mathrm{OS}(\mathrm{N})} \quad=V_{\mathrm{OS} 1}\left(\frac{1}{\mathrm{Q}}+1+\left\|H_{\mathrm{OLP}}\right\|\right)-\frac{V_{\mathrm{OS} 3}}{\mathrm{Q}}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})}$
$=\mathrm{V}_{\mathrm{OS} 3}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})} \quad=\mathrm{V}_{\mathrm{OS}(\mathrm{N})}-\mathrm{V}_{\mathrm{OS} 2}$

Mode 1a

$V_{\text {OS }}$ (N.INV.BP) $=\left(1+\frac{1}{Q}\right) V_{O S 1}-\frac{V_{\text {OS3 }}}{Q}$
$\mathrm{V}_{\mathrm{OS}}(\mathrm{INV} . \mathrm{BP})=\mathrm{V}_{\mathrm{OS} 3}$
$\mathrm{V}_{\mathrm{OS}}(\mathrm{LP}) \quad=\mathrm{V}_{\mathrm{OS}}(\mathrm{N} . \mathrm{INV} . \mathrm{BP})-\mathrm{V}_{\mathrm{OS} 2}$

Mode 2 and Mode 5
$\mathrm{V}_{\mathrm{OS}(\mathrm{N})} \quad=\left(\frac{\mathrm{R} 2}{\mathrm{Rp}}+1\right) \mathrm{V}_{\mathrm{OS} 1} \times \frac{1}{1+\mathrm{R} 2 / \mathrm{R} 4}$
$+V_{\text {OS2 }} \frac{1}{1+R 4 / R 2}-\frac{V_{\text {OS3 }}}{Q \sqrt{1+R 2 / R 4}}:$
$R_{p}=R 1 / / R 2 / / R 4$
$V_{O S(B P)}$
$=V_{\text {OS3 }}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})} \quad=\mathrm{V}_{\mathrm{OS}(\mathrm{N})}-\mathrm{V}_{\mathrm{OS} 2}$
Mode 3
$\mathrm{V}_{\mathrm{OS}(\mathrm{HP})} \quad=\mathrm{V}_{\mathrm{OS} 2}$
$V_{\text {OS(BP) }} \quad=V_{\text {OS3 }}$
$V_{\text {OS(LP) }} \quad=-\frac{R 4}{R 2}\left(\frac{R 2}{R 3} V_{\text {OS3 }}+V_{\text {OS } 2}\right)+$
$-\frac{\mathrm{R} 4}{\mathrm{R} 2}\left(1+\frac{\mathrm{R} 2}{\mathrm{R}_{\mathrm{p}}}\right) \mathrm{V}_{\mathrm{OS} 1} ; \mathrm{R}_{\mathrm{p}}=\mathrm{R} 1 / / \mathrm{R} 3 / / \mathrm{R} 4$

FIGURE 19. Block Diagram Showing MF5 Offset Voltage Sources

FIGURE 20. Method for Trimming $\mathbf{V}_{\mathbf{O S}}$, See Text, Section 3.4

3.0 Applications Information (Continued)

For most applications, the outputs are AC coupled and DC offsets are not bothersome unless large signals are applied to the filter input. However, larger offset voltages will cause clipping to occur at lower ac signal levels, and clipping at any of the outputs will cause gain nonlinearities and will change f_{0} and Q. When operating in Mode 3, offsets can become excessively large if R_{2} and R_{4} are used to make $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$ significantly higher than the nominal value, especially if Q is also high. An extreme example is a bandpass filter having unity gain, a Q of 20 , and $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}=250$ with pin 9 tied to V^{-}(100:1 nominal). $\mathrm{R}_{4} / \mathrm{R}_{2}$ will therefore be equal to 6.25 and the offset voltage at the lowpass output will be about +1.9 V . Where necessary, the offset voltage can be adjusted by using the circuit of Figure 20. This allows adjustment of $\mathrm{V}_{\mathrm{os} 1}$, which will have varying effects on the different outputs as described in the above equations. Some outputs cannot be adjusted this way in some modes, however ($\mathrm{V}_{\mathrm{OS}(\mathrm{BP})}$ in modes 1a and 3, for example).

3.5 SAMPLED DATA SYSTEM CONSIDERATIONS

The MF5 is a sampled data filter, and as such, differs in many ways from conventional continuous-time filters. An important characteristic of sampled-data systems is their effect on signals at frequencies greater than one-half the sampling frequency. (The MF5's sampling frequency is the same as its clock frequency). If a signal with a frequency greater than one-half the sampling frequency is applied to the input of a sampled data system, it will be "reflected" to a frequency less than one-half the sampling frequency. Thus, an input signal whose frequency is $f_{s} / 2+100 \mathrm{~Hz}$ will cause the system to respond as though the input frequency was $f_{s} / 2-100 \mathrm{~Hz}$. This phenomenon is known as "alias-
ing", and can be reduced or eliminated by limiting the input signal spectrum to less than $f_{s} / 2$. This may in some cases require the use of a bandwidth-limiting filter ahead of the MF5 to limit the input spectrum. However, since the clock frequency is much higher than the center frequency, this will often not be necessary.
Another characteristic of sampled-data circuits is that the output signal changes amplitude once every sampling period, resulting in "steps" in the output voltage which occur at the clock rate. (Figure 21) If necessary, these can be "smoothed" with a simple R-C low-pass filter at the MF5 output.
The ratio of $f_{C L K}$ to f_{c} (normally either $50: 1$ or $100: 1$) will also affect performance. A ratio of 100:1 will reduce any aliasing problems and is usually recommended for wideband input signals. In noise sensitive applications, however, a ratio of $50: 1$ may be better as it will result in 3 dB lower output noise. The 50:1 ratio also results in lower DC offset voltages, as discussed in 3.4.
The accuracy of the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ ratio is dependent on the value of Q. This is illustrated in the curves under the heading "Typical Performance Characteristics". As Q is changed, the true value of the ratio changes as well. Unless the Q is low, the error in f_{CLK} / f_{o} will be small. If the error is too large for a specific application, use a mode that allows adjustment of the ratio with external resistors.
It should also be noted that the product of Q and f_{0} should be limited to 300 kHz when $\mathrm{f}_{\mathrm{o}}<5 \mathrm{kHz}$, and to 200 kHz for $\mathrm{f}_{\mathrm{o}}>5 \mathrm{kHz}$.

TL/H/5066-32

FIGURE 21. The Sampled-Data Output Waveform

National

MF6 6th Order Switched Capacitor Butterworth Lowpass Filter

General Description

The MF6 is a versatile easy to use, precision 6th order Butterworth lowpass active filter. Switched capacitor techniques eliminate external component requirements and allow a clock tunable cutoff frequency. The ratio of the clock frequency to the lowpass cutoff frequency is internally set to 50 to 1 (MF6-50) or 100 to 1 (MF6-100). A Schmitt trigger clock input stage allows two clocking options, either selfclocking (via an external resistor and capacitor) for standalone applications, or an external TTL or CMOS logic compatible clock can be used for tighter cutoff frequency control. The maximally flat passband frequency response together with a DC gain of $1 \mathrm{~V} / \mathrm{V}$ allows cascading MF6 sections for higher order filtering. In addition to the filter, two independent CMOS op amps are included on the die and are useful for any general signal conditioning applications.

Features

- No external components
- 14-pin DIP or 14-pin wide-body S.O. package
- Cutoff frequency accuracy of $\pm 0.3 \%$ typical
- Cutoff frequency range of 0.1 Hz to 20 kHz

■ Two uncommitted op amps available

- 5 V to 14 V total supply voltage

■ Cutoff frequency set by external or internal clock

Block and Connection Diagrams

Top View
Order Number MF6CWM-50 or MF6CWM-100
See NS Package Number M14B
Order Number MF6CN-50 or MF6CN-100
See NS Package Number N14A
Order Number MF6CJ-50
or MF6CJ-100
See NS Package Number J14A
Absolute Maximum Ratings (Note 11)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	14 V
Voltage at Any Pin	$\mathrm{V}--0.2 \mathrm{~V}, \mathrm{~V}+$0.2 V Input Current at Any Pin (Note 13)
Package Input Current (Note 13)	20 mA
Power Dissipation (Note 14)	500 mW
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Susceptibility (Note 12)	800 V
Soldering Information	
N Package (10 sec.)	$260^{\circ} \mathrm{C}$
J Package (10 sec.)	$300^{\circ} \mathrm{C}$
SO Package	$215^{\circ} \mathrm{C}$
Vapor Phase (60 sec.$)$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Operating Ratings (Note 11)

Temperature Range $\quad T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
MF6CN-50, MF6CN-100 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
MF6CWM-50, MF6CWM-100 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
MF6CJ-50, MF6CJ-100 $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Supply Voltage ($\mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}-\mathrm{V}^{-}$) 5 V to 14 V

Filter Electrical Characteristics The following specifications apply for folk $\leq 250 \mathrm{kHz}$ (see Note 3) unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	MF6CWM-50, MF6CWM-100, MF6CN-50, MF6CN-100			MF6CJ-50, MF6CJ-100			Units	
		Typical (Note 8)	Tested Limit (Note 9)		Typical (Note 8)	Tested Limit (Note 9)	$\begin{gathered} \text { Design } \\ \text { Limit } \\ (\text { Note 10) } \\ \hline \end{gathered}$			
$\mathbf{v}^{+}=+5 \mathrm{~V}, \mathbf{V}^{-}=-5 \mathrm{~V}$										
f_{c}, Cutoff MF6 Frequency Range (Note 1)	$\begin{array}{cc} 6-50 & \mathrm{Min} \\ & \mathrm{Max} \\ \text { 6-100 } & \mathrm{Min} \\ & \text { Max } \end{array}$					0.1 20k 0.1 10k			$\begin{gathered} 0.1 \\ 20 k \\ 0.1 \\ 10 k \end{gathered}$	Hz
Total Supply Current		$\mathrm{f}_{\text {CLK }}=250 \mathrm{kHz}$	4.0	6.0	8.5	4.0	8.5		mA	
Maximum Clock Feedthrough	Filter Output Op Amp 1 Out Op Amp 2 Out		$\begin{aligned} & 30 \\ & 25 \\ & 20 \end{aligned}$			$\begin{aligned} & 30 \\ & 25 \\ & 20 \end{aligned}$			mV (peak-topeak)	
H_{0}, DC Gain		$\begin{aligned} & R_{\text {source }} \\ & \leq 2 \mathrm{k} \Omega \\ & \hline \end{aligned}$	0.0	± 0.30	± 0.30	0.0	± 0.30		dB	
$\mathrm{fCLK} / \mathrm{f}_{\mathrm{c}}$, Clock to Cutoff Frequency Ratio	$\begin{array}{r} \text { MF6-50 } \\ \text { MF6-100 } \end{array}$		$\left\|\begin{array}{c} 49.27 \pm 0.3 \% \\ 98.97 \pm 0.3 \% \end{array}\right\|$	$\begin{aligned} & 49.27 \pm 1 \% \\ & 98.97 \pm 1 \% \end{aligned}$	$\begin{aligned} & 49.27 \pm 1 \% \\ & 98.97 \pm 1 \% \end{aligned}$	$\left\|\begin{array}{l} 49.27 \pm 0.3 \% \\ 98.97 \pm 0.3 \% \end{array}\right\|$	$\begin{aligned} 49.27 & \pm 1 \% \\ 98.97 & \pm 1 \% \end{aligned}$			
DC Offset Voltage	$\begin{array}{r} \text { MF6-50 } \\ \text { MF6-100 } \\ \hline \end{array}$		$\begin{aligned} & -200 \\ & -400 \end{aligned}$			$\begin{aligned} & -200 \\ & -400 \end{aligned}$			mV	
Minimum Output Voltage Swing		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & +4.0 \\ & -4.1 \\ & \hline \end{aligned}$	$\begin{aligned} & +3.5 \\ & -3.8 \end{aligned}$	$\begin{array}{r} +3.5 \\ -3.5 \end{array}$	$\begin{aligned} & +4.0 \\ & -4.1 \end{aligned}$	$\begin{array}{r} +3.5 \\ -3.5 \end{array}$		V	
Maximum Output Short Circuit Current (Note 6)	Source Sink		$\begin{aligned} & 50 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 60 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 80 \\ & 3.0 \end{aligned}$		mA	
Dynamic Range (Note 2)	$\begin{array}{r} \text { MF6-50 } \\ \text { MF6-100 } \end{array}$		$\begin{aligned} & 83 \\ & 81 \end{aligned}$			$\begin{aligned} & 83 \\ & 81 \end{aligned}$			dB	
Additional MF6-50 Magnitude Response Test Points (Note 4) MF6-100		$\begin{aligned} & \mathrm{f} \mathrm{CLK}=250 \mathrm{kHz} \\ & \mathrm{f}=6000 \mathrm{~Hz} \\ & \mathrm{f}=4500 \mathrm{~Hz} \\ & \hline \end{aligned}$	$\begin{array}{r} -9.47 \\ -0.92 \\ \hline \end{array}$	$\left\|\begin{array}{l} -9.47 \pm 0.5 \\ -0.92 \pm 0.2 \end{array}\right\|$	$\left\lvert\, \begin{gathered} -9.47 \pm 0.65 \\ -0.92 \pm 0.3 \end{gathered}\right.$	$\begin{array}{r} -9.47 \\ -0.92 \\ \hline \end{array}$	$\left\|\begin{array}{r\|} -9.47 \\ -0.92 \pm 0.65 \\ \hline \end{array}\right\|$		dB	
		$\begin{aligned} & \mathrm{f} \mathrm{CLK}=250 \mathrm{kHz} \\ & \mathrm{f}=3000 \mathrm{~Hz} \\ & \mathrm{f}=2250 \mathrm{~Hz} \end{aligned}$	$\begin{array}{r} -9.48 \\ -0.97 \end{array}$	$\left\|\begin{array}{l} -9.48 \pm 0.5 \\ -0.97 \pm 0.2 \end{array}\right\|$	$\left\lvert\, \begin{array}{\|c\|} -9.48 \pm 0.65 \\ -0.97 \pm 0.3 \\ \hline \end{array}\right.$	$\begin{array}{r} -9.48 \\ -0.97 \\ \hline \end{array}$	$\left\|\begin{array}{c} -9.48 \pm 0.65 \\ -0.97 \pm 0.3 \end{array}\right\|$		dB	

Filter Electrical Characteristics (Continued) The following specifications apply for fCLK $\leq 250 \mathrm{kHz}$ (see
Note 3) unless otherwise specified. Boldface limits apply for $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	MF6CWM-50, MF6CWM-100 MF6CN-50, MF6CN-100			MF6CJ-50, MF6CJ-100			Units
		Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Typical (Note 8)	Tested Limit (Note 9)	$\begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \end{gathered}$	
$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$ (Continued)								
Attenuation Rate MF6-50	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \mathrm{f}_{1}=6000 \mathrm{~Hz} \\ & \mathrm{f}_{2}=8000 \mathrm{~Hz} \end{aligned}$		-36	-36		-36		dB/ octave
MF6-100	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \mathrm{f}_{1}=3000 \mathrm{~Hz} \\ & \mathrm{f}_{2}=4000 \mathrm{~Hz} \end{aligned}$		-36	-36		-36		dB/ octave
$\mathrm{V}^{+}=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$								
f_{C}, Cutoff MF6-50 Min Frequency Max Range MF6-100 Min (Note 1) Max				$\begin{aligned} & 0.1 \\ & 10 k \\ & 0.1 \\ & 5 k \end{aligned}$			$\begin{gathered} 0.1 \\ 10 k \\ 0.1 \\ 5 k \end{gathered}$	Hz
Total Supply Current	$\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$	2.5	4.0	4.0	2.5	4.0		mA
Maximum Clock Filter Output Feedthrough Op Amp 1 Out Op Amp 2 Out		$\begin{aligned} & 20 \\ & 15 \\ & 10 \\ & \hline \end{aligned}$			$\begin{aligned} & 20 \\ & 15 \\ & 10 \\ & \hline \end{aligned}$			
H_{0}, DC Gain	$\mathrm{R}_{\text {source }} \leq 2 \mathrm{k} \Omega$	0.0	± 0.30	± 0.30	0.0	± 0.30		dB
$\mathrm{f}_{\text {CLK }} / f_{c}$, Clock to Cutoff Frequency Ratio MF6-50\quadMF6-100 \mathbf{l}		$\begin{array}{\|} 49.45 \pm 0.3 \% \\ 99.35 \pm 0.3 \% \\ \hline \end{array}$	$\begin{aligned} & 49.45 \pm 1 \% \\ & 99.35 \pm 1 \% \end{aligned}$	$\begin{array}{r} 49.45 \pm 2.5 \% \\ 99.35 \pm 1.25 \% \\ \hline \end{array}$	$\begin{aligned} & 49.45 \pm 0.3 \% \\ & 99.35 \pm 0.3 \% \\ & \hline \end{aligned}$	$\begin{gathered} 49.45 \pm 2.5 \% \\ 99.35 \pm 1.25 \% \end{gathered}$		
DC MF6-50 Offset Voltage MF6-100		$\begin{aligned} & -200 \\ & -400 \end{aligned}$			$\begin{aligned} & -200 \\ & -400 \end{aligned}$			mV
Minimum Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & +1.5 \\ & -2.2 \end{aligned}$	$\begin{aligned} & +1.0 \\ & -1.7 \end{aligned}$	$\begin{array}{r} +1.0 \\ -1.5 \end{array}$	+1.5 -2.2	+1.0 -1.5		V
Maximum Output Source Short Circuit Sink Current (Note 6)		$\begin{aligned} & 28 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 40 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 28 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 50 \\ & 1.5 \end{aligned}$		mA
Dynamic Range (Note 2)		77			77			dB
Additional MF6-50 Magnitude Response Test Pren	$\begin{aligned} & \mathrm{f} C L K=250 \mathrm{kHz} \\ & \mathrm{f}=6000 \mathrm{~Hz} \\ & \mathbf{f}=4500 \mathrm{~Hz} \end{aligned}$	$\begin{array}{r} -9.54 \\ -0.96 \\ \hline \end{array}$	$\begin{array}{\|} -9.54 \pm 0.5 \\ -0.96 \pm 0.2 \\ \hline \end{array}$	$\begin{array}{r} -9.54 \pm 0.65 \\ -0.96 \pm 0.3 \\ \hline \end{array}$	$\begin{array}{r} -9.54 \\ -0.96 \\ \hline \end{array}$	$\begin{array}{r} -9.54 \pm 0.65 \\ -0.96 \pm 0.3 \\ \hline \end{array}$		dB
Points (Note 4) MF6-100	$\begin{aligned} & \mathrm{f} \text { CLK }=250 \mathrm{kHz} \\ & \mathrm{f}=3000 \mathrm{~Hz} \\ & \mathbf{f}=2250 \mathrm{~Hz} \end{aligned}$	$\begin{array}{r} -9.67 \\ -1.01 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & -9.67 \pm 0.5 \\ & -1.01 \pm 0.2 \end{aligned}\right.$	$\begin{gathered} -9.67 \pm 0.65 \\ -1.01 \pm 0.3 \\ \hline \end{gathered}$	$\begin{array}{r} -9.67 \\ -1.01 \\ \hline \end{array}$	$\begin{gathered} -9.67 \pm 0.65 \\ -1.01 \pm 0.3 \end{gathered}$		dB
Attenuation MF6-50 Rate	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \mathrm{f}_{1}=6000 \mathrm{~Hz} \\ & \mathrm{f}_{2}=8000 \mathrm{~Hz} \end{aligned}$		-36	-36		-36		dB/ octave
MF6-100	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz} \\ & \mathrm{f}_{1}=3000 \mathrm{~Hz} \\ & \mathrm{f}_{2}=4000 \mathrm{~Hz} \end{aligned}$		-36	-36		-36		dB/ octave

Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	MF6CN-50, MF6CN-100, MF6CWM-50, MF6CWM-100			MF6CJ-50, MF6CJ-100			Units
		Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	
$\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$								
Input Offset Voltage		± 8.0	± 20	± 20	± 8.0	± 20		mV
Input Bias Current		10			10			pA
CMRR (Op Amp \#2 Only)	$\begin{aligned} & V_{\mathrm{CM} 1}=1.8 \mathrm{~V}, \\ & V_{\mathrm{CM} 2}=-2.2 \mathrm{~V} \end{aligned}$	60	55		60	55		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & +4.0 \\ & -4.5 \end{aligned}$	$\begin{aligned} & +3.8 \\ & -4.0 \end{aligned}$	$\begin{array}{r} +3.6 \\ -4.0 \end{array}$	$\begin{aligned} & +4.0 \\ & -4.5 \end{aligned}$	$\begin{array}{r} +3.6 \\ -4.0 \end{array}$		V
Maximum Output Short Source Circuit Current (Note 6) Sink		$\begin{array}{r} 54 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 65 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 6.0 \\ \hline \end{array}$	$\begin{aligned} & 54 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 6.0 \\ \hline \end{array}$		mA
Slew Rate		7.0			7.0			$\mathrm{V} / \mu \mathrm{s}$
DC Open Loop Gain		72		65	72		65	dB
Gain Bandwidth Product		1.2			1.2			MHz
$\mathbf{V +}=+2.5 \mathrm{~V}, \mathrm{~V}^{-}=-2.5 \mathrm{~V}$								
Input Offset Voltage		± 8.0	± 20	± 20	± 8.0	± 20		mV
Input Bias Current		10			10			pA
CMRR (Op-Amp \#2 Only)	$\begin{aligned} & V_{\mathrm{CM} 1}=+0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM} 2}=-0.9 \mathrm{~V} \end{aligned}$	60	55		60	55		dB
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & +1.5 \\ & -2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.3 \\ & -1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.1 \\ & -1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & +1.5 \\ & -2.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +1.1 \\ -1.7 \end{array}$		V
Maximum Output Short Source Circuit Current (Note 6) Sink		$\begin{aligned} & 24 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 50 \\ 4.0 \end{array}$	$\begin{aligned} & 24 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 50 \\ 4.0 \\ \hline \end{array}$		mA
Slew Rate		6.0			6.0			$\mathrm{V} / \mu \mathrm{s}$
DC Open Loop Gain		67		60	67		60	dB
Gain Bandwidth Product		1.2			1.2			MHz

Logic Input-Output Electrical Characteristics The following specifications apply for $\mathrm{V}^{-}=\mathrm{ov}$
(see Note 5) unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	MF6CN-50, MF6CN-100 MF6CWM-50, MF6CWM-100			MF6CJ-50, MF6CJ-100			Units
		Typical (Note 8)	Tested Limit (Note 9)	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{array}$	Typical (Note 8)	Tested Limit (Note 9)	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{array}$	

TTL CLOCK INPUT, CLK R PIN (Note 7)

$\text { Maximum } V_{I L} \text {, Logical " } 0 \text { " }$ Input Voltage					0.8	0.8		0.8	V
Minimum $\mathrm{V}_{\mid \mathrm{H}}$, Logical " 1 " Input Voltage					2.0	2.0		2.0	V
Maximum Leakage Current at CLK R Pin		L Sh Pin at Mid- Supply			2.0	2.0		2.0	$\mu \mathrm{A}$
SCHMITT TRIGGER									
$\mathrm{V}_{\mathrm{T}+}$, Positive Going Threshold Voltage	Min Max	$V+=10 \mathrm{~V}$		7.0	$\begin{aligned} & 6.1 \\ & 8.9 \end{aligned}$	$\begin{aligned} & \hline 6.1 \\ & 8.9 \\ & \hline \end{aligned}$	7.0	$\begin{aligned} & 6.1 \\ & 8.9 \end{aligned}$	V
	Min Max	$V+=5 \mathrm{~V}$		3.5	$\begin{aligned} & 3.1 \\ & 4.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.1 \\ & 4.4 \\ & \hline \end{aligned}$	3.5	$\begin{array}{r} 3.1 \\ 4.4 \end{array}$	V
$\mathrm{V}_{\mathrm{T}-\text {, Negative }}$ Going Threshold Voltage	$\begin{array}{\|l\|} \hline \text { Min } \\ \text { Max } \\ \hline \end{array}$	$V+=10 \mathrm{~V}$		3.0	$\begin{aligned} & 1.3 \\ & 3.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3 \\ & 3.8 \\ & \hline \end{aligned}$	3.0	$\begin{aligned} & 1.3 \\ & 3.8 \end{aligned}$	V
	Min Max	$V+=5 \mathrm{~V}$		1.5	$\begin{aligned} & 0.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.9 \end{aligned}$	1.5	$\begin{aligned} & 0.6 \\ & 1.9 \end{aligned}$	V
Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)	Min Max	$V+=10 \mathrm{~V}$		4.0	$\begin{aligned} & 2.3 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 7.6 \\ & \hline \end{aligned}$	4.0	2.3	V
	Min Max	$V+=5 \mathrm{~V}$		2.0	$\begin{aligned} & 1.2 \\ & 3.8 \end{aligned}$	$\begin{array}{r} 1.2 \\ 3.8 \\ \hline \end{array}$	2.0	$\begin{aligned} & 1.2 \\ & 3.8 \end{aligned}$	V
Minimum Logical "1" Output Voltage (Pin 11)		$\mathrm{I}_{0}=-10 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}+=10 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 4.5 \\ & \hline \end{aligned}$	V
Maximum Logical "0" Output Voltage (Pin 11)		$\mathrm{I}_{0}=10 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{V}+=10 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.5 \\ & \hline \end{aligned}$	V
Minimum Output Source Current (Pin 11)		CLK R Tied to Ground	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 3.0 \\ 0.75 \end{gathered}$	$\begin{gathered} 3.0 \\ 0.75 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 3.0 \\ 0.75 \end{gathered}$	mA
Maximum Output Sink Current (Pin 11)		CLK R Tied to V^{+}	$\begin{aligned} & V^{+}=10 \mathrm{~V} \\ & V^{+}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 1.3 \end{aligned}$	$\begin{gathered} 2.5 \\ 0.65 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 0.65 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.65 \end{aligned}$	mA

Note 1: The cutoff frequency of the filter is defined as the frequency where the magnitude response is 3.01 dB less than the DC gain of the filter.
Note 2: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to 2.82 Vrms (4 V peak) where the wideband noise over a 20 kHz bandwidth is typically $200 \mu \mathrm{Vrms}$ for the MF6-50 and $250 \mu \mathrm{Vrms}$ for the MF6-100. For $\pm 2.5 \mathrm{~V}$ supplies the dynamic range is reterenced to 1.06 Vrms (1.5 V peak) where the wideband noise over a 20 kHz bandwidth is typically $140 \mu \mathrm{Vrms}$ for both the MF6-50 and the MF6-100.
Note 3: The specifications for the MF6 have been given for a clock frequency (f CLK) of 250 kHz and less. Above this clock frequency the cutoff frequency begins to deviate from the specified error band of $\pm 1.0 \%$ but the filter still maintains its magnitude characteristics. See Application Hints, Section 1.5 .
Note 4: Besides checking the cutoff frequency $\left(f_{c}\right)$ and the stopband attenuation at $2 f_{c}$, two additional frequencies are used to check the magnitude response of the filter. The magnitudes are referenced to a DC gain of 0.0 dB .
Note 5: For simplicity all the logic levels have been referenced to $\mathrm{V}^{-}=0 \mathrm{~V}$ and will scale accordingly for $\pm 5 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V}$ supplies (except for the TTL input logic levels).
Note 6: The short circuit source current is measured by forcing the output that is being tested to its maximum positive voltage swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage swing and then shorting that output to the positive supply. These are the worst-case conditions.
Note 7: The MF6 is operating with symmetrical split supplies and L.Sh is tied to ground.
Note 8: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 9: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level.
Note 10: Design limits are guaranteed, but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified conditions.
Note 12: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 13: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{N}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 14: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the MF6CN when board mounted is $67^{\circ} \mathrm{C} / \mathrm{W}$. For the MF6CJ this number decreases to $62^{\circ} \mathrm{C} / \mathrm{W}$. For MF6CWM, $\theta_{\mathrm{JA}}=78^{\circ} \mathrm{C} / \mathrm{W}$.

Typical Performance Characteristics

Typical Performance Characteristics (Continued)

Power Supply Current vs Temperature

Power Supply Current vs Power Supply Voltage

Typical Performance Characteristics (Continued)

DC Gain Deviation vs Temperature

DC Gain Deviation vs Power Supply Voltage

$\mathbf{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$ Deviation vs Power Supply Voltage

$\mathrm{f}_{\mathrm{cLK}} / \mathrm{f}_{\mathrm{c}}$ Deviation vs Power Supply Voltage

TL/H/5065-36
DC Gain Deviation vs Clock Frequency

DC Gain Deviation vs Clock Frequency

TL/H/5065-39

TL/H/5065-10
From Either Opamp to Filter Output

TL/H/5065-11

Pin Descriptions (Pin Numbers)

Pin
FILTER OUT (3)

FILTER IN (8)

VosADJ (7)

AGND (5)
V_{O1} (4),
INV1 (13)

Description
The output of the lowpass filter. It will typically sink 0.9 mA and source 3 mA and swing to within 1V of each supply rail. The input to the lowpass filter. To minimize gain errors the source impedance that drives this input should be less than 2 k (see section 1.4). For single supply operation the input signal must be biased to mid-supply or AC coupled.
This pin is used to adjust the DC offset of the filter output; if not used it must be tied to the AGND potential. (See section 1.3)

The analog ground pin. This pin sets the DC bias level for the filter section and the noninverting input of Op-Amp \#1 and must be tied to the system ground for split supply operation or to mid-supply for single supply operation (see section 1.2). When tied to mid-supply this pin should be well bypassed.
$\mathrm{V}_{\mathrm{O} 1}$ is the output and INV1 is the inverting input of Op-Amp \#1. The non-inverting input of this Op-Amp is internally connected to the AGND pin.

Description

$V_{\mathrm{O} 2}$ is the output, INV2 is the inverting input, and NINV2 is the non-inverting input of Op-Amp \#2.
The positive and negative supply pins. The total power supply range is 5 V to 14 V . Decoupling these pins with $0.1 \mu \mathrm{~F}$ capacitors is highly recommended.
A CMOS Schmitt-trigger input to be used with an external CMOS logic level clock. Also used for self-clocking Schmitt-trigger oscillator (see section 1.1). A TTL logic level clock input when in split supply operation ($\pm 2.5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$) and L . Sh tied to system ground. This pin becomes a low impedance output when L . Sh is tied to V^{-}. Also used in conjunction with the CLK IN pin for a self clocking Schmitt-trigger oscillator (see section 1.1). Level shift pin, selects the logic threshold levels for the desired clock. When tied to V^{-}it enables an internal tri-state buffer stage between the Schmitt trigger and the internal clock level shift stage thus enabling the CLK IN Schmitttrigger input and making the CLK R pin a low impedance output.

Pin Descriptions (Pin Numbers) (Continued)

Pin
L. Sh (cont.) Description
When the voltage level at this input exceeds [25\%($\mathrm{V}^{+}-\mathrm{V}^{-}$) $+\mathrm{V}^{-}$] the internal tri-state buffer is disabled allowing the CLK R pin to become the clock input for the internal clock level shift stage. The CLK R threshold level is now 2 V above the voltage applied to the L . Sh pin. Driving the CLK R pin with TTL logic levels can be accomplished through the use of split supplies and by tying the L. Sh pin to system ground.

1.0 MF6 Application Hints

The MF6 is comprised of a non-inverting unity gain lowpass sixth order Butterworth switched capacitor filter section and two undedicated CMOS Op-Amps. The switched capacitor topology makes the cutoff frequency (where the gain drops
3.01 dB below the DC gain) a direct ratio (100:1 or $50: 1$) of the clock frequency supplied to the lowpass filter. Internal integrator time constants set the filter's cutoff frequency. The resistive element of these integrators is actually a capacitor which is "switched" at the clock frequency (for a detailed discussion see Input Impedance Section). Varying the clock frequency changes the value of this resistive element and thus the time constant of the integrators. The clock to cutoff frequency ratio $\left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}\right)$ is set by the ratio of the input and feedback capacitors in the integrators. The higher the clock to cutoff frequency ratio (or the sampling rate) the closer this approximation is to the theoretical Butterworth response. The MF6 is available in $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{c}}$ ratios of 50:1 (MF6-50) or 100:1 (MF6-100).

1.1 CLOCK INPUTS

The MF6 has a Schmitt-trigger inverting buffer which can be used to construct a simple R/C oscillator. The oscillator's frequency is dependent on the buffer's threshold levels as well as on the resistor/capacitor tolerance (see Figure 1).

FIGURE 1. Schmitt Trigger R/C Oscillator

FIGURE 2. Dual Supply Operation MF6 Driven with CMOS Logic Level Clock
$\left(\mathrm{V}_{\mathbf{I H}} \geq 0.8 \mathrm{~V}_{\mathrm{CC}}\right.$ and $\mathrm{V}_{\mathrm{IL}} \leq 0.2 \mathrm{~V}_{\mathbf{C C}}$ where $\left.\mathrm{V}_{\mathrm{CC}}=\mathrm{V}^{+}-\mathrm{V}^{-}\right)$

TL/H/5065-4
FIGURE 3. Dual Supply Operation MF6 Driven with TTL Logic Level Clock

Application Hints (Continued)

TL/H/5065-14
a) Resistor Biasing of AGND

b) Using Op-Amp 2 to Buffer AGND

Application Hints (Continued)

FIGURE 5. Vos Adjust Schemes

Schmitt-trigger threshold voltage levels can change significantly causing the R/C oscillator's frequency to vary greatly from part to part.
Where accuracy in f_{c} is required an external clock can be used to drive the CLK R input of the MF6. This input is TTL logic level compatible and also presents a very light load to the external clock source ($\sim 2 \mu \mathrm{~A}$) with split supplies and L . Sh tied to system ground. The logic level is programmed by the voltage applied to level shift (L. Sh) pin (See the Pin description for L. Sh pin).

1.2 POWER SUPPLY BIASING

The MF6 can be biased from a single supply or dual split supplies. The split supply mode shown in Figures 2 and 3 is the most flexible and easiest to implement. As discussed earlier split supplies, $\pm 5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$, will enable the use of TTL or CMOS clock logic levels. Figure 4 shows two schemes for single supply biasing. In this mode only CMOS clock logic levels can be used.

1.3 OFFSET ADJUST

The VosADJ pin is used in adjusting the output offset level of the filter section. If this pin is not used it must be tied to the analog ground (AGND) level, either mid-supply for single ended supply operation or ground for split supply operation. This pin sets the zero reference for the output of the filter. The implementation of this pin can be seen in Figure 5. In $5(\mathrm{a})$, DC offset is adjusted using a potentiometer; in 5(b), the Op-Amp integrator circuit keeps the average DC output level at AGND. The circuit in 5(b) is therefore appropriate only for AC-coupled signals and signals biased at AGND.

1.4 INPUT IMPEDANCE

The MF6 lowpass filter input (FILTER IN pin) is not a high impedance buffer input. This input is a switched capacitor resistor equivalent, and its effective impedance is inversely proportional to the clock frequency. The equivalent circuit of the input to the filter can be seen in Figure 6. The input capacitor charges to the input voltage ($\mathrm{V}_{\text {in }}$) during one half of the clock period, during the second half the charge is

TL/H/5065-18
a) Equivalent Circuit for MF6 Filter Input

TL/H/5065-19
b) Actual Circuit for MF6 Filter Input

FIGURE 6. MF6 Filter Input
transferred to the feedback capacitor. The total transfer of charge in one clock cycle is therefore $\mathrm{Q}=\mathrm{C}_{\mathrm{in}} \mathrm{V}_{\mathrm{in}}$, and since current is defined as the flow of charge per unit time the average input current becomes

$$
l_{\text {in }}=Q / T
$$

(where T equals one clock period) or

$$
\mathrm{l}_{\text {in }}=\frac{\mathrm{C}_{\text {in }} V_{\text {in }}}{T}=C_{\text {in }} V_{\text {inf }}
$$

The equivalent input resistor $\left(R_{\text {in }}\right)$ then can be defined as

$$
\mathrm{R}_{\text {in }}=\mathrm{V}_{\text {in }} / l_{\text {in }}=\frac{1}{\mathrm{C}_{\text {in }} \mathrm{f}_{\mathrm{CLK}}}
$$

The input capacitor is 2 pF for the MF6-50 and 1 pF for the

Application Hints (Continued)

MF6-100, so for the MF6-100

$$
R_{\text {in }}=\frac{1 \times 10^{12}}{f_{C L K}}=\frac{1 \times 10^{12}}{f_{\mathrm{c}} \times 100}=\frac{1 \times 10^{10}}{f_{\mathrm{C}}}
$$

and

$$
R_{\text {in }}=\frac{5 \times 10^{11}}{f_{C L K}}=\frac{5 \times 10^{11}}{f_{c} \times 50}=\frac{1 \times 10^{10}}{f_{c}}
$$

for the MF6-50. As shown in the above equations for a given cutoff frequency (f_{c}) the input impedance remains the same for the MF6-50 and the MF6-100. The higher the clock to center frequency ratio, the greater equivalent input resistance for a given clock frequency. As the cutoff frequency increases the equivalent input impedance decreases. This input resistance will foim a voltage divider with the source impedance ($\mathrm{R}_{\text {source }}$). Since $\mathrm{R}_{\text {in }}$ is inversely proportiona! to the cutoff frequency, operation at higher cutoff frequencies will be more likely to load the input signal which would appear as an overall decrease in gain to the output of the filter. Since the filter's ideal gain is unity its overall gain is given by:

$$
A_{v}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {source }}}
$$

If the MF6-50 or the MF6-100 were set up for a cutoff frequency of 10 kHz the input impedance would $b \in$:

$$
R_{\text {in }}=\frac{1 \times 10^{10}}{10 \mathrm{kHz}}=1 \mathrm{M} \Omega
$$

In this example with a source impedance of 10 k the overall gain, if the MF6 had an ideal gain of 1 or 0 dB , would be:

$$
A_{v}=\frac{1 \mathrm{M} \Omega}{10 \mathrm{k} \Omega+1 \mathrm{M} \Omega}=0.99009 \text { or }-86.4 \mathrm{mdB}
$$

TL/H/5065-20
FIGURE 7a. MF6-100 $\pm 5 \mathrm{~V}$ Supplies Amplitude Response

TL/H/5065-22
FIGURE 7c. MF6-100 $\pm 2.5 \mathrm{~V}$ Supplies Amplitude Response

Since the maximum overall gain error for the MF6 is $\pm 0.3 \mathrm{~dB}$ with a $R_{\mathrm{s}} \leq 2 \mathrm{k} \Omega$ the actual gain error for this case would be +0.21 dB to -0.39 dB .

1.5 CUTOFF FREQUENCY RANGE

The filter's cutoff frequency (f_{c}) has a lower limit caused by leakage currents through the internal switches discharging the stored charge on the capacitors. At lower clock frequencies these leakage currents can cause millivolts of error, for example:

$$
\begin{gathered}
f_{C L K}=100 \mathrm{~Hz}, \mathrm{I}_{\text {leakage }}=1 \mathrm{pA}, C=1 \mathrm{pF} \\
\mathrm{~V}=\frac{1 \mathrm{pA}}{1 \mathrm{pF}(100 \mathrm{~Hz})}=10 \mathrm{mV}
\end{gathered}
$$

The propagation delay in the logic and the settling time required to acquire a new voltage level on the capacitors increases as the MF6 power supply voltage decreases. This causes a shift in the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{C}}$ ratio which will become noticeable when the clock frequency exceeds 250 kHz . The amplitude characteristic will stay within tolerance until fCLK exceeds 500 kHz and will peak at about 0.5 dB at the corner frequency with a 1 MHz clock. The response of the MF6 is still a reasonable approximation of the ideal Butterworth lowpass characteristic as can be seen in Figure 7.

2.0 Designing with the MF6

Given any lowpass filter specification two equations will come in handy in trying to determine whether the MF6 will do the job. The first equation determines the order of the lowpass filter required:

$$
\begin{equation*}
n=\frac{\log \left(10^{0.1} A_{\min }-1\right)-\log \left(10^{0.1} A_{\max }-1\right)}{2 \log \left(f_{\mathrm{s}} / f_{\mathrm{b}}\right)} \tag{1}
\end{equation*}
$$

TL/H/5065-21
FIGURE 7b. MF6-50 $\pm 5 \mathrm{~V}$ Supplies Amplitude Response

TL/H/5065-23
FIGURE 7d. MF6-50 $\pm 2.5 \mathrm{~V}$ Supplies Amplitude Response

Designing with the MF6 (Continued)

where n is the order of the filter, $A_{\text {min }}$ is the minimum stopband attenuation (in dB) desired at frequency f_{S}, and $\mathrm{A}_{\text {max }}$ is the passband ripple or attenuation (in dB) at frequency f_{b}. If the result of this equation is greater than 6 , then more than a single MF6 is required.
The attenuation at any frequency can be found by the following equation:

$$
\begin{equation*}
\operatorname{Attn}(f)=10 \log \left[1+\left(10^{\left.\left.0.1 A_{\max }-1\right)\left(f / f_{b}\right)^{2 n}\right] d B}\right.\right. \tag{2}
\end{equation*}
$$

where $n=6$ (the order of the filter).

2.1 A LOWPASS DESIGN EXAMPLE

Suppose the amplitude response specification in Figure 8 is given. Can the MF6 be used? The order of the Butterworth approximation will have to be determined using eq. 1:

$$
\begin{gathered}
A_{\min }=30 \mathrm{~dB}, A_{\max }=1.0 \mathrm{~dB}, \mathrm{f}_{\mathrm{S}}=2 \mathrm{kHz}, \text { and } \mathrm{f}_{\mathrm{b}}=1 \mathrm{kHz} \\
\mathrm{n}=\frac{\log \left(10^{3}-1\right)-\log \left(10^{0.1}-1\right)}{2 \log (2)}=5.96
\end{gathered}
$$

Since n can only take on integer values, $\mathrm{n}=6$. Therefore the MF6 can be used. In general, if n is 6 or less a single MF6 stage can be utilized.
Likewise, the attenuation at f_{s} can be found using equation 2 with the above values and $\mathrm{n}=6$ giving:

$$
\begin{aligned}
\text { Atten }(2 \mathrm{kHz}) & =10 \log \left[1+\left(10^{0.1}-1\right)(2 \mathrm{kHz} / 1 \mathrm{kHz})^{12}\right] \\
& =30.26 \mathrm{~dB}
\end{aligned}
$$

This result also meets the design specification given in Figure 8 again verifying that a single MF6 section will be adequate.

FREQUENCY (Hz)
TL/H/5065-24
FIGURE 8. Design Example Magnitude Response Specification Where the Response of the Filter Design Must Fall Within the Shaded Area of the Specification
Since the MF6's cutoff frequency f_{c}, which corresponds to a gain attenuation of -3.01 dB , was not specified in this example it needs to be calculated. Solving equation 2 where f $=f_{c}$ as follows:

$$
\begin{aligned}
f_{c} & =f_{b}\left[\frac{\left(10^{0.1(3.01 \mathrm{~dB})-1)}\right.}{\left(10^{\left.0.1 A_{\max }-1\right)}\right.}\right]^{1 /(2 \mathrm{n})} \\
& =1 \mathrm{kHz}\left[\frac{10^{0.301-1}}{10^{0.1}-1}\right]^{1 / 12} \\
& =1.119 \mathrm{kHz}
\end{aligned}
$$

where $f_{C}=f_{C L K} / 50$ or $f_{C L K} / 100$.

To implement this example for the MF6-50 the clock frequency will have to be set to $\mathrm{f}_{\mathrm{CLK}}=50(1.116 \mathrm{kHz})=55.8$ kHz or for the MF6-100 $\mathrm{fCLK}=100(1.116 \mathrm{kHz})=111.6$ kHz .

2.2 CASCADING MF6s

In the case where a steeper stopband attenuation rate is required two MF6's can be cascaded (Figure 9) yielding a 12th order slope of 72 dB per octave. Because the MF6 is a Butterworth filter and therefore has no ripple in its passband, when MF6s are cascaded the resulting filter also has no ripple in its passband. Likewise the DC and passband gains will remain at $1 \mathrm{~V} / \mathrm{V}$. The resulting response is shown in Figure 10.
In determining whether the cascaded MF6s will yield a filter that will meet a particular amplitude response specification, as above, equations 3 and 4 can be used, shown below.

$$
\begin{equation*}
\mathrm{n}=\frac{\log \left(10^{0.05} A_{\min }-1\right)-\log \left(10^{\left.0.05 A_{\max }-1\right)}\right.}{2 \log \left(f_{\mathrm{s}} / f_{\mathrm{b}}\right)} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Attn}(f)=10 \log \left[1+\left(10^{\left.\left.0.05 A_{\max }-1\right)\left(f / f_{b}\right)^{2 n}\right] d B}\right.\right. \tag{4}
\end{equation*}
$$

where $n=6$ (the order of each filter).
Equation 3 will determine whether the order of the filter is adequate ($n \leq 6$) while equation 4 can determine if the required stopband attenuation is met and what actual cutoff frequency (f_{c}) is required to obtain the particular frequency response desired. The design procedure would be identical to the one shown in section 2.1.

2.3 IMPLEMENTING A "NOTCH" FILTER WITH THE MF6

A "notch" filter with 60 dB of attenuation can be obtained by using one of the Op-Amps, available in the MF6, and three external resistors. The circuit and amplitude response are shown in Figure 11.
The frequency where the "notch" will occur is equal to the frequency at which the output signal of the MF6 will have the same magnitude but be 180 degrees out of phase with its input signal. For a sixth order Butterworth filter 180° phase shift occurs where $f=f_{n}=0.742 f_{c}$. The attenuation at this frequency is 0.12 dB which must be compensated for by making $R_{1}=1.014 \times R_{2}$.
Since R_{1} does not equal R_{2} there will be a gain inequality above and below the notch frequency. At frequencies below the notch frequency ($f \ll f_{n}$), the signal through the filter has a gain of one and is non-inverting. Summing this with the input signal through the Op-Amp yields an overall gain of two or +6 dB . For $\mathrm{f} \gg \mathrm{f}_{\mathrm{n}}$, the signal at the output of the filter is greatly attenuated thus only the input signal will appear at the output of the Op-Amp. With $R_{3}=R_{1}=1.014$ R_{2} the overall gain is 0.986 or -0.12 dB at frequencies above the notch.

Designing with the MF6 (Continued)

TIL LOGIC LEVELS
TL/H/5065-25
FIGURE 9. Cascading Two MF6s

TL/H/5065-26
FIGURE 10a. One MF6-50 vs. Two MF6-50s Cascaded

FIGURE 10b. Phase Response of Two Cascaded MF6-50s

FIGURE 11a. "Notch" Filter

TL/H/5065-29
FIGURE 11b. MF6-50 "Notch" Filter Amplitude Response

Designing with the MF6 (Continued)

2.4 CHANGING CLOCK FREQUENCY INSTANTANEOUSLY

The MF6 will respond favorably to a sudden change in clock frequency. Distortion in the output signal occurs at the transition of the clock frequency and lasts approximately three cutoff frequency (f_{c}) cycles. As shown in Figure 12, if the control signal is low the MF6-50 has a 100 kHz clock making $f_{c}=2 \mathrm{kHz}$; when this signal goes high the clock frequency changes to 50 kHz yielding $1 \mathrm{kHz} \mathrm{f}_{\mathrm{c}}$.
The transient response of the MF6 seen in Figure 13 is also dependent on the f_{c} and thus the $\mathrm{f}_{\mathrm{CLK}}$ applied to the filter. The MF6 responds as a classical sixth order Butterworth lowpass filter.

FIGURE 12. MF6-50 Abrupt Clock Frequency Change

2.5 ALIASING CONSIDERATIONS

Aliasing effects have to be taken into consideration when input signal frequencies exceed half the sampling rate. For the MF6 this equals half the clock frequency (fCLK). When

TL/H/5065-31
FIGURE 13. MF6-50 Step Input Response, Vertical = 2V/div., Horizontal $=1 \mathrm{~ms} /$ div., $\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}$
the input signal contains a component at a frequency higher than half the clock frequency, as in Figure 14a, that component will be "reflected" about $\mathrm{f}_{\mathrm{CLK}} / 2$ into the frequency range below $\mathrm{f}_{\mathrm{CLK}} / 2$ as in Figure 14 b . If this component is within the passband of the filter and of large enough amplitude it can cause problems. Therefore if frequency components in the input signal exceed $\mathrm{f}_{\mathrm{CLK}} / 2$ they must be attenuated before being applied to the MF6 input. The necessary amount of attenuation will vary depending on system requirements. In critical applications the signal components above f CLK/2 will have to be attenuated at least to the filter's residual noise level. An example circuit is shown in Figure 15 using one of the uncommitted Op-Amps available in the MF6.

TL/H/5065-38
(b) Output Signal Spectrum. Note that the input signal at $f_{S} / 2+\mathbf{f}$ causes an output signal to appear at $f_{s} / \mathbf{2 - f}$.

Figure 14. The phenomenon of aliasing in sampled-data systems. An input signal whose frequency is greater than onehalf the sampling frequency will cause an output to appear at a frequency lower than one-half the sampling frequency. In the MF6, $\mathrm{f}_{\mathrm{s}}=\mathrm{f} \mathbf{\mathrm { CL }}$.

$f_{0}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}$
$H_{0}=R_{4} / R_{3}$ ($H_{0}=1$ when R_{3} and R_{4} are omitted and $V_{O 2}$ is directly tied to INV2).
Design Procedure:
pick C_{1}
$R_{2}=\frac{1}{2 Q_{1} \omega_{0}}$
for a 2nd Order Butterworth $\mathrm{Q}=0.707$
$R_{2}=\frac{0.113}{C_{1} f_{0}}$
make $R_{1}=R_{2}$
and
$C_{2}=\frac{1}{\left(2 \pi f_{0} R_{1}\right)^{2} C_{1}}$
Note: The parallel combination of R_{4} (if used), R_{1} and R_{2} should be $\geq 10 \mathrm{k} \Omega$ in order not to load Op-Amp \#2.
FIGURE 15. Second Order Butterworth Anti-Aliasing Filter Using Uncommitted Op-Amp \# 2

National
Semiconductor Corporation

MF8 4th-Order Switched Capacitor Bandpass Filter

General Description

The MF8 consists of two second-order bandpass filter stages and an inverting operational amplifier. The two filter stages are identical and may be used as two tracking sec-ond-order bandpass filters, or cascaded to form a single fourth-order bandpass filter. The center frequency is controlled by an external clock for optimal accuracy, and may be set anywhere between 0.1 Hz and 20 kHz . The ratio of clock frequency to center frequency is programmable to 100:1 or 50:1. Two inputs are available for TTL or CMOS clock signals. The TTL input will accept logic levels referenced to either the negative power supply pin or the ground pin, allowing operation on single or split power supplies. The CMOS input is a Schmitt inverter which can be made to selfoscillate using an external resistor and capacitor.
By using the uncommitted amplifier and resistors for negative feedback, any all-pole (Butterworth, Chebyshev, etc.) filter can be formed. This requires only three resistors for a fourth-order bandpass filter. Q of the second-order stages may be programmed to any of 31 different values by the five " Q logic" pins. The available Q values span a range from 0.5 through 90 . Overall filter bandwidth is programmed by connecting the appropriate Q logic pins to either V^{+}or V^{-}. Filters with order higher than four can be built by cascading MF8s.

Features

- Center frequency set by external clock

Q Q set by five-bit digital word
■ Uncommitted inverting op amp

- 4th-order all-pole filters using only three external resistors
- Cascadable for higher-order filters
- Bandwidth, response characteristic, and center frequency independently programmable
- Separate TTL and CMOS clock inputs
- 18 pin $0.3^{\prime \prime}$ wide package

Key Specifications

■ Center frequency range 0.1 Hz to 20 kHz
■ Q range 0.5 to 90
⿴囗 Supply voltage range 9 V to $14 \mathrm{~V}(\pm 4.5 \mathrm{~V}$ to $\pm 7 \mathrm{~V})$

- Center frequency accuracy 1% over full temperature range

Typical Application \& Connection Diagrams

TL/H/8694-1
Fourth-Order Butterworth Bandpass Filter

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

J Package:	10 sec.	$260^{\circ} \mathrm{C}$
N Package:	10 sec.	$300^{\circ} \mathrm{C}$
SO Package:	Vapor Phase (60 sec.$)$	$215^{\circ} \mathrm{C}$
	Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings (Note 1)

Temperature Range
MF8CCN
MF8CCJ
Supply Voltage $\left(\mathrm{V}_{\mathrm{S}}=\mathrm{V}^{+}-\mathrm{V}^{-}\right)$

$$
\begin{array}{r}
\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \\
0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
+9 \mathrm{~V} \text { to }+14 \mathrm{~V} \\
\\
\text { anyQ } \\
\mathrm{f}_{\mathrm{CLK}} \times \mathrm{Q} \leq 5 \mathrm{MHz}
\end{array}
$$

$f_{\text {CLK }} \times$ Q Range
for $10 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{CLK}} \leq 250 \mathrm{kHz}$
for $250 \mathrm{kHz} \leq \mathrm{f}_{\mathrm{CLK}} \leq 1 \mathrm{MHz}$

ESD rating is to be determined.
Filter Electrical Characteristics The following specifications apply for $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=$ 50 pF and $\mathrm{R}_{\text {LOAD }}=50 \mathrm{k} \Omega$ on filter output unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter (Notes 4, 5)	Conditions	MF8CCN			MF8CCJ			Units
			Typical (Note 9)		Design Limit (Note 11)	Typical (Note 9)	Tested Limit (Note 10)	Design Limit (Note 11)	
H_{0}	Gain at f_{0}	$\begin{aligned} & \mathrm{f} C \mathrm{LK}=250 \mathrm{kHz} \\ & 100: 1 \\ & \mathrm{ABCDE}=11100 \end{aligned}$	$6.02 \pm .05$	6.02 ± 0.2		6.02 ± 0.05	6.02 ± 0.2		dB
Q	Q		$3.92 \pm 2 \%$	$3.92 \pm 6 \%$		$3.92 \pm 2 \%$	$3.92 \pm 6 \%$		
R	$\mathrm{fCLK}^{\prime} / \mathrm{f}_{\mathrm{O}}$		$99.2 \pm 0.3 \%$	$99.2 \pm 1 \%$		$99.2 \pm 0.3 \%$	$99.2 \pm 1 \%$		
H_{0}	Gain at f_{0}	$\begin{aligned} & \mathrm{fCLK}=250 \mathrm{kHz} \\ & 100: 1 \\ & \mathrm{ABCDE}=10011 \end{aligned}$	6.02 ± 0.2	6.02 ± 0.5		6.02 ± 0.2	6.02 ± 0.5		dB
Q	Q		$15.5 \pm 3 \%$	$15.5 \pm 8 \%$		$15.5 \pm 3 \%$	$15.5 \pm 8 \%$		
R	$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$		$99.7 \pm 0.3 \%$	$99.7 \pm 1 \%$		$99.7 \pm 0.3 \%$	$99.7 \pm 1 \%$		
H_{0}	Gain at f_{0}	$\begin{aligned} & \mathrm{f} C L K=250 \mathrm{kHz} \\ & 50: 1 \\ & \mathrm{ABCDE}=00001 \end{aligned}$	5.85 ± 0.4	5.85 ± 1		5.85 ± 0.4	5.85 ± 1		dB
Q	Q		$55 \pm 5 \%$	$55 \pm 10 \%$		$55 \pm 5 \%$	$55 \pm 10 \%$		
R	$\mathrm{fCLK} / \mathrm{f}_{0}$		$49.9 \pm 0.2 \%$	$49.9 \pm 1 \%$		$49.9 \pm 0.2 \%$	$49.9 \pm 1 \%$		
H_{0}	Gain at f_{o}	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \pm 5 \% \\ & \mathrm{f}_{\mathrm{CLK}} \leq 250 \mathrm{kHz} \end{aligned}$	6.02 ± 0.5		6.02 ± 4.5	6.02 ± 0.5		6.02 ± 1.5	dB
$\Delta \mathrm{Q} / Q_{\text {TH }}$	Q Deviation from Theoretical (See Table I)	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} \pm 5 \% \\ & \mathrm{f}_{\mathrm{CLK}} \leq 250 \mathrm{kHz}, \mathrm{Q}>1 \\ & \mathrm{f}_{\mathrm{CLK}} \leq 100 \mathrm{kHz}, \\ & \quad 1<\mathrm{Q}<57 \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \pm 2 \% \\ & \hline \end{aligned}$		$\begin{gathered} \pm 15 \% \\ \pm 6 \% \end{gathered}$	$\begin{aligned} & \pm 5 \% \\ & \pm 2 \% \\ & \hline \end{aligned}$		$\begin{gathered} \pm 15 \% \\ \pm 6 \% \\ \hline \end{gathered}$	
$\Delta \mathrm{R} / \mathrm{R}_{\text {TH }}$	$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ Deviation from Theoretical (See Table I)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \pm 5 \% \\ & \mathrm{f}_{\mathrm{CLK}} \leq 250 \mathrm{kHz} \end{aligned}$	$\pm 0.3 \%$		$\pm \mathbf{1 \%}$	$\pm 0.3 \%$		$\pm \mathbf{1 \%}$	
Q	Q	$\begin{aligned} & \mathrm{f} C L K=250 \mathrm{kHz}, 50: 1 \\ & \mathrm{ABCDE}=00110 \end{aligned}$	$10.6 \pm 2 \%$		$10.6 \pm 6 \%$	$10.6 \pm 2 \%$	$10.6 \pm 8 \%$		
	Dynamic Range (Note 6)	$\begin{aligned} & \mathrm{ABCDE}=11100 \\ & \mathrm{ABCDE}=10011 \\ & \mathrm{ABCDE}=00001 \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 75 \\ & \hline \end{aligned}$			$\begin{aligned} & 86 \\ & 80 \\ & 75 \\ & \hline \end{aligned}$			dB dB dB
	Clock Feedthrough	Filter and Op Amp $\begin{array}{r} \mathrm{fCLK} \leq 250 \mathrm{kHz} \\ \mathrm{Q} \leq 1 \\ \mathrm{Q}>1 \end{array}$	$\begin{aligned} & 80 \\ & 40 \\ & \hline \end{aligned}$			$\begin{aligned} & 80 \\ & 40 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$
Is	Maximum Supply Current	$\begin{aligned} & \mathrm{fCLK}=250 \mathrm{kHz}, \text { no } \\ & \text { loads on outputs } \end{aligned}$	9	12	12	9	13		mA
Vos	Maximum Filter Output Offset Voltage	$\begin{aligned} & \text { fCLK }=250 \mathrm{kHz}, \mathrm{Q}=4 \\ & 50: 1 \\ & 100: 1 \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 80 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 120 \\ \pm 240 \\ \hline \end{array}$		$\begin{aligned} & \pm 40 \\ & \pm 80 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 120 \\ & \pm 240 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$
V OUT	Minimum Filter Output Swing	$\begin{aligned} & \mathrm{R}_{\text {LOAD }}=5 \mathrm{k} \Omega \\ & \text { (Note 6) } \end{aligned}$	± 4.1	± 3.8	± 3.8	± 4.1	± 3.6		V

Op Amp Electrical Characteristics The following specifications apply for $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$ and no
load on the Op Amp output unless otherwise specified. Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	MF8CCN			MF8CCJ			Units
			Typical (Note 9)	$\begin{array}{\|c\|} \hline \text { Tested } \\ \text { Limit } \\ (\text { Note 10 }) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 11) } \\ \hline \end{array}$	Typical (Note 9)	$\begin{array}{\|c} \text { Tested } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{array}$		
$\mathrm{V}_{\text {OS }}$	Maximum Input Offset Voltage		± 8	± 20		± 8	± 20		mV
I_{B}	Maximum Input Bias Current		10			10			pA
V OUT	Minimum Output Voltage Swing	$\mathrm{R}_{\text {LOAD }}=5 \mathrm{k} \Omega$	± 3.8	± 3.5	± 3.4	± 3.8	± 3.1		V
$\mathrm{A}_{\mathrm{VOL}}$	Open Loop Gain		80			80			dB
GBW	Gain Bandwidth Product		1.8			1.8			MHz
SR	Slew Rate		10			10			$\mathrm{V} / \mu \mathrm{s}$

Logic Input and Output Characteristics The following specifications apply for $\mathrm{V}+=+10 \mathrm{~V}$ and $\mathrm{V}-$ $=0 \mathrm{~V}$ unless otherwise specified. Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions	MF8CCN			MF8CCJ			Units	
				$\begin{array}{\|c\|} \hline \text { Tested } \\ \text { Limit } \\ \text { (Note } 10 \\ \hline \end{array}$	$\begin{array}{\|c} \text { Design } \\ \text { Limit } \\ \text { (Note 11) } \\ \hline \end{array}$	Typical (Note 9)	$\begin{array}{\|c\|} \hline \text { Tested } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{array}$	Design Limit (Note 11)			
$\mathrm{V}_{\mathrm{T}}{ }^{+}$	Positive Threshold Voltage on pin 8			$V_{S}=V^{+}-V^{-}$referred to $\mathrm{V}^{-}=0 \mathrm{~V}$ (Note 8)	$0.7 \mathrm{~V}_{S}$	$0.58 \mathrm{~V}_{\mathrm{S}}$		$0.7 \mathrm{~V}_{\mathrm{S}}$	$0.58 \mathrm{~V}_{\mathrm{S}}$		V
			$0.7 \mathrm{~V}_{\mathrm{S}}$		$0.89 \mathrm{~V}_{\mathrm{S}}$		$0.7 \mathrm{~V}_{\mathrm{S}}$	$0.89 \mathrm{~V}_{\mathrm{S}}$		V	
$\mathrm{V}_{\mathrm{T}^{-}}$	Negative Threshold Voltage on pin 8	d Min	$V_{S}=V^{+}-V^{-}$referred to $\mathrm{V}^{-}=0 \mathrm{~V}$ (Note 8)	$0.35 \mathrm{~V}_{\mathrm{S}}$	$0.11 \mathrm{~V}_{\mathrm{S}}$		$0.35 \mathrm{~V}_{\mathrm{S}}$	$0.11 \mathrm{~V}_{\mathrm{S}}$		V	
		Max ${ }^{\text {to }}$		$0.35 V_{S}$	$0.47 \mathrm{~V}_{\mathrm{S}}$		$0.35 \mathrm{~V}_{\mathrm{S}}$	$0.47 \mathrm{~V}_{\mathrm{S}}$		V	
V_{OH}	Output Voltage on pin 9 (Note 12)	Min High	$\mathrm{I}^{\prime}=-10 \mu \mathrm{~A}$		9.0	9.0		9.0		V	
V_{OL}		Max Low	$\mathrm{l}^{\prime}=+10 \mu \mathrm{~A}$		1.0	1.0		1.0		\checkmark	
${ }^{\mathrm{I} \mathrm{OH}}$	Output Current on pin 9	Min Source	Pin 9 tied to V^{-}	6.0	3.0		6.0	3.0		mA	
$\mathrm{IOL}^{\text {l }}$		Min Sink	Pin 9 tied to V+	5.0	2.5		5.0	2.5		mA	
V_{IH}	Input Voltage on pins: 1, 2, 3, 10, 17, \& 18 (Note 12)	Min High		7.0		9.0	7.0	9.0		V	
$\mathrm{V}_{\text {IL }}$		Max Low		3.0		1.0	3.0	1.0		V	
IN	Input Current on pins: 1, 2,$3,7,8,10,17, \& 18$				10	10		10		$\mu \mathrm{A}$	
V_{IH}	Input Voltage on pin 7	Min High $\mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$ or Max Low $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}$			2.0	2.0		2.0		V	
$\mathrm{V}_{\text {IL }}$					0.8	0.8		0.8		V	

Note 1: Absolute Maximum Raings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: When the applied voltage at any pin falls outside the power supply voltages ($\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathrm{IN}}>\mathrm{V}^{+}$), the absolute value of current at that pin should be limited to 1 mA or less.

Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \Theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \Theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_{J M A X}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the MF8CCN when board mounted is $50^{\circ} \mathrm{C} / \mathrm{W}$. For the MF8CCJ, this number increases to $65^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: The center frequency of each 2nd-order filter section is defined as the frequency where the phase shift through the filter is zero.
Note 5: Q is defined as the measured center frequency divided by the measured bandwidth, where the bandwidth is the difference between the two frequencies where the gain is 3 dB less than the gain measured at the center frequency.
Note 6: Dyramic range is defined as the ratio of the tested minimum output swing of 2.75 Vrms ($\pm 3.8 \mathrm{~V}$ peak-to-peak) to the wideband noise over a 20 kHz bandwidth. For Qs of 1 or less the dynamic range and output swing will degrade because the gain at an internal node is 2/Q. Keeping the input signal level below 1.23×Q Vrms will avoid distortion in this case.

Note 7: If it is possible for a signal output (pin 6, 14, or 15) to be shorted to $\mathrm{V}^{+}, \mathrm{V}-$ or ground, add a series resistor to limit output current.
Note 8: If V^{-}is anything other than 0 V then the value of V^{-}should be added to the values given in the table. For example for $\mathrm{V}^{+}=+5 \mathrm{~V}$ and $\mathrm{V}^{-}=-5 \mathrm{~V}$ the typical $\mathrm{V}_{\mathrm{T}^{+}}=0.7(10 \mathrm{~V})+(-5 \mathrm{~V})=+2 \mathrm{~V}$.
Note 9: Typicals are at $25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 10: Tested Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 11: Design Limits are guaranteed but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 12: These logic levels have been referenced to V^{-}. The logic levels will shift accordingly for split supplies.

Pin Descriptions

Q Logic Inputs
A, B, C, D, E
(3, 2, 1, 18, 17):
AGND (4): \quad This is the analog and digital ground pin and should be connected to the system ground for split supply operation or biased to mid-supply for single supply operation. For best filter performance, the ground line should be "clean".
$\mathbf{V +}$ (12), \quad These are the positive and negative V-(11): power supply inputs. Decoupling the power supply pins with $0.1 \mu \mathrm{~F}$ or larger capacitors is highly recommended.
F1 IN (16), \quad These are the inputs to the bandpass filF2 IN (5): \quad ter stages. To minimize gain error the source impedance should be less than 2 $\mathrm{k} \Omega$. Input signals should be referenced to AGND.
F1 OUT (15), These are the outputs of the bandpass F2 OUT (6): filter stages.
A IN (13): \quad This is the inverting input to the uncommitted operational amplifier. The non-inverting input is internally connected to AGND.
A OUT (14): This is the output of the uncommitted operational amplifier.
50/100 (10): This pin sets the ratio of the clock frequency to the bandpass center frequency. Connecting this pin to V^{+}sets the ratio to 100:1. Connecting it to V^{-}sets the ratio to $50: 1$.
TTL CLK (7): This is the TTL-level clock input pin. There are two logic threshold levels, so the MF8 can be operated on either sin-gle-ended or split supplies with the logic input referred to either V^{-}or AGND. When this pin is not used (or when CMOS logic levels are used), it should be connected to either $\mathrm{V}+$ or $\mathrm{V}-$.
CMOS CLK (8): This pin is the input to a CMOS Schmitt inverter. Clock signals with CMOS logic levels may be applied to this input. If the TTL input is used this pin should be connected to V^{-}.

This pin allows the MF8 to generate its own clock signal. To do this, connect an external resistor between the RC pin and the CMOS Clock input, and an external capacitor from the CMOS Clock input to AGND. The TTL Clock input should be connected to V^{-}or V^{+}. When the MF8 is driven from an external clock, the RC pin should be left open.

1.0 Application Information

 1.1 INTRODUCTION

 1.1 INTRODUCTION}A simplified block diagram for the MF8 is shown in Figure 1. The analog signal path components are two identical 2ndorder bandpass filters and an operational amplifier. Each filter has a fixed voltage gain of 2 . The filters' cutoff frequency is proportional to the clock frequency, which may be applied to the chip from an external source or generated internally with the aid of an external resistor and capacitor. The proportionality constant $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ can be set to either 50 or 100 depending on the logic level on pin 10. The " Q " of the two filters can have any of 31 values ranging from 0.5 to 90 and is set by the logic levels on pins 1, 2, 3, 17, and 18. Table I shows the available values of Q and the logic levels required to obtain them. The operational amplifier's non-inverting input is internally grounded, so it may be used only for inverting applications.
The components in the analog signal path can be interconnected in several ways, three of which are illustrated in Figures $2 a, 2 b$ and $2 c$. The two second-order filter sections can be used as separate filters whose center frequencies track very closely as in Figure 2a. Each filter section has a high input impedance and low output impedance. The op amp may be used for gain scaling or other inverting functions. If sharper cutoff slopes are desired, the two filter sections may be cascaded as in Figure 2b. Again, the op amp is uncommitted. The circuit in Figure $2 c$ uses both filter sections with the op amp and three resistors to build a "multiple feedback loop" filter. This configuration offers the greatest flexibility for fourth-order bandpass designs. Virtually any fourth-order all pole response shape (Butterworth, Chebyshev) can be obtained with a wide range of bandwidths, simply by proper choice of resistor values and Q . The three connection schemes in Figure 2 will be discussed in more detail in Sections 1.4 and 1.5.

Typical Performance Characteristics

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ Ratio vs
Temperature-100:1 Mode

Q vs Supply Voltage50:1 and 100:1

Op Amp-Open Loop Frequency Response

$\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ Ratio vs Clock
Frequency-100:1 Mode

$\mathbf{f}_{\text {Clk }} / f_{0}$ Ratio vs
Temperature-50:1 Mode

Q vs Clock Frequency50:1 and 100:1

Positive Power Supply Rejection

$\mathbf{f}_{\mathbf{C L K}} / \mathbf{f}_{\mathbf{0}}$ Ratio vs Supply
Voltage-50:1 and
100:1 Mode

Q vs Temperature50:1 and 100:1

Q vs Clock Frequency50:1 and 100:1

Negative Power Supply Rejection

Typical Performance Characteristics (Continued)

Positive Swing vs Supply Voltage

Negative Swing vs Temperature (Filter and Op Amp)

Negative Swing vs Supply Voltage

Positive Swing vs Temperature (Filter and Op Amp)

Filter Offset Voltage
© 5 vs Supply Voltage

Filter Offset Voltage vs

FIGURE 1. Simplified Block Diagram of the MF8

FIGURE 2a. Separate Second-Order "Tracking" Filters

FIGURE 2b. Fourth-Order Bandpass Made by Cascading Two Second-Order Stages

1.0 Application Information (Continued)

TL/H/8694-6
FIGURE 2c. Multiple Feedback Loop Cọnnection

1.2 CLOCKS

The MF8 has two clock input pins, one for CMOS logic levels and the other for TTL levels. The TTL (pin 7) input automatically adjusts its switching threshold to enable operation on either single or split power supplies. When this input is used, the CMOS logic input should be connected to pin 11(V-). The CMOS Schmitt trigger input at pin 8 accepts CMOS logic levels. When it is used, the TTL input should be connected to either pin $11\left(\mathrm{~V}^{-}\right)$or pin $12\left(\mathrm{~V}^{+}\right)$. The basic clock hookups for single and split supply operation are shown in Figures 3 and 4.

Clock signals derived from a crystal-controlled oscillator are recommended when maximum center frequency accuracy is desired, but in less critical applications the MF8 can generate its own clock signal as in Figures $3 c$ and $4 c$. An external resistor and capacitor determine the oscillation frequency. Tolerance of these components and part-to-part variations in Schmitt-trigger logic thresholds limit the accuracy of the RC clock frequency. In the self-clocked mode the TTL Clock input should be connected to either pin 11 or pin 12.

TL/H/8694-7
(a) MF8 Driven with CMOS Logic Level Clock

TL/H/8694-8
(b) MF8 Driven with TTL Logic Level Clock

(c) MF8 Driven with Schmitt Trigger Oscillator FIGURE 3. Dual Supply Operation
$f_{C L K}=\frac{1}{R C \ln \left|\left(\frac{V_{S}-V_{T_{-}}}{V_{S}-V_{T_{+}}}\right)\left(\frac{V_{T_{+}}}{V_{T_{-}}}\right)\right|}$
Typically for $\mathrm{V}_{\mathrm{S}^{*}}=10 \mathrm{~V}$
$f_{C L K}=\frac{1}{1.69 R C}$
${ }^{*} V_{S}=V^{+}-V^{-}$

TL/H/8694-9

1.0 Application Information (Continued)

1.3 POWER SUPPLIES AND ANALOG GROUND

The MF8 can be operated from single or dual-polarity power supplies. For dual-supply operation, the analog ground (pin 4) should be connected to system ground. When single supplies are used, pin 4 should be biased to $\mathrm{V}+/ 2$ as in Figures 3 and 4. The input signal should either be capacitively cou-
pled to the filter input or biased to $\mathrm{V}+/ 2$. It is strongly recommended that each power supply pin be bypassed to ground with at least a $0.1 \mu \mathrm{~F}$ ceramic capacitor. In single supply applications, with V^{-}connected to ground, $\mathrm{V}+$ and AGND should be bypassed to system ground.

FIGURE 4. Single supply operation. The AGND pin must be biased to mid-supply.
The input signal should be dc biased to mid-supply or capacitor-coupled to the input pin.

1.0 Application Information (Continued)

1.4 MULTIPLE FEEDBACK LOOP CONFIGURATION

The multi-loop approach to building bandpass filters is highly flexible and stable, yet uses few external components. Figure 5 shows the MF8's internal operational amplifier and two second-order filter stages with three external resistors in a fourth-order multiple feedback configuration. Higher-order filters may be built by adding more second-order sections and feedback resistors as in Figure 6. The filter's response is determined by the clock frequency, the clock-to-center-frequency ratio, the ratios of the feedback resistor values, and the Qs of the second-order filter sections. The design procedure for multiple feedback filters can be broken down into a few simple steps:

1) Determine the characteristics of the desired filter. This will depend on the requirements of the particular application. For a given application, the required bandpass response can be shown graphically as in Figure 7, which shows the limits for the filter response. Figure 7 also makes use of several parameters that must be known in order to design a filter. These parameters are defined below in terms of Figure 7.

TL/H/8694-15
FIGURE 7. Graphical representation of the amplitude response specifications for a bandpass filter. The filter's response should fall within the shaded area.

TL/H/8694-13
FIGURE 5. General fourth-order multiple-feedback bandpass filter circuit. MF8 pin numbers are shown.

TL/H/8694-14
FIGURE 6. By adding more second-order filter stages and feedback resistors, higher order multiple-feedback filters may be built.

1.0 Application Information (Continued)

$\mathrm{f}_{\mathrm{C} 1}$ and $\mathrm{f}_{\mathrm{C} 2}$: The filter's lower and upper cutoff frequencies. These define the filter's passband.
$f_{S 1}$ and $f_{S 2}$: The boundaries of the filter's stopband.
$B W$: The filter's bandwidth. $B W=f_{C 2}-f_{C 1}$.
SBW: The width of the filter's stopband. $\mathrm{SBW}=\mathrm{f}_{\mathrm{S} 2}-\mathrm{f}_{\mathrm{S} 1}$. f_{0} : The center frequency of the filter. f_{0} is equal to the geometric mean of $\mathrm{f}_{\mathrm{C} 1}$ and $\mathrm{f}_{\mathrm{C} 2}: \mathrm{f}_{0}=\sqrt{\mathrm{f}_{\mathrm{C}_{1}} \mathrm{f}_{2}}$. f_{0} is also equal to the geometric mean of $\mathrm{f}_{\mathrm{S} 1}$ and $\mathrm{f}_{\mathrm{S} 2}$.
$H_{0 B P}$: The nominal passband gain of the bandpass filter. This is normally taken to be the gain at f_{0}.
$f_{0} / B W$: The ratio of the center frequency to the bandwidth. For second-order filters, this quantity is also known as " Q ". SBW/BW: The ratio of stopband width to bandwidth. This quantity is also called "Omega" and may be represented by the symbol " Ω ".
$A_{\text {max: }}$: The maximum allowable gain variation within the filter passband. This will depend on the system requirements, but typically ranges from a fraction of a dB to 3 dB .
$A_{\text {min }}$: The minimum allowable attenuation in the stopband. Again, the required value will depend on system constraints.
2). Choose a Butterworth or Chebyshev response characteristic. Butterworth bandpass filters are monotonic on either side of the center frequency, while Chebyshev filters will have "ripple" in the passband, but generally faster attenuation outside the passband. Chebyshev filters are specified according to the amount of ripple (in dB) within the passband.
3) Determine the filter order necessary to meet the response requirements defined above. This may be done with the aid of the nomographs in Figures 8 and 9 for Butterworth and Chebyshev filters. To use the nomographs, draw a line through the desired values on the $A_{M A X} / A_{\text {MIN }}$ scales to the left side of the graph. Draw a horizontal line to the right of this point and mark its intersection with the vertical line corresponding to the required ratio SBW/BW. The required filter order will be equal to the number of the curve falling on or just above the intersection of the two lines. This is illustrated in Figure 10 for a Chebyshev filter with 1 dB ripple, 30 dB minimum attenuation in the stopband, and $S B W / B W=3$. From the Figure, the required filter order is 6.
4) The design tables in section 2.0 can now be used to find the component values that will yield the desired response for filters of order 4 through 12. The " K_{n} " give the ratios of resistors " R_{n} " to R_{F}, and K_{Q} is Q divided by $f_{0} / B W$.
As an example of the Tables' use, consider a fourth-order Chebyshev filter with 0.5 dB ripple and $\mathrm{f}_{0} / \mathrm{BW}=6$. Begin by choosing a convenient value for R_{F}, such as $100 \mathrm{k} \Omega$. From the " 0.5 dB Chebyshev" filter table, $\mathrm{K}_{0}=\mathrm{R}_{0} / \mathrm{R}_{\mathrm{F}}=1.3405$. This gives $R_{0}=R_{F} \times 1.345=134.05 \mathrm{k}$. In a similar manner, R_{2} is found to equal $201.61 \mathrm{k} . Q$ is found using the column labeled K_{Q}. This gives $Q=K_{Q} \times f_{0} / B W=8.4174$.

Table I shows the available Q values; the nearest value is 8.5 , which is programmed by tying pins $1,2,3$, and 18 to V^{+} and pin 17 to V^{-}.
Note that the resistor values obtained from the tables are normalized for center frequency gain $H_{O B P}=1$. For different gains, simply divide R_{0} by the desired gain.
5) Choose the clock-to-center-frequency ratio. This will nominally be 100:1 when pin 10 is connected to pin 12(V^{+}) and $50: 1$ when pin 10 is connected to pin $11\left(\mathrm{~V}^{-}\right)$. $100: 1$ generally gives a response curve nearer the ideal and fewer (if any) problems with aliasing, while 50:1 allows operation over the highest octave of center frequencies (10 kHz to 20 kHz). Supply the MF8 with a clock signal of the appropriate frequency to either the TTL or CMOS input, depending on the available clock logic levels.

TABLE I. Q and Clock-to-Center-Frequency Ratio Versus Logic Levels on "Q-set" Pins

	$50: 1$ mode		100:1 mode	
ABCDE	${\text { FCLK } / F_{0}}^{c \mid}$	\mathbf{Q}	${\text { FCLK } / F_{0}}$	\mathbf{Q}
10000	43.7	0.45	94.0	0.47
11000	45.8	0.71	95.8	0.73
01000	46.8	0.96	96.8	0.98
10100	48.4	2.0	98.4	2.0
00100	48.7	2.5	98.7	2.5
01100	48.9	3.0	98.9	3.0
11100	49.2	4.0	99.2	4.0
01010	49.3	5.0	99.3	5.0
10010	49.4	5.7	99.4	5.7
10110	49.4	6.4	99.4	6.4
00010	49.5	7.6	99.5	7.6
11110	49.6	8.5	99.6	8.5
00110	49.6	10.6	99.6	10.6
11001	49.6	11.7	99.6	11.7
11010	49.7	12.5	99.7	12.5
11101	49.7	13.6	99.7	13.6
01001	49.7	14.7	99.7	14.7
10011	49.7	15.8	99.7	15.8
10101	49.7	16.5	99.7	16.5
01110	49.7	17	99.7	17
10001	49.8	19	99.8	19
10111	49.8	22	99.8	22
11011	49.8	27	99.8	27
11111	49.8	30	99.8	30
00101	49.8	33	99.8	33
01011	49.8	40	99.8	40
00111	49.8	44	99.8	44
00001	49.9	57	99.9	57
01101	49.9	68	99.9	68
00011	49.9	79	99.9	79
01111	49.9	90	99.9	90

1.0 Application Information (Continued)

Higher-order filters are designed in a similar manner. An eighth-order Chebyshev with 0.1 dB ripple, center frequency equal to 1 kHz , and 100 Hz bandwidth, for example, could be built as in Figure 11 with the following component values:
$\mathrm{R}_{0}=79.86 \mathrm{k}$
$\mathrm{R}_{\mathrm{F}}=100 \mathrm{k}$
$\mathrm{R}_{2}=57.82 \mathrm{k}$
$\mathrm{R}_{3}=188.08 \mathrm{k}$
$\mathrm{R}_{4}=203.42 \mathrm{k}$
Pins 1, 3, 17 and 18 high, pin 2 low. For 100:1 clock-to-cen-ter-frequency ratio, pin 10 is tied to $\mathrm{V}+$ and the clock frequency is 100 kHz . For $50: 1$ clock-to-center-frequency ratio, pin 10 is tied to V^{-}and the clock frequency is 50 kHz .
When building filters of order 4 or higher, best performance will always be realized when the filter blocks are cascaded
in numerical order: Filter 1 (pins 16 and 15) should always precede Filter 2 (pins 5 and 6). If a second MF8 is used, Filter 2 of the first MF8 should precede Filter 1 of the second MF8, and so on.

Dynamic Considerations

Some filter response characteristics will result in high gain at certain internal nodes, particularly at the op amp output. This can cause clipping in intermediate stages even when no clipping is evident at the filter output. The consequences are significant distortion and degradation of the overall transfer function. The likelihood of clipping at the op amp output becomes greater as R_{F} / R_{0} increases. As the design tables show, R_{F} / R_{0} increases with increasing filter order and increasing ripple. It is good practice to keep out-of-band input signal levels small enough that the first stage can't overload.

FIGURE 9. Chebyshev Bandpass Filter Design Nomograph

FIGURE 10. Example of Chebyshev Bandpass Nomograph Use.
$A_{\max }=1 \mathrm{~dB}, A_{\min }=30 \mathrm{~dB}$, and $\frac{S B W}{B W}=3$, resulting in $n=6$.

1.0 Application Information (Continued)

TL/H/8694-19
FIGURE 11. Eighth-Order multiple-feedback bandpass filter using two MF8s. The circuit shown accepts a TTL-level clock signal and has a clock-to-center-frequency ratio of 100:1.

1.5 TRACKING AND CASCADED SECOND-ORDER BANDPASS FILTERS

The individual second-order bandpass stages may be used as "stand-alone" filters without adding external feedback resistors. The clock frequency and Q logic voltages set the center frequency and bandwidth of both second-order bandpass filters, so the two filters will have equivalent responses. Thus, they may be used as separate "tracking" filters for two different signal sources as in Figure 2a, or cascaded as in Figure 2b. For individual or cascaded sec-ond-order bandpass filters, the -3 dB bandwidth and the amplitude response are given by the following two equations:

$$
\begin{gather*}
B W(-3)=\frac{f_{0}}{Q} \sqrt{2(1 / N)-1} \tag{1}\\
H(s)=\left[2 \times \frac{\frac{w_{0}}{Q} s}{s^{2}+\frac{w_{0}}{Q} s+w_{0}^{2}}\right]^{N} \tag{2}
\end{gather*}
$$

where
$\mathrm{BW}(-3)=$ the -3 dB bandwidth of the overall filter

TL/H/8694-20
FIGURE 12. H(s) For second-order bandpass filters with various values of Q. H_{0} normalized in each case to $\mathbf{0} \mathbf{d B}$.

TL/H/8694-21
FIGURE 13. Design Nomograph for Cascaded Identical Second-Order Bandpass Filters

Q = the Q of each second order bandpass stage
$\mathrm{f}_{0}=$ the center frequency of the filter in Hertz
$\mathrm{w}_{0}=2 \pi \mathrm{f}_{0}=$ the center frequency of the filter in radians per second
$N=$ the number of cascaded second-order stages $=\frac{n}{2}$
$H(s)=$ the overall filter transfer function
$H(s)$ for a second order bandpass filter is plotted in Figure 12. Curves are shown for several different values of Q. Center frequency is normalized to 1 Hz and center-frequency gain is normalized to 0 dB .
To find the necessary order n for cascaded second-order bandpass filters using the nomograph in Figure 13, first determine the -3 dB bandwidth BW (-3), stopband width SBW, and minimum stopband attenuation $A_{\text {min }}$. Draw a vertical line up from SBW/BW(-3), and a horizontal line across from $A_{\text {min }}$. The required order is shown on the curve just above the point of intersection of the two lines. Remember that each second-order filter section will have a center frequency gain of 2 , so the overall gain of a cascaded filter will be 2 N .
Cascading filters in this way may provide acceptable performance when minimum external parts count is very impor-

1.0 Application Information (Continued)

tant, but much greater flexibility and better performance will be obtained by using the feedback techniques described in 1.4.

1.6 INPUT IMPEDANCE

The input to each filter block is a switched-capacitor circuit as shown in Figure 14. During the first half of a clock cycle, the input capacitor charges to the input voltage $\mathrm{V}_{\text {in }}$, and during the second half-cycle, its charge is transferred to a feedback capacitor. The input impedance approximates a resistor of value

$$
\mathrm{R}_{\mathrm{in}} \cong \frac{1}{\mathrm{C}_{\mathrm{in}} \mathrm{f}_{\mathrm{CLK}}} .
$$

$\mathrm{C}_{\text {in }}$ depends on the value of Q selected by the Q logic pins, and varies from about 1 pF to about 5 pF . For a worst-case calculation of R_{in}, assume $\mathrm{C}_{\mathrm{in}}=5 \mathrm{pF}$. Thus,

TL/H/8694-22
FIGURE 14. Simplified MF8 Input Stage
At the maximum clock frequency of 1 MHz , this gives $R_{\text {in }} \cong 200 \mathrm{k}$. Note that $R_{\text {in }}$ increases as fCLK decreases, so the input impedance should never be less than this number. Source impedance should be low enough that the gain isn't significantly affected.

1.7 OUTPUT DRIVE

The filter outputs can typically drive a $5 \mathrm{k} \Omega$ load resistor to over $\pm 4 \mathrm{~V}$ peak-to-peak. Load resistors smaller than $5 \mathrm{k} \Omega$ should not be used. The operational amplifier can drive the minimum recommended load resistance of $5 \mathrm{k} \Omega$ to at least $\pm 3.5 \mathrm{~V}$.

1.8 SAMPLED-DATA SYSTEM CONSIDERATIONS

Aliasing

The MF8 is a sampled-data filter, and as such, differs in many ways from conventional continuous-time filters. An important characteristic of sampled-data systems is their effect on signals at frequencies greater than one-half the sampling frequency. (The MF8's sampling frequency is the same as its clock frequency). If a signal with a frequency greater than one-half the sampling frequency is applied to the input of a sampled-data system, it will be "reflected" to a frequency less than one-half the sampling frequency. Thus, an input signal whose frequency is $f_{s} / 2+10 \mathrm{~Hz}$ will cause the system to respond as though the input frequency
was $\mathrm{f}_{\mathrm{S}} / 2-10 \mathrm{~Hz}$. This phenomenon is known as "aliasing". Aliasing can be reduced or eliminated by limiting the input signal spectrum to less than $f_{s} / 2$. This may in some cases require the use of a bandwidth-limiting filter (a simple passive RC network will generally suffice) ahead of the MF8 to attenuate unwanted high-frequency signals. However, since the clock frequency is much greater than the center frequency, this will usually not be necessary.

Output Steps

Another characteristic of sampled-data circuits is that the output voltage changes only once every clock cycle, resulting in a discontinuous output signal (Figure 15). The "steps" are smaller when the clock-to-center-frequency ratio is $100: 1$ than when the ratio is $50: 1$.

Clock Frequency Limitations

The performance characteristics of a switched-capacitor filter depend on the switching (clock) frequency. At very low clock frequencies (below 10 Hz), the internal capacitors begin to discharge slightly between clock cycles. This is due to very small parasitic leakage currents. At very low clock frequencies, the time between clock cycles is relatively long, allowing the capacitors to discharge enough to affect the filters' output offset voltage and gain. This effect becomes stronger at elevated operating temperatures.
At higher clock frequencies, performance deviations are primarily due to the reduced time available for the internal integrating op amps to settle. For this reason, the clock waveform's duty cycle should be as close as possible to 50%, especially at higher frequencies. Filter Q shows more variation from the nominal values at higher frequencies, as indicated in the typical performance curves. This is the reason for the different maximum limits on Q accuracy at $\mathrm{f}_{\mathrm{CLK}}=$ 250 kHz and $\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{kHz}$ in the table of performance specifications.

Center Frequency Accuracy

Ideally, the ratio $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{0}$ should be precisely 100 or 50 , depending on the logic voltage on pin 10. However, as Table I shows, this ratio will change slightly depending on the Q selected. As the table shows, the largest errors occur at the lowest values of Q .

TL/H/8694-23
FIGURE 15. Output Waveform of MF8 Showing Sampling Steps

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters

BUTTERWORTH RIPPLE 3 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	2.0000	4.0000					1.4142
6	2.3704	2.6667	9.1429				
8	2.9142	2.0000	5.8284	14.3145			1.5000
10	3.6340	1.6000	4.4112	6.9094	27.2014		1.5451
${ }^{*} 12$	4.5635	1.3333	3.5800	4.3198	11.5043	49.0673	1.5529

CHEBYSHEV RIPPLE 0.01 dB

Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathrm{K}_{\mathbf{Q}}$
4	1.9041	3.6339					0.4489
6	1.8277	1.8450	6.6170				0.9438
8	1.4856	0.9919	3.1209	5.0414			1.4257
*10	1.0171	0.5740	1.7484	1.2943	4.8814		1.8908
CHEBYSHEV RIPPLE 0.02 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathrm{K}_{\mathbf{Q}}$
4	1.8644	3.4922					0.5393
6	1.7024	1.6787	6.0772				1.0849
8	1.2893	0.8707	2.7661	4.0779			1.6106
*10	0.8163	0.4934	1.5155	0.9879	3.7119		2.1179
CHEBYSHEV RIPPLE 0.03 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathrm{K}_{\mathbf{Q}}$
4	1.8341	3.3871					0.6016
6	1.6183	1.5713	5.7231				1.1808
8	1.1688	0.7977	2.5491	3.5270			1.7362
*10	0.7034	0.4467	1.3786	0.8252	3.0938		2.2724

CHEBYSHEV RIPPLE 0.04 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.8085	3.3009					0.6508
6	1.5535	1.4908	5.4548			1.2560	
8	1.0814	0.7454	2.3919	3.1471			1.8348
${ }^{*} 10$	0.6264	0.4139	1.2818	0.7181	2.6883		2.3940

CHEBYSHEV RIPPLE 0.05 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.7860	3.2268					0.6923
6	1.5002	1.4260	5.2373			1.3191	
8	1.0129	0.7046	2.2685	2.8609			1.9175
${ }^{*} 10$	0.5686	0.3888	1.2072	0.6402	2.3938		2.4961

CHEBYSHEV RIPPLE 0.06 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.7657	3.1612					0.7285
6	1.4548	1.3717	5.0536			1.3741	
8	0.9566	0.6713	2.1670	2.6336			1.9897
${ }^{*} 10$	0.5230	0.3685	1.1467	0.5800	2.1666		2.5852

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters (Continued)

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.7471	3.1020					0.7609
6	1.4150	1.3249	4.8943			1.4232	
8	0.9089	0.6431	2.0808	2.4466			2.0543
${ }^{*} 10$	0.4856	0.3516	1.0959	0.5316	1.9842		2.6649

CHEBYSHEV RIPPLE 08 dB

Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{a}
4	1.7298	3.0478					0.7905
6	1.3795	1.2837	4.7534				1.4679
8	0.8675	0.6187	2.0060	2.2887			2.1130
CHEBYSHEV RIPPLE . 09 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathrm{K}_{\mathbf{Q}}$
4	1.7136	2.9978					0.8177
6	1.3475	1.2469	4.6271				1.5090
8	0.8311	0.5973	1.9400	2.1529			2.1671

CHEBYSHEV RIPPLE 0.1 dB

Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{Q}
4	1.6983	2.9512					0.8430
6	1.3183	1.2137	4.5125				1.5473
8	0.7986	0.5782	1.8809	2.0343			2.2176
CHEBYSHEV RIPPLE 0.2 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	$\mathrm{K}_{\mathbf{Q}}$
4	1.5757	2.5998					1.0378
6	1.1128	0.9894	3.7271				1.8413
8	0.5891	0.4551	1.4954	1.3309			2.6057

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.4833	2.3575					1.1804
6	0.9835	0.8560	3.2501				2.0568
$* 8$	0.4732	0.3861	1.2760	0.9885			2.8914

CHEBYSHEV RIPPLE 0.4 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.4067	2.1698					1.2988
6	0.8888	0.7618	2.9088				2.2363
$* 8$	0.3956	0.3391	1.1250	0.7792			3.1299

CHEBYSHEV RIPPLE 0.5 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.3405	2.0161					1.4029
6	0.8143	0.6897	2.6447			2.3944	
$* 8$	0.3389	0.3040	1.0114	0.6365			3.3406

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters (Continued)

CHEBYSHEV RIPPLE 0.6 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.2816	1.8857					1.4975
6	0.7530	0.6316	2.4305				2.5385
$* 8$	0.2952	0.2762	0.9212	0.5326			3.5329

CHEBYSHEV RIPPLE 0.7 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.2283	1.7727					1.5852
6	0.7012	0.5834	2.2515				2.6724
${ }^{*} 8$	0.2601	0.2535	0.8471	0.4535			3.7119

CHEBYSHEV RIPPLE 0.8 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.1797	1.6731					1.6678
6	0.6564	0.5424	2.0983				2.7989
${ }^{*} 8$	0.2314	0.2344	0.7846	0.3913			3.8811

CHEBYSHEV RIPPLE 0.9 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.1347	1.5841					1.7464
6	0.6171	0.5068	1.9650				2.9194
${ }^{*} 8$	0.2073	0.2181	0.7309	0.3413			4.0426

CHEBYSHEV RIPPLE 1.0 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.0930	1.5039					1.8219
6	0.5822	0.4756	1.8475				3.0354
${ }^{*} 8$	0.1869	0.2038	0.6840	0.3002			4.1981

CHEBYSHEV RIPPLE 1.1 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.0539	1.4310					1.8949
6	0.5509	0.4479	1.7428				3.1476
$* 8$	0.1693	0.1913	0.6426	0.2660			4.3487

CHEBYSHEV RIPPLE 1.2 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	1.0173	1.3643					1.9657
6	0.5226	0.4231	1.6487				3.2567
$* 8$	0.1540	0.1801	0.6056	0.2372			4.4952

CHEBYSHEV RIPPLE 1.3 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.9828	1.3029					2.0348
6	0.4969	0.4006	1.5634				3.3633
${ }^{*} 8$	0.1406	0.1701	0.5724	0.2125			4.6385

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters (Continued)

Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{Q}
$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.9501 \\ & 0.4733 \end{aligned}$	$\begin{aligned} & 1.2461 \\ & 0.3803 \end{aligned}$	1.4857				$\begin{aligned} & 2.1024 \\ & 3.4678 \end{aligned}$
CHEBYSHEV RIPPLE 1.5 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{Q}
$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.9192 \\ & 0.4515 \end{aligned}$	$\begin{aligned} & 1.1934 \\ & 0.3616 \end{aligned}$	1.4145				$\begin{aligned} & 2.1688 \\ & 3.5705 \end{aligned}$
CHEBYSHEV RIPPLE 1.6 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{Q}
$\begin{aligned} & 4 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8897 \\ & 0.4315 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1443 \\ & 0.3445 \end{aligned}$	1.3490				$\begin{aligned} & 2.2341 \\ & 3.6717 \\ & \hline \end{aligned}$
CHEBYSHEV RIPPLE 1.7 dB							
Order	K_{0}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{Q}
$\begin{aligned} & 4 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8617 \\ & 0.4128 \end{aligned}$	$\begin{aligned} & 1.0983 \\ & 0.3287 \end{aligned}$	1.2883				$\begin{aligned} & 2.2986 \\ & 3.7717 \\ & \hline \end{aligned}$

CHEBYSHEV RIPPLE 1.8 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.8350	1.0553					2.3624
6	0.3955	0.3141	1.2321				3.8706

CHEBYSHEV RIPPLE 1.9 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.8095	1.0148					2.4255
6	0.3793	0.3005	1.1797				3.9687

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.7850	0.9767					2.4881
6	0.3641	0.2878	1.1308				4.0660

CHEBYSHEV RIPPLE 2.1 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.7616	0.9407					2.5503
6	0.3498	0.2759	1.0850				4.1628

CHEBYSHEV RIPPLE 2.2 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.7391	0.9067					2.6122
6	0.3364	0.2648	1.0420				4.2591

2.0 Design Tables for Multiple Feedback Loop Bandpass Filters (Continued)

CHEBYSHEV RIPPLE 2.3 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.7176	0.8744					2.6737
6	0.3237	0.2544	1.0016				4.3550

CHEBYSHEV RIPPLE 2.4 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6968	0.8438					2.7350
6	0.3118	0.2446	0.9635				4.4507

CHEBYSHEV RIPPLE 2.5 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6769	0.8148					2.7962
6	0.3005	0.2353	0.9275				4.5462

CHEBYSHEV RIPPLE 2.6 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6577	0.7871					2.8573
6	0.2897	0.2265	0.8935				4.6415

CHEBYSHEV RIPPLE 2.7 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6392	0.7607					2.9183
6	0.2796	0.2182	0.8612				4.7368

CHEBYSHEV RIPPLE 2.8 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6213	0.7356					2.9792
6	0.2699	0.2104	0.8306				4.8322

CHEBYSHEV RIPPLE 2.9 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.6041	0.7116					3.0402
6	0.2607	0.2029	0.8016				4.9276

CHEBYSHEV RIPPLE 3.0 dB

Order	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{2}}$	$\mathbf{K}_{\mathbf{3}}$	$\mathbf{K}_{\mathbf{4}}$	$\mathbf{K}_{\mathbf{5}}$	$\mathbf{K}_{\mathbf{6}}$	$\mathbf{K}_{\mathbf{Q}}$
4	0.5875	0.6886					3.1013
6	0.2519	0.1959	0.7739				5.0231

Note: Multiple feedback loop filters of higher order than those specified in the tables will oscillate due to phase shift at the output of the summing amplifier. This phase shift is not the fault of the MF8; it is inherent in this type of multiple feedback loop topology. In addition, all filters marked with an asterisk (*) will be unstable for $Q \leq 1$, due to phase shifts caused by the MF8's switched-capacitor design approach.

National
Semiconductor
Corporation

MF10 Universal Monolithic Dual Switched Capacitor Filter

General Description

The MF10 consists of 2 independent and extremely easy to use, general purpose CMOS active filter building blocks. Each block, together with an external clock and 3 to 4 resistors, can produce various 2nd order functions. Each building block has 3 output pins. One of the outputs can be configured to perform either an allpass, highpass or a notch function; the remaining 2 output pins perform lowpass and bandpass functions. The center frequency of the lowpass and bandpass 2nd order functions can be either directly dependent on the clock frequency, or they can depend on both clock frequency and external resistor ratios. The center frequency of the notch and allpass functions is directly dependent on the clock frequency, while the highpass center frequency depends on both resistor ratio and clock. Up to 4th order functions can be performed by cascading the two 2nd order building blocks of the MF10; higher than 4th order functions can be obtained by cascading MF10 packages. Any of the classical filter configurations (such as Butterworth, Bessel, Cauer and Chebyshev) can be formed.

Features

- Easy to use
- Clock to center frequency ratio accuracy $\pm 0.6 \%$
- Filter cutoff frequency stability directly dependent on external clock quality
- Low sensitivity to external component variation
- Separate highpass (or notch or allpass), bandpass, lowpass outputs
- $f_{0} \times Q$ range up to 200 kHz

■ Operation up to 30 kHz

- 20-pin $0.3^{\prime \prime}$ wide Dual-In-Line package
- 20-pin Surface Mount (SO) wide-body package

System Block Diagram

TL/H/5645-1

Order Number MF10AJ or MF10CCJ See NS Package Number J20A

Order Number MF10CCWM
See NS Package Number M20B

Order Number MF10ACN or MF10CCN
See NS Package Number N20A

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified devices are required,	
contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	14 V
Voltage at Any Pin	$\mathrm{V}++0.3 \mathrm{~V}$
	$\mathrm{~V}^{-}-0.3 \mathrm{~V}$
Input Current at any pin (Note 2)	5 mA
Package Input Current (Note 2)	20 mA
Power Dissipation (Note 3)	500 mW
Storage Temperature	$150^{\circ} \mathrm{C}$
ESD Susceptability (Note 11)	2000 V

Soldering Information	
N Package: 10 sec.	$260^{\circ} \mathrm{C}$
J Package: 10 sec.	$300^{\circ} \mathrm{C}$
SO Package: Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (appendix D) for other methods of soldering surface mount devices.
Operating Ratings (Note 1)
Temperature Range
$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$
MF10ACN, MF10CCN $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
MF10CCWM $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
MF10CCJ
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
MF10AJ
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$
Electrical Characteristics $\mathrm{v}+=+5.00 \mathrm{~V}$ and $\mathrm{v}-=-5.00 \mathrm{~V}$ unless otherwise specified.
Boldface limits apply for $T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Electrical Characteristics (Continued) $\mathrm{V}^{+}=+5.00 \mathrm{~V}$ and $\mathrm{V}^{-}=-5.00 \mathrm{~V}$ unless otherwise specified.
Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter		Conditions	MF10ACN, MF10CCN, MF10CCWM			MF10CCJ, MF10AJ			Units	
			Typical (Note 8)		Design Limit (Note 10)	Typical (Note 8)		Design Limit (Note 10)			
$V_{\text {out }}$	Minimum Output Voltage Swing	BP, LP PINS		$R \mathrm{LL}=5 \mathrm{k}$	± 4.25	± 3.8	± 3.8	± 4.25	± 3.8		V
		N/AP/HP PIN	$\mathrm{RL}=3.5 \mathrm{k}$	± 4.25	± 3.8	± 3.8	± 4.25	± 3.6		V	
GBW	Op Amp Gain BW Product			2.5			2.5			MHz	
SR	Op Amp Slew Rate			7			7			$\mathrm{V} / \mu \mathrm{s}$	
	Dynamic Range (Note 6)		$\begin{aligned} & V_{\text {pin } 12}=+5 V \\ & \left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}=50\right) \\ & \hline \end{aligned}$	83			83			dB	
			$\begin{array}{\|l} V_{\text {pin12 }}=0 \mathrm{~V} \\ \left(\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}=100\right) \end{array}$	80			80			dB	
I_{sc}	Maximum Output Short Circuit Current (Note 7)	Source		20			20			mA	
		Sink		3.0			3.0			mA	

Logic Input Characteristics Boldface limits apply for $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	MF10ACN, MF10CCN, MF10CCWM			MF10CCJ, MF10AJ			Units	
		Typical (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Typical (Note 8)	Tested Limit (Note 9)	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{array}$			
CMOS Clock Input Voltage	MIN Logical "1"		$\begin{aligned} & \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=0 \mathrm{~V} \end{aligned}$		+3.0	+3.0		+3.0		V
	MAX Logical "0"			-3.0	-3.0		-3.0		V	
	MIN Logical "1"	$\begin{aligned} & \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=+5 \mathrm{~V} \end{aligned}$		+8.0	+8.0		+8.0		V	
	MAX Logical "0"			+2.0	+2.0		+2.0		V	
TTL Clock Input Voltage	MIN Logical "1"	$\begin{aligned} & \mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=0 \mathrm{~V} \end{aligned}$		+2.0	+2.0		+2.0		V	
	MAX Logical "0"			+0.8	+0.8		+ 0.8		V	
	MIN Logical "1"	$\begin{aligned} & \mathrm{V}+=+10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{LSh}}=0 \mathrm{~V} \end{aligned}$		+2.0	+2.0		+2.0		V	
	MAX Logical " 0 "			+ 0.8	+ 0.8		+0.8		V	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: When the input voltage $\left(\mathrm{V}_{\mathbb{I N}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{I N}<\mathrm{V}^{-}\right.$or $\left.\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}\right)$the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the MF10ACN/CCN when board mounted is $55^{\circ} \mathrm{C} / \mathrm{W}$. For the MF10AJ/CCJ, this number increases to $95^{\circ} \mathrm{C} / \mathrm{W}$ and for the MF10CCWM this number is $66^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: The accuracy of the Q value is a function of the center frequency (f_{0}). This is illustrated in the curves under the heading "Typical Peformance Characteristics".
Note 5: $\mathrm{V}_{\mathrm{os} 1}, \mathrm{~V}_{\mathrm{os} 2}$, and $\mathrm{V}_{\mathrm{os} 3}$ refer to the internal offsets as discussed in the Applications Information section 3.4.
Note 6: For $\pm 5 \mathrm{~V}$ supplies the dynamic range is referenced to $2.82 \mathrm{~V} \mathrm{rms} \mathrm{(} 4 \mathrm{~V}$ peak) where the wideband noise over a 20 kHz bandwidth is typically $200 \mu \mathrm{Vrms}$ for the MF10 with a $50: 1$ CLK ratio and $280 \mu \mathrm{~V}$ rms for the MF10 with a 100:1 CLK ratio.
Note 7: The short circuit source current is measured by forcing the output that is being tested to its maximum positive voltage swing and then shorting that output to the negative supply. The short circuit sink current is measured by forcing the output that is being tested to its maximum negative voltage swing and then shorting that output to the positive supply. These are the worst case conditions.
Note 8: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 9: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: Design limits are guaranteed but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics

Q Deviation vs.

Temperature

Positive Output Voltage Swing vs. Load Resistance (N/AP/HP Output)

Positive Output Swing vs. Temperature

Negative Output Voltage Swing vs. Load Resistance (N/AP/HP Output)

Crosstalk vs. Clock
Frequency

Q Deviation vs.

Clock Frequency

clk/fodeviation vs.
Temperature

TL/H/5645-14

Typical Performance Characteristics (Continued)

Connection Diagram

Pin Descriptions

$L P(1,20), B P(2,19)$, The second order lowpass, bandN/AP/HP(3,18) pass and notch/allpass/highpass outputs. These outputs can typically sink 1.5 mA and source 3 mA . Each output typically swings to within 1 V of each supply.
$\mathrm{V}_{\mathrm{A}}{ }^{+}(7), \mathrm{V}_{\mathrm{D}}{ }^{+}(8) \quad$ Analog positive supply and digital positive supply. These pins are internally connected through the IC substrate and therefore $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$ should be derived from the same power supply source. They have been brought out separately so they can be bypassed by separate capacitors, if desired. They can be externally tied together and bypassed by a single capacitor.
$V_{A}-(14), V_{D}-(13) \quad$ Analog and digital negative supplies. The same comments as for $\mathrm{V}_{\mathrm{A}^{-}}$and $V_{D}{ }^{-}$apply here.
LSh(9) Level shift pin; it accommodates various clock levels with dual or single supply operation. With dual $\pm 5 \mathrm{~V}$ supplies, the MF10 can be driven with CMOS clock levels ($\pm 5 \mathrm{~V}$) and the LSh pin should be tied to the system ground. If the same supplies as above are used but only TTL clock levels, derived from 0 V to +5 V supply, are available, the LSh pin should be tied to the system ground. For single supply operation (0 V and +10 V) the $\mathrm{V}_{A^{-}}, \mathrm{V}_{\mathrm{D}^{-}}$pins should be connected to the system ground, the AGND pin should be biased at +5 V and the LSh pin should also be tied to the system ground for TTL clock levels. LSh should be biased at +5 V for CMOS clock levels in 10 V singlesupply applications.
CLKA(10), Clock inputs for each switched caCLKB(11)

50/100/CL(12)
pacitor filter building block. They should both be of the same level (TTL or CMOS). The level shift (LSh) pin description discusses how to accommodate their levels. The duty cycle of the clock should be close to 50% especially when clock frequencies above 200 kHz are used. This allows the maximum time for the internal op-amps to settle, which yields optimum filter operation.
By tying this pin high a 50:1 clock-to-filter-center-frequency ratio is obtained. Tying this pin at mid-supplies (i.e., analog ground with dual supplies) allows the filter to operate at a 100:1 clock-to-center-frequency ratio. When the pin is tied low (i.e., negative supply with dual supplies), a simple current limiting circuit is triggered to limit the overall supply current down to about 2.5 mA . The filtering action is then aborted.

AGND(15)
This is the analog ground pin. This pin should be connected to the system ground for dual supply operation or biased to mid-supply for single supply operation. For a further discussion of mid-supply biasing techniques see the Applications Information (Section 3.2). For optimum filter performance a "clean" ground must be provided.

1.0 Definitions of Terms

fclu: the frequency of the external clock signal applied to pin 10 or 11.
f_{0} : center frequency of the second order function complex pole pair. f_{0} is measured at the bandpass outputs of the MF10, and is the frequency of maximum bandpass gain. (Figure 1).
$f_{\text {notch: }}$ the frequency of minimum (ideally zero) gain at the notch outputs.
$\mathbf{f}_{\mathbf{z}}$: the center frequency of the second order complex zero pair, if any. If f_{z} is different from f_{o} and if Q_{z} is high, it can be observed as the frequency of a notch at the allpass output. (Figure 10).
Q: "quality factor" of the 2nd order filter. Q is measured at the bandpass outputs of the MF10 and is equal to f_{0} divided by the -3 dB bandwidth of the 2nd order bandpass filter (Figure 1). The value of Q determines the shape of the 2nd order filter responses as shown in Figure 6.
$\mathbf{Q}_{\mathbf{z}}$: the quality factor of the second order complex zero pair, if any. Q_{z} is related to the allpass characteristic, which is written:
$H_{A P}(s)=\frac{H_{O A P}\left(s^{2}-\frac{s \omega_{o}}{Q_{z}}+\omega_{0}{ }^{2}\right)}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}}$
where $Q_{Z}=Q$ for an all-pass response.
$H_{\text {OBP: }}$ the gain (in V/V) of the bandpass output at $f=f_{0}$.
$H_{\text {OLP: }}$ the gain (in V/V) of the lowpass output as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$ (Figure 2).
Houp: the gain (in V/V) of the highpass output as $\mathrm{f} \rightarrow$ $\mathrm{f}_{\mathrm{clk}} / 2$ (Figure 3).
HoN: the gain (in V/V) of the notch output as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$ and as $\mathrm{f} \rightarrow \mathrm{f}_{\mathrm{ClK}} / 2$, when the notch filter has equal gain above and below the center frequency (Figure 4). When the low-frequency gain differs from the high-frequency gain, as in modes 2 and 3a (Figures 11 and 8), the two quantities below are used in place of H_{ON}.
$H_{\text {ON1 }}$: the gain (in V/V) of the notch output as $f \rightarrow 0 \mathrm{~Hz}$.
$H_{\text {ON2 }}$: the gain (in V/V) of the notch output as $f \rightarrow f_{\text {clk }} / 2$.

1.0 Definitions of Terms (Continued)

TL/H/5645-19
(a)

(b)

$$
\begin{aligned}
& H_{B P}(s)=\frac{H_{O B P S}}{s^{2}+\frac{s \omega_{O}}{Q}+\omega_{0}^{2}} \\
& Q=\frac{f_{O}}{f_{H}-f_{L}} ; f_{O}=\sqrt{f_{L} f_{H}} \\
& f_{L}=f_{O}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
\end{aligned}
$$

$$
f_{H}=f_{o}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
$$

$$
\omega_{0}=2 \pi f_{0}
$$

FIGURE 1. 2nd-Order Bandpass Response

(a)

(b)

$$
\begin{aligned}
& H_{L P}(s)=\frac{H_{O L P} \omega_{O}{ }^{2}}{s^{2}+\frac{s \omega_{O}}{Q}+\omega_{o}^{2}} \\
& f_{C}=f_{O} \times \sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}} \\
& f_{p}=f_{o} \sqrt{1-\frac{1}{2 Q^{2}}} \\
& H_{O P}=H_{O L P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}
\end{aligned}
$$

FIGURE 2. 2nd-Order Low-Pass Response

> TL/H/5645-23
> (a)
> $H_{H P}(s)=\frac{H_{O H P S}{ }^{2}}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}}$
> $f_{c}=f_{o} \times\left[\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)+\sqrt{\left(1-\frac{1}{2 Q^{2}}\right)^{2}+1}}\right]^{-1}$
> $f_{p}=f_{o} \times\left[\sqrt{1-\frac{1}{2 Q^{2}}}\right]-1$
> $H_{O P}=H_{O H P} \times \frac{1}{\frac{1}{Q} \sqrt{1-\frac{1}{4 Q^{2}}}}$

(b)

FIGURE 3. 2nd-Order High-Pass Response

1.0 Definitions of Terms (Continued)

(a)

(a)

(b)

FIGURE 4. 2nd-Order Notch Response

TL/H/5645-28
(b)

$$
\begin{aligned}
& H_{N}(s)=\frac{H_{O N}\left(s^{2}+\omega_{o}^{2}\right)}{s^{2}+\frac{s \omega_{O}}{Q}+\omega_{o}^{2}} \\
& Q=\frac{f_{O}}{f_{H}-f_{L}} ; f_{O}=\sqrt{f_{L} f_{H}} \\
& f_{L}=f_{O}\left(\frac{-1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right) \\
& f_{H}=f_{O}\left(\frac{1}{2 Q}+\sqrt{\left(\frac{1}{2 Q}\right)^{2}+1}\right)
\end{aligned}
$$

$$
H_{A P}(s)=\frac{H_{O A P}\left(s^{2}-\frac{s \omega_{0}}{Q}+\omega_{0}^{2}\right)}{s^{2}+\frac{s \omega_{0}}{Q}+\omega_{0}{ }^{2}}
$$

FIGURE 5. 2nd-Order All-Pass Response

2.0 Modes of Operation

The MF10 is a switched capacitor (sampled data) filter. To fully describe its transfer functions, a time domain approach is appropriate. Since this is cumbersome, and since the MF10 closely approximates continuous filters, the following discussion is based on the well known frequency domain. Each MF10 can produce a full 2nd order function. See Table 1 for a summary of the characteristics of the various modes.
MODE 1: Notch 1, Bandpass, Lowpass Outputs:
$\mathbf{f}_{\text {notch }}=\mathbf{f}_{\mathbf{0}}$ (See Figure $\mathbf{7}$)
$\mathrm{f}_{\mathrm{o}} \quad=$ center frequency of the complex pole pair
$=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f} \text { CLK }}{50}$
$\mathbf{f}_{\text {notch }}=$ center frequency of the imaginary zero pair $=\mathbf{f}_{\mathbf{0}}$.
$H_{\text {OLP }}=$ Lowpass gain (as $f \rightarrow 0$) $=-\frac{R 2}{R 1}$
$H_{O B P}=$ Bandpass gain (at $\left.f=f_{0}\right)=-\frac{R 3}{R 1}$
$H_{\mathrm{ON}}=$ Notch output gain as $\left.\underset{\mathrm{f}}{\mathrm{f}} \rightarrow 0 \mathrm{f}_{\mathrm{CLK}} / 2\right\}=\frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}}$

Q $\quad=\frac{\mathrm{f}_{\mathrm{o}}}{\mathrm{BW}}=\frac{\mathrm{R} 3}{\mathrm{R} 2}$

$$
=\text { quality factor of the complex pole pair }
$$

BW $\quad=$ the -3 dB bandwidth of the bandpass output.
Circuit dynamics:

$$
\begin{aligned}
H_{\mathrm{OLP}} & =\frac{H_{\mathrm{OBP}}}{Q} \text { or } H_{\mathrm{OBP}}=H_{\mathrm{OLP}} \times \mathrm{Q} \\
& =H_{O N} \times \mathrm{Q} .
\end{aligned}
$$

$H_{O L P(\text { peak })} \cong Q \times H_{\text {OLP }}$ (for high Q's)
MODE 1a: Non-Inverting BP, LP (See Figure 8)
$\mathrm{f}_{0}=\frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50}$
Q $=\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{\text {OLP }}=-1 ; H_{\text {OLP (peak) }} \cong Q \times$ Holp (for high Q's)
$\mathrm{H}_{\mathrm{OBP}_{1}}=-\frac{\mathrm{R} 3}{\mathrm{R} 2}$
$\mathrm{H}_{\mathrm{OBP}_{2}}=1$ (non-inverting)
Circuit dynamics: $\mathrm{H}_{\mathrm{OBP}_{1}}=\mathrm{Q}$
Note: V_{IN} should be driven from a low impedance ($<1 \mathrm{k} \Omega$) source.

FIGURE 7. MODE 1

2.0 Modes of Operation (Continued)

MODE 2: Notch 2, Bandpass, Lowpass: $f_{\text {notch }}<f_{0}$
(See Figure 9)
$\mathrm{f}_{\mathrm{o}} \quad=$ center frequency
$=\frac{\mathrm{fCLK}}{100} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+1}$ or $\frac{\mathrm{fCLK}}{50} \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}+1}$
$f_{\text {notch }}=\frac{f_{\text {CLK }}}{100}$ or $\frac{f_{\text {CLK }}}{50}$
Q = quality factor of the complex pole pair
$=\frac{\sqrt{\text { R2/R4 +1 }}}{\mathrm{R} 2 / \mathrm{R} 3}$
HoLP $=$ Lowpass output gain (as $\mathrm{f} \rightarrow 0$)
$=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}$
$H_{\text {OBP }}=$ Bandpass output gain (at $\left.f=f_{0}\right)=-R 3 / R 1$
$\mathrm{H}_{\mathrm{ON}}^{1} \boldsymbol{}=$ Notch output gain (as $\mathrm{f} \rightarrow 0$)

$$
=-\frac{\mathrm{R} 2 / \mathrm{R} 1}{\mathrm{R} 2 / \mathrm{R} 4+1}
$$

$\mathrm{H}_{\mathrm{ON}}^{2} 2=$ Notch output gain $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=-\mathrm{R} 2 / \mathrm{R} 1$
Filter dynamics: $\mathrm{H}_{\mathrm{OBP}}=\mathrm{Q} \sqrt{\mathrm{HOLP}^{\mathrm{H}_{\mathrm{ON}}^{2}}}=\sqrt{\mathrm{HON}_{1} \mathrm{H}_{\mathrm{ON}}^{2}}$

MODE 3: Highpass, Bandpass, Lowpass Outputs (See Figure 10)
$\mathrm{f}_{0} \quad=\frac{\mathrm{fCLK}}{100} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f} C L \mathrm{~K}}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
Q $\quad=$ quality factor of the complex pole pair
$=\sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{O H P}=$ Highpass gain $\left(\right.$ at $\left.f \rightarrow \frac{f_{C L K}}{2}\right)=-\frac{R 2}{R 1}$
$H_{O B P}=$ Bandpass gain (at $\left.f=f_{0}\right)=-\frac{R 3}{R 1}$
$H_{\text {OLP }}=$ Lowpass gain (as $f \rightarrow 0$) $=-\frac{R 4}{R 1}$
Circuit dynamics: $\frac{R 2}{R 4}=\frac{H_{O H P}}{H_{O L P}} ; H_{O B P}=\sqrt{H_{O H P} \times H_{O L P}} \times Q$

$$
\begin{aligned}
& H_{O L P(\text { peak })} \cong Q \times H_{O L P} \text { (for high Q's) } \\
& H_{O H P(\text { peak })} \cong Q \times H_{O H P} \text { (for high Q's) }
\end{aligned}
$$

FIGURE 9. MODE 2

*In Mode 3, the feedback loop is closed around the input summing amplifier; the finite GBW product of this op amp causes a slight Q enchancement. If this is a problem, connect a small capacitor ($10 \mathrm{pF}-100 \mathrm{pF}$) across R 4 to provide some phase lead.

2.0 Modes of Operation (Continued)

MODE 3a: HP, BP, LP and Notch with External Op Amp
(See Figure 11)
$\mathrm{f}_{0} \quad=\frac{\mathrm{f}_{\mathrm{CLK}}}{100} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$ or $\frac{\mathrm{f}_{\mathrm{CLK}}}{50} \times \sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}}$
Q $=\sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 2}$
$H_{O H P}=-\frac{R 2}{R 1}$
$\mathrm{H}_{\mathrm{OBP}}=-\frac{\mathrm{R} 3}{\mathrm{R} 1}$
$H_{\text {OLP }}=-\frac{R 4}{R 1}$
$f_{n} \quad=$ notch frequency $=\frac{f_{C L K}}{100} \sqrt{\frac{R_{h}}{R_{l}}}$ or $\frac{f_{C L K}}{50} \sqrt{\frac{R_{h}}{R_{l}}}$
$\mathrm{H}_{\mathrm{ON}} \quad=$ gain of notch at
$f=f_{o}=\left\|Q\left(\frac{R_{g}}{R_{l}} H_{O L P}-\frac{R_{g}}{R_{h}} H_{O H P}\right)\right\|$
$H_{n 1} \quad=$ gain of notch (as $\left.f \rightarrow 0\right)=\frac{R_{g}}{R_{l}} \times H_{\text {OLP }}$
$H_{n 2}=$ gain of notch $\left(\right.$ as $\left.f \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)$
$=-\frac{R_{g}}{R_{h}} \times H_{O H P}$

MODE 4: Allpass, Bandpass, Lowpass Outputs
(See Figure 12)
$\mathrm{f}_{\mathrm{o}} \quad=$ center frequency
$=\frac{{ }^{\text {f CLK }}}{100}$ or $\frac{\mathrm{f}^{\text {CLK }}}{50}$;
$\mathrm{f}_{\mathrm{z}}{ }^{*}=$ center frequency of the complex zero $\approx \mathrm{f}_{\mathrm{o}}$
Q $\quad=\frac{f_{0}}{B W}=\frac{R 3}{R 2}$;
$Q_{z}=$ quality factor of complex zero pair $=\frac{R 3}{R 1}$
For AP output make R1 = R2
$H_{\text {OAP }}{ }^{*}=$ Allpass gain $\left(\right.$ at $\left.0<\mathrm{f}<\frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=-\frac{\mathrm{R} 2}{\mathrm{R} 1}=-1$
HoLP $=$ Lowpass gain (as $\mathrm{f} \rightarrow 0$)
$=-\left(\frac{R 2}{R 1}+1\right)=-2$
Hobp $=$ Bandpass gain (at $f=f_{0}$)
$=-\frac{\mathrm{R} 3}{\mathrm{R} 2}\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)=-2\left(\frac{\mathrm{R} 3}{\mathrm{R} 2}\right)$
Circuit dynamics: $H_{\text {OBP }}=\left(H_{\text {OLP }}\right) \times Q=\left(H_{\text {OAP }}+1\right) Q$
*Due to the sampled data nature of the filter, a slight mismatch of f_{z} and f_{0} occurs causing a 0.4 dB peaking around f_{0} of the allpass filter amplitude response (which theoretically should be a straight line). If this is unacceptable, Mode 5 is recommended.

FIGURE 12. MODE 4

2.0 Modes of Operation (Continued)

MODE 5: Numerator Complex Zeros, BP, LP
(See Figure 13)
$\mathrm{f}_{0}=\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f} \mathrm{CLK}}{100}$ or $\sqrt{1+\frac{\mathrm{R} 2}{\mathrm{R} 4}} \times \frac{\mathrm{f} \text { CLK }}{50}$
$\mathrm{f}_{\mathrm{z}} \quad=\sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}} \times \frac{\mathrm{f} \text { CLK }}{100}$ or $\sqrt{1-\frac{\mathrm{R} 1}{\mathrm{R} 4}} \times \frac{\mathrm{f} \text { CLK }}{50}$
$Q=\sqrt{1+R_{2} / R 4} \times \frac{R 3}{R 2}$
$\mathrm{Q}_{\mathrm{Z}} \quad=\sqrt{1-\mathrm{R} 1 / \mathrm{R}^{4}} \times \frac{\mathrm{R} 3}{\mathrm{R} 1}$
$\mathrm{H}_{\mathrm{O}_{\mathrm{z}}}=$ gain at C.z. output (as $\mathrm{f} \rightarrow 0 \mathrm{~Hz}$)
$\frac{-R 2(R 4-R 1)}{R 1(R 2+R 4)}$
$\mathrm{H}_{\mathrm{oz}_{\mathrm{z}}} \quad=$ gain at C.Z. output $\left(\right.$ as $\left.\mathrm{f} \rightarrow \frac{\mathrm{f}_{\mathrm{CLK}}}{2}\right)=\frac{-\mathrm{R} 2}{\mathrm{R} 1}$
Hobp

$$
=-\left(\frac{R 2}{R 1}+1\right) \times \frac{R 3}{R 2}
$$

$H_{O L P}=-\left(\frac{R 2+R 1}{R 2+R 4}\right) \times \frac{R 4}{R 1}$

MODE 6a: Single Pole, HP, LP Filter (See Figure 14)
$f_{c} \quad=$ cutoff frequency of LP or HP output
$=\frac{R 2}{R 3} \frac{\mathrm{f} C L K}{100}$ or $\frac{R 2}{\mathrm{R} 3} \frac{\mathrm{f} \mathrm{CLK}}{50}$
$H_{\text {OLP }}=-\frac{R 3}{R 1}$
$\mathrm{H}_{\mathrm{OHP}}=-\frac{\mathrm{R} 2}{\mathrm{R} 1}$
MODE 6b: Single Pole LP Filter (Inverting and Non-Inverting) (See Figure 15)
$\mathrm{f}_{\mathrm{c}} \quad=$ cutoff frequency of LP outputs
$\cong \frac{R 2}{R 3} \frac{\mathrm{f}_{\mathrm{CLK}}}{100}$ or $\frac{\mathrm{R} 2}{\mathrm{R} 3} \frac{\mathrm{f} \mathrm{CLK}}{50}$
$\mathrm{HOLP}_{1}=1$ (non-inverting)
$\mathrm{H}_{\mathrm{OLP}}^{2} 2=-\frac{\mathrm{R} 3}{\mathrm{R} 2}$

FIGURE 13. MODE 5

FIGURE 14. MODE 6a

FIGURE 15. MODE 6b

2.0 Modes of Operation (Continued)

TABLE I. Summary of Modes. Realizable filter types (e.g. low-pass) denoted by asterisks.
Unless otherwise noted, gains of various filter outputs are inverting and adjustable by resistor ratios.

Mode	BP	LP	HP	N	AP	Number of resistors	Adjustable fCLK/fo	Notes
1	*	*		*		3	No	
1 a	(2) $\begin{aligned} & \mathrm{H}_{\mathrm{OBP} 1}=-\mathrm{Q} \\ & \mathrm{H}_{\mathrm{OBP} 2}=+1 \end{aligned}$	$\mathrm{H}_{\text {OLP }}+1$				2	No	May need input buffer. Poor dynamics for high Q.
2	*	*		*		3	Yes (above $\mathrm{f}_{\mathrm{CLK}} / 50$ or fCLK/100)	
3	*	*	*			4	Yes	Universal StateVariable Filter. Best general-purpose mode.
3 a	*	*	*	*		7	Yes	As above, but also includes resistortuneable notch.
4	*	*			*	3	No	Gives Allpass response with $\mathrm{H}_{\mathrm{OAP}}=-1$ and $\mathrm{H}_{\mathrm{OLP}}=-2$.
5	*	*			*	4		Gives flatter allpass response than above if $R_{1}=R_{2}=0.02 R_{4}$.
6 a		*	*			3		Single pole.
6b		(2) $\begin{aligned} & \mathrm{H}_{\text {OLP1 }}=+1 \\ & \mathrm{H}_{\mathrm{OLP} 2}=\frac{-\mathrm{R} 3}{\mathrm{R} 2} \end{aligned}$				2		Single pole.

3.0 Applications Information

The MF10 is a general-purpose dual second-order state variable filter whose center frequency is proportional to the frequency of the square wave applied to the clock input (fCLK). By connecting pin 12 to the appropriate DC voltage, the filter center frequency f_{o} can be made equal to either $\mathrm{f}_{\mathrm{CLK}} / 100$ or $\mathrm{f}_{\mathrm{GLK}} / 50$. f_{O} can be very accurately set (within $\pm 6 \%$) by using a crystal clock oscillator, or can be easily varied over a wide frequency range by adjusting the clock frequency. If desired, the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ ratio can be altered by external resistors as in Figures 9, 10, 11, 13, 14 and 15. The filter Q and gain are determined by external resistors.
All of the five second-order filter types can be built using either section of the MF10. These are illustrated in Figures 1 through 5 along with their transfer functions and some related equations. Figure 6 shows the effect of Q on the shapes of these curves. When filter orders greater than two are desired, two or more MF10 sections can be cascaded.

3.1 DESIGN EXAMPLE

In order to design a second-order filter section using the MF10, we must define the necessary values of three parameters: f_{0}, the filter section's center frequency; H_{0}, the passband gain; and the filter's Q. These are determined by the characteristics required of the filter being designed.

As an example, let's assume that a system requires a fourth-order Chebyshev low-pass filter with 1 dB ripple, unity gain at dc, and 1000 Hz cutoff frequency. As the system order is four, it is realizable using both second-order sections of an MF10. Many filter design texts (and National's Switched Capacitor Filter Handbook) include tables that list the characteristics (f_{0} and Q) of each of the second-order filter sections needed to synthesize a given higher-order filter. For the Chebyshev filter defined above, such a table yields the following characteristics:
$\mathrm{f}_{\mathrm{OA}}=529 \mathrm{~Hz}$
$\mathrm{Q}_{\mathrm{A}}=0.785$
$f_{0 B}=993 \mathrm{~Hz}$
$Q_{B}=3.559$

For unity gain at dc, we also specify:
$H_{0 A}=1$
$\mathrm{H}_{0 \mathrm{~B}}=1$
The desired clock-to-cutoff-frequency ratio for the overall filter of this example is 100 and a 100 kHz clock signal is available. Note that the required center frequencies for the two second-order sections will not be obtainable with clock-to-center-frequency ratios of 50 or 100 . It will be necessary to adjust $\frac{f_{C L K}}{f_{0}}$ externally. From Table I, we see that Mode 3 can be used to produce a low-pass filter with resistor-adjustable center frequency.

3.0 Applications Information (Continued)

 In most filter designs involving multiple second-order stages, it is best to place the stages with lower Q values ahead of stages with higher Q, especially when the higher Q is greater than 0.707 . This is due to the higher relative gain at the center frequency of a higher-Q stage. Placing a stage with lower Q ahead of a higher-Q stage will provide some attenuation at the center frequency and thus help avoid clipping of signals near this frequency. For this example, stage A has the lower $Q(0.785)$ so it will be placed ahead of the other stage.For the first section, we begin the design by choosing a convenient value for the input resistance: $\mathrm{R}_{1 \mathrm{~A}}=20 \mathrm{k}$. The absolute value of the passband gain HOLPA is made equal to 1 by choosing $R_{4 A}$ such that: $R_{4 A}=-H_{O L P A} R_{1 A}=R_{1 A}$ $=20 \mathrm{k}$. If the $50 / 100 / \mathrm{CL}$ pin is connected to mid-supply for nominal 100:1 clock-to-center-frequency ratio, we find $\mathrm{R}_{2 \mathrm{~A}}$ by:
$R_{2 A}=R_{4 A} \frac{f_{0 A^{2}}}{\left(f_{C L K} / 100\right)^{2}}=2 \times 10^{4} \times \frac{(529)^{2}}{(1000)^{2}}=5.6 \mathrm{k}$ and
$R_{3 A}=Q_{A} \sqrt{R_{2 A} R_{4 A}}=0.785 \sqrt{5.6 \times 10^{3} \times 2 \times 10^{4}}=8.3 \mathrm{k}$ The resistors for the second section are found in a similar fashion:
$R_{1 B}=20 k$
$R_{4 B}=R_{1 B}=20 k$
$R_{2 B}=R_{4 B} \frac{f_{0 B}}{\left(f_{C L K} / 100\right)^{2}}=20 k \frac{(993)^{2}}{(1000)^{2}}=19.7 \mathrm{k}$
$R_{3 B}=Q_{B} \sqrt{R_{2 B} R_{4 B}}=3.559 \sqrt{1.97 \times 10^{4} \times 2 \times 10^{4}}=70.6 k$
The complete circuit is shown in Figure 16 for split $\pm 5 \mathrm{~V}$ power supplies. Supply bypass capacitors are highly recommended.

TL/H/5645-30
FIGURE 16. Fourth-order Chebyshev low-pass filter from example in 3.1. $\pm 5 \mathrm{~V}$ power supply. $0-5 \mathrm{~V}$ TTL or $-5 \mathrm{~V} \pm 5 \mathrm{~V}$ CMOS logic levels.

TL/H/5645-31
FIGURE 17. Fourth-order Chebyshev low-pass filter from example in 3.1. Single +10 V power supply. $0-5 \mathrm{~V}$ TTL logic levels. Input signals should be referred to half-supply or applied through a coupling capacitor.

3.0 Applications Information (Continued)

TL/H/5645-34
(c) Operational Amplifier with Divider

FIGURE 18. Three Ways of Generating $\frac{\mathrm{V}^{+}}{2}$ for Single-Supply Operation

3.2 SINGLE SUPPLY OPERATION

The MF10 can also operate with a single-ended power supply. Figure 17 shows the example filter with a single-ended power supply. $\mathrm{V}_{\mathrm{A}}{ }^{+}$and $\mathrm{V}_{\mathrm{D}}{ }^{+}$are again connected to the positive power supply (8 to 14 volts), and $V_{A^{-}}$and $V_{D}{ }^{-}$are connected to ground. The $A_{G N D}$ pin must be tied to $\mathrm{V}+/ 2$ for single supply operation. This half-supply point should be very "clean", as any noise appearing on it will be treated as an input to the filter. It can be derived from the supply voltage with a pair of resistors and a bypass capacitor (Figure 18a), or a low-impedance half-supply voltage can be made using a three-terminal voltage regulator or an operational amplifier (Figures 18b and 18c). The passive resistor divider with a bypass capacitor is sufficient for many applications, provided that the time constant is long enough to reject any power supply noise. It is also important that the half-supply reference present a low impedance to the clock frequency, so at very low clock frequencies the regulator or op-amp approaches may be preferable because they will require smaller capacitors to filter the clock frequency. The main power supply voltage should be clean (preferably regulated) and bypassed with $0.1 \mu \mathrm{~F}$.

3.3 DYNAMIC CONSIDERATIONS

The maximum signal handling capability of the MF10, like that of any active filter, is limited by the power supply voltages used. The amplifiers in the MF10 are able to swing to within about 1 volt of the supplies, so the input signals must be kept small enough that none of the outputs will exceed these limits. If the MF10 is operating on ± 5 volts, for example, the outputs will clip at about $8 \mathrm{~V}_{\mathrm{p} \text {-p }}$. The maximum input voltage multiplied by the filter gain should therefore be less than $8 V_{p-p}$.
Note that if the filter Q is high, the gain at the lowpass or highpass outputs will be much greater than the nominal filter
gain (Figure 6). As an example, a lowpass filter with a Q of 10 will have a 20 dB peak in its amplitude response at f_{o}. If the nominal gain of the filter HOLP is equal to 1 , the gain at f_{0} will be 10 . The maximum input signal at f_{0} must therefore be less than $800 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ when the circuit is operated on ± 5 volt supplies.
Also note that one output can have a reasonable small voltage on it while another is saturated. This is most likely for a circuit such as the notch in Mode 1 (Figure 7). The notch output will be very small at f_{0}, so it might appear safe to apply a large signal to the input. However, the bandpass will have its maximum gain at f_{o} and can clip if overdriven. If one output clips, the performance at the other outputs will be degraded, so avoid overdriving any filter section, even ones whose outputs are not being directly used. Accompanying Figures 7 through 15 are equations labeled "circuit dynamics", which relate the Q and the gains at the various outputs. These should be consulted to determine peak circuit gains and maximum allowable signals for a given application.

3.4 OFFSET VOLTAGE

The MF10's switched capacitor integrators have a higher equivalent input offset voltage than would be found in a typical continuous-time active filter integrator. Figure 19 shows an equivalent circuit of the MF10 from which the output dc offsets can be calculated. Typical values for these offsets with $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ tied to V^{+}are:
$V_{\text {os1 }}=$ opamp offset $= \pm 5 \mathrm{mV}$
$V_{\text {os2 }}=-150 \mathrm{mV}$ @ 50:1 $\quad-300 \mathrm{mV}$ @ 100:1
$V_{\text {os } 3}=-70 \mathrm{mV}$ @ 50:1 $\quad-140 \mathrm{mV}$ @ 100:1
When $\mathrm{S}_{\mathrm{A} / \mathrm{B}}$ is tied to V^{-}, $\mathrm{V}_{\text {Os2 }}$ will approximately halve. The dc offset at the BP output is equal to the input offset of the lowpass integrator ($\mathrm{V}_{\mathrm{os} 3}$). The offsets at the other outputs depend on the mode of operation and the resistor ratios, as described in the following expressions.

3.0 Applications Information (Continued)

Mode 1 and Mode 4

$\mathrm{V}_{\mathrm{OS}(\mathrm{N})} \quad=\mathrm{V}_{\mathrm{OS} 1}\left(\frac{1}{\mathrm{Q}}+1+\left\|\mathrm{H}_{\mathrm{OLP}}\right\|\right)-\frac{\mathrm{V}_{\mathrm{OS} 3}}{\mathrm{Q}}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})}$
$=\mathrm{V}_{\text {OS3 }}$
$V_{\text {OS(LP) }}$
$=\mathrm{V}_{\mathrm{OS}(\mathrm{N})}-\mathrm{V}_{\mathrm{OS} 2}$
Mode 1a
$V_{O S}$ (N.INV.BP) $=\left(1+\frac{1}{Q}\right) V_{O S 1}-\frac{V_{O S 3}}{Q}$
V_{OS} (INV.BP) $=\mathrm{V}_{\mathrm{OS} 3}$
$\mathrm{V}_{\mathrm{OS}}(\mathrm{LP}) \quad=\mathrm{V}_{\mathrm{OS}}($ N.INV.BP $)-\mathrm{V}_{\mathrm{OS} 2}$

Mode 2 and Mode 5
$\mathrm{V}_{\mathrm{OS}(\mathrm{N})} \quad=\left(\frac{\mathrm{R} 2}{\mathrm{Rp}}+1\right) \mathrm{V}_{\mathrm{OS} 1} \times \frac{1}{1+\mathrm{R} 2 / \mathrm{R} 4}$

$$
+V_{\mathrm{OS} 2} \frac{1}{1+\mathrm{R} 4 / \mathrm{R} 2}-\frac{V_{\mathrm{OS} 3}}{\mathrm{Q} \sqrt{1+\mathrm{R} 2 / R 4}}:
$$

$$
R_{p}=R 1 / / R 3 / / R 4
$$

$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})} \quad=\mathrm{V}_{\mathrm{OS} 3}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})} \quad=\mathrm{V}_{\mathrm{OS}(\mathrm{N})}-\mathrm{V}_{\mathrm{OS} 2}$
Mode 3
$\mathrm{V}_{\mathrm{OS}(\mathrm{HP})} \quad=\mathrm{V}_{\mathrm{OS} 2}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{BP})} \quad=\mathrm{V}_{\mathrm{OS} 3}$
$\mathrm{V}_{\mathrm{OS}(\mathrm{LP})} \quad=\mathrm{V}_{\mathrm{OS} 1}\left[1+\frac{\mathrm{R} 4}{\mathrm{R}_{\mathrm{p}}}\right]-\mathrm{V}_{\mathrm{OS} 2}\left(\frac{\mathrm{R} 4}{\mathrm{R} 2}\right)$
$-V_{\text {OS3 }}\left(\frac{R 4}{R 3}\right)$
$R_{p}=R 1 / / R 2 / / R 3$

TL/H/5645-12
FIGURE 19. MF10 Offset Voltage Sources

FIGURE 20. Method for Trimming $\mathbf{V}_{\text {OS }}$

3.0 Applications Information (Continued)

For most applications, the outputs are AC coupled and DC offsets are not bothersome unless large signals are applied to the filter input. However, larger offset voltages will cause clipping to occur at lower ac signal levels, and clipping at any of the outputs will cause gain nonlinearities and will change f_{0} and Q. When operating in Mode 3, offsets can become excessively large if R_{2} and R_{4} are used to make $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$ significantly higher than the nominal value, especially if Q is also high. An extreme example is a bandpass filter having unity gain, $a Q$ of 20 , and $f_{C L K} / f_{0}=250$ with pin 12 tied to ground (100:1 nominal). $\mathrm{R}_{4} / \mathrm{R}_{2}$ will therefore be equal to 6.25 and the offset voltage at the lowpass output will be about +1 V . Where necessary, the offset voltage can be adjusted by using the circuit of Figure 20. This allows adjustment of $\mathrm{V}_{\mathrm{os} 1}$, which will have varying effects on the different outputs as described in the above equations. Some outputs cannot be adjusted this way in some modes, however ($V_{O S(B P)}$ in modes 1a and 3, for example).

3.5 SAMPLED DATA SYSTEM CONSIDERATIONS

The MF10 is a sampled data filter, and as such, differs in many ways from conventional continuous-time filters. An important characteristic of sampled-data systems is their effect on signals at frequencies greater than one-half the sampling frequency. (The MF10's sampling frequency is the same as its clock frequency.) If a signal with a frequency greater than one-half the sampling frequency is applied to the input of a sampled data system, it will be "reflected" to a frequency less than one-half the sampling frequency. Thus, an input signal whose frequency is $f_{s} / 2+100 \mathrm{~Hz}$ will cause the system to respond as though the input frequency
was $f_{s} / 2-100 \mathrm{~Hz}$. This phenomenon is known as "aliasing", and can be reduced or eliminated by limiting the input signal spectrum to less than $f_{s} / 2$. This may in some cases require the use of a bandwidth-limiting filter ahead of the MF10 to limit the input spectrum. However, since the clock frequency is much higher than the center frequency, this will often not be necessary.
Another characteristic of sampled-data circuits is that the output signal changes amplitude once every sampling period, resulting in "steps" in the output voltage which occur at the clock rate. (Figure 21) If necessary, these can be "smoothed" with a simple R-C low-pass filter at the MF10 output.
The ratio of $f_{\text {CLK }}$ to f_{c} (normally either $50: 1$ or $100: 1$) will also affect performance. A ratio of $100: 1$ will reduce any aliasing problems and is usually recommended for wideband input signals. In noise sensitive applications, however, a ratio of 50:1 may be better as it will result in 3 dB lower output noise. The $50: 1$ ratio also results in lower DC offset voltages, as discussed in 3.4.
The accuracy of the $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{O}}$ ratio is dependent on the value of Q. This is illustrated in the curves under the heading "Typical Performance Characteristics". As Q is changed, the true value of the ratio changes as well. Unless the Q is low, the error in $\mathrm{f}_{\mathrm{CLK}} / \mathrm{f}_{\mathrm{o}}$ will be small. If the error is too large for a specific application, use a mode that allows adjustment of the ratio with external resistors.
It should also be noted that the product of Q and f_{0} should be limited to 300 kHz when $\mathrm{f}_{0}<5 \mathrm{kHz}$, and to 200 kHz for $\mathrm{f}_{\mathrm{o}}>5 \mathrm{kHz}$.
.

Section 2 Analog Switches/
Multiplexers

Section 2 Contents

Analog Switches/Multiplexers Definition of Terms 2-3
Analog Switches/Multiplexers Selection Guide 2-4
AH0014/AH0014C DPDT, AH0015C Quad SPST, AH0019/AH0019C Dual DPST-TTTL/ DTLD Compatible MOS Analog Switch 2-5
AH5009/AH5010/AH5011/AH5012 Monolithic Analog Current Switch 2-6
AH5020C Monolithic Analog Current Switch 2-17
CD4016C Quad Bi-Lateral Switch 2-25
CD4051BM/CD4051BC Single 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4052BM/CD4052BC Dual 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4053BM/CD4053BC Triple 8-Channel Analog Multiplexer/Demultiplexer 2-32
CD4066BM/CD4066BC Quad Bi-Lateral Switch 2-40
CD4529BC Dual 4-Channel or 8-Channel Analog Data Election 2-46
LF11331/LF13331/LF11332/LF1333/LF13333, LF11201/LF13201/LF11202/LF13202 Quad SPST JFET Analog Switches 2-52
LF13508 8-Channel Analog Multiplexer 2-63
LF13509 4-Channel Analog Multiplexer 2-63

* MM54HC4016/MM74HC4016 Quad Analog Switch 2-77
* MM54HC4051/MM74HC4051 8-Channel Analog Multiplexer 2-84
* MM54HC4052/MM74HC4052 Dual 4-Channel Analog Multiplexer 2-84
* MM54HC4053/MM74HC4053 Triple 2-Channel Analog Multiplexer 2-84
* MM54HC4066/MM74HC4066 Quad Analog Switch 2-91
* MM54HC4316/MM74HC4316 Quad Analog Switch with Level Translator 2-96

Analog Switch Definition of Terms

Ron: Resistance between the output and the input of an addressed channel.
$I_{\mathbf{S}}:$ Current at any switch input. This is leakage current when the switch is ON.
I_{D} : Current at any switch input going into the switch. This is leakage current when the switch is OFF.
Cs: Capacitance between any open terminal " S " and ground.
C_{D} : Capacitance between any open terminal " D " and ground.
$I_{D}{ }^{-1}$ S: Leakage current that flows from the closed switch into the body. This leakage is the difference between the current I_{D} going into the switch and the current I_{S} going out of the switch.
$t_{\text {RAN }}$: Delay time when switching from one address state to another.
$t_{\text {ON: }}$ Delay time between the 50% points of an enable input and the switch ON condition.
$t_{\text {OFF: }}$ Delay time between the 50% points of the enable input and the switch OFF condition.

Analog Switch/Multiplexer Selection Guide

Part Number	Function	Logic Input	$\begin{gathered} \mathbf{V}_{\mathbf{S}} \\ \text { (Typ) } \end{gathered}$	Ton/Toff ns (Typ)	RON Ω
AH5011	QUAD SPST	TTL, CMOS	-	150/300	100
AH5012		TTL, CMOS	-	150/300	150
CD4016		CMOS	± 7.5	20/40	850
CD4066		CMOS	± 7.5	25/50	280
LF11201/LF13201		TTL	± 15	90/500	200
LF11202/LF13202		TTL	± 15	90/500	200
LF11331/LF13331		TTL	± 15	90/500	200
LF11332/LF13332		TTL	± 15	90/500	200
LF11333/LF13333		TTL	± 15	90/500	200
MM74HC4016		CMOS	± 12	5/8	40
AH5020	DUAL SPDT	TTL, CMOS	-	150/300	150
CD4053	TRIPLE SPDT	CMOS	± 7.5	160/75	300
MM74HC4053		CMOS	± 6.0	15/16	40
AH5009	4-CHANNEL	TTL, CMOS	-	150/300	100
AH5010		TTL, CMOS	-	150/300	150
CD4052	4-CHANNEL DIFFERENTIAL	cMOS	± 7.5	160/75	300
CD4529B		cMOS	± 7.5	50	350
LF13509		TTL, CMOS	± 18	1600/200	350
MM74HC4052		CMOS	± 6.0	15/16	40
CD4051	8-CHANNEL	CMOS	± 7.5	160/75	300
CD4529B		cMOS	± 7.5	50	350
LF13508		TTL, CMOS	± 18	1600/200	350
MM74HC4051		CMOS	± 6.0	15/16	40

National
Semiconductor

AH0014/AH0014C DPDT/ AH0015/AH0015C Quad SPST/ AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switches

General Description

This series of TTL/DTL compatible MOS analog switches feature high speed with internal level shifting and driving. The package contains two monolithic integrated circuit chips: the MOS analog chip consists of four MOS analog switch transistors; the second chip is a bipolar I.C. gate and level shifter. The series is available in hermetic dual-in-line package.
These switches are particularly suited for use in both military and industrial applications such as commutators in data acquisition systems, multiplexers, A / D and D / A converters, long time constant integrators, sample and hold circuits, modulators/demodulators, and other analog signal switching applications.
The AH0014, AH0015 and AH0019 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The AH0014C, AH0015C and AH0019C are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

Large analog voltage switching	$\pm 10 \mathrm{~V}$
- Fast switching speed	500 ns
Operation over wide range of power supplies	
- Low ON resistance	200Ω
- High OFF resistance	$10^{11} \Omega$
- Analog signals in excess of	25 MHz
- Fully compatible with DTL or TTL logic	
Includes gating and level shifting	

Block and Connection Diagrams

TL/H/5563-1
Note: All logic inputs shown at logic " 1 ".
Order Number AH0014D or AH0014CD
See NS Package Number D14D

Quad SPST

Note: All logic inputs shown at logic " 1 ".
Order Number AH0015D or AH0015CD
See NS Package Number D16C

Dual DPST

TL/H/5563-3
Note: All logic inputs shown at logic " 1 ".
Order Number AH0019D or AH0019CD
See NS Package Number D14D

National Semiconductor Corporation

AH5009, AH5010, AH5011, AH5012 Monolithic Analog Current Switches

General Description

A versatile family of monolithic JFET analog switches economically fulfills a wide variety of multiplexing and analog switching applications.
Even numbered switches may be driven directly from standard 5 V logic, whereas the odd numbered switches are intended for applications utilizing 10 V or 15 V logic. The monolithic construction guarantees tight resistance match and track.
For voltage switching applications see LF13331, LF13332, and LF13333 Analog Switch Family, or the CMOS Analog Switch Family.

Applications

- A/D and D/A converters
- Micropower converters
- Industrial controllers
- Position controllers
- Data acquisition
- Active filters
- Signal multiplexers/demultiplexers
- Multiple channel AGC
- Quad compressors/expanders
- Choppers/demodulators
- Programmable gain amplifiers
- High impedance voltage buffer
- Sample and hold

Features

- Interfaces with standard TTL and CMOS
- "ON" resistance match 2Ω
- Low "ON" resistance 100Ω
- Very low leakage 50 pA
- Large analog signal range $\pm 10 \mathrm{~V}$ peak
- High switching speed 150 ns
- Excellent isolation between 80 dB
channels at 1 kHz

Connection and Schematic Diagrams (All switches shown are for logical "1" input)

Dual-In-Line Package

AH5009C and AH5010C MUX Switches (4-Channel Version Shown) Order Number AH5009CM, AH5009CN, AH5010CM or AH5010CN See NS Package Number M14A or N14A

Dual-In-Line Package

AH5011C and AH5012C SPST Switches
(Quad Version Shown) Order Number AH5011CM, AH5011CN, AH5012CM or AH5012CN See NS Package Number M16A or N16A

UNCOMMITTED DRAINS TL/H/5659-1

Note: All diode cathodes are internally connected to the substrate.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Input Voltage
AH5009/AH5010/AH5011/AH5012 30V
Positive Analog Signal Voltage 30V
Negative Analog Signal Voltage -15V
Diode Current 10 mA

Drain Current	30 mA
Soldering Information:	
N Package 10 sec	$300^{\circ} \mathrm{C}$
SO Package Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$
Power Dissipation	500 mW
Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics AH5010 and AH5012 (Notes 2 and 3)

Symbol	Parameter	Conditions	Typ	Max	Units
$\mathrm{I}_{\text {GSX }}$	Input Current "OFF"	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{GD}} \leq 11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
ID(OFF)	Leakage Current "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{SD}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=3.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.02	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.08	$\begin{gathered} 1 \\ 200 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.13	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.1	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$	Drain-Source Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0.35 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	90	$\begin{aligned} & 150 \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
$V_{\text {diode }}$	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		0.8	V
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Match	$V_{G S}=0, l_{D}=1 \mathrm{~mA}$	4	20	Ω
TON	Turn "ON" Time	See AC Test Circuit	150	500	ns
TOFF	Turn "OFF" Time	See AC Test Circuit	300	500	ns
CT	Cross Talk	See AC Test Circuit	120		dB

Electrical Characteristics AH5009 and AH5011 (Notes 2 and 3)

Symbol	Parameter	Conditions	Typ	Max	Units
IGSX	Input Current "OFF"	$\begin{aligned} & 11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{GD}} \leq 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{D} \text { (OFF) }}$	Leakage Current "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{SD}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10.3 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.04	$\begin{gathered} 0.5 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{IS}=-2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
r ${ }^{\text {dS }(O N) ~}$	Drain-Source Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	60	$\begin{aligned} & 100 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \hline \end{aligned}$
$V_{\text {DIODE }}$	Forward Diode Drop	$l_{D}=0.5 \mathrm{~mA}$		0.8	V
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Match	$\mathrm{V}_{\mathrm{GS}}=, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$		10	Ω
TON	Turn "ON" Time	See AC Test Circuit	150	50	ns
TOFF	Turn "OFF" Time	See AC Test Circuit	300	500	ns
CT	Cross Talk	See AC Test Circuit. $f=100 \mathrm{~Hz}$	120		dB

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: Test conditions $25^{\circ} \mathrm{C}$ unless otherwise noted.
Note 3: "OFF" and "ON" notation refers to the conduction state of the FET switch
Note 4: Thermal Resistance:

Test Circuits and Switching Time Waveforms

Typical Performance Characteristics

Cross Talk, CT vs Frequency

Transconductance vs Drain Current

Normalized Drain Resistance vs Bias Voltage

Applications Information

Theory of Operation

The AH series of analog switches are primarily intended for operation in current mode switch applications; i.e., the drains of the FET switch are held at or near ground by operating into the summing junction of an operational amplifier. Limiting the drain voltage to under a few hundred millivolts eliminates the need for a special gate driver, allowing the switches to be driven directly by standard TTL (AH5010), 5 V -10V CMOS (AH5010), open collector 15V TTL/CMOS (AH5009).
Two basic switch configurations are available: 4 independent switches (SPST) and 4 pole switches used for multiplexing (4 PST-MUX). The MUX versions such as the AH5009 offer common drains and include a series FET operated at $\mathrm{V}_{\mathrm{GS}}=\mathrm{OV}$. The additional FET is placed in the feedback path in order to compensate for the "ON" resistance of the switch FET as shown in Figure 1.
The closed-loop gain of Figure 1 is:

$$
A_{V C L}=\frac{R 2+r_{D S}(O N) Q 2}{R 1+r_{D S}(O N) Q 1}
$$

For R1 = R2, gain accuracy is determined by the $\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$ match between Q1 and Q2. Typical match between Q1 and Q2 is 4 ohms resulting in a gain accuracy of 0.05% (for R1 $=R 2=10 \mathrm{k} \Omega$).

Noise Immunity

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in the
"OFF" state. With $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$ and the $\mathrm{V}_{\mathrm{A}}=10 \mathrm{~V}$, the source of Q1 is clamped to about 0.7 V by the diode ($\mathrm{V}_{\mathrm{GS}}=14.3 \mathrm{~V}$) ensuring that ac signals imposed on the 10 V input will not gate the FET "ON."

Selection of Gain Setting Resistors

Since the AH series of analog switches are operated in current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the source to gate junction and the signal shunting diode resulting in leakage through these junctions. As shown in Figure 2, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$ represents a finite error in the current reaching the summing junction of the op amp.
Secondly, the rDS(ON) of the FET begins to "round" as IS approaches IDSS. A practical rule of thumb is to maintain IS at less than $1 / 10$ of ldSs.
Combining the criteria from the above discussion yields:

$$
\begin{equation*}
R 1_{\min } \geq \frac{V_{A(M A X)} A_{D}}{I_{G(O N)}} \tag{2a}
\end{equation*}
$$

or:

$$
\begin{equation*}
\geq \frac{\mathrm{V}_{\mathrm{A}(\mathrm{MAX})}}{\mathrm{I}_{\mathrm{DSS}} / 10} \tag{2b}
\end{equation*}
$$

whichever is larger.

FIGURE 1. Use of Compensation FET

FIGURE 2. On Leakage Current, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$

Applications Information (Continued)

$$
\text { Where: } \begin{aligned}
\mathrm{V}_{\mathrm{A}(\mathrm{MAX})} & =\text { Peak amplitude of the analog } \\
& \text { input signal } \\
& =\text { Desired accuracy } \\
\mathrm{A}_{\mathrm{D}} & =\text { Leakage at a given } \mathrm{I}_{\mathrm{S}} \\
\mathrm{I}_{\mathrm{G}(\mathrm{ON})} & =\text { Saturation current of the FET } \\
\mathrm{I}_{\mathrm{DSS}} & \\
& \text { switch } \\
& \cong 20 \mathrm{~mA}
\end{aligned}
$$

In a typical application, V_{A} might $= \pm 10 \mathrm{~V}, \mathrm{~A}_{\mathrm{D}}=0.1 \%$, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. The criterion of equation (2b) predicts:
$R 1_{(\mathrm{MIN})} \geq \frac{(10 \mathrm{~V})}{\left(\frac{20 \mathrm{~mA}}{10}\right)}=5 \mathrm{k} \Omega$
For $\mathrm{R} 1=5 \mathrm{k}, \mathrm{I}_{\mathrm{S}} \cong 10 \mathrm{~V} / 5 \mathrm{k}$ or 2 mA . The electrical characteristics guarantee an $\mathrm{I}_{\mathrm{G}(\mathrm{ON})} \leq 1 \mu \mathrm{~A}$ at $85^{\circ} \mathrm{C}$ for the AH5010. Per the criterion of equation (2a):

$$
\mathrm{R} 1_{(\mathrm{MIN})} \geq \frac{(10 \mathrm{~V})\left(10^{-3}\right)}{1 \times 10^{-6}} \geq 10 \mathrm{k} \Omega
$$

Since equation (2a) predicts a higher value, the 10k resistor should be used.
The "OFF" condition of the FET also affects gain accuracy. As shown in Figure 3, the leakage across Q2, ID(OFF) represents a finite error in the current arriving at the summing junction of the op amp.

Accordingly:
$R 1_{(M A X)} \leq \frac{V_{A(M I N)} A_{D}}{(N) I_{D(O F F)}}$
Where: $\mathrm{V}_{\mathrm{A}(\mathrm{MIN})}=$ Minimum value of the analog input signal

$$
\begin{array}{ll}
A_{D} & =\text { Desired accuracy } \\
\mathrm{N} & =\text { Number of channels } \\
\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}= & \text { "OFF" leakage of a given FET } \\
& \text { switch }
\end{array}
$$

As an example, if $\mathrm{N}=10, A_{D}=0.1 \%$, and $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \leq 10 \mathrm{nA}$ at $85^{\circ} \mathrm{C}$ for the AH5009. R1 (MAX) is:

$$
R 1_{(\mathrm{MAX})} \leq \frac{(1 \mathrm{~V})\left(10^{-3}\right)}{(10)\left(10 \times 10^{-9}\right)}=10 \mathrm{k}
$$

Selection of R2, of course, depends on the gain desired and for unity gain R1=R2.
Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset voltage of the op ampall of which should be considered in setting the overall gain accuracy of the circuit.

TTL Compatibility

The AH series can be driven with two different logic voltage swings: the even numbered part types are specified to be driven from standard 5V TTL logic and the odd numbered types from 15V open collector TTL.

Applications Information (Continued)

Standard TTL gates pull-up to about 3.5V (no load). In order to ensure turn-off of the even numbered switches such as AH5010, a pull-up resistor, $R_{\text {EXT }}$, of at least $10 \mathrm{k} \Omega$ should be placed between the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and the gate output as shown in Figure 4.
Likewise, the open-collector, high voltage TTL outputs should use a pull-up resistor as shown in Figure 5. In
both cases, $t_{\text {(OFF) }}$ is improved for lower values of $\mathrm{R}_{\text {EXT }}$ at the expense of power dissipation in the low state.

Definition of Terms

The terms referred to in the electrical characteristics tables are as defined in Figure 6.

FIGURE 4. Interfacing with +5V TTL

FIGURE 5. Interfacing with +15 V Open Collector TTL

Applications Information (Continued)

FIGURE 6. Definition of Terms

Typical Applications

Typical Applications (Continued)
3-Channel Multiplexer with Sample and Hold

8-Bit Binary (BCD) Multiplying D/A Converter*

2 Beckman resistor arrays
Part \#698-1-R 100k B recommended
$R_{f}\left(\overline{\mathrm{G} 1} \mathrm{I}_{1}+\overline{\mathrm{G} 2} \mathrm{I}_{2}+\overline{\mathrm{G} 3} \mathrm{I}_{3}+\overline{\mathrm{G} 4} \mathrm{I}_{4}+\right.$
$\frac{\overline{\mathrm{G} 5} \mathrm{I}_{5}}{16}+\frac{\overline{\mathrm{G}} \mathrm{I}_{6}}{16}+\frac{\overline{\mathrm{G} 7} \mathrm{I}_{7}}{16}+\frac{\overline{\mathrm{G} 8} \mathrm{I}_{8}}{16}$
Note: The switch is "ON" when G is at $O V$ (Logic " 0 ")
$\mathrm{I}=\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{R}}$

CHARACTERISTICS: ERROR $=0.4 \mu \mathrm{~V}$ TYPICAL © $25^{\circ} \mathrm{C}$ $10 \mu \mathrm{~V}$ TYPICAL @ $70^{\circ} \mathrm{C}$

Note: The analog switch between the op amp and the 16 input switches reduces the errors due to leakage.

National
Semiconductor
Corporation

AH5020C Monolithic Analog Current Switch

General Description

This versatile dual monolithic JFET analog switch economically fulfills a wide variety of multiplexing and analog switching applications.
These switches may be driven directly from standard 5 V logic.
The monolithic construction guarantees tight resistance match and track.

Features

- Interfaces with standard TTL
- "ON" resistance match
- Low "ON" resistance
150Ω
- Very low leakage
- Large analog signal range
- High switching speed
- Excellent isolation between channels

Applications

- A/D and D/A converters
- Micropower converters
- Industrial controllers
- Position controllers
- Data acquisition
- Active filters
- Signal multiplexers/demultiplexers
- Multiple channel AGC
- Quad compressors/expanders
- Choppers/demodulators
- Programmable gain amplifiers
- High impedance voltage buffer
- Sample and hold

For voltage switching applications see LF13201, LF13202, LF13331, LF13332, and LF13333 Analog Switch Family, or the CMOS Analog Switch Family.

Connection and Schematic Diagrams (All switches shown are for logical "1")

Dual-In-Line Package

TL/H/5166-1

Order Number AH5020CJ See NS Package Number J08A

TL/H/5166-2

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
\begin{tabular}{lr} 
Input Voltage & 30 V \\
Positive Analog Signal Voltage & 30 V \\
Negative Analog Signal Voltage & -15 V \\
Diode Current & 10 mA
\end{tabular}
```

Drain Current
30 mA
Power Dissipation
Operating Temp. Range
Storage Temperature Range
Lead Temp. (Soldering, 10 seconds)

500 mW
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 2 and 3)

Symbols	Parameter	Conditions	Typ	Max	Units
$I_{\text {GSX }}$	Input Current "OFF"	$\begin{aligned} & V_{G D}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GD}}=11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & T_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{GD}}=11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.2 \\ 10 \\ \hline \end{gathered}$	nA nA nA
${ }^{\text {I }}$ (OFF)	Leakage Current "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{SD}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=3.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{gathered} 0.2 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 \mathrm{~V}, I_{S}=1 \mathrm{~mA} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$	0.08	$\begin{gathered} 1 \\ 200 \\ \hline \end{gathered}$	nA nA
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & V_{G D}=0 V, I_{S}=2 \mathrm{~mA} \\ & T_{A}=85^{\circ} \mathrm{C} \end{aligned}$	0.13	$\begin{gathered} 5 \\ 10 \\ \hline \end{gathered}$	nA $\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{IS}_{\mathrm{S}}=-2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.1	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	nA $\mu \mathrm{A}$
「DS(ON)	Drain-Source Resistance	$\begin{aligned} & V_{G S}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	90	$\begin{aligned} & 150 \\ & 240 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \hline \end{aligned}$
$V_{\text {DIODE }}$	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		0.8	V
${ }^{\text {r DS }}$ (ON)	Match	$\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	2	20	Ω
TON	Turn "ON" Time	See ac Test Circuit	150	500	ns
Toff	Turn "OFF" Time	See ac Test Circuit	300	500	ns
CT	Cross Talk	See ac Test Circuit	120		dB

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: Test conditions $25^{\circ} \mathrm{C}$ unless otherwise noted.
Note 3: "OFF" and "ON" notation refers to the conduction state of the FET switch.
Note 4: Thermal Resistance:

$\theta_{\text {JA }}$ (Junction to Ambient)	/A
$\theta_{\text {JC }}$ (Junction to Case)	N/A

Switching Time Waveforms

Typical Performance Characteristics

TL/H/5166-6

TL/H/5166-8

TL/H/5166-10
Drain Current vs Bias
Voltage

TL/H/5166-9
Transconductance vs Drain Current

Applications Information

THEORY OF OPERATION

The AH5020 analog switches are primarily intended for operation in current mode switch applications; i.e., the drains of the FET switch are held at or near ground by operating into the summing junction of an operational amplifier. Limiting the drain voltage to under a few hundred millivolts eliminates the need for a special gate driver, allowing the switches to be driven directly by standard TTL.
If only one of the two switches in each package is used to apply an input signal to the input of an op amp, the other switch FET can be placed in the feedback path in order to compensate for the "ON" resistance of the switch FET as shown in Figure 1.
The closed-loop gain of Figure 1 is:
$A_{\text {VCL }}=-\frac{R 2+r_{D S}(O N) Q_{2}}{R 1+r_{D S(O N) Q 1}}$
For R1 = R2, gain accuracy is determined by the $r_{D S}(O N)$ match between Q1 and Q2. Typical match between Q1 and Q2 is 2Ω resulting in a gain accuracy of 0.02% (for R1 $=$ R2 $=10 \mathrm{k} \Omega$).

NOISE IMMUNITY

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in the "OFF" state. With $\mathrm{V}_{I N}=15 \mathrm{~V}$ and the $\mathrm{V}_{\mathrm{A}}=10 \mathrm{~V}$, the source of Q 1 is clamped to about 0.7 V by the diode $\left(\mathrm{V}_{\mathrm{GS}}=\right.$ 14.3 V) ensuring that ac signals imposed on the 10 V input will not gate the FET "ON".

SELECTION OF GAIN SETTING RESISTORS

Since the AH5020 analog switches are operated in current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the source to gate junction and the signal shunting diode resulting in leakage through these junctions. As shown in Figure 2, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$ represents a finite error in the current reaching the summing junction of the op amp.
Secondly, the ros(ON) of the FET begins to "round" as Is approaches ldSs. A practical rule of thumb is to maintain Is at less than $1 / 10$ of IDSS.
Combining the criteria from the above discussion yields:
$R 1_{(\text {MIN })} \geq \frac{V_{A(M A X)} A_{D}}{I_{G(O N)}}$
or:

$$
\begin{equation*}
\geq \frac{\mathrm{V}_{\mathrm{A}(\mathrm{MAX})}}{\mathrm{IDSS}_{\mathrm{DS}} / 10} \tag{2b}
\end{equation*}
$$

whichever is larger.

FIGURE 1. Use of Compensation FET

FIGURE 2. On Leakage Current, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$

Applications Information (Continued)

Where $\mathrm{V}_{\mathrm{A}(\mathrm{MAX})}=$ Peak amplitude of the analog input signal

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{D}} & =\text { Desired accuracy } \\
\mathrm{I}_{\mathrm{G}(\mathrm{ON})} & =\text { Leakage at a given IS } \\
\mathrm{I}_{\mathrm{DSS}} & =\text { Saturation current of the FET switch } \\
& =20 \mathrm{~mA}
\end{array}
$$

In a typical application, V_{A} might $= \pm 10 \mathrm{~V}, \mathrm{~A}_{\mathrm{D}}=0.1 \%, 0^{\circ} \mathrm{C}$ $\leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. The criterion of equation (2b) predicts:
$\mathrm{R}_{(\mathrm{MIN})} \geq \frac{10 \mathrm{~V}}{\frac{20 \mathrm{~mA}}{10}}=5 \mathrm{k} \Omega$
For R1 $=5 k, \mathrm{I}_{\mathrm{S}} \cong 10 \mathrm{~V} / 5 \mathrm{k}$ or 2 mA . The electrical characteristics guarantee an $\mathrm{I}_{\mathrm{G}(\mathrm{ON})} \leq 1 \mu \mathrm{~A}$ at $85^{\circ} \mathrm{C}$ for the AH5020. Per the criterion of equation (2a):
$\mathrm{R}_{(\mathrm{MIN})} \geq \frac{(10 \mathrm{~V})\left(10^{-3}\right)}{1 \times 10^{-6}} \geq 10 \mathrm{k} \Omega$
Since equation (2a) predicts a higher value, the 10k resistor should be used.
The "OFF" condition of the FET also affects gain accuracy. As shown in Figure 3, the leakage across Q2, $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$ represents a finite error in the current arriving at the summing junction of the op amp.

Accordingly:
$R 1_{\text {(MAX) }} \leq \frac{V_{A(M I N)} A_{D}}{(N) I_{D(O F F)}}$
Where $\mathrm{V}_{\mathrm{A}(\mathrm{MIN})}=$ Minimum value for the analog input signal
$A_{D} \quad=$ Desired accuracy
$\mathrm{N} \quad=$ Number of channels
$\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}=$ "OFF" leakage of a given FET switch As an example, if $\mathrm{N}=10, \mathrm{~A}_{\mathrm{D}}=0.1 \%$, and $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \leq 10 \mathrm{nA}$ at $85^{\circ} \mathrm{C}$ for the $\mathrm{AH} 5020 . \mathrm{R1}_{(\mathrm{MAX})}$ is:
$R_{1 \text { (MAX) }} \leq \frac{(1 \mathrm{~V})\left(10^{-3}\right)}{(10)\left(10 \times 10^{-9}\right)}=10 \mathrm{k}$
Selection of R2, of course, depends on the gain desired and for unity gain R1 = R2.
Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset voltage of the op amp - all of which should be considered in setting the overall gain accuracy of the circuit.

TL/H/5166-16
FIGURE 3. Off Leakage Current, ID(OFF)

Applications Information (Continued)

TTL COMPATIBILITY
Standard TTL gates pull-up to about 3.5V (no load). In order to ensure turn-off of the AH5020, a pull-up resistor, $\mathrm{R}_{\text {EXT }}$ of at least $10 \mathrm{k} \Omega$ should be placed between the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$ and the gate output as shown in Figure 4.

DEFINITION OF TERMS

The terms referred to in the electrical characteristics tables are as defined in Figure 5.

FIGURE 4. Interfacing with $+5 V$ TTL

2

Typical Applications

Gain Programmable Amplifier

CD4016BM/CD4016BC Quad Bilateral Switch

General Description

The CD4016BM/CD4016BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4066BM/ CD4066BC.

Features

■ Wide supply voltage range
3V to 15 V
■ Wide range of digital and analog switching ± 7.5 VPEAK
■ "ON" resistance for 15 V operation 400Ω (typ.)

- Matched "ON" resistance over 15 V
signal input
- High degree of linearity
$\Delta R_{\mathrm{ON}}=10 \Omega$ (typ.)
0.4\% distortion (typ.)
@ $f_{I S}=1 \mathrm{kHz}, \mathrm{V}_{I S}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$,
$V_{D D}-V_{S S}=10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega$
■ Extremely low "OFF" switch leakage 0.1 nA (typ.)

$$
@ V_{D D}-V_{S S}=10 \mathrm{~V}
$$

$\begin{array}{lr}\text { ■ Extremely high control input impedance } & 10^{12} \Omega \text { (typ.) } \\ \text { ■ Low crosstalk between switches } & -50 \mathrm{~dB} \text { (typ.) } \\ \text { @ } \mathrm{f}_{\mathrm{IS}}=0.9 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \text { (Frequency response, switch "ON" } & 40 \mathrm{MHz} \text { (typ.) }\end{array}$

Applications

- Analog signal switching/multiplexing
- Signal gating
- Squelch control
- Chopper
- Modulator/Demodulator
- Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and an-alog-signal gain

Schematic and Connection Diagrams

Dual-In-Line Package

[^2]

Absolute Maximum Ratings
contat the National Semiconductor Sales Officel Distributors for availability and specifications.
(Note 7)
(Notes 1 and 2)
$V_{D D}$ Supply Voltage
-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
Lead Temperature (Soldering, 10 seconds) $\quad 260^{\circ} \mathrm{C}$

Recommended Operating
Conditions (Note 2)
$V_{D D}$ Supply Voltage
$3 V$ to 15 V
$\mathrm{V}_{\text {IN }}$ Input Voltage
$O V$ to $V_{D D}$
T_{A} Operating Temperature Range
CD4016BM
CD4016BC

$$
\begin{aligned}
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
$$

DC Electrical Characteristics CD40168M (Note 2)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
IDD	Quiescent Device Current	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$		0.25		0.01	0.25		7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$		0.5		0.01	0.5		15	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{S S}$		1.0		0.01	1.0		30	$\mu \mathrm{A}$

Signal Inputs and Outputs

Ron	"ON" Resistance	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D}, V_{I S}=V_{S S} \text { or } V_{D D} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D} \\ & V_{D D}=10 \mathrm{~V}, V_{I S}=4.75 \text { to } 5.25 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{I S}=7.25 \text { to } 7.75 \mathrm{~V} \end{aligned}$	$\begin{gathered} 600 \\ 360 \\ \\ \hline 1870 \\ 775 \\ \hline \end{gathered}$	$\begin{aligned} & 250 \\ & 200 \\ & \\ & 850 \\ & 400 \\ & \hline \end{aligned}$	$\begin{gathered} 660 \\ 400 \\ \\ 2000 \\ 850 \end{gathered}$	$\begin{aligned} & 960 \\ & 600 \\ & \\ & 2600 \\ & 1230 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$ Ω Ω
$\Delta \mathrm{R}_{\text {ON }}$	$\Delta^{\prime \prime O N " ~ R e s i s t a n c e ~}$ Between any 2 of 4 Switches (In Same Package)	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D}, V_{I S}=V_{S S} \text { to } V_{D D} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 15 \\ & 10 \end{aligned}$			$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
IS	Input or Output Leakage Switch "OFF"	$\begin{aligned} & V_{C}=0, V_{D D}=15 \mathrm{~V} \\ & V_{I S}=15 \mathrm{~V} \text { and } 0 \mathrm{~V}, \\ & V_{O S}=0 \mathrm{~V} \text { and } 15 \mathrm{~V} \end{aligned}$	± 50	± 0.1	± 50	± 500	nA

Control Inputs

VILC	Low Level Input Voltage	$\begin{aligned} & V_{I S}=V_{S S} \text { and } V_{D D} \\ & V_{O S}=V_{D D} \text { and } V_{S S} \\ & I_{I S}= \pm 10 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.9 \end{aligned}$			$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	V V V
$\mathrm{V}_{\text {IHC }}$	High Level Input Voltage	$\begin{array}{ll} \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} & \text { (see Note } 6 \text { and } \\ \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} & \text { Figure 8) } \\ \hline \end{array}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$			$\begin{array}{r} 3.5 \\ 7.0 \\ 11.0 \end{array}$		V V V
IN	Input Current	$\begin{aligned} & V_{D D}-V_{S S}=15 V \\ & V_{D D} \geq V_{I S} \geq V_{S S} \\ & V_{D D} \geq V_{C} \geq V_{S S} \end{aligned}$		± 0.1		$\pm 10^{-5}$	± 0.1		± 1.0	$\mu \mathrm{A}$

DC Electrical Characteristics CD4016BC (Note 2) (Continued)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
IDD	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, V_{I N}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=10 \mathrm{~V}, V_{I N}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=15 \mathrm{~V}, V_{I N}=V_{D D} \text { or } V_{S S} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 7.5 \\ & 15 \\ & 30 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Signal Inputs and Outputs										
Ron	"ON" Resistance	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D}, V_{I S}=V_{S S} \text { or } V_{D D} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D} \\ & V_{D D}=10 \mathrm{~V}, V_{I S}=4.75 \text { to } 5.25 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, V_{I S}=7.25 \text { to } 7.75 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 610 \\ 370 \\ \\ \hline 1900 \\ 790 \\ \hline \end{array}$		$\begin{array}{r} 275 \\ 200 \\ \\ 850 \\ 400 \\ \hline \end{array}$	$\begin{gathered} 660 \\ 400 \\ \\ 2000 \\ 850 \\ \hline \end{gathered}$		$\begin{array}{r} 840 \\ 520 \\ \\ \hline 2380 \\ 1080 \\ \hline \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$ Ω Ω
$\Delta R_{\text {ON }}$	A"ON" Resistance Between any 2 of 4 Switches (In Same Package)	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D}, V_{I S}=V_{S S} \text { to } V_{D D} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$				$\begin{aligned} & 15 \\ & 10 \\ & \hline \end{aligned}$				$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Is	Input or Output Leakage Switch "OFF"	$\begin{aligned} & V_{C}=0, V_{D D}=15 \mathrm{~V} \\ & V_{\text {IS }}=0 \mathrm{~V} \text { or } 15 \mathrm{~V}, \\ & V_{O S}=15 \mathrm{~V} \text { or } 0 \mathrm{~V} \end{aligned}$		± 50		± 0.1	± 50		± 200	nA
Control Inputs										
VILC	Low Level Input Voltage	$\begin{aligned} & V_{I S}=V_{S S} \text { and } V_{D D} \\ & V_{O S}=V_{D D} \text { and } V_{S S} \\ & l_{I S}= \pm 10 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.9 \\ & 0.9 \\ & 0.9 \end{aligned}$			$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	V V V
$\mathrm{V}_{\text {IHC }}$	High Level Input Voltage	$\begin{array}{cc} \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} & \text { (see Note } 6 \text { and } \\ \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} & \text { Figure } 8 \text {) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{array}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$			$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
1 N	Input Current	$\begin{aligned} & V_{C C}-V_{S S}=15 \mathrm{~V} \\ & V_{D D} \geq V_{I S} \geq V_{S S} \\ & V_{D D} \geq V_{C} \geq V_{S S} \\ & \hline \end{aligned}$		± 0.3		$\pm 10^{-5}$	± 0.3		± 1.0	$\mu \mathrm{A}$

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=\mathrm{OV}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Time Signal Input to Signal Output	$\begin{aligned} & V_{C}=V_{D D}, C_{L}=50 \mathrm{pF},(\text { Figure 1) } \\ & R_{L}=200 \mathrm{k} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 58 \\ & 27 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$	Propagation Delay Time Control Input to Signal Output High Impedance to Logical Level	$\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, (Figures 2 and 3) $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 20 \\ & 18 \\ & 17 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 35 \end{aligned}$	ns ns ns
$t_{\text {PHZ }}, t_{\text {PLZ }}$	Propagation Delay Time Control Input to Signal Output Logical Level to High Impedance Sine Wave Distortion	$\mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, (Figures } 2$ and 3) $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{I S}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{f}=1 \mathrm{kHz}, \\ & \quad \text { (Figure } 4) \end{aligned}$		$\begin{aligned} & 15 \\ & 11 \\ & 10 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 40 \\ & 25 \\ & 22 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \% \end{aligned}$

AC Electrical Characteristics (Continued)

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
	Frequency Response - Switch "ON" (Frequency at -3 dB) Feedthrough - Switch "OFF" (Frequency at -50 dB) Crosstalk Between Any Two Switches (Frequency at -50 dB) Crosstalk; Control Input to Signal Output Maximum Control Input			$\begin{gathered} 40 \\ 1.25 \\ \\ 0.9 \\ \\ \\ 150 \\ \\ \\ \hline 6.5 \\ 8.0 \\ 9.0 \\ \hline \end{gathered}$		MHz MHz MHz $m V_{P-P}$ MHz MHz MHz
$\mathrm{C}_{\text {IS }}$	Signal Input Capacitance			4		pF
$\mathrm{CoS}^{\text {S }}$	Signal Output Capacitance	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		4		pF
$\mathrm{ClOS}^{\text {l }}$	Feedthrough Capacitance	$\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$		0.2		pF
C_{IN}	Control Input Capacitance			5	7.5	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: These devices should not be connected to circuits with the power "ON".
Note 4: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_{L} wherever it is specified. Note 5: $\mathrm{V}_{I S}$ is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_{C} is the voltage at the control input.

Note 6: If the switch input is held at $V_{D D}, V_{I H C}$ is the control input level that will cause the switch output to meet the standard "B" series V_{OH} and l_{OH} output levels. If the analog switch input is connected to $\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{IHC}}$ is the control input level - which allows the switch to sink standard " B " series $\left|l_{\mathrm{loH}}\right|$, high level current, and still maintain a $\mathrm{V}_{\mathrm{OL}} \leq$ " B " series. These currents are shown in Figure 8.
Note 7: Refer to RETS4016BX for military specifications.

AC Test Circuits and Switching Time Waveforms

Figure 1. t $_{\text {PLH }}$, t $_{\text {PLH }}$ Propagation Delay Time Signal Input to Signal Output ${ }^{\text {C }}$

TL/F/5661-2
FIGURE 2. $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$ Propagation Delay Time Control to Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 3. $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$ Propagation Delay Time Control to Signal Output

$V_{C}=V_{D D}$ for distortion and frequency response tests $V_{C}=V_{S S}$ for feedthrough test

FIGURE 4. Sine Wave Distortion, Frequency Response and Feedthrough

FIGURE 5. Crosstalk Between Any Two Switches

FIGURE 6. Crosstalk - Control to Input Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)

TL/F/5661-4
FIGURE 7. Maximum Control Input Frequency

Temperature Range	VDD	Switch Input				Switch Output $\mathrm{V}_{\mathrm{OS}}^{(\mathrm{V})}$	
		$\mathbf{v}_{\text {IS }}$	IIS (mA)				
			TLow	$25^{\circ} \mathrm{C}$	$\mathrm{T}_{\text {High }}$	Min	Max
MILITARY		0	0.25	0.2	0.14		0.4
	5	5	-0.25	-0.2	-0.14	4.6	
	10	0	0.62	0.5	0.35		0.5
	10	10	-0.62	-0.5	-0.35	9.5	
	15	0	1.8	1.5	1.1		1.5
	15	15	-1.8	-1.5	-1.1	13.5	
COMMERCIAL	5	0	0.2	0.16	0.12		0.4
	5	5	-0.2	-0.16	-0.12	4.6	
	10	0	0.5	0.4	0.3		0.5
	10	10	-0.5	-0.4	-0.3	9.5	
	15	0	1.4	1.2	1.0		1.5
	15	15	-1.4	-1.2	-1.0	13.5	

FIGURE 8. CD4016B Switch Test Conditions for VIHC

Typical Performance Characteristics

'ON' Resistance Temperature
Variation for $\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathbf{S S}}=\mathbf{1 0 V}$

'ON' Resistance Temperature Variation for $\mathbf{V}_{\mathbf{D D}} \mathbf{-} \mathbf{V}_{\mathbf{S S}}=\mathbf{1 5 V}$

TL/F/5661-5

Typical Applications

Special Considerations

The CD4016B is composed of 4, two-transistor analog switches. These switches do not have any linearization or compensation circuitry for "RON" as do the CD4066B's. Because of this, the special operating considerations for the CD4066B do not apply to the CD4016B, but at low
supply voltages, $\leq 5 \mathrm{~V}$, the CD4016B's on resistance becomes non-linear. It is recommended that at 5 V , voltages on the in/out pins be maintained within about IV of either V_{DD} or V_{SS}; and that at 3 V the voltages on the in/out pins should be at $V_{D D}$ or $V_{S S}$ for reliable operation.

CD4051BM/CD4051BC Single 8-Channel Analog Multiplexer/Demultiplexer CD4052BM/CD4052BC Dual 4-Channel Analog Multiplexer/Demultiplexer CD4053BM/CD4053BC Triple 2-Channel Analog Multiplexer/Demultiplexer

General Description

These analog multiplexers/demultiplexers are digitally controlled analog switches having low "ON" impedance and very low "OFF" leakage currents. Control of analog signals up to $15 \mathrm{~V}_{\mathrm{p} \text {-p }}$ can be achieved by digital signal amplitudes of $3-15 \mathrm{~V}$. For example, if $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ and $\mathrm{V}_{E E}=-5 \mathrm{~V}$, analog signals from -5 V to +5 V can be controlled by digital inputs of $0-5 \mathrm{~V}$. The multiplexer circuits dissipate extremely low quiescent power over the full $V_{D D}-V_{S S}$ and $V_{D D}-V_{E E}$ supply voltage ranges, independent of the logic state of the control signals. When a logical " 1 " is present at the inhibit input terminal all channels are "OFF".
CD4051BM/CD4051BC is a single 8-channel multiplexer having three binary control inputs. A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned "ON" and connect the input to the output.
CD4052BM/CD4052BC is a differential 4-channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 or 4 pairs of channels to be turned on and connect the differential analog inputs to the differential outputs.
CD4053BM/CD4053BC is a triple 2-channel multiplexer having three separate digital control inputs, A, B, and C, and
an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole double-throw configuration.

Features

- Wide range of digital and analog signal levels: digital $3-15 \mathrm{~V}$, analog to 15 V p-p
■ Low "ON" resistance: 80Ω (typ.) over entire $15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sig-nal-input range for $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}$
- High "OFF" resistance: channel leakage of $\pm 10 \mathrm{pA}$ (typ.) at $V_{D D}-V_{E E}=10 \mathrm{~V}$
\square Logic level conversion for digital addressing signals of $3-15 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{S S}=3-15 \mathrm{~V}\right)$ to switch analog signals to $15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}\right)$
- Matched switch characteristics: $\Delta \mathrm{R}_{\mathrm{ON}}=5 \Omega$ (typ.) for $V_{D D}-V_{E E}=15 \mathrm{~V}$
- Very low quiescent power dissipation under all digitalcontrol input and supply conditions: $1 \mu \mathrm{~W}$ (typ.) at $V_{D D}-V_{S S}=V_{D D}-V_{E E}=10 \mathrm{~V}$
- Binary address decoding on chip

Connection Diagrams Dual-In-Line Packages

Cavity Dual-In-Line Package (J) Order Number CD4051BMJ, CD4051BCJ, CD4052BMJ, CD4052BCJ, CD4053BMJ, or CD4053BCJ
See NS Package Number J16A

Small Outline Package (M) Order Number CD4051BCM, CD4052BCM or CD4053BCM See NS Package Number M16A

Molded Dual-In-Line Package (\mathbf{N}) Order Number CD4051BMN, CD4051BCN, CD4052BMN, CD4052BCN, CD4053BMN, or CD4053BCN See NS Package Number N16E

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 4)
$V_{D D}$ DC Supply Voltage
-0.5 Vdc to +18 Vdc
V_{IN} Input Voltage $\quad-0.5 \mathrm{Vdc}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{Vdc}$
$\mathrm{T}_{\mathrm{S}} \quad$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
P_{D} Package Dissipation 500 mW
$\mathrm{T}_{\mathrm{L}} \quad$ Lead Temperature (soldering, 10 seconds) $260^{\circ} \mathrm{C}$
DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$			$+25^{\circ}$		$+125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
IDD	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		5 10 20			5 10 20		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$

Signal Inputs ($\mathrm{V}_{\text {IS }}$) and Outputs (V_{OS})

R ON	"ON" Resistance (Peak for $V_{E E} \leq V_{I S} \leq V_{D D}$)	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { (any channel } \\ & \text { selected) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$	800	270	1050	1300	Ω
			$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{E E}=-5 \mathrm{~V} \\ & \text { or } V_{D D}=10 \mathrm{~V}, \\ & V_{E E}=0 \mathrm{~V} \end{aligned}$	310	120	400	550	Ω
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$	200	80	240	320	Ω
$\triangle \mathrm{R}_{\text {ON }}$	Δ "ON" Resistance Between Any Two Channels	$R_{\mathrm{L}}=10 \mathrm{k} \Omega$ (any channel selected)	$\begin{aligned} & V_{D D}=2.5 \mathrm{~V}, \\ & V_{E E}=-2.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$		10			Ω
			$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$		10			Ω
			$\begin{aligned} & V_{D D}=7.5 \mathrm{~V}, \\ & V_{E E}=-7.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$		5			Ω
	"OFF" Channel Leakage Current, any channel "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V} \\ & \mathrm{O} / \mathrm{I}= \pm 7.5 \mathrm{~V}, \mathrm{I}=0 \mathrm{O} \end{aligned}$		± 50	± 0.01	± 50	± 500	nA
	"OFF" Channel Leakage Current, all channels "OFF" (Common OUT/IN)	$\begin{aligned} & \text { Inhibit }=7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V}, \\ & \mathrm{O} / \mathrm{I}=0 \mathrm{~V}, \\ & \mathrm{I}, \mathrm{O}= \pm 7.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { CD4051 } \\ & \text { CD4052 } \\ & \text { CD4053 } \end{aligned}$	$\begin{aligned} & \pm 200 \\ & \pm 200 \\ & \pm 200 \end{aligned}$	$\begin{aligned} & \pm 0.08 \\ & \pm 0.04 \\ & \pm 0.02 \end{aligned}$	$\begin{aligned} & \pm 200 \\ & \pm 200 \\ & \pm 200 \end{aligned}$	$\begin{aligned} & \pm 2000 \\ & \pm 2000 \\ & \pm 2000 \end{aligned}$	nA nA nA

Control Inputs A, B, C and Inhibit

$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\begin{aligned} & V_{E E}=V_{S S} R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { to } V_{\mathrm{SS}} \\ & \mathrm{IIS}_{\mathrm{S}}<2 \mu A \text { on all } O F F \text { channels } \\ & \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{DD}} \text { thru } 1 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	V V V
V_{IH}	High Level Input Voltage	$\begin{aligned} & V_{D D}=5 \\ & V_{D D}=10 \\ & V_{D D}=15 \\ & \hline \end{aligned}$	$\begin{gathered} 3.5 \\ 7 \\ 11 \end{gathered}$		3.5 7 11		3.5 7 11		V V V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All voltages measured with respect to V_{SS} unless otherwise specified.

DC Electrical Characteristics (Note 2) (Continued)

Symbol	Parameter	Conditions		$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$		Units
				Min	Max	Min	Typ	Max	Min	Max	
IN	Input Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, \\ & V_{I N}=0 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, \\ & V_{I N}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{E E}=O V \\ & V_{E E}=O V \end{aligned}$		$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$		$\begin{gathered} -10^{-5} \\ 10^{-5} \end{gathered}$	$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$		$\begin{gathered} -1.0 \\ 1.0 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
IDD	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$			$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Signal Inputs (V_{IS}) and Outputs (V_{OS})

RON	"ON" Resistance (Peak for $\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{IS}} \leq \mathrm{V}_{\mathrm{DD}}$)	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { (any channel } \\ & \text { selected) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	850	270	1050	1200	Ω
			$\begin{aligned} & V_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$	330	120	400	520	Ω
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \end{aligned}$	210	80	240	300	Ω
$\Delta \mathrm{R}_{\text {ON }}$	$\Delta " O N "$ Resistance Between Any Two Channels	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { (any channel } \\ & \text { selected) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \hline \end{aligned}$		10			Ω
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \hline \end{aligned}$		10			Ω
			$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \hline \end{aligned}$		5			Ω
	"OFF" Channel Leakage Current, any channel "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V} \\ & \mathrm{O} / \mathrm{I}= \pm 7.5 \mathrm{~V}, \mathrm{I} / \mathrm{O}=0 \mathrm{~V} \end{aligned}$		± 50	± 0.01	± 50	± 500	nA
	"OFF" Channel Leakage Current, all channels "OFF" (Common OUT/IN)	$\begin{aligned} & \text { Inhibit }=7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-7.5 \mathrm{~V}, \\ & \mathrm{O} / \mathrm{I}=0 \mathrm{~V} \\ & \mathrm{I} \mathrm{O}= \pm 7.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { CD4051 } \\ & \text { CD4052 } \\ & \text { CD4053 } \end{aligned}$	$\begin{aligned} & \pm 200 \\ & \pm 200 \\ & \pm 200 \end{aligned}$	$\begin{aligned} & \pm 0.08 \\ & \pm 0.04 \\ & \pm 0.02 \end{aligned}$	$\begin{aligned} & \pm 200 \\ & \pm 200 \\ & \pm 200 \end{aligned}$	$\begin{aligned} & \pm 2000 \\ & \pm 2000 \\ & \pm 2000 \end{aligned}$	nA nA nA

Control Inputs A, B, C and Inhibit

VIL	Low Level Input Voltage	$V_{E E}=V_{S S} R_{L}=1 \mathrm{k} \Omega \text { to } V_{S S}$ $\mathrm{I}_{\mathrm{I}}<2 \mu \mathrm{~A}$ on all OFF Channels $V_{I S}=V_{D D}$ thru $1 \mathrm{k} \Omega$ $V_{D D}=5 \mathrm{~V}$ $V_{D D}=10 \mathrm{~V}$ $V_{D D}=15 \mathrm{~V}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V V V
V_{IH}	High Level Input Voltage	$\begin{array}{\|l\|} \hline V_{D D}=5 \\ V_{D D}=10 \\ V_{D D}=15 \\ \hline \end{array}$	$\begin{gathered} \hline 3.5 \\ 7 \\ 11 \\ \hline \end{gathered}$		$\begin{gathered} 3.5 \\ 7 \\ 11 \\ \hline \end{gathered}$			$\begin{array}{\|c\|} \hline 3.5 \\ 7 \\ 11 \\ \hline \end{array}$		V V V
IN	Input Current	$\begin{array}{ll} \hline V_{\mathrm{DD}}=15 \mathrm{~V}, & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} & \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, & \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} & \\ \hline \end{array}$		$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$		$\begin{gathered} -10^{-5} \\ 10^{-5} \end{gathered}$	$\begin{gathered} -0.1 \\ 0.1 \end{gathered}$		$\begin{gathered} -1.0 \\ 1.0 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: All voltages measured with respect to $V_{S S}$ unless otherwise specified.

AC Electrical Characteristics

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

Symbol	Parameter	Conditions	V_{pp}	Min	Typ	Max	Units
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Propagation Delay Time from Inhibit to Signal Output (channel turning on)	$\begin{aligned} & V_{E E}=V_{S S}=0 V \\ & R_{L}=1 \mathrm{k} \Omega \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 600 \\ & 225 \\ & 160 \end{aligned}$	$\begin{gathered} 1200 \\ 450 \\ 320 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\mathrm{PHZ}}$ $t_{p L Z}$	Propagation Delay Time from Inhibit to Signal Output (channel turning off)	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{gathered} 210 \\ 100 \\ 75 \\ \hline \end{gathered}$	$\begin{aligned} & 420 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$	ns ns ns
$\mathrm{C}_{\text {IN }}$	Input Capacitance Control input Signal Input (IN/OUT)				$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & 7.5 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Cout	Output Capacitance (common OUT/IN)						
		$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$	$\begin{aligned} & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 30 \\ 15 \\ 8 \end{gathered}$		pF pF pF
ClOS	Feedthrough Capacitance				0.2		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance						
					$\begin{gathered} 110 \\ 140 \\ 70 \end{gathered}$		pF pF pF
Signal Inputs (V_{IS}) and Outputs (V_{OS})							
	Sine Wave Response (Distortion)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{IS}}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SI}}=0 \mathrm{~V} \\ & \hline \end{aligned}$	10V		0.04		\%
	Frequency Response, Channel "ON" (Sine Wave Input)	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{E E}=0 V, V_{I S}=5 V_{p-p}, \\ & 20 \log _{10} V_{O S} / V_{I S}=-3 \mathrm{~dB} \end{aligned}$	10V		40		MHz
	Feedthrough, Channel "OFF"	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & 20 \log _{10} \mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\mathrm{IS}}=-40 \mathrm{~dB} \end{aligned}$	10V		10		MHz
	Crosstalk Between Any Two Channels (frequency at 40 dB)	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega, V_{E E}=V_{S S}=0 V, V_{I S}(A)=5 V_{p-p} \\ & \left.20 \log _{10} V_{O S}(B) / V_{I S}(A)=-40 \mathrm{~dB} \text { (Note } 3\right) \end{aligned}$	10V		3		MHz
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay Signal Input to Signal Output	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 15 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{aligned} & 25 \\ & 15 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 35 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

Control Inputs, A, B, C and Inhibit

	Control Input to Signal Crosstalk	$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ at both ends of channel. Input Square Wave Amplitude $=10 \mathrm{~V}$	10 V		65		mV (peak)
t $_{\text {PHL }}$	Propagation Delay Time from	$\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	5 V		500	1000	ns
tpLH	Address to Signal Output						
(channels "ON" or "OFF")	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	10 V	180	360	ns		

Note 3: A, B are two arbitrary channels with A turned "ON" and B "OFF".
Note 4: Refer to RETS4051BX, RETS4052BX, RETS4053BX for military specifications.

Block Diagrams (Continued)
CD4053BM/CD4053BC

Truth Table

Switching Time Waveforms

TL/F/5662-4

Special Considerations

In certain applications the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into IN/OUT pin, the voltage drop across the bidirectional switch must

Typical Performance Characteristics

${ }^{\text {ON }}$ Voltage for $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

"ON" Resistance as a Function of Temperature for

not exceed 0.6 V at $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$, or 0.4 V at $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$ (calculated from $R_{O N}$ values shown). No $V_{D D}$ current will flow through R_{L} if the switch current flows into OUT/IN pin.

CD4066BM/CD4066BC Quad Bilateral Switch

General Description

The CD4066BM/CD4066BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4016BM/ CD4016BC, but has a much lower "ON" resistance, and "ON" resistance is relatively constant over the input-signal range.

Features

- Wide supply voltage range

3 V to 15 V

- High noise immunity
- Wide range of digital and analog switching
■ "ON" resistance for 15 V operation
$0.45 \mathrm{~V}_{\mathrm{DD}}$ (typ.)
$\pm 7.5 V_{\text {PEAK }}$
80Ω
- Matched "ON" resistance
$\Delta R_{O N}=5 \Omega$ (typ.) over 15 V signal input
■ "ON" resistance flat over peak-to-peak signal range
- High "ON"/"OFF"

65 dB (typ.)
output voltage ratio

- High degree linearity High degree linearity High degree linearity
- Extremely low "OFF"
0.1 nA (typ.) switch leakage
($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Extremely high control input impedance $10^{12} \Omega$ (typ.)

■ Low crosstalk
-50 dB (typ.) between switches
@ $f_{i s}=0.9 \mathrm{MHz}, R_{L}=1 \mathrm{k} \Omega$

- Frequency response, switch "ON" 40 MHz (typ.)

Applications

- Analog signal switching/multiplexing
- Signal gating
- Squelch control
- Chopper
- Modulator/Demodulator
- Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and an-alog-signal-gain

Schematic and Connection Diagrams

Dual-In-Line Package

Cavity Dual-In-Line Package (J)
Order Number CD4066BMJ or CD4066BCJ
See NS Package Number J14A

Molded Dual-In-Line Package (\mathbf{N}) Order Number CD4066BMN or CD4066BCN
See NS Package Number N14A

TL/F/5665-1

Absolute Maximum Ratings (Notes 1 and 2)			Recommended Operating Conditions (Note 2)							
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 7)			$V_{D D}$ Supply Voltage $V_{\text {IN }}$ Input Voltage T_{A} Operating Temperature Range						$3 V$ to 15 V 0 V to V_{DD}	
$\mathrm{V}_{\text {DD }}$ Supply Voltage $\quad-0.5 \mathrm{~V}$ to +18 V			CD4066BM					$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
$\mathrm{V}_{\text {IN }}$ Input Voltage $\quad-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$			CD4066BC					$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
T_{S} Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$										
PD Package Dissipation 500 mW										
T_{L} Lead Temperature (Soldering, 10 seconds) $300^{\circ} \mathrm{C}$										
DC Electrical Characteristics CD4066BM (Note 2)										
Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
${ }^{\text {I D }}$	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.25 \\ 0.5 \\ 1.0 \end{gathered}$		$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.01 \end{aligned}$	$\begin{gathered} 0.25 \\ 0.5 \\ 1.0 \end{gathered}$		$\begin{aligned} & 7.5 \\ & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
Signal Inputs and Outputs										
R_{ON}	"ON" Resistance	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D}, V_{I S}=V_{S S} \text { to } V_{D D} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 800 \\ & 310 \\ & 200 \\ & \hline \end{aligned}$		270 120 80	$\begin{gathered} 1050 \\ 400 \\ 240 \\ \hline \end{gathered}$		$\begin{gathered} 1300 \\ 550 \\ 320 \\ \hline \end{gathered}$	Ω Ω Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	Δ "ON" Resistance Between any 2 of 4 Switches	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D}, V_{I S}=V_{S S} \text { to } V_{D D} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$				$\begin{gathered} 10 \\ 5 \end{gathered}$				$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Is	Input or Output Leakage Switch "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=0 \\ & \mathrm{~V}_{\mathrm{IS}}=15 \mathrm{~V} \text { and } 0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OS}}=0 \mathrm{~V} \text { and } 15 \mathrm{~V} \\ & \hline \end{aligned}$		± 50		± 0.1	± 50		± 500	nA
Control Inputs										
VILC	Low Level Input Voltage	$\begin{aligned} & V_{I S}=V_{S S} \text { and } V_{D D} \\ & V_{O S}=V_{D D} \text { and } V_{S S} \\ & I_{I S}= \pm 10 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{gathered} 2.25 \\ 4.5 \\ 6.75 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	V V V
$\mathrm{V}_{\mathrm{IHC}}$	High Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \text { (see note } 6 \text {) } \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{gathered} 2.75 \\ 5.5 \\ 8.25 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		V V V
IN	Input Current	$\begin{aligned} & V_{D D}-V_{S S}=15 \mathrm{~V} \\ & V_{D D} \geq V_{I S} \geq V_{S S} \\ & V_{D D} \geq V_{C} \geq V_{S S} \end{aligned}$		± 0.1		$\pm 10^{-5}$	± 0.1		± 1.0	$\mu \mathrm{A}$

DC Electrical Characteristics CD4066BC (Note 2)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
IDD	Quiescent Device Current	$V_{D D}=5 \mathrm{~V}$		1.0		0.01	1.0		7.5	$\mu \mathrm{A}$
		$V_{D D}=10 \mathrm{~V}$		2.0		0.01	2.0		15	$\mu \mathrm{A}$
		$V_{D D}=15 \mathrm{~V}$		4.0		0.01	4.0		30	$\mu \mathrm{A}$

DC Electrical Characteristics (Continued) CD4066BC (Note 2)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	

Signal Inputs and Outputs

Ron	"ON" Resistance	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C}=V_{D D}, V_{S S} \text { to } V_{D D} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 850 \\ & 330 \\ & 210 \end{aligned}$	$\begin{gathered} 270 \\ 120 \\ 80 \end{gathered}$	$\begin{gathered} 1050 \\ 400 \\ 240 \end{gathered}$	$\begin{gathered} 1200 \\ 520 \\ 300 \end{gathered}$	Ω Ω Ω
$\triangle \mathrm{R}_{\text {ON }}$	$\Delta " O N$ " Resistance Between Any 2 of 4 Switches	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \text { to } \frac{V_{D D}-V_{S S}}{2} \\ & V_{C C}=V_{D D}, V_{I S}=V_{S S} \text { to } V_{D D} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 10 \\ 5 \\ \hline \end{gathered}$			Ω Ω
IS	Input or Output Leakage Switch "OFF"	$V_{C}=0$	± 50	± 0.1	± 50	± 200	nA

Control Inputs

VILC	Low Level Input Voltage	$\begin{aligned} & V_{I S}=V_{S S} \text { and } V_{D D} \\ & V_{O S}=V_{D D} \text { and } V_{S S} \\ & I_{I S}= \pm 10 \mu \mathrm{~A} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{gathered} 2.25 \\ 4.5 \\ 6.75 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	V V V
$\mathrm{V}_{\text {IHC }}$	High Level Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \text { (See note 6) } \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{gathered} 2.75 \\ 5.5 \\ 8.25 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
IN	Input Current	$\begin{aligned} & V_{D D}-V_{S S}=15 \mathrm{~V} \\ & V_{D D} \geq V_{I S} \geq V_{S S} \\ & V_{D D} \geq V_{C} \geq V_{S S} \end{aligned}$		± 0.3		$\pm 10^{-5}$	± 0.3		± 1.0	$\mu \mathrm{A}$

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{t}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$t_{\text {PHL }}$, $\mathrm{tPLH}^{\text {d }}$	Propagation Delay Time Signal Input to Signal Output	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \text { (Figure 1) } \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 25 \\ & 15 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 55 \\ & 35 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {tPZH, }}$ tPZL	Propagation Delay Time Control Input to Signal Output High Impedance to Logical Level	$\begin{aligned} & R_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},(\text { Figures } 2 \text { and } 3 \text {) } \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 125 \\ 60 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
${ }_{\text {tPHZ }}, t_{\text {PLZ }}$	Propagation Delay Time Control Input to Signal Output Logical Level to High Impedance Sine Wave Distortion Frequency Response-Switch "ON" (Frequency at -3 dB)	$\begin{aligned} & R_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},(\text { Figures } 2 \text { and } 3 \text {) } \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IS}}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{f}=1 \mathrm{kHz}, \end{aligned}$ (Figure 4) $\begin{aligned} & V_{C}=V_{D D}=5 V, V_{S S}=-5 V \\ & R_{L}=1 \mathrm{k} \Omega, V_{I S}=5 V_{p-p}, \end{aligned}$ $20 \log _{10} \mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\mathrm{OS}}(1 \mathrm{kHz})-\mathrm{dB}$, (Figure 4)		0.1 40	$\begin{gathered} 125 \\ 60 \\ 50 \end{gathered}$	ns ns ns \% MHz

AC Electrical Characteristics (Continued) $T_{A}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
	Feedthrough — Switch "OFF" (Frequency at -50 dB) Crosstalk Between Any Two Switches (Frequency at -50 dB) Crosstalk; Control Input to Signal Output Maximum Control Input			$\begin{aligned} & 1.25 \\ & 0.9 \\ & \\ & 150 \\ & \\ & \\ & 6.0 \\ & 8.0 \\ & 8.5 \end{aligned}$		MHz $m V_{p-p}$ MHz MHz MHz
$\mathrm{C}_{\text {IS }}$	Signal Input Capacitance			8.0		pF
$\mathrm{CoS}^{\text {S }}$	Signal Output Capacitance	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		8.0		pF
$\mathrm{ClOS}^{\text {l }}$	Feedthrough Capacitance	$\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$		0.5		pF
C_{IN}	Control Input Capacitance			5.0	7.5	pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: These devices should not be connected to circuits with the power "ON".
Note 4: In all cases, there is approximately 5 pF of probe and jig capacitance in the output; however, this capacitance is included in C_{L} wherever it is specified.
Note 5: $\mathrm{V}_{I S}$ is the voltage at the in/out pin and $\mathrm{V}_{O S}$ is the voltage at the out/in pin. V_{C} is the voltage at the control input.
Note 6: Conditions for $\mathrm{V}_{\mathrm{IHC}}$: a) $\mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{DD}}$, $\mathrm{I}_{\mathrm{OS}}=$ standard B series $\mathrm{I}_{\mathrm{OH}} \quad$ b) $\mathrm{V}_{\mathrm{IS}}=O \mathrm{~V}$, $\mathrm{I}_{\mathrm{OL}}=$ standard B series I_{OL}.
Note 7: Refer to RETS4066BX for military specifications.

AC Test Circuits and Switching Time Waveforms

FIGURE 1. $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ Propagation Delay Time Signal Input to Signal Output

FIGURE 2. $t_{\text {PZH }}, t_{\text {PHZ }}$ Propagation Delay Time Control to Signal Output

TL/F/5665-2
FIGURE 3. tpzl , tplz Propagtion Delay Time Control to Signal Output

$V_{C}=V_{D D}$ for distortion and frequency response tests
$V_{C}=V_{S S}$ for feedthrough test

FIGURE 4. Sine Wave Distortion, Frequency Response and Feedthrough

FIGURE 5. Crosstalk Between Any Two Switches

FIGURE 6. Crosstalk: Control Input to Signal Output

TL/F/5665-3
FIGURE 7. Maximum Control Input Frequency

Typical Performance Characteristics

Special Considerations

In applications where separate power sources are used to drive $V_{D D}$ and the signal input, the $V_{D D}$ current capability should exceed $V_{D D} / R_{L}$ ($R_{L}=$ effective external load of the 4 CD4066BM/CD4066BC bilateral switches). This provision avoids any permanent current flow or clamp action of the V_{DD} supply when power is applied or removed from CD4066BM/CD4066BC.

In certain applications, the external load-resistor current may include both V_{DD} and signal-line components. To avoid

drawing V_{DD} current when switch current flows into terminals $1,4,8$ or 11 , the voltage drop across the bidirectional switch must not exceed 0.6 V at $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$, or 0.4 V at $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$ (calculated from R_{ON} values shown).
No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminals 2, 3, 9 or 10.

National Semiconductor Corporation

CD4529BM/CD4529BC Dual 4-Channel or Single 8-Channel Analog Data Selector

General Description

The CD4529B is a dual 4 -channel or a single 8 -channel analog data selector, implemented with complementary MOS (CMOS) circuits constructed with N- and P-channel enhancement mode transistors. Dual 4 -channel or 8 -channel mode operation is selected by proper input coding, with outputs Z and W tied together for the single 8 -bit mode. The device is suitable for digital as well as analog applications, including various 1 -of-4 and 1-of-8 data selector functions. Since the device is analog and bidirectional, it can also be used for dual binary to $1-\mathrm{of}-4$ or single $1-\mathrm{of}-8$ decoder applications.

Features

- Wide supply voltage range
- High noise immunity
- Low quiescent power dissipation
- 10 MHz frequency operation (typ.)
- Data paths are bidirectional
- Linear ON resistance [120 (typ.) @ 15V]
- TRI-STATE® ${ }^{\circledR}$ outputs (high impedance disable strobe)
- Plug-in replacement for MC14529B

Connection Diagram

Dual-In-Line Package

Order Number CD4529BCJ, N or CD4529BMJ, W See NS Package J16A, N16E, or W16A
Truth Table

Logic Diagram

TL/F/5999-1

Absolute Maximum Ratings
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Notes 1 and 2)

$V_{D D}$ DC Supply Voltage	-0.5 V to +18 V
$\mathrm{~V}_{\text {IN }}$ Input Voltage	-0.5 V to $\mathrm{V}_{D D}+0.5 \mathrm{~V}$
TS $_{S}$ Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
P_{D} Package Dissipation	500 mW
$\mathrm{~T}_{\text {L }}$ Lead Temp. (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating
Conditions (Note 2)

$V_{D D} D C$ Supply Voltage	$3 V$ to 15 V $V_{\text {IN }}$ Input Voltage
T_{A} Operating Temperature Range	
CD4529BM	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CD4529BC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DC Electrical Characteristics CD4529BM (Note 2)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
IDD	Quiescent Device Current	$\begin{array}{\|l\|} \hline V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.001 \\ & 0.002 \\ & 0.003 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{gathered} 60 \\ 60 \\ 120 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}},\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 0.05 \\ 0.05 \\ 0.05 \\ \hline \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
V OH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}},\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c\|} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$		$\begin{array}{\|c} 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$	$\begin{gathered} 5.0 \\ 10.0 \\ 15.0 \end{gathered}$		$\begin{array}{\|c\|} 4.95 \\ 9.95 \\ 14.95 \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{IL}	Low Level Input Voltage (Note 3)	$\begin{array}{\|l\|} \hline V_{D D}=5 \mathrm{~V} \\ V_{D D}=10 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 2.25 \\ & 4.50 \\ & 6.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{IH}	High Level Input Voltage (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
1 IN	Input Current	$\begin{aligned} & V_{D D}=15 V \\ & V_{I N}=0 V \\ & V_{I N}=15 V \\ & \hline \end{aligned}$		$\begin{array}{\|c} -0.1 \\ 0.1 \\ \hline \end{array}$		$\begin{gathered} -10^{-5} \\ 10^{-5} \end{gathered}$	$\begin{gathered} -0.1 \\ 0.1 \\ \hline \end{gathered}$		$\begin{gathered} -1.0 \\ 1.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
RON	ON Resistance			400 400 400 240 240 240 400 400 400 250 250 250		$\begin{gathered} 165 \\ 100 \\ 155 \\ \\ 135 \\ 75 \\ 100 \\ \\ 165 \\ 100 \\ 160 \\ \\ 135 \\ 75 \\ 110 \end{gathered}$	$\begin{aligned} & 480 \\ & 480 \\ & 480 \\ & 270 \\ & 270 \\ & 270 \\ & \\ & 480 \\ & 480 \\ & 480 \\ & \\ & 270 \\ & 270 \\ & 270 \\ & \hline \end{aligned}$		$\begin{aligned} & 640 \\ & 640 \\ & 640 \\ & 400 \\ & 400 \\ & 400 \\ & \\ & 640 \\ & 640 \\ & 640 \\ & \\ & 400 \\ & 400 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
IOFF	Input to Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=-5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{I \mathrm{I}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \\ & \mathrm{~V}_{I \mathrm{I}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=7.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 125 \\ & \pm 125 \\ & \pm 250 \\ & \pm 250 \end{aligned}$		$\begin{gathered} \pm 0.001 \\ \pm 0.001 \\ \pm 0.0015 \\ \pm 0.0015 \end{gathered}$	$\begin{gathered} \pm 125 \\ \pm 125 \\ \pm 250 \\ \pm 250 \end{gathered}$		$\begin{aligned} & \pm 1250 \\ & \pm 1250 \\ & \pm 2500 \\ & \pm 2500 \end{aligned}$	nA nA nA nA

DC Electrical Characteristics CD4529BC (Note 2) (Continued)

Symbol	Parameter	Conditions	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
IDD	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 5.0 \\ 5.0 \\ 10.0 \end{gathered}$		$\begin{aligned} & 0.001 \\ & 0.002 \\ & 0.003 \end{aligned}$	$\begin{gathered} 5.0 \\ 5.0 \\ 10.0 \end{gathered}$		$\begin{gathered} 70 \\ 70 \\ 140 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}},\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 0.05 \\ 0.05 \\ 0.05 \\ \hline \end{array}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V OH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}},\left\|\mathrm{I}_{\mathrm{O}}\right\|<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$	$\begin{gathered} 5.00 \\ 10.00 \\ 15.00 \end{gathered}$		$\begin{array}{\|c\|} \hline 4.95 \\ 9.95 \\ 14.95 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {IL }}$	Low Level Input Voltage (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
V_{IH}	High Level Input Voltage (Note 3)	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$		$\begin{array}{c\|} \hline 3.5 \\ 7.0 \\ 11.0 \end{array}$		$\begin{aligned} & V \\ & V \\ & V \end{aligned}$
I_{IN}	Input Current	$\begin{aligned} & V_{D D}=15 \mathrm{~V} \\ & V_{I N}=0 V \\ & V_{I N}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{\|c\|} -0.3 \\ 0.3 \\ \hline \end{array}$		$\begin{gathered} -10^{-5} \\ 10^{-5} \end{gathered}$	$\begin{array}{\|c\|} -0.3 \\ 0.3 \\ \hline \end{array}$		$\begin{gathered} -1.0 \\ 1.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
RON	ON Resistance	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{I N}=5 \mathrm{~V} \\ & \mathrm{~V}_{I N}=-5 \mathrm{~V} \\ & \mathrm{~V}_{I N}= \pm 0.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{I N}=7.5 \mathrm{~V} \\ & \mathrm{~V}_{I N}=-7.5 \mathrm{~V} \\ & V_{I N}= \pm 0.25 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & V_{I N}=10 \mathrm{~V} \\ & V_{I N}=0.25 \mathrm{~V} \\ & V_{I N}=5.6 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V} \\ & V_{I N}=15 \mathrm{~V} \\ & V_{I N}=0.25 \mathrm{~V} \\ & V_{I N}=9.3 \mathrm{~V} \end{aligned}$		410 410 410 250 250 250 410 410 410 250 250 250		$\begin{gathered} 165 \\ 100 \\ 155 \\ \\ 135 \\ 75 \\ 100 \\ \\ 165 \\ 100 \\ 160 \\ \\ 135 \\ 75 \\ 110 \\ \hline \end{gathered}$	$\begin{aligned} & 480 \\ & 480 \\ & 480 \\ & 270 \\ & 270 \\ & 270 \\ & \\ & 480 \\ & 480 \\ & 480 \\ & \\ & 270 \\ & 270 \\ & 270 \end{aligned}$		$\begin{aligned} & 560 \\ & 560 \\ & 560 \\ & \\ & 350 \\ & 350 \\ & 350 \\ & \\ & 560 \\ & 560 \\ & 560 \\ & \\ & 350 \\ & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \\ & \Omega \\ & \hline \end{aligned}$
Ioff	Input-Output Leakage Current	$\begin{aligned} & V_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=-7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=-7.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=7.5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 125 \\ & \pm 125 \\ & \\ & \pm 250 \\ & \pm 250 \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 0.001 \\ & \pm 0.001 \\ & \\ & \pm 0.0015 \\ & \pm 0.0015 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 125 \\ & \pm 125 \\ & \pm 250 \\ & \pm 250 \end{aligned}$		$\begin{gathered} \pm 500 \\ \pm 500 \\ \\ \pm 1000 \\ \pm 1000 \\ \hline \end{gathered}$	nA nA nA nA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
Note 3: Switch OFF is defined as $\left|\mathrm{I}_{\mathrm{O}}\right| \leq 10 \mu \mathrm{~A}$, switch ON as defined by R R

AC Characteristics CD4529BM/CD4539BC

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\mathrm{V}_{\text {IN }}$ to V $\mathrm{V}_{\text {OUT }}$ Propagation Delay	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 20 \\ 10 \\ 8 \end{gathered}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
${ }_{\text {tPLH }}$, $\mathrm{t}_{\text {PHL }}$	Control to Output Propagation Delay	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN}} \leq 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 200 \\ 80 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & 400 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{f}_{\text {MAX }}$	Maximum Control Input Pulse Frequency Crosstalk, Control to Output Noise Voltage Sine Wave (Distortion)	$\begin{aligned} & V_{S S}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & R_{O U T}=10 \mathrm{k} \Omega, C_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{SS}}=0 \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & f=100 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & f=100 \mathrm{kHz}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & V_{I N}=1.77 \mathrm{Vrms} \text { Centered } \\ & \text { at } 0 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz} \\ & V_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{D D}=5 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 12 \\ 5.0 \\ 5.0 \\ 5.0 \\ \\ 24 \\ 25 \\ 30 \\ \\ 12 \\ 12 \\ 15 \\ 0.36 \end{gathered}$		$\begin{gathered} \mathrm{MHz} \\ \mathrm{MHz} \\ \mathrm{MHz} \\ \mathrm{mV} \\ \mathrm{mV} \\ \mathrm{mV} \\ \\ \mathrm{nV} / \sqrt{\text { cycle }} \\ \% \end{gathered}$
loss	Insertion Loss, $l_{\text {LOSS }}=20 \log _{10} \frac{V_{\mathrm{OUT}}}{V_{\mathrm{IN}}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=177 \mathrm{Vrms} \text { Centered } \\ & \text { at } 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \hline \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ 0.25 \\ 0.01 \end{gathered}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
BW	Bandwidth, -3dB Feedthrough and Crosstalk, $20 \log _{10} \frac{V_{\text {OUT }}}{V_{I N}}=-50 \mathrm{db}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=177 \mathrm{Vrms} \text { Centered } \\ & \text { at } 0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \hline \end{aligned}$	$\begin{gathered} 35 \\ 28 \\ 27 \\ 26 \\ \\ 850 \\ 100 \\ 12 \\ 1.5 \\ \hline \end{gathered}$			MHz MHz MHz MHz kHz kHz kHz Khz

Test Circuits and Switching Time Waveforms

Propagation Delay

Typical Performance Characteristics

Quad SPST JFET Analog Switches

LF11331, LF13331 4 Normally Open Switches with Disable
LF11332, LF13332 4 Normally Closed Switches with Disable
LF11333, LF13333 2 Normally Closed Switches and 2 Normally Open Switches with Disable
LF11201, LF13201 4 Normally Closed Switches
LF11202, LF13202 4 Normally Open Switches

General Description

These devices are a monolithic combination of bipolar and JFET technology producing the industry's first one chip quad JFET switch. A unique circuit technique is employed to maintain a constant resistance over the analog voltage range of $\pm 10 \mathrm{~V}$. The input is designed to operate from minimum TTL levels, and switch operation also ensures a break-before-make action
These devices operate from $\pm 15 \mathrm{~V}$ supplies and swing a $\pm 10 \mathrm{~V}$ analog signal. The JFET switches are designed for applications where a dc to medium frequency analog signal needs to be controlled.

Features

- Analog signals are not loaded
- Constant "ON" resistance for signals up to $\pm 10 \mathrm{~V}$ and 100 kHz
- Pin compatible with CMOS switches with the advantage of blow out free handling
- Small signal analog signals to 50 MHz

■ Break-before-make action toff $<\mathrm{t}_{\mathrm{ON}}$
■ High open switch isolation at 1.0 MHz
$-50 \mathrm{~dB}$

- Low leakage in "OFF" state
$<1.0 \mathrm{nA}$
- TTL, DTL, RTL compatibility
- Single disable pin opens all switches in package on LF11331, LF11332, LF11333
- LF11201 is pin compatible with DG201

Test Circuit and Schematic Diagram

TL/H/5667-2
FIGURE 1. Typical Circuit for One Switch

TL/H/5667-12
FIGURE 2. Schematic Diagram (Normally Open)

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 1)

Supply Voltage $\left(V_{C C}-V_{E E}\right)$	36 V
Reference Voltage	$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{R}} \leq \mathrm{V}_{\mathrm{CC}}$
Logic Input Voltage	$\mathrm{V}_{\mathrm{R}}-4.0 \mathrm{~V} \leq \mathrm{V}_{I N} \leq \mathrm{V}_{\mathrm{R}}+6.0 \mathrm{~V}$
Analog Voltage	$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{A}} \leq \mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{A}} \leq \mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$
Analog Current	$\left\|\mathrm{I}_{\mathrm{A}}\right\|<20 \mathrm{~mA}$

Power Dissipation (Note 2)
Molded DIP (N Suffix)
500 mW
Cavity DIP (D Suffix)
Operating Temperature Range
LF11201, 2 and LF11331, 2, 3
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LF13201, 2 and LF13331, 2, 3
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature

- to +150 C

Soldering Information

N and D Package (10 sec.)	$300^{\circ} \mathrm{C}$
SO Package	
\quad Vapor Phase $(60 \mathrm{sec})$.	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

Electrical Characteristics
(Note 3)

Symbol	Parameter	Conditions	$\begin{gathered} \text { LF11331/2/3 } \\ \text { LF11201/2 } \end{gathered}$			$\begin{gathered} \text { LF13331/2/3 } \\ \text { LF13201/2 } \end{gathered}$			Units
			Min	Typ	Max	Min	Typ	Max	
Ron	"ON" Resistance	$V_{A}=0, I_{D}=1 \mathrm{~mA} \quad T_{A}=25^{\circ} \mathrm{C}$	± 10	150	200	± 10	150	$\begin{array}{r}250 \\ 350 \\ \hline\end{array}$	Ω Ω
RON Match	"ON" Resistance Matching Analog Range Leakage Current in "ON" Condition	$\begin{array}{ll} & T_{A}=25^{\circ} \mathrm{C} \\ \text { Switch "ON," } V_{S}=V_{D}= \pm 10 \mathrm{~V} & T_{A}=25^{\circ} \mathrm{C}\end{array}$		5	20		10	50	Ω
V_{A}				± 11			± 11		V
IS(ON) +				0.3	5		0.3	10	nA
ID(ON)				3	100		3	30	nA
IS(OFF)	Source Current in "OFF" Condition	Switch "OFF," $\mathrm{V}_{S}=+10 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.4	5		0.4	10	nA
ID(OFF)	Drain Current in "OFF' Condition	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}$		3	100		3	30	nA
		Switch "OFF," $V_{S}=+10 \mathrm{~V}, \quad T_{A}=25^{\circ} \mathrm{C}$		0.1	5		0.1	10	nA
		$V_{D}=-10 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	100		3	30	nA
VINH $V_{\text {INL }}$ liNH $\mathrm{I}_{\mathrm{INL}}$	Logical "1" Input Voltage Logical "0"' Input Voltage Logical "1" Input Current Logical "0" Input Current	$\left\|\begin{array}{ll} V_{I N}=5 \mathrm{~V} & T_{A}=25^{\circ} \mathrm{C} \\ V_{I N}=0.8 & T_{A}=25^{\circ} \mathrm{C} \end{array}\right\|$	2.0	3.6		2.0	3.6		V
					0.8			0.8	V
					10			40	$\mu \mathrm{A}$
					25			100	$\mu \mathrm{A}$
					0.1			0.1	$\mu \mathrm{A}$
					1			1	$\mu \mathrm{A}$
ton	Delay Time "ON"	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$, (Figure 3) $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		500			500		ns
toff	Delay Time "OFF"	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$, (Figure 3) $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		90			90		ns
ton -toff	Break-Before-Make	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$, (Figure 3) $\quad \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		80			80		ns
$\mathrm{C}_{\text {S(OFF) }}$	Source Capacitance	Switch "OFF," $\mathrm{V}_{S}= \pm 10 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.0			4.0		pF
$\mathrm{C}_{\text {D(OFF) }}$	Drain Capacitance	Switch "OFF," $\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$		3.0			3.0		pF
	Active Source and Drain Capacitance	Switch "ON," $\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5.0			5.0		pF
$\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$									
ISO(OFF) CT SR los	"OFF" Isolation Crosstalk Analog Slew Rate Disable Current	(Figure 4), (Note 4) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Figure 4), (Note 4) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 5) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Figure 5), (Note 6) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{array}{\|c\|} \hline-50 \\ -65 \\ 50 \\ 0.4 \\ 0.6 \\ \hline \end{array}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline-50 \\ -65 \\ 50 \\ 0.6 \\ 0.9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \\ \\ 1.5 \\ 2.3 \\ \hline \end{array}$	dBdB$\mathrm{V} / \mu \mathrm{s}$mAmA
$\begin{aligned} & \overline{I_{E E}} \\ & I_{R} \\ & I_{C C} \end{aligned}$	Negative Supply Current Reference Supply Current Positive Supply Current	All Switches "OFF," $V_{S}= \pm 10 \mathrm{~V} T_{A}=25^{\circ} \mathrm{C}$		3.0	5.0		4.3	7.0	mA
				4.2	7.5		6.0	10.5	mA
		All Switches "OFF," $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.0	4.0		2.7	5.0	mA
				2.8	6.0		3.8	7.5	mA
		All Switches "OFF," $\mathrm{V}_{S}= \pm 10 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.5	6.0		7.0	9.0	mA
				6.3	9.0		9.8	13.5	mA

Note 1: Refer to RETSF11201X, RETSF11331X, RETSF11332X and RETSF11333X for military specifications.
Note 2: For operating at high temperature the molded DIP products must be derated based on a $+100^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $+150^{\circ} \mathrm{C} / \mathrm{W}$, devices in the cavity DIP are based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature and are derated at $\pm 100^{\circ} \mathrm{C} / \mathrm{W}$.
Note 3: Unless otherwise specified, $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$, and limits apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LF11331/2/3 and the LF11201/2, $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$ for the LF13331/2/3 and the LF13201/2.
Note 4: These parameters are limited by the pin to pin capacitance of the package.
Note 5: This is the analog signal slew rate above which the signal is distorted as a result of finite internal slew rates.
Note 6: All switches in the device are turned "OFF" by saturating a transistor at the disable node as shown in Figure 5. The delay time will be approximately equal to the $t_{O N}$ or tOFF plus the delay introduced by the external transistor.
Note 7: This graph indicates the analog current at which 1% of the analog current is lost when the drain is positive with respect to the source.
Note 8: θ_{JA} (Typical) Thermal Resistance

Molded DIP (N)	$85^{\circ} \mathrm{C} / \mathrm{W}$
Cavity DIP (D)	$100^{\circ} \mathrm{C} / \mathrm{W}$
Small Outline (M)	$105^{\circ} \mathrm{C} / \mathrm{W}$

Connection Diagrams (Top View for SO and Dual-In-Line Packages) (All Switches Shown are For Logical " 0 ")

LF11331/LF13331

TL/H/5667-1

LF11333/LF13333

TL/H/5667-14

LF11202/LF13202

LF11332/LF13332

TL/H/5667-13
LF11201/LF13201

TL/H/5667-15

Order Number LF13201D, LF11201D, LF13202D, LF11202D, LF13331D, LF11331D, LF13332D, LF11332D, LF13333D or LF11333D See NS Package Number D16C

Order Number LF13201M, LF13202M, LF13331M, LF13332M or LF13333M
See NS Package Number M16A
Order Number LF13201N, LF13202N, LF13331N, LF13332N or LF13333N See NS Package Number N16A

Test Circuit and Typical Performance Curves
Delay Time, Rise Time, Settling Time, and Switching Transients

$200 \mathrm{~ns} / \mathrm{div}$

$200 \mathrm{~ns} / \mathrm{div}$

$200 \mathrm{~ns} / \mathrm{div}$

$200 \mathrm{~ns} / \mathrm{div}$

200 ns/div

FIGURE 3. toN, toff Test Circuit and Waveforms for a Normally Open Switch

Typical Performance Characteristics

Crosstalk and "OFF"
Isolation vs Frequency Using Test Circuit

TL/H/5667-5

Application Hints

GENERAL INFORMATION

These devices are monolithic quad JFET analog switches with "ON" resistances which are essentially independent of analog voltage or analog current. The leakage currents are typically less than 1 nA at $25^{\circ} \mathrm{C}$ in both the "OFF" and "ON" switch states and introduce negligible errors in most applications. Each switch is controlled by minimum TTL logic levels at its input and is designed to turn "OFF" faster than it will turn "ON." This prevents two analog sources from being transiently connected together during switching. The switches were designed for applications which require break-before-make action, no analog current loss, medium speed switching times and moderate analog currents.
Because these analog switches are JFET rather than CMOS, they do not require special handling.

LOGIC INPUTS

The logic input (IN), of each switch, is referenced to two forward diode drops $\left(1.4 \mathrm{~V}\right.$ at $\left.25^{\circ} \mathrm{C}\right)$ from the reference supply $\left(V_{R}\right)$ which makes it compatible with DTL, RTL, and TTL logic families. For normal operation, the logic " 0 " voltage can range from 0.8 V to -4.0 V with respect to V_{R} and the logic " 1 " voltage can range from 2.0 V to 6.0 V with respect to V_{R}, provided V_{IN} is not greater than ($\mathrm{V}_{\mathrm{CC}}-2.5 \mathrm{~V}$). If the input voltage is greater than ($\mathrm{V}_{\mathrm{CC}}-2.5 \mathrm{~V}$), the input current will increase. If the input voltage exceeds 6.0 V or -4.0 V with respect to V_{R}, a resistor in series with the input should be used to limit the input current to less than $100 \mu \mathrm{~A}$.

ANALOG VOLTAGE AND CURRENT

Analog Voltage

Each switch has a constant "ON" resistance (RON) for analog voltages from ($\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}$) to ($\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V}$). For analog voltages greater than $\left(\mathrm{V}_{\mathrm{CC}}-5 \mathrm{~V}\right)$, the switch will remain ON independent of the logic input voltage. For analog voltages less than ($\mathrm{V}_{\mathrm{EE}}+5 \mathrm{~V}$), the ON resistance of the switch will increase. Although the switch will not operate normally when the analog voltage is out of the previously mentioned range, the source voltage can go to either ($\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$) or $\left(V_{C C}+6 \mathrm{~V}\right)$, whichever is more positive, and can go as negative as $V_{E E}$ without destruction. The drain (D) voltage can also go to either ($\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$) or ($\mathrm{V}_{\mathrm{CC}}+6 \mathrm{~V}$), whichever is more positive, and can go as negative as ($\mathrm{V}_{\mathrm{CC}}-36 \mathrm{~V}$) without destruction.

Analog Current

With the source (S) positive with respect to the drain (D), the RON is constant for low analog currents, but will increase at higher currents ($>5 \mathrm{~mA}$) when the FET enters the saturation region. However, if the drain is positive with respect to the source and a small analog current loss at high analog currents (Note 6) is tolerable, a low RON can be maintained for analog currents greater than 5 mA at $25^{\circ} \mathrm{C}$.

LEAKAGE CURRENTS

The drain and source leakage currents, in both the ON and the OFF states of each switch, are typically less than 1 nA at $25^{\circ} \mathrm{C}$ and less than 100 nA at $125^{\circ} \mathrm{C}$. As shown in the typical curves, these leakage currents are Dependent on power supply voltages, analog voltage, analog current and the source to drain voltage.

DELAY TIMES

The delay time OFF (toFF) is essentially independent of both the analog voltage and temperature. The delay time ON (t_{ON}) will decrease as either ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{A}}$) decreases or the temperature decreases.

POWER SUPPLIES

The voltage between the positive supply (V_{CC}) and either the negative supply ($V_{E E}$) or the reference supply $\left(V_{R}\right)$ can be as much as 36 V . To accommodate variations in input logic reference voltages, V_{R} can range from V_{EE} to ($\mathrm{V}_{\mathrm{CC}}-4.5 \mathrm{~V}$). Care should be taken to ensure that the power supply leads for the device never become reversed in polarity or that the device is never inadvertantly installed backwards in a test socket. If one of these conditions occurs, the supplies would zener an internal diode to an unlimited current; and result in a destroyed device.

SWITCHING TRANSIENTS

When a switch is turned OFF or ON, transients will appear at the load due to the internal transient voltage at the gate of the switch JFET being coupled to the drain and source by the junction capacitances of the JFET. The magnitude of these transients is dependent on the load. A lower value R_{L} produces a lower transient voltage. A negative transient occurs during the delay time ON, while a positive transient occurs during the delay time OFF. These transients are relatively small when compared to faster switch families.

DISABLE NODE

This node can be used, as shown in Figure 5, to turn all the switches in the unit off independent of logic inputs. Normal$l y$, the node floats freely at an internal diode drop ($\approx 0.7 \mathrm{~V}$) above V_{R}. When the external transistor in Figure 5 is saturated, the node is pulled very close to V_{R} and the unit is disabled. Typically, the current from the node will be less than 1 mA . This feature is not available on the LF11201 or LF11202 series.

FIGURE 5. Disable Function

Programmable Inverting Non-Inverting Operational Amplifier

Programmable Gain Operational Amplifier

Typical Applications (Continued)

Typical Applications (Continued)

Self-Zeroing Operational Amplifier

$\lrcorner \ldots$

Programmable Integrator with Reset and Hold

Staircase Transfer Function Operational Amplifier

Typical Applications (Continued)

TL/H/5667-11

LF13508 8-Channel Analog Multiplexer LF13509 4-Channel Differential Analog Multiplexer

General Description

The LF13508 is an 8-channel analog multiplexer which connects the output to 1 of the 8 analog inputs depending on the state of a 3 -bit binary address. An enable control allows disconnecting the output, thereby providing a package select function.
This device is fabricated with National's BI-FET technology which provides ion-implanted JFETs for the analog switch on the same chip as the bipolar decode and switch drive circuitry. This technology makes possible low constant "ON" resistance with analog input voltage variations. This device does not suffer from latch-up problems or static charge blow-out problems associated with similar CMOS parts. The digital inputs are designed to operate from both TTL and CMOS levels while always providing a definite break-before-make action.
The LF13509 is a 4-channel differential analog multiplexer. A 2-bit binary address will connect a pair of independent
analog inputs to one of any 4 pairs of independent analog outputs. The device has all the features of the LF13508 series and should be used whenever differential analog inputs are required.

Features

- JFET switches rather than CMOS
- No static discharge blow-out problem
- No SCR latch-up problems
- Analog signal range $11 \mathrm{~V},-15 \mathrm{~V}$
- Constant "ON" resistance for analog signals between -11 V and 11V
- "ON" resistance 380Ω typ
- Digital inputs compatible with TTL and CMOS
- Output enable control
- Break-before-make action: tofF $=0.2 \mu \mathrm{~s} ; \mathrm{t}_{\mathrm{ON}}=2 \mu \mathrm{~s}$ typ - Lower leakage devices available

Functional Diagrams and Truth Tables

EN	A2	A1	AO	SWITCH ON
H	L	L	L	S1
H	L	L	H	S2
H	L	H	L	S3
H	L	H	H	S4
H	H	L	L	S5
H	H	L	H	S6
H	H	H	L	S7
H	H	H	H	S8
L	X	X	X	NONE

LF13509

EN	A1	AO	SWITCH PAIR ON
L	X	X	None
H	L	L	S1
H	L	H	S2
H	H	L	S3
H	H	H	S4

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Positive Supply - Negative Supply ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) 36V
Positive Analog Input Voltage (Note 1) VCC
Negative Analog Input Voltage (Note 1)
$-V_{E E}$
$V_{C C}$
$-5 \mathrm{~V}$
Analog Switch Current $\quad\left|I_{\mathrm{S}}\right|<10 \mathrm{~mA}$
Negative Digital Input Voltage

Power Dissipation (P_{D} at $25^{\circ} \mathrm{C}$)
(Notes 2 \& 7)

Molded DIP (N)	PD_{D}	500 mW
Cavity DIP (D)	PD_{D}	900 mW

Maximum Junction Temperature ($\mathrm{T}_{\mathrm{jMAX}}$) $100^{\circ} \mathrm{C}$
Operating Temperature Range $\quad 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .) $300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions		$\begin{aligned} & \hline \text { LF13508 } \\ & \text { LF13509 } \end{aligned}$			Units
				Min	Typ	Max	
R_{ON}	"ON" Resistance	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{IS}_{\text {S }}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		380	650	Ω
					500	850	Ω
$\triangle \mathrm{R}_{\text {ON }}$	$\Delta \mathrm{R}_{\text {ON }}$ with Analog Voltage Swing	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{~V}, \mathrm{I}_{\text {S }}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.01	1	\%
RoN Match	RON Match Between Switches	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{I}_{\text {S }}=100 \mu \mathrm{~A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20	150	Ω
IS(OFF)	Source Current in "OFF" Condition	Switch "OFF", $\mathrm{V}_{\mathrm{S}}=11, \mathrm{~V}_{\mathrm{D}}=-11$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5	nA
					0.09	50	nA
$\mathrm{I}_{\text {D(OFF) }}$	Drain Current in "OFF" Condition	Switch "OFF", $\mathrm{V}_{\mathrm{S}}=11, \mathrm{~V}_{\mathrm{D}}=-11$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			20	nA
					0.6	500	nA
ID(ON)	Leakage Current in "ON" Condition	Switch "ON" $\mathrm{V}_{\mathrm{D}}=11 \mathrm{~V}$, (Note 4)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			20	nA
					1	500	nA
$\mathrm{V}_{\text {INH }}$	Digital "1" Input Voltage			2.0			V
$\mathrm{V}_{\text {INL }}$	Digital "0" Input Voltage					0.7	V
IINL	Digital "0" Input Current	$\mathrm{V}_{1} \mathrm{~N}=0.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.5	30	$\mu \mathrm{A}$
						40	$\mu \mathrm{A}$
IINL(EN)	Digital "0" Enable Current	$\mathrm{V}_{\mathrm{EN}}=0.7 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.2	30	$\mu \mathrm{A}$
						40	$\mu \mathrm{A}$
ttran	Switching Time of Multiplexer	(Figure 1), (Note 5)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.8		$\mu \mathrm{s}$
topen	Break-Before-Make	(Figure 3)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.6		$\mu \mathrm{S}$
ton(EN)	Enable Delay "ON"	(Figure 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.6		$\mu \mathrm{s}$
toff(EN)	Enable Delay "OFF"	(Figure 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.2		$\mu \mathrm{s}$
ISO(OFF)	"OFF" Isolation	(Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-66		dB
CT	Crosstalk	LF13509 Series, (Note 6)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-66		dB
$\mathrm{C}_{\text {S(OFF }}$	Source Capacitance ('OFF')	$\begin{aligned} & \text { Switch "OFF", } \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.2		pF
$\mathrm{C}_{\text {(} \text { (OFF) }}$	Drain Capacitance ("OFF')	$\begin{aligned} & \text { Switch "OFF", } \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		11.4		pF
ICC	Positive Supply Current	All Digital Inputs Grounded	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7.4	12	mA
					7.9	15	mA
${ }^{\text {E E }}$	Negative Supply Current	All Digital Inputs Grounded	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.7	5	mA
					2.8	6	mA

Note 1: If the analog input voltage exceeds this limit, the input current should be limited to less than 10 mA .
Note 2: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by $\mathrm{T}_{\mathrm{jMAx}}, \theta_{\mathrm{j} A}$, and the ambient temperature, T_{A}. The maximum available power dissipation at any temperature is $P_{D}=\left(T_{j M A X}-T_{A}\right) / \theta_{j A}$ or the $25^{\circ} \mathrm{C} P_{D M A X}$, whichever is less.
Note 3: These specifications apply for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ and over the absolute maximum operating temperature range $\left(T_{L} \leq T_{A} \leq T_{H}\right)$ uniess otherwise noted.
Note 4: Conditions applied to leakage tests insure worse case leakages. Exceeding 11 V on the analog input may cause an "OFF" channel to turn "ON".
Note 5: Lots are sample tested to this parameter. The measurement conditions of Figure 1 insure worse case transition time.
Note 6: "OFF" isolation is measured with all switches "OFF" and driving a source. Crosstalk is measured with a pair of switches "ON", driving channel A and measuring channel $B . R_{L}=200, C_{L}=7 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{Vrms}, \mathrm{f}=500 \mathrm{kHz}$.
Note 7: Thermal Resistance θ_{jA} (Junction to Ambient)

Connection Diagrams

LF13508
Dual-In-Line Package

Order Number LF13508D
See NS Package Number D16C
Order Number LF13508N
See NS Package Number N16A

LF13509
Dual-In-Line Package

TL/H/5668-2
Order Number LF13509D See NS Package Number D16C

Order Number LF13509N
See NS Package Number N16A

AC Test Circuits and Switching Time Waveforms

FIGURE 1. Transition Time

AC Test Circuit and Switching Time Waveforms (Continued)

FIGURE 2. Enable Times

INPUT
INPUT
DRIVE

TL/H/5668-4
FIGURE 3. Break-Before-Make
Transition Times and Transients

$1 \mu \mathrm{~S} / \mathrm{DIV}$

$1 \mu \mathrm{~S} / \mathrm{DIV}$
$V_{A}=-10 V$

1μ S/DIV

$1 \mu \mathrm{~S} / \mathrm{DV}$
TL/H/5668-8 Test Circuit

Typical Performance Characteristics

Switching Times
(Figures 1 and 3)

Enable Delay Times
(Figure 2)

Supply Currents

"ON" Resistance

Switch Leakage Currents

"OFF" Isolation and Crosstalk

Application Hints

The LF11508 series is an 8-channel analog multiplexer which allows the connection of a single load to 1 of 8 different analog inputs. These multiplexers incorporate JFETs in a switch configuration which insures a constant "ON" resistance over the analog voltage range of the device. Four TTL compatible inputs are provided; a 3-bit binary decode to select a particular channel and an enable input used as a package select. The switches operate with a break-beforemake action preventing the temporary connection of 2 analog inputs during switching. Because these multiplexers are fabricated with the BI-FET process rather than CMOS, they do not require special handling.
The LF11509 series is a 4-channel differential multiplexer which allows two loads to be connected to 1 of 4 different pairs of analog inputs. The LF11509 series also has all the features of the LF11508.

ANALOG VOLTAGE AND CURRENT

The "ON" resistance, RON, of the analog switches is constant over a wide input range from positive (V_{CC}) supply to negative ($-\mathrm{V}_{\mathrm{EE}}$) supply.
The analog input should not exceed either positive or negative supply without limiting the current to less than 10 mA ; otherwise the multiplexer may get damaged. For proper operation, however, the positive analog voltage should be kept equal to or less than $\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}$ as this will increase the switch leakage in both "ON" and "OFF" state and it may also cause a false turn "ON" of a normally "OFF" switch. This limit applies over the full temperature range.
The maximum allowable switch "ON" voltage (the drop across the switch in the "ON" condition) is $\pm 0.4 \mathrm{~V}$ over temperature. If this number is to exceed the input current should be limited to 10 mA .
The "ON" resistance of the multiplexing switches varies slightly with analog current because they are JFETs running at OV gate to source. The JFET characteristics shown in Figure 4 indicates how RON tends to vary with current. A lower R_{ON} is possible when the source voltage is negative with respect to the drain voltage because the JFET becomes enhanced. Caution should be used when operating in this mode as this may forward-bias an internal transistor and cause high currents to flow in the switches. Thus, the drain voltage should never be greater than 0.4 V positive with respect to the source voltage without limiting the drain current to less than 10 mA .

LEAKAGE CURRENTS

Leakage currents will remain within the specified value as long as the drain and source remain within the specified analog voltage range. As the switch terminals exceed the positive analog voltage range "ON" and "OFF" leakage currents increase. The "ON" leakage increases due to an internal clamp required by the switch structure. The "OFF" leakage increases because the gate to source reverse bias has been decreased to the point where the switch becomes active. Leakage currents vary slightly with analog voltage and will approximately double for every $10^{\circ} \mathrm{C}$ rise in temperature.

SWITCHING TIMES AND TRANSIENTS

These multiplexers operate with a break-before-make switch action. The turn off time is much faster than the turn on time to guarantee this feature over the full range of analog input voltage and temperature. Switching transients are introduced when a switch is turned "OFF". The amplitude of these transients may be reduced by increasing the load capacitance or decreasing the load resistance. The actual charge transfer in the transient may be reduced by operating on reduced power supplies. Examples of switching times and transients are shown in the typical characteristic curves. The enable function switching times are specified separately from switch-to-switch transition times and may be thought of as package-to-package transition times.

LOGIC INPUTS AND ENABLE INPUT

Switch selection in the LF11508 series is accomplished by using a 3-bit binary decode while the LF11509 series uses a 2 -bit decode. These binary logic inputs are compatible with both TTL and CMOS logic voltage levels. The maximum positive voltage applied to these inputs may exceed $V_{C C}$ but should not exceed $-\mathrm{V}_{\mathrm{EE}}+36 \mathrm{~V}$. The maximum negative voltage should not be less than 4 V below ground as this will cause an internal device to zener and all the switches will turn "ON".
As shown in the schematic diagram, the logic low bias current will flow until the PNP input is raised above the 3 diode reference ($\approx 2.1 \mathrm{~V}$). Above this voltage the input device becomes reverse biased and the input current drops to the leakage of the reverse biased junction $(<0.1 \mu \mathrm{~A})$.

FIGURE 4. JFET Characteristics

Typical Applications

DATA ACQUISITION SYSTEM

A SIMPLIFIED SYSTEM DISCUSSION

Analog multiplexers (MUX) are usually used for multi-channel Data Acquisition Units (DAU). Figure 5 shows a system in which 8 different analog inputs are sampled and converted into digital words for further processing. The sample and hold circuit is optional, depending on input speed requirements and on A/D converter speed.
Parameters characterizing the system are:
System Channels: The number of multiplexer channels.
Accuracy: The conversion accuracy of each individual sample with the system operating at the throughput rate.
Speed or Throughput Rate: Number of samples/second/ channel the system can handle.
For a discussion on system structure, addressing mode and processor interfacing, see application note AN-159.

A. ACCURACY CONSIDERATIONS

1. Multiplexer's Influence on System Accuracy (Figure 6).
a. The error, (E), caused by the finite " ON " resistance, RON, of the multiplexing switches is given by:
$E(\%)=\frac{100}{1+R_{I N} /\left(R_{O N}+R_{S}+\Delta R_{O N}\right)}$ where:
$R_{I N}=$ following stage input impedance
$\Delta R_{\mathrm{ON}}=$ "ON" resistance modulation which is negligible for JFET switches like the LF11508
Example: Let $\mathrm{R}_{\mathrm{ON}}=450 \Omega, \Delta \mathrm{R}_{\mathrm{ON}}=0, \mathrm{R}_{\mathrm{S}}=0, \mathrm{~T}_{\mathrm{A}}$ $=25^{\circ} \mathrm{C}$ and allowable $\mathrm{E}=0.01 \%$ which is equivalent to $1 / 2$ LSB in a 12 -bit system:

$$
\left.R_{I N}\right|_{\min }=\frac{R_{O N}(100-E)}{E}=4.5 \mathrm{M} \Omega
$$

Note that if temperature effects are included, some gain (or full scale) drift will occur; but effects on linearity are small.
b. Multiplexer settling time $\left(\mathrm{t}_{\mathrm{s}}\right)$:
$\mathrm{t}_{\mathrm{s}(\mathrm{ON})}$: is the time required for the MUX output to settle within a predetermined accuracy, as shown in Table I.
C_{S} (Figure 6): MUX output capacitance + following stage input capacitance + any stray capacitance at this node.

TABLE.

ERROR \%	BITS	$\mathbf{t}_{\mathbf{s}}(\mathbf{O N})$ TO 1/2 LSB
0.2	8	6.2 t
0.05	10	7.6 t
0.01	12	9 t
0.0008	16	11.8 t

$$
t=C_{S}\left(R_{O N}+R_{S}\right) \| R_{I N}
$$

$t_{\text {s(OFF) }}$: is the time it takes to discharge C_{S} within a tolerable error. The "OFF" settling time should be taken into account for bipolar inputs where its effects will appear as a worse case of doubling of the $\mathrm{t}_{\mathrm{s}(\mathrm{ON})}$.
2. Sample and Hold Influence on System Accuracy

The sample and hold, if used, also introduces errors into the system accuracy due to:

- Offset voltage of sample and hold
- Droop rate in the Hold mode
- T_{A} : Aperture time or time delay between the time of a digital Hoid command and the actual Hold occurance
- Taq: Acquisition time or time it takes to acquire an analog input and settle within a predetermined error band
- Hold step: Error created during the Sample to Hold mode caused by an undesirable charge injected into the Hold capacitor C_{h}.
For more details on sample and hold errors, see the LF198/LF298/LF398 data sheet.

3. A/D Converter Influence on System Accuracy

The "accuracy" of the A/D converter is the best possible system accuracy. In most data acquisition systems, the A/D converter is the most expensive single component, so its error will often dominate system error. Care should be taken that MUX, S/H and input source errors do not exceed system error requirements when added to A/D errors. For instance, if an 8 -bit accuracy system is desired and an 8 -bit A/D converter is used, the accuracy of the MUX and S/H should be far better than 8 bits.
For details on A/D converter specifications, see AN-156.

FIGURE 6. 8-Channel MUX

FIGURE 5. Random-Addressed, Multiplexed DAU

Typical Applications (Continued)

B. SPEED CONSIDERATIONS

In the system of Figure 5 with the S/H omitted, if n-bit accuracy is desired, the change of the analog input voltage should be less than $\pm 1 / 2$ LSB over the A/D conversion time T_{C}. In other words, the analog input slew rate, (rate of change of input voltage), will cause a slew-induced error and its magnitude, with respect to the total system error, will depend on the particular application.

$$
\left.\frac{\Delta V_{I N}}{\Delta t}\right|_{\max }<\frac{ \pm 1 / 2 L S B}{T_{C}}=\frac{V_{F S}}{2^{n} \times T_{C}}
$$

where V_{FS} is the full scale voltage of the A/D. Note that slew induced errors are not affected by the MUX switch time since we can let the unit settle before starting conversion.

Example: Let $T_{C}=40 \mu \mathrm{~s}(\mathrm{MM} 4357), \mathrm{V}_{\mathrm{FS}}=10 \mathrm{~V}$ and n $=8$.

$$
\left.\frac{\Delta V_{\mathrm{IN}}}{\Delta \mathrm{t}}\right|_{\max }<\frac{1 \mathrm{mV}}{\mu \mathrm{~s}}
$$

which is a very small number. A $10 \mathrm{Vp-p}$ sine wave of a frequency greater than 32 Hz will have higher slew rate than this. The maximum throughput rate of the above 8channel system would be calculated using both the A/D conversion time and the sum of MUX switch "ON" time and settling time, i.e.:

$$
\begin{aligned}
& \text { Th. }\left.\mathrm{R}\right|_{\max }=\frac{1}{8\left(T_{C}+T_{M U X}\right)}=\begin{array}{c}
3 k \text { samples } / \mathrm{sec} / \\
\text { channel }
\end{array} \\
& T_{\text {MUX }}=T_{O N}+T_{S(O N)}
\end{aligned}
$$

Also notice that Nyquist sampling criteria would allow each channel to have a signal bandwidth of 1.5 kHz max, while the slew limit dictates a maximum frequency of 32 Hz . If the input signal has a peak-to-peak voltage less than 10 V , the allowable maximum input frequency can be calculated by:

$$
f_{\text {MAX }}=\frac{\text { (Slew Rate) } \max }{\pi \text { Vp-p }}
$$

On the other hand, if the input voltage is not band-limited a low pass filter with an attenuation of 30 dB or better at 1.5 kHz , should be connected in front of the MUX.

1. Improving System Speed with a Sample and Hold

The system speed can be improved by using the S/H shown in Figure 5. This allows a much greater rate of change of V_{IN}.
$\left.\frac{\Delta V_{I N}}{\Delta t}\right|_{\max }<\frac{V_{F S}}{2^{n} \times T_{A}}$
where T_{A} is the aperture time of the S / H. This represents an input slew rate improvement by a factor: $T_{C} /$ T_{A}. Here again, the slew rate error is not affected by the acquisition time of the Sample and Hold since conversion will start after the S/H has settled. An important thing to notice is that the sample and hold errors will add to the total system error budget; therefore, the inequality of the $\Delta V_{I N} / \Delta t$ expression should become more stringent.
Example: $T_{C}=40 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{A}}=0.5 \mu \mathrm{~s}, \mathrm{n}=8: \mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{A}}=80$
So the use of a S/H allows a speed improvement by nearly two orders of magnitude.
The maximum throughput rate can be calculated by:
Th. $\left.R\right|_{\max }=\frac{1}{8\left(T_{A}+T a q+T_{C}\right)}$
Notice that $T_{M U X}$ does not affect the $\Delta V_{I N} / \Delta t$ expression nor the throughput rate of the system since it may be switched and settled while the Sample and Hold is in the Hold mode. This is true, provided that: $\mathrm{T}_{\mathrm{MUX}}<\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{C}}$.

C. SYSTEM EXAMPLE (Figure 7)

The LF398 S/H with a 1000 pF hold capacitor, has an acquisition time of $4 \mu \mathrm{~s}$ to 0.1% ($1 / 4$ LSB error for 8 bits) and an aperture time of less than $200 \mu \mathrm{~s}$. On the other hand, after the hold command, the output will settle to $\pm 0.05 \mathrm{mV}$ in $1 \mu \mathrm{~s}$. This, together with the acquisition time, introduces approximately a $\pm 1 / 4$ LSB error. Allowing another $1 / 4$ LSB error for hold step and gain non-linearity, the maximum slew error $\left(\Delta \mathrm{V}_{\mathrm{IN}} / \Delta \mathrm{t}\right)$ should not exceed $1 / 4$ LSB or:

$$
\frac{\Delta V_{I N}}{\Delta t} \leq \frac{1}{4} \times \frac{1}{256} \times \frac{1}{T_{A}} \approx 5 \mathrm{mV} / \mu \mathrm{s}
$$

(which is the maximum slew rate of a 5 V peak sine wave. Also notice that, due to the above input slew restrictions, the analog delay caused by the finite BW of the S/H and the digital delay caused by the response time of the controller will be negligible. The maximum throughput rate of the system is:

$$
\text { Th. }\left.R\right|_{\max }=\frac{1}{8(5+40) 10^{-6}}=2800 \mathrm{samples} / \mathrm{sec} / \mathrm{ch} .
$$

If the system speed requirements are relaxed, but the A / D converter is still too slow, then an inexpensive S/H can be built by using just a capacitor and a low cost FET input op amp as shown in Figure 8.

Typical Applications (Continued)

FIGURE 7a. Sequentially Multiplexed DAU with Sample and Hold

Typical Applications (Continued)

D. DOUBLING THE SYSTEM CHANNEL CAPABILITY

This is done in two different ways. First, we can use second level multiplexing with speed benefits, as shown in Figure 9. A fast 2 -channel multiplexer, made by the dual analog switch AM182, accepts the outputs of each 8-channel MUX, LF13508, and then feeds them sequentially into an 8 -bit successive approximation A/D converter. With this technique, the throughput rate of the system can again be made independent of the LF13508 speed. Looking at the timing diagram, when the A/D converter converts the analog value of an upper multiplexer channel, we switch channels in the lower multiplexer for the next conversion. This can be done provided that:
$T_{\text {MUX }} \leq T_{C}+1 \mathrm{CP}$
The LF356 connected as unity gain buffers are used because of the low input impedance of the A/D; they are connected between multiplexers for speed optimization. With a maximum clock frequency of 4.5 MHz :

Th. $R=\frac{10^{6}}{16 \times 2}=31.25 \mathrm{k}$ samples $/ \mathrm{sec} /$ channel

An alternate way to increase the system channel is shown in Figure 10, where the enable pins are used to disable one MUX while the other is sampling. With this method, many 8channel multiplexers can be connected, but the parasitic capacitance at the common output node will keep increasing and will eventually degrade the settling time, $\mathrm{t}_{\mathrm{s}(\mathrm{ON})}$. Also, the MUX speed will now affect the system throughput. If, for instance, this method was used instead of second level multiplexing, the system of Figure 9 will lose half of its speed. If, however, speed is not the prime system requirement, the approach of Figure 10 is more cost effective.

E. DIFFERENTIAL INPUT SYSTEMS

Systems operating in industrial environments may require an instrumentation amplifier to separate the desired analog signal from any common-mode signal present. The LF11509 was designed to provide 4 pairs of differential input signals to the input of an instrumentation amplifier for further process. A 4 -channel preconditioning circuit is shown in Figure 11 and a complete system is shown in Figure 12.
and

$$
\left.\frac{\Delta \mathrm{V}_{\mathrm{IN}}}{\Delta \mathrm{t}}\right|_{\max }<\frac{10}{256} \times \frac{1}{2 \mu \mathrm{~S}}=19.5 \mathrm{mV} / \mu \mathrm{s} \text { for } 10 \mathrm{~V}_{\mathrm{FS}}
$$

TL/H/5668-15

- The acquisition time, T_{A}, of the Sample and Hold depends upon: RON, I IDSS of switches, $Z_{O U T}$ of switches
- $\mathrm{I}_{\text {DSS }} \cong 1.5 \mathrm{~mA}, \mathrm{Z}_{\text {OUT }}=40 \mathrm{k} \Omega$
- $\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=20 \mu \mathrm{~s}$ to 0.1%
- Error created by charge injection during Hold mode: $\Delta V_{E} \cong 10 \mathrm{pF}\left(14.5 \mathrm{~V}-\mathrm{V}_{\mathrm{IN}}\right) / \mathrm{C}_{\mathrm{h}}$

FIGURE 8. Inexpensive Sample and Hold

Typical Applications (Continued)

FIGURE 9a. A Fast 16-Channel DAU with Second Level Multiplexing

FIGURE 9b. Timing Diagram

Typical Applications (Continued)

FIGURE 10. A 16-Channel Multiplexer with Sequential Multiplexing

Schematic Diagrams (Continued)
LF13509

National
Semiconductor
Corporation

MM54HC4016/MM74HC4016 Quad Analog Switch

General Description

These devices are digitally controlled analog switches implemented in microCMOS Technology, 3.5 micron silicon gate P-well CMOS. These switches have low "on" resistance and low "off" leakages. They are bidirectional switches, thus any analog input may be used as an output and vice-versa. The ' 4016 devices allow control of up to 12V (peak) analog signals with digital control signals of the same range. Each switch has its own control input which disables each switch when low. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to $V_{C C}$ and ground.

Features

- Typical switch enable time: 15 ns

■ Wide analog input voltage range: $0-12 \mathrm{~V}$
■ Low "on" resistance: 50Ω typ.

- Low quiescent current: $80 \mu \mathrm{~A}$ maximum (74 HC)
- Matched switch characteristics
- Individual switch controls

Connection Diagram

Order Number MM54HC4016J or MM74HC4016J, N See NS Package J14A or N14A

Truth Table

Input	Switch
CTL	I/O-O/I
L	"OFF"
H	"ON"

Schematic Diagram

Absolute Maximum Ratings (Notes 1 \& 2)

Supply Voltage (VCC)	-0.5 to +15 V
DC Control Input Voltage ($\mathrm{V}_{\text {IN }}$)	-1.5 to $\mathrm{V}_{C C}+1.5 \mathrm{~V}$
DC Switch I/O Voltage (V_{I})	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Clamp Diode Current (lı, ${ }_{\text {IOK }}$)	$\pm 20 \mathrm{~mA}$
DC Output Current, per pin (lout)	$\pm 25 \mathrm{~mA}$
DC V ${ }_{\text {CC }}$ or GND Current, per pin (${ }_{\text {cC }}$)	$\pm 50 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{D}) (Note 3)	500 mW
Lead Temp. (T_{L}) (Soldering 10 seconds)	260°

Supply Voltage (VCC)
-0.5 to +15 V
DC Control Input Voltage (V_{IN})
-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
DC Switch I/O Voltage (V_{IO})
$\pm 20 \mathrm{~mA}$
$\pm 25 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
Storage Temperature Range (TSTG)

Lead Temp. (TL) (Soldering 10 seconds)

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	12	V
DC Input or Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\left(\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}\right)$			
Operating Temp. Range $\left(\mathrm{T}_{\mathrm{A}}\right)$			
MM74HC	-40	+85	${ }^{\circ} \mathrm{C}$
MM54HC	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Times			
($\left.\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right) \quad \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		1000	ns
$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		500	ns
$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ T_{A}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ T_{A}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage		$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} 1.5 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage		$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
RON	Maximum 'ON' Resistance (See Note 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{1 \mathrm{H}}, I_{\mathrm{S}}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \text { (Figure } 1 \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 100 \\ 50 \\ 30 \end{gathered}$	$\begin{aligned} & 170 \\ & 85 \\ & 70 \end{aligned}$	$\begin{gathered} 200 \\ 105 \\ 85 \end{gathered}$	$\begin{aligned} & 220 \\ & 120 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
		$\mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{S}}=1.0 \mathrm{~mA}$ $V_{\text {IS }}=V_{\text {CC }}$ or GND (Figure 1)	$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 100 \\ 40 \\ 35 \\ 20 \end{gathered}$	$\begin{gathered} 180 \\ 80 \\ 60 \\ 40 \end{gathered}$	$\begin{aligned} & 215 \\ & 100 \\ & 75 \\ & 60 \end{aligned}$	$\begin{gathered} 240 \\ 120 \\ 80 \\ 70 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
R_{ON}	Maximum 'ON' Resistance Matching	$\begin{aligned} & V_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \\ & 12 . \mathrm{V} \end{aligned}$	$\begin{gathered} 10 \\ 5 \\ 5 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
1 N	Maximum Control Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	6.0V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Iz	Maximum Switch 'OFF' Leakage Current	$V_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}}$ or GND $\mathrm{V}_{\text {IS }}=\mathrm{GND}$ or V_{CC} $V_{\text {CTL }}=V_{\text {IL }}$ (Figure 2)	$\begin{gathered} 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \pm 60 \\ \pm 80 \\ \pm 100 \\ \hline \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 800 \\ \pm 1000 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 800 \\ \pm 1000 \end{gathered}$	nA nA nA
IIZ	Maximum Switch 'ON' Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$ (Figure 3)	$\begin{gathered} 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & \pm 40 \\ & \pm 50 \\ & \pm 60 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 200 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 200 \\ & \pm 300 \end{aligned}$	nA nA nA
ICC	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 2.0 \\ & 4.0 \\ & 8.0 \end{aligned}$	$\begin{array}{r} 20 \\ 40 \\ 80 \\ \hline \end{array}$	$\begin{gathered} 40 \\ 80 \\ 160 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating — plastic " N " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; ceramic " J " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistances (R_{ON}) occurs for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst case leakage current occur for CMOS at the higher voltage and so these values should be used.
Note 5: At supply voltages ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) approaching 2 V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}-12.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise specified), (Notes 6 and 7)

Symbol	Parameter	Conditions	$V_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ		Guaranteed	Limits	
$\mathrm{t}_{\text {PHL }}$, tPLH	Maximum Propagation Delay Switch In to Out		$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 25 \\ 5 \\ 4 \\ 3 \end{gathered}$	$\begin{gathered} 50 \\ 10 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & 62 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 14 \\ & 13 \end{aligned}$	ns ns ns ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Maximum Switch Turn "ON" Delay	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 32 \\ 8 \\ 6 \\ 5 \end{gathered}$	$\begin{array}{\|c} 100 \\ 20 \\ 12 \\ 10 \end{array}$	$\begin{gathered} 125 \\ 25 \\ 15 \\ 13 \end{gathered}$	$\begin{gathered} 150 \\ 30 \\ 18 \\ 15 \end{gathered}$	ns ns ns ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Maximum Switch Turn "OFF" Delay	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 45 \\ 15 \\ 10 \\ 8 \end{gathered}$	$\begin{array}{\|c} 168 \\ 36 \\ 32 \\ 30 \end{array}$	$\begin{gathered} 210 \\ 45 \\ 40 \\ 38 \end{gathered}$	$\begin{gathered} 252 \\ 54 \\ 48 \\ 45 \end{gathered}$	ns ns ns ns
	Minimum Frequency Response (Figure 7) $20 \log \left(\mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\text {IS }}\right)=-3 \mathrm{~dB}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \text { at }\left(\mathrm{V}_{\mathrm{CC}} / 2\right) \\ & \text { (Notes 6 \& 7) } \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 40 \\ 100 \end{gathered}$				MHz MHz
	Control to Switch Feedthrough Noise (Figure 8)	$\begin{aligned} & R_{L}=600 \Omega, F=1 \mathrm{MHz} \\ & C_{L}=50 \mathrm{pF} \\ & (\text { Notes } 7 \& 8) \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \\ & 250 \end{aligned}$				$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Crosstalk Between any Two Switches (Figure 9)	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -52 \\ & -50 \\ & \hline \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Switch OFF Signal Feedthrough Isolation (Figure 10)	$\begin{aligned} & R_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { (Notes } 7 \text { \& }) \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -42 \\ & -44 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
THD	Sinewave Harmonic Distortion (Figure 11)	$\begin{aligned} \begin{array}{l} \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ \mathrm{~F}=1 \mathrm{kHz} \\ \\ \\ \\ \\ V_{\mathrm{IS}}=50 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{IS}}=8 \mathrm{~V} \\ \hline \mathrm{PP} \\ \hline \end{array} \\ \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|} 0.013 \\ 0.008 \\ \hline \end{array}$				$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Maximum Control Input Capacitance			5				pF
$\mathrm{C}_{\text {IN }}$	Maximum Switch Input Capacitance			15				pF
C_{IN}	Maximum Feedthrough Capacitance	$\mathrm{V}_{\mathrm{CTL}}=\mathrm{GND}$		5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	(per switch)		15				pF

Note 6: Adjust 0 dBm for $\mathrm{F}=1 \mathrm{kHz}$ (Null $\mathrm{R}_{\mathrm{L}} / \mathrm{R}_{\mathrm{ON}}$ Attenuation)
Note 7: $\mathrm{V}_{\text {IS }}$ is centered at $\mathrm{V}_{\mathrm{CC}} / 2$
Note 8: Adjust input for 0 dBm

AC Test Circuits and Switching Time Waveforms

FIGURE 2. "OFF" Channel Leakage Current
TL/F/5350-3
FIGURE 1. "ON" Resistance

FIGURE 3. "ON" Channel Leakage Current

TL/F/5350-6
FIGURE 4. t $_{\text {PHL }}$, tpLH Propagation Delay Time Signal Input to Signal Output

FIGURE 5. tpZL, tplz Propagation Delay Time Control to Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 6. $\mathrm{t}_{\mathrm{PZH}}$, t $_{\text {PHZ }}$ Propagation Delay Time Control to Signal Output

TL/F/5350-20
FIGURE 7. Frequency Response

$v_{0 s}$

TL/F/5350-12
FIGURE 8. Crosstalk: Control Input to Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)

TL/F/5350-15

TL/F/5350-16
FIGURE 9. Crosstalk Between Any Two Switches

FIGURE 10. Switch OFF Signal Feedthrough Isolation

FIGURE 11. Sinewave Distortion

Typical Performance Characteristics

TL/F/5350-19

MM54HC4051/MM74HC4051 8-Channel Analog Multiplexer MM54HC4052/MM74HC4052 Dual 4-Channel Analog Multiplexer MM54HC4053/MM74HC4053 Triple 2-Channel Analog Multiplexer

General Description

These multiplexers are digitally controlled analog switches implemented in microCMOS Technology, 3.5 micron silicon gate P-well CMOS. These switches have low "on" resistance and low "off" leakages. They are bidirectional switches, thus any analog input may be used as an output and vice-versa. Also these switches contain linearization circuitry which lowers the on resistance and increases switch linearity. These devices allow control of up to $\pm 6 \mathrm{~V}$ (peak) analog signals with digital control signals of 0 to 6 V . Three supply pins are provided for V_{CC}, ground, and V_{EE}. This enables the connection of $0-5 \mathrm{~V}$ logic signals when $V_{C C}=5 \mathrm{~V}$ and an analog input range of $\pm 5 \mathrm{~V}$ when $\mathrm{V}_{\mathrm{EE}}=5 \mathrm{~V}$. All three devices also have an inhibit control which when high will disable all switches to their off state. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to V_{CC} and ground. MM54HC4051/MM74HC4051: This device connects together the outputs of 8 switches, thus achieving an 8 channel Multiplexer. The binary code placed on the A, B, and C select lines determines which one of the eight switches is "on", and connects one of the eight inputs to the common output.
MM54HC4052/MM74HC4052: This device connects together the outputs of 4 switches in two sets, thus achieving
a pair of 4-channel multiplexers. The binary code placed on the A, and B select lines determine which switch in each 4 channel section is "on", connecting one of the four inputs in each section to its common output. This enables the implementation of a 4-channel differential multiplexer.
MM54HC4053/MM74HC4053: This device contains 6 switches whose outputs are connected together in pairs, thus implementing a triple 2 channel multiplexer, or the equivalent of 3 single-pole-double throw configurations. Each of the A, B, or C select lines independently controls one pair of switches, selecting one of the two switches to be "on".

Features

- Wide analog input voltage range: $\pm 6 \mathrm{~V}$
(Low "on" resistance: 50 typ. ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$)
30 typ. $\left(V_{C C}-V_{E E}=9 V\right)$
- Logic level translation to enable 5 V logic with $\pm 5 \mathrm{~V}$ analog signals
- Low quiescent current: $80 \mu \mathrm{~A}$ maximum (74 HC)
- Matched Switch characteristic

Connection Diagrams

Dual-In-Line Packages

Order Number MM54HC4051J, MM54HC4052J, MM54HC4053J, MM74HC4051J, N, MM74HC4052J, N or MM74HC4053J, N See NS Package J16A or N16E

Absolute Maximum Ratings (Notes 1 \& 2)	
Supply Voltage (V_{CC})	-0.5 to +7.5 V
Supply Voltage (VEE)	+0.5 to -7.5 V
Control Input Voltage (V_{I})	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
Switch I/O Voltage (V_{I}) $\quad \mathrm{V}_{\mathrm{EE}}$	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Clamp Diode Current ((1к, $\mathrm{l}_{\text {OK }}$)	$\pm 20 \mathrm{~mA}$
Output Current, per pin (lout)	$\pm 25 \mathrm{~mA}$
V_{CC} or GND Current, per pin (ICC)	$\pm 50 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (PD) (Note 3)	500 mW
Lead Temp. (T_{L}) (Soldering 10 seconds)	onds) $\quad 260^{\circ} \mathrm{C}$

Operating Conditions

DC Electrical Characteristics (Note 4)

Symbol	Parameter		Conditions	V_{EE}	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units	
			Typ			Guaranteed Limits					
V_{IH}	Minimum High Le Input Voltage					$\begin{array}{\|l\|} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ \hline \end{array}$		$\begin{array}{\|c} 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{array}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$V_{\text {IL }}$	Maximum Low Lev Input Voltage				$\begin{array}{\|l\|} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ \hline \end{array}$		$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	
RON	Maximum "ON" Resistance (See Note 5)		$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, I_{\mathrm{S}}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \text { (Figure 1) } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \mathrm{GND} \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{array}$	$\begin{array}{\|c\|} 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \end{array}$	$\begin{aligned} & 40 \\ & 30 \\ & 20 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 90 \end{gathered}$	$\begin{aligned} & 250 \\ & 125 \\ & 112 \end{aligned}$	$\begin{array}{r} 300 \\ 150 \\ 135 \\ \hline \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	
			$\begin{aligned} & V_{C T L}=V_{I H}, I_{S}=1.0 \mathrm{~mA} \\ & V_{I S}=V_{C C} \text { or } V_{E E} \\ & (\text { Figure 1) } \end{aligned}$	$\begin{gathered} \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c\|} \hline 100 \\ 40 \\ 20 \\ 15 \\ \hline \end{array}$	$\begin{gathered} 230 \\ 110 \\ 90 \\ 80 \end{gathered}$	$\begin{aligned} & 290 \\ & 138 \\ & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 350 \\ & 165 \\ & 135 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	
$\mathrm{R}_{\text {ON }}$	Maximum "ON"Resistance Matching		$\begin{aligned} & V_{C T L}=V_{I H} \\ & V_{I S}=V_{C C} \text { to GND } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ \hline \end{array}$	$\begin{gathered} 10 \\ 5 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 20 \\ 15 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	
I_{N}	Maximum Control Input Current		$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=2-6 V \end{aligned}$				± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
$1 / 2$	Maximum Switch "OFF" Leakage Current (Switch Input)		$\begin{aligned} & V_{O S}=V_{C C} \text { or } G N D \\ & V_{I S}=G N D \text { or } V_{C C} \\ & V_{\text {INH }}=V_{I H} \text { (Figure 2) } \end{aligned}$	$\left\|\begin{array}{c} \text { GND } \\ -6.0 \mathrm{~V} \end{array}\right\|$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 60 \\ \pm 100 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 1000 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 1000 \end{gathered}$	nA nA	
IIZ	Maximum Switch "ON" Leakage Current	HC4051	$\begin{aligned} & V_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\text {INH }}=\mathrm{V}_{\text {IL }} \\ & \text { (Figure 3) } \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \text { GND } \\ -6.0 \mathrm{~V} \end{array}\right\|$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$					$\mu \mathrm{A}$ $\mu \mathrm{A}$	
		HC4052	$\begin{aligned} & V_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\text {INH }}=\mathrm{V}_{\text {IL }} \\ & \text { (Figure 3) } \end{aligned}$	$\left\|\begin{array}{c} \text { GND } \\ -6.0 \mathrm{~V} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}\right.$					$\mu \mathrm{A}$ $\mu \mathrm{A}$	
		HC4053	$\begin{aligned} & V_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\text {INH }}=\mathrm{V}_{\text {IL }} \\ & \text { (Figure 3) } \end{aligned}$	$\left\|\begin{array}{c} \text { GND } \\ -6.0 \mathrm{~V} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}\right.$					$\mu \mathrm{A}$ $\mu \mathrm{A}$	

[^3]DC Electrical Characteristics (Note 4) (Continued)

Symbol	Parameter		Conditions	V_{EE}	$V_{c c}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Units	
			Typ				Guaranteed	Limits			
IIZ	Maximum Switch "OFF" Leakage Current (Common Pin)	HC4051		$V_{O S}=V_{C C}$ or $G N D$ $\mathrm{V}_{\mathrm{IS}}=\mathrm{GND}$ or V_{CC} $\mathrm{V}_{\text {INH }}=\mathrm{V}_{\mathrm{IH}}$	$\left\|\begin{array}{c} \text { GND } \\ -6.0 \mathrm{~V} \end{array}\right\|$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$					$\mu \mathrm{A}$ $\mu \mathrm{A}$
		HC4052	$V_{O S}=V_{C C}$ or $G N D$ $\mathrm{V}_{\mathrm{IS}}=\mathrm{GND}$ or V_{CC} $\mathrm{V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IH}}$	$\left\|\begin{array}{c} \text { GND } \\ -6.0 \mathrm{~V} \end{array}\right\|$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$					$\mu \mathrm{A}$ $\mu \mathrm{A}$	
		HC4053	$V_{O S}=V_{C C}$ or GND $\mathrm{V}_{\text {IS }}=\mathrm{GND}$ or V_{CC} $\mathrm{V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IH}}$	$\left.\begin{gathered} \mathrm{GND} \\ -6.0 \mathrm{~V} \end{gathered} \right\rvert\,$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$					$\mu \mathrm{A}$ $\mu \mathrm{A}$	
ICC	Maximum Quiescent Supply Current		$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{array} \right\rvert\,$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 8 \\ 16 \end{gathered}$	$\begin{gathered} 80 \\ 160 \end{gathered}$	$\begin{aligned} & 160 \\ & 320 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$	

AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=2.0 \mathrm{~V}-6.0 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}-6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise specified)

Symbol	Parameter	Conditions	VEE	$V_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ T_{A}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
					Typ	Guaranteed Limits			
$t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay Switch In to Out		$\begin{gathered} \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 25 \\ 5 \\ 4 \\ 3 \end{gathered}$	$\begin{gathered} 50 \\ 10 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & 62 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 14 \\ & 13 \end{aligned}$	ns ns ns ns
$t_{\text {PZL }}, t_{\text {PZH }}$	Maximum Switch Turn "ON" Delay	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{gathered} \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 92 \\ & 18 \\ & 16 \\ & 15 \end{aligned}$				ns ns ns ns
$t_{\text {PHZ }}, t_{\text {PLZ }}$	Maximum Switch Turn "OFF" Delay		$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & -4.5 \mathrm{~V} \\ & -6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 65 \\ & 28 \\ & 18 \\ & 16 \end{aligned}$				$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{f}_{\text {MAX }}$	Minimum Switch Frequency Response $20 \log \left(V_{1} / V_{\mathrm{O}}\right)=3 \mathrm{~dB}$		$\begin{gathered} \text { GND } \\ -4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$				MHz MHz
	Cross Talk Control to Switch	(Figure 7)	-4.5V	4.5 V	180				$\mathrm{mV} \mathrm{P}_{\text {- }}$
	Cross Talk Between any Two Switches (Frequency at -50 dB)	(Figure 8)	-4.5V	4.5 V					MHz
	Feed Through, Switch Input to Output	$\begin{aligned} & \mathrm{F}=5 \mathrm{MHz} \\ & \mathrm{~F}=10 \mathrm{MHz} \end{aligned}$							$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Maximum Control Input Capacitance				5	10	10	10	pF
$\mathrm{C}_{\text {IN }}$	Maximum Switch Input Capacitance	Input 4051 Common 4052 Common 4053 Common			$\begin{aligned} & 15 \\ & 90 \\ & 45 \\ & 30 \end{aligned}$				pF
$\mathrm{C}_{\text {IN }}$	Maximum Feedthrough Capacitance				5				pF

Truth Tables

'4051				
Input				"ON"
Channel				
Inh	C	B	A	
H	X	X	X	None
L	L	L	L	Y0
L	L	L	H	Y1
L	L	H	L	Y2
L	L	H	H	Y3
L	H	L	L	Y4
L	H	L	H	Y5
L	H	H	L	Y6
L	H	H	H	Y7

Inputs				"ON" Channels	
Inh	B	A	X	Y	
H	X	X	None	None	
L	L	L	$0 X$	0 Y	
L	L	H	$1 X$	1 Y	
L	H	L	$2 X$	$2 Y$	
L	H	H	$3 X$	$3 Y$	

'lnput								"ON" Channels	
Inh	C	B	A	C	b	a			
H	X	X	X	None	None	None			
L	L	L	L	CX	BX	AX			
L	L	L	H	CX	BX	AY			
L	L	H	L	CX	BY	AY			
L	L	H	H	CX	BY	AY			
L	H	L	L	CY	BX	AY			
L	H	L	H	CY	BX	AY			
L	H	H	L	CY	BY	AY			
L	H	H	H	CY	BY	AY			

AC Test Circuits and Switching Time Waveforms

FIGURE 1. "ON" Resistance

TL/F/5353-5
FIGURE 2. "OFF" Channel Leakage Current

FIGURE 3. "ON" Channel Leakage Current

TL/F/5353-7

FIGURE 4. $\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\mathrm{PLH}}$ Propagation Delay Time Signal Input to Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)

TL/F/5353-8
FIGURE 5. tpZL, tpLz Propagation Delay Time Control to Signal Output

TL/F/5353-9
FIGURE 6. t $_{\text {PZH }}$, t $_{\text {PHZ }}$ Propagation Delay TIme Control to Signal Output

$V_{0 S}$

FIGURE 7. Crosstalk: Control Input to Signal Output

$v_{1 S(1)}$

TL/F/5353-11
FIGURE 8. Crosstalk Between Any Two Switches

Typical Performance Characteristics

National
Semiconductor
Corporation

MM54HC4066/MM74HC4066 Quad Analog Switch

General Description

These devices are digitally controlled analog switches utilizing microCMOS Technology, 3.5 micron silicon gate P-well CMOS. These switches have low "on" resistance and low "off" leakages. They are bidirectional switches, thus any analog input may be used as an output and visa-versa. Also the ' 4066 switches contain linearization circuitry which lowers the "on" resistance and increases switch linearity. The '4066 devices allow control of up to 12 V (peak) analog signals with digital control signals of the same range. Each switch has its own control input which disables each switch when low. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to $V_{C C}$ and ground.

Features

■ Typical switch enable time: 15 ns
区 Wide analog input voltage range: $0-12 \mathrm{~V}$
m Low "on" resistance: 30 typ. ('4066)
四 Low quiescent current: $80 \mu \mathrm{~A}$ maximum (74HC)

- Matched switch characteristics
- Individual switch controls

Connection Diagram

Dual-In-Line Package

Truth Table

Input	Switch
CTL	I/O-O/I
L	"OFF"
H	"ON"

Schematic Diagram

Absolute Maximum Ratings (Notes $1 \& 2$)
If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.

Supply Voltage (VCC)	-0.5 to +15 V
DC Control Input Voltage ($\mathrm{V}_{\text {IN }}$)	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
DC Switch I/O Voltage (V_{I}) $\mathrm{V}^{\text {a }}$	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Clamp Diode Current ($\mathrm{I}_{\mathrm{I},}$ I $\mathrm{IOK}^{\text {) }}$	$\pm 20 \mathrm{~mA}$
DC Output Current, per pin (lout)	$\pm 25 \mathrm{~mA}$
DC V_{CC} or GND Current, per pin (I_{CC})) $\pm 50 \mathrm{~mA}$
Storage Temperature Range (TSTG)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{D}) (Note 3)	500 mW
Lead Temperature (T_{L}) (Soldering 10 seconds)	260°

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	12	V
DC Input or Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V

Operating Temp. Range (T_{A}) MM74HC
$-40 \quad+85$
${ }^{\circ} \mathrm{C}$ MM54HC
-55
$+125$

Input Rise or Fall Times

$\left(t_{r}, t_{f}\right)$	$V_{C C}=2.0 \mathrm{~V}$	1000	ns
	$V_{C C}=4.5 \mathrm{~V}$	500	ns
	$V_{C C}=9.0 \mathrm{~V}$	400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathbf{C c}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Units
				Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage		$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} 1.5 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 5.3 \\ 8.4 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 6.3 \\ 8.4 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
V_{IL}	Maximum Low Level Input Voltage		$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{~V} \end{aligned}$
RoN	Maximum "ON" Resistance (See Note 5)	$V_{C T L}=V_{I H}, I_{S}=1.0 \mathrm{~mA}$ $\mathrm{V}_{I S}=\mathrm{V}_{\mathrm{CC}}$ to GND (Figure 1)	$\begin{aligned} & \hline 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 100 \\ 50 \\ 30 \\ \hline \end{array}$	$\begin{gathered} \hline 170 \\ 85 \\ 70 \\ \hline \end{gathered}$	$\begin{gathered} 200 \\ 105 \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} 220 \\ 110 \\ 90 \\ \hline \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, I_{\mathrm{S}}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & (\text { Figure } 1) \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{array}{\|c\|} \hline 120 \\ 50 \\ 35 \\ 20 \\ \hline \end{array}$	$\begin{gathered} 180 \\ 80 \\ 60 \\ 40 \end{gathered}$	$\begin{gathered} 215 \\ 100 \\ 75 \\ 60 \end{gathered}$	$\begin{gathered} 240 \\ 120 \\ 80 \\ 70 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
RON	Maximum "ON" Resistance Matching	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{I S}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \end{aligned}$	$\begin{gathered} 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 10 \\ 5 \\ 5 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
IN	Maximum Control Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=2-6 \mathrm{~V} \end{aligned}$			± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
$l_{\text {IZ }}$	Maximum Switch "OFF" Leakage Current	$\begin{aligned} & V_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}} \text { (Figure 2) } \\ & \hline \end{aligned}$	$\begin{gathered} 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{gathered} \pm 60 \\ \pm 80 \\ \pm 100 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 800 \\ \pm 1000 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 800 \\ \pm 1000 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$l_{1 Z}$	Maximum Switch "ON" Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{I H} \\ & \text { (Figure 3) } \\ & \hline \end{aligned}$	$\begin{gathered} 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 50 \\ & \pm 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 200 \\ & \pm 300 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 200 \\ & \pm 300 \\ & \hline \end{aligned}$	nA nA nA
Icc	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 6.0 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 2.0 \\ & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$	$\begin{gathered} 40 \\ 80 \\ 160 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating - plastic " N " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; ceramic " J " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistance (R_{ON}) occurs for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case $\mathrm{V}_{1 \mathrm{H}}$ and $\mathrm{V}_{1 \mathrm{~L}}$ Occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (T he V_{IH} value at 5.5 V is 3.85 V .) The worst case leakage current $0 c c u r s$ for CMOS at the higher voltage and so the 5.5 V values should be used.
Note 5: At supply voltages ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}-6.0 \mathrm{~V} \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}-12 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ	Guaranteed Limits			
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay Switch In to Out		$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 25 \\ 5 \\ 4 \\ 3 \end{gathered}$	$\begin{gathered} 50 \\ 10 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & 30 \\ & 13 \\ & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Maximum Switch Turn "ON" Delay	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 30 \\ 12 \\ 6 \\ 5 \end{gathered}$	$\begin{gathered} 100 \\ 20 \\ 12 \\ 10 \end{gathered}$	$\begin{aligned} & 125 \\ & 25 \\ & 15 \\ & 13 \\ & \hline \end{aligned}$	$\begin{gathered} 150 \\ 30 \\ 18 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Maximum Switch Turn "OFF" Delay	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{gathered} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 9.0 \mathrm{~V} \\ 12.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60 \\ & 25 \\ & 20 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 168 \\ & 36 \\ & 32 \\ & 30 \\ & \hline \end{aligned}$	$\begin{gathered} 210 \\ 45 \\ 40 \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} 252 \\ 54 \\ 48 \\ 45 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
	Minimum Frequency Response (Figure 7) $20 \log \left(V_{0} / V_{l}\right)=-3 \mathrm{~dB}$	$\begin{array}{\|l} \hline R_{L}=600 \Omega \\ V_{I S}=2 V_{P P} \text { at }\left(V_{C C} / 2\right) \\ \text { (Notes 6 \& 7) } \\ \hline \end{array}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 40 \\ 100 \end{gathered}$				$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Crosstalk Between any Two Switches (Figure 8)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz} \\ & \text { (Notes } 7 \text { \& 8) } \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} -52 \\ -50 \\ \hline \end{array}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Peak Control to Switch Feedthrough Noise (Figure 9)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \\ & 250 \end{aligned}$				$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Switch OFF Signal Feedthrough Isolation (Figure 10)	$\begin{aligned} & R_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz} \\ & \mathrm{~V}_{(\mathrm{CT})} \mathrm{V}_{\mathrm{IL}} \\ & \text { (Notes } 7 \text { \& } 8 \text {) } \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} -42 \\ -44 \\ \hline \end{array}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
THD	Total Harmonic Distortion (Figure 11)	$\begin{array}{\|l} \hline \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{~F}=1 \mathrm{kHz} \\ \mathrm{~V}_{\mathrm{IS}}=4 \mathrm{~V} \mathrm{VP} \\ \mathrm{~V}_{\mathrm{IS}}=8 \mathrm{VPP} \\ \hline \end{array}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 9.0 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} .013 \\ .008 \\ \hline \end{array}$				$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Maximum Control Input Capacitance			5	10	10	10	pF
$\mathrm{Cl}_{\text {IN }}$	Maximum Switch Input Capacitance			20				pF
$\mathrm{C}_{\text {IN }}$	Maximum Feedthrough Capacitance	$\mathrm{V}_{\text {CTL }}=\mathrm{GND}$		0.5				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			15				pF

Note 6: Adjust 0 dBm for $\mathrm{F}=1 \mathrm{kHz}$ (Null $\mathrm{R}_{\mathrm{L}} / \mathrm{R}_{\mathrm{ON}}$ Attenuation).
Note 7: $V_{I S}$ is centered at $V_{C C} / 2$.
Note 8: Adjust input for 0 dBm .

AC Test Circuits and Switching Time Waveforms

FIGURE 1. "ON" Resistance

FIGURE 2. "OFF" Channel Leakage Current

AC Test Circuits and Switching Time Waveforms (Continued)

TL/F/5355-5
FIGURE 3. "ON" Channel Leakage Current

TL/F/5355-6
FIGURE 4. tpHL , tpLH Propagation Delay Time Signal Input to Signal Output

TL/F/5355-7
FIGURE 5. tpZL, tplz Propagation Delay Time Control to Signal Output

FIGURE 6. tpZH, tphz Propagation Delay Time Control to Signal Output

FIGURE 7. Frequency Response

TL/F/5355-10
FIGURE 9. Crosstalk Between Any Two Switches

FIGURE 10. Switch OFF Signal Feedthrough Isolation

FIGURE 11. Sinewave Distortion

Typical Performance Characteristics

Typical Crosstalk Between

MM54HC4316/MM74HC4316 Quad Analog Switch with Level Translator

General Description

These devices are digitally controlled analog switches implemented in microCMOS Technology, 3.5 micron silicon gate P-well CMOS. These switches have low "on" resistance and low "off" leakages. They are bidirectional switches, thus any analog input may be used as an output and vice-versa. Three supply pins are provided on the '4316 to implement a level translator which enables this circuit to operate with $0-6 \mathrm{~V}$ logic levels and up to $\pm 6 \mathrm{~V}$ analog switch levels. The '4316 also has a common enable input in addition to each switch's control which when low will disable all switches to their off state. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to V_{CC} and ground.

Connection and Logic Diagrams

Dual-In-Line Package

Order Number MM54HC4316J or MM74HC4316J,N See NS Package J16A or N16E

Features

- Typical switch enable time: 20 ns
- Wide analog input voltage range: $\pm 6 \mathrm{~V}$

■ Low "on" resistance: 50 typ. $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}\right)$

$$
30 \text { typ. }\left(V_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9 \mathrm{~V}\right)
$$

■ Low quiescent current: $80 \mu \mathrm{~A}$ maximum (74 HC)

- Matched switch characteristics
- Individual switch controls plus a common enable

Truth Table

Inputs		Switch
$\overline{\text { En }}$	CTL	I/O-O/I
H	X	"OFF"
L	L	"OFF"
L	H	"ON"

TL/F/5369-2

Absolute Maximum Ratings (Notes 1 \& 2)	
Supply Voltage (V_{CC})	-0.5 to +7.5 V
Supply Voltage ($\mathrm{VEE}^{\text {) }}$)	+0.5 to -7.5 V
DC Control Input Voltage ($\mathrm{V}_{\text {IN }}$)	-1.5 to $\mathrm{V}_{C C}+1.5 \mathrm{~V}$
DC Switch I/O Voltage ($\mathrm{V}_{1 \mathrm{O}}$)	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Clamp Diode Current ($\mathrm{I}_{\mathrm{K}}, \mathrm{l}_{\mathrm{OK}}$)	$\pm 20 \mathrm{~mA}$
DC Output Current, per pin (Iout)	$\pm 25 \mathrm{~mA}$
DC V ${ }_{\text {CC }}$ or GND Current, per pin (lcc)) $\pm 50 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{D}) (Note 3)	500 mW
Lead Temperature (T_{L})	

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	6	V
Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$	0	-6	V
DC Input or Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}\right)$			
Operating Temp. Range $\left(\mathrm{T}_{\mathrm{A}}\right)$			
MM74HC	-40	+85	${ }^{\circ} \mathrm{C}$
MM54HC	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Times			
$\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right) \quad \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		1000	ns
$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		500	ns
$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		400	ns
$\mathrm{~V}_{\mathrm{CC}}=12.0 \mathrm{~V}$		250	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{EE}	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ T_{A}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ T_{A}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
					Typ		Guaranteed	Limits	
V_{IH}	Minimum High Level Input Voltage			$\begin{array}{\|l\|} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \\ \hline \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage			$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
R_{ON}	Minimum "ON" Resistance (See Note 5)	$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, I_{\mathrm{S}}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \text { (Figure } 1) \\ & \hline \end{aligned}$	$\left.\begin{gathered} \mathrm{GND} \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}\right.$	$\begin{array}{\|c\|} \hline 100 \\ 40 \\ 30 \\ \hline \end{array}$	$\begin{gathered} 170 \\ 85 \\ 70 \end{gathered}$	$\begin{gathered} 200 \\ 105 \\ 85 \end{gathered}$	$\begin{gathered} 220 \\ 110 \\ 90 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IH}}, I_{\mathrm{S}}=1.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \text { (Figure } 1 \text {) } \end{aligned}$	$\begin{gathered} \mathrm{GND} \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{array}{\|c\|} \hline 100 \\ 40 \\ 50 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 80 \\ & 60 \\ & 40 \end{aligned}$	$\begin{gathered} 215 \\ 100 \\ 75 \\ 60 \end{gathered}$	$\begin{gathered} 240 \\ 120 \\ 80 \\ 70 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
RON	Maximum "ON" Resistance Matching	$\begin{aligned} & V_{C T L}=V_{I H} \\ & V_{I S}=V_{C C} \text { to } G N D \end{aligned}$	$\left.\begin{gathered} \mathrm{GND} \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}\right.$	$\begin{gathered} 10 \\ 5 \\ 5 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$
1 N	Maximum Control Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
$I_{I Z}$	Maximum Switch "OFF" Leakage Current	$\begin{aligned} & V_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}}(\text { Fig } 2) \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \text { GND } \\ -6.0 \mathrm{~V} \end{array}\right\|$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 60 \\ \pm 100 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 1000 \end{gathered}$	$\begin{gathered} \pm 600 \\ \pm 1000 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
IIZ	Maximum Switch "ON" Leakage Current	$\begin{aligned} & V_{O S}=V_{C C} \text { or } G N D \\ & V_{C T L}=V_{I H} \\ & \text { (Figure 3) } \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \text { GND } \\ -6.0 \mathrm{~V} \end{array}\right\|$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 40 \\ & \pm 60 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \pm 150 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
ICC	Maximum Quiescent Supply Current	$\begin{aligned} & V_{I N}=V_{C C} \text { or GND } \\ & I_{O U T}=0 \mu \mathrm{~A} \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{array} \right\rvert\,$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{gathered} 40 \\ 160 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating — plastic " N " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; ceramic " J " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistances (R_{ON}) occurs for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5 V values should be used.
Note 5: At supply voltages ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) approaching 2 V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}-6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}-6 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V_{EE}	Vcc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	Units
					Typ	Guaranteed Limits			
$t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay Switch In to Out		$\begin{gathered} \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{array}{\|l\|} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \end{array}$	$\begin{gathered} 25 \\ 5 \\ 4 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ 10 \\ 8 \\ 7 \end{gathered}$	$\begin{aligned} & 63 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 14 \\ & 13 \end{aligned}$	ns ns ns ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Maximum Switch Turn "ON" Delay (Control)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & -4.5 \mathrm{~V} \\ & -6.0 \mathrm{~V} \end{aligned}$	$\left\|\begin{array}{l} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \end{array}\right\|$	$\begin{aligned} & 30 \\ & 20 \\ & 15 \\ & 14 \end{aligned}$	$\begin{gathered} 165 \\ 35 \\ 32 \\ 30 \end{gathered}$	$\begin{gathered} 206 \\ 43 \\ 39 \\ 37 \end{gathered}$	$\begin{gathered} 250 \\ 53 \\ 48 \\ 45 \end{gathered}$	ns ns ns ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{tpLZ}$	Maximum Switch Turn "OFF" Delay (Control)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{gathered} \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{array}{\|l\|} 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \end{array}$	$\begin{aligned} & 45 \\ & 25 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 250 \\ 50 \\ 44 \\ 44 \\ \hline \end{array}$	$\begin{gathered} 312 \\ 63 \\ 55 \\ 55 \end{gathered}$	$\begin{gathered} 375 \\ 75 \\ 66 \\ 66 \end{gathered}$	ns ns ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Maximum Switch Turn "ON" Delay (Enable)		$\begin{aligned} & \text { GND } \\ & \text { GND } \\ & -4.5 \mathrm{~V} \\ & -6.0 \mathrm{~V} \end{aligned}$	$\left\lvert\, \begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}\right.$	$\begin{aligned} & 35 \\ & 20 \\ & 19 \\ & 18 \end{aligned}$	$\begin{gathered} 205 \\ 41 \\ 38 \\ 36 \end{gathered}$	$\begin{gathered} 256 \\ 52 \\ 48 \\ 45 \end{gathered}$	$\begin{gathered} 308 \\ 62 \\ 57 \\ 54 \end{gathered}$	ns ns ns ns
$\mathrm{t}_{\text {PLZ }}$, tPHZ	Maximum Switch Turn "OFF" Delay (Enable)		$\begin{gathered} \text { GND } \\ \text { GND } \\ -4.5 \mathrm{~V} \\ -6.0 \mathrm{~V} \end{gathered}$	$\left\lvert\, \begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}\right.$	$\begin{aligned} & 58 \\ & 28 \\ & 23 \\ & 21 \end{aligned}$	$\begin{gathered} 265 \\ 53 \\ 47 \\ 47 \end{gathered}$	$\begin{gathered} 330 \\ 67 \\ 59 \\ 59 \end{gathered}$	$\begin{aligned} & 400 \\ & 79 \\ & 70 \\ & 70 \end{aligned}$	ns ns ns ns
	Minimum Frequency Response (Figure 7) $20 \log \left(V_{\mathrm{OS}} / \mathrm{V}_{\mathrm{IS}}\right)=-3 \mathrm{~dB}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{~V}_{\mathrm{PP}} \\ & \text { at }\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} / 2\right) \\ & (\text { Notes } 6,7) \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 4.5 \\ 4.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 40 \\ 100 \end{gathered}$				MHz MHz
	Control to Switch Feedthrough Noise (Figure 8)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { (Notes } 7,8 \text {) } \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \\ & 250 \end{aligned}$				$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	Crosstalk Between any Two Switches (Figure 9)	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz}$	$\begin{array}{\|c\|} \hline 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -52 \\ & -50 \\ & \hline \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	Switch OFF Signal Feedthrough Isolation (Figure 10)	$\begin{aligned} & R_{\mathrm{L}}=600 \Omega, \mathrm{~F}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CTL}}=\mathrm{V}_{\mathrm{IL}}, \\ & (\text { Notes } 7,8) \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -42 \\ & -44 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
THD	Sinewave Harmonic Distortion (Figure 11)	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{~F}=1 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=4 \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{~V}_{\mathrm{IS}}=8 \mathrm{VPP} \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \mathrm{~V} \\ -4.5 \mathrm{~V} \\ \hline \end{array}$	$\begin{array}{\|l} 4.5 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ \hline \end{array}$	$\begin{array}{\|l\|} 0.013 \\ 0.008 \\ \hline \end{array}$				$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Maximum Control Input Capacitance				5				pF
$\mathrm{C}_{\text {IN }}$	Maximum Switch Input Capacitance				35				pF
$\mathrm{C}_{\text {IN }}$	Maximum Feedthrough Capacitance	$\mathrm{V}_{\mathrm{CTL}}=\mathrm{GND}$			0.5				pF
CPD	Power Dissipation Capacitance				15				pF

Note 6: Adjust 0 dBm for $\mathrm{F}=1 \mathrm{KHz}$ (Null $\mathrm{R}_{\mathrm{L}} /$ Ron Attenuation).
Note 7: $\mathrm{V}_{I S}$ is centered at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} / 2$.
Note 8: Adjust for 0 dBm .

AC Test Circuits and Switching Time Waveforms

FIGURE 1. "ON" Resistance

FIGURE 2. "OFF" Channel Leakage Current

FIGURE 3. "ON" Channel Leakage Current

TL/F/5369-6

FIGURE 4. t $_{\text {PHL }}$, tpLH Propagation Delay Time Signal Input to Signal Output

TL/F/5369-7
FIGURE 5. $\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$ Propagation Delay Time Control to Signal Output

TL/F/5369-8
FIGURE 6. t $_{\text {PZH }}$, t PHZ Propagation Delay Time Control to Signal Output

TL./F/5369-18
FIGURE 7. Frequency Response

FIGURE 8. Crosstalk: Control Input to Signal Output

$V_{I S}(1)$

FIGURE 9: Crosstalk Between Any Two Switches

AC Test Circuits and Switching Time Waveforms (Continued)

FIGURE 10. Switch OFF Signal Feedthrough Isolation

FIGURE 11. Sinewave Distortion

Typical Performance Characteristics

TL/F/5369-21

Typical Crosstalk Between Any Two Switches

TL/F/5369-22

Section 3
Analog-to-Digital Converters
Section 3 Contents
Analog-to-Digital Converters Definition of Terms 3-3
Analog-to-Digital Converters Selection Guide 3-4
ADC0800 8-Bit A/D Converter 3-7
ADC0801, ADC0802, ADC0803, ADC0804, ADC0805 8-Bit μ P Compatible A/D Converters 3-16
ADC0808, ADC0809 8-Bit μ P Compatible A/D Converters with 8-Channel Multiplexer 3-48
ADC0811 8-Bit Serial I/O A/D Converter with 11-Channel Multiplexer 3-59
ADC0816, ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer 3-70

* ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer 3-81
ADC0820 8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function 3-91
ADC0829 μ P Compatible 8-Bit A/D with 11-Channel MUX/Digital Input 3-107
ADC0831, ADC0832, ADC0834 and ADC0838 8-Bit Serial I/O A/D Converters with Multiplexer Options 3-115
ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer 3-140
* ADC0841 8-Bit μ P Compatible A/D Converter 3-158
ADC0844/ADC0848 8-Bit μ P Compatible A/D Converters with Multiplexer Options 3-171
ADC0852/ADC0854 Multiplexed Comparator with 8-Bit Reference Divider 3-188
ADC1001, ADC1021 10-Bit μ P Compatible A/D Converters 3-206
ADC1005, ADC1025 10-Bit μ P Compatible A/D Converters 3-213
ADC1205, ADC1225 12-Bit Plus Sign μ P Compatible A/D Converters 3-224
ADC1210, ADC1211 12-Bit CMOS A/D Converters 3-241
ADC3511 3½-Digit Microprocessor Compatible A/D Converter 3-252
ADC3711 33/4-Digit Microprocessor Compatible A/D Converter 3-252
ADD3501 3½-Digit DVM with Multiplexed 7-Segment Output 3-261
ADD3701 33/4-Digit DVM with Multiplexed 7-Segment Output 3-270
DM2502, DM2503, DM2504 Successive Approximation Registers 3-280
LM131A/LM131, LM231A/LM231, LM331A/LM331 Precision Voltage-to-Frequency Converters 3-285
MM74C905 12-Bit Successive Approximation Register 3-296

National
Semiconductor Corporation

Definition Of Terms A/D Converters

Conversion Time: The time required for a complete measurement by an analog-to-digital converter.
DC Common-Mode Error: This specification applies to ADCs with differential inputs. It is the change in the output code that occurs when the analog voltages on the two inputs are changed by an equal amount. It is expressed in LSBs.
Differential Nonlinearity: Ideally, any two adjacent digital codes correspond to measured analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step. For example, a DAC with a 1.5 LSB output change for a 1 LSB digital code change exhibits $1 / 2$ LSB differential non-linearity. Differential non-linearity may be expressed in fractional bits or as a percentage of full scale. A differential non-linearity greater than 1 LSB will lead to a non-monotonic transfer function in a DAC and missing codes in an ADC.
Gain Error (Full Scale Error): For an ADC, the difference (usually expressed in LSBs) between the input voltage that should ideally produce a full scale output code and the actual input voltage that produces that code. For DACs, it is the difference between the output voltage (or current) with full scale input code and the ideal voltage (or current) that should exist with a full scale input code.
Gain Temperature Coefficient (Full Scale Temperature Coefficient): Change in gain error divided by change in temperature. Usually expressed in parts per million per degree Celsius (ppm/ ${ }^{\circ} \mathrm{C}$).
Integral Nonlinearity (Linearity Error): Worst case deviation from the line between the endpoints (zero and full scale). Can be expressed as a percentage of full scale or in fractions of an LSB.
LSB (Least-Significant Bit): In a binary coded system this is the bit that carries the smallest value or weight. Its value is the full scale voltage (or current) divided by 2^{n}, where n is the resolution of the converter.
Missing Codes: When an incremental increase or decrease in input voltage causes the converter to increment or decrement its numeric output by more than one LSB the converter is said to exhibit "missing codes". If there are missing codes, there is a numeric value on the output on the converter which cannot be reached by any input voltage value.
Monotonicity: A monotonic function has a slope whose sign does not change. A monotonic DAC has an output that changes in the same direction (or remains constant) for each increase in the input code. The converse is true for decreasing codes.
MSB (Most Significant Bit): In a binary coded system this is the bit that has the largest value or weight. Its value is one half of full scale.

Multiplying DAC: In a sense, every DAC is a multiplying DAC since the output voltage (or current) is equal to the reference voltage times a constant determined by the digital input code divided by 2^{n} (n is the number of bits of resolution). In a two quadrant multiplying DAC the reference voltage or the digital input code can change the output voltage polarity. If both the reference voltage and the digital code change the output voltage polarity four quadrant multiplication exists.
Offset Error (Zero Error): In a DAC, this is the output voltage that exists when the input digital code is set to give an ideal output of zero volts. In the case of an ADC, this is the difference between the ideal input voltage ($1 / 2 \mathrm{LSB}$) and the actual input voltage that is needed to make the transition from zero to 1 LSB. All the digital codes in the transfer curve are offset by the same value. Many converters allow nulling of offset with an external potentiometer. Offset error is usually expressed in LSBs.
Power Supply Rejection (Power Supply Sensitivity): The sensitivity of a converter to changes in the dc power supply voltages.
Quantizing Error: The error inherent in all A/D conversions. Since even an "ideal" converter has finite resolution, any analog voltage that falls between two adjacent output codes will result in an output code that is inaccurate by up to $1 / 2$ LSB.
Ratiometric Operation: Many A/D applications require a stable and accurate reference voltage against which the input voltage is compared. This approach results in an absolute conversion. Some applications, however, use transducers or other signal sources whose output voltages are proportional to some external reference. In these ratiometric applications, the reference for the signal source should be connected to the reference input of the converter. Thus, any variations in the source reference voltage will also change the converter reference voltage and produce an accurate conversion.
Resolution: The smallest analog increment corresponding to a 1 LSB converter code change. For converters, resolution is normally expressed in bits, where the number of analog levels is equal to 2^{n}. As an example, a 12-bit converter divides the analog signal into $2^{12}=4096$ discrete voltage (or current) levels.
Settling Time: The time from a change in input code until a DAC's output signal remains within $\pm 1 / 2$ LSB (or some other specified tolerance) of the final value.

A/D Converter Selection Guide

Part No.	Resolution (Bits)	Absolute Accuracy (Max)	Conversion Time	Input Voltage Range		Supplies (V)	Temperature Range*			Package	Comments
							M	I	C		
A/D CONVERTER											
ADC0800	8	± 2 LSB	$50 \mu \mathrm{~s}$	$\pm 5 \mathrm{~V}$	TTL, TRI-STATE	+5, - 12	-		-	18-Pin DIP	
ADC0801	8	$\pm 1 / 4 \mathrm{LSB}$	$110 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5	-	\bullet		20-Pin DIP	Differential Input
ADC0802	8	$\pm 1 / 2$ LSB	$110 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5	-	\bullet	-	$\left\lvert\, \begin{aligned} & 20-\text { Pin DIP } \\ & 20-\text { Pin SO } \\ & 20-P i n ~ P C C \end{aligned}\right.$	Differential Input
ADC0803	8	$\pm 1 / 2 \mathrm{LSB}$	$110 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5	-	\bullet	-	$\begin{array}{\|l\|} \hline 20-\mathrm{Pin} \text { DIP } \\ 20-\mathrm{Pin} \text { SO } \\ 20-\mathrm{Pin} \text { PCC } \\ \hline \end{array}$	Differential Input
ADC0804	8	± 1 LSB	$110 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-	-	$\begin{array}{\|l\|} \hline 20-\mathrm{Pin} \text { DIP } \\ 20-\mathrm{Pin} \text { SO } \\ 20-\mathrm{Pin} \text { PCC } \\ \hline \end{array}$	Differential Input
ADC0805	8	± 1 LSB	$110 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-		20-Pin DIP	Ratiometric Operation
ADC0808	8	$\pm 1 / 2 \mathrm{LSB}$	$100 \mu \mathrm{~s}$	5V	TTL, TRI-STATE	+5	-	-		$\left\lvert\, \begin{aligned} & \text { 28-Pin DIP } \\ & 28-P i n ~ P C C ~ \end{aligned}\right.$	8-Channel MUX
ADC0809	8	± 1 LSB	$100 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-		$\left\lvert\, \begin{array}{l\|} \text { 28-Pin DIP } \\ 28-\text { Pin PCC } \end{array}\right.$	8-Channel MUX
ADC0811B	8	$\pm 1 / 2$ LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	$\left\lvert\, \begin{aligned} & 20-\text { Pin DIP } \\ & 20-\text { Pin PCC } \end{aligned}\right.$	11-Channel Serial I/O
ADC0811C	8	± 1 LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	$\left\lvert\, \begin{aligned} & 20-\text {-Pin DIP } \\ & 20-\text { Pin PCC } \end{aligned}\right.$	11-Channel Serial I/O
ADC0816	8	$\pm 1 / 2 \mathrm{LSB}$	$100 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5	\bullet	-		40-Pin DIP	16-Channel MUX
ADC0817	8	± 1 LSB	$100 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-		40-Pin DIP	16-Channel MUX
ADC0819B	8	$\pm 1 / 2 \mathrm{LSB}$	$16 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	$\begin{array}{\|l\|} \hline 28-P i n ~ D I P ~ \\ 28-P i n ~ P C C ~ \end{array}$	19-Channel Serial I/O
ADC0819C	8	± 1 LSB	$16 \mu \mathrm{~s}$	5 V	TTL	+5		\bullet	-	$\left\lvert\, \begin{aligned} & 28-P i n ~ D I P \\ & 28-P i n ~ P C C \end{aligned}\right.$	19-Channel Serial I/O
ADC0820B	8	$\pm 1 / 2$ LSB	$1.2 \mu \mathrm{~s}$	5 V	$\begin{aligned} & \text { TTL, } \\ & \text { TRI-STATE } \end{aligned}$	+5	-	\bullet	-	$\begin{aligned} & 20-\mathrm{Pin} \text { DIP } \\ & 20-\mathrm{Pin} \text { SO } \\ & 20-\mathrm{Pin} \text { PCC } \end{aligned}$	Built-In Track and Hold Function
ADC0820C	8	± 1 LSB	$1.2 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5	\bullet	-	-	$\begin{array}{\|l\|} \hline 20-\mathrm{Pin} \text { DIP } \\ 20-\mathrm{Pin} \text { SO } \\ 20-\mathrm{Pin} \text { PCC } \\ \hline \end{array}$	Built-In Track and Hold Function

A/D Converter Selection Guide (Continued)

Part No.	Resolution (Bits)	Absolute Accuracy (Max)	Conversion Time	$\left\|\begin{array}{c\|} \text { Input } \\ \text { Voltage } \\ \text { Range } \end{array}\right\|$	Output Logic Levels	Supplies (V)	Temperature Range*			Package	Comments
							M	1	C		
A/D CONVERTER (Continued)											
ADC0829B	8	$\pm 1 / 2 \mathrm{LSB}$	$100 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-		28-Pin DIP	Additional Digital Input Capability
ADC0829C	8	± 1 LSB	$100 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-		28-Pin DIP	Additional Digital Input Capability
ADC0831B	8	$\pm 1 / 2$ LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	8 -Pin DIP	Serial I/O
ADC0831C	8	± 1 LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	8-Pin DIP	Serial I/O
ADC0832B	8	$\pm 1 / 2 \mathrm{LSB}$	$32 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	8 -Pin DIP	2-Channel Serial I/O
ADC0832C	8	± 1 LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	8 -Pin DIP	2-Channel Serial I/O
ADC0833B	8	$\pm 1 / 2$ LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		\bullet	-	14-Pin DIP	4-Channel Serial I/O
ADC0833C	8	± 1 LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		\bullet	-	14-Pin DIP	4-Channel Serial I/O
ADC0834B	8	$\pm 1 / 2$ LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		\bullet	-	14-Pin DIP	4-Channel Serial I/O
ADC0834C	8	± 1 LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	14-Pin DIP	4-Channel Serial I/O
ADC0838B	8	$\pm 1 / 2 \mathrm{LSB}$	$32 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	$\begin{array}{\|l\|} \hline 20-\text { Pin DIP } \\ 20-\text { Pin PCC } \\ \hline \end{array}$	8-Channel Serial I/O
ADC0838C	8	± 1 LSB	$32 \mu \mathrm{~s}$	5 V	TTL	+5		-	-	$\begin{array}{\|l\|} \hline 20-\text { Pin DIP } \\ 20-\text {-in PCC } \\ \hline \end{array}$	8-Channel Serial I/O
ADC0841B	8	$\pm 1 / 2 \mathrm{LSB}$	$40 \mu \mathrm{~s}$	5 V	$\begin{array}{\|l\|} \text { TTL, } \\ \text { TRI-STATE } \end{array}$	+5		\bullet	-	$\begin{array}{\|l\|} \hline 20-\text { Pin DIP } \\ 20-\text { Pin PCC } \\ \hline \end{array}$	Differential Input, Internal Clock
ADC0841C	8	± 1 LSB	$40 \mu \mathrm{~s}$	5 V	$\begin{array}{\|l\|} \hline \text { TTL, } \\ \text { TRI-STATE } \end{array}$	+5		\bullet	-	$\begin{array}{\|l\|} \hline 20-\text { Pin DIP } \\ 20-P i n ~ P C C \\ \hline \end{array}$	Differential Input, Internal Clock
ADC0844B	8	$\pm 1 / 2 \mathrm{LSB}$	$40 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-	-	20-Pin DIP	4-Channel MUX, Internal Clock
ADC0844C	8	± 1 LSB	$40 \mu \mathrm{~s}$	5 V	$\begin{array}{\|l\|} \hline \text { TTL, } \\ \text { TRI-STATE } \end{array}$	+5		\bullet	-	20-Pin DIP	4-Channel MUX, Internal Clock
ADC0848B	8	$\pm 1 / 2$ LSB	$40 \mu \mathrm{~s}$	5 V	$\begin{array}{\|l\|} \hline \text { TTLL, } \\ \text { TRI-STATE } \end{array}$	+5		-	-	$\begin{array}{\|c\|} \hline 28-P i n ~ D I P \\ \text { 28-Pin PCC } \\ \hline \end{array}$	8-Channel MUX, Internal Clock
ADC0848C	8	± 1 LSB	$40 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		-	-	$\begin{array}{\|l\|} \hline 28 \text {-Pin DIP } \\ 28-\text { Pin PCC } \\ \hline \end{array}$	8-Channel MUX, Internal Clock
ADC1001C	10	± 1 LSB	$200 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		\bullet	-	20-Pin DIP	8-Bit Bus Compatible, Differential Input
ADC1005B	10	$\pm 1 / 2$ LSB	$50 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5	-	\bullet	-	$\begin{array}{\|l\|} \hline 20-P i n ~ D I P \\ 20-P i n ~ P C C ~ \end{array}$	8-Bit Bus Compatible, Differential Input

A/D Converter Selection Guide (Continued)

Part No.	Resolution (Bits)	Absolute Accuracy (Max)	Conversion Time	Input Voltage Range	Output Logic Levels	Supplies (V)	Temperature Range*			Package	Comments
							M	1	C		

A/D CONVERTER (Continued)

ADC1005C	10	$\pm 1 \mathrm{LSB}$	$50 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5	\bullet	\bullet	\bullet	20-Pin DIP $20-\mathrm{Pin}$ PCC	8-Bit Bus Compatible, Differential Input			
ADC1021C	10	$\pm 1 \mathrm{LSB}$	$200 \mu \mathrm{~s}$	5 V	TTL, TRI-STATE	+5		\bullet	\bullet	24 -Pin DIP	Differential Input	$	$	ADC1025B
:---														

DIGITAL VOLTMETER

ADD3501	$31 / 2$-Digit	0.05%	200 ms	2 V	7-Segment LED Drive	+5			\bullet	28 -Pin DIP	$31 / 2$-Digit LED DVM
ADD3701	$31 / 2$-Digit	0.05%	400 ms	2 V	7-Segment LED Drive	+5			\bullet	28 -Pin DIP	$33 / 4$-Digit LED DVM

[^4]
ADC0800 8-Bit A/D Converter

General Description

The ADC0800 is an 8 -bit monolithic A/D converter using Pchannel ion-implanted MOS technology. It contains a high input impedance comparator, 256 series resistors and ana\log switches, control logic and output latches. Conversion is performed using a successive approximation technique where the unknown analog voltage is compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the unknown voltage, conversion is complete and the digital outputs contain an 8 -bit complementary binary word corresponding to the unknown. The binary output is TRI-STATE ${ }^{\circledR}$ to permit bussing on common data lines.
The ADC0800PD is specified over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the ADC0800PCD is specified over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

Features

- Low cost

■ $\pm 5 \mathrm{~V}, 10 \mathrm{~V}$ input ranges

- No missing codes
- Ratiometric conversion
- TRI-STATE outputs
- Fast
- Contains output latches
- TTL compatible

■ Supply voltages $5 \mathrm{~V}_{\mathrm{DC}}$ and $-12 \mathrm{~V}_{\mathrm{DC}}$

- Resolution
- Linearity
- Conversion speed
- Clock range
$\mathrm{T}_{\mathrm{C}}=50 \mu \mathrm{~s}$
$5 V_{D C}$ and $-12 V_{D C}$
± 1 LSB
40 clock periods
50 to 800 kHz

Block Diagram

TL/H/5670-1
(00000000 = + full-scale)

TRI-STATE* is a registered trademark of National Semiconductor Corp.

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage (VDD)
$V_{S S}-22 \mathrm{~V}$
Supply Voltage (V_{GG})
$\mathrm{V}_{\mathrm{SS}}-22 \mathrm{~V}$
Voltage at Any Input
Input Current at Any Pin (Note 2)
$\mathrm{V}_{\mathrm{SS}}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}-22 \mathrm{~V}$
Package Input Current (Note 2)
5 mA

Electrical Characteristics

These specifications apply for $\mathrm{V}_{\mathrm{SS}}=5.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{GG}}=-12.0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}_{\mathrm{DC}}$, a reference voltage of $10.000 \mathrm{~V}_{\mathrm{DC}}$ across the on-chip R-network ($V_{R-N E T W O R K ~ T O P ~}=5.000 V_{D C}$ and $V_{R-N E T W O R K ~ B O T T O M ~}=-5.000 V_{D C}$), and a clock frequency of 800 kHz . For all tests, a 475Ω resistor is used from pin 5 to $\mathrm{V}_{\text {R-NETWORK }}$ BOTTOM $=-5 \mathrm{~V}_{\mathrm{DC}}$. Unless otherwise noted, these specifications apply over an ambient temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the $\mathrm{ADC0800PD}$ and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for the ADC0800PCD.

Parameter	Conditions	Min	Typ	Max	Units
Non-Linearity	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text {, (Note 8) } \\ & \text { Over Temperature, (Note 8) } \end{aligned}$			$\begin{aligned} & \pm 1 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Non-Linearity				$\pm 1 / 2$	LSB
Zero Error				± 2	LSB
Zero Error Temperature Coefficient	(Note 9)			0.01	\%/ ${ }^{\circ} \mathrm{C}$
Full-Scale Error				± 2	LSB
Full-Scale Error Temperature Coefficient	(Note 9)			0.01	\%/ ${ }^{\circ} \mathrm{C}$
Input Leakage				1	$\mu \mathrm{A}$
Logical "1" Input Voltage	All Inputs	$\mathrm{V}_{S S}-1.0$		$\mathrm{V}_{\text {SS }}$	V
Logical "0" Input Voltage	All Inputs	V_{GG}		$\mathrm{V}_{S S}-4.2$	V
Logical Input Leakage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \text { All Inputs, } \mathrm{V}_{\mathrm{IL}}= \\ & \mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V} \end{aligned}$			1	$\mu \mathrm{A}$
Logical "1" Output Voltage	All Outputs, $\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$	2.4			V
Logical "0" Output Voltage	All Outputs, $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$			0.4	V
Disabled Output Leakage	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \text { All Outputs, } \mathrm{V}_{\mathrm{OL}}= \\ & \mathrm{V}_{\mathrm{SS}} @ 10 \mathrm{~V} \end{aligned}$			2	$\mu \mathrm{A}$
Clock Frequency	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 50 \\ 100 \end{gathered}$		$\begin{aligned} & 800 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Clock Pulse Duty Cycle		40		60	\%
TRI-STATE Enable/Disable Time				1	$\mu \mathrm{s}$
Start Conversion Pulse	(Note 10)	1		$31 / 2$	Clock Periods
Power Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			20	mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: When the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathrm{IN}}<\mathrm{V}^{-}\right.$or $\left.\mathrm{V}_{\mathrm{IN}}>\mathrm{V}^{+}\right)$the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, T_{A}. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the ADC0800PD and ADC0800PCD when board mounted is $66^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 6: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 7: Design limits are guaranteed but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 8: Non-linearity specifications are based on best straight line.
Note 9: Guaranteed by design only.
Note 10: Start conversion pulse duration greater than $31 / 2$ clock periods will cause conversion errors.

Timing Diagram

Application Hints

operation

The ADC0800 contains a network with 256-300 Ω resistors in series. Analog switch taps are made at the junction of each resistor and at each end of the network. In operation, a reference $(10.00 \mathrm{~V})$ is applied across this network of 256 resistors. An analog input $\left(\mathrm{V}_{\mathrm{IN}}\right)$ is first compared to the center point of the ladder via the appropriate switch. If $V_{I N}$ is larger than $\mathrm{V}_{\mathrm{REF}} / 2$, the internal logic changes the switch points and now compares V_{IN} and $3 / 4 \mathrm{~V}_{\text {REF }}$. This process, known as successive approximation, continues until the best match of $V_{\text {IN }}$ and $V_{\text {REF }} / \mathrm{N}$ is made. N now defines a specific tap on the resistor network. When the conversion is complete, the logic loads a binary word corresponding to this tap into the output latch and an end of conversion (EOC) logic level appears. The output latches hold this data valid until a new conversion is completed and new data is loaded into the latches. The data transfer occurs in about 200 ns so that valid data is present virtually all the time in the latches. The data outputs are activated when the Output Enable is high, and in TRI-STATE when Output Enable is low. The Enable Delay time is approximately 200 ns. Each conversion requires 40 clock periods. The device may be operated in the free running mode by connecting the Start Conversion line to the End of Conversion line. However, to ensure start-up under all possible conditions, an external Start Conversion pulse is required during power up conditions.

REFERENCE

The reference applied across the 256 resistor network determines the analog input range. $\mathrm{V}_{\text {REF }}=10.00 \mathrm{~V}$ with the top of the R-network connected to 5 V and the bottom connected to -5 V gives a $\pm 5 \mathrm{~V}$ range. The reference can be level shifted between $V_{S S}$ and $V_{G G}$. However, the voltage, applied to the top of the R-network (pin 15), must not exceed V_{SS}, to prevent forward biasing the on-chip parasitic silicon diodes that exist between the P-diffused resistors (pin 15) and the N -type body (pin 10, V_{SS}). Use of a standard logic power supply for $V_{S S}$ can cause problems, both due to initial voltage tolerance and changes over temperature. A solution is to power the V_{SS} line (15 mA max drain) from the output of the op amp that is used to bias the top of the

R-network (pin 15). The analog input voltage and the voltage that is applied to the bottom of the R-network (pin 5) must be at least 7 V above the $-\mathrm{V}_{\mathrm{GG}}$ supply voltage to ensure adequate voltage drive to the analog switches.
Other reference voltages may be used (such as 10.24 V). If a 5 V reference is used, the analog range will be 5 V and accuracy will be reduced by a factor of 2 . Thus, for maximum accuracy, it is desirable to operate with at least a 10 V reference. For TTL logic levels, this requires 5 V and -5 V for the R-network. CMOS can operate at the $10 \mathrm{~V}_{\mathrm{DC}} \mathrm{V}_{S S}$ level and a single $10 \mathrm{~V}_{\mathrm{DC}}$ reference can be used. All digital voltage levels for both inputs and outputs will be from ground to VSS.

ANALOG INPUT AND SOURCE RESISTANCE CONSIDERATIONS

The lead to the analog input (pin 12) should be kept as short as possible. Both noise and digital clock coupling to this input can cause conversion errors. To minimize any input errors, the following source resistance considerations should be noted:
For $R_{S} \leq 5 k \quad$ No analog input bypass capacitor required, although a $0.1 \mu \mathrm{~F}$ input bypass capacitor will prevent pickup due to unavoidable series lead inductance.
For $5 k<R_{S} \leq 20 k \quad$ A $0.1 \mu \mathrm{~F}$ capacitor from the input (pin 12) to ground should be used.

For $\mathrm{R}_{\mathbf{S}}>20 \mathrm{k} \quad$ Input buffering is necessary.
If the overall converter system requires lowpass filtering of the analog input signal, use a $20 \mathrm{k} \Omega$ or less series resistor for a passive RC section or add an op amp RC active lowpass filter (with its inherent low output resistance) to ensure accurate conversions.

CLOCK COUPLING

The clock lead should be kept away from the analog input line to reduce coupling.

LOGIC INPUTS

The logical " 1 " input voltage swing for the Clock, Start Conversion and Output Enable should be ($\mathrm{V}_{\mathrm{SS}}-1.0 \mathrm{~V}$).

Application Hints (Continued)

CMOS will satisfy this requirement but a pull-up resistor should be used for TTL logic inputs.

RE-START AND DATA VALID AFTER EOC

The EOC line (pin 9) will be in the low state for a maximum of 40 clock periods to indicate "busy". A START pulse that occurs while the A/D is BUSY will reset the SAR and start a new conversion with the EOC signal remaining in the low state until the end of this new conversion. When the conversion is complete, the EOC line will go to the high voltage state. An additional 4 clock periods must be allowed to elapse after EOC goes high, before a new conversion cycle is requested. Start Conversion pulses that occur during this last 4 clock period interval may be ignored (see Figure 1 and 2 for high speed operation). This is a problem only for high conversion rates and keeping the number of conversions per second less than $\mathrm{f}_{\mathrm{CLOCK}} / 44$ automatically guarantees proper operation. For example, for an 800 kHz clock, approximately 18,000 conversions per second are allowed. The transfer of the new digital data to the output is initiated when EOC goes to the high voltage state.

POWER SUPPLIES

Standard supplies are $\mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GG}}=-12 \mathrm{~V}$ and $V_{D D}=0 \mathrm{~V}$. Device accuracy is dependent on stability of the reference voltage and has slight sensitivity to $\mathrm{V}_{\mathrm{SS}}-\mathrm{V}_{\mathrm{GG}}$. $V_{D D}$ has no effect on accuracy. Noise spikes on the $V_{S S}$ and $V_{G G}$ supplies can cause improper conversion; therefore, filtering each supply with a $4.7 \mu \mathrm{~F}$ tantalum capacitor is recommended.

CONTINUOUS CONVERSIONS AND LOGIC CONTROL

Simply tying the EOC output to the Start Conversion input will allow continuous conversions, but an oscillation on this line will exist during the first 4 clock periods after EOC goes high. Adding a D flip-flop between EOC (D input) to Start Conversion (Q output) will prevent the oscillation and will allow a stop/continuous control via the "clear" input.
To prevent missing a start pulse that may occur after EOC goes high and prior to the required 4 clock period time interval, the circuit of Figure 1 can be used. The RS latch can be set at any time and the 4 -stage shift register delays the application of the start pulse to the A/D by 4 clock periods. The RS latch is reset 1 clock period after the A/D EOC signal goes to the low voltage state. This circuit also provides a Start Conversion pulse to the A/D which is 1 clock period wide.
A second control logic application circuit is shown in Figure 2. This allows an asynchronous start pulse of arbitrary length less than T_{C}, to continuously convert for a fixed high level and provides a single clock period start pulse to the A/D. The binary counter is loaded with a count of 11 when the start pulse to the A/D appears. Counting is inhibited until the EOC signal from the A/D goes high. A carry pulse is then generated 4 clock periods after EOC goes high and is used to reset the input RS latch. This carry pulse can be used to indicate that the conversion is complete, the data has transferred to the output buffers and the system is ready for a new conversion cycle.

TL/H/5670-3
FIGURE 1. Delaying an Asynchronous Start Pulse

FIGURE 2. A/D Control Logic

Application Hints (Continued)

ZERO AND FULL-SCALE ADJUSTMENT

Zero Adjustment: This is the offset voltage required at the bottom of the R-network (pin 5) to make the 11111111 to 11111110 transition when the input voltage is $1 / 2$ LSB (20 mV for a 10.24 V scale). In most cases, this can be accomplished by having a $1 \mathrm{k} \Omega$ pot on pin 5 . A resistor of 475Ω can be used as a non-adjustable best approximation from pin 5 to ground.

Full-Scale Adjustment: This is the offset voltage required at the top of the R-network (pin 15) to make the 00000001 to 00000000 transition when the input voltage is $11 / 2$ LSB from full-scale (60 mV less than full-scale for a 10.24 V scale). This voltage is guaranteed to be within ± 2 LSB for the ADC0800 without adjustment. In most cases, adjustment can be accomplished by having a $1 \mathrm{k} \Omega$ pot on pin 15 .

Typical Applications

General Connection

TL/H/5670-11

Hi-Voltage CMOS Output Levels

Ratiometric Input Signal with Tracking Reference

0 V to $10 \mathrm{~V} \mathrm{~V}_{\mathbb{N}}$ range
0 V to 10 V output levels

Typical Applications (Continued)

A1 and A2 $=\mathrm{LM} 358 \mathrm{~N}$ dual op amp
TL/H/5670-13

TL/H/5670-14

Input Level Shifting

- Permits TTL compatible outputs with 0 V to 10 V input range $\mathbf{0} \mathrm{V}$ to -10 V input range achieved by reversing polarity of zener diodes and returning the 6.8 k resistor to V^{-}).

Typical Applications
 (Continued)

TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 3. Note that the LED drivers invert the digital output of the A/D converter to provide a binary display. A lab DVM can be used if a precision voltage source is not available. After adjusting the zero and full-scale, any number of points can be checked, as desired.
For ease of testing, a $10.24 \mathrm{~V}_{\mathrm{DC}}$ reference is recommended for the A/D converter. This provides an LSB of 40 mV (10.240/256). To adjust the zero of the A/D, an analog input voltage of $1 / 2$ LSB or 20 mV should be applied and the
zero adjust potentiometer should be set to provide a flicker on the LSB LED readout with all the other display LEDs OFF.
To adjust the full-scale adjust potentiometer, an analog input that is $11 / 2$ LSB less than the reference ($10.240-0.060$ or $10.180 \mathrm{~V}_{\mathrm{DC}}$) should be applied to the analog input and the full-scale adjusted for a flicker on the LSB LED, but this time with all the other LEDs ON.

A complete circuit for a simple A/D tester is shown in Figure 4. Note that the clock input voltage swing and the digital output voltage swings are from $O \mathrm{~V}$ to 10.24 V . The MM74C901 provides a voltage translation to 5 V operation and also the logic inversion so the readout LEDs are in binary.

FIGURE 3. Basic A/D Tester

TL/H/5670-7
FIGURE 4. Complete Basic Tester Circuit

Typical Applications (Continued)

The digital output LED display can be decoded by dividing the 8 bits into the 4 most significant bits and 4 least significant bits. Table I shows the fractional binary equivalent of these two 8 -bit groups. By adding the decoded voltages which are obtained from the column: "Input Voltage Value with a $10.240 \mathrm{~V}_{\text {REF }}$ " of both the MS and LS groups, the value of the digital display can be determined. For example, for an output LED display of "1011 0110" or "B6" (in hex) the voltage values from the table are $7.04+0.24$ or
$7.280 V_{D C}$. These voltage values represent the center values of a perfect A/D converter. The input voltage has to change by $\pm 1 / 2$ LSB ($\pm 20 \mathrm{mV}$), the "quantization uncertainty" of an A/D, to obtain an output digital code change. The effects of this quantization error have to be accounted for in the interpretation of the test results. A plot of this natural error source is shown in Figure 5 where, for clarity, both the analog input voltage and the error voltage are normalized to LSBs.

TABLE I. DECODING THE DIGITAL OUTPUT LEDs

HEX	BINARY	FRACTIONAL BINARY VALUE FOR		INPUT VOLTAGE VALUE WITH 10.24 VREF	
		MS GROUP	LS GROUP	MS GROUP	LS GROUP
F	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	15/16	15/256	9.600	0.600
E	1110	7/8	7/128	8.960	0.560
D	11001	13/16	13/256	8.320	0.520
C	1100	3/4	3/64	7.680	0.480
B	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	11/16	11/256	7.040	0.440
A	$1 \begin{array}{llll}1 & 0 & 1 & 0\end{array}$	5/8	5/128	6.400	0.400
9	1000		9/256	5.760	0.360
8	1000	1/2	1/32	5.120	0.320
7	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	7/16	7/256	4.480	0.280
6	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$	3/8	3/128	3.840	0.240
5	$0 \begin{array}{llll}0 & 1 & 0 & 1\end{array}$	5/16	5/256	3.200	0.200
4	0 1 000	1/4	1/64	2.560	0.160
3	$0 \begin{array}{llll}0 & 0 & 1 & 1\end{array}$	3/16	3/256	1.920	0.120
2	$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	1/8	1/128	1.280	0.080
1	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1/16	1/256	0.640	0.040
0	$0 \quad 0 \quad 0 \quad 0$			0	0

TL/H/5670-8
FIGURE 5. Error Plot of a Perfect A/D Showing Effects of Quantization Error

Typical Applications (Continued)

A low speed ramp generator can also be used to sweep the analog input voltage and the LED outputs will provide a binary counting sequence from zero to full-scale.
The techniques described so far are suitable for an engineering evaluation or a quick check on performance. For a higher speed test system, or to obtain plotted data, a digital-to-analog converter is needed for the test set-up. An accurate 10-bit DAC can serve as the precision voltage source for the A/D. Errors of the A/D under test can be provided as either analog voltages or differences in two digital words.
A basic A/D tester which uses a DAC and provides the error as an analog output voltage is shown in Figure 6. The 2 op amps can be eliminated if a lab DVM with a numerical subtraction feature is available to directly readout the difference voltage, " $\mathrm{A}-\mathrm{C}$ ".

For operation with a microprocessor or a computer-based test system, it is more convenient to present the errors digitally. This can be done with the circuit of Figure 7 where the output code transitions can be detected as the 10-bit DAC is incremented. This provides $1 / 4$ LSB steps for the 8 -bit A/D under test. If the results of this test are automatically plotted with the analog input on the X axis and the error (in LSB's) as the Y axis, a useful transfer function of the A/D under test results. For acceptance testing, the plot is not necessary and the testing speed can be increased by establishing internal limits on the allowed error for each code.

TL/H/5670-16
FIGURE 6. A/D Tester with Analog Error Output

FIGURE 7. Basic "Digital" A/D Tester

Top View
Order Number ADC0800PD
or ADC0800PCD
See NS Package Number D18A

National Semiconductor Corporation

ADC0801, ADC0802, ADC0803, ADC0804, ADC0805 8-Bit μ P Compatible A/D Converters

General Description

The ADC0801, ADC0802, ADC0803, ADC0804 and ADC0805 are CMOS 8-bit successive approximation A/D converters that use a differential potentiometric laddersimilar to the 256R products. These converters are designed to allow operation with the NSC800 and INS8080A derivative control bus with TRI-STATE ${ }^{\circledR}$ output latches directly driving the data bus. These A/Ds appear like memory locations or I/O ports to the microprocessor and no interfacing logic is needed.
Differential analog voltage inputs allow increasing the com-mon-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Features

- Compatible with $8080 \mu \mathrm{P}$ derivatives-no interfacing logic needed - access time - 135 ns
- Easy interface to all microprocessors, or operates "stand alone"
- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and TTL voltage level specifications
- Works with 2.5V (LM336) voltage reference
- On-chip clock generator
- 0 V to 5 V analog input voltage range with single 5 V supply
- No zero adjust required
- $0.3^{\prime \prime}$ standard width 20 -pin DIP package
- 20-pin molded chip carrier or small outline package
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference

Key Specifications

- Resolution

8 bits
\square Total error $\pm 1 / 4$ LSB, $\pm 1 / 2$ LSB and ± 1 LSB

- Conversion time
$100 \mu \mathrm{~s}$

Typical Applications

Absolute Maximum Ratings (Notes $1 \& 2$)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage (VCC) (Note 3)
6.5 V

Voltage

Logic Control Inputs	$-0.3 \mathrm{~V} \mathrm{to}+18 \mathrm{~V}$
At Other Input and Outputs	-0.3 V to $(\mathrm{V} \mathrm{CC}+0.3 \mathrm{~V})$
Lead Temp. (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (plastic)	$300^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	
Surface Mount Package	$215^{\circ} \mathrm{C}$
\quad Vapor Phase (60 seconds)	$220^{\circ} \mathrm{C}$
Infrared (15 seconds)	

Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW

ESD Susceptibility (Note 10) 800V
Operating Ratings (Notes 1\&2)

Temperature Range	$\mathrm{T}_{\text {MIN }} \leq T_{A} \leq T_{M A X}$
ADC0801/02LJ	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
ADC0801/02/03/04LCJ	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$
ADC0801/02/03/05LCN	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$
ADC0804LCN	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$
ADC0802/03/04LCV	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$
ADC0802/03/04LCWM	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$

Range of V_{CC}
$4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.3 \mathrm{~V}_{\mathrm{DC}}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq T_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
ADC0801: Total Adjusted Error (Note 8)	With Full-Scale Adj. (See Section 2.5.2)			$\pm 1 / 4$	LSB
ADC0802: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\text {DC }}$			$\pm 1 / 2$	LSB
ADC0803: Total Adjusted Error (Note 8)	With Full-Scale Adj. (See Section 2.5.2)			$\pm 1 / 2$	LSB
ADC0804: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$			± 1	LSB
ADC0805: Total Unadjusted Error (Note 8)	$\mathrm{V}_{\text {REF }} / 2-\mathrm{No}$ Connection			± 1	LSB
$\mathrm{V}_{\text {REF }} / 2$ Input Resistance (Pin 9)	$\begin{aligned} & \text { ADC0801/02/03/05 } \\ & \text { ADC0804 (Note 9) } \\ & \hline \end{aligned}$	$\begin{gathered} 2.5 \\ 0.75 \\ \hline \end{gathered}$	$\begin{aligned} & 8.0 \\ & 1.1 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Analog Input Voltage Range	(Note 4) V(+) or V(-)	Gnd-0.05		$\mathrm{V}_{\mathrm{CC}}+0.05$	$V_{D C}$
DC Common-Mode Error	Over Analog Input Voltage Range		$\pm 1 / 16$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}} \pm 10 \% \text { Over } \\ & \text { Allowed } \mathrm{V}_{\mathrm{IN}}(+) \text { and } \mathrm{V}_{\mathrm{IN}}(-) \\ & \text { Voltage Range (Note 4) } \\ & \hline \end{aligned}$		$\pm 1 / 16$	$\pm 1 / 8$	LSB

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
T_{C}	Conversion Time	$\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ (Note 6)	103		114	$\mu \mathrm{s}$
T_{C}	Conversion Time	(Note 5, 6)	66		73	1/f fLK
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency Clock Duty Cycle	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},(\text { Note } 5) \\ & \text { (Note 5) } \end{aligned}$	$\begin{gathered} 100 \\ 40 \\ \hline \end{gathered}$	640	$\begin{gathered} 1460 \\ 60 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{kHz} \\ \% \end{gathered}$
CR	Conversion Rate in Free-Running Mode	$\overline{\text { INTR }}$ tied to $\overline{W R}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$	8770		9708	conv/s
$t_{W}(\overline{W R}) L$	Width of WR Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}$ (Note 7)	100			ns
$t_{\text {ACC }}$	Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		135	200	ns
$t_{1 H}, t_{0 H}$	TRI-STATE Control (Delay from Rising Edge of RD to Hi-Z State)	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (See TRI-STATE Test Circuits)		125	200	ns
${ }^{\text {t }}$ W, t_{RI}	Delay from Falling Edge of $\overline{W R}$ or $\overline{R D}$ to Reset of $\overline{\text { INTR }}$			300	450	ns
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance of Logic Control Inputs			5	7.5	pF
COUT	TRI-STATE Output Capacitance (Data Buffers)			5	7.5	pF

CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

$\mathrm{V}_{I N}(1)$	Logical "1" Input Voltage (Except Pin 4 CLK IN)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}_{\mathrm{DC}}$	2.0		15	$\mathrm{~V}_{\mathrm{DC}}$

AC Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{D C}$ and $T_{M I N} \leq T_{A} \leq T_{M A X}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Units

CONTROL INPUTS [Note: CLK IN (Pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately]

$V_{I N}(0)$	Logical "0" Input Voltage (Except Pin 4 CLK IN)	$V_{C C}=4.75 V_{D C}$		0.8	$V_{D C}$	
$I_{\mathbb{N}}(1)$	Logical "1" Input Current (All Inputs)	$V_{I N}=5 V_{D C}$	-1	-0.005		$\mu A_{D C}$
$I_{\mathbb{I N}}(0)$	Logical "0" Input Current (All Inputs)	$V_{I N}=0 V_{D C}$	1	$\mu A_{D C}$		

CLOCK IN AND CLOCK R

$V_{T}+$	CLK IN (Pin 4) Positive Going Threshold Voltage		2.7	3.1	3.5	$V_{D C}$
$V_{T}-$	CLK IN (Pin 4) Negative Going Threshold Voltage		1.5	1.8	2.1	$V_{D C}$
V_{H}	CLK IN (Pin 4) Hysteresis $\left(V_{T}+\right)-\left(V_{T}\right)$		0.6	1.3	2.0	$V_{D C}$
$V_{\text {OUT }}(0)$	Logical "0" CLK R Output Voltage	$I_{O}=360 \mu \mathrm{~A}$ $V_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}}$	2.4		0.4	$V_{D C}$
$V_{\text {OUT }}(1)$	Logical "1" CLK R Output Voltage	$I_{O}=-360 \mu \mathrm{~A}$ $V_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}}$	$V_{D C}$			

DATA OUTPUTS AND INTR

VOUT (0)	Logical " 0 " Output Voltage Data Outputs INTR Output	$\begin{aligned} & \text { l }_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \mathrm{DC} \\ & \text { l }_{\text {OUT }}=1.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & V_{D C} \\ & V_{D C} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\mathrm{I}_{0}=-360 \mu \mathrm{~A}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}}$	2.4			$V_{D C}$
$\mathrm{V}_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{C C}=4.75 \mathrm{~V}_{\mathrm{DC}}$	4.5			$V_{D C}$
lout	TRI-STATE Disabled Output Leakage (All Data Buffers)	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	-3		3	$\mu A_{D C}$ $\mu A_{D C}$
IsOURCE		$V_{\text {OUT }}$ Short to Gnd, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$	4.5	6		$m A_{D C}$
ISINK		$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	9.0	16		$m A_{D C}$

POWER SUPPLY

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to Gnd, unless otherwise specified. The separate A Gnd point should always be wired to the D Gnd.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G n d$ and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see block diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V) as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Accuracy is guaranteed at fCLK $=640 \mathrm{kHz}$. At higher clock frequencies accuracy can degrade. For lower clock frequencies, the duty cycle limits can be extended so long as the minimum clock high time interval or minimum clock low time interval is no less than 275 ns
Note 6: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 2 and section 2.0.
Note 7: The $\overline{\mathrm{CS}}$ input is assumed to bracket the $\overline{\mathrm{WR}}$ strobe input and therefore timing is dependent on the $\overline{\mathrm{WR}}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the $\overline{\mathrm{WR}}$ pulse (see timing diagrams).
Note 8: None of these A/Ds requires a zero adjust (see section 2.5.1). To obtain zero code at other analog input voltages see section 2.5 and Figure 5.
Note 9: The $V_{\text {REF }} / 2$ pin is the center point of a two resistor divider connected from $V_{C C}$ to ground. Each resistor is 2.2k, except for the ADC0804LCJ where each resistor is 16 k . Total ladder input resistance is the sum of the two equal resistors.
Note 10: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics

CLK IN Schmitt Trip Levels vs. Supply Voltage

Effect of Unadjusted Offset Error vs. $\mathbf{V}_{\text {REF }} / 2$ Voltage

Linearity Error at Low $\mathbf{V}_{\text {REF }} / \mathbf{2}$ Voltages

TL/H/5671-2

TRI-STATE Test Circuits and Waveforms

Timing Diagrams (All timing is measured from the 50% voltage points)

```
conveghos
```


Note: Read strobe must occur 8 clock periods ($8 / \mathrm{f} \mathrm{CLK}$) after assertion of interrupt to guarantee reset of $\overline{\mathrm{NT}} \overline{\mathrm{R}}$.
TL/H/5671-4

Typical Applications (Continued)

6800 Interface

Absolute with a 2.500 V Reference

*For low power, see also LM385-2.5

Zero-Shift and Span Adjust: $\mathbf{2 V} \leq \mathbf{V}_{\text {IN }} \leq 5 \mathrm{~V}$

Ratiometric with Full-Scale Adjust

Absolute with a 5V Reference

Span Adjust: $0 V \leq V_{\text {IN }} \leq 3 V$

Typical Applications (Continued)

A μ P Interfaced Comparator

For: $\begin{aligned} \mathrm{V}_{I N}(+) & >\mathrm{V}_{I N}(-) \\ \text { Output }= & \mathrm{FF}_{\mathrm{HEX}} \\ \text { For: } \mathrm{V}_{I N}(+) & <\mathrm{V}_{I N}(-) \\ \text { Output }= & 00_{\text {HEX }}\end{aligned}$

1 mV Resolution with $\mu \mathrm{P}$ Controlled Range

Digitizing a Current Flow

Typical Applications (Continued)

Self-Clocking in Free-Running Mode

*After power-up, a momentary grounding of the $\overline{W R}$ input is needed to guarantee operation.
$\mu \mathbf{P}$ Interface for Free-Running A / D

Operating with "Automotive" Ratiometric Transducers

Typical Applications (Continued)
μ P Compatible Differential-Input Comparator with Pre-Set Vos (with or without Hysteresis)

*See Figure 5 to select R value
DB7 = "1" for $\mathrm{V}_{\mathrm{IN}}(+)>\mathrm{V}_{\mathrm{IN}}(-)+\left(\mathrm{V}_{\text {REF }} / 2\right)$
Omit circuitry within the dotted area if
hysteresis is not needed

*Beckman Instruments \#694-3-R10K resistor array

Low-Cost, μ P Interfaced, Temperature-to-Digital Converter

$\mu \mathrm{P}$ Interfaced Temperature-to-Digital Converter

TL/H/5671-8

Typical Applications (Continued)

Handling $\pm 5 \mathrm{~V}$ Analog Inputs

TL/H/5671-33
*Beckman Instruments \#694-3-R10K resistor array
μ P Interfaced Comparator with Hysteresis

Analog Self-Test for a System

TL/H/5671-36

Read-Only Interface

Protecting the Input

A Low-Cost, 3-Decade Logarithmic Converter

A, B, C, D = LM324A quad op amp

Typical Applications (Continued)

3-Decade Logarithmic A/D Converter

Noise Filtering the Analog Input
 is used

Multiplexing Differential Inputs

Output Buffers with A/D Data Enabled

*A/D output data is updated 1 CLK period prior to assertion of INTR

Increasing Bus Drive and/or Reducing Time on Bus

TL/H/5671-10

Typical Applications (Continued)

Sampling an AC Input Signal

Note 1: Oversample whenever possible [keep fs $>2 f(-60)$] to eliminate input frequency folding (aliasing) and to allow for the skirt response of the filter.
Note 2: Consider the amplitude errors which are introduced within the passband of the filter.

70\% Power Savings by Clock Gating

Power Savings by A/D and $V_{\text {REF }}$ Shutdown

*Use ADC0801, 02, 03 or 05 for lowest power consumption.
Note: Logic inputs can be driven to $V_{C C}$ with A / D supply at zero volts.
Buffer prevents data bus from overdriving output of A / D when in shutdown mode.

Functional Description

1.0 UNDERSTANDING A/D ERROR SPECS

A perfect A/D transfer characteristic (staircase waveform) is shown in Figure 1a. The horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB (19.53 mV with 2.5 V tied to the $\mathrm{V}_{\text {REF }} / 2 \mathrm{pin}$). The digital output codes that correspond to these inputs are shown as $D-1, D$, and $D+1$. For the perfect A / D, not only will centervalue ($A-1, A, A+1, \ldots$. analog inputs produce the correct output ditigal codes, but also each riser (the transitions between adjacent output codes) will be located $\pm 1 / 2$ LSB away from each center-value. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages that extend $\pm 1 / 2$ LSB from the ideal center-values. Each tread (the range of analog input voltage that provides the same digital output code) is therefore 1 LSB wide.

Figure $1 b$ shows a worst case error plot for the ADC0801. All center-valued inputs are guaranieed to produce the correct output codes and the adjacent risers are guaranteed to be no closer to the center-value points than $\pm 1 / 4$ LSB. In
Transfer Function
other words, if we apply an analog input equal to the centervalue $\pm 1 / 4 \mathrm{LSB}$, we guarantee that the A/D will produce the correct digital code. The maximum range of the position of the code transition is indicated by the horizontal arrow and it is guaranteed to be no more than $1 / 2$ LSB.
The error curve of Figure 10 shows a worst case error plot for the ADC0802. Here we guarantee that if we apply an analog input equal to the LSB analog voltage center-value the A/D will produce the correct digital code.
Next to each transfer function is shown the corresponding error plot. Many people may be more familiar with error plots than transfer functions. The analog input voltage to the A/D is provided by either a linear ramp or by the discrete output steps of a high resolution DAC. Notice that the error is continuously displayed and includes the quantization uncertainty of the A/D. For example the error at point 1 of Figure 1a is $+1 / 2$ LSB because the digital code appeared $1 / 2$ LSB in advance of the center-value of the tread. The error plots always have a constant negative slope and the abrupt upside steps are always 1 LSB in magnitude.

a) Accuracy $= \pm 0$ LSB: A Perfect A/D

Transfer Function

Error Plot

b) Accuracy $= \pm 1 / 4$ LSB

c) Accuracy $= \pm 1 / 2$ LSB

Functional Description (Continued)

2.0 FUNCTIONAL DESCRIPTION

The ADC0801 series contains a circuit equivalent of the 256R network. Analog switches are sequenced by successive approximation logic to match the analog difference input voltage $\left[\mathrm{V}_{\mathbb{I N}}(+)-\mathrm{V}_{\mathbb{I N}}(-)\right]$ to a corresponding tap on the R network. The most significant bit is tested first and after 8 comparisons (64 clock cycles) a digital 8 -bit binary code (11111111 = full-scale) is transferred to an output latch and then an interrupt is asserted (INTR makes a high-to-low transition). A conversion in process can be interrupted by issuing a second start command. The device may be operated in the free-running mode by connecting INTR to the $\overline{W R}$ input with $\overline{\mathrm{CS}}=0$. To ensure start-up under all possible conditions, an external $\overline{W R}$ pulse is required during the first power-up cycle.
On the high-to-low transition of the $\overline{\mathrm{WR}}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{\mathrm{CS}}$ input and $\overline{W R}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-tohigh transition.

A functional diagram of the A/D converter is shown in Figure 2. All of the package pinouts are shown and the major logic control paths are drawn in heavier weight lines.
The converter is started by having $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 8 -bit shift register. Internal clock signals then transfer this " 1 " to the Q output of F/F1. The AND gate, G1, combines this " 1 " output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 ") the start F / F is reset and the 8 -bit shift register then can have the " 1 " clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would momentarily be at a "1" level) and the 8-bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals and the converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F / F.

TL/H/5671-13
Note 1: $\overline{\mathrm{CS}}$ shown twice for clarity.
Note 2: SAR = Successive Approximation Register.
FIGURE 2. Block Diagram

Functional Description (Continued)

After the " 1 " is clocked through the 8 -bit shift register (which completes the SAR search) it appears as the input to the D-type latch, LATCH 1. As soon as this " 1 " is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the TRI-STATE output latches. When LATCH 1 is subsequently enabled, the Q output makes a high-to-low transition which causes the INTR F/F to set. An inverting buffer then supplies the INTR input signal.
Note that this SET control of the INTR F/F remains low for 8 of the external clock periods (as the internal clocks run at $1 / 8$ of the frequency of the external clock). If the data output is continuously enabled ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ both held low), the $\overline{\text { INTR }}$ output will still signal the end of conversion (by a high-to-low transition), because the SET input can control the Q output of the INTR F/F even though the RESET input is constantly at a " 1 " level in this operating mode. This INTR output will therefore stay low for the duration of the SET signal, which is 8 periods of the external clock frequency (assuming the A/D is not started during this interval).
When operating in the free-running or continuous conversion mode ($\overline{\mathrm{NTR}}$ pin tied to $\overline{W R}$ and $\overline{\mathrm{CS}}$ wired low-see also section 2.8), the START F/F is SET by the high-to-low transition of the $\overline{\text { NTR }}$ signal. This resets the SHIFT REGISTER which causes the input to the D-type latch, LATCH 1, to go low. As the latch enable input is still present, the \bar{Q} output will go high, which then allows the INTR F/F to be RESET. This reduces the width of the resulting INTR output pulse to only a few propagation delays (approximately 300 ns).
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled to provide the 8bit digital outputs.

2.1 Digital Control Inputs

The digital control inputs ($\overline{C S}, \overline{R D}$, and $\overline{W R}$) meet standard $\mathrm{T}^{2} \mathrm{~L}$ logic voltage levels. These signals have been renamed when compared to the standard A/D Start and Output Enable labels. In addition, these inputs are active low to allow an easy interface to microprocessor control busses. For non-microprocessor based applications, the $\overline{\mathrm{CS}}$ input (pin 1) can be grounded and the standard A/D Start function is obtained by an active low pulse applied at the WR input (pin 3) and the Output Enable function is caused by an active low pulse at the $\overline{R D}$ input (pin 2).

2.2 Analog Differential Voltage Inputs and Common-Mode Rejection

This A/D has additional applications flexibility due to the analog differential voltage input. The $\mathrm{V}_{\mathrm{IN}}(-)$ input (pin 7) can be used to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in $4 \mathrm{~mA}-20 \mathrm{~mA}$ current loop conversion. In addition, commonmode noise can be reduced by use of the differential input. The time interval between sampling $\mathrm{V}_{\mathbb{I N}}(+)$ and $\mathrm{V}_{\mathrm{IN}}(-)$ is 4$1 / 2$ clock periods. The maximum error voltage due to this
slight time difference between the input voltage samples is given by:

$$
\Delta V_{e}(\mathrm{MAX})=\left(\mathrm{V}_{\mathrm{P}}\right)\left(2 \pi \mathrm{f}_{\mathrm{cm}}\right)\left(\frac{4.5}{f_{\mathrm{CLK}}}\right)
$$

where:
ΔV_{e} is the error voltage due to sampling delay
V_{P} is the peak value of the common-mode voltage
f_{cm} is the common-mode frequency
As an example, to keep this error to $1 / 4$ LSB $(\sim 5 \mathrm{mV})$ when operating with a 60 Hz common-mode frequency, f_{cm}, and using a 640 kHz A/D clock, folk, would allow a peak value of the common-mode voltage, V_{P}, which is given by:

$$
V_{P}=\frac{\left[\Delta V_{\mathrm{e}(\mathrm{MAX})}\left(f_{\mathrm{CLK}}\right)\right]}{\left(2 \pi f_{\mathrm{cm}}\right)(4.5)}
$$

or

$$
V_{P}=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)}
$$

which gives

$$
V_{P} \cong 1.9 \mathrm{~V}
$$

The allowed range of analog input voltages usually places more severe restrictions on input common-mode noise levels.
An analog input voltage with a reduced span and a relatively large zero offset can be handled easily by making use of the differential input (see section 2.4 Reference Voltage).

2.3 Analog Inputs

2.3.1 Input Current

Normal Mode

Due to the internal switching action, displacement currents will flow at the analog inputs. This is due to on-chip stray capacitance to ground as shown in Figure 3.

ron of SW 1 and SW $2 \cong 5 \mathrm{k} \Omega$
$\mathrm{r}=\mathrm{ron}_{\mathrm{O}} \mathrm{C}_{\text {STRAY }} \cong 5 \mathrm{k} \Omega \times 12 \mathrm{pF}=60 \mathrm{~ns}$
FIGURE 3. Analog Input Impedance

Functional Description (Continued)

The voltage on this capacitance is switched and will result in currents entering the $\mathrm{V}_{\mathfrak{I N}}(+)$ input pin and leaving the $\mathrm{V}_{\mathrm{IN}}(-)$ input which will depend on the analog differential input voltage levels. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not cause errors as the on-chip comparator is strobed at the end of the clock period.

Fault Mode

If the voltage source applied to the $\mathrm{V}_{\mathrm{IN}}(+)$ or $\mathrm{V}_{\mathrm{IN}}(-)$ pin exceeds the allowed operating range of $\mathrm{V}_{\mathrm{CC}}+50 \mathrm{mV}$, large input currents can flow through a parasitic diode to the $V_{C C}$ pin . If these currents can exceed the 1 mA max allowed spec, an external diode (1N914) should be added to bypass this current to the V_{CC} pin (with the current bypassed with this diode, the voltage at the $\mathrm{V}_{\mathbb{I}}(+)$ pin can exceed the V_{CC} voltage by the forward voltage of this diode).

2.3.2 Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathrm{IN}}(+)$ input voltage at full-scale. For continuous conversions with a 640 kHz clock frequency with the $\mathrm{V}_{\mathrm{IN}}(+)$ input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $V_{\text {REF }} / 2$ pin for high resistance sources (>1 $k \Omega$). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the detrimental effects of the voltage drop across this input resistance, which is due to the average value of the input current, can be eliminated with a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage.

2.3.3 Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used, will not cause errors as the input currents settle out prior to the comparison time. If a low pass filter is required in the system, use a low valued series resistor ($\leq 1 \mathrm{k} \Omega$) for a passive RC section or add an op amp RC active low pass filter. For low source resistance applications, ($\leq 1 \mathrm{k} \Omega$), a $0.1 \mu \mathrm{~F}$ bypass capacitor at the inputs will prevent noise pickup due to series lead inductance of a long wire. A 100Ω series resistor can be used to isolate this ca-pacitor-both the R and C are placed outside the feedback loop-from the output of an op amp, if used.

2.3.4 Noise

The leads to the analog inputs (pin 6 and 7) should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $5 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired system noise pickup. Input bypass capacitors, placed from the analog inputs to ground, will eliminate system noise pickup but can create analog scale errors as these capacitors will average the transient input switching currents of the A/D (see section 2.3.1.). This scale error depends on both a large source
resistance and the use of an input bypass capacitor. This error can be eliminated by doing a full-scale adjustment of the A / D (adjust $V_{\text {REF }} / 2$ for a proper full-scale reading-see section 2.5.2 on Full-Scale Adjustment) with the source resistance and input bypass capacitor in place.

2.4 Reference Voltage

2.4.1 Span Adjust

For maximum applications flexibility, these $A / D s$ have been designed to accommodate a $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$ or an adjusted voltage reference. This has been achieved in the design of the IC as shown in Figure 4.

TL/H/5671-15
FIGURE 4. The VREFERENCE Design on the IC
Notice that the reference voltage for the IC is either $1 / 2$ of the voltage applied to the $V_{C C}$ supply pin, or is equal to the voltage that is externally forced at the $V_{R E F} / 2$ pin. This allows for a ratiometric voltage reference using the $\mathrm{V}_{C C}$ supply, a $5 \mathrm{~V}_{D C}$ reference voltage can be used for the V_{C} supply or a voltage less than $2.5 \mathrm{~V}_{\mathrm{DC}}$ can be applied to the $\mathrm{V}_{\mathrm{REF}} / 2$ input for increased application flexibility. The internal gain to the $V_{\text {REF }} / 2$ input is 2 , making the full-scale differential input voltage twice the voltage at pin 9.
An example of the use of an adjusted reference voltage is to accommodate a reduced span-or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from $0.5 \mathrm{~V}_{\mathrm{DC}}$ to $3.5 \mathrm{~V}_{\mathrm{DC}}$, instead of 0 V to $5 \mathrm{~V}_{\mathrm{DC}}$, the span would be 3 V as shown in Figure 5. With $0.5 \mathrm{~V}_{\mathrm{DC}}$ applied to the $\mathrm{V}_{\mathrm{IN}}(-)$ pin to absorb the offset, the reference voltage can be made equal to $1 / 2$ of the 3 V span or $1.5 \mathrm{~V}_{\mathrm{DC}}$. The A/D now will encode the $\mathrm{V}_{\mathrm{IN}}(+)$ signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the $3.5 \mathrm{~V}_{\mathrm{DC}}$ input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range.

TL/H/5671-16
a) Analog Input Signal Example
b) Accommodating an Analog Input from 0.5 V (Digital Out $==00_{\text {HEX }}$) to 3.5 V
(Digital Out $=$ FF $_{\text {HEX }}$)

FIGURE 5. Adapting the A/D Analog Input Voltages to Match an Arbitrary Input Signal Range

2.4.2 Reference Accuracy Requirements

The converter can be operated in a ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A/D converter and therefore cancels out in the final digital output code. The ADC0805 is specified particularly for use in ratiometric applications with no adjustments required. In absolute conversion applications, both the initial value and the temperature stability of the reference voltage are important factors in the accuracy of the A/D converter. For $V_{R E F} / 2$ voltages of $2.4 \mathrm{~V}_{\mathrm{DC}}$ nominal value, initial errors of ± 10 $m V_{D C}$ will cause conversion errors of ± 1 LSB due to the gain of 2 of the $V_{\text {REF }} / 2$ input. In reduced span applications, the initial value and the stability of the $\mathrm{V}_{\text {REF }} / 2$ input voltage become even more important. For example, if the span is reduced to 2.5 V , the analog input LSB voltage value is correspondingly reduced from 20 mV (5 V span) to 10 mV and 1 LSB at the $\mathrm{V}_{\text {REF }} / 2$ input becomes 5 mV . As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source.
In general, the magnitude of the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full-scale errors in the A/D transfer function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive. The LM336B 2.5V IC reference diode (from National Semiconductor) has a temperature stability of 1.8 mV typ (6 mV max) over $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$. Other temperature range parts are also available.

2.5 Errors and Reference Voltage Adjustments

2.5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $A / D \mathrm{~V}_{I N}(-)$ input at this $\mathrm{V}_{I N(M I N)}$ value (see Applications section). This utilizes the differential mode operation of the A/D.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input. Zero error is the difference between the actual DC input voltage that is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value ($1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}$ for $\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$).

2.5.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage that is $11 / 2$ LSB less than the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\mathrm{REF}} / 2$ input (pin 9 or the V_{CC} supply if pin 9 is not used) for a digital output code that is just changing from 11111110 to 11111111.

Functional Description (Continued)

2.5.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal that does not go to ground) this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathrm{IN}}(+)$ voltage that equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, $1 \mathrm{LSB}=$ ana\log span/256) is applied to pin 6 and the zero reference voltage at pin 7 should then be adjusted to just obtain the $00_{\text {HEX }}$ to 0^{01} HEX code transition.
The full-scale adjustment should then be made (with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied) by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where:
$\mathrm{V}_{\mathrm{MAX}}=$ The high end of the analog input range
and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $\mathrm{V}_{\mathrm{REF}} / 2$ (or V_{CC}) voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure.

2.6 Clocking Option

The clock for the A/D can be derived from the CPU clock or an external RC can be added to provide self-clocking. The CLK IN (pin 4) makes use of a Schmitt trigger as shown in Figure 6.

TL/H/5671-17
FIGURE 6. Self-Clocking the A/D
Heavy capacitive or DC loading of the clock R pin should be avoided as this will disturb normal converter operation. Loads less than 50 pF , such as driving up to $7 \mathrm{~A} / \mathrm{D}$ converter clock inputs from a single clock R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power TTL buffer or PNP input logic should be used to minimize the loading on the clock R pin (do not use a standard TTL buffer).

2.7 Restart During a Conversion

If the A / D is restarted ($\overline{C S}$ and $\overline{W R}$ go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not updated if the
conversion in process is not allowed to be completed, therefore the data of the previous conversion remains in this latch. The INTR output simply remains at the " 1 " level.

2.8 Continuous Conversions

For operation in the free-running mode an initializing pulse should be used, following power-up, to ensure circuit operation. In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{W R}$ input is tied to the INTR output. This WR and INTR node should be momentarily forced to logic low following a power-up cycle to guarantee operation.

2.9 Driving the Data Bus

This MOS A/D, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circuitry, which is tied to the data bus, will add to the total capacitive loading, even in TRISTATE (high impedance mode). Backplane bussing also greatly adds to the stray capacitance of the data bus.
There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see typical characteristics curves).
At higher CPU clock frequencies time can be extended for I/O reads (and/or writes) by inserting wait states (8080) or using clock extending circuits (6800).
Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be TRI-STATE buffers (low power Schottky such as the DM74LS240 series is recommended) or special higher drive current products which are designed as bus drivers. High current bipolar bus drivers with PNP inputs are recommended.

2.10 Power Supplies

Noise spikes on the V_{CC} supply line can cause conversion errors as the comparator will respond to this noise. A low inductance tantalum filter capacitor should be used close to the converter V_{CC} pin and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate LM340LAZ-5.0, TO-92, 5 V voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the V_{CC} supply.

2.11 Wiring and Hook-Up Precautions

Standard digital wire wrap sockets are not satisfactory for breadboarding this A/D converter. Sockets on PC boards can be used and all logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup, therefore shielded leads may be necessary in many applications.

Functional Description (Continued)

A single point analog ground that is separate from the logic ground points should be used. The power supply bypass capacitor and the self-clocking capacitor (if used) should both be returned to digital ground. Any $\mathrm{V}_{\mathrm{REF}} / 2$ bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the A/D converter. Zero errors in excess of $1 / 4$ LSB can usually be traced to improper board layout and wiring (see section 2.5.1 for measuring the zero error).

3.0 TESTING THE A/D CONVERTER

There are many degrees of complexity associated with testing an A/D converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 7.
For ease of testing, the $\mathrm{V}_{\text {REF }} / 2$ (pin 9) should be supplied with $2.560 V_{D C}$ and a $V_{C C}$ supply voltage of $5.12 V_{D C}$ should be used. This provides an LSB value of 20 mV .
If a full-scale adjustment is to be made, an analog input voltage of $5.090 \mathrm{~V}_{\mathrm{DC}}(5.120-11 / 2 \mathrm{LSB})$ should be applied to the $\mathrm{V}_{\mathrm{IN}}(+)$ pin with the $\mathrm{V}_{\mathrm{IN}}(-)$ pin grounded. The value of the $\mathrm{V}_{\text {REF }} / 2$ input voltage should then be adjusted until the digital output code is just changing from 11111110 to 1111 1111. This value of $V_{\text {REF }} / 2$ should then be used for all the tests.
The digital output LED display can be decoded by dividing the 8 bits into 2 hex characters, the 4 most significant (MS) and the 4 least significant (LS). Table I shows the fractional binary equivalent of these two 4 -bit groups. By adding the voltages obtained from the "VMS" and "VLS" columns in Table I, the nominal value of the digital display (when

TL/H/5671-18

FIGURE 7. Basic A/D Tester
$\mathrm{V}_{\text {REF }} / 2=2.560 \mathrm{~V}$) can be determined. For example, for an output LED display of 10110110 or B 6 (in hex), the voltage values from the table are $3.520+0.120$ or $3.640 \mathrm{~V}_{\mathrm{DC}}$. These voltage values represent the center-values of a perfect A / D converter. The effects of quantization error have to be accounted for in the interpretation of the test results.
For a higher speed test system, or to obtain plotted data, a digital-to-analog converter is needed for the test set-up. An accurate 10-bit DAC can serve as the precision voltage source for the A / D. Errors of the A/D under test can be expressed as either analog voltages or differences in 2 digital words.
A basic A/D tester that uses a DAC and provides the error as an analog output voltage is shown in Figure 8. The 2 op amps can be eliminated if a lab DVM with a numerical subtraction feature is available to read the difference voltage, "A-C", directly. The analog input voltage can be supplied by a low frequency ramp generator and an $X-Y$ plotter can be used to provide analog error (Y axis) versus analog input (X axis). The construction details of a tester of this type are provided in the NSC application note AN-179, "Analog-toDigital Converter Testing"'.
For operation with a microprocessor or a computer-based test system, it is more convenient to present the errors digitally. This can be done with the circuit of Figure 9, where the output code transitions can be detected as the 10-bit DAC is incremented. This provides $1 / 4$ LSB steps for the 8 -bit A/D under test. If the results of this test are automatically plotted with the analog input on the X axis and the error (in LSB's) as the Y axis, a useful transfer function of the A/D under test results. For acceptance testing, the plot is not necessary and the testing speed can be increased by establishing internal limits on the allowed error for each code.

4.0 MICROPROCESSOR INTERFACING

To dicuss the interface with 8080A and 6800 microprocessors, a common sample subroutine structure is used. The microprocessor starts the A/D, reads and stores the results of 16 successive conversions, then returns to the user's program. The 16 data bytes are stored in 16 successive memory locations. All Data and Addresses will be given in hexadecimal form. Software and hardware details are provided separately for each type of microprocessor.

4.1 Interfacing $\mathbf{8 0 8 0}$ Microprocessor Derivatives (8048, 8085)

This converter has been designed to directly interface with derivatives of the 8080 microprocessor. The A/D can be mapped into memory space (using standard memory address decoding for $\overline{\mathrm{CS}}$ and the $\overline{\mathrm{MEMR}}$ and $\overline{\text { MEMW strobes) }}$ or it can be controlled as an I/O device by using the $\overline{/ O R}$ and $\overline{\mathrm{IOWW}}$ strobes and decoding the address bits AO \rightarrow A7 (or address bits A8 \rightarrow A15 as they will contain the same 8 -bit address information) to obtain the $\overline{\mathrm{CS}}$ input. Using the I/O space provides 256 additional addresses and may allow a simpler 8 -bit address decoder but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the A/D should be mapped into memory space. An example of an A/D in I/O space is shown in Figure 10.

Functional Description (Continued)

FIGURE 8. A/D Tester with Analog Error Output

TL/H/5671-19
FIGURE 9. Basic "Digital" A/D Tester

TABLE I. DECODING THE DIGITAL OUTPUT LEDs

HEX	BINARY				FRACTIONAL BINARY VALUE FOR								OUTPUT VOLTAGE CENTER VALUES WITH$\mathrm{V}_{\mathrm{REF}} / 2=2.560 \mathrm{~V}_{\mathrm{DC}}$	
					MS GROUP				LS GROUP				VMS GROUP*	VLS GROUP*
F	1	1	1	1				15/16				15/256	4.800	0.300
E	1		1	0			7/8				7/128		4.480	0.280
D	1		0	1				13/16				13/256	4.160	0.260
C	1	1	0	0		$3 / 4$				3/64			3.840	0.240
B	1	0	1	1				11/16				11/256	3.520	0.220
A	1		1	0			5/8				5/128		3.200	0.200
9	1		0	1				9/16				9/256	2/880	0.180
8	1	0	0	0	1/2				1/32				2/560	0.160
7	0	1	1	1				7/16				7/256	2.240	0.140
6	0		1	0			$3 / 8$				3/128		1.920	0.120
5	0	1	0	1				5/16				2/256	1.600	0.100
4	0	1	0	0		1/4				1/64			1/280	0.080
3	0	0	1	1				3/16				3/256	0.960	0.060
2	0		1	0			1/8				1/128		0.640	0.040
1	0	0	0	1				1/16		,		1/256	0.320	0.020
0	0	0	0	0									0	0

[^5]Functional Description (Continued)

Note i: *Pin numbers for the DP8228 system controller, others are INS8080A.
Note 2: Pin 23 of the INS8228 must be tied to +12 V through a $1 \mathrm{k} \Omega$ resistor to generate the RST 7 instruction when an interrupt is acknowledged as required by the accompanying sample program.

FIGURE 10. ADC0801-INS8080A CPU Interface

SAMPLE PROGRAM FOR FIGURE 10 ADC0801-INS8080A CPU INTERFACE

Note 1: The stack pointer must be dimensioned because a RST 7 instruction pushes the PC onto the stack.
Note 2: All address used were arbitrarily chosen.

Functional Description (Continued)

The standard control bus signals of the $8080 \overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and $\overline{W R}$) can be directly wired to the digital control inputs of the A/D and the bus timing requirements are met to allow both starting the converter and outputting the data onto the data bus. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100 pF .

4.1.1 Sample 8080A CPU Interfacing Circuitry and Program

The following sample program and associated hardware shown in Figure 10 may be used to input data from the converter to the INS8080A CPU chip set (comprised of the INS8080A microprocessor, the INS8228 system controller and the INS8224 clock generator). For simplicity, the A/D is controlled as an I/O device, specifically an 8-bit bi-directional port located at an arbitrarily chosen port address, EO. The TRI-STATE output capability of the A/D eliminates the need for a peripheral interface device, however address decoding is still required to generate the appropriate $\overline{\mathrm{CS}}$ for the converter.

It is important to note that in systems where the A/D converter is $1-0 f-8$ or less I/O mapped devices, no address decoding circuitry is necessary. Each of the 8 address bits (A0 to A7) can be directly used as $\overline{\mathrm{CS}}$ inputs-one for each I/O device.

4.1.2 INS8048 Interface

The INS8048 interface technique with the ADC0801 series (see Figure 11) is simpler than the 8080A CPU interface. There are 24 I/O lines and three test input lines in the 8048. With these extra I/O lines available, one of the I/O lines (bit 0 of port 1) is used as the chip select signal to the A / D, thus eliminating the use of an external address decoder. Bus control signals $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ and $\overline{\mathrm{NT}}$ of the 8048 are tied directly to the A/D. The 16 converted data words are stored at onchip RAM locations from 20 to 2 F (Hex). The $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals are generated by reading from and writing into a dummy address, respectively. A sample interface program is shown below.

Functional Description (Continued)

4.2 Interfacing the $\mathbf{Z - 8 0}$

The Z-80 control bus is slightly different from that of the 8080. General $\overline{R D}$ and $\overline{W R}$ strobes are provided and separate memory request, $\overline{M R E Q}$, and I/O request, $\overline{\mathrm{IORQ}}$, signals are used which have to be combined with the generalized strobes to provide the equivalent 8080 signals. An advantage of operating the A/D in I/O space with the Z-80 is that the CPU will automatically insert one wait state (the $\overline{R D}$ and $\overline{\mathrm{WR}}$ strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 13.

FIGURE 13. Mapping the A/D as an I/O Device for Use with the Z-80 CPU
Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the A/D can be accomplished with this operating mode.

4.3 Interfacing 6800 Microprocessor Derivatives (6502, etc.)

The control bus for the 6800 microprocessor derivatives does not use the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe signals. Instead it employs a single R / \bar{W} line and additional timing, if needed, can be derived fom the $\phi 2$ clock. All I/O devices are memory mapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 14 shows an interface schematic where the A/D is memory mapped in the 6800 system. For simplicity, the $\overline{\mathrm{CS}}$ decoding is shown using $1 / 2$ DM8092. Note that in many 6800 systems, an al-
ready decoded $\overline{4 / 5}$ line is brought out to the common bus at pin 21. This can be tied directly to the $\overline{C S}$ pin of the A/D, provided that no other devices are addressed at HX ADDR: $4 X X X$ or $5 X X X$.
The following subroutine performs essentially the same function as in the case of the 8080A interface and it can be called from anywhere in the user's program.
In Figure 15 the ADC0801 series is interfaced to the M6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter, (PIA). Here the $\overline{C S}$ pin of the A/D is grounded since the PIA is already memory mapped in the M6800 system and no $\overline{\mathrm{CS}}$ decoding is necessary. Also notice that the A/D output data lines are connected to the microprocessor bus under program control through the PIA and therefore the A/D $\overline{\mathrm{RD}}$ pin can be grounded.
A sample interface program equivalent to the previous one is shown below Figure 15. The PIA Data and Control Registers of Port B are located at HEX addresses 8006 and 8007 , respectively.

5.0 GENERAL APPLICATIONS

The following applications show some interesting uses for the A/D. The fact that one particular microprocessor is used is not meant to be restrictive. Each of these application circuits would have its counterpart using any microprocessor that is desired.

5.1 Multiple ADC0801 Series to MC6800 CPU Interface

To transfer analog data from several channels to a single microprocessor system, a multiple converter scheme presents several advantages over the conventional multiplexer single-converter approach. With the ADC0801 series, the differential inputs allow individual span adjustment for each channel. Furthermore, all analog input channels are sensed simultaneously, which essentially divides the microprocessor's total system servicing time by the number of channels, since all conversions occur simultaneously. This scheme is shown in Figure 16.

Note 1: Numbers in parentheses refer to MC6800 CPU pin out.
Note 2: Number or letters in brackets refer to standard M6800 system common bus code.

TL/H/5671-24
FIGURE 14. ADC0801-MC6800 CPU Interface

Functional Description (Continued)
SAMPLE PROGRAM FOR FIGURE 14 ADC0801-MC6800 CPU INTERFACE

0010	DF 36	DATAIN	STX	TEMP2	; Save contents of X
0012	CE 002 C		LDX	\#\$002C	; Upon $\overline{\text { IRQ }}$ low CPU
0015	FFFFF8		STX	\$FFF8	; jumps to 002C
0018	B7 5000		STAA	\$5000	; Start ADC080l
001B	OE		CLI		
001C	3E	CONVRT	WAI		; Wait for interrupt
001D	DE 34		LDX	TEMPI	
001F	8C 020 F		CPX	\#\$020F	; Is final data stored?
0022	2714		BEQ	ENDP	
0024	B7 5000		STAA	\$5000	; Restarts ADC0801
0027	08		INX		
0028	DF 34		STX	TEMP1	
002A	20 FO		BRA	CONVRT	
002C	DE 34	INTRPT	LDX	TEMP1	
002E	B6 5000		LDAA	\$5000	; Read data
0031	A7 00		STAA	X	; Store it at X
0033	3B		RTI		
0034	0200	TEMP1	FDB	\$0200	; Starting address for ; data storage
0036	0000	TEMP2	FDB	\$0000	
0038	CE 0200	ENDP	LDX	\#\$0200	; Reinitialize TEMPI
003B	DF 34		STX	TEMP1	
003D	DE 36		LDX	TEMP2	
003F	39		RTS		; Return from subroutine ; Touser's program

Note 1: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user's program.

L/H/5671-25
FIGURE 15. ADC0801-MC6820 PIA Interface

Functional Description (Continued)

SAMPLE PROGRAM FOR FIGURE 15 ADC0801-MC6820 PIA INTERFACE

0010	CE 0038	DATAIN	LDX	\#\$0038	; Upon $\overline{\text { IRQ }}$ low CPU
0013	FF FF F8		STX	\$FFF8	; jumps to 0038
0016	B6 8006		LDAA	PIAORB	; Clear possible $\overline{\mathrm{IRQ}} \mathrm{flags}$
0019	4 F		CLRA		
001A	B7 8007		STAA	PIACRB	
001 D	B7 8006		STAA	PIAORB	; Set Port B as input
0020	OE		CLI		
0021	C6 34		LDAB	\#\$34	
0023	86 3D		LDAA	\#\$3D	
0025	F7 8007	CONVRT	StAB	PIACRB	; Starts ADC0801
0028	B7 8007		STAA	PIACRB	
002B	3 E		WAI		; Wait for interrupt
002C	DE 40		LDX	TEMP1	
002E	8C02 0F		CPX	\#\$020F	; Is final data stored?
0031	27 OF		BEQ	ENDP	
0033	08		INX		
0034	DF 40		STX	TEMPI	
0036	20 ED		BRA	CONVRT	
0038	DE 40	INTRPT	IDX	TEMP1	
003A	B6 8006		LDAA	PIAORB	; Read data in
003D	A7 00		STAA	X	; Store it at X
003F	3B		RTI		
0040	0200	TEMP1	FDB	\$0200	; Starting address for ; datastorage
0042	CE 0200	ENDP	LDX	\#\$0200	; Reinitialize TEMP1
0045	DF 40		STX	TEMPI	
0047	39		RTS		; Return from subroutine
		PIAORB	EQU	\$8006	; To user's program
		PIACRB	EQU	\$8007	

The following schematic and sample subroutine (DATA IN) may be used to interface (up to) 8 ADC0801's directly to the MC6800 CPU. This scheme can easily be extended to allow the interface of more converters. In this configuration the converters are (arbitrarily) located at HEX address 5000 in the MC6800 memory space. To save components, the clock signal is derived from just one RC pair on the first converter. This output drives the other A/Ds.

All the converters are started simultaneously with a STORE instruction at HEX address 5000. Note that any other HEX address of the form 5XXX will be decoded by the circuit, pulling all the $\overline{\mathrm{CS}}$ inputs low. This can easily be avoided by using a more definitive address decoding scheme. All the interrupts are ORed together to insure that all A/Ds have completed their conversion before the microprocessor is interrupted.
The subroutine, DATA IN, may be called from anywhere in the user's program. Once called, this routine initializes the

CPU, starts all the converters simultaneously and waits for the interrupt signal. Upon receiving the interrupt, it reads the converters (from HEX addresses 5000 through 5007) and stores the data successively at (arbitrarily chosen) HEX addresses 0200 to 0207, before returning to the user's program. All CPU registers then recover the original data they had before servicing DATA $\mathbb{I N}$.

5.2 Auto-Zeroed Differential Transducer Amplifier and A/D Converter

The differential inputs of the ADC0801 series eliminate the need to perform a differential to single ended conversion for a differential transducer. Thus, one op amp can be eliminated since the differential to single ended conversion is provided by the differential input of the ADC0801 series. In general, a transducer preamp is required to take advantage of the full A / D converter input dynamic range.

Functional Description (Continued)

Note 2: Numbers of letters in brackets refer to standard M6800 system common bus code.

FIGURE 16. Interfacing Multiple A/Ds in an MC6800 System
SAMPLE PROGRAM FOR FIGURE 16 INTERFACING MULTIPLE A/Ds IN AN MC6800 SYSTEM

ADDRESS	HEX CODE		MNEMONICS		COMMENTS
0010	DF 44	Datain	STX	TEMP	; Save Contents of X
0012	CE 00 2A		LDX	\#\$002A	; Upon IRQ LOW CPU
0015	FFFFF8		STX	\$FFF8	; Jumps to 002A
0018	B75000		STAA	\$5000	; Starts all A/D's
001B	OE		CLI		
001C	3E		WAI		; Wait for interrupt
001D	CE 5000		LDX	\#\$5000	
0020	DF 40		STX	INDEX1	; Reset both INDEX
0022	CE 0200		LDX	\#\$0200	; 1 and 2 to starting
0025	DF 42		STX	INDEX2	; addresses
0027	DE 44		LDX	TEMP	
0029	39		RTS		; Return from Subroutine
002A	DE 40	INTRPT	LDX	INDEXI	; INDEXI $\rightarrow \mathrm{X}$
002C	A6 00		LDAA	X	; Read data in from A/D at X
002E	08		INX		; Increment X by one
002F	DF 40		STX	INDEXI	; $\mathrm{X} \rightarrow$ INDEXI
0031	DE 42		LDX	INDEX2	; INDEX2 $\rightarrow \mathrm{X}$

Functional Description (Continued)

ADDRESS	HEX CODE		MNEMONICS	-	COMMENTS
0033	A7 00		STAA	X	; Store data at X
0035	8C 0207		CPX	\#\$0207	; Have all A/D's been read?
0038	2705		BEQ	RETURN	; Yes: branch to RETURN
003A	08		INX		; No: increment X by one
003B	DF 42		STX	INDEX2	; $\mathrm{X} \rightarrow$ INDEX2
003D	20 EB		BRA	INTRPT	; Branch to 002A
003F	3B	RETURN	RTI		
0040	5000	INDEXI	FDB	\$5000	; Starting address for A/D
0042	0200	INDEX2	FDB	\$0200	; Starting address for data storage
0044	0000	TEMP	FDB	\$0000	

Note 1: In order for the microprocessor to service subroutines and interrupts, the stack pointer must be dimensioned in the user's program.

For amplification of DC input signals, a major system error is the input offset voltage of the amplifiers used for the preamp. Figure 17 is a gain of 100 differential preamp whose offset voltage errors will be cancelled by a zeroing subroutine which is performed by the INS8080A microprocessor system. The total allowable input offset voltage error for this preamp is only $50 \mu \mathrm{~V}$ for $1 / 4$ LSB error. This would obviously require very precise amplifiers. The expression for the differential output voltage of the preamp is:

where I_{X} is the current through resistor R_{X}. All of the offset error terms can be cancelled by making $\pm I_{X} R_{X}=V_{O S 1}+$ $\mathrm{V}_{\text {OS3 }}-\mathrm{V}_{\text {OS2 }}$. This is the principle of this auto-zeroing scheme.
The INS8080A uses the 3 I/O ports of an INS8255 Programable Peripheral Interface (PPI) to control the auto zeroing and input data from the ADC0801 as shown in Figure 18. The PPI is programmed for basic I/O operation (mode 0) with Port A being an input port and Ports B and C being output ports. Two bits of Port C are used to alternately open or close the 2 switches at the input of the preamp. Switch

SW1 is closed to force the preamp's differential input to be zero during the zeroing subroutine and then opened and SW2 is then closed for conversion of the actual differential input signal. Using 2 switches in this manner eliminates concern for the ON resistance of the switches as they must conduct only the input bias current of the input amplifiers.
Output Port B is used as a successive approximation register by the 8080 and the binary scaled resistors in series with each output bit create a D/A converter. During the zeroing subroutine, the voltage at V_{x} increases or decreases as required to make the differential output voltage equal to zero. This is accomplished by ensuring that the voltage at the output of A1 is approximately 2.5 V so that a logic " 1 " (5V) on any output of Port B will source current into node V_{X} thus raising the voltage at V_{X} and making the output differential more negative. Conversely, a logic " 0 " (0 V) will pull current out of node V_{X} and decrease the voltage, causing the differential output to become more positive. For the resistor values shown, V_{X} can move $\pm 12 \mathrm{mV}$ with a resolution of 50 $\mu \mathrm{V}$, which will null the offset error term to $1 / 4$ LSB of fullscale for the ADC0801. It is important that the voltage levels that drive the auto-zero resistors be constant. Also, for symmetry, a logic swing of 0 V to 5 V is convenient. To achieve this, a CMOS buffer is used for the logic output signals of Port B and this CMOS package is powered with a stable 5 V source. Buffer amplifier A1 is necessary so that it can source or sink the D/A output current.

Functional Description (Continued)

Note 1: R2 $=49.5$ R1
Note 2: Switches are LMC13334 CMOS analog switches.
Note 3: The 9 resistors used in the auto-zero section can be $\pm 5 \%$ tolerance.
FIGURE 17. Gain of 100 Differential Transducer Preamp

FIGURE 18. Microprocessor Interface Circuitry for Differential Preamp

A flow chart for the zeroing subroutine is shown in Figure 19. It must be noted that the ADC0801 series will output an all zero code when it converts a negative input $\left[\mathrm{V}_{\mathrm{IN}}(-) \geq\right.$ $\mathrm{V}_{\mathrm{IN}}(+)$]. Also, a logic inversion exists as all of the I/O ports are buffered with inverting gates.
Basically, if the data read is zero, the differential output voltage is negative, so a bit in Port B is cleared to pull V_{X} more negative which will make the output more positive for the next conversion. If the data read is not zero, the output voltage is positive so a bit in Port B is set to make V_{X} more positive and the output more negative. This continues for 8 approximations and the differential output eventually converges to within 5 mV of zero.
The actual program is given in Figure 20. All addresses used are compatible with the BLC 80/10 microcomputer system. In particular:
Port A and the ADC0801 are at port address E4
Port B is at port address E5
Port C is at port address E6
PPI control word port is at port address E7
Program Counter automatically goes to ADDR:3C3D upon
acknowledgement of an interrupt from the ADC0801

5.3 Multiple A/D Converters in a Z-80 Interrupt Driven Mode

In data acquisition systems where more than one A/D converter (or other peripheral device) will be interrupting program execution of a microprocessor, there is obviously a need for the CPU to determine which device requires servicing. Figure 21 and the accompanying software is a method of determining which of 7 ADC0801 converters has completed a conversion (INTR asserted) and is requesting an interrupt. This circuit allows starting the A/D converters in any sequence, but will input and store valid data from the converters with a priority sequence of A/D 1 being read first, A/D 2 second, etc., through A/D 7 which would have the lowest priority for data being read. Only the converters whose INT is asserted will be read.
The key to decoding circuitry is the DM74LS373, 8-bit D type flip-flop. When the Z-80 acknowledges the interrupt, the program is vectored to a data input Z-80 subroutine. This subroutine will read a peripheral status word from the DM74LS373 which contains the logic state of the INTR outputs of all the converters. Each converter which initiates an interrupt will place a logic " 0 " in a unique bit position in the status word and the subroutine will determine the identity of the converter and execute a data read. An identifier word (which indicates which A/D the data came from) is stored in the next sequential memory location above the location of the data so the program can keep track of the identity of the data entered.

TL/H/5671-28
FIGURE 19. Flow Chart for Auto-Zero Routine

3D00	3 E90	MVI 90		
3D02	D3E7	Out Control Port		; Program PPI
$3 \mathrm{DO4}$	2601	MVI H 01	Auto-Zero Subroutine	
3D06	7 C	MOV A, H		
3 D 07	D3E6	OUT C		; Close SWl open SW2
3 D 09	0680	MVI B 80		; Initialize SAR bit pointer
3D0B	3E7F	MVI A 7 F		; Initialize SAR code
3DOD	4F	MOV C,A	Return	
3DOE	D3E5	OUT B		; Port B=SAR code
3D10	31AA3D	LXI SP 3DAA	Start	; Dimension stack pointer
3 D13	D3E4	OUT A		; Start A/D
3D15	FB	IE		
3 D16	00	NOP	Loop	; Ioop until $\overline{\text { INT }}$ asserted
3 D17	C3163D	JMP Loop		
3D1A	7 A	MOV A, D	Auto-Zero	
3D1B	C600	ADI 00		
3D1D	CA2D3D	JZ Set C		; Test A/D output data for zero
3D20	78	MOV A, B	Shift B	
3 D 21	F600	ORI 00		; Clear carry
3D23	1 F	RAR		; Shift "l" in B right one place
3D24	FEOO	CPI 00		; Is Bzero? If yes last
3D26	CA373D	JZ Done		; approximation has been made
3D29	47	MOV B,A		
3D2A	C3333D	JMP New C		
3D2D	79	MOV A, C	Set C	
3D2E	BO	ORA B		; Set bit in C that is in same
3D2F	4F	MOV C, A		; positionas "l"in ${ }^{\text {b }}$
3 330	C3203D	JMP Shift B		
3D33	A9	XRA C	New C	; Clear bit in C that is in
3D34	C30D3D	JMP Return		; same position as "l" in B
3 D37	47	MOV B,A	Done	; then output new SAR code.
3D38	7 C	MOV A, H		; Open SW1, close SW2 then
3D39	EE03	XRI 03		; proceed with program. Preamp
3D3B	D3E6	OUT C		; is now zeroed.
3D3D		-	Normal	
		-		
		-		
		Program for processing proper data values		
3C3D	DBE4	IN A	Read A/D Subroutine	; Read A/D data
3C3F	EEFF	XRI FF		; Invert data
3 C 41	57	MOV D,A		
3 C 42	78	MOV A, B		; Is B Reg = 0? If not stay
3 C 43	E6FF	ANI FF		; in auto zero subroutine
3 C 45	C21A3D	JNZ Auto-Zero		
3 C 48	C33D3D	JMP Normal		
Note: All numerical values are hexadecimal representations.				

5.3 Multiple A/D Converters in a Z-80® Interrupt Driven Mode (Continued)
The following notes apply:

1) It is assumed that the CPU automatically performs a RST 7 instruction when a valid interrupt is acknowledged (CPU is in interrupt mode 1). Hence, the subroutine starting address of X0038.
2) The address bus from the Z-80 and the data bus to the Z80 are assumed to be inverted by bus drivers.
3) A / D data and identifying words will be stored in sequential memory locations starting at the arbitrarily chosen address $\times 3 \mathrm{E} 00$.
4) The stack pointer must be dimensioned in the main program as the RST 7 instruction automatically pushes the PC onto the stack and the subroutine uses an additional 6 stack addresses.
5) The peripherals of concern are mapped into I/O space with the following port assignments:

HEX PORT ADDRESS	PERIPHERAL
00	MM74C374 8-bit flip-flop
01	A/D 1
02	A/D 2
03	A/D 3
04	A/D 4
05	A/D 5
06	A/D 6
07	A/D 7

This port address also serves as the A/D identifying word in the program.

TL/H/5671-29
FIGURE 21. Multiple A/Ds with Z-80 Type Microprocessor INTERRUPT SERVICING SUBROUTINE

LOC	OBJ CODE	
0038	E5	
0039	C5	
$003 A$	F5	
$003 B$	$21003 E$	
$003 E$	OE 01	
0040	D300	
0042	DB00	
0044	47	
0045	79	TEST
0046	FE 08	
0048	CA 60 00	
$004 B$	78	
$004 C$	1F	
$004 D$	47	
004 E	DA 5500	
0051	OC	NEXT
0052	C3 4500	
0055	ED 78	LOAD
0057	EE FF	
0059	77	
$005 A$	$2 C$	
$005 B$	71	
$005 C$	$2 C$	
$005 D$	C3 51 00	
0060	F1	DONE
0061	Cl	
0062	E1	
0063	C9	

SOURCE
STATEMENT
PUSH HL
PUSH BC
PUSH AF
LD (HL), X3E00
LD C, XO1
OUT X00, A
IN A, XOO
LD B,A
LD A, C
CP, X08
JPZ, DONE
LD A, B
RRA
LD B, A
JPC, LOAD
INC C
JP, TEST
INA, (C)
XOR FF
LD (HL) , A ; Store the data
INC L
INC L

POPBC ; before the interrupt.
POP HL
RET

LD (HL) , C ; Store A/D identifier (A/D port ADDR).
JP, NEXT \quad Test next bit in status word.
POPAF ; Re-establish all registers as they were

COMMENT

; Save contents of all registers affected by ; this subroutine.
; Assumed INT mode 1 earlier set.
; Initialize memory pointer where data will be stored.
; C register will be port ADDR of A/D converters.
; Load peripheral status word into 8-bit latch.
; Load status word into accumulator.
; Save the status word.
; Test to see if the status of all A/D's have
; been checked. If so, exit subroutine
; Test a single bit in status word by looking for
; a "l" to be rotated into the CARRY (an INT
; is loaded as a "l"). If CARRY is set then load
; contents of A / D at port ADDR in C register.
; If CARRY is not set, increment C register to point
; to next A / D, then test next bit in status word.
; Read data from interrupting A / D and invert
; the data.
; Return to original program

Ordering Information

TEMP RANGE		$0^{\circ} \mathrm{C} \mathrm{TO} 70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ TO $70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \mathrm{TO} 70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$
ERROR	$\pm 1 / 4 \text { Bit }$ Adjusted				ADC0801LCN
	$\pm 1 / 2 \text { Bit }$ Unadjusted	ADC0802LCWM	ADC0802LCV		ADC0802LCN
	$\pm 1 / 2 \text { Bit }$ Adjusted	ADC0803LCWM	ADC0803LCV		ADC0803LCN
	$\pm 1 \mathrm{Bit}$ Unadjusted	ADC0804LCWM	ADC0804LCV	ADC0804LCN	ADC0805LCN
PACKAGE OUTLINE		M20B-Small Outline	V20A-Chip Carrier	N20A-Molded DIP	

TEMP RANGE		$-\mathbf{4 0} 0^{\circ} \mathbf{C}$ TO $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$	$-\mathbf{5 5}{ }^{\circ} \mathbf{C}$ TO + $\mathbf{1 2 5} 5^{\circ} \mathbf{C}$
ERROR	$\pm 1 / 4$ Bit Adjusted	ADC0801LCJ	ADC0801LJ
	$\pm 1 / 2$ Bit Unadjusted	ADC0802LCJ	ADC0802LJ
	$\pm 1 / 2$ Bit Adjusted	ADC0803LCJ	
	± 1 Bit Unadjusted	ADC0804LCJ	
PACKAGE OUTLINE		J20A-Cavity DIP	J20A-Cavity DIP

Connection Diagrams

ADC080X
Dual-In-Line and Small Outline (SO) Packages

ADC080X Molded Chip Carrier (PCC) Package

See Ordering Information

National Semiconductor Corporation

ADC0808, ADC0809 8-Bit μ P Compatible A/D Converters with 8-Channel Multiplexer

General Description

The ADC0808, ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 8-channel multiplexer and microprocessor compatible control logic. The 8 -bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 8-channel multiplexer can directly access any of 8 -single-ended analog signals.
The device eliminates the need for external zero and fullscale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE ${ }^{\circledR}$ outputs.
The design of the ADC0808, ADC0809 has been optimized by incorporating the most desirable aspects of several A/D conversion techniques. The ADC0808, ADC0809 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For 16channel multiplexer with common output (sample/hold port) see ADC0816 data sheet. (See AN-247 for more information.)

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span adjusted voltage reference
- No zero or full-scale adjust required
- 8-channel multiplexer with address logic
- 0 V to 5 V input range with single 5 V power supply
- Outputs meet TTL voltage level specifications
- Standard hermetic or molded 28-pin DIP package
- 28-pin molded chip carrier package

Key Specifications

■ Resolution	8 Bits
■ Total Unadjusted Error	$\pm 1 / 2$ LSB and ± 1 LSB
■ Single Supply	5 VCC
■ Low Power	15 mW
■ Conversion Time	$100 \mu \mathrm{~S}$

Block Diagram

Operating Conditions (Notes 1\&2)
Temperature Range (Note 1) ADC0808CJ ADC0808CCJ, ADC0808CCN, ADC0809CCN ADC0808CCV, ADC0809CCV Range of V_{CC} (Note 1)

$$
\begin{array}{r}
T_{M I N} \leq T_{A} \leq T_{M A X} \\
-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \\
-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \\
4.5 \mathrm{~V}_{D C} \text { to } 6.0 \mathrm{~V}_{D C}
\end{array}
$$

Electrical Characteristics

Converter Specifications: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{REF}+}, \mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
	ADC0808 Total Unadjusted Error (Note 5)	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$			$\begin{aligned} & \pm 1 / 2 \\ & \pm 3 / 4 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	ADC0809 Total Unadjusted Error (Note 5)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			$\begin{gathered} \pm 1 \\ \pm 11 / 4 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	Input Resistance	From $\operatorname{Ref}(+)$ to $\operatorname{Ref}(-)$	1.0	2.5		k Ω
	Analog Input Voltage Range	(Note 4) V(+) or $\mathrm{V}(-)$	GND-0.10		$\mathrm{V}_{\mathrm{CC}}+0.10$	V_{DC}
$\mathrm{V}_{\text {REF }(+)}$	Voltage, Top of Ladder	Measured at Ref(+)		V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
$\frac{V_{\operatorname{REF}(+)}+V_{\text {REF }(-)}}{2}$	Voltage, Center of Ladder		$\mathrm{V}_{\mathrm{CC}} / 2-0.1$	$\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{CC}} / 2+0.1$	V
$\mathrm{V}_{\text {REF }}(-)$	Voltage, Bottom of Ladder	Measured at Ref(-)	-0.1	0		V
I_{N}	Comparator Input Current	$\mathrm{f}_{\mathrm{C}}=640 \mathrm{kHz}$, (Note 6)	-2	± 0.5	2	$\mu \mathrm{A}$

Electrical Characteristics

Digital Levels and DC Specifications: ADC0808CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{C C} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted ADC0808CCJ, ADC0808CCN, ADC0808CCV, ADC0809CCN and ADC0809CCV, $4.75 \leq V_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ANALOG MULTIPLEXER						
loff(+)	OFF Channel Leakage Current	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{I N}=5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \text { to } T_{\text {MAX }} \end{aligned}$		10	$\begin{array}{r} 200 \\ 1.0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
loff(-)	OFF Channel Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=0, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & -200 \\ & -1.0 \\ & \hline \end{aligned}$	-10		$\begin{array}{r} \mathrm{nA} \\ \mu \mathrm{~A} \\ \hline \end{array}$

Electrical Characteristics (Continued)
Digital Levels and DC Specifications: ADC0808CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted ADC0808CCJ, ADC0808CCN, ADC0808CCV, ADC0809CCN and ADC0809CCV, $4.75 \leq V_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Conditions	Min	Typ	Max	Units
CONTROL INPUTS						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage		$V_{C C}-1.5$			V
V IN(0)	Logical "0" Input Voltage				1.5	V
$\operatorname{liN(1)}$	Logical "1" Input Current (The Control Inputs)	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\operatorname{liN(0)}$	Logical " 0 " Input Current (The Control Inputs)	$V_{\text {IN }}=0$	-1.0			$\mu \mathrm{A}$
ICC	Supply Current	$\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$		0.3	3.0	mA

DATA OUTPUTS AND EOC (INTERRUPT)

$V_{\text {OUT(1) }}$	Logical " 1 " Output Voltage	$I_{\mathrm{O}}=-360 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}-0.4$			V
$\mathrm{~V}_{\text {OUT(0) }}$	Logical " 0 " Output Voltage	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$			0.45	V
$\mathrm{~V}_{\text {OUT(0) }}$	Logical " 0 " Output Voltage EOC	$\mathrm{I}_{\mathrm{O}}=1.2 \mathrm{~mA}$			0.45	V
IOUT	TRI-STATE Output Current	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$			3	$\mu \mathrm{~A}$
		$\mathrm{~V}_{\mathrm{O}}=0$	-3		$\mu \mathrm{~A}$	

Electrical Characteristics

Timing Specifications $V_{C C}=V_{R E F(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tws	Minimum Start Pulse Width	(Figure 5)		100	200	ns
twale	Minimum ALE Pulse Width	(Figure 5)		100	200	ns
$t_{\text {s }}$	Minimum Address Set-Up Time	(Figure 5)		25	50	ns
t_{H}	Minimum Address Hold Time	(Figure 5)		25	50	ns
t_{D}	Analog MUX Delay Time From ALE	$\mathrm{R}_{\mathrm{S}}=0 \Omega$ (Figure 5)		1	2.5	$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{H} 1}, \mathrm{t}_{\mathrm{HO}}$	OE Control to Q Logic State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$	OE Control to Hi-Z	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
t_{c}	Conversion Time	$\mathrm{f}_{\mathrm{c}}=640 \mathrm{kHz}$, (Figure 5) (Note 7)	90	100	116	$\mu \mathrm{S}$
f_{c}	Clock Frequency		10	640	1280	kHz
${ }^{\text {t }}$ OOC	EOC Delay Time	(Figure 5)	0		$8+2 \mu \mathrm{~S}$	Clock Periods
$\mathrm{C}_{\text {IN }}$	Input Capacitance	At Control Inputs		10	15	pF
Cout	TRI-STATE Output Capacitance	At TRI-STATE Outputs, (Note 12)		10	15	pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless othewise specified.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the $V_{C C}$ supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $\mathrm{OV} \mathrm{V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.900 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.5 V full-scale) the reference voltages can be adjusted to achieve this. See Figure 13.
Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little temperature dependence (Figure 6). See paragraph 4.0.
Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC
Note 8: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Functional Description

Multiplexer．The device contains an 8－channel single－end－ ed analog signal multiplexer．A particular input channel is selected by using the address decoder．Table I shows the input states for the address lines to select any channel．The address is latched into the decoder on the low－to－high tran－ sition of the address latch enable signal．

TABLE I

SELECTED	ADDRESS LINE		
	C	B	A
IN0	L	L	L
IN1	L	L	H
IN2	L	H	L
IN3	L	H	H
IN4	H	L	L
IN5	H	L	H
IN6	H	H	L
IN7	H	H	H

CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its 8 － bit analog－to－digital converter．The converter is designed
to give fast，accurate，and repeatable conversions over a wide range of temperatures．The converter is partitioned into 3 major sections：the 256R ladder network，the succes－ sive approximation register，and the comparator．The con－ verter＇s digital outputs are positive true．
The 256R ladder network approach（Figure 1）was chosen over the conventional R／2R ladder because of its inherent monotonicity，which guarantees no missing digital codes． Monotonicity is particularly important in closed loop feed－ back control systems．A non－monotonic relationship can cause oscillations that will be catastrophic for the system． Additionally，the 256R network does not cause load varia－ tions on the reference voltage．
The bottom resistor and the top resistor of the ladder net－ work in Figure 1 are not the same value as the remainder of the network．The difference in these resistors causes the output characteristic to be symmetrical with the zero and full－scale points of the transfer curve．The first output tran－ sition occurs when the analog signal has reached $+1 / 2$ LSB and succeeding output transitions occur every 1 LSB later up to full－scale．
The successive approximation register（SAR）performs 8 it－ erations to approximate the input voltage．For any SAR type converter，n－iterations are required for an n－bit converter． Figure 2 shows a typical example of a 3－bit converter．In the ADC0808，ADC0809，the approximation technique is ex－ tended to 8 bits using the 256R network．

TL／H／5672－2

FIGURE 1．Resistor Ladder and Switch Tree

Functional Description (Continued)

The A/D converter's successive approximation register (SAR) is reset on the positive edge of the start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in this mode, an external start conversion pulse should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start conversion. The most important section of the A/D converter is the comparator. It is this section which is responsible for the ultimate accuracy of the entire converter. It is also the

FIGURE 2. 3-Bit A/D Transfer Curve
comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the converter requirements.
The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed throught a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier since the drift is a DC component which is not passed by the AC amplifier. This makes the entire A/D converter extremely insensitive to temperature, long term drift and input offset errors.
Figure 4 shows a typical error curve for the ADC0808 as measured using the procedures outlined in AN-179.

FIGURE 3. 3-Bit A/D Absolute Accuracy Curve

FIGURE 4. Typical Error Curve

Connection Diagrams

Dual-In-Line Package

TL/H/5672-11
Order Number ADC0808CCN, ADC0809CCN, ADC0808CCJ or ADC0808CJ
See NS Package J28A or N28A

Molded Chip Carrier Package

TL/H/5672-12
Order Number ADC0808CCV or ADC0809CCV See NS Package V28A

Timing Diagram

Typical Performance Characteristics

FIGURE 6. Comparator IIN Vs VIN $\mathbf{(} \mathbf{V}_{\mathbf{C C}}=\mathbf{V}_{\mathbf{R E F}}=\mathbf{5 V}$)

TL/H/5672-5
FIGURE 7. Multiplexer RON vs V_{IN} $\left(\mathbf{V}_{\mathbf{C C}}=\mathbf{V}_{\mathbf{R E F}}=\mathbf{5 V}\right)$

TRI-STATE Test Circuits and Timing Diagrams

Applications Information

OPERATION

1.0 RATIOMETRIC CONVERSION

The ADC0808, ADC0809 is designed as a complete Data Acquisition System (DAS) for ratiometric conversion systems. In ratiometric systems, the physical variable being measured is expressed as a percentage of full-scale which is not necessarily related to an absolute standard. The voltage input to the ADC0808 is expressed by the equation

$$
\begin{aligned}
& \frac{V_{I N}}{V_{f S}-V_{Z}}=\frac{D_{X}}{D_{M A X}-D_{M I N}} \\
& V_{I N}=\text { Input voltage into the ADC0808 } \\
& V_{f S}=\text { Full-scale voltage } \\
& V_{Z}=\text { Zero voltage } \\
& D_{X}=\text { Data point being measured } \\
& D_{M A X}=\text { Maximum data limit } \\
& D_{M I N}=\text { Minimum data limit }
\end{aligned}
$$

A good example of a ratiometric transducer is a potentiometer used as a position sensor. The position of the wiper is directly proportional to the output voltage which is a ratio of the full-scale voltage across it. Since the data is represented as a proportion of full-scale, reference requirements are greatly reduced, eliminating a large source of error and cost for many applications. A major advantage of the ADC0808, ADC0809 is that the input voltage range is equal to the supply range so the transducers can be connected directly across the supply and their outputs connected directly into the multiplexer inputs, (Figure 9).

Ratiometric transducers such as potentiometers, strain gauges, thermistor bridges, pressure transducers, etc., are suitable for measuring proportional relationships; however, many types of measurements must be referred to an absolute standard such as voltage or current. This means a system reference must be used which relates the full-scale voltage to the standard volt. For example, if $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5.12 \mathrm{~V}$, then the full-scale range is divided into 256 standard steps. The smallest standard step is 1 LSB which is then 20 mV .

2.0 RESISTOR LADDER LIMITATIONS

The voltages from the resistor ladder are compared to the selected into 8 times in a conversion. These voltages are coupled to the comparator via an analog switch tree which is referenced to the supply. The voltages at the top, center and bottom of the ladder must be controlled to maintain proper operation.
The top of the ladder, $\operatorname{Ref}(+)$, should not be more positive than the supply, and the bottom of the ladder, Ref(-), should not be more negative than ground. The center of the ladder voltage must also be near the center of the supply because the analog switch tree changes from N -channel switches to P-channel switches. These limitations are automatically satisfied in ratiometric systems and can be easily met in ground referenced systems.
Figure 10 shows a ground referenced system with a separate supply and reference. In this system, the supply must be trimmed to match the reference voltage. For instance, if a 5.12 V is used, the supply should be adjusted to the same voltage within 0.1 V .

Applications Information (Continued)

The ADC0808 needs less than a milliamp of supply current so developing the supply from the reference is readily accomplished. In Figure 11 a ground referenced system is shown which generates the supply from the reference. The buffer shown can be an op amp of sufficient drive to supply the milliamp of supply current and the desired bus drive, or if a capacitive bus is driven by the outputs a large capacitor will supply the transient supply current as seen in Figure 12. The LM301 is overcompensated to insure stability when loaded by the $10 \mu \mathrm{~F}$ output capacitor.

The top and bottom ladder voltages cannot exceed V_{CC} and ground, respectively, but they can be symmetrically less than V_{CC} and greater than ground. The center of the ladder voltage should always be near the center of the supply. The sensitivity of the converter can be increased, (i.e., size of the LSB steps decreased) by using a symmetrical reference system. In Figure 13, a 2.5 V reference is symmetrically centered about V_{CC} /2 since the same current flows in identical resistors. This system with a 2.5 V reference allows the LSB bit to be half the size of a 5 V reference system.

FIGURE 10. Ground Referenced Conversion System Using Trimmed Supply

FIGURE 11: Ground Referenced Conversion System with Reference Generating $\mathbf{V}_{\text {cc }}$ Supply

Applications Information (Continued)

FIGURE 12. Typical Reference and Supply Circuit

TL/H/5672-9
FIGURE 13. Symmetrically Centered Reference

3.0 CONVERTER EQUATIONS

The transition between adjacent codes N and $\mathrm{N}+1$ is given by:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}}=\left\{\left(\mathrm{V}_{\mathrm{REF}(+)}-\mathrm{V}_{\mathrm{REF}(-))}\left[\frac{\mathrm{N}}{256}+\frac{1}{512}\right] \pm \mathrm{V}_{\text {TUE }}\right\}+\mathrm{V}_{\text {REF }(-)}\right. \tag{2}
\end{equation*}
$$

The center of an output code N is given by:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}}\left\{\left(\mathrm{~V}_{\operatorname{REF}(+)}-\mathrm{V}_{\mathrm{REF}(-))}\left[\frac{\mathrm{N}}{256}\right] \pm \mathrm{V}_{\operatorname{TUE}}\right\}+\mathrm{V}_{\operatorname{REF}(-)}\right. \tag{3}
\end{equation*}
$$

The output code N for an arbitrary input are the integers within the range:

$$
\begin{equation*}
N=\frac{V_{I N}-V_{\operatorname{REF}(-)}}{V_{\operatorname{REF}(+)}-V_{\operatorname{REF}(-)}} \times 256 \pm \text { Absolute Accuracy } \tag{4}
\end{equation*}
$$

where: $\mathrm{V}_{\mathbb{I N}}=$ Voltage at comparator input
$\mathrm{V}_{\mathrm{REF}(+)}=$ Voltage at $\operatorname{Ref}(+)$
$\mathrm{V}_{\text {REF }(-)}=$ Voltage at $\operatorname{Ref}(-)$
$\mathrm{V}_{\text {TUE }}=$ Total unadjusted error voltage (typically $\mathrm{V}_{\mathrm{REF}(+)} \div 512$)

4.0 ANALOG COMPARATOR INPUTS

The dynamic comparator input current is caused by the periodic switching of on-chip stray capacitances. These are connected alternately to the output of the resistor ladder/ switch tree network and to the comparator input as part of the operation of the chopper stabilized comparator.
The average value of the comparator input current varies directly with clock frequency and with V_{IN} as shown in Figure 6.

If no filter capacitors are used at the analog inputs and the signal source impedances are low, the comparator input current should not introduce converter errors, as the transient created by the capacitance discharge will die out before the comparator output is strobed.
If input filter capacitors are desired for noise reduction and signal conditioning they will tend to average out the dynamic comparator input current. It will then take on the characteristics of a DC bias current whose effect can be predicted conventionally.

Typical Application

"Address latches needed for 8085 and SC/MP interfacing the ADC0808 to a microprocessor

MICROPROCESSOR INTERFACE TABLE

PROCESSOR	$\overline{\text { READ }}$	$\overline{\text { WRITE }}$	INTERRUPT (COMMENT)
8080	$\overline{\text { MEMR }}$	$\overline{\text { MEMW }}$	INTR (Thru RST Circuit)
8085	$\overline{R D}$	$\overline{\text { WR }}$	INTR (Thru RST Circuit)
Z-80	$\overline{R D}$	$\overline{\text { WR }}$	$\overline{\text { NT }}$ (Thru RST Circuit, Mode 0)
SC/MP	NRDS	NWDS	SA (Thru Sense A)
6800	VMA $\phi 2 \bullet R / W$	VMA $\bullet \bullet \overline{R / W}$	$\overline{\text { IRQA or } \overline{\text { IRQB }} \text { (Thru PIA) }}$

Ordering Information

TEMPERATURE RANGE		$-\mathbf{4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$			$-\mathbf{5 5 ^ { \circ }} \mathbf{C}$ to $+\mathbf{1 2 5} 5^{\circ} \mathbf{C}$
Error	$\pm 1 / 2$ LSB Unadjusted	ADC0808CCN	ADC0808CCV	ADC0808CCJ	ADC0808CJ
	± 1 LSB Unadjusted	ADC0809CCN	ADC0809CCV		
Package Outline			N28A Molded DIP	V28A Molded Chip Carrier	J28A Ceramic DIP

ADC0811 8-Bit Serial I/O A/D Converter With 11-Channel Multiplexer

General Description

The ADC0811 is an 8 -Bit successive approximation A/D converter with simultaneous serial I/O. The serial input controls an analog multiplexer which selects from 11 input channels or an internal half scale test voltage.
An input sample-and-hold is implemented by a capacitive reference ladder and sampled data comparator. This allows the input signal to vary during the conversion cycle.
Separate serial I/O and conversion clock inputs are provided to facilitate the interface to various microprocessors.

Features

- Separate asynchronous converter clock and serial data I/O clock.
- 11-Channel multiplexer with 4-Bit serial address logic.
- Built-in sample and hold function.

■ Ratiometric or absolute voltage referencing.

- No zero or full-scale adjust required.
- Internally addressable test voltage.
- 0 V to 5 V input range with single 5 V power supply.
- TTL/MOS input/output compatible.
- $0.3^{\prime \prime}$ standard width $20-$ pin dip or 20 -pin molded chip carrier

Key Specifications

■ Resolution	8 -Bits
Total unadjusted error	$\pm 1 / 2 \mathrm{LSB}$ and ± 1 LSB
- Single supply	$5 \mathrm{~V}_{\mathrm{DC}}$
- Low Power	15 mW
- Conversion Time	$32 \mu \mathrm{~S}$

Connection Diagrams

Dual-In-Line Package

Top View
TL/H/5587-
Molded Chip Carrier (PCC) Package

Order Number ADC0811J,N,V See NS Packages J20A, N20A, V20A Use Ordering Information

Functional Diagram

Absolute Maximum Ratings (Notes 1 \& 2) If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage (VCC)
6.5 V

Voltage

Inputs and Outputs
Input Current Per Pin (Note 3)
Total Package Input Current (Note 3)
Storage Temperature
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
-0.3 V to $\mathrm{VCC}+0.3 \mathrm{~V}$
$\pm 5 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
875 mW

Lead Temp. (Soldering, 10 seconds) Dual-In-Line Package (plastic)
$260^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$ Dual-In-Line Package (ceramic)
Molded Chip Carrier Package Vapor Phase (60 seconds) $215^{\circ} \mathrm{C}$ $220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 11) 2000V

Operating Ratings (Notes 1\&2)

Supply Voltage (V_{CC})
Temperature Range
ADC0811BCN, ADC0811CCN
ADC0811BCJ, ADC0811BCV
ADC0811CCJ, ADC0811CCV
ADC0811BJ, ADC0811CJ
4.5 $V_{D C}$ to $6.0 V_{D C}$
$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right), \phi_{2} \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0811BCJ, ADC0811BJADC0811CCJ, ADC0811CJ			ADC0811BCN, ADC0811BCV ADC0811CCN, ADC0811CCV			Units
		Typical (Note 6)	Tested Limit (Note 7)	$\begin{array}{\|c\|} \text { Design } \\ \text { Limit } \\ \text { (Note 8) } \end{array}$	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS								
Maximum Total Unadjusted Error ADC0811BCN, ADC0811BCV ADC0811BCJ, ADC0811BJ ADC0811CCN, ADC0811CCV ADC0811CCJ, ADC0811CJ	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{REF}}=5.00 \mathrm{~V}_{\mathrm{DC}} \\ \text { (Note 4) } \end{array}$		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Minimum Reference Input Resistance		8		5	8		5	k Ω
Maximum Reference Input Resistance		8	11		8	11	11	$k \Omega$
Maximum Analog Input Range	(Note 5)		$V_{C C}+0.05$			$\mathrm{V}_{\text {CC }}+0.05$	$\mathrm{V}_{\text {CC }}+0.05$	V
Minimum Analog Input Range			GND-0.05			GND-0.05	GND-0.05	V
On Channel Leakage Current ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV	On Channel $=5 \mathrm{~V}$ Off Channel $=0 \mathrm{~V}$		1000			400	1000	nA
ADC0811CJ, BJ			1000					nA
ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV ADC0811BJ, CJ	On Channel $=0 \mathrm{~V}$ Off Channel $=5 \mathrm{~V}$ (Note 9)		-1000 -1000			-400	-1000	nA nA
Off Channel Leakage Current ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV	On Channel $=5 \mathrm{~V}$ Off Channel $=0 \mathrm{~V}$		-1000			-400	1000	nA
ADC0811BCJ, CCJ, BCN, CCN, BCV, CCV ADC0811BJ, CJ	On Channel $=0 \mathrm{~V}$ Off Channel $=5 \mathrm{~V}$ (Note 9)					400	1000	nA nA
Minimum $\mathrm{V}_{\text {TEST }}$ Internal Test Voltage	$\begin{aligned} & \mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CH} 11 \text { Selected } \end{aligned}$		125			125	125	(Note 10) Counts
Maximum $V_{\text {TEST }}$ Internal Test Voltage	$\begin{aligned} & \mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CH} 11 \text { Selected } \end{aligned}$		130			130	130	(Note 10) Counts

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right), \phi_{2} \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Continued)

Parameter	Conditions	ADC0811BCJ, ADC0811BJ ADC0811CCJ, ADC0811CJ			ADC0811BCN, ADC0811BCV ADC0811CCN, ADC0811CCV			Units
		Typical (Note 6)	Tested Limit (Note 7)	$\begin{aligned} & \text { Design } \\ & \text { Limit } \\ & \text { (Note 8) } \end{aligned}$	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	

DIGITAL AND DC CHARACTERISTICS

$V_{\text {IN(1) }}$, Logical " 1 " Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0		2.0	2.0	V
VIN(0), Logical "0" Input Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8		0.8	0.8	V
$\operatorname{IIN(1),\text {Logical"}1\text {"Input}}$ Current (Max)	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	0.005	2.5	0.005	2.5	2.5	$\mu \mathrm{A}$
IIN(0), Logical "0" Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-0.005	-2.5	-0.005	2.5	-2.5	$\mu \mathrm{A}$
Vout(1), Logical "1" Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { lout }=-360 \mu \mathrm{~A} \\ & \text { lout }=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & v \\ & v \\ & \hline \end{aligned}$
Vout(0), Logical "0" Output Voltage (Max)	$\begin{aligned} & V_{C C}=5.25 \mathrm{~V} \\ & l_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4		0.4	0.4	V
IOUT, TRI-STATE Output Current (Max)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
IsOURCE, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-12	-6.5	-14	-6.5	-6.5	mA
ISINK, Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	18	8.0	16	8.0	8.0	mA
$I_{\text {ICC, }}$ Supply Current (Max)	$\overline{\mathrm{CS}}=1, \mathrm{~V}_{\text {REF }}$ Open	1	2.5	1	2.5	2.5	mA
IREF (Max)	$\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$	0.7	1	0.7	1	1	mA

AC CHARACTERISTICS

Parameter		Conditions	Typical	Tested Limit	Design Limit	Units
ϕ_{2} CLK, ϕ_{2} Clock Frequency	MIN		0.70		1.0	MHz
	MAX		3.0	2.0	2.1	
SCLK, Serial Data Clock Frequency	MIN				5.0	KHz
	MAX		700	525	525	
T_{C}, Conversion Process Time	MIN	Not Including MUX Addressing and Analog Input Sampling Times	48		48	ϕ_{2} cycles
	MAX		64		64	
$t_{\text {ACC }}$, Access Time Delay From $\overline{\mathrm{CS}}$ Falling Edge to DO Data Valid	MIN				1	ϕ_{2} cycles
	MAX				3	
tset-Up, Minimum Set-up Time of $\overline{\mathrm{CS}}$ Falling $^{\text {S }}$ Edge to $\mathrm{S}_{\text {CLK }}$ Rising Edge					$4 / \phi_{2 C L K}+\frac{1}{2 S_{\text {CLK }}}$	sec
$t_{\text {H }} \overline{C S}, \overline{C S}$ Hold Time After the Falling Edge of $\mathrm{S}_{\mathrm{CLK}}$					0	ns
t $\overline{\mathrm{CS}}$, Total $\overline{\mathrm{CS}}$ Low Time	MIN				$\mathbf{t s o t - u p ~}+8 / S_{\text {cLK }}$	sec
	MAX				t $\mathbf{C s}(\mathbf{m i n})+48 / \phi_{2 C L K}$	sec
$t_{\text {HDI }}$, Minimum DI Hold Time from $S_{\text {CLK }}$ Rising Edge			0		0	ns
$\mathrm{t}_{\text {HDO }}$, Minimum DO Hold Time from $\mathrm{S}_{\mathrm{CLK}}$ Falling Edge		$\begin{aligned} & R_{L}=30 \mathrm{k}, \\ & C_{L}=100 \mathrm{pF} \end{aligned}$			10	ns

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right), \phi_{2} \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$. (Continued)

Parameter		Conditions	Typical (Note 6)		Design Limit (Note 8)	Units
AC CHARACTERISTICS (Continued)						
Rising Edge			200		400	ns
$t_{\text {DDO }}$, Maximum Delay From $\mathrm{S}_{\text {CLK }}$ Falling Edge to DO Data Valid	$\begin{aligned} & R_{L}=30 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \hline \end{aligned}$		180	400	400	ns
tTRI, $^{\text {, Maximum DO Hold Time, }}$ ($\overline{\mathrm{CS}}$ Rising edge to DO TRI-STATE)	$\begin{aligned} & R_{L}=3 k \\ & C_{L}=100 \mathrm{pF} \end{aligned}$		90	150	150	ns
$t_{\text {CA }}$, Analog Sampling Time	After Address Is Latched$\overline{\mathrm{CS}}=\text { Low }$				4/ScLK $+1 \mu \mathrm{~s}$	sec
$t_{\text {RDO }}$, Maximum DO	$\begin{aligned} & R_{L}=30 \mathrm{k} \Omega, \\ & C_{L}=100 \mathrm{pf} \end{aligned}$	"TRI-STATE" to "HIGH" State	75	150	150	ns
Rise Time		"LOW" to "HIGH" State	150	300	300	
$\mathrm{t}_{\text {FDO }}$, Maximum DO Fall Time	$\begin{aligned} & R_{L}=30 \mathrm{k} \Omega, \\ & C_{L}=100 \mathrm{pf} \end{aligned}$	"TRI-STATE" to "LOW' State	75	150	150	ns
		"HIGH" to "LOW" State	150	300	300	
$\mathrm{C}_{\text {IN }}$, Maximum Input	Analog Inputs, ANO-AN10 and V ${ }_{\text {REF }}$		11		55	pF
Capacitance	All Others		5		15	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to ground.
Note 3: Under over voltage conditions $\left(V_{I N}<0 V\right.$ and $\left.V_{I N}>V_{C C}\right)$ the maximum input current at any one pin is $\pm 5 \mathrm{~mA}$. If the voltage at more than one pin exceeds $\mathrm{V}_{\mathrm{CC}}+.3 \mathrm{~V}$ the total package current must be limited to 20 mA . For example the maximum number of pins that can be over driven at the maximum current level of $\pm 5 \mathrm{~mA}$ is four.

Note 4: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors.
Note 5: Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Guaranteed and 100% production tested under worst case condition.
Note 8: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 9: Channel leakage current is measured after the channel selection.
Note 10: 1 count $=V_{\text {REF }} / 256$.
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Test Circuits

Leakage Current

D0 Except "TRI-STATE"

TL/H/5587-17

Test Circuits (Continued)

TL/H/5587-22

Typical Performance Characteristics

Timing Diagrams

*Strobing $\overline{\mathrm{CS}}$ High and Low will abort the present conversion and initiate a new serial I/O exchange.

Timing with a gated SCLK and $\overline{\text { CS }}$ Continuously Low

TL/H/5587-9

Using $\overline{\mathbf{C S}}$ TO TRI-STATE DO

Note: Strobing $\overline{\mathrm{CS}}$ Low during this time interval will abort the conversion in process.

Timing Diagrams (Continued)

$\overline{\mathbf{C S}}$ High During Conversion

$\overline{\mathbf{C S}}$ Low During Conversion

TL/H/5587-5
Note: DO and DI lines share the 8-bit I/O shift register(see Functional Block Diagram). Since the MUX address bits are shifted in on $\mathrm{S}_{\mathrm{CLK}}$ rising edges while $\mathrm{S}_{\mathrm{CLLK}}$ falling edges shift out conversion data on DO, the eighth falling edge of $\mathrm{S}_{\text {CLK }}$ will shift out the MSB MUX address bit (A7) on DO. Thus, if addressing channels $\mathrm{CH} 8-\mathrm{CH} 10$, a high DO will occur momentarily (one ϕ_{2} clock period) until the 8 -bit $1 / \mathrm{O}$ shift register is cleared by the internal EOC signal.

Channel Addressing Table

TABLE I. ADC 0811 Channel Addressing

MUX ADDRESS								ANALOG CHANNEL SELECTED
A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	
0	0	0	0	X	X	X	X	CHO
0	0	0	1	X	X	X	X	CH 1
0	0	1	0	X	X	X	X	CH 2
0	0	1	1	X	X	X	X	CH3
0	1	0	0	X	X	X	X	CH 4
0	1	0	1	X	X	X	X	CH5
0	1	1	0	X	X	X	X	CH6
0	1	1	1	X	X	X	X	CH7
1	0	0	0	X	X	X	X	CH8
1	0	0	1	X	X	X	X	CH9
1	0	1	0	X	X	X	X	CH 10
1	0	1	1	X	X	X	X	$V_{\text {TEST }}$
1	1	X	X	X	X	X	X	LOGIC TEST MODE*

[^6]

Functional Description

1.0 DIGITAL INTERFACE

The ADC0811 uses five input/output pins to implement the serial interface. Taking chip select ($\overline{\mathrm{CS}}$) low enables the I/O data lines (DO and DI) and the serial clock input (S $\mathrm{ClK}_{\text {I }}$). The result of the last conversion is transmitted by the A/D on the DO line, while simultaneously the DI line receives the address data that selects the mux channel for the next conversion. The mux address is shifted in on the rising edge of $\mathrm{S}_{\text {CLK }}$ and the conversion data is shifted out on the falling edge. It takes eight $\mathrm{S}_{\mathrm{CLK}}$ cycles to complete the serial I/O. A second clock (ϕ_{2}) controls the SAR during the conversion process and must be continuously enabled.

1.1 CONTINUOUS SCLK

With a continuous $\mathrm{S}_{\text {CLK }}$ input $\overline{\mathrm{CS}}$ must be used to synchronize the serial data exchange (see Figure 1). The ADC0811 recognizes a valid $\overline{C S}$ one to three ϕ_{2} clock periods after the actual falling edge of $\overline{\mathrm{CS}}$. This is implemented to ensure noise immunity of the $\overline{\mathrm{CS}}$ signal. Any spikes on $\overline{\mathrm{CS}}$ less than one ϕ_{2} clock period will be ignored. $\overline{\mathrm{CS}}$ must remain low during the complete I/O exchange which takes eight $\mathrm{S}_{\mathrm{CLK}}$ cycles. Although $\overline{\mathrm{CS}}$ is not immediately acknowledged for the purpose of starting a new conversion, the falling edge of $\overline{\mathrm{CS}}$ immediately enables DO to output the MSB (D7) of the previous conversion.
The first $\mathrm{S}_{\mathrm{CLK}}$ rising edge will be acknowledged after a setup time ($\mathrm{t}_{\text {set-up }}$) has elapsed from the falling edge of $\overline{\mathrm{CS}}$. This and the following seven $\mathrm{S}_{\text {CLK }}$ rising edges will shift in the channel address for the analog multiplexer. Since there are 12 channels only four address bits are utilized. The first four $\mathrm{S}_{\text {CLK }}$ cycles clock in the mux address, during the next four $\mathrm{S}_{\text {CLK }}$ cycles the analog input is selected and sampled. During
this mux address/sample cycle, data from the last conversion is also clocked out on DO. Since D7 was clocked out on the falling edge of $\overline{C S}$ only data bits D6-D0 remain to be received. The following seven falling edges of $S_{\text {CLK }}$ shift out this data on DO.
The 8th $\mathrm{S}_{\text {CLK }}$ falling edge initiates the beginning of the A / D 's actual conversion process which takes between 48 to $64 \phi_{2}$ cycles (T_{C}). During this time $\overline{\mathrm{CS}}$ can go high to TRI-STATE DO and disable the $\mathrm{S}_{\mathrm{CLK}}$ input or it can remain low. If $\overline{\mathrm{CS}}$ is held low a new I/O exchange will not start until the conversion sequence has been completed, however once the conversion ends serial I/O will immediately begin. Since there is an ambiguity in the conversion time (T_{C}) synchronizing the data exchange is impossible. Therefore $\overline{\mathrm{CS}}$ should go high before the 48 th ϕ_{2} clock has elasped and return low after the 64th ϕ_{2} to synchronize serial communication.
A conversion or I/O operation can be aborted at any time by strobing $\overline{\mathrm{CS}}$. If $\overline{\mathrm{CS}}$ is high or low less than one ϕ_{2} clock it will be ignored by the A / D. If the $\overline{C S}$ is strobed high or low between 1 to $3 \phi_{2}$ clocks the A/D may or may not respond. Therefore $\overline{\mathrm{CS}}$ must be strobed high or low greater than $3 \phi_{2}$ clocks to ensure recognition. If a conversion or I/O exchange is aborted while in process the consequent data output will be erroneous until a complete conversion sequence has been implemented.

1.2 DISCONTINUOUS ScLK

Another way to accomplish synchronous serial communication is to tie $\overline{\mathrm{CS}}$ low continuously and disable $\mathrm{S}_{\mathrm{CLK}}$ after its 8th falling edge (see Figure 2). $\mathrm{S}_{\mathrm{CLK}}$ must remain low for

TL/H/5587-19
FIGURE 2

Functional Description (Continued)

at least $64 \phi_{2}$ clocks to insure that the A/D has completed its conversion. If $\mathrm{S}_{\mathrm{CLK}}$ is enabled sooner, synchronizing to the data output on DO is not possible since an end of conversion signal from the A/D is not available and the actual conversion time is not known. With $\overline{\mathrm{CS}}$ low during the conversion time ($64 \phi_{2}$ max) DO will go low after the eighth falling edge of $\mathrm{S}_{\mathrm{CLK}}$ and remain low until the conversion is completed. Once the conversion is through DO will transmit the MSB. The rest of the data will be shifted out once $\mathrm{S}_{\text {CLK }}$ is enabled as discussed previously.
If $\overline{\mathrm{CS}}$ goes high during the conversion sequence DO is tristated, and the result is not affected so long as $\overline{\mathrm{CS}}$ remains high until the end of the conversion.

1.2 MULTIPLEXER ADDRESSING

The four bit mux address is shifted, MSB first, into DI. Input data corresponds to the channel selected as shown in table 1. Care should be taken not to send an address greater than or equal to twelve (11XX) as this puts the A/D in a digital testing mode. In this mode the analog inputs CHO thru CH 3 become digital outputs, for our use in production testing.

2.0 ANALOG INPUT

2.1 THE INPUT SAMPLE AND HOLD

The ADC0811's sample/hold capacitor is implemented in its capacitive ladder structure. After the channel address is received, the ladder is switched to sample the proper analog input. This sampling mode is maintained for $1 \mu \mathrm{sec}$ after the
eighth $\mathrm{S}_{\text {CLK }}$ falling edge. The hold mode is initiated with the start of the conversion process. An acquisition window of $4 \mathrm{~s}_{\mathrm{CLK}}+1 \mu \mathrm{sec}$ is therefore available to allow the ladder capacitance to settle to the analog input voltage. Any change in the analog voltage before or after the acquisition window will not effect the A/D conversion result.
In the most simple case, the ladder's acquisition time is determined by the $\mathrm{R}_{\text {on }}(3 \mathrm{~K})$ of the multiplexer switches and the total ladder capacitance (90pf). These values yield an acquisition time of about $2 \mu \mathrm{sec}$ for a full scale reading. Therefore the analog input must be stable for at least $2 \mu \mathrm{sec}$ before and $1 \mu \mathrm{sec}$ after the eighth $\mathrm{S}_{\mathrm{CLK}}$ falling edge to ensure a proper conversion. External input source resistance and capacitance will lengthen the acquisition time and should be accounted for.
Other conventional sample and hold error specifications are included in the error and timing specs of the A/D. The hold step and gain error sample/hold specs are taken into account in the ADC0811's total unadjusted error, while the hold settling time is included in the A/D's max conversion time of $64 \phi_{2}$ clock periods. The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data. However, once the data is read it is lost and another conversion is started.

Typical Applications

ADC0811-INS8048 INTERFACE

National Semiconductor Corporation

ADC0816, ADC0817 8-Bit μ P Compatible A/D Converters with 16-Channel Multiplexer

General Description

The ADC0816, ADC0817 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 16-channel multiplexer and microprocessor compatible control logic. The 8-bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a 256R voltage divider with analog switch tree and a successive approximation register. The 16 -channel multiplexer can directly access any one of 16 -single-ended analog signals, and provides the logic for additional channel expansion. Signal conditioning of any analog input signal is eased by direct access to the multiplexer output, and to the input of the 8-bit A/D converter.
The device eliminates the need for external zero and fullscale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexer address inputs and latched TTL TRI-STATE ${ }^{\circledR}$ outputs.
The design of the ADC0816, ADC0817 has been optimized by incorporating the most desirable aspects of several A/D conversion techniques. The ADC0816, ADC0817 offers high speed, high accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications. For similar performance in an 8 -channel, 28 -pin, 8 -bit A/D convert-
er, see the ADC0808, ADC0809 data sheet. (See AN-258 for more information.)

Features

๗ Easy interface to all microprocessors, or operates "stand alone"
© Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ or analog span adjusted voltage reference

- 16-channel multiplexer with latched control logic
- Outputs meet TTL voltage level specifications
© 0 V to 5 V analog input voltage range with single 5 V supply
- No zero or full-scale adjust required
a Standard hermetic or molded 40-pin DIP package
- Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Latched TRI-STATE output

■ Direct access to "comparator in" and "multiplexer out" for signal conditioning

Key Specifications

- Resolution

8 Bits

- Total Unadjusted Error $\pm 1 / 2$ LSB and ± 1 LSB
- Single Supply
$5 V_{D C}$
- Low Power

15 mW
m Conversion Time
$100 \mu \mathrm{~s}$

Block Diagram


```
Absolute Maximum Ratings (Notes 1 & 2)
If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage (VCC) (Note 3)
                            6.5V
Voltage at Any Pin -0.3V to (VCC}+0.3\textrm{V}
    Except Control Inputs
Voltage at Control Inputs
                            -0.3V to 15V
    (START, OE, CLOCK, ALE, EXPANSION CONTROL,
    ADD A, ADD B, ADD C, ADD D)
```

Storage Temperature Range
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds) Dual-In-Line Package (plastic) Dual-In-Line Package (ceramic)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ 875 mW
$260^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$

ESD Susceptibility (Note 9) 400 V

Operating Conditions (Notes 1 \& 2)
Temperature Range (Note 1) ADC0816CJ ADC0816CCJ, ADC0816CCN, ADC0817CCN

Range of V_{CC} (Note 1)
Voltage at Any Pin Except Control Inputs
Voltage at Control Inputs
(START, OE, CLOCK, ALE, EXPANSION CONTROL ADD A, ADD B, ADD C, ADD D)

Electrical Characteristics

Converter Specifications: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{REF}(+)}, \mathrm{V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{COMPARATOR}} \mathrm{IN} \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{MAX}}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$ unless otherwise stated.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
	ADC0816 Total Unadjusted Error (Note 5)	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$			$\begin{aligned} & \pm 1 / 2 \\ & \pm 3 / 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	ADC0817 Total Unadjusted Error (Note 5)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			$\begin{gathered} \pm 1 \\ \pm 11 / 4 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
	Input Resistance	From $\operatorname{Ref}(+)$ to $\operatorname{Ref}(-)$	1.0	4.5		k Ω
	Analog Input Voltage Range	(Note 4) $\mathrm{V}(+)$ or $\mathrm{V}(-)$	GND-0.10		$\mathrm{V}_{\mathrm{CC}}+0.10$	$V_{D C}$
$\mathrm{V}_{\text {REF (}}$ +)	Voltage, Top of Ladder	Measured at Ref(+)		V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.1$	V
$\frac{\mathrm{V}_{\mathrm{REF}(+)}+\mathrm{V}_{\mathrm{REF}(-)}}{2}$	Voltage, Center of Ladder		$\mathrm{V}_{C C} / 2-0.1$	$\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{CC}} / 2+0.1$	V
$\mathrm{V}_{\text {REF (}- \text {) }}$	Voltage, Bottom of Ladder	Measured at Ref(-)	-0.1	0		V
	Comparator Input Current	$\mathrm{f}_{\mathrm{C}}=640 \mathrm{kHz}$, (Note 6)	-2	± 0.5	2	$\mu \mathrm{A}$

Electrical Characteristics

Digital Levels and DC Specifications: ADC0816CJ $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted. ADC0816CCJ, ADC0816CCN, ADC0817CCN $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
ANALOG MULTIPLEXER						
Ron	Analog Multiplexer ON Resistance	$\begin{aligned} & \text { (Any Selected Channel) } \\ & T_{A}=25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \\ & T_{A}=85^{\circ} \mathrm{C} \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$		1.5	$\begin{aligned} & 3 \\ & 6 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & \hline \end{aligned}$
$\Delta \mathrm{R}_{\text {ON }}$	Δ ON Resistance Between Any 2 Channels	(Any Selected Channel) $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$		75		Ω
loff+	OFF Channel Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ & \hline \end{aligned}$		10	$\begin{gathered} 200 \\ 1.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
Ioff(-)	OFF Channel Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {Max }} \\ & \hline \end{aligned}$	$\begin{aligned} & -200 \\ & -1.0 \\ & \hline \end{aligned}$			$\begin{aligned} & n A \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
CONTROL INPUTS						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage		$\mathrm{V}_{\text {CC }}$-1.5			v
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage				1.5	V

Electrical Characteristics (Continued)
Digital Levels and DC Specifications: ADC0816CJ-4.5V $\leq V_{C C} \leq 5.5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted. ADC0816CCJ, ADC0816CCN, ADC0817CCN-4.75V $\leq \mathrm{V}_{C C} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	MIn	Typ	Max	Units
CONTROL INPUTS (Continued)						
$\operatorname{lin(1)}$	Logical "1" Input Current (The Control Inputs)	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\ln (0)$	Logical " 0 " Input Current (The Control Inputs)	$\mathrm{V}_{\mathrm{IN}}=0$	-1.0			$\mu \mathrm{A}$
ICC	Supply Current	$\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$		0.3	3.0	mA

DATA OUTPUTS AND EOC (INTERRUPT)

$V_{\text {OUT(1) }}$	Logical "1" Output Voltage	$I_{0}-360 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{O}}=-300 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V
$\mathrm{~V}_{\text {OUT(0) }}$	Logical " 0 " Output Voltage	$\mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$			0.45	V
$\mathrm{~V}_{\text {OUT(0) }}$	Logical " 0 " Output Voltage EOC	$\mathrm{I}_{\mathrm{O}}=1.2 \mathrm{~mA}$			0.45	V
IOUT	TRI-STATE Output Current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$			3.0	$\mu \mathrm{~A}$

Electrical Characteristics

Timing Specifications: $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}(+)}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}(-)}=\mathrm{GND}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
tws	Minimum Start Pulse Width	(Figure 5) (Note 7)		100	200	ns
$t_{\text {WALE }}$	Minimum ALE Pulse Width	(Figure 5)		100	200	ns
$\mathrm{t}_{\text {s }}$	Minimum Address Set-Up Time	(Figure 5)		25	50	ns
T_{H}	Minimum Address Hold Time	(Figure 5)		25	50	ns
t_{D}	Analog MUX Delay Time from ALE	$\mathrm{R}_{\mathrm{S}}=\mathrm{O}$ (Figure 5)		1	2.5	$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{H} 1}, \mathrm{t}_{\mathrm{HO}}$	OE Control to Q Logic State	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
$\mathrm{t}_{1 \mathrm{H},} \mathrm{t}_{0 \mathrm{H}}$	OE Control to Hi-Z	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Figure 8)		125	250	ns
${ }^{t_{C}}$	Conversion Time	$\mathrm{f}_{\mathrm{C}}=640 \mathrm{kHz}$, (Figure 5) (Note 8)	90	100	116	$\mu \mathrm{s}$
f_{c}	Clock Frequency		10	640	1280	kHz
${ }^{\text {t }}$ OOC	EOC Delay Time	(Figure 5)	0		$8+2 \mu \mathrm{~s}$	Clock Periods
$\mathrm{C}_{\text {IN }}$	Input Capacitance	At Control Inputs		10	15	pF
COUT	TRI-STATE Output Capacitance	At TRI-STATE Outputs (Note 8)		10	15	pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{D C}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.900 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Total unadjusted error includes offset, full-scale, and linearity errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.5 V full-scale) the reference voltages can be adjusted to achieve this. See Figure 13.
Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has little temperature dependence (Figure 6). See paragraph 4.0.
Note 7: If start pulse is asynchronous with converter clock the minimum start pulse width is 8 clock periods plus $2 \mu \mathrm{~S}$.
Note 8: The outputs of the data register are updated one clock cycle before the rising edge of EOC.
Note 9: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Functional Description

Multiplexer: The device contains a 16 -channel single-ended analog signal multiplexer. A particular input channel is selected by using the address decoder. Table 1 shows the input states for the address line and the expansion control line to select any channel. The address is latched into the decoder on the low-to-high transition of the address latch enable signal.

TABLE 1

Selected Analog Channel	Address Line			Expansion Control	
	D	C	B	A	
IN0	L	L	L	L	H
IN1	L	L	L	H	H
IN2	L	L	H	L	H
IN3	L	L	H	H	H
IN4	L	H	L	L	H
IN5	L	H	L	H	H
IN6	L	H	H	L	H
IN7	L	H	H	H	H
IN8	H	L	L	L	H
IN9	H	L	L	H	H
IN10	H	L	H	L	H
IN11	H	L	H	H	H
IN12	H	H	L	L	H
IN13	H	H	L	H	H
IN14	H	H	H	L	H
IN15	H	H	H	H	H
Annels OFF	X	X	X	X	L

X= don't care

Additional single-ended analog signals can be multiplexed to the A/D converter by disabling all the multiplexer inputs using the expansion control. The additional external signals are connected to the comparator input and the device ground. Additional signal conditioning (i.e., prescaling, sample and hold, instrumentation amplification, etc.) may also be added between the analog input signal and the comparator input.

CONVERTER CHARACTERISTICS

The Converter

The heart of this single chip data acquisition system is its 8bit analog-to-digital converter. The converter is designed to give fast, accurate, and repeatable conversions over a wide range of temperatures. The converter is partitioned into 3 major sections: the 256R ladder network, the successive approximation register, and the comparator. The converter's digital outputs are positive true.
The 256R ladder network approach (Figure 1) was chosen over the conventional R/2R ladder because of its inherent monotonicity, which guarantees no missing digital codes. Monotonicity is particularly important in closed loop feedback control systems. A non-monotonic relationship can cause oscillations that will be catastrophic for the system. Additionally, the 256R network does not cause load variations on the reference voltage.
The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the remainder of the network. The difference in these resistors causes the output characteristic to be symmetrical with the zero and full-scale points of the transfer curve. The first output transition occurs when the analog signal has reached $+1 / 2$ LSB and succeeding output transitions occur every 1 LSB later up to full-scale.

Functional Description (Continued)
The successive approximation register (SAR) performs 8 iterations to approximate the input voltage. For any SAR type converter, n-iterations are required for an n-bit converter. Figure 2 shows a typical example of a 3 -bit converter. In the ADC0816, ADC0817, the approximation technique is extended to 8 bits using the 256R network.
The A/D converter's successive approximation register (SAR) is reset on the positive edge of the start conversion (SC) pulse. The conversion is begun on the falling edge of the start conversion pulse. A conversion in process will be interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the end-of-conversion (EOC) output to the SC input. If used in this mode, an external start conversion pulse should be applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start conversion.

TL/H/5277-3
FIGURE 2. 3-Bit A/D Transfer Curve

The most important section of the A/D converter is the comparator. It is this section which is responsible for the ulimate accuracy of the entire converter. It is also the comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the converter requirements.
The chopper-stabilized comparator converts the DC input signal into an AC signal. This signal is then fed through a high gain AC amplifier and has the DC level restored. This technique limits the drift component of the amplifier since the drift is a DC component which is not passed by the AC amplifier. This makes the entire A/D converter extremely insensitive to temperature, long term drift and input offset errors.
Figure 4 shows a typical error curve for the ADC0816 as measured using the procedures outlined in AN-179.

FIGURE 3. 3-Bit A/D Absolute Accuracy Curve

TL/H/5277-5
FIGURE 4. Typical Error Curve

Connection Diagram

Dual-In-Package

Order Number ADC0816CCN, ADC0817CCN, ADC0816CCJ or ADC0816CJ
See NS Package Number J40A or N40A

Timing Diagram

FIGURE 5

Typical Performance Characteristics

FIGURE 6. Comparator $\mathrm{I}_{\mathbb{N}}$ vs V_{IN} ($\mathbf{V}_{\mathbf{C C}}=\mathbf{V}_{\mathbf{R E F}}=5 \mathrm{~V}$)

FIGURE 7. Multiplexer RON vs V_{IN} $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}\right)$

TRI-STATE Test Circuits and Timing Diagrams

TL/H/5277-9

FIGURE 8

Applications Information

OPERATION

1.0 RATIOMETRIC CONVERSION

The ADC0816, ADC0817 is designed as a complete Data Acquisition System (DAS) for ratiometric conversion systems. In ratiometric systems, the physical variable being measured is expressed as a percentage of full-scale which is not necessarily related to an absolute standard. The voltage input to the ADC0816 is expressed by the equation

$$
\begin{equation*}
\frac{V_{I N}}{V_{\mathrm{fs}}-V_{Z}}=\frac{D_{X}}{D_{\mathrm{MAX}}-D_{\mathrm{MIN}}} \tag{1}
\end{equation*}
$$

$\mathrm{V}_{\text {IN }}=$ Input voltage into the ADC0816
$V_{\text {fs }}=$ Full-scale voltage
$V_{Z}=$ Zero voltage
$\mathrm{D}_{\mathrm{X}}=$ Data point being measured
$\mathrm{D}_{\text {MAX }}=$ Maximum data limit
$\mathrm{D}_{\text {MIN }}=$ Minimum data limit

A good example of a ratiometric transducer is a potentiometer used as a position sensor. The position of the wiper is directly proportional to the output voltage which is a ratio of the full-scale voltage across it. Since the data is represented as a proportion of full-scale, reference requirements are greatly reduced, eliminating a large source of error and cost for many applications. A major advantage of the ADC0816, ADC0817 is that the input voltage range is equal to the supply range so the transducers can be connected directly across the supply and their outputs connected directly into the multiplexer inputs, (Figure 9).

Ratiometric transducers such as potentiometers, strain gauges, thermistor bridges, pressure transducers, etc., are suitable for measuring proportional relationships; however, many types of measurements must be referred to an absolute standard such as voltage or current. This means a system reference must be used which relates the full-scale voltage to the standard volt. For example, if $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{REF}}=$ 5.12 V , then the full-scale range is divided into 256 standard steps. The smallest standard step is 1 LSB which is then 20 mV .

2.0 RESISTOR LADDER LIMITATIONS

The voltages from the resistor ladder are compared to the selected input 8 times in a conversion. These voltages are coupled to the comparator via an analog switch tree which is referenced to the supply. The voltages at the top, center and bottom of the ladder must be controlled to maintain proper operation.
The top of the ladder, $\operatorname{Ref}(+$), should not be more positive than the supply, and the bottom of the ladder, $\operatorname{Ref}(-)$, should not be more negative than ground. The center of the ladder voltage must also be near the center of the supply because the analog switch tree changes from N -channel switches to P-channel switches These limitations are automaticaly satisfied in ratiometric systems and can be easily met in ground referenced systems.
Figure 10 shows a ground referenced system with a separate supply and reference. In this system, the supply must be trimmed to match the reference voltage. For instance, if a 5.12 V reference is used, the supply should be adjusted to the same voltage within 0.1 V .

Applications Information (Continued)

The ADC0816 needs less than a milliamp of supply current so developing the supply from the reference is readily accomplished. In Figure 11 a ground references system is shown which generates the supply from the reference. The buffer shown can be an op amp of sufficient drive to supply the milliamp of supply current and the desired bus drive, or if a capacitive bus is driven by the outputs a large capacitor will supply the transient supply current as seen in Figure 12. The LM301 is overcompensated to insure stability when loaded by the $10 \mu \mathrm{~F}$ output capacitor.

The top and bottom ladder voltages cannot exceed V_{CC} and ground, respectively, but they can be symmetrically less than V_{CC} and greater than ground. The center of the ladder voltage should always be near the center of the supply. The sensitivity of the converter can be increased, (i.e., size of the LSB steps decreased) by using a symmetrical reference system. In Figure 13, a 2.5 V reference is symmetrically centered about $\mathrm{V}_{\mathrm{CC}} / 2$ since the same current flows in identical resistors. This system with a 2.5 V reference allows the LSB to be half the size of the LSB in a 5 V reference system.

FIGURE 10. Ground Referenced Conversion System Using Trimmed Supply

TL/H/5277-13
FIGURE 11. Ground Referenced Conversion System with Reference Generating VCC Supply

Applications Information (Continued)

FIGURE 12. Typical Reference and Supply Circuit

TL/H/5277-15
FIGURE 13. Symmetrically Centered Reference

3.0 CONVERTER EQUATIONS

The transition between adjacent codes N and $\mathrm{N}+1$ is given by:

$$
\begin{equation*}
\mathrm{V}_{I N}=\left\{\left(\mathrm{V}_{\mathrm{REF}(+)}-\mathrm{V}_{\mathrm{REF}(-))}\left[\frac{\mathrm{N}}{256}+\frac{1}{512}\right] \pm \mathrm{V}_{\operatorname{TUE}}\right\}+\mathrm{V}_{\mathrm{REF}(-)}\right. \tag{2}
\end{equation*}
$$

The center of an output code N is given by:

$$
\begin{equation*}
V_{I N}=\left\{\left(V_{\text {REF }(+)}-V_{\text {REF }(-)}\right)\left[\frac{N}{256}\right] \pm V_{\text {TUE }}\right]+V_{\text {REF }(-)} \tag{3}
\end{equation*}
$$

The output code N for an arbitrary input are the integers within the range:

$$
\begin{equation*}
N=\frac{V_{I N}-V_{\text {REF }(-)}}{V_{\operatorname{REF}(+)}-V_{\operatorname{REF}(-)}} \times 256 \pm \text { Absolute Accuracy } \tag{4}
\end{equation*}
$$

where: $\mathrm{V}_{\mathrm{IN}}=$ Voltage at comparator input

$$
\begin{aligned}
& \mathrm{V}_{\text {REF }}=\text { Voltage at } \operatorname{Ref}(+) \\
& \mathrm{V}_{\text {REF }}=\text { Voltage at } \operatorname{Ref}(-) \\
& \mathrm{V}_{\text {TUE }}=\text { Total unadjusted error voltage (typically } \\
& \left.\mathrm{V}_{\text {REF }}(+) \div 512\right)
\end{aligned}
$$

Applications Information (Continued)

4.0 ANALOG COMPARATOR INPUTS

The dynamic comparator input current is caused by the periodic switching of on-chip stray capacitances These are connected alternately to the output of the resistor ladder/switch tree network and to the comparator input as part of the operation of the chopper stabilized comparator.
The average value of the comparator input current varies directly with clock frequency and with V_{IN} as shown in Figure 6.

If no filter capacitors are used at the analog or comparator inputs and the signal source impedances are low, the comparator input current should not introduce converter errors, as the transient created by the capacitance discharge will die out before the comparator output is strobed.
If input filter capacitors are desired for noise reduction and signal conditioning they will tend to average out the dynamic comparator input current. It will then take on the characteristics of a DC bias current whose effect can be predicted conventionally. See AN-258 for further discussion.

Typical Application

TL/H/5277-16
*Address latches needed for 8085 and SC/MP interfacing the ADC0816, 17 to a microprocessor

Microprocessor Interface Table

PROCESSOR	READ	WRITE	INTERRUPT (COMMENT)
8080	$\overline{\text { MEMR }}$	MEMW	INTR (Thru RST Circuit)
8085	$\overline{\mathrm{RD}}$	\bar{W}	INTR (Thru RST Circuit)
Z-80	$\overline{\mathrm{RD}}$	$\overline{\mathrm{WR}}$	INT (Thru RST Circuit, Mode 0)
SC/MP	NRDS	NWDS	SA (Thru Sense A)
6800	VMA• ϕ 2•R/W	$\mathrm{VMA} \bullet \mathrm{Q}_{2} \bullet \overline{\mathrm{R} / \mathrm{W}}$	$\overline{\mathrm{IRQA}}$ or $\overline{\mathrm{IRQB}}$ (Thru PIA)

Ordering Information

TEMPERATURE RANGE		$-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$		$-\mathbf{5 5 ^ { \circ }} \mathbf{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$
Error	$\pm 1 / 2$ Bit Unadjusted	ADC0816CCN	ADC0816CCJ	ADC0816CJ
	± 1 Bit Unadjusted	ADC0817CCN		
Package Outline			N40A Molded DIP	J40A Hermetic DIP

ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer

General Description

The ADC0819 is an 8-Bit successive approximation A/D converter with simultaneous serial I/O. The serial input controls an analog multiplexer which selects from 19 input channels or an internal half scale test voltage.
An input sample-and-hold is implemented by a capacitive reference ladder and sampled data comparator. This allows the input signal to vary during the conversion cycle.
Separate serial I/O and conversion clock inputs are provided to facilitate the interface to various microprocessors.

Features

- Separate asynchronous converter clock and serial data I/O clock.
- 19-Channel multiplexer with 5-Bit serial address logic.

Built-in sample and hold function.

- Ratiometric or absolute voltage referencing.
- No zero or full-scale adjust required.
- Internally addressable test voltage.
- 0 V to 5 V input range with single 5 V power supply.
- TTL/MOS input/output compatible.
- 28-pin molded chip carrier or 28-pin molded DIP

Key Specifications

- Resolution	8 -Bits
- Total unadjusted error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
- Single supply	$5 \mathrm{~V}_{\mathrm{DC}}$
- Low Power	15 mW
- Conversion Time	$16 \mu \mathrm{~s}$

Connection Diagrams

Functional Diagram

Molded Chip Carrier (PCC) Package

Top View
Order Number ADC0819BCV, CCV See NS Package Number V28A

Dual-In-Line Package

Top View
Order Number ADC0819BCN, CCN See NS Package Number N28B

TL/H/9287-2

Absolute Maximum Ratings (Notes 1 \& 2)	
If Military/Aerospace specified contact the National Semicon Distributors for availability and sper	vices are required, tor Sales Office/ ifications.
Supply Voltage (VCC)	6.5 V
Voltage	
Inputs and Outputs	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current Per Pin (Note 3)	$\pm 5 \mathrm{~mA}$
Total Package Input Current (Note 3)	$\pm 20 \mathrm{~mA}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW

Lead Temperature (Soldering, 10 sec.)	$260^{\circ} \mathrm{C}$
\quad Dual-In-Line Package (Plastic)	
Surface Mount Package	$215^{\circ} \mathrm{C}$
\quad Vapor Phase (60 sec.)	$220^{\circ} \mathrm{C}$
\quad Infrared (15 sec.)	2000 V
ESD Susceptibility (Note 11)	
Operating Ratings (Notes 1 \& 2)	
Supply Voltage (VCC)	$4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range	$\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$
ADC0819BCV, ADC0819CCV	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC0819BCN, ADC0819CCN	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+.1 \mathrm{~V}\right), \phi 2 \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0819BCV, ADC0819BCN ADC0819CCV, ADC0819CCN			Units
		Typical (Note 6)		Design Limit (Note 8)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS					
Maximum Total Unadjusted Error ADC0819BCV, BCN ADC0819CCV, CCN	$\begin{aligned} & \mathrm{V}_{\text {REF }}=5.00 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (Note 4) } \end{aligned}$		$\begin{gathered} \pm 1 / 2 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
Minimum Reference Input Resistance		8		5	$k \Omega$
Maximum Reference Input Resistance		8	11	11	k Ω
Maximum Analog Input Range	(Note 5)		$\mathrm{V}_{C C}+0.05$	$V_{\text {cc }}+0.05$	V
Minimum Analog Input Range			GND-0.05	GND-0.05	V
On Channel Leakage Current ADC0819BCV, CCV, BCN, CCN ADC0819BCV, CCV, BCN, CCN	On Channel $=5 \mathrm{~V}$ Off Channel $=0 \mathrm{~V}$ On Channel $=0 \mathrm{~V}$ Off Channel $=5 \mathrm{~V}$ (Note 9)		$\begin{gathered} 400 \\ -400 \end{gathered}$	$\begin{gathered} 1000 \\ -1000 \end{gathered}$	nA nA
Off Channel Leakage Current ADC0819BCV, CCV, BCN, CCN ADC0819BCV, CCV, BCN, CCN	On Channel $=5 \mathrm{~V}$ Off Channel $=0 \mathrm{~V}$ On Channel $=0 \mathrm{~V}$ Off Channel $=5 \mathrm{~V}$ (Note 9)		$\begin{gathered} -400 \\ 400 \end{gathered}$	$\begin{gathered} -1000 \\ 1000 \end{gathered}$	nA nA
Minimum V ${ }_{\text {TEST }}$ Internal Test Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CH} 19 \text { Selected } \end{aligned}$		125	125	(Note 10) Counts
Maximum $V_{\text {TEST }}$ Internal Test Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CH} 19 \text { Selected } \end{aligned}$		130	130	(Note 10) Counts
DIGITAL AND DC CHARACTERISTICS					
VIN(1), Logical "1" Input Voltage (Min)	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		2.0	2.0	V
$\mathrm{V}_{\text {IN(0) }}$, Logical "0" Input Voltage (Max)	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$		0.8	0.8	V
IIN(1), Logical " 1 " Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	0.005	2.5	2.5	$\mu \mathrm{A}$
IIN(0), Logical " 0 " Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-2.5	-2.5	$\mu \mathrm{A}$

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+4.6 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}+.1 \mathrm{~V}\right), \phi_{2} \mathrm{CLK}=2.097 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0819BCV, ADC0819BCN ADC0819CCV, ADC0819CCN			Units
		Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
DIGITAL AND DC CHARACTERISTICS (Continued)					
VOUT(1), Logical "1" Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=-360 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OUT}}=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Vout(0), Logical "0" Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4	0.4	V
IOUT, TRI-STATE Output Current (Max)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
ISOURCE, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5	-6.5	mA
ISINK, Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	16	8.0	8.0	mA
I_{CC}, Supply Current (Max)	$\overline{\mathrm{CS}}=1, \mathrm{~V}_{\text {REF }}$ Open	1	2.5	2.5	mA
IREF (Max)	$\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$	0.7	1	1	mA

AC CHARACTERISTICS

Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
ϕ_{2} CLK, ϕ_{2} Clock Frequency	MIN		0.70		1.0	MHz
	MAX		4.0	2.0	2.1	
$\mathrm{S}_{\text {CLK }}$, Serial Data Clock Frequency	MIN				5.0	KHz
	MAX		1000	525	525	
T_{C}, Conversion Process Time	MIN	Not Including MUX Addressing and Analog Input Sampling Times	26		26	ϕ_{2} cycles
	MAX		32		32	
$t_{\text {ACC }}$, Access Time Delay From $\overline{\mathrm{CS}}$ Falling Edge to DO Data Valid	MIN				1	ϕ_{2} cycles
	MAX				3	
tsET-UP, Minimum Set-up Time of $\overline{C S}$ Falling Edge to $\mathrm{S}_{\text {CLK }}$ Rising Edge					$4 / \phi_{2 C L K}+\frac{1}{2 S_{\text {CLK }}}$	sec
$\mathrm{t}_{\mathrm{H} \overline{\mathrm{CS}}}, \overline{\mathrm{CS}}$ Hold Time After the Falling Edge of $\mathrm{S}_{\mathrm{CLK}}$					0	ns
t $\overline{\mathrm{CS}}$, Total $\overline{\mathrm{CS}}$ Low Time	MIN				$\mathbf{t s e t - u p ~}+\mathbf{8 / S}$ CLK	sec
	MAX				$\mathbf{t} \overline{\mathbf{C S}}(\mathbf{m i n})+\mathbf{2 6} / \phi_{2} \mathbf{C L K}$	sec
$t_{H D I}$, Minimum DI Hold Time from $S_{\text {CLK }}$ Rising Edge			0		0	ns
$\mathrm{t}_{\mathrm{HDO}}$, Minimum DO Hold Time from $\mathrm{S}_{\mathrm{CLK}}$ Falling Edge		$\begin{aligned} & R_{\mathrm{L}}=30 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \hline \end{aligned}$			10	ns
$t_{\text {SDI, }}$, Minimum DI Set-up Time to SCLK Rising Edge			200		400	ns
$t_{D D O}$, Maximum Delay From SCLK Falling Edge to DO Data Valid		$\begin{aligned} & R_{\mathrm{L}}=30 \mathrm{k}, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$	180	200	250	ns
t $_{\text {TRI }}$, Maximum DO Hold Time, ($\overline{C S}$ Rising edge to DO TRI-STATE)		$\begin{aligned} & R_{L}=3 k, \\ & C_{L}=100 \mathrm{pF} \end{aligned}$	90	150	150	ns

Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{REF}}=$ 4.6 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right)$, unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
AC CHARACTERISTICS (Continued)						
$t_{C A}$, Analog Sampling Time	After Address Is Latched$\overline{C S}=\text { Low }$				3/S ${ }_{\text {cLK }}+1 \mu \mathrm{~s}$	sec
$t_{\text {RDO }}$, Maximum DO	$\begin{aligned} & R_{L}=30 \mathrm{k} \Omega \\ & C_{L}=100 \mathrm{pf} \end{aligned}$	"TRI-STATE" to "HIGH" State	75	150	150	ns
Rise Time		"LOW" to "HIGH" State	150	300	300	
$\mathrm{t}_{\text {FDO }}$, Maximum DO Fall Time	$\begin{aligned} & R_{\mathrm{L}}=30 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pf} \end{aligned}$	"TRI-STATE" to "LOW" State	75	150	150	ns
		"HIGH" to "LOW" State	150	300	300	
$\mathrm{C}_{\mathbb{I}}$, Maximum Input Capacitance	Analog Inputs, ANO-AN10 and V REF		11		55	pF
	All Others		5		15	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to ground.
Note 3: Under over voltage conditions $\left(V_{I N}<O V\right.$ and $\left.V_{I N}>V_{C C}\right)$ the maximum input current at any one pin is $\pm 5 \mathrm{~mA}$. If the voltage at more than one pin exceeds $\mathrm{V}_{\mathrm{CC}}+.3 \mathrm{~V}$ the total package current must be limited to 20 mA . For example the maximum number of pins that can be over driven at the maximum current level of $\pm 5 \mathrm{~mA}$ is four.

Note 4: Total unadjusted error includes offset, full-scale, linearity, multiplexer, and hold step errors.
Note 5: Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{I N}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Tested Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design Limits are guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 9: Channel leakage current is measured after the channel selection.
Note 10: 1 count $=V_{\text {REF }} / 256$.
Note 11: Human body model; 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Test Circuits

Leakage Current

TL/H/9287-3
tTRI "TRI-STATE"

TL/H/9287-5

D0 Except "TRI-STATE"

Timing Diagrams

DO "TRI-STATE" Rise \& Fall Times

TL/H/9287-6

Timing Diagrams (Continued)

Data Input and Output Timing

Do High to Low State

> TL/H/9287-9

*Strobing $\overline{\mathrm{CS}}$ High and Low will abort the present conversion and initiate a new serial I/O exchange.

Timing with a gated $\mathrm{S}_{\mathrm{CLK}}$ and $\overline{\mathrm{CS}}$ Continuously Low

TL/H/9287-11

TL/H/9287-12
Note: Strobing $\overline{\mathrm{CS}}$ Low during this time interval will abort the conversion in process.

Timing Diagrams (Continued)

$\overline{\mathrm{CS}}$ Low During Conversion

TL/H/9287-14

Channel Addressing Table

TABLE I. ADC 0819 Channel Addressing

MUX ADDRESS								ANALOG CHANNEL SELECTED
A_{7}	A_{6}	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	
0	0	0	0	0	X	X	X	CHO
0	0	0	0	1	X	X	x	CH1
0	0	0	1	0	X	X	X	CH 2
0	0	0	1	1	X	X	X	CH3
0	0	1	0	0	X	X	X	CH 4
0	0	1	0	1	X	X	X	CH5
0	0	1	1	0	X	X	X	CH6
0	0	1	1	1	X	X	X	CH 7
0	1	0	0	0	X	X	X	CH8
0	1	0	0	1	X	X	X	CH9
0	1	0	1	0	X	X	X	CH10
0	1	0	1	1	X	X	X	CH11
0	1	1	0	0	X	X	X	CH12
0	1	1	0	1	X	X	X	CH 13
0	1	1	1	0	X	X	X	CH14
0	1	1	1	1	X	X	X	CH 15
1	0	0	0	0	X	X	X	CH16
1	0	0	0	1	X	X	X	CH 17
1	0	0	1	0	X	X	X	CH18
1	0	0	1	1	X	X	X	$\mathrm{V}_{\text {TEST }}$
1	0	1	0	0	X	X	X	No Channel Select
1	0	1	0	1	X	X	X	No Channel Select
1	0	1	1	0	X	X	X	No Channel Select
1	0	1	1	1	X	X	X	No Channel Select
1	1	X	X	X	X	X	X	Logic Test Mode*

[^7]

Functional Description

1.0 DIGITAL INTERFACE

The ADC0819 uses five input/output pins to implement the serial interface. Taking chip select ($\overline{\mathrm{CS}}$) low enables the I/O data lines (DO and DI) and the serial clock input ($\mathrm{S}_{\mathrm{CLK}}$). The result of the last conversion is transmitted by the A/D on the DO line, while simultaneously the DI line receives the address data that selects the mux channel for the next conversion. The mux address is shifted in on the rising edge of $\mathrm{S}_{\mathrm{CLK}}$ and the conversion data is shifted out on the falling edge. It takes eight $\mathrm{S}_{\mathrm{CLK}}$ cycles to complete the serial I/O. A second clock (ϕ_{2}) controls the SAR during the conversion process and must be continuously enabled.

1.1 CONTINUOUS SCLK

With a continuous $\mathrm{S}_{\mathrm{CLK}}$ input $\overline{\mathrm{CS}}$ must be used to synchronize the serial data exchange (see Figure 1). The ADC0819 recognizes a valid $\overline{\mathrm{CS}}$ one to three ϕ_{2} clock periods after the actual falling edge of $\overline{\mathrm{CS}}$. This is implemented to ensure noise immunity of the $\overline{\mathrm{CS}}$ signal. Any spikes on $\overline{\mathrm{CS}}$ less than one ϕ_{2} clock period will be ignored. $\overline{\mathrm{CS}}$ must remain low during the complete I/O exchange which takes eight $\mathrm{S}_{\mathrm{CLK}}$ cycles. Although $\overline{\mathrm{CS}}$ is not immediately acknowledged for the purpose of starting a new conversion, the falling edge of $\overline{\mathrm{CS}}$ immediately enables DO to output the MSB (D7) of the previous conversion.
The first $\mathrm{S}_{\mathrm{CLK}}$ rising edge will be acknowledged after a setup time ($\mathrm{t}_{\text {set-up }}$) has elapsed from the falling edge of $\overline{\mathrm{CS}}$. This and the following seven $\mathrm{S}_{\mathrm{CLK}}$ rising edges will shift in the channel address for the analogmultiplexer. Since thereare 19 channels only five address bits are utilized. The first five SCLK cycles clock in the mux address, during the next three $\mathrm{S}_{\text {CLK }}$ cycles the analog input is selected and sampled. During
this mux address/sample cycle, data from the last conversion is also clocked out on DO. Since D7 was clocked out on the falling edge of $\overline{C S}$ only data bits D6-D0 remain to be received. The following seven falling edges of $\mathrm{S}_{\mathrm{CLK}}$ shift out this data on DO.
The 8th $\mathrm{S}_{\text {CLK }}$ falling edge initiates the beginning of the A/D's actual conversion process which takes between 26 and 32 ϕ_{2} cycles (T_{C}). During this time $\overline{\mathrm{CS}}$ can go high to TRISTATE DO and disable the $\mathrm{S}_{\mathrm{CLK}}$ input or it can remain low. If $\overline{C S}$ is held low a new I/O exchange will not start until the conversion sequence has been completed, however once the conversion ends serial I/O will immediately begin. Since there is an ambiguity in the conversion time (T_{C}) synchronizing the data exchange is impossible. Therefore $\overline{\mathrm{CS}}$ should go high before the 26 th ϕ_{2} clock has elasped and return low after the 32nd ϕ_{2} to synchronize serial communication.
A conversion or I/O operation can be aborted at any time by strobing $\overline{\mathrm{CS}}$. If $\overline{\mathrm{CS}}$ is high or low less than one ϕ_{2} clock it will be ignored by the A/D. If the $\overline{\mathrm{CS}}$ is strobed high or low between 1 to $3 \phi_{2}$ clocks the A/D may or may not respond. Therefore $\overline{\mathrm{CS}}$ must be strobed high or low greater than $3 \phi_{2}$ clocks to ensure recognition. If a conversion or I/O exchange is aborted while in process the consequent data output will be erroneous until a complete conversion sequence has been implemented.

1.2 DISCONTINUOUS SCLK

Another way to accomplish synchronous serial communication is to tie $\overline{\mathrm{CS}}$ low continuously and disable $\mathrm{S}_{\mathrm{CLK}}$ after its 8th falling edge (see Figure 2). S ${ }_{\text {CLK }}$ must remain low for

TL/H/9287-16
FIGURE 1

FIGURE 2

Functional Description (Continued)

at least $32 \phi_{2}$ clocks to ensure that the A/D has completed its conversion. If $\mathrm{S}_{\mathrm{CLK}}$ is enabled sooner, synchronizing to the data output on DO is not possible since an end of conversion signal from the A/D is not available and the actual conversion time is not known. With $\overline{\mathrm{CS}}$ low during the conversion time ($32 \phi_{2}$ max) DO will go high or low after the eighth falling edge of $\mathrm{S}_{\mathrm{CLK}}$ until the conversion is completed. Once the conversion is through DO will transmit the MSB. The rest of the data will be shifted out once $\mathrm{S}_{\text {CLK }}$ is enabled as discussed previously.
If $\overline{C S}$ goes high during the conversion sequence $D O$ is tristated, and the result is not affected so long as $\overline{\mathrm{CS}}$ remains high until the end of the conversion.

1.2 MULTIPLEXER ADDRESSING

The five bit mux address is shifted, MSB first, into DI. Input data corresponds to the channel selected as shown in table 1. Care should be taken not to send an address greater than or equal to twenty four (11 XXX) as this puts the A / D in a digital testing mode. In this mode the analog inputs CHO thru CH 4 become digital outputs, for our use in production testing.

2.0 ANALOG INPUT

2.1 THE INPUT SAMPLE AND HOLD

The ADC0819's sample/hold capacitor is implemented in its capacitive ladder structure. After the channel address is received, the ladder is switched to sample the proper analog input. This sampling mode is maintained for $1 \mu \mathrm{sec}$ after the
eighth $\mathrm{S}_{\text {CLK }}$ falling edge. The hold mode is initiated with the start of the conversion process. An acquisition window of ${ }^{3}{ }^{5} \mathrm{~S}_{\mathrm{CLK}}+1 \mu \mathrm{sec}$ is therefore available to allow the ladder capacitance to settle to the analog input voltage. Any change in the analog voltage before or after the acquisition window will not effect the A/D conversion result.
In the most simple case, the ladder's acquisition time is determined by the $\mathrm{R}_{\text {on }}(3 \mathrm{~K})$ of the multiplexer switches and the total ladder capacitance (90pf). These values yield an acquisition time of about $2 \mu \mathrm{sec}$ for a full scale reading. Therefore the analog input must be stable for at least $2 \mu \mathrm{sec}$ before and $1 \mu \mathrm{sec}$ after the eighth $\mathrm{S}_{\mathrm{CLK}}$ falling edge to ensure a proper conversion. External input source resistance and capacitance will lengthen the acquisition time and should be accounted for.
Other conventional sample and hold error specifications are included in the error and timing specs of the A/D. The hold step and gain error sample/hold specs are taken into account in the ADC0819's total unadjusted error, while the hold settling time is included in the A/D's max conversion time of $32 \phi_{2}$ clock periods. The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data. However, once the data is read it is lost and another conversion is started.

Typical Applications

Ordering Information

Temperature Range		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$	$\mathrm{ADC0819BCN}$	$\mathrm{ADC0819BCV}$	
	Package Outline			$\pm 1 \mathrm{LSB}$
$\mathrm{ADC0819CCN}$	ADC0819CCV			

ADC0820 8-Bit High Speed μ P Compatible A/D Converter with Track/Hold Function

General Description

By using a half-flash conversion technique, the 8 -bit ADC0820 CMOS A/D offers a $1.5 \mu \mathrm{~s}$ conversion time and dissipates only 75 mW of power. The half-flash technique consists of 32 comparators, a most significant 4-bit ADC and a least significant 4-bit ADC.
The input to the ADC0820 is tracked and held by the input sampling circuitry eliminating the need for an external sam-ple-and-hold for signals moving at less than $100 \mathrm{mV} / \mu \mathrm{s}$.
For ease of interface to microprocessors, the ADC0820 has been designed to appear as a memory location or I/O port without the need for external interfacing logic.

Key Specifications

Connection and Functional Diagrams

TL/H/5501-2
FIGURE 1
$\begin{array}{lr}\text { Absolute Maximum Ratings (Notes } 1 \& 2) \\ \text { If Military/Aerospace specified devices are required, } \\ \text { contact the National Semiconductor Sales Office/ } \\ \text { Distributors for availability and specifications. } \\ \text { Supply Voltage (VCC) } \\ \text { Logic Control Inputs } & 10 \mathrm{~V} \\ \text { Voltage at Other Inputs and Output } & -0.2 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V} \\ \text { Storage Temperature Range } & -0.2 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.2 \mathrm{~V} \\ \text { Package Dissipation at } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Input Current at Any Pin (Note 5) } & 875 \mathrm{~mW} \\ \text { Package Input Current (Note 5) } & 1 \mathrm{~mA} \\ \text { ESD Susceptability (Note 9) } & 4 \mathrm{~mA} \\ & 1200 \mathrm{~V}\end{array}$

Lead Temp. (Soldering, 10 sec.)

Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
Surface Mount Package	
Vapor Phase $(60$ sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

Operating Ratings (Notes 1 \& 2)

Temperature Range	$T_{M I N} \leq T_{A} \leq T_{M A X}$
ADC0820BD, ADC0820CJ	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
ADC0820BCD, ADC0820CCJ	$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
ADC0820BCN, ADC0820CCN	$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$
ADC0820BCV, ADC0820CCV	$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$
ADC0820BCWM, ADC0820CCWM	$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$
VCC Range	4.5 V to 8 V

Converter Characteristics The following specifications apply for RD mode (pin $7=0$), $\mathrm{V}_{C C}=5 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{REF}}(+)=5 \mathrm{~V}$, and $\mathrm{V}_{\text {REF }}(-)=\mathrm{GND}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0820BD, ADC0820CJ ADC0820BCD, ADC0820CCJ			ADC0820BCN, ADC0820CCN ADC0820BCV, ADC0820CCV ADC0820BCWM, ADC0820CCWM			Limit Units
		$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Tested Limit (Note 7)	Design Limit (Note 8)	Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
Resolution			8			8	8	Bits
Total Unadjusted Error (Note 3)	ADC0820BD, BCD ADC0820BCN ADC0820CD, CCD ADC0820CCN		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Minimum Reference Resistance		2.3	1.00		2.3	1.2		k Ω
Maximum Reference Resistance		2.3	6		2.3	5.3	6	k Ω
Maximum $\mathrm{V}_{\text {REF }}(+$) Input Voltage			V_{cc}			V_{CC}	$\mathrm{V}_{\text {cc }}$	V
Minimum $V_{\text {REF }}(-)$ Input Voltage			GND			GND	GND	V
Minimum $\mathrm{V}_{\text {REF }}(+$) Input Voltage			$\mathbf{V}_{\text {REF }}(-)$			$V_{\text {REF }}(-)$	$\mathbf{V}_{\text {REF }}(-)$	V
Maximum $V_{\text {REF }}(-)$ Input Voltage			$\mathbf{V R E F}^{(+)}$			$\mathrm{V}_{\text {REF }}(+)$	$\mathbf{V}_{\text {REF }}(+)$	V
Maximum $\mathrm{V}_{\text {IN }}$ Input Voltage			$\mathrm{V}_{\mathrm{Cc}}+0.1$			$\mathrm{V}_{\mathrm{CC}}+0.1$	$v_{c c}+0.1$	V
Minimum $\mathrm{V}_{\text {IN }}$ Input Voltage			GND-0.1			GND-0.1	GND-0.1	V
Maximum Analog Input Leakage Current	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \\ & \hline \end{aligned}$		$\begin{gathered} 3 \\ -3 \end{gathered}$			$\begin{gathered} 0.3 \\ -0.3 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ -3 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Power Supply Sensitivity	$V_{C C}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB

DC Electrical Characteristics The following speciifications apply for $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified.
Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions		ADC0820BD, ADC0820CJ ADC0820BCD, ADC0820CCJ			ADC0820BCN, ADC0820CCN ADC0820BCV, ADC0820CCV ADC0820BCWM, ADC0820CCWM			Limit Units
			Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
$\mathrm{V}_{\text {IN(1) }}$, Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}$		2.0			2.0	2.0	V
		Mode		3.5			3.5	3.5	V
$\mathrm{V}_{\text {IN }(0)}$, Logical "0" Input Voltage	$V_{C C}=4.75 \mathrm{~V}$	$\overline{\mathrm{CS}}, \overline{\mathrm{WR}}, \overline{\mathrm{RD}}$		0.8			0.8	0.8	V
		Mode		1.5			1.5	1.5	V
IIN(1), Logical "1" Input Current	$\begin{aligned} & V_{I N(1)}=5 \mathrm{~V} ; \overline{\mathrm{CS}, \overline{R D}} \\ & \mathrm{~V}_{1 N(1)}=5 \mathrm{~V} ; \mathrm{WR} \\ & \mathrm{~V}_{\mathrm{IN}(1)}=5 \mathrm{~V} ; \text { Mode } \\ & \hline \end{aligned}$		$\begin{gathered} \hline 0.005 \\ 0.1 \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 3 \\ 200 \\ \hline \end{gathered}$		$\begin{gathered} 0.005 \\ 0.1 \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 0.3 \\ 170 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 \\ 3 \\ 200 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
IIN(0), Logical "0" Input Current	$\begin{aligned} & V_{\operatorname{IN(0)}}=0 \mathrm{~V} ; \overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \\ & \text { Mode } \end{aligned}$		-0.005	-1		-0.005		-1	$\mu \mathrm{A}$
VOUT(1), Logical "1" Output Voltage	$\begin{aligned} & V_{C C}=4.75 \mathrm{~V}, \text { IOU }=-360 \mu \mathrm{~A} ; \\ & \mathrm{DBO}-\mathrm{DB7}, \overline{\mathrm{OFL}}, \mathrm{INT} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \text { IOUT }=-10 \mu \mathrm{~A} ; \\ & \mathrm{DBO}-\mathrm{DB7}, \overline{\mathrm{OFL}}, \frac{\mathrm{INT}}{} \end{aligned}$			$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 2.8 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	V V
$\begin{aligned} & \text { Vout(0), Logical "0" } \\ & \text { Output Voltage } \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}$; DB0-DB7, OFL, INT, RDY			0.4			0.34	0.4	V
Iout, TRI-STATE Output Current	$\begin{aligned} & V_{\text {OUT }}=5 \mathrm{~V} ; \mathrm{DB} 0-\mathrm{DB} 7, \mathrm{RDY} \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} ; \mathrm{DB0}-\mathrm{DB7} 7, \mathrm{RDY} \\ & \hline \end{aligned}$		$\begin{gathered} 0.1 \\ -0.1 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ -3 \end{gathered}$		$\begin{gathered} 0.1 \\ -0.1 \\ \hline \end{gathered}$	$\begin{gathered} 0.3 \\ -0.3 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ -3 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Isource, Output Source Current	$\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{INT}}=0 \mathrm{~V} ; \mathrm{DBO}-\mathrm{DB} 7, \overline{\mathrm{OFL}}$		$\begin{gathered} -12 \\ -9 \end{gathered}$	$\begin{gathered} \hline-6 \\ -4.0 \\ \hline \end{gathered}$		$\begin{gathered} -12 \\ -9 \\ \hline \end{gathered}$	$\begin{array}{r} -7.2 \\ -5.3 \\ \hline \end{array}$	$\begin{gathered} -6 \\ -4.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Isink, Output Sink Current	$V_{\text {OUT }}=5 \mathrm{~V}$; DBO-DB7, OFL, INT, RDY		14	7		14	8.4	7	mA
ICC, Supply Current	$\overline{\mathrm{CS}}=\overline{\mathrm{WR}}=\overline{\mathrm{RD}}=0$		7.5	15		7.5	13	15	mA

AC Electrical Characteristics The following specifications apply for $V_{C C}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~V}_{\text {REF }}(+)=5 \mathrm{~V}$,
$V_{\text {REF }}(-)=0 V$ and $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter		Conditions	Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
${ }^{\text {t }}$ CRD , Conversion Time for RD Mode		$\operatorname{Pin} 7=0$, (Figure 2)	1.6		2.5	$\mu \mathrm{s}$
$t_{\text {ACCO }}$, Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)		$\operatorname{Pin} 7=0$, (Figure 2)	$\mathrm{t}_{\mathrm{CRD}}+20$		$\mathrm{t}_{\text {CRD }}+50$	ns
t CWR-RD, Conversion Time for WR-RD Mode		$\begin{aligned} & \text { Pin } 7=V_{\mathrm{CC}} ; \mathrm{t}_{\mathrm{WR}}=600 \mathrm{~ns}, \\ & \mathrm{t}_{\mathrm{RD}}=600 \mathrm{~ns} \text {; (Figures } 3 a \text { and } 3 b \text {) } \end{aligned}$			1.52	$\mu \mathrm{s}$
$t_{\text {WR, Write Time }}$	Min	$\operatorname{Pin} 7=V_{C C}$; (Figures 3a and $3 b$) (Note 4) See Graph		600		ns
	Max		50			$\mu \mathrm{s}$
$\mathrm{t}_{\text {RD }}$, Read Time \quad Min		Pin $7=V_{C C}$; (Figures $3 a$ and $3 b$) (Note 4) See Graph	-	600		ns
$t_{\text {ACC1 }}$, Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Valid)		$\operatorname{Pin} 7=V_{C C}, t_{\text {RD }}<t_{j}$; (Figure 3a) $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	190		280	ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	210		320	ns
$t_{\text {ACC2 }}$, Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Valid)		Pin $7=\mathrm{V}_{\mathrm{CC}}, \mathrm{t}_{\mathrm{RD}}>\mathrm{t}_{\mathrm{t}}$; (Figure $3 b$) $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	70		120	ns
		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	90		150	ns

AC Electrical Characteristics (Continued) The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\boldsymbol{f}}=20 \mathrm{~ns}$, $\mathrm{V}_{\mathrm{REF}}(+)=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}(-)=0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Tested Limit (Note 7)	Design Limit (Note 8)	Units
$\mathrm{t}_{\text {, }}$ Internal Comparison Time	$\operatorname{Pin} 7=V_{c c} \text {; (Figures } 3 b \text { and 4) }$ $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	800		1300	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$, TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	100		200	ns
tiNTL, Delay from Rising Edge of WR to Falling Edge of INT	$\begin{aligned} & \text { Pin } 7=\mathrm{V}_{\mathrm{CC}}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{t}_{\mathrm{RD}}>\mathrm{t}_{1} \text {; (Figure } 3 \mathrm{~b} \text {) } \\ & \mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{l}} \text { (Figure 3a) } \\ & \hline \end{aligned}$	$\mathrm{t}_{\text {RD }}+200$		$\begin{gathered} t_{1} \\ t_{\text {RD }}+290 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
tiNTH, Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Rising Edge of $\overline{\mathrm{NT}}$	$\begin{aligned} & \text { (Figures 2, 3a and 3b) } \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	125		225	ns
tiNTHWR, Delay from Rising Edge of WR to Rising Edge of INT	(Figure 4), $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	175		270	ns
$\mathrm{t}_{\text {RDY, }}$, Delay from $\overline{\text { CS }}$ to RDY	(Figure 2), $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{Pin} 7=0$	50		100	ns
$t_{\text {ID }}$, Delay from $\overline{\mathbb{N T}}$ to Output Valid	(Figure 4)	20		50	ns
t_{R}, Delay from $\overline{\mathrm{RD}}$ to $\overline{\mathrm{NT}}$	$\begin{aligned} & \text { Pin } 7=V_{\mathrm{VC},}, \mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{1} \\ & \text { (Figure } \end{aligned}$	200		290	ns
tp, Delay from End of Conversion to Next Conversion	(Figures 2, 3a, 3b and 4) (Note 4) See Graph			500	ns
Slew Rate, Tracking		0.1			$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{C}_{\mathrm{VIN}}$, Analog Input Capacitance		45			pF
Cout, Logic Output Capacitance		5			pF
$\mathrm{C}_{\mathrm{IN}^{\prime} \text {, Logic }}$ Input Capacitance		5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the GND pin, unless otherwise specified.
Note 3: Total unadjusted error includes offset, full-scale, and linearity errors.
Note 4: Accuracy may degrade if $t_{W R}$ or $t_{R D}$ is shorter than the minimum value specified. See Accuracy vs $t_{W R}$ and Accuracy vs $t_{R D}$ graphs.
Note 5: When the input voltage ($\mathrm{V}_{\mathbb{I}}$) at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{I}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 1 mA or less. The 4 mA package input current limits the number of pins that can exceed the power supply boundaries with a 1 mA current limit to four.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design limits are guaranteed but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 9: Human body model, 100 pF discharaged through a $1.5 \mathrm{k} \Omega$ resistor.
TRI-STATE Test Circuits and Waveforms

Timing Diagrams

TL/H/5501-7
FIGURE 2. RD Mode (Pin 7 is Low)

FIGURE 3a. WR-RD Mode (Pin 7 is High and $\mathrm{t}_{\text {RD }}<\mathrm{t}_{\mathrm{l}}$)

Typical Performance Characteristics

Conversion Time (RD Mode) vs Temperature

Power Supply Current vs Temperature (not including reference ladder)

Output Current vs Temperature

TL/H/5501-11

Description of Pin Functions
Pin Name
Function
 $3 a$ and $3 b$).

RD Mode

RDY: This is an open drain output (no internal pull-up device). RDY will go low after the falling edge of $\overline{C S}$; RDY will go TRI-STATE when the result of the conversion is strobed into the output latch. It is used to simplify the interface to a microprocessor system (see Figure 2).
7 Mode Mode: Mode selection input-it is internally tied to GND through a $50 \mu \mathrm{~A}$ current source.
RD Mode: When mode is low WR-RD Mode: When mode is high $8 \quad \overline{R D} \quad$ WR-RD Mode

With $\overline{\mathrm{CS}}$ low, the TRI-STATE data outputs (DB0-DB7) will be activated when $\overline{\mathrm{RD}}$ goes low (see Figure 4). $\overline{R D}$ can also be used to increase the speed of the converter by reading data prior to the preset internal time out ($\mathbf{t}, \sim 800 \mathrm{~ns}$). If this is done, the data result transferred to output latch is latched after the falling edge of the $\overline{\mathrm{RD}}$ (see Figures $3 a$ and $3 b$).

RD Mode

With $\overline{C S}$ low, the conversion will start with $\overline{\mathrm{RD}}$ going low, also $\overline{\mathrm{RD}}$ will enable the TRI-STATE data outputs at the completion of the conversion. RDY going TRISTATE and INT going low indicates the completion of the conversion (see Figure 2).

1.0 Functional Description

1.1 GENERAL OPERATION

The ADC0820 uses two 4-bit flash A/D converters to make an 8 -bit measurement (Figure 1). Each flash ADC is made up of 15 comparators which compare the unknown input to a reference ladder to get a 4 -bit result. To take a full 8 -bit reading, one flash conversion is done to provide the 4 most significant data bits (via the MS flash ADC). Driven by the 4 MSBs, an internal DAC recreates an analog approximation of the input voltage. This analog signal is then subtracted from the input, and the difference voltage is converted by a second 4 -bit flash ADC (the LS ADC), providing the 4 least significant bits of the output data word.

The internal DAC is actually a subsection of the MS flash converter. This is accomplished by using the same resistor ladder for the A/D as well as for generating the DAC signal. The DAC output is actually the tap on the resistor ladder which most closely approximates the analog input. In addition, the "sampled-data" comparators used in the ADC0820 provide the ability to compare the magnitudes of several analog signals simultaneously, without using input summing amplifiers. This is especially useful in the LS flash ADC, where the signal to be converted is an analog difference.

1.0 Functional Description (Continued)

1.2 THE SAMPLED-DATA COMPARATOR

Each comparator in the ADC0820 consists of a CMOS inverter with a capacitively coupled input (Figure 5). Analog switches connect the two comparator inputs to the input capacitor (C) and also connect the inverter's input and output. This device in effect now has one differential input pair. A comparison requires two cycles, one for zeroing the comparator, and another for making the comparison.
In the first cycle, one input switch and the inverter's feedback switch (Figure 5a) are closed. In this interval, C is charged to the connected input (V1) less the inverter's bias voltage (V_{B}, approximately 1.2 V). In the second cycle (Figure $5 b$), these two switches are opened and the other (V2) input's switch is closed. The input capacitor now subtracts its stored voltage from the second input and the difference is amplified by the inverter's open loop gain. The inverter's input ($V_{B}{ }^{\prime}$) becomes
$V_{B}-\left(V_{1}-V_{2}\right) \frac{C}{C+C_{S}}$
and the output will go high or low depending on the sign of $V_{B}{ }^{\prime}-V_{B}$.

The actual circuitry used in the ADC0820 is a simple but important expansion of the basic comparator described above. By adding a second capacitor and another set of switches to the input (Figure 6), the scheme can be expanded to make dual differential comparisons. In this circuit, the feedback switch and one input switch on each capacitor (Z switches) are closed in the zeroing cycle. A comparison is then made by connecting the second input on each capacitor and opening all of the other switches (S switches). The change in voltage at the inverter's input, as a result of the change in charge on each input capacitor, will now depend on both input signal differences.

1.3 ARCHITECTURE

In the ADC0820, one bank of 15 comparators is used in each 4-bit flash A/D converter (Figure 7). The MS (most significant) flash ADC also has one additional comparator to detect input overrange. These two sets of comparators operate alternately, with one group in its zeroing cycle while the other is comparing.

TL/H/5501-13

$$
\begin{aligned}
& \cdot \mathrm{V}_{\mathrm{B}^{\prime}}-\mathrm{V}_{\mathrm{B}}=\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) \frac{\mathrm{C}}{\mathrm{C}+\mathrm{C}_{\mathrm{S}}} \\
& \cdot \mathrm{~V}_{O^{\prime}}=\frac{-\mathrm{A}}{\mathrm{C}+\mathrm{C}_{\mathrm{S}}}[\mathrm{CV} 2-\mathrm{CV} 1] \\
& \cdot \mathrm{V}_{O^{\prime}} \text { is dependent on } \mathrm{V} 2-\mathrm{V}_{1}
\end{aligned}
$$

FIGURE 5b. Compare Phase

FIGURE 5a. Zeroing Phase
FIGURE 5. Sampled-Data Comparator

$$
\begin{aligned}
V_{O} & =\frac{-A}{C 1+C 2+C_{S}}\left[C 1\left(V_{2}-V_{1}\right)+C 2\left(V_{4}-V_{3}\right)\right] \\
& =\frac{-A}{C 1+C 2+C_{S}}\left[\Delta Q_{C 1}+\Delta Q_{C 2}\right]
\end{aligned}
$$

TL/H/5501-14

FIGURE 6. ADC0820 Comparator (from MS Flash ADC)

Detailed Block Diagram

FIGURE 7

1.0 Functional Description (Continued)

When a typical conversion is started, the $\overline{W R}$ line is brought low. At this instant the MS comparators go from zeroing to comparison mode (Figure 8). When WR is returned high after at least 600 ns , the output from the first set of comparators (the first flash) is decoded and latched. At this point the two 4-bit converters change modes and the LS (least significant) flash ADC enters its compare cycle. No less than 600 ns later, the $\overline{\mathrm{RD}}$ line may be pulled low to latch the lower 4 data bits and finish the 8 -bit conversion. When RD goes low, the flash A/Ds change state once again in preparation for the next conversion.
Figure 8 also outlines how the converter's interface timing relates to its analog input ($\mathrm{V}_{\text {IN }}$). In WR-RD mode, $\mathrm{V}_{\text {IN }}$ is measured while $\overline{W R}$ is low. In RD mode, sampling occurs during the first 800 ns of $\overline{\mathrm{RD}}$. Because of the input connections to the ADC0820's LS and MS comparators, the converter has the ability to sample $\mathrm{V}_{\mathbb{I}}$ at one instant (Section 2.4), despite the fact that two separate 4-bit conversions are being done. More specifically, when WR is low the MS flash is in compare mode (connected to V_{IN}), and the LS flash is in zero mode (also connected to V_{IN}). Therefore both flash ADCs sample V_{IN} at the same time.

1.4 DIGITAL INTERFACE

The ADC0820 has two basic interface modes which are selected by strapping the MODE pin high or low.

RD Mode

With the MODE pin grounded, the converter is set to Read mode. In this configuration, a complete conversion is done by pulling $\overline{\mathrm{RD}}$ low until output data appears. An $\overline{\mathrm{NT}}$ line is provided which goes low at the end of the conversion as well as a RDY output which can be used to signal a processor that the converter is busy or can also serve as a system Transfer Acknowledge signal.

RD Mode (Pin 7 is Low)

When in RD mode, the comparator phases are internally triggered. At the falling edge of $\overline{R D}$, the MS flash converter goes from zero to compare mode and the LS ADC's comparators enter their zero cycle. After 800 ns , data from the MS flash is latched and the LS flash ADC enters compare mode. Following another 800 ns , the lower 4 bits are recovered.

WR then RD Mode

With the MODE pin tied high, the A/D will be set up for the WR-RD mode. Here, a conversion is started with the WR input; however, there are two options for reading the output data which relate to interface timing. If an interrupt driven scheme is desired, the user can wait for $\overline{\mathrm{NT}}$ to go low before reading the conversion result (Figure B). INT will typically go low 800 ns after WR's rising edge. However, if a shorter conversion time is desired, the processor need not wait for $\overline{\mathrm{NT}}$ and can exercise a read after only 600 ns (Figure A). If this is done, $\overline{\mathrm{NT}}$ will immediately go low and data will appear at the outputs.

FIGURE A. WR-RD Mode (Pin 7 is High and $\mathrm{t}_{\mathrm{RD}}<\mathrm{t}_{\mathrm{l}}$)

FIGURE B. WR-RD Mode (Pin 7 is High and $\mathrm{t}_{\text {RD }}>\mathrm{t}_{\mathrm{I}}$)

Stand-Alone

For stand-alone operation in WR-RD mode, $\overline{C S}$ and $\overline{R D}$ can be tied low and a conversion can be started with WR. Data will be valid approximately 800 ns following $\overline{\mathrm{WR}}$'s rising edge.

WR-RD Mode (Pin 7 is High) Stand-Alone Operation

1.0 Functional Description (Continued)

TL/H/5501-20
Note: MS means most significant
LS means least significant
FIGURE 8. Operating Sequence (WR-RD Mode)

OTHER INTERFACE CONSIDERATIONS

In order to maintain conversion accuracy, $\overline{\mathrm{WR}}$ has a maximum width spec of $50 \mu \mathrm{~s}$. When the MS flash ADC's sam-pled-data comparators (Section 1.2) are in comparison mode ($\overline{\mathrm{WR}}$ is low), the input capacitors (C, Figure 6) must hold their charge. Switch leakage and inverter bias current can cause errors if the comparator is left in this phase for too long.
Since the MS flash ADC enters its zeroing phase at the end of a conversion (Section 1.3), a new conversion cannot be started until this phase is complete. The minimum spec for this time (t_{p}, Figures 2, 3a, 3b, and 4) is 500 ns .

2.0 Analog Considerations

2.1 REFERENCE AND INPUT

The two $\mathrm{V}_{\text {REF }}$ inputs of the ADC0820 are fully differential and define the zero to full-scale input range of the A to D converter. This allows the designer to easily vary the span of the analog input since this range will be equivalent to the voltage difference between $\mathrm{V}_{\mathrm{IN}}(+)$ and $\mathrm{V}_{\mathrm{IN}}(-)$. By reducing $V_{\text {REF }}\left(V_{\text {REF }}=V_{\text {REF }}(+)-V_{\text {REF }}(-)\right)$ to less than $5 V$, the sensitivity of the converter can be increased (i.e., if $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$ then $1 \mathrm{LSB}=7.8 \mathrm{mV}$). The input/reference arrangement also facilitates ratiometric operation and in many cases the chip power supply can be used for transducer power as well as the $V_{\text {REF }}$ source.
This reference flexibility lets the input span not only be varied but also offset from zero. The voltage at $\mathrm{V}_{\text {REF }}(-)$ sets the input level which produces a digital output of all zeroes. Though V_{IN} is not itself differential, the reference design affords nearly differential-input capability for most measurement applications. Figure 9 shows some of the configurations that are possible.

2.2 INPUT CURRENT

Due to the unique conversion techniques employed by the ADC0820, the analog input behaves somewhat differently than in conventional devices. The A/D's sampled-data comparators take varying amounts of input current depending on which cycle the conversion is in.
The equivalent input circuit of the ADC0820 is shown in Figure 10a. When a conversion starts (WR low, WR-RD mode), all input switches close, connecting $\mathrm{V}_{\text {IN }}$ to thirty-one 1 pF capacitors. Although the two 4-bit flash circuits are not both in their compare cycle at the same time, V_{IN} still sees all input capacitors at once. This is because the MS flash converter is connected to the input during its compare interval and the LS flash is connected to the input during its zeroing phase (Section 1.3). In other words, the LS ADC uses $\mathrm{V}_{I N}$ as its zero-phase input.
The input capacitors must charge to the input voltage through the on resistance of the analog switches (about 5 $\mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$). In addition, about 12 pF of input stray capacitance must also be charged. For large source resistances, the analog input can be modeled as an RC network as shown in Figure 10b. As R increases, it will take longer for the input capacitance to charge.
In RD mode, the input switches are closed for approximately 800 ns at the start of the conversion. In WR-RD mode, the time that the switches are closed to allow this charging is the time that $\overline{W R}$ is low. Since other factors force this time to be at least 600 ns , input time constants of 100 ns can be accommodated without special consideration. Typical total input capacitance values of 45 pF allow R_{S} to be $1.5 \mathrm{k} \Omega$ without lengthening $\overline{W R}$ to give $V_{I N}$ more time to settle.

2.0 Analog Considerations (Continued)

External Reference 2.5V Full-Scale

TL/H/5501-21

Power Supply as Reference

TL/H/5501-22

Input Not Referred to GND

TL/H/5501-23
FIGURE 9. Analog Input Options

TL/H/5501-24
FIGURE 10a

2.3 INPUT FILTERING

It should be made clear that transients in the analog input signal, caused by charging current flowing into $V_{I N}$, will not degrade the A/D's performance in most cases. In effect the ADC0820 does not "look" at the input when these transients occur. The comparators' outputs are not latched while $\overline{\mathrm{WR}}$ is low, so at least 600 ns will be provided to charge the ADC's input capacitance. It is therefore not necessary to filter out these transients by putting an external cap on the V_{IN} terminal.

2.4 INHERENT SAMPLE-HOLD

Another benefit of the ADC0820's input mechanism is its ability to measure a variety of high speed signals without the help of an external sample-and-hold. In a conventional SAR type converter, regardless of its speed, the input must remain at least $1 / 2$ LSB stable throughout the conversion process if full accuracy is to be maintained. Consequently, for many high speed signals, this signal must be externally sampled, and held stationary during the conversion.

TL/H/5501-25

FIGURE 10b

Sampled-data comparators, by nature of their input switching, already accomplish this function to a large degree (Section 1.2). Although the conversion time for the ADC0820 is $1.5 \mu \mathrm{~s}$, the time through which $\mathrm{V}_{\text {IN }}$ must be $1 / 2$ LSB stable is much smaller. Since the MS flash ADC uses $\mathrm{V}_{I N}$ as its "compare" input and the LS ADC uses V_{IN} as its "zero" input, the ADC0820 only "samples" $\mathrm{V}_{\text {IN }}$ when \bar{W} is low (Sections 1.3 and 2.2). Even though the two flashes are not done simultaneously, the analog signal is measured at one instant. The value of V_{IN} approximately 100 ns after the rising edge of $\overline{W R}$ (100 ns due to internal logic prop delay) will be the measured value.
Input signals with slew rates typically below $100 \mathrm{mV} / \mu \mathrm{s}$ can be converted without error. However, because of the input time constants, and charge injection through the opened comparator input switches, faster signals may cause errors. Still, the ADC0820's loss in accuracy for a given increase in signal slope is far less than what would be witnessed in a conventional successive approximation device. An SAR type converter with a conversion time as fast as $1 \mu \mathrm{~s}$ would still not be able to measure a 5 V 1 kHz sine wave without the aid of an external sample-and-hold. The ADC0820, with no such help, can typically measure $5 \mathrm{~V}, 7 \mathrm{kHz}$ waveforms.

3.0 Typical Applications

8-Bit Resolution Configuration

Telecom A/D Converter

TL/H/5501-26
9-Bit Resolution Configuration

TL/H/5501-27
Multiple Input Channels
\downarrow

3.0 Typical Applications (Continued)

8-Bit 2-Quadrant Analog Multiplier

Fast Infinite Sample-and-Hold

ADC0829 μ P Compatible 8-Bit A/D with 11-Channel MUX/Digital Input

General Description

The ADC0829 is an 8 -bit successive approximation A/D converter with an 11-channel multiplexer of which six can be used as digital inputs, as well as, analog inputs.
This A / D is designed to operate from the $\mu \mathrm{P}$ data bus using a single 5 V supply.
Channel selection, conversion control, software configuration and bus interface logic are all contained on this monolithic CMOS device.

This device contains three 16 -bit registers which are accessed via double byte instructions. The control register is a write only register which controls the start of a new conversion, selects the channel to be converted, configures the 8bit I/O port as input or output, and provides information for the 8 -bit output register.
The conversion results register is a read only register which contains the current status and most recent conversion results. The discrete input register is also a read only register which contains the four address bits of the selected channel, and the six discrete inputs which are connected to the analog multiplexer.

Features

■ Easy interface to all microprocessors or operates "stand alone"

- Operates ratiometrically or with analog span adjusted voltage reference
- 11-Channel multiplexer with latched control logic of which six can be used as digital inputs
- 0 to 5 V analog input range with single 5 V supply
- TTL/MOS input/output compatible
- No zero or full scale adjusts required
- Standard 28-pin DIP
- Temperature range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Key Specification

- Resolution	8 Bits
- Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
- Conversion Time	$256 \mu \mathrm{~s}$
- Single Supply	$5 \mathrm{~V}_{\mathrm{DC}}$
- Low Power	50 mW

Connection and Block Diagrams

> TL/H/5508-1
> Top View

Ordering Information

Error	$\pm 1 / 2$ Bit Unadjusted	ADC0829BCN
	± 1 Bit Unadjusted	ADC0829CCN
Package Outline		N28B

TL/H/5508-2

Absolute Maximum Ratings (Notes 1 and 2)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage, V_{CC} (Note 3)	6.5 V
Voltage	
\quad Logic Inputs	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
\quad Analog Inputs	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Package Dissipation	
at TA $=25^{\circ} \mathrm{C}$ (Board Mount)	875 mW
Lead Temp. (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
ESD Susceptability (Note 8)	2000 V
Input Current Per Pin	$\pm 5 \mathrm{~mA}$
Package	+20 mA

$\begin{array}{lr}\text { Operating Conditions (Notes } 1 \text { and 2) } \\ \text { Supply Voltage, } \mathrm{V}_{\mathrm{CC}} & 4.75 \mathrm{~V}_{\mathrm{DC}} \text { to } 5.5 \mathrm{~V}_{\mathrm{DC}} \\ \text { Temperature Range } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\end{array}$
Converter and Multiplexer Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\text {REF }}(+), \mathrm{V}_{\text {REF }}(-)=G N D$,
SCLK $\phi_{2}=1.048 \mathrm{MHz},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}+85^{\circ} \mathrm{C}$ unless otherwise noted.

AC Characteristics $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {REF }}(+)=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 7) unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\mathrm{CYC}}\left(\phi_{2}\right), \phi_{2}$ Clock Cycle Time (1/f $\left.\phi_{2}\right)$		0.943		10.0	$\mu \mathrm{~s}$
$\mathrm{PW}_{\mathrm{H}}\left(\phi_{2}\right), \phi_{2}$ Clock Pulse Width, High		440			ns
$\mathrm{PW}_{\mathrm{L}}\left(\phi_{2}\right), \phi_{2}$ Clock Pulse Width, Low		410			ns
$\mathrm{t}_{\mathrm{r}}\left(\phi_{2}\right), \phi_{2}$ Rise Time				25	ns
$\mathrm{t}_{\mathrm{f}}\left(\phi_{2}\right), \phi_{2}$ Fall Time				30	ns
$\mathrm{t}_{\text {AS }}$, Address Set Up Time		145			ns
$\mathrm{t}_{\mathrm{DDR}}$, Data Delay (Read)	RS1, R/ $\overline{\mathrm{W}}, \overline{\mathrm{CS}}$				
$\mathrm{t}_{\mathrm{DSW}}$, Data Delay Setup (Write)	DB0-DB7			335	ns
t_{AH}, Address Hold Time	DB0-DB7	185			ns
$\mathrm{t}_{\mathrm{DHW}}$, Input Data Hold Time	RS1, R/ $\bar{W}, \overline{\mathrm{CE}}$				
$\mathrm{t}_{\mathrm{DHR}}$, Output Data Hold Time	20			ns	
Analog Channel Settling Time	DB0-DB7	20			ns
t_{c}, Conversion Time	DB0-DB7	10			ns

Digital and DC Characteristics $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V and $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Condlitions	Min	Typ	Max	Units
Bus Control Inputs (R/W, ENABLE $\overline{\text { RESET, RS1, }} \overline{\mathrm{CS}}$) and Peripheral Inputs (PO-P5)					
$\mathrm{V}_{\text {IN }}(1)$, Logical "1" Input Voltage		2.0			V
$\mathrm{V}_{\text {IN }}(0)$, Logical "0" Input Voltage				0.8	V
I_{I}, Input Leakage Current				± 1	$\mu \mathrm{A}$
ϕ_{2} CLOCK INPUT					
$V_{\text {IN }}(1)$, Logical "1" Input Voltage		$V_{C C}-0.8$			V
$\mathrm{V}_{\text {IN }}(0)$, Logical "0" Input Voltage				0.4	V
Data Bus (DB0-DB7)					
$\mathrm{V}_{\text {IN }}(1)$, Logical " 1 " Input Voltage		2.0			V
$\mathrm{V}_{\text {IN }}(0)$, Logical " 0 " Input Voltage				0.8	V
Iout, TRI-STATE® Output Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-10	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$			10	$\mu \mathrm{A}$
Vout(1), Logical "1" Output Voltage	IOUT $=-1.6 \mathrm{~mA}$	2.4			V
Vout (0), Logical "0" Output Voltage	l $\mathrm{OUT}=1.6 \mathrm{~mA}$			0.4	V
Power Supply Requirements					
I ${ }_{\text {CC }}$, Supply Current				10	mA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to ground.
Note 3: Total unadjusted error includes offset, full-scale, linearity, and multiplexer error.
Note 4: For $V_{I N}(-) \geq V_{I N}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 100 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I}}$ does not exceed the supply voltage by more than 100 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.90 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 6: Off channel leakage current is measured after the channel selection.
Note 7: The temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$.
Note 8: Human Body Model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Timing Diagram

Pin Descriptions

ANALOG AND DIGITAL INPUTS

CHO, CH2-CH5-These are dedicated analog inputs. They are fed directly to the internal 12 to 1 multiplexer which feeds the A/D converter.

P0-P5/CH6-CH11-These 6 pins are dual purpose and may be used as either TTL compatible digital inputs, or analog inputs. When used as digital inputs they may be read via the discrete input register. When they are used as analog inputs they function like $\mathrm{CH}-0, \mathrm{CH} 2-5$.

MICROPROCESSOR INTERFACE SIGNALS

DB0-DB7-The bi-directional data lines for the data bus connect to the $\mu \mathrm{P}$'s main data bus to enable data transfer to and from the $\mu \mathrm{P}$. DB0-DB7 remain in a high impedance state unless the ADC0829 is read.
$\phi_{\mathbf{2}}$ Clock-This signal is used for two purposes. First it synchronizes data transfer in and out of the ADC. Second, it is the master clock for the A/D converter logic and all other timing signals are derived from it.
R/W-The read/write pin controls the direction of data transfer on D0-D7.

RESET-A low on this pin forces the ADC0829 into a known state. The start bit is cleared, Channel CHO is selected and the internal byte counter is reset to the MS Byte. The A/D data register is not reset. Reset must be held low for at least 3 clocks.
$\overline{\mathbf{C S}}$-Chip Select must be low in order for data transfer between the ADC0829 and the $\mu \mathrm{P}$ to occur.
RS1-The Register Select pin is used to address the internal registers.

POWER SUPPLY PINS

$\mathbf{V}_{\mathbf{C C}}$ —This is the positive 5 V supply pin. It powers the digital load and the sample data comparator. Care should be exercised to ensure that supply noise on this pin is adequately filtered, by using a bypass capacitor from $V_{C C}$ to $D_{G N D}$.
$\mathrm{D}_{\mathrm{GND}}$-Digital ground should be connected to the systems digital ground.
$\mathbf{V}_{\text {REF }}$ and $\mathbf{A}_{\mathbf{G N D}}$-The positive reference pin attaches to the top of the 256R resistor ladder and sets the full scale conversion voltage value. The $A_{G N D}$ connects to the bottom of the ladder. The conversion result is ratiometric to $\mathrm{V}_{\text {REF }}-A_{G N D}$ and hence both $\mathrm{V}_{\text {REF }}$ and $\mathrm{A}_{\mathrm{GND}}$ should be noise free. Ideally the $\mathrm{V}_{\text {REF }}$ and $\mathrm{A}_{\mathrm{GND}}$ should be single point connected to the analog transducer's supply. The $\mathrm{V}_{\text {REF }}$ and $\mathrm{A}_{\mathrm{GND}}$ voltages typically are 5 V and Ground but they may be varied so long as $\left(V_{\text {REF }}-A_{G N D}\right) / 2=$ $\mathrm{V}_{\mathrm{CC}} / 2 \pm 0.1 \mathrm{~V}$.

Functional Description

1.0 CONTROL LOGIC

The Control Logic interprets the microprocessor control signals and decodes these signals to perform the actual functions of selecting, reading, writing, enabling the outputs, etc.

2.0 STATE DESCRIPTIONS

There are three internal states within the A/D converter: the NO OP state; the sample state; and the converting state.
The NO OP state is a stable state since the external stimulus (e.g. start conversion signal) is needed for a state transition.
The first transient state is sampling the input. The first 32 clocks of the conversion are used for acquiring the channel; this settling time allows any transients to decay before conversion begins. The second transient state is the actual conversion. The conversion is completed in 256 clocks and the conversion results register is updated. The converter then returns to the stable NO OP state awaiting further instructions.
The device has no comparator bias current and draws minimal power during the NO OP state.

3.0 INITIALIZATION

The device is initialized by an active low on RESET. All outputs are initialized to the inactive state and the converter placed in its NO OP state. The data register is not affected by RESET. System TRI-STATE outputs are initialized to the high impedance state.

4.0 CONVERSION CONTROL

The program normally initiates a conversion cycle with a double write command. (See control word format.) The control word selects a channel, configures the peripheral I/O, and provides peripheral data information. The conversion is initiated by setting the SC bit in the control word high.
The converter then resets the start conversion bit and begins the conversion cycle.
When the conversion is complete and the new conversion results transferred to the data register, the status bit is set. The status bit is not reset when the conversion status is read. A full double byte write into the control word will reset the status bit, or a low level at master RESET.
If a new conversion command occurs during a conversion, the conversion is aborted and a new channel acquisition phase will immediately begin.

5.0 CONTROL STRUCTURE

The control logic continually monitors the control bus waiting for $\overline{C S}$ to go low and ϕ_{2} to go high. When this condition occurs, the internal decoder, which has already selected the proper function, activitates.
The byte counter will always select the most significant (MS) half first, and the least significant (LS) half second. Single byte instructions will always access the MSB portion of any word. After a single byte instruction the byte counter will return to the MSB portion of a word when $\overline{\mathrm{CS}}$ is high for a full clock cycle. A 16-bit read or write is accomplished by using a 16-bit load or store instruction which transfers each byte on consecutive clock cycles. This timing is shown in Figure 1. A single byte instruction is especially useful for reading the status bit during a polled interrupt. Figure 2 shows the basic A/D conversion timing sequence and flow.

Functional Description (Continued)
Timing for a Typical $\mu \mathrm{P} 16$ Byte Access

FIGURE 1

(1) Start CONvERSION
(a) SET SC BIT TO A 1
(b) LOAD ADDRESS
(2) AMALDG input Setrling time allows intermal multiplexer to select a channel and

STABILIZE (-32 CLOCKS).
(3)ND CONVERSION TIME (-256 CLOCKS)
(4) Read end of conversion data
(3) EOC BIT READ IF A 1 CONVERSION COMPLETE.
(b) aND data register read. If EOC $=1$, then new valid data.

Functional Description (Continued)

6.0 WORD FORMAT

6.1 Control Register Word Format

$\underset{\mathrm{DB}_{7} \mathrm{DB}_{6} \mathrm{DB}_{5} \mathrm{DB}_{4} \mathrm{DB}_{3} \mathrm{DB}_{2} \mathrm{DB}_{1} \mathrm{DB}_{0}}{\leftarrow \mathrm{MSB} \text { Word }}$								$\underset{\mathrm{DB}_{7} \mathrm{DB}_{6} \mathrm{DB}_{5} \mathrm{DB}_{4} \mathrm{DB}_{3} \mathrm{DB}_{2} \mathrm{DB}_{1} \mathrm{DB}_{0}}{\leftarrow \text { LSB WORD }}$							
X	X	X	X	X	X	X	(LSB)	X	X	X	X	A3	A2	A1	AO

X:	Don't Care
SC:	Start Conversion
	1 = Start new conversion
	$0=$ Do not start new conversion
CH3-CH0:	Channel Address
Hex Value	Definition
0	Select CH0
1	Select $\mathrm{V}_{\text {ref }}(+$)
$2-5$	Select Channels CH2-CH5
$6-9$	Undefined
A	CH10
B	CH11
C	CH8
D	CH9
E	CH6
F	CH7

6.2 Conversion Results Register Word Format

S :	Status
	$\begin{aligned} 1= & \text { Data is valid } \\ & \text { (conversion complete) } \end{aligned}$
	$0=$ Data is not valid
$\mathrm{C}_{7}-\mathrm{C}_{0}$:	8 bit converted result

6.3 Discrete Input Word Format

CH3-CHO:
Status of channel address
P5-P0: \quad Status of P5-P0 interpreted as discrete digital inputs

ADU ADDRESS SELECTION

CSO *	R/W	RSI	Description
1	X	X	Do not respond
0	0	0	Write NO OP
0	0	1	Write Control Word
0	1	0	Read Conversion Results
0	1	1	Read Discrete Inputs

Note: All words are transferred as two 8-bit bytes, MSB transferred first LSB transferred second.

7.0 ANALOG TO DIGITAL CONVERTER

The ADC0829 A/D Converter is composed of three major sections: the successive approximation register (SAR); the 256R ladder and analog decoder; and the sample-data comparator.

7.1 Successive Approximation

The analog signal at the A/D input is compared eight times to various ladder voltages to determine which of the 256 voltages in the ladder most closely approximates the input voltage. This stochastic technique is accomplished by converging on the proper tap in the ladder by simple iterative convergence. There are nine posting registers in the SAR which contain the position of the bit being tested and eight latching registers which remember if the comparison was high or low. Starting with the MSB and continuing downward each bit is set high by the posting register. The analog tree decoder selects the corresponding tap in the ladder and the A/D input is compared to that voltage. If the comparison is positive the latch remains set, so higher voltages in the ladder are checked next. If the comparison is negative the bit is reset so lower ladder voltages are sought.
After all eight comparisons are made, the contents of the latching register are transferred to a data register, thus the A/D can perform a new conversion while the previous results remain available.

7.2 256R Ladder

The ladder is a very accurate voltage divider which divides the reference voltage into 256 equal steps. Special consideration was given to the ladder terminations at each end, and also the center, to ensure consistent and accurate voltage steps. The use of a 256R ladder guarantees monotonicity since only a single voltage gradient across the ladder exists. Shorted or unequal resistors in the ladder may cause non-uniform steps but cannot cause a nonmonotonic response so often fatal in closed loop system applications. (See Figure 3.)

TL/H/5508-6
FIGURE 3. Resistor Ladder and Switch Tree

Functional Description (Continued)

Actually of the 256 resistors in the ladder, 254 have the same value while the end point resistors are equal to 1$1 / 2 R$ and 1/2R. This ensures the system output characteristic is symmetrical with the zero and full scale points of its input to output, or transfer curve.
The tree decoder routes the 256 voltages from the ladder to a single point at the comparator input. This allows comparisons between the A/D input and any voltage the SAR directs the decoder to route to the comparator.
Since the ladder is dependent upon only the matching of resistors, the voltages it generates are very stable with temperature and have excellent repeatability and long term drift.

8.0 MULTIPLEXER

8.1 Analog Inputs

The analog multiplexer selects one of 11 channels and directs them to the input of the A/D converter. The multiplexer was designed to minimize the effects of leakage currents and multiplexer output capacitance.
Special input protection is used to prevent damage from static voltages or voltages exceeding the specified range from -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$. However, normal precautions are recommended to avoid such situations whenever possible.

8.2 Digital Inputs

Six of the analog inputs can also be used as digital inputs to sense TTL voltage levels. Care must be taken when these inputs are interpreted since TTL levels may not always be present.

8.3 A/D Comparator

Probably the most important section of the A/D converter is the comparator since the comparator's offset voltage and stability determine the converter's ultimate accuracy. The low voltage offset of the chopper-stabilized comparator of this converter optimizes performance by minimizing temperature dependent input offset errors as well as drift.
The dc signal appearing at the amplifier input is converted to an ac signal, amplified by an ac amplifier and restored to a dc signal. The drift of the comparator is minimized since
the drift signal is a dc component blocked by the ac amplifier. The comparator has very high input impedance to dc voltages since it looks like a capacitor. Because the comparator is chopping the dc voltages at the input, the difference between the A/D input voltage and ladder voltage appears on the comparator's input capacitor. The input voltage difference, chopping frequency, and comparator input capacitor causes a CVF current. The CVF current is a small bias current which will not produce any error when the A/D input is connected to a low impedance voltage source. If the voltage source has an output impedance of less than 10k, the error is still insignificant since the bias current exponentially decays.
Adding a capacitor to the input of the comparator integrates the exponential charging current converting it into dc bias current. (See Figure 1.) Two main considerations on the integration capacitor are charge sharing with a filter capacitor and settling time.

9.0 BUS INTERFACE

The ADC0829 communicates to the microprocessor through an 8-bit I/O port. The I/O port is composed of a TTL to CMOS buffer and a TRI-STATE ${ }^{\circledR}$ output driver.
The TTL to CMOS Buffer translates the TTL voltage levels into CMOS levels very rapidly and is quite stable with supply and temperature. The buffer has a small amount of hysteresis (about 100 mV) to improve both noise immunity and internal rise and fall times.
The TRI-STATE bus driver is a bipolar and N -channel pair that easily drive the bus capacitance. Since the bus drivers collectively can sink or source a quarter of an amp total, a non-overlap circuit is used which guarantees that only one of the two drive transistors is on at a time.
Since this output drives the bus capacitance, even the nonoverlapping circuit cannot prevent noise on $V_{C C}$. The amount of noise depends on the V_{CC} current used to charge the bus capacitance.
The external filter capacitor on $V_{C C}$ provides some of the transient current while the bus is being driven. A capacitor with good ac characteristics and low series resistance is a good choice to prevent $V_{C C}$ transients from affecting accuracy.

Application Information

Recommended Supply

Data Bus Test Circuit

Typical Application

National Semiconductor Corporation

ADC0831/ADC0832/ADC0834 and ADC0838

 8-Bit Serial I/O A/D Converters with Multiplexer Options
General Description

The ADC0831 series are 8 -bit successive approximation A/D converters with a serial I/O and configurable input multiplexers with up to 8 channels. The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM family of processors, and can interface with standard shift registers or μ Ps.
The 2-, 4- or 8-channel multiplexers are software configured for single-ended or differential inputs as well as channel assignment.
The differential analog voltage input allows increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Features

■ NSC MICROWIRE compatible-direct interface to COPS family processors
■ Easy interface to all microprocessors, or operates "stand-alone"

■ Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference

- No zero or full-scale adjust required
- 2-, 4- or 8-channel multiplexer options with address logic
■ Shunt regulator allows operation with high voltage supplies
■ 0 V to 5 V input range with single 5 V power supply
- Remote operation with serial digital data link
- TTL/MOS input/output compatible

■ $0.3^{\prime \prime}$ standard width, 8 -, 14- or 20-pin DIP package ■ 20 Pin Molded Chip Carrier Package (ADC0838 only)

Key Specifications

■ Resolution	8 Bits
■ Total Unadjusted Error	$\pm 1 / 2$ LSB and ± 1 LSB
■ Single Supply	$5 \mathrm{~V}_{\mathrm{DC}}$
■ Low Power	15 mW
- Conversion Time	$32 \mu \mathrm{~S}$

Typical Application

$$
-0.3 V \text { to } V_{c c}+0.3 V
$$

$$
-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}
$$

$$
\pm 5 \mathrm{~mA}
$$

$$
0.00
$$

Converter and Multiplexer Electrical Characteristics (Continued)

The following specifications apply for $V_{C C}=\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, and fCLK $=250 \mathrm{kHz}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$.

Parameter	Conditions	BJ, CJ, BCJ and CCJ Devices			BCV, CCV, BCN and CCN Devices			Units
		Typ (Note 12)	Tested Limit (Note 13)	Design Limit (Note 14)	Typ (Note 12)	Tested Limit (Note 13)	Design Limit (Note 14)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS (Continued)								
loff, Off Channel Leakage Current (Note 9)	On Channel $=5 \mathrm{~V}$ Off Channel = OV		-0.1	-1		-0.2	-1	$\mu \mathrm{A}$
	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$		+0.1	+1		+0.2	+1	$\mu \mathrm{A}$
Ion, On Channel Leakage Current (Note 9)	On Channel=0V Off Channel $=5 \mathrm{~V}$		-0.1	-1		-0.2	-1	$\mu \mathrm{A}$
	On Channel $=5 \mathrm{~V}$ Off Channel = OV		+0.1	+1		+0.2	+1	$\mu \mathrm{A}$
DIGITAL AND DC CHARACTERISTICS								
$\mathrm{V}_{\text {IN(1) }}$, Logical "1" Input Voltage (Min)	$V_{C C}=5.25 \mathrm{~V}$		2.0			2.0	2.0	V
$V_{\text {IN(0) }}$, Logical " 0 " Input Voltage (Max)	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$		0.8			0.8	0.8	V
$l_{\text {IN(1) }}$, Logical "1" Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	0.005	1		0.005	1	1	$\mu \mathrm{A}$
IIN(0), Logical " 0 " Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1		-0.005	-1	-1	$\mu \mathrm{A}$
VOUT(1), Logical "1" Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { loUT }=-360 \mu \mathrm{~A} \\ & \text { loUT }=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Vout(0), Logical "0" Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4			0.4	4.0	V
IOUT, TRI-STATE Output Current (Max)	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.1 \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \\ \hline \end{gathered}$		$\begin{gathered} -0.1 \\ 0.1 \\ \hline \end{gathered}$	$\begin{array}{r} -3 \\ +3 \\ \hline \end{array}$	$\begin{array}{r} -3 \\ +3 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Isource, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5		-14	-7.5	-6.5	mA
ISINK, Output Sink Current (Min)	$V_{\text {OUT }}=V_{\text {CC }}$	16	8.0		16	9.0	8.0	mA
$\begin{aligned} & \text { ICC, Supply Current (Max) } \\ & \text { ADC0831, ADC0834, } \\ & \text { ADC0838 } \end{aligned}$		0.9	2.5		0.9	2.5	2.5	mA
ADC0832	Includes Ladder Current	2.3	6.5		2.3	6.5	6.5	mA

AC Characteristics

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter		Conditions	Typ (Note 12)	$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Note 13) } \\ \hline \end{gathered}$	Design Limit (Note 14)	Limit Units
$\mathrm{f}_{\text {clk }}$, Clock Frequency	Min Max			10	400	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
t_{C}, Conversion Time		Not including MUX Addressing Time		8		1/fCLK
Clock Duty Cycle (Note 10)	Min Max				$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
$t_{\text {SET-UP, }} \overline{\text { CS }}$ Falling Edge or Data Input Valid to CLK Rising Edge					250	ns
$t_{\text {HOLD }}$, Data Input Valid after CLK Rising Edge					90	ns
$\mathrm{t}_{\mathrm{pd} 1}, \mathrm{t}_{\mathrm{pd}} 0$-CLK Falling Edge to Output Data Valid (Note 11)		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ Data MSB First Data LSB First	$\begin{aligned} & 650 \\ & 250 \end{aligned}$		$\begin{gathered} 1500 \\ 600 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$,-Rising Edge of CS to Data Output and		$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (see TRI-STATE ${ }^{\circledR}$ Test Circuits)	125		250	ns
SARS Hi-Z		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pf}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		500		ns
C_{IN}, Capacitance of Logic Input			5			pF
Cout, Capacitance of Logic Outputs			5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground plugs.
Note 3: Internal zener diodes (6.3 to 8.5 V) are connected from $\mathrm{V}+$ to GND and V_{CC} to GND . The zener at $\mathrm{V}+$ can operate as a shunt regulator and is connected to $V_{C C}$ via a conventional diode. Since the zener voltage equals the A / D 's breakdown voltage, the diode insures that $V_{C C}$ will be below breakdown when the device is powered from $V+$. Functionality is therefore guaranteed for $V+$ operation even though the resultant voltage at $V_{C C}$ may exceed the specified Absolute Max of 6.5 V . It is recommended that a resistor be used to limit the max current into $\mathrm{V}+$. (See Figure 3 in Functional Description Section 6.0)

Note 4: When the input voltage $\left(V_{\mathbb{I N}}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors.
Note 7: Cannot be tested for ADC0832.
Note 8: For $\mathrm{V}_{I N}(-) \geq \mathrm{V}_{\mathrm{IN}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater then the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I}}$ or $\mathrm{V}_{\mathrm{REF}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 V_{D C}$ over temperature variations, initial tolerance and loading.
Note 9: Leakage current is measured with the clock not switching.
Note 10: A 40% to 60% clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits, the minimum, time the clock is high or the minimum time the clock is low must be at least $1 \mu \mathrm{~s}$. The maximum time the clock can be high is $60 \mu \mathrm{~s}$. The clock can be stopped when low so long as the analog input voltage remains stable.
Note 11: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.
Note 12: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 13: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 14: Guaranteed but not 100% production tested. These limits are not used to calculate outgoing quality levels.

Typical Performance Characteristics

TRI-STATE Test Circuits and Waveforms

TL/H/5583-4

TL/H/5583-23

Timing Diagrams

Data Output Timing

TL/H/5583-26

Timing Diagrams (Continued)

TL/H/5583-28

Connection Diagrams

Top View
COM internally connected to A GND

ADC0832 2-Channel MUX
Dual-In-Line Package

Top View
COM internally connected to GND.
$V_{\text {REF }}$ internally connected to $V_{\text {CC }}$.

ADC0838 8-Channel MUX
Molded Chip Carrier (PCC) Package

TL/H/5583-33

Functional Description

1.0 MULTIPLEXER ADDRESSING

The design of these converters utilizes a sample-data comparator structure which provides for a differential analog input to be converted by a successive approximation routine.
The actual voltage converted is always the difference between an assigned " + " input terminal and a "-" input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the "-" input the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software-configurable single-ended, difeerential, or a new pseudo-diferential option which will convert the difference between the voltage at any analog input and a common terminal. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single-ended or differen-
tial. In the differential case, it also assigns the polarity of the channels. Differential inputs are restricted to adjacent channel pairs. For example channel 0 and channel 1 may be selected as a different pair but channel 0 or 1 cannot act differentially with any other channel. In addition to selecting differential mode the sign may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is best illustrated by the MUX addressing codes shown in the following tables for the various product options.
The MUX address is shifted into the converter via the DI line. Because the ADC0831 contains only one differential input channel with a fixed polarity assignment, it does not require addressing.
The common input line on the ADC0838 can be used as a pseudo-differential input. In this mode, the voltage on this pin is treated as the "-" input for any of the other input channels. This voltage does not have to be analog ground; it can be any reference potential which is common to all of the inputs. This feature is most useful in single-supply application where the analog circuitry may be biased up to a potential other than ground and the output signals are all referred to this potential.

Functional Description (Continued)
TABLE II. MUX Addressing: ADC0838
Single-Ended MUX Mode

MUX Address				Analog Single-Ended Channel \#								
$\begin{gathered} \text { SGL/ } \\ \overline{\text { DIF }} \end{gathered}$	$\begin{aligned} & \text { ODD/ } \\ & \text { SIGN } \end{aligned}$			0	1	2	3	4	5	6	7	COM
1	0	0	0	+								-
1	0	0	1			+						-
1	0	1	0					+				-
1	0	1	1							+		-
1	1	0	0		$+$							-
1	1	0	1				+					-
1	1	1	0						+			-
1	1	1	1								+	-

Differential MUX Mode

MUX Address				Analog Differential Channel-Pair \#							
$\frac{\text { SGL/ }}{\text { DIF }}$	$\begin{aligned} & \text { ODD/ } \\ & \text { SIGN } \end{aligned}$	SELECT		0		1		2		3	
		1	0	0	1	2	3	4	5	6	7
0	0	0	0	+	-						
0	0	0	1			+	-				
0	0	1	0					+	-		
0	0	1	1							+	-
0	1	0	0	-	$+$						
0	1	0	1			-	$+$				
0	1	1	0					-	+		
0	1	1	1							-	$+$

TABLE III. MUX Addressing: ADC0834
Single-Ended MUX Mode

MUX Address			Channel \#			
SGL// DIF	ODD/ SIGN	SELECT	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	3
1	0	1		+		
1	0	1			+	
1	1	0		+		
1	1	1				+

COM is internally tied to A GND
Differential MUX Mode

MUX Address			Channel \#			
SGL/ DIF	ODD/ SIGN	SELECT	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
	$\mathbf{1}$	0		-		
0	0	0			+	-
0	0	1		-	+	
0	1	0	-			
0	1	1			-	+

TABLE IV. MUX Addressing: ADC0832

Single-Ended MUX Mode

MUX Address		Channel \#	
SGL/ DIF	ODD/ SIGN	$\mathbf{0}$	$\mathbf{1}$
1	0	+	
1	1		+

COM is internally tied to A GND
Differential MUX Mode

MUX Address		Channel \#	
SGL/ DIF	ODD/ SIGN	$\mathbf{0}$	$\mathbf{1}$
0	0	+	-
0	1	-	+

Functional Description (Continued)

Since the input configuration is under software control, it can be modified, as required, at each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. Figure 1 illustrates the input flexibility which can be achieved.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5 V) without degrading conversion accuracy.

2.0 THE DIGITAL INTERFACE

A most important characteristic of these converters is their serial data link with the controlling processor. Using a serial communication format offers two very significant system improvements; it allows more function to be included in the converter package with no increase in package size and it can eliminate the transmission of low level analog signals by locating the converter right at the analog sensor; transmitting highly noise immune digital data back to the host processor.

To understand the operation of these converters it is best to refer to the Timing Diagrams and Functional Block Diagram and to follow a complete conversion sequence. For clarity a separate diagram is shown of each device.

1. A conversion is initiated by first pulling the $\overline{\mathrm{CS}}$ (chip select) line low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
2. A clock is then generated by the processor (if not provided continuously) and output to the A/D clock input.
3. On each rising edge of the clock the status of the data in (DI) line is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on this line (all leading zeros are ignored). Following the start bit the converter expects the next 2 to 4 bits to be the MUX assignment word.

FIGURE 1. Analog Input Multiplexer Options for the ADC0838

Functional Description (Continued)

4. When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $1 / 2$ clock period (where nothing happens) is automatically inserted to allow the selected MUX channel to settle. The SAR status line goes high at this time to signal that a conversion is now in progress and the DI line is disabled (it no longer accepts data).
5. The data out (DO) line now comes out of TRI-STATE and provides a leading zero for this one clock period of MUX settling time.
6. When the conversion begins, the output of the SAR comparator, which indicates whether the analog input is greater than (high) or less than (low) each successive voltage from the internal resistor ladder, appears at the DO line on each falling edge of the clock. This data is the result of the conversion being shifted out (with the MSB coming first) and can be read by the processor immediately.
7. After 8 clock periods the conversion is completed. The SAR status line returns low to indicate this $1 / 2$ clock cycle later.
8. If the programmer prefers, the data can be provided in an LSB first format [this makes use of the shift enable ($\overline{\mathrm{SE}}$) control line]. All 8 bits of the result are stored in an output shift register. On devices which do not include the $\overline{\text { SE con- }}$ trol line, the data, LSB first, is automatically shifted out the DO line, after the MSB first data stream. The DO line then goes low and stays low until $\overline{C S}$ is returned high. On the ADC0838 the SE line is brought out and if held high, the value of the LSB remains valid on the DO line. When $\overline{\text { SE }}$ is forced low, the data is then clocked out LSB first. The ADC0831 is an exception in that its data is only output in MSB first format.
9. All internal registers are cleared when the $\overline{\mathrm{CS}}$ line is high. If another conversion is desired, $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.

a) Ratiometric

The DI and DO lines can be tied together and controlled through a bidirectional processor I/O bit with one wire. This is possible because the Dl input is only "looked-at" during the MUX addressing interval while the DO line is still in a high impedance state.

3.0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input to these converters defines the voltage span of the analog input (the difference between $\mathrm{V}_{\mathrm{IN}(\text { MAX }}$ and $\left.\mathrm{V}_{\mathbb{I N}(\mathrm{MIN})}\right)$ over which the 256 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the reference input resistance of typically $3.5 \mathrm{k} \Omega$. This pin is the top of a resistor divider string used for the successive approximation conversion.

In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $V_{\text {REF }}$ pin can be tied to V_{CC} (done internally on the ADC0832). This technique relaxes the stability requirements of the system reference as the analog input and A / D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with these converters.
The maximum value of the reference is limited to the $\mathrm{V}_{C C}$ supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\mathrm{REF}} /$ 256).

TL/H/5583-10
b) Absolute with a Reduced Span

FIGURE 2. Reference Examples

Functional Description (Continued)

4.0 THE ANALOG INPUTS

The most important feature of these converters is that they can be located right at the analog signal source and through just a few wires can communicate with a controlling processor with a highly noise immune serial bit stream. This in itself greatly minimizes circuitry to maintain analog signal accuracy which otherwise is most susceptible to noise pickup. However, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common-mode voltage.
The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected " + " and "-" inputs for a conversion (60 Hz is most typical). The time interval between sampling the " + " input and then the " - " input is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
\mathrm{V}_{\text {error }}(\max)=\mathrm{V}_{\mathrm{PEAK}}\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right)\left(\frac{0.5}{\mathrm{f}_{\mathrm{CLK}}}\right)
$$

where f_{CM} is the frequency of the common-mode signal,
$V_{\text {PEAK }}$ is its peak voltage value
and f CLK, is the A/D clock frequency.
For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error ($\approx 5 \mathrm{mV}$) with the converter running at 250 kHz , its peak value would have to be 6.63 V which would be larger than allowed as it exceeds the maximum analog input limits.
Due to the sampling nature of the analog inputs short spikes of current enter the " + " input and exit the " - " input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$.
This source resistance limitation is important with regard to the DC leakage currents of input multiplexer as well. The worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

5.0 OPTIONAL ADJUSTMENTS

5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$, is not ground a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathbb{I N}}(-)$ input at this $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$ value. This utilizes the differential mode operation of the A/D.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value $\left(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}\right.$ for $\left.\mathrm{V}_{\text {REF }}=5.000 \mathrm{~V}_{\mathrm{DC}}\right)$.

5.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }}$ input (or V_{CC} for the ADC0832) for a digital output code which is just changing from 11111110 to 11111111.

5.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A / D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\vee_{I N}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, using 1 LSB = analog span/256) is applied to selected "+" input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition.
The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
V_{\mathrm{IN}}(+) \text { fs adj }=V_{\mathrm{MAX}}-1.5\left[\frac{\left(V_{M A X}-V_{\mathrm{MIN}}\right)}{256}\right]
$$

where:

$$
V_{\mathrm{MAX}}=\text { the high end of the analog input range }
$$ and

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{MIN}}= \text { the low end (the offset zero) of the analog } \\
& \text { range. }
\end{aligned}
$$

(Both are ground referenced.)
The $\mathrm{V}_{\text {REF }}$ (or V_{CC}) voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure.

6.0 POWER SUPPLY

A unique feature of the ADC0838 and ADC0834 is the inclusion of a zener diode connected from the V^{+}terminal to ground which also connects to the V_{CC} terminal (which is the actual converter supply) through a silicon diode, as shown in Figure 3. (See Note 3)

TL/H/5583-11
FIGURE 3. An On-Chip Shunt Regulator Diode

Functional Description (Continued)

This zener is intended for use as a shunt voltage regulator to eliminate the need for any additional regulating components. This is most desirable if the converter is to be remotely located from the system power source. Figures 4 and 5 illustrate two useful applications of this on-board zener when an external transistor can be afforded.
An important use of the interconnecting diode between $\mathrm{V}+$ and $V_{C C}$ is shown in Figures 6 and 7. Here, this diode is used as a rectifier to allow the V_{CC} supply for the converter
to be derived from the clock. The low current requirements of the A/D and the relatively high clock frequencies used (typically in the range of $10 \mathrm{k}-400 \mathrm{kHz}$) allows using the small value filter capacitor shown to keep the ripple on the $V_{C C}$ line to well under $1 / 4$ of an LSB. The shunt zener regulator can also be used in this mode. This requires a clock voltage swing which is in excess of V_{Z}. A current limit for the zener is needed, either built into the clock generator or a resistor can be used from the CLK pin to the $\mathrm{V}+$ pin.

Applications

FIGURE 4. Operating with a Temperature Compensated Reference

FIGURE 6. Generating $\mathbf{V}_{\mathbf{C C}}$ from the Converter Clock

FIGURE 5. Using the A/D as the System Supply Regulator

FIGURE 7. Remote SensingClock and Power on 1 Wire

Digital Link and Sample Controlling Software for the Serially Oriented COP420 and the Bit Programmable I/O INS8048

Applications (Continued)

A "Stand-Alone" Hook-Up for ADC0838 Evaluation

*Pinouts shown for ADC0838.
For all other products tie to
pin functions as shown.

Applications (Continued)

Digitizing a Current Flow

Operating with Ratiometric Transducers

${ }^{*} V_{\text {IN }}(-)=0.15 V_{C C}$
15% of $V_{C C} \leq V_{X D R} \leq 85 \%$ of $V_{C C}$

Zero-Shift and Span Adjust: $\mathbf{2 V} \leq \mathbf{V}_{\text {IN }} \leq 5 \mathbf{V}$

Controller performs a routine to determine which input polarity (9 -bit example) or which channel pair (10-bit example) provides a non-zero output code. This information provides the extra bits.
a) 9-Bit A/D
b) $10-$ Bit A/D

Protecting the Input

High Accuracy Comparators

Convert 8 Thermocouples with only One Cold-Junction Compensator

Uses the pseudo-differential mode to keep the differential inputs constant with changes in reference temperature ($T_{\text {REF }}$).

TL/H/5583-19

- Uses one more wire than load cell itself
- Two mini-DIPs could be mounted inside load cell for digital output transducer
- Electronic offset and gain trims relax mechanical specs for gauge factor and offset
- Low level cell output is converted immediately for high noise immunity

Applications (Continued)
4 mA-20 mA Current Loop Converter

- No additional connections
- $\overline{\text { CS }}$ derived from extended high on CLK line $>100 \mu \mathrm{~s}$ ת
- Timing arranged for 40 kHz , could be changed up or down by component change
- 10\% CLK frequency change without component change OK

Applications (Continued)
Two Wire 1-Channel Interface

- Simpler version of 8-channel
- CS derived from long CLK pulse

Ordering Information

Part Number	Analog Input Channels	Total Unadjusted Error	Package	Temperature Range
ADC0831BJ ADC0831BCJ ADC0831BCN	1	$\pm 1 / 2$	Hermetic (J) Hermetic (J) Molded (N)	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0831CCJ ADC0831CCN		± 1	Hermetic (J) Molded (N)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { t }+70^{\circ} \mathrm{C} \\ \hline \end{gathered}$
ADC0832BJ ADC0832BCJ ADC0832BCN	2	$\pm 1 / 2$	Hermetic (J) Hermetic (J) Molded (N)	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
$\begin{aligned} & \text { ADC0832CCJ } \\ & \text { ADC0832CCN } \end{aligned}$		± 1	Hermetic (J) Molded (N)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \hline \end{gathered}$
ADC0834BJ ADC0834BCJ ADC0834BCN	4	$\pm 1 / 2$	Hermetic (J) Hermetic (J) Molded (N)	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$
ADC0834CCJ ADC0834CCN		± 1	Hermetic (J) Molded (N)	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \hline \end{gathered}$
ADC0838BJ ADC0838BCJ ADC0838BCV ADC0838BCN	8	$\pm 1 / 2$	Hermetic (J) Hermetic (J) PCC (V) Molded (N)	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \hline \end{gathered}$
ADC0838CCJ ADC0838CCV ADC0838CCN		± 1	$\begin{aligned} & \text { Hermetic (J) } \\ & \text { PCC (V) } \\ & \text { Molded (N) } \end{aligned}$	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$

National Semiconductor Corporation

ADC0833 8-Bit Serial I/O A/D Converter with 4-Channel Multiplexer

General Description

The ADC0833 series is an 8-bit successive approximation A/D converter with a serial I/O and configurable input multiplexer with 4 channels. The serial I/O is configured to comply with the NSC MICROWIRETM serial data exchange standard for easy interface to the COPSTM family of processors, as well as with standard shift registers or $\mu \mathrm{Ps}$.
The 4-channel multiplexer is software configured for singleended or differential inputs when channel assigned by a 4bit serial word.
The differential analog voltage input allows increasing the common-mode rejection and offsetting the analog zero input voltage value. In addition, the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of resolution.

Key Specifications

- Resolution	8 Kits
- Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
- Single Supply	5 V VC
- Low Power	23 mW
- Conversion Time	$32 \mu \mathrm{~s}$

Features

- NSC MICROWIRE compatible-direct interface to COPS family processors
- Easy interface to all microprocessors, or operates "stand alone"
- Works with 2.5V (LM336) voltage reference

■ No full-scale or zero adjust required

- Differential analog voltage inputs
- 4-channel analog multiplexer
- Shunt regulator allows operation with high voltage supplies
- 0 V to 5 V input range with single 5 V power supply
- Remote operation with serial digital data link
- TTL/MOS input/output compatible
- $0.3^{\prime \prime}$ standard width 14 -pin DIP package

Connection and Functional Diagrams

TL/H/5607-1

Absolute Maximum Ratings (Notes $1 \& 2$)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Current into ${ }^{+}$(Note 3)
15 mA
6.5 V

-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
$\pm 5 \mathrm{~mA}$
$\pm 20 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount) 0.8 W
Lead Temperature (Soldering, 10 sec .)
Dual-In-Line Package (Plastic)
$260^{\circ} \mathrm{C}$ Dual-In-Line Package (Ceramic) $300^{\circ} \mathrm{C}$
ESD Susceptibility (Note 5) 2000V
Operating Conditions (Notes $1 \& 2$)
Supply Voltage, V_{CC}
Temperature Range ADC0833BJ, ADC0833CJ ADC0833BCJ, ADC0833CCJ ADC0833BCN, ADC0833CCN
4.5 $V_{D C}$ to $6.3 V_{D C}$

Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=5 \mathrm{~V}, \mathrm{fCLK}=250 \mathrm{kHz}$ and
$\mathrm{V}_{\text {REF }} / 2 \leq\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right)$ unless otherwise specified. Boldface limits apply from $\mathbf{T}_{\text {min }}$ to $\mathbf{T}_{\text {max }}$ all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typ (Note 6)			Units
CONVERTER AND MULTIPLEXER CHARACTERISTICS					
Total Unadjusted Error ADC0833BCN ADC0883BJ, BCJ ADC0833CCN ADC0833CJ, CCJ	$\mathrm{V}_{\text {REF/2 }}$ Forced to $2.500 \mathrm{~V}_{\mathrm{DC}}$		$\begin{gathered} \pm 1 / 2 \\ \pm 1 / 2 \\ \pm 1 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Minimum Total Ladder Resistance (Note 9) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	2.6	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Maximum Total Ladder Resistance (Note 9) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN		$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.8 \\ 10.8 \end{gathered}$	11.8	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Minimum Common-Mode Input Range (Note 10) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	All MUX Inputs and COM Input		$\begin{gathered} \text { GND-0.05 } \\ \text { GND-0.05 } \end{gathered}$	GND-0.05	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Maximum Common-Mode Input Range (Note 10) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	All MUX Inputs and COM Input		$\begin{gathered} \mathbf{v}_{\mathbf{C C}}+\mathbf{0 . 0 5} \\ v_{C C}+0.05 \\ \hline \end{gathered}$	$V_{c c}+0.05$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { DC Common-Mode Error } \\ & \text { ADC0833BCJ/CCJ/BJ/CJ } \\ & \text { ADC0833BCN/CCN } \end{aligned}$		$\begin{array}{r} \pm 1 / 16 \\ \pm 1 / 16 \\ \hline \end{array}$	$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 4 \\ & \hline \end{aligned}$	$\pm 1 / 4$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Change in Zero Error From $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ To Internal Zener Operation (Note 3) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$\begin{aligned} & 15 \mathrm{~mA} \text { Into } \mathrm{V}+ \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{N} . \mathrm{C} . \\ & \mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$

Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ and
$\mathrm{V}_{\text {REF }} / 2 \leq\left(\mathrm{V}_{\mathrm{CC}}+0.1 \mathrm{~V}\right)$ unless otherwise specified. Boldface limits apply from $\mathrm{t}_{\text {MIN }}$ to $\mathrm{t}_{\mathrm{MAX}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
(Continued)

Parameter	Conditions	Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units

V_{Z}, Minimum Internal Diode Breakdown (At V +) (Note 3) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	15mA Into V +		$\begin{aligned} & 6.3 \\ & 6.3 \\ & \hline \end{aligned}$	6.3	$\begin{aligned} & V \\ & V \end{aligned}$
V_{Z}, Maximum Internal Diode Breakdown (At V +) (Note 3) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	15mA Into V+		$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	8.5	$\begin{aligned} & V \\ & v \end{aligned}$
Power Supply Sensitivity ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$V_{C C}=5 \mathrm{~V} \pm 5 \%$	$\begin{aligned} & \pm 1 / 16 \\ & \pm 1 / 16 \end{aligned}$	$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 4 \end{aligned}$	$\pm 1 / 4$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
loff, Off Channel Leakage Current (Note 11) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		$\begin{gathered} -1 \\ -200 \\ -200 \end{gathered}$	-1	$\mu \mathrm{A}$ nA $\mu \mathrm{A}$ nA
ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	On Channel $=0 \mathrm{~V}$, Off Channel $=5 \mathrm{~V}$		$\begin{gathered} 1 \\ 200 \\ 200 \end{gathered}$	1	$\mu \mathrm{A}$ nA $\mu \mathrm{A}$ nA
ION, On Channel Leakage Current (Note 11) ADC083BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		$\begin{gathered} 1 \\ 200 \\ \\ 200 \\ \hline \end{gathered}$	1	$\mu \mathrm{A}$ nA $\mu \mathrm{A}$ nA
ADC083BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	On Channel $=0 \mathrm{~V}$, Off Channel $=5 \mathrm{~V}$		$\begin{gathered} -1 \\ -200 \\ -200 \\ \hline \end{gathered}$	-1	$\mu \mathrm{A}$ nA $\mu \mathrm{A}$ nA
DIGITAL AND DC CHARACTERISTICS					
$V_{I N(1)}$, Logical " 1 " input Voltage ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	2.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$V_{\text {IN(0) }}$, Logical " 0 " Input Voltage ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$V_{C C}=4.75 \mathrm{~V}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	0.8	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
IIN(1), Logical "1" Input Current ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	$\begin{aligned} & 0.005 \\ & 0.005 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	1	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

Electrical Characteristics The following specifications apply for $\mathrm{V}_{C C}=\mathrm{V}+=5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ and
$V_{\text {REF }} / 2 \leq\left(V_{C C}+0.1 \mathrm{~V}\right)$ unless otherwise specified. Boldface limits apply from $\mathrm{t}_{\text {MIN }}$ to $\mathrm{t}_{\text {MAX; }}$ all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter	Conditions	Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
DIGITAL AND DC CHARACTERISTICS (Continued)					
$I^{\prime}(0)$, Logical " 0 " Input Current ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	$\begin{aligned} & -0.005 \\ & -0.005 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \end{aligned}$	-1	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Vout(1), Logical "1" Output Voltage ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 2.4 \\ & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
$V_{\text {OUT(0), }}$, Logical " 0 " Output Voltage ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$\mathrm{l}_{\mathrm{OUT}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=4.75 \mathrm{~V}$		$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IOUT, TRI-STATE Output Current (DO, SARS) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.1 \\ -0.1 \\ 0.1 \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ -3 \\ 3 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
ISOURCE ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	V ${ }_{\text {OUT }}$ Short to GND	$\begin{aligned} & -14 \\ & -14 \end{aligned}$	$\begin{aligned} & -6.5 \\ & -7.5 \end{aligned}$	-6.5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ISINK ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\text {CC }}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{array}{r} \mathbf{8 . 0} \\ 9.0 \\ \hline \end{array}$	8.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Icc, Supply Current (Note 3) ADC0833BCJ/CCJ/BJ/CJ ADC0833BCN/CCN	VREF/2 Open Circuit	$\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$	$\begin{array}{r} 4.5 \\ 4.5 \\ \hline \end{array}$	4.5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

AC Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=5 \mathrm{~V}$ and $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$
unless otherwise specified. These limits apply for $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$		Design Limit (Note 8)	Units
$\begin{array}{lc}\text { f CLK, Clock Frequency } & \text { Min } \\ & \text { Max }\end{array}$			10	400	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
T_{C}, Conversion Time	Not including MUX Addressing Time		8		$1 / \mathrm{f}_{\text {CLK }}$
Clock Duty Cycle (Note 12) Min Max				$\begin{aligned} & 40 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
tsET-UP, $\overline{\text { CS }}$ Falling Edge or Data Input Valid to CLK Rising Edge				250	ns
thold $^{\text {, Data Input Valid }}$ after CLK Rising Edge				90	ns
$\mathrm{t}_{\mathrm{pd} 1}, \mathrm{t}_{\mathrm{pd} 0}$-CLK Falling Edge to Output Data Valid (Note 13)	$C_{L}=100 \mathrm{pF}$ Data MSB First Data LSB First	$\begin{aligned} & 650 \\ & 250 \end{aligned}$		$\begin{gathered} 1500 \\ 600 \end{gathered}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$-Rising Edge of $\overline{\mathrm{CS}}$ to Data Output and SARS Hi-Z	$\begin{aligned} & C_{\mathrm{L}}=10 \mathrm{pF}, R_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$ (see TRI-STATE Test Circuits)	125	500	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	ns ns
C_{IN}, Capacitance of Logic Input	-	5			pF
Cout, Capacitance of Logic Outputs		5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground pins.
Note 3: Internal zener diodes (approx. 7 V) are connected from $V+$ to $G N D$ and $V_{C C}$ to GND. The zener at $V+$ can operate as a shunt regulator and is connected to $V_{C C}$ via a conventional diode. Since the zener voltage equals the A / D 's breakdown voltage, the diode insures that $V_{C C}$ will be below breakdown when the device is powered from V^{+}. Functionality is therefore guaranteed for V^{+}operation even though the resultant voltage at V_{CC} may exceed the specified Absolute Max. of 6.5 V . It is recommended that a resistor be used to limit the max. current into $\mathrm{V}+$.

Note 4: When the input voltage $\left(V_{I N}\right)$ at any pin exceeds the power supply rails ($\mathrm{V}_{\mathbb{I N}}<\mathrm{V}^{-}$or $\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}$) the absolute value of current at that pin should be limited to 5 mA or less. The $\mathbf{2 0} \mathrm{mA}$ package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design limits are guaranteed but not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 9: See Applications, section 3.0.
Note 10: For $\mathrm{V}_{\mathrm{N}}(-) \geq \mathrm{V}_{\mathbb{I}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{N}}$ or $\mathrm{V}_{\mathrm{REF}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 11: Leakage current is measured with the clock not switching.
Note 12: A 40% to 60% clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits, the minimum time the clock is high or the minimum time the clock is low must be at least $1 \mu \mathrm{~s}$. The maximum time the clock can be high is $60 \mu \mathrm{~s}$. The clocked can be stopped when low so long as the analog input voltage remains stable.
Note 13: Since data, MSB first, is the output of the comparator used in the successive approximation loop, an additional delay is built in (see Block Diagram) to allow for comparator response time.

Timing Diagrams

TRI-STATE Test Circuits and Waveforms

Leakage Current Test Circuit

Typical Performance Characteristics

Timing Diagram

TL/H/5607-5

Functional Description

1.0 MULTIPLEXER ADDRESSING

The design of the ADC0833 utilizes a sample-data comparator structure which provides for a differential analog input to be converted by a successive approximation routine.
The actual voltage converted is always the difference between an assigned "+" input terminal and a "-" input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the "-" input the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels with software-configurable single-ended (ground referred) or differential inputs. The analog signal conditioning required in transducer-based data
acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs.
A particular input configuration is assigned during the MUX addressing sequence, prior to the start of a conversion. The MUX address selects which of the analog inputs are to be enabled and whether this input is single-ended or differential. In the differential case, it also assigns the polarity of the channels. Differential inputs are restricted to adjacent channel pairs. For example channel 0 and channel 1 may be selected as a differential pair. Channel 0 or 1 cannot act differentially with any other channel. In addition to selecting differential mode the sign may also be selected. Channel 0 may be selected as the positive input and channel 1 as the negative input or vice versa. This programmability is best illustrated by the MUX addressing codes shown in the following table. The MUX address is shifted into the converter through the DI line.

TABLE I. MUX Addressing
Single-Ended MUX Mode

Address				Channel \#			
SGL/	ODD/	SELECT		0	1	2	3
$\overline{\text { DIF }}$	$\overline{\text { SIGN }}$	1	0				
1	0	0	1	+			
1	0	1	1			+	
1	1	0	1		+		
1	1	1	1				+

COM is internally ties to a GND

Differential MUX Mode

Address				Channel \#			
SGL/.	$\begin{aligned} & \overline{\mathrm{ODD} /} \\ & \overline{\text { SIGN }} \end{aligned}$	SELECT		0	1	2	3
$\overline{\text { DIF }}$		1	0				
0	0	0	1	+	-		
0	0	1	1			$+$	-
0	1	0	1	-	$+$		
0	1	1	1			-	$+$

Functional Description (Continued)

Since the input configuration is under software control, it can be modified, as required, at each conversion. A channel can be treated as a single-ended, ground referenced input for one conversion; then it can be reconfigured as part of a differential channel for another conversion. Figure 1 illustrates the input flexibility which can be achieved.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5 V) without degrading conversion accuracy.

2.0 THE DIGITAL INTERFACE

A most important characteristic of these converters is their serial data link with the controlling processor. Using a serial communication format offers two very significant system improvements; it allows more function to be included in the converter package with no increase in package size and it can eliminate the transmission of low level analog signals by locating the converter right at the analog sensor; transmit-
ting highly noise immune digital data back to the host processor.
To understand the operation of these converters it is best to refer to the Timing Diagram and Functional Block Diagram and to follow a complete conversion sequence.

1. A conversion is initiated by first pulling the $\overline{\mathrm{CS}}$ (chip select) line low. This line must be held low for the entire conversion. The converter is now waiting for a start bit and its MUX assignment word.
2. A clock is then generated by the processor (if not provided continuously) and output to the A/D clock input.
3. On each rising edge of the clock the status of the data in (DI) line is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on this line (all leading zeros are ignored). Following the start bit the converter expects the next 4 bits to be the MUX assignment word.

2 Differential

FIGURE 1. Analog Input Multiplexer Options for the ADC0833

Functional Description (Continued)

4. When the start bit has been shifted into the start location of the MUX register, the input channel has been assigned and a conversion is about to begin. An interval of $1 / 2$ clock period (where nothing happens) is automatically inserted to allow the selected MUX channel to settle. The SAR status line goes high at this time to signal that a conversion is now in progress and the DI line is disabled (it no longer accepts data).
5. The data out (DO) line now comes out of TRI-STATE and provides a leading zero for this one clock period of MUX settling time.
6. When the conversion begins, the output of the SAR comparator, which indicates whether the analog input is greater than (high) or less than (low) each successive voltage from the internal resistor ladder, appears at the DO line on each falling edge of the clock. This data is the result of the conversion being shifted out (with the MSB coming first) and can be read by the processor immediately.
7. After 8 clock periods the conversion is completed. The SAR status line returns low to indicate this $1 / 2$ clock cycle later.
8. If the programmer prefers, the data can be read in an LSB first format. All 8 bits of the result are stored in an output shift register. The conversion result, LSB first, is automatically shifted out the DO line, after the MSB first data stream. The DO line then goes low and stays low until $\overline{\mathrm{CS}}$ is returned high.
9. All internal registers are cleared when the $\overline{\mathrm{CS}}$ line is high. If another conversion is desired, $\overline{\mathrm{CS}}$ must make a high to low transition followed by address information.
The DI and DO lines can be tied together and controlled through a bidirectional processor I/O bit with one wire. This is possible because the DI input is only "looked-at" during the MUX addressing interval while the DO line is still in a high impedance state.

3.0 REFERENCE CONSIDERATIONS

The ADC0833 is intended primarily for use in circuits requiring absolute accuracy. In this type of system, the analog
inputs vary between very specific voltage limits and the reference voltage for the A/D converter must remain stable with time and temperature. For ratiometric applications, an ADC0834 is a pin-for-pin compatible alternative since it has a $V_{\text {REF }}$ input (note the ADC0834 needs one less bit of mux addressing information).
The voltage applied to the $\mathrm{V}_{\text {REF }} / 2$ pin defines the voltage span of the analog input [the difference between $\mathrm{V}_{\mathrm{IN}}\left({ }^{+}\right)$ and $\mathrm{V}_{\text {IN }}(-)$] over which the 256 possible output codes apply. A full-scale conversion (an all is output code) will result when the voltage difference between a selected " + " input and "一" input is approximately twice the voltage at the $\mathrm{V}_{\mathrm{REF}} / 2$ pin. This internal gain of 2 from the applied reference to the full-scale input voltage allows biasing a low voltage reference diode from the $5 \mathrm{~V}_{\mathrm{DC}}$ converter supply. To accommodate a 5 V input span, only a 2.5 V reference is required. The LM385 and LM336 reference diodes are good low current devices to use with these converters. The output code changes in accordance with the following equation:

$$
\text { Output Code }=256\left(\frac{\mathrm{~V}_{\mathrm{IN}}(+)-\mathrm{V}_{\mathrm{IN}}(-)}{2\left(\mathrm{~V}_{\mathrm{REF}} / 2\right)}\right)
$$

where the output code is the decimal equivalent of the 8 -bit binary output (ranging from 0 to 255) and the term $\mathrm{V}_{\text {REF }} / 2$ is the voltage from pin 9 to ground.
The $\mathrm{V}_{\text {REF }} / 2$ pin is the center point of a two resistor divider (each resistor is $3.5 \mathrm{k} \Omega$) connected from V_{CC} to ground. Total ladder input resistance is the sum of these two equal resistors. As shown in Figure 2, a reference diode with a voltage less than $\mathrm{V}_{\mathrm{CC}} / 2$ can be connected without requiring an external biasing resistor if its current requirements meet the indicated level.
The minimum value of $\mathrm{V}_{\text {REF }} / 2$ can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\text {REF }} / 256$).

FIGURE 2. Reference Biasing Examples

Functional Description (Continued)

4.0 THE ANALOG INPUTS

The most important feature of these converters is that they can be located right at the analog signal source and through just a few wires can communicate with a controlling processor with a highly noise immune serial bit stream. This in itself greatly minimizes circuitry to maintain analog signal accuracy which otherwise is most susceptible to noise pickup. However, a few words are in order with regard to the analog inputs should the inputs be noisy to begin with or possibly riding on a large common-mode voltage.
The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected "+" and "-" inputs for a conversion (60 Hz is most typical). The time interval between sampling the " + " input and then the "-" input is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
V_{\text {error }}(\max)=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{CM}}\right)\left(\frac{0.5}{f_{\mathrm{CLK}}}\right)
$$

where f_{CM} is the frequency of the common-mode signal,
$V_{\text {PEAK }}$ is its peak voltage value
and $f_{C L K}$ is the A/D clock frequency.
For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error ($\approx 5 \mathrm{mV}$) with the converter running at 250 kHz , its peak value would have to be 6.63 V which would be larger than allowed as it exceeds the maximum analog input limits.
Due to the sampling nature of the analog inputs short spikes of current enter the " + " input and exit the " - " input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$.
This source resistance limitation is important with regard to the DC leakage currents of input multiplexer as well. The worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV inut error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

5.0 OPTIONAL ADJUSTMENTS

5.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{I N(M I N)}$, is not ground a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathrm{IN}}(-)$ input at this $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$ value. This utilizes the differential mode operation of the A/D.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}}(-)$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input. Zero error is the difference between the actual DC input voltage which
is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value $\left(1 / 2 \mathrm{LSB}=9.8 \mathrm{mV}\right.$ for $\left.\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}\right)$.

5.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $V_{\text {REF }}$ input or $V_{C C}$ for a digital output code which is just changing from 11111110 to 11111111.

5.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A / D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathrm{IN}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, using 1 LSB = analog span/256) is applied to selected " + " input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition.
The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{In}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
V_{I N}(+) \text { fs adj }=V_{\text {MAX }}-1.5\left[\frac{\left(V_{M A X}-V_{M I N}\right)}{256}\right]
$$

where:

$$
V_{M A X}=\text { the high end of the analog input range }
$$ and

$\mathrm{V}_{\mathrm{MIN}}=$ the low end (the offset zero) of the analog range.
(Both are ground referenced.)
The $V_{\text {REF }} / 2$ voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure.

6.0 POWER SUPPLY

A unique feature of the ADC0833 is the inclusion of a 7 V zener diode connected from the $\mathrm{V}+$ terminal to ground which also connects to the V_{CC} terminal (which is the actual converter supply) through a silicon diode, as shown in Figure 3.

TL/H/5607-8
FIGURE 3. An On-Chip Shunt Regulator Diode

Functional Description (Continued)
This zener is intended for use as a shunt voltage regulator to eliminate the need for any additional regulating components. This is most desirable if the converter is to be remotely located from the system power source. Figures 4 and 5 illustrate two useful applications of this on-board zener when an external transistor can be afforded.
An important use of the interconnecting diode between $\mathrm{V}+$ and $V_{C C}$ is shown in Figures 6 and 7. Here, this diode is used as a rectifier to allow the $V_{C C}$ supply for the converter

Applications

TL/H/5607-15
FIGURE 4. Operating with a Temperature Compensated Reference

TL/H/5607-17
*Note 4.5V $\leq \mathrm{V}_{\mathrm{CC}} \leq 6.3 \mathrm{~V}$
to be derived from the clock. The low current requirements of the A/D ($\sim 3 \mathrm{~mA})$ and the relatively high clock frequencies used (typically in the range of $10 \mathrm{k}-400 \mathrm{kHz}$) allows using the small value filter capacitor shown to keep the ripple on the V_{CC} line to well under $1 / 4$ of an LSB. The shunt zener regulator can also be used in this mode. This requires a clock voltage swing which is in excess of V_{Z}. A current limit for the zener is needed, either built into the clock generator or a resistor can be used from the CLK pin to the V^{+}pin.

FIGURE 5. Using the A/D as the System Supply Regulator

TL/H/5607-9
FIGURE 7. Remote Sensing-Clock and Power on 1 Wire

FIGURE 6. Generally $\mathbf{V}_{\mathbf{c c}}$ from the Converter Clock

Applications (Continued)

Digital Link and Sample Controlling Software for the Serially Oriented COP420 and the Bit Programmable I/O INS8048

COP CODING EXAMPLE

Mnemonic
LEI
SC
OGI
CLR A
AISC 1
XAS
LDD LOADS MUX ADDRESS FROM RAM INTO ACCUMULATOR
NOP -
XAS
ENABLES SIO's INPUT AND OUTPUT
$C=1$
$\mathrm{GO}=0(\overline{\mathrm{CS}}=0)$
CLEARS ACCUMULATOR LOADS ACCUMULATOR WITH 1 EXCHANGES SIO WITH ACCUMULATOR AND STARTS SK CLOCK

LOADS MUX ADDRESS FROM ACCUMULATOR TO SIO REGISTER \uparrow 8 INSTRUCTIONS \downarrow
XAS READS HIGH ORDER NIBBLE (4 BITS) INTO ACCUMULATOR
XIS PUTS HIGH ORDER NIBBLE INTO RAM
CLR A CLEARS ACCUMULATOR
RC
XAS

XIS PUTS LOW ORDER NIBBLE INTO RAM
OGI $\quad \mathrm{GO}=1(\overline{\mathrm{CS}}=1)$
LEI

TL/H/5607-10

8048 CODING EXAMPLE

Mnemonic
START:
ANL
MOV B, \#5
MOV A, \#ADDR
LOOP 1: RRC A
JC ONE

P1, \# OFEH CONT

P1, \#1
CONT:
ORL
CALL PULSE
DJNZ B,LOOP 1
CALL PULSE
MOV B, \#8
CALL PULSE
IN A, P1
RRC A
RRC A
MOV A, C
RLC A
MOV C,
DJNZ B, LOOP 2
RETR

PULSE

NOP
P1, \#04

ANL P1, \#0FBH
RET

Applications (Continued)

A "Stand-Alone" Hook-Up for ADC0833 Evaluation

Low Cost Remote Temperature Sensor

Applications (Continued)

Operating with Automotive Ratiometric Transducers

Applications (Continued)

TL/H/5607-18
Zero-Shift and Span Adjust: $\mathbf{2 V} \leq \mathbf{V}_{\mathbf{I N}} \leq \mathbf{5 V}$

TL/H/5607-19

Protecting the Input

For additional application ideas, refer to the data sheet for the ADC0831 family of serial data converters.

Ordering Information

Part Number	Temperature Range	Total Unadjusted Error
ADC0833BCJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1 / 2 \mathrm{LSB}$
ADC0833BCN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

National Semiconductor Corporation

ADC0841 8-Bit μ P Compatible A/D Converter

General Description

The ADC0841 is a CMOS 8 -bit successive approximation A/D converter. Differential inputs provide low frequency input common mode rejection and allow offsetting the analog range of the converter. In addition, the reference input can be adjusted enabling the conversion of reduced analog ranges with 8 -bit resolution.
The A / D is designed to operate with the control bus of a variety of microprocessors. TRI-STATE ${ }^{\circledR}$ output latches that directly drive the data bus permit the A/D to be configured as a memory location or I/O device to the microprocessor with no interface logic necessary.

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with 5 VDC voltage reference
- No zero or full-scale adjust required
- Internal clock
- 0 V to 5 V input range with single 5 V power supply
- $0.3^{\prime \prime}$ standard width 20-pin package
- 20 Pin Molded Chip Carrier Package

Key Specifications

- Resolution	8 Bits
Total Unadjusted Error	$\pm 1 / 2$ LSB and ± 1 LSB
- Single Supply	5 VDC
Low Power	15 mW
- Conversion Time	$40 \mu \mathrm{~s}$

Block and Connection Diagrams

TL/H/8557-1

Dual-In-Line Package

(N.C.-No Connection)

Molded Chip Carrier Package

Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (VCC)	6.5 V
Voltage	
\quad Logic Control Inputs	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
At Other Inputs and Outputs	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current Per Pin (Note 3)	$\pm 5 \mathrm{~mA}$
Input Current Per Package (Note 3)	$\pm 20 \mathrm{~mA}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW

Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (Plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic)	$300^{\circ} \mathrm{C}$
Molded Chip Carrier Package	$215^{\circ} \mathrm{C}$
Vapor Phase (60 seconds)	$220^{\circ} \mathrm{C}$
Infrared (15 seconds)	800 V
ESD Susceptibility (Note 10)	
Operating Conditions (Notes 1 and 2)	
Supply Voltage (VCC)	$4.5 \mathrm{~V}_{\mathrm{DC}}$ to $6.0 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range	$\mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$
ADC0841BCN, ADC0841CCN	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
ADC0841BCJ, ADC0841CCJ,	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
ADC0841BCV, ADC0841CCV	
ADC0841BJ, ADC0841CJ	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$

Electrical Characteristics The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0841BJ, ADC0841BCJ ADC0841CJ, ADC0841CCJ			ADC0841BCN, ADC0841CCN ADC0841BCV, ADC0841CCV			Units
		Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS								
Maximum Total Unadjusted Error ADC0841BCN, BCV ADC0841BJ, BCJ ADC0841CCN, CCV ADC0841CJ, CCJ	$\begin{aligned} & V_{\mathrm{REF}}=5.00 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (Note 4) } \end{aligned}$		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Minimum Reference Input Resistance		2.4	1.1		2.4	1.2	1.1	k Ω
Maximum Reference Input Resistance		2.4	5.9		2.4	5.4	5.9	k Ω
Maximum Common-Mode Input Voltage	(Note 5)		$\mathbf{V}_{\mathbf{c c}}+0.05$			$\mathrm{V}_{C C}+0.05$	$\mathbf{V}_{\mathbf{c c}}+0.05$	V
Minimum Common-Mode Input Voltage	(Note 5)		GND-0.05			GND-0.05	GND-0.05	V
DC Common-Mode Error	Differential Mode	$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$V_{C C}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 8$		$\pm 1 / 16$	$\pm 1 / 8$	$\pm 1 / 8$	LSB

Electrical Characteristics The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified.
Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	ADC0841BJ, ADC0841BCJ ADC0841CJ, ADC0841CCJ			ADC0841BCN, ADC0841CCN ADC0841BCV, ADC0841CCV			Units
			$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$		Design Limit (Note 8)	Typ (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8) (Note 8)	

DIGITAL AND DC CHARACTERISTICS

AC Characteristics The following specifications apply for $V_{C C}=5 V_{D C}, t_{r}=t_{f}=10 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$ all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Tested Limit (Note 7)	Design Limit (Note 8)	Units
tc_{C}	Maximum Conversion Time (See Graph)		30	40	60	$\mu \mathrm{s}$
${ }^{\text {w }}$ ($\overline{\text { WF }}$)	Minimum WR Pulse Width	(Note 9)	50	150		ns
$\mathrm{t}_{\mathrm{ACC}}$	Maximum Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { (Note } 9 \text {) } \\ & \hline \end{aligned}$	145	225		ns
$\mathrm{t}_{1 \mathrm{H},} \mathrm{t}_{\mathrm{OH}}$	TRI-STATE Control (Maximum Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \\ & \mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns} \text { (Note } 9 \text {) } \end{aligned}$	125		200	ns
$t_{W l}, t_{\text {fl }}$	Maximum Delay from Falling Edge of $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ to Reset of INTR	(Note 9)	200	400		ns
C_{IN}	Capacitance of Logic Inputs		5			pF
Cout	Capacitance of Logic Outputs		5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground pins.
Note 3: During over-voltage conditions ($\mathrm{V}_{I N}<0 \mathrm{~V}$ and $\mathrm{V}_{I N}>\mathrm{V}_{\mathrm{CC}}$) the maximum input current at any one pin is $\pm 5 \mathrm{~mA}$. If the current is limited to $\pm 5 \mathrm{~mA}$ at all the pins no more than four pins can be in this condition in order to meet the Input Current Per Package ($\pm 20 \mathrm{~mA}$) specification.
Note 4: Total undajusted error includes offset, full-scale, and linearity.
Note 5: For $\mathrm{V}_{\text {IN }}(-) \geq \mathrm{V}_{\text {IN }}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than $\mathrm{V}_{C C}$ supply. Be careful during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $\mathrm{V}_{\mathbb{I N}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 V_{D C}$ over temperature variations, initial tolerance and loading.
Note 6: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 7: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 8: Design limits are guaranteed but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 9: The temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$.
Note 10: Human body model, 100 pF discharged through $1.5 \mathrm{k} \Omega$ resistor.

Timing Diagram

TL/H/8557-9
Note 1: Read strobe must occur at least 600 ns after the assertion of interrupt to guarantee reset of $\overline{\text { INTR. }}$

Typical Performance Characteristics

Logic Input Threshold
Voltage vs Supply Voltage

Linearity Error vs V ReF

Unadjusted Offset Error vs

$$
t_{1 H}, C_{L}=10 \mathrm{pF}
$$

Output Current vs Temperature

Conversion Time vs V SUPPLY

Power Supply Current vs Temperature

Conversion Time vs Temperature

TL/H/8557-4
TRI-STATE Test Circuits and Waveforms

TL/H/8557-5
t_{OH}

TL/H/8557-7

$$
\mathrm{t}_{0 \mathrm{H}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}
$$

$$
\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}
$$

IV800ロオ

Functional Description

A conversion is initiated via the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ lines. If the data from a previous conversion is not read, the INTR line will be low. The falling edge of $\overline{W R}$ will reset the INTR line high and ready the A/D for a conversion cycle. The rising edge of $\overline{W R}$ starts a conversion. After the conversion cycle (tc ≤ 60 $\mu \mathrm{sec}$), which is set by the internal clock frequency, the digital data is transferred to the output latch and the $\overline{\mathrm{NTR}}$ is asserted low. Taking $\overline{C S}$ and $\overline{R D}$ low resets $\overline{\text { NTR }}$ output high and transfers the conversion result on the output data lines (DB0-DB7).

Applications Information

1.0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input of this converter defines the voltage span of the analog input (the difference between $\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})}$ and $\mathrm{V}_{\mathrm{IN}(\mathrm{MIN})}$) over which the 256 possible output codes apply. The device can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the minimum reference input resistance of $1.1 \mathrm{k} \Omega$. This pin is the top of a resistor divider string used for the successive approximation conversion.
In a ratiometric system (Figure 1a), the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $V_{\text {REF }}$ pin can be tied to $V_{C c}$. This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy (Figure 1b), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with this converter.
The maximum value of the reference is limited to the $V_{C C}$ supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $V_{\text {REF }} / 256$).

2.0 THE ANALOG INPUTS

2.1 Analog Differential Voltage Inputs and CommonMode Rejection

The differential inputs of this converter actually reduce the effects of common-mode input noise, a signal common to both selected " + " and "-" inputs for a conversion $(60 \mathrm{~Hz}$ is most typical). The time interval between sampling the " + " input and then the " - " input is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
V_{E R R O R}(\mathrm{MAX})=V_{\text {peak }}\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right) \times 0.5 \times\left(\frac{\mathrm{t}_{\mathrm{C}}}{8}\right)
$$

where f_{CM} is the frequency of the common-mode signal, Vpeak is its peak voltage value and t_{C} is the conversion time.

For a 60 Hz common-mode signal to generate a $1 / 4 \mathrm{LSB}$ error ($\approx 5 \mathrm{mV}$) with the converter running at $40 \mu \mathrm{~S}$, its peak value would have to be 5.43 V . This large a common-mode signal is much greater than that generally found in a well designed data acquisition system.

2.2 Input Current

Due to the sampling nature of the analog inputs, short duration spikes of current enter the " + " input and exit the "-" input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

3.0 OPTIONAL ADJUSTMENTS

3.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\operatorname{IN}(\mathrm{MIN})}$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the $\mathrm{V}_{\mathrm{IN}}(-)$ input at this $\mathrm{V}_{\mathbb{I N}(M \mid N)}$ value.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the V - input and applying a small magnitude positive voltage to the $\mathrm{V}+$ input. Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 0000 0000 to 00000001 and the ideal $1 / 2$ LSB value $(1 / 2 L S B=9.8$ mV for $\left.\mathrm{V}_{\text {REF }}=5.000 \mathrm{~V}_{\mathrm{DC}}\right)$.

3.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }}$ input for a digital output code changing from 11111110 to 11111111.

3.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, 1 LSB $=$ analog span/256) is applied to the " + " input $\left(\mathrm{V}_{\mathrm{IN}}{ }^{(+)}\right)$and the zero reference voltage at the "-" input $\left(\mathrm{V}_{I N}{ }^{(-)}\right)$should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition.

Applications Information (Continued)

FIGURE 1. Referencing Examples

The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
\mathrm{V}_{\mathrm{IN}}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where $\mathrm{V}_{\mathrm{MAX}}=$ the high end of the analog input range and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $\mathrm{V}_{\text {REF }}$ (or V_{CC}) voltage is then adjusted to provide a code change from FE HEX to FFHEX. This completes the adjustment procedure.
For an example see the Zero-Shift and Span Adjust circuit below.

Applications Information (Continued)

Span Adjust $\mathbf{0 V} \leq \mathbf{V}_{\mathbf{I N}} \leq \mathbf{3 V}$

TL/H/8557-14

High Accuracy Comparator

$D O=$ all 1 s if $V_{I N}(+)>V_{I N}(-)$

Diodes are 1N914

Operating with Automotive Ratiometric Transducers

Applications Information（Continued）

（8）
Applications Information (Continued)

TL/H/8557-20

0000	0410
0010	B9 FF
0012	B8 20
0014	89 FF
0016	2300
0018	1450

SAMPLE PROGRAM FOR ADC0841-INS8039 INTERFACE CONVERTING TWO RATIOMETRIC, DIFFERENTIAL SIGNALS
JMP
ORG
MOV

MOV
ORL
MOV
CALL
OH
BEGIN
10 H
R1,\# 0FFH ;LOAD R1 WITH A UNUSED ADDR
;START PROGRAM AT ADDR 10 ;MAIN PROGRAM ;LOCATION ;A/D DATA ADDRESS ;SET PORT 1 OUTPUTS HIGH ;LOAD THE ACC WITH 00 ;CALL THE CONVERSION SUBROUTINE
;CONTINUE MAIN PROGRAM
;CONVERSION SUBROUTINE
;ENTRY:ACC—A/D MUX DATA
;EXIT: ACC—CONVERTED DATA

ORG	50 H	
ANL	P1,\#0FEH	;CHIP SELECT THE A/D
MOVX	@R1,A	;START CONVERSION
IN	A,P1	;INPUT $\overline{\text { INTR STATE }}$
JB1	LOOP	;IF $\overline{\text { INTR }=1 \text { GOTO LOOP }}$
MOVX	A,@R1	;IF $\overline{\text { INTR }=0 ~ I N P U T ~ A / D ~ D A T A ~}$
ORL	P1,\&01H	;CLEAR THE A/D CHIP SELECT
MOV	@R0,A	;STORE THE A/D DATA
RET		;RETURN TO MAIN PROGRAM

Applications Information (Continued)

TL/H/8557-21

SAMPLE PROGRAM FOR ADC0841—NSC800 INTERFACE					
0010		NCONV	EQU	16	;TWICE THE NUMBER OF REQUIRED ;CONVERSIONS
000F		DEL	EQU	15	;DELAY $60 \mu \mathrm{sec}$ CONVERSION
001F		CS	EQU	1FH	;THE BOARD ADDRESS
3C00		ADDTA	EQU	003CH	;START OF RAM FOR A/D ;DATA
0000'	00	DTA:	DB	08H	; DATA
0001'	OE 1F	START:	LD	C,CS	
0003'	0616		LD	B,NCONV	
0005 ${ }^{\prime}$	$21000{ }^{\prime}$		LD	HL,DTA	
0008'	11003 C		LD	DE,ADDTA	
000 ${ }^{\prime}$	ED A3	STCONV:	OUTI		;START A CONVERSION
000D'	EB		EX	DE,HL	;HL = RAM ADDRESS FOR THE ;A/D DATA
000E'	3E OF		LD	A,DEL	
0010'	3D	WAIT:	DEC	A	;WAIT $60 \mu \mathrm{sec}$ FOR THE
0011'	C2 0013'		JP	NZ,WAIT	;CONVERSION TO FINISH
0014'	ED A2		INI		;STORE THE A/D'S DATA ;THE REQUIRED CONVERSIONS COMPLETED?
0016 ${ }^{\prime}$	EB		EX	DE,HL	
0017 ${ }^{\prime}$	C2 000E'		JP	NZ,STCONV	;IF NOT GOTO STCONV

Note: A conversion is started, then a $60 \mu \mathrm{~s}$ wait for the A / D to complete a conversion and the data is stored at address ADDTA for the first conversion, ADDTA +1 for the second conversion, etc. for a total of 8 conversions.

National Semiconductor Corporation

ADC0844/ADC0848 8-Bit μ P Compatible A/D Converters with Multiplexer Options

Features

- Easy interface to all microprocessors
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference
- No zero or full-scale adjust required
- 4-channel or 8-channel multiplexer with address logic
- Internal clock
- 0 V to 5 V input range with single 5 V power supply
- $0.3^{\prime \prime}$ standard width 20-pin or 24-pin DIP
- 28 Pin Molded Chip Carrier Package

Key Specifications

■ Resolution	8 Bits
■ Total Unadjusted Error	$\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$
■ Single Supply	5 VDC
■ Low Power	15 mW
■ Conversion Time	$40 \mu \mathrm{~s}$

Block and Connection Diagrams

Lead Temperature (Soldering, 10 seconds)	
Dual-In-Line Package (Plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic)	$300^{\circ} \mathrm{C}$
Molded Chip Carrier Package	
\quad Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

Operating Conditions (Notes $1 \& 2$)

Supply Voltage $\left(V_{C C}\right)$	$4.5 V_{D C}$ to $6.0 V_{D C}$
Temperature Range	$T_{M I N} \leq T_{A} \leq T_{M A X}$
ADC0844BCN, ADC0844CCN,	$0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$
ADC0848BCN, ADC0848CCN	
ADC0844BCJ, ADC0844CCJ,	$-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$
ADC0848BCJ, ADC0848CCJ	
ADC0848BCV, ADC0848CCV	$-55^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}$
ADC0844BJ, ADC0844CJ,	
ADC0848BJ, ADC0848CJ	

Electrical Characteristics The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified.
Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX; }}$ all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0844BJ, ADC0844BCJ ADC0844CJ, ADC0844CCJ ADC0848BJ, ADC0848BCJ ADC0848CJ, ADC0848CCJ			ADC0844BCN, ADC0844CCN ADC0848BCN, ADC0848CCN ADC0848BCV, ADC0848CCV			Limit Units
		Typ (Note 5)	Tested Limit (Note 6)		Typ (Note 5)		Design Limit (Note 7) (Note 7)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS								
Maximum Total Unadjusted Error ADC0844BCN, ADC0848BCN, BCV ADC0844BJ, BCJ, ADC0848BJ, BCJ ADC0844CCN, ADC0848CCN, CCV ADC0844CJ, CCJ, ADC0848CJ, CCJ	$V_{R E F}=5.00 V_{D C}$ (Note 8)		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Minimum Reference Input Resistance		2.4	1.1		2.4	1.2	1.1	k Ω
Maximum Reference Input Resistance		2.4	5.9		2.4	5.4	5.9	k Ω
Maximum Common-Mode Input Voltage	(Note 9)		$V_{\text {cc }}+0.05$			$\mathrm{V}_{\mathrm{CC}}+0.05$	$V_{c c}+0.05$	V
Minimum Common-Mode Input Voltage	(Note 9)		GND-0.05			GND-0.05	GND-0.05	V
DC Common-Mode Error	Differential Mode	$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$V_{C C}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 8$		$\pm 1 / 16$	$\pm 1 / 8$	$\pm 1 / 8$	LSB
Off Channel Leakage Current	(Note 10) On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$		-1			-0.1	-1	$\mu \mathrm{A}$
	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V}, \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$		1			0.1	1	$\mu \mathrm{A}$
DIGITAL AND DC CHARACTERISTICS								
$\mathrm{V}_{\mathrm{IN}(1)}$, Logical "1" Input Voltage (Min)	$\mathrm{V}_{C C}=5.25 \mathrm{~V}$		2.0			2.0	2.0	V
$\mathrm{V}_{\mathrm{IN}(0)}$, Logical " 0 " Input Voltage (Max)	$\mathrm{V}_{C C}=4.75 \mathrm{~V}$		0.8			0.8	0.8	V
IIN(1), Logical " 1 " Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=5.0 \mathrm{~V}$	0.005	1		0.005		1	$\mu \mathrm{A}$

Electrical Characteristics The following specifications apply for $V_{C C}=5 V_{D C}$ unless otherwise specified.
Boldface limits apply from $T_{\text {MIN }}$ to $T_{M A X}$; all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$. (Continued)

Parameter	Conditions	ADC0844BJ, ADC0844BCJ ADC0844CJ, ADC0844CCJ ADC0848BJ, ADC0848BCJ ADC0848CJ, ADC0848CCJ			ADC0844BCN, ADC0844CCN ADC0848BCN, ADC0848CCN ADC0848BCV, ADC0848CCV			Limit Units
		Typ (Note 5)		Design Limit (Note 7)	Typ (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7)	

DIGITAL AND DC CHARACTERISTICS (Continued)

$I^{\prime}(0)$, Logical " 0 " Input Current (Max)	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-0.005	-1	-0.005		-1	$\mu \mathrm{A}$
VOUT(1), Logical "1" Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { loUT }=-360 \mu \mathrm{~A} \\ & \text { loUT }=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \end{array}$		$\begin{aligned} & 2.8 \\ & 4.6 \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
VOUT(0), Logical " 0 " Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{IOUT}=1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		0.4		0.34	0.4	V
Iout, TRI-STATE Output Current (Max)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{gathered} -0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -0.3 \\ 0.3 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Isource, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5	-14	-7.5	-6.5	mA
ISNK, Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	16	8.0	16	9.0	8.0	mA
$\mathrm{I}_{\text {CC, }}$ Supply Current (Max)	$\overline{C S}=1, V_{\text {REF }}$ Open	1	2.5	1	2.3	2.5	mA

AC Electrical Characteristics The following specifications apply for $V_{C C}=5 V_{D C}, t_{r}=t_{f}=10 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply from $T_{\text {min }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Typ (Note 5)		Design Limit (Note 7)	Units
t_{C}, Maximum Conversion Time (See Graph)		30	40	60	$\mu \mathrm{S}$
${ }^{\text {tw }}(\overline{W R})$, Minimum $\overline{W R}$ Pulse Width	(Note 11)	50	150		ns
$t_{\text {ACC }}$, Maximum Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Data Valid)	$\begin{aligned} & C_{L}=100 \mathrm{pF} \\ & \text { (Note 11) } \end{aligned}$	145		225	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$, TRI-STATE Control (Maximum Delay from Rising Edge of $\overline{R D}$ to $\mathrm{Hi}-\mathrm{Z}$ State)	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \text { (Note 11) } \end{aligned}$	125		200	ns
${ }^{t}{ }_{W}$, $t_{\text {RI }}$, Maximum Delay from Falling Edge of $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ to Reset of INTR	(Note 11)	200	400		ns
$t_{\text {DS }}$, Minimum Data Set-Up Time	(Note 11)	50	100		ns
$t_{\text {DH, }}$, Minimum Data Hold Time	(Note 11)	0	50		ns
C_{IN}, Capacitance of Logic Inputs		5			pF
Cout, Capacitance of Logic Outputs		5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground pins.
Note 3: When the input voltage $\left(V_{\mathbb{I N}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathbb{N}}<\mathrm{V}^{-}\right.$or $\left.\mathrm{V}_{\mathbb{N}}>\mathrm{V}^{+}\right)$the absolute value of the current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 6: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 7: Design limits are guaranteed by not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 8: Total unadjusted error includes offset, full-scale, linearity, and multiplexer error.

Note 9: For $\mathrm{V}_{\mathrm{IN}}(-) \geq \mathrm{V}_{\mathrm{IN}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{D C}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 10: Off channel leakage current is measured after the channel selection.
Note 11: The temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

TRI-STATE Test Circuits and Waveforms

Leakage Current Test Circuit

*NOT INCLUDED ON ADCO844

Timing Diagrams

TL/H/5016-9
Note 1: Read strobe must occur at least 600 ns after the assertion of interrupt to guarantee reset of INTR.
Note 2: MA stands for MUX address.

Using the Previously Selected Channel Configuration and Starting a Conversion

Functional Description

The ADC0844 and ADC0848 contain a 4-channel and 8channel analog input multiplexer (MUX) respectively. Each MUX can be configured into one of three modes of operation differential, pseudo-differential, and single ended. These modes are discussed in the Applications Information Section. The specific mode is selected by loading the MUX address latch with the proper address (see Table I and Table II). Inputs to the MUX address latch (MAO-MA4) are common with data bus lines (DB0-DB4) and are enabled when the $\overline{\mathrm{RD}}$ line is high. A conversion is initiated via the $\overline{\mathrm{CS}}$ and $\overline{W R}$ lines. If the data from a previous conversion is not read, the $\overline{\mathrm{NT} T R}$ line will be low. The falling edge of $\overline{\mathrm{WR}}$ will reset the INTR line high and ready the A/D for a conversion cycle. The rising edge of $\overline{W R}$, with $\overline{\mathrm{RD}}$ high, strobes the data on the MAO/DB0-MA4/DB4 inputs into the MUX address latch to select a new input configuration and start a conversion. If the $\overline{R D}$ line is held low during the entire low period of $\overline{W R}$ the previous MUX configuration is retained, and the data of the previous conversion is the output on lines DBODB7. After the conversion cycle ($\mathrm{t}_{\mathrm{C}} \leq 40 \mu \mathrm{~s}$), which is set by the internal clock frequency, the digital data is trans-
ferred to the output latch and the INTR is asserted low. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low resets $\overline{\text { INTR }}$ output high and outputs the conversion result on the data lines (DB0-DB7).

Applications Information

1.0 MULTIPLEXER CONFIGURATION

The design of these converters utilizes a sampled-data comparator structure which allows a differential analog input to be converted by a successive approximation routine.
The actual voltage converted is always the difference between an assigned "+" input terminal and a " - " input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the "-" input the converter responds with an all zeros output code.
A unique input multiplexing scheme has been utilized to provide multiple analog channels. The input channels can be software configured into three modes: differential, single-

TABLE I. ADC0844 MUX ADDRESSING

FIGURE 1. Analog Input Multiplexer Options

Applications Information（Continued）

ended，or pseudo－differential．Figure 1 shows the three modes using the 4 －channel MUX ADC0844．The eight inputs of the ADC0848 can also be configured in any of the three modes．In the differential mode，the ADC0844 channel in－ puts are grouped in pairs， CH 1 with CH 2 and CH 3 with CH 4 ． The polarity assignment of each channel in the pair is inter－ changeable．The single－ended mode has $\mathrm{CH} 1-\mathrm{CH} 4$ as－ signed as the positive input with the negative input being the analog ground（AGND）of the device．Finally，in the pseudo－ differential mode $\mathrm{CH} 1-\mathrm{CH} 3$ are positive inputs referenced to CH 4 which is now a pseudo－ground．This pseudo－ground input can be set to any potential within the input common－ mode range of the converter．The analog signal conditioning required in transducer－based data acquisition systems is significantly simplified with this type of input flexibility．One converter package can now handle ground referenced in－ puts and true differential inputs as well as signals with some arbitrary reference voltage．
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC}（typically 5 V ） without degrading conversion accuracy．

2．0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input of these convert－ ers defines the voltage span of the analog input（the differ－ ence between $\mathrm{V}_{\operatorname{IN}(\text { MAX })}$ and $\left.\mathrm{V}_{\text {IN（MIN })}\right)$ over which the 256 possible output codes apply．The devices can be used in either ratiometric applications or in systems requiring abso－ lute accuracy．The reference pin must be connected to a voltage source capable of driving the minimum reference input resistance of $1.1 \mathrm{k} \Omega$ ．This pin is the top of a resistor
divider string used for the successive approximation conver－ sion．
In a ratiometric system（Figure 2a），the analog input voltage is proportional to the voltage used for the A／D reference． This voltage is typically the system power supply，so the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{CC} ．This technique relaxes the stability requirements of the system reference as the analog input and A／D reference move together maintaining the same output code for a given input condition．
For absolute accuracy（Figure 2b），where the analog input varies between very specific voltage limits，the reference pin can be biased with a time and temperature stable voltage source．The LM385 and LM336 reference diodes are good low current devices to use with these converters．
The maximum value of the reference is limited to the $\mathrm{V}_{C C}$ supply voltage．The minimum value，however，can be quite small（see Typical Performance Characteristics）to allow di－ rect conversions of transducer outputs providing less than a 5 V output span．Particular care must be taken with regard to noise pickup，circuit layout and system error voltage sourc－ es when operating with a reduced span due to the in－ creased sensitivity of the converter（ 1 LSB equals $V_{\text {REF }} / 256$ ）．

3．0 THE ANALOG INPUTS

3．1 Analog Differential Voltage Inputs and Common－ Mode Rejection

The differential input of these converters actually reduces the effects of common－mode input noise，a signal common to both selected＂＋＂and＂－＂inputs for a conversion（60 Hz is most typical）．The time interval between sampling the

TABLE II．ADC0848 MUX Addressing

MUX Address					$\overline{\text { CS }}$	$\overline{W R}$	$\overline{\mathrm{RD}}$	Channel									MUX Mode
MA4	MA3	MA2	MA1	MAO				CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	AGND	
X	L	L	L	L	L		H	＋	－								
X	L	L	L	H	L		H	－	＋								
X	L	L	H	L	L		H			＋	－						
X	L	L	H	H	L		H			－	＋						
x	L	H	L	L	L	ษ	H					$+$	－				Differential
X	L	H	L	H	L		H					－	＋				
X	L	H	H	L	L		H							＋	－		
X	L	H	H	H	L		H							－	$+$		
L	H	L	L	L	L		H	＋								－	
L	H	L	L	H	L		H		＋							－	
L	H	L	H	L	L		H			＋						－	
L	H	L	H	H	L	15	H				$+$					－	
L	H	H	L	L	L	Ψ	H					$+$				－	Single－Ended
L	H	H	L	H	L		H						＋			－	
L	H	H	H	L	L		H							＋		－	
L	H	H	H	H	L		H								$+$	－	
H	H	L	L	L	L		H	＋							－		
H	H	L	L	H	L		H		＋						－		
H	H	L	H	L	L		H			$+$					－		
H	H	L	H	H	L	$\underline{\square}$	H				$+$				－		Pseudo－
H	H	H	L	L	L		H					$+$			－		
H	H	H	L	H	L		H						＋		－		
H	H	H	H	L	L		H							＋	－		
X	x	X	X	x	L	u	L	Previous Channel Configuration									

Applications Information (Continued)

"+" input and then the " - " inputs is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
\mathrm{V}_{\text {ERROR }}(\mathrm{MAX})=\mathrm{V}_{\text {peak }}(2 \pi \mathrm{f} \mathrm{CM}) \times 0.5 \times\left(\frac{\mathrm{t}_{\mathrm{C}}}{8}\right)
$$

where f_{CM} is the frequency of the common-mode signal, $V_{\text {peak }}$ is its peak voltage value and t_{C} is the conversion time. For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error ($\approx 5 \mathrm{mV}$) with the converter running at $40 \mu \mathrm{~S}$, its peak value would have to be 5.43 V . This large a common-mode signal is much greater than that generally found in a well designed data acquisition system.

3.2 Input Current

Due to the sampling nature of the analog inputs, short duration spikes of current enter the " + " input and exit the "一" input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$.

3.3 Input Source Resistance

The limitation of the input source resistance due to the DC leakage currents of the input multiplexer is important. A worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

a) Ratiometric

4.0 OPTIONAL ADJUSTMENTS

4.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\text {IN(MIN })}$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathbb{I N}}(-)$ input at this $\mathrm{V}_{\mathbb{I N}(M \mid N)}$ value. This is useful for either differential or pseudo-differential modes of input channel configuration.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the V - input and applying a small magnitude positive voltage to the $\mathrm{V}+$ input. Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 0000 0000 to 00000001 and the ideal $1 / 2$ LSB value ($1 / 2 \mathrm{LSB}=9.8$ mV for $\mathrm{V}_{\text {REF }}=5.000 \mathrm{~V}_{\mathrm{DC}}$).

4.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }}$ input for a digital output code changing from 11111110 to 11111111.

4.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathrm{IN}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, 1 LSB $=$ analog span/256) is applied to selected " + " input and the zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the 00 HEX to $01_{\text {HEX }}$ code transition.

TL/H/5016-17
b) Absolute with a Reduced Span

FIGURE 2. Referencing Examples

Applications Information (Continued)

The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathbb{I N}}(+)$ input which is given by:

$$
\mathrm{V}_{\mathrm{IN}}(+) \mathrm{fs} \text { adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

where $V_{M A X}=$ the high end of the analog input range and
$\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)
The $\mathrm{V}_{\mathrm{REF}}$ (or V_{CC}) voltage is then adjusted to provide a code change from FE HEX to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure.
For an example see the Zero-Shift and Span Adjust circuit below.

Applications Information (Continued)

TL/H/5016-19

TL/H/5016-20

Protecting the Input

Diodes are 1N914

High Accuracy Comparators

$D O=$ all 1 s if $\mathrm{V}_{\text {IN }}(+)>\mathrm{V}_{\text {IN }}(-)$
$D O=$ all $0 s$ if $\mathrm{V}_{\mathbb{N}}(+)<\mathrm{V}_{\operatorname{IN}}(-)$

Applications Information (Continued)

Operating with Automotive Ratiometric Transducers

TL/H/5016-23
${ }^{*} V_{I N}(-)=0.15 V_{C C}$
15% of $V_{C C} \leq V_{X D R} \leq 85 \%$ of $V_{C C}$

Uses the pseudo-differential mode to keep the differential inputs constant with changes in reference temperature (TREF).

Applications Information (Continued)

A Stand Alone Circuit

TL/H/5016-25
Note: DUT pin numbers in parentheses are for ADC0844, others are for ADC0848.

Start a Conversion without Updating the Channel Configuration

TL/H/5016-26
$\overline{\mathrm{CS}} \bullet \overline{\mathrm{WR}}$ will update the channel configuration and start a conversion.
$\overline{\mathrm{CS}} \bullet \overline{\mathrm{RD}}$ will read the conversion data and start a new conversion without updat-
ing the channel configuration.
Waiting for the end of this conversion is not necessary. A $\overline{\mathrm{CS}} \bullet \overline{\mathrm{WR}}$ can immediately follow the $\overline{\mathrm{CS}} \cdot \overline{\mathrm{RD}}$.

Applications Information (Continued)

TL/H/5016-27

Applications Information (Continued)

SAMPLE PROGRAM FOR ADC0848-NSC800 INTERFACE

0008		NCONV	EQU	16	
000F		DEL	EQU	15	;DELAY $50 \mu \mathrm{sec}$ CONVERSION
001F		CS	EQU	1 FH	;THE BOARD ADDRESS
3C00		ADDTA	EQU	003CH	;START OF RAM FOR A/D ;DATA
0000 ${ }^{\prime}$	$0809040 B$	MUXDTA:	DB	08H,09H, $0 \mathrm{AH}, 0 \mathrm{BH}$;MUX DATA
0004 ${ }^{\prime}$	OC OD OE OF		DB	OCH,ODH,OEH,OFH	
0008 ${ }^{\prime}$	OE 1F	START:	LD	C,CS	
000A'	0616		LD	B,NCONV	
000C'	$21000{ }^{\prime}$		LD	HL,MUXDTA	
000F'	11003 C		LD	DE,ADDTA	
0012'	ED A3	STCONV:	OUTI		;LOAD A/D'S MUX DATA
					;AND START A CONVERSION
0014 ${ }^{\prime}$	EB		EX	DE,HL	;HL = RAM ADDRESS FOR THE ;A/D DATA
0015 ${ }^{\prime}$	3E OF		LD	A,DEL	
0017'	3D	WAIT:	DEC	A	;WAIT $50 \mu \mathrm{sec}$ FOR THE
0018 ${ }^{\prime}$	C2 0013'		JP	NZ,WAIT	;CONVERSION TO FINISH
001B'	ED A2		INI		;STORE THE A/D'S DATA
					;CONVERTED ALL INPUTS?
001D'	EB		EX	DE,HL	
001E'	C2 000E'		JP	NZ,STCONV	;IF NOT GOTO STCONV

Note: This routine sequentially programs the MUX data latch in the signal-ended mode. For $\mathrm{CH} 1-\mathrm{CH} 8$ a conversion is started, then a $50 \mu \mathrm{~s}$ wait for the A / D to complete a conversion and the data is stored at address ADDTA for CH 1 , ADDTA +1 for CH 2 , etc.

Ordering Information

Temperature Range	Total Unadjusted Error		MUX Channels	Package Outline
	$\pm 1 / 2$ LSB	± 1 LSB	4	N20A Molded Dip
	ADC0844BCN	ADC0844CCN	4	8
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ADC0848BCN	ADC0848CCN	N24C Molded Dip	
	ADC0844BCJ	ADC0844CCJ	4	J20A Cerdip
	ADC0848BCV	ADC0848CCJ	8	J24F Cerdip
	ADC0848CCV	8	V28A Molded Chip Carrier	
	ADC0848BJ	ADC0848CJ	8	J20A Cerdip

ADC0852/ADC0854
 Multiplexed Comparator with 8-Bit Reference Divider

General Description

The ADC0852 and ADC0854 are CMOS devices that combine a versatile analog input multiplexer, voltage comparator, and an 8-bit DAC which provides the comparator's threshold voltage $\left(V_{T H}\right)$. The comparator provides a " 1 -bit" output as a result of a comparison between the analog input and the DAC's output. This allows for easy implementation of set-point, on-off or "bang-bang" control systems with several advantages over previous devices.
The ADC0854 has a 4 input multiplexer that can be software configured for single ended, pseudo-differential, and full-differential modes of operation. In addition the DAC's reference input is brought out to allow for reduction of the span. The ADC0852 has a two input multiplexer that can be configured as 2 single-ended or 1 differential input pair. The DAC reference input is internally tied to V_{CC}.
The multiplexer and 8-bit DAC are programmed via a serial data input word. Once programmed the output is updated
once each clock cycle up to a maximum clock rate of 400 kHz .

Features

- 2 or 4 channel multiplexer
- Differential or Single-ended input, software controlled
- Serial digital data interface
- 256 programmable reference voltage levels
- Continuous comparison after programming
- Fixed, ratiometric, or reduced span reference capability (ADC 0854)

Key Specifications

- Accuracy, $\pm 1 / 2$ LSB or ± 1 LSB of Reference (0.2%)
- Single 5V power supply
- Low Power, 15 mW

TL/H/5521-1
FIGURE 1. ADC0854 Simplified Block Diagram (ADC0852 has 2 input channels, COM tied to GND, $V_{\text {REF }}$ tied to $V_{\mathbf{C C}}, \mathrm{V}+$ omitted, and one GND connection)

2 Channel and 4 Channel Pin Out

$V_{\text {REF }}$ internally connected to $V_{C C}$
Order Number ADC0852
See NS Package Number J08A or N08E

ADC0854 4-CHANNEL MUX
Dual-In-Line Package

TL/H/5521-11
Top View
Order Number ADC0854
See NS Package Number J14A or N14A

If Military/Aerospace speci contact the National Sem Distributors for availability a	evices are required, uctor Sales Office/ ecifications.
Current into ${ }^{+}$(Note 3)	15 mA
Supply Voltage, $\mathrm{V}_{\text {CC }}$ (Note 3)	6.5 V
Voltage	
Logic and Analog Inputs	-0.3 V to $\mathrm{V} \mathrm{CC}+0.3 \mathrm{~V}$
Input Current per Pin	$\pm 5 \mathrm{~mA}$
Input Current per Package	$\pm 20 \mathrm{~mA}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Board Mount)	0.8W

Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
ESD Susceptibility (Note 14)	2000 V

Operating Conditions

Supply Voltage, V_{CC}
Temperature Range
ADC0854BJ, ADC0854CJ
ADC0852BJ, ADC0852CJ
ADC0854BCJ, ADC0854CCJ $\quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$
ADC0852BCJ, ADC0852CCJ
ADC0854BCN, ADC0854CCN $\quad 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ADC0852BCN, ADC0852CCN

Electrical Characteristics The following specifications apply for $V_{C C}=V^{+}=5 \mathrm{~V}$ (no $\mathrm{V}+$ on $\mathrm{ADC0852}$),
$\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{C C}+0.1 \mathrm{~V}$, fCLK $=250 \mathrm{kHz}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits T_{A} $=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0852BCJ/CCJ/BJ/CJ ADC0854BCJ/CCJ/BJ/CJ			ADC0852BCN/CCN ADC0854BCN/CCN			Units
		$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Tested Limit (Note 5)	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 6) } \end{array}$	$\begin{aligned} & \text { Typ } \\ & \text { (Note 4) } \end{aligned}$	Tested Limit (Note 5)	Design Limit (Note 6)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS								
Total Unadjusted Error (Note 7) ADC0852/4/BCN ADC0852/4/BJ/BCJ ADC0852/4/CCN ADC0852/4/CJ/CCJ	$V_{\text {REF }}$ Forced to $5.000 \mathrm{~V}_{\mathrm{DC}}$		$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$			$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { LSB } \\ \text { LSB } \\ \text { LSB } \\ \hline \end{array}$
Comparator Offset ADC0852/4/BCN ADC0852/4/BJ/BCJ ADC0852/4/CCN ADC0852/4/CCJ		$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10 \\ 20 \\ \hline \end{array}$		$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Minimum Total Ladder Resistance		3.5	1.3		3.5	1.3	1.3	k Ω
Maximum Total Ladder Resistance		3.5	5.9		3.5	5.4	5.9	k Ω
Minimum Common-Mode Input (Note 8)	All MUX Inputs and COM Input		GND-0.05			GND-0.05	GND-0.05	V
Maximum Common-Mode Input (Note 8)	All MUX Inputs and COM Input		$\mathrm{V}_{\text {cc }}+0.05$			$\mathrm{V}_{\mathrm{CC}}+0.05$	$\mathbf{V c c}_{\mathbf{c c}} \mathbf{0 . 0 5}$	V
DC Common-Mode Error		$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
V_{Z}, Internal diode MIN breakdown MAX at V^{+}(Note 3)	15 mA into $\mathrm{V}+$		$\begin{aligned} & 6.3 \\ & 8.5 \end{aligned}$			$\begin{aligned} & 6.3 \\ & 8.5 \end{aligned}$		v
loff, Off Channel Leakage Current (Note 9)	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V}, \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline-1 \\ -200 \\ \hline \end{gathered}$			-200	-1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$
	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V}, \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \hline+1 \\ +200 \\ \hline \end{array}$			+200	+1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$

Electrical Characteristics (Continued)
The following specifications apply for $\mathrm{V}_{C C}=\mathrm{V}^{+}=5 \mathrm{~V}$ (no V^{+}on ADC0852), $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$ unless otherwise specified.
Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0852BCJ/CCJ/BJ/CJ ADC0854BCJ/CCJ/BJ/CJ			ADC0852BCN/CCN ADC0854BCN/CCN			Units
		$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$		Design Limit (Note 6)	Typ (Note 4)		Design Limit (Note 6)	

CONVERTER AND MULTIPLEXER CHARACTERISTICS (Continued)

ION, On Channel Leakage Current (Note 9)	On Channel $=5 \mathrm{~V}$, Off Channel $=0 \mathrm{~V}$	$\begin{gathered} +1 \\ +200 \end{gathered}$			+200	$+1$	$\mu \mathrm{A}$ nA
	On Channel $=0 \mathrm{~V}$, Off Channel $=5 \mathrm{~V}$	$\begin{gathered} -1 \\ -200 \end{gathered}$			-200	-1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{nA} \end{aligned}$

DIGITAL AND DC CHARACTERISTICS

AC Characteristics $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter		Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$		Design Limit (Note 6)	Units
${ }_{\text {f CLK }}$	Clock Frequency (Note 12)	MIN MAX			10	400	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
$t_{\text {D1 }}$	Rising Edge of Clock to "DO" Enabled		$C_{L}=100 \mathrm{pF}$	650		1000	ns
t_{r}	Comparator Response Time (Note 13)		Not Including Addressing Time			$2+1 \mu \mathrm{~s}$	1/f ${ }_{\text {CLK }}$
	Clock Duty Cycle (Note 10)	MIN MAX			$\begin{aligned} & 40 \\ & 60 \\ & \hline \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
${ }^{\text {tset-UP }}$	CS Falling Edge or Data Input Valid to CLK Rising Edge	MAX				250	ns
$\mathrm{t}_{\text {HOLD }}$	Data Input Valid after CLK Rising Edge	MIN				90	ns
$t_{\text {pd } 1}, t_{\text {pdo }}$	CLK Falling Edge to Output Data Valid (Note 11)	MAX	$C_{L}=100 \mathrm{pF}$	650		1000	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$	Rising Edge of CS to Data Output Hi-Z	MAX	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & C_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \text { (see TRI-STATE Test Circuits) } \end{aligned}$	125	500	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{C}_{1 \mathrm{~N}}$	Capacitance of Logic Input			5			pF
Cout	Capacitance of Logic Outputs			5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to ground.
Note 3: Internal zener diodes (approx. 7 V) are connected from $\mathrm{V}+$ to GND and V_{CC} to GND . The zener at $\mathrm{V}+$ can operate as a shunt regulator and is connected to $V_{C C}$ via a conventional diode. Since the zener voltage equals the A/D's breakdown voltage, the diode ensures that $V_{C C}$ will be below breakdown when the device is powered from $V+$. Functionality is therefore guaranteed for $V+$ operation even though the resultant voltage at $V_{C C}$ may exceed the specified Absolute Max of 6.5 V . It is recommended that a resistor be used to limit the max current into $\mathrm{V}+$.

Note 4: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 5: Tested and guaranteed to National AOQL (Average Outgoing Quality Level).
Note 6: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 7: Total unadjusted error includes comparator offset, DAC linearity, and multiplexer error. It is expressed in LSBs of the threshold DAC's input code.
Note 8: For $\mathrm{V}_{\mathbb{N}}(-) \geq \mathrm{V}_{\mathbb{I}}(+)$ the output will be 0 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{I N}$ or $V_{\text {REF }}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 V_{D C}$ input voltage range will therefore require a minimum supply voltage of $4.950 V_{D C}$ over temperature variations, initial tolerance and loading.
Note 9: Leakage current is measured with the clock not switching.
Note 10: A 40% to 60% clock duty cycle range ensures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits then $1.6 \mu \mathrm{~S} \leq$ CLK Low $\leq 60 \mu \mathrm{~S}$ and $1.6 \mu \mathrm{~S} \leq$ CLK HIGH $\leq \infty$.
Note 11: With $\overline{\mathrm{CS}}$ low and programming complete, DO is updated on each falling CLK edge. However, each new output is based on the comparison completed 0.5 clock cycles prior (see Figure 5).
Note 12: Error specs are not guaranteed at 400 kHz (see graph: Comparator Error vs. fCLK).
Note 13: See text, section 1.2.
Note 14: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics

Output Current vs
Temperature

*For ADC0852 add I IREF

Comparator Offset vs
Temperature

Icc, Power Supply
Current vs. feLK, ADC0854*

TL/H/5521-2

Timing Diagrams

TRI-STATE Test Circuits and Waveforms

Leakage Test Circuit

TL/H/5521-6

Note：Valid Output can change only on Falling Edge of CL．K．

[^8]
Functional Description

1． 1 The Sampled－data Comparator

The ADC0852 and ADC0854 utilize a sampled－data com－ parator structure to compare the analog difference between a selected＂+ ＂and＂－＂input to an 8 －bit programmable threshold．
This comparator consists of a CMOS inverter with a capaci－ tively coupled input（Figure 4）．Analog switches connect the two comparator inputs to the input capacitor and also con－ nect the inverter＇s input and output．This device in effect now has one differential input pair．A comparison requires two cycles，one for zeroing the comparator and another for making the comparison．

In the first cycle（Figure 4a），one input switch and the invert－ er＇s feedback switch are closed．In this interval，the input capacitor（ C ）is charged to the connected input（ $V 1$ ）less the inverter＇s bias voltage（ V_{B} ，approx． 1.2 volts）．In the second cycle（Figure 4b）these two switches are opened and the other（V2）input＇s switch is closed．The input capacitor now subtracts its stored voltage from the second input and the difference is amplified by the inverter＇s open loop gain．The inverter input $\left(V_{B}{ }^{\prime}\right)$ becomes $V_{B}-(V 1-V 2) \frac{C}{C+C_{S}}$ and the output will go high or low depending on the sign of V_{B}＇－ V_{B} ．

FIGURE 4．Sampled－Data Comparator

FIGURE 4a．Zeroing Phase

－$V_{B^{\prime}}-V_{B}=\left(V_{2}-V_{1}\right) \frac{C}{C+C_{S}}$
－$V_{0}=\frac{-A}{C+C_{S}}\left[C V_{2}-C V_{1}\right]$
－V_{0} is dependent on $V_{2}-V_{1}$
TL／H／5521－9
FIGURE 4b．Compare Phase

$$
\begin{gathered}
V_{0}=\frac{-A}{C_{1}+C_{2}+C_{S}}\left[C_{1}\left(V_{2}-V_{1}\right)+C_{2}\left(V_{4}-V_{3}\right)\right] \\
=\frac{-A}{C_{1}+C_{2}+C_{S}}\left[\Delta Q C_{1}+\Delta Q C_{2}\right]
\end{gathered}
$$

＊Comparator Reads $\mathrm{V}_{\text {TH }}$ from Internal DAC Differentially

TL／H／5521－14

FIGURE 4c．Multiple Differential Inputs

Functional Description（Continued）

In actual practice，the devices used in the ADC0852／4 are a simple but important expansion of the basic comparator de－ scribed above．As shown in Figure 4c，multiple differential comparisons can be made．In this circuit，the feedback switch and one input switch on each capacitor（A switches） are closed in the first cycle．Then the other input on each capacitor is connected while all of the first switches are opened．The change in voltage at the inverter＇s input，as a result of the change in charge on each input capacitor（ C 1 ， $\mathrm{C} 2)$ ，will now depend on both input signal differences．

1．2 Input Sampling and Response Time

The input phases of the comparator relate to the device clock（CLK）as shown in Figure 5．Because the comparator is a sampling device，its response characteristics are some－ what different from those of linear comparators．The $\mathrm{V}_{\mathrm{IN}}(+)$ input is sampled first（CLK high）followed by $\mathrm{V}_{\text {IN }}(-)$（CLK low）．The output responds to those inputs，one half cycle later，on CLK＇s falling edge．
The comparator＇s response time to an input step is depen－ dent on the step＇s phase relation to the CLK signal．If an input step occurs too late to influence the most imminent comparator decision，one more CLK cycle will pass before the output is correct．In effect，the response time for the $V_{I N}(+)$ input has a minimum of 1 CLK cycle $+1 \mu S$ and a maximum of 2 CLK cycles $+1 \mu \mathrm{~S}$ ．The $\mathrm{V}_{\mathrm{IN}}(-)$ input＇s delay will range from $1 / 2$ CLK cycle $+1 \mu \mathrm{~S}$ to 1.5 CLK cycles + $1 \mu \mathrm{~S}$ since it is sampled after $\mathrm{V}_{\mathrm{IN}}(+)$ ．
The sampled inputs also affect the device＇s response to pulsed signals．As shown in the shaded areas in Figure 5， pulses that rise and／or fall near the latter part of a CLK half－ cycle may be ignored．
vide multiple analog channels with software－configurable single－ended，differential，or pseudo－differential operation． The analog signal conditioning required in transducer－input and other types of data acquisition systems is significantly simplified with this type of input flexibility．One device pack－ age can now handle ground referenced inputs as well as signals with some arbitrary reference voltage．
On the ADC0854，the＂common＂pin（pin 6）is used as the ＂－＂input for all channels in single－ended mode．Since this input need not be at analog ground，it can be used as the common line for pseudo－differential operation．It may be tied to a reference potential that is common to all inputs and within the input range of the comparator．This feature is especially useful in single－supply applications where the an－ alog circuitry is biased to a potential other than ground．
A particular input configuration is assigned during the MUX addressing sequence which occurs prior to the start of a comparison．The MUX address selects which of the analog channels is to be enabled，what the input mode will be，and the input channel polarity．One limitation is that differential inputs are restricted to adjacent channel pairs．For example， channel 0 and 1 may be selected as a differential pair but they cannot act differentially with any other channel．
The channel and polarity selection is done serially via the DI input．A complete listing of the input configurations and cor－ responding MUX addresses for the ADC0852 and ADC0854 is shown in tables I and II．Figure 6 illustrates the analog connections for the various input options．
The analog input voltage for each channel can range from 50 mV below ground to 50 mV above V_{CC}（typically 5 V ） without degrading accuracy．

TL／H／5521－13
FIGURE 5．Analog Input Timing

Functional Description (Continued)
TABLE I. MUX Addressing: ADC0854
Single-Ended MUX Mode

MUX Address				Channel					
SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	SELECT	0	1	2	3	COM		
1	0	0	+				-		
1	0	1			+		-		
1	1	0		+			-		
1	1	1				+	-		

Differential MUX Mode

MUX Address				Channel			
SGL// $\overline{\text { DIF }}$	ODD/ SIGN	SELECT	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
0	0	0	+	-			
0	0	1			+	-	
0	1	0	-	+			
0	1	1			-	+	

TABLE II. MUX Addressing: ADC0852 Single Ended MUX Mode

MUX Address		Channel	
SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	0	1
1	0	+	
1	1		+

COM is internally tied to A GND
Differential MUX Mode

MUX Address		Channel	
SGL/ $\overline{\text { DIF }}$	ODD/ SIGN	$\mathbf{0}$	$\mathbf{1}$
0	0	+	-
0	1	-	+

FIGURE 6. Analog Input Multiplexer Options for the ADC0854

Functional Description (Continued)

2.0 THE DIGITAL INTERFACE

An important characteristic of the ADC0852 and ADC0854 is their serial data link with the controlling processor. A serial communication format eliminates the transmission of low level analog signals by locating the comparator close to the signal source. Thus only highly noise immune digital signals need to be transmitted back to the host processor.
To understand the operation of these devices it is best to refer to the timing diagrams (Figure 3) and functional block diagram (Figure 2) while following a complete comparison sequence.

1. A comparison is initiated by first pulling the $\overline{\mathrm{CS}}$ (chip select) line low. This line must be held low for the entire addressing sequence and comparison. The comparator then waits for a start bit, its MUX assignment word, and an 8-bit code to set the internal DAC which supplies the comparator's threshold voltage (V_{TH}).
2. An external clock is applied to the CLK input. This clock can be applied continuously and need not be gated on and off.
3. On each rising edge of the clock, the level present on the DI line is clocked into the MUX address shift register. The start bit is the first logic " 1 " that appears on this line. All leading zeroes are ignored. After the start bit, the ADC0852 expects the next 2 bits to be the MUX assignment word while the ADC0854, with more MUX configurations, looks for 3 bits.
4. Immediately after the MUX assignment word has been clocked in, the shift register then reads the next eight bits as the input code to the internal DAC. This eight bit word is read LSB first and is used to set the voltage applied to the comparator's threshold input (internal).
5. After the rising edge of the 11th or 12th clock (ADC0852 or ADC0854 respectively) following the start bit, the comparator and DAC programming is complete. At this point the DI line is disabled and ignores further inputs. Also at this time the data out (DO) line comes out of TRI-STATE and enters a don't care state (undefined output) for 1.5 clock cycles.
6. The result of the comparison between the programmed threshold voltage and the difference between the two selected inputs $\left(\mathrm{V}_{\mathbb{I N}}(+)-\mathrm{V}_{\mathbb{I N}}(-)\right)$ is output to the DO line on each subsequent high to low clock transition.
7. After programming, continuous comparison on the same selected channel with the same programmed threshold can
be done indefinitely, without reprogramming the device, as long as $\overline{\mathrm{CS}}$ remains low. Each new comparator decision will be shifted to the output on the falling edge of the clock. However, the output will, in effect, "lag" the analog input by 0.5 to 1.5 clock cycles because of the time required to make the comparison and latch the output (see Figure 5).
8. Ail internal registers are cleared when the $\overline{\mathrm{CS}}$ line is brought high. If another comparison is desired $\overline{\mathrm{CS}}$ must make a high to low transition followed by new address and threshold programming.

3.0 REFERENCE CONSIDERATIONS / RATIOMETRIC OPERATION

The voltage applied to the "VREF" input of the DAC defines the voltage span that can be programmed to appear at the threshold input of the comparator. The ADC0854 can be used in either ratiometric applications or in systems with absolute references. The $V_{\text {REF }}$ pin must be connected to a source capable of driving the DAC ladder resistance (typ. $2.4 \mathrm{k} \Omega$) with a stable voltage.
In ratiometric systems, the analog input voltage is normally a proportion of the DAC's or A/D's reference voltage. For example, a mechanical position servo using a potentiometer to indicate rotation, could use the same voltage to drive the reference as well as the potentiometer. Changes in the value of $V_{\text {REF }}$ would not affect system accuracy since only the relative value of these signals to each other is important. This technique relaxes the stability requirements of the system reference since the analog input and DAC reference move together, thus maintaining the same comparator output for a given input condition.
In the absolute case, the $V_{\text {REF }}$ input can be driven with a stable voltage source whose output is insensitive to time and temperature changes. The LM385 and LM336 are good low current devices for this purpose.
The maximum value of $V_{\text {REF }}$ is limited to the $V_{C C}$ supply voltage. The minimum value can be quite small (see typical performance curves) allowing the effective resolution of the comparator threshold DAC to also be small (VEF $=0.5 \mathrm{~V}$, DAC resolution $=2.0 \mathrm{mV}$). This in turn lets the designer have finer control over the comparator trip point. In such instances however, more care must be taken with regard to noise pickup, grounding, and system error sources.

TL/H/5521-16

a) Ratiometric

b) Absolute with a Reduced Span

FIGURE 7. Referencing Examples

Functional Description (Continued)

4.0 ANALOG INPUTS

4. 1 Differential Inputs

The serial interface of the ADC0852 and ADC0854 allows them to be located right at the analog signal source and to communicate with a controlling processor via a few fairly noise immune digital lines. This feature in itself greatly reduces the analog front end circuitry often needed to maintain signal integrity. Nevertheless, a few words are in order with regard to the analog inputs should the input be noisy to begin with or possibly riding on a large common mode voltage.
The differential input of the comparator actually reduces the effect of common-mode input noise, i.e. signals common to both selected "+" and "-" inputs such as 60 Hz line noise. The time interval between sampling the " + " input and then the "-" input is $1 / 2$ of a clock period (see Figure 5).

The change in the common-mode voltage during this short time interval can cause comparator errors. For a sinusoidal common-mode signal this error is:
$V_{\text {ERROR }}(M A X)=V_{\text {PEAK }}\left(2 \pi \mathrm{f}_{\mathrm{CM}} / 2 \mathrm{f}_{\mathrm{CLK}}\right)$
where f_{CM} is the frequency of the common-mode signal, $V_{\text {peak }}$ is its peak voltage value, and $f_{\text {CLK }}$ is the DAC clock frequency.
For example, 1 V PP 60 Hz noise superimposed on both sides of a differential input signal would cause an error (referred to the input) of 0.75 mV . This amounts to less than $1 / 25$ of an LSB referred to the threshold DAC, (assuming $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$ and $\mathrm{f}_{\mathrm{CLK}}=250 \mathrm{kHz}$).

4. 2 Input Currents and Filtering

Due to the sampling nature of the analog inputs, short spikes of current enter the "+" input and leave the " - " at the clock edges during a comparison. These currents decay rapidly and do not cause errors as the comparator is strobed at the end of the clock period (see Figure 5).
The source resistance of the analog input is important with regard to the DC leakage currents of the input multiplexer. The worst-case leakage currents of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source

Typical Applications

TL/H/5521-17
FIGURE 8. An On-Chip Shunt Regulator Diode
resistance. An op-amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance source be required.

4. 3 Arbitrary Analog Input/Reference Range

The total span of the DAC output and hence the comparator's threshold voltage is determined by the DAC reference. For example, if $V_{\text {REF }}$ is set to 1 volt then the comparator's threshold can be programmed over a 0 to 1 volt range with 8 bits of resolution. From the analog input's point of view, this span can also be shifted by applying an offset potential to one of the comparator's selected analog input lines (usually "-"). This gives the designer greater control of the ADC0852/4's input range and resolution and can help simplify or eliminate expensive signal conditioning electronics.
An example of this capability is shown in the "Load Cell Limit Comparator" of Figure 15. In this circuit, the ADC0852 allows the load-cell signal conditioning to be done with only one dual op-amp and without complex, multiple resistor matching.

5.0 POWER SUPPLY

A unique feature of the ADC0854 is the inclusion of a 7 volt zener diode connected from the " $\mathrm{V}+$ " terminal to ground (Figures 2 and 8) " $\mathrm{V}+$ " also connects to " V_{CC} " via a silicon diode. The zener is intended for use as a shunt voltage regulator to eliminate the need for additional regulating components. This is especially useful if the ADC0854 is to be remotely located from the system power source.
An important use of the interconnecting diode between $\mathrm{V}+$ and V_{CC} is shown in Figures 10 and 11. Here this diode is used as a rectifier to allow the V_{CC} supply for the converter to be derived from the comparator clock. The low device current requirements and the relatively high clock frequencies used ($10 \mathrm{kHz}-400 \mathrm{kHz}$) allows use of the small value filter capacitor shown. The shunt zener regulator can also be used in this mode however this requires a clock voltage swing in excess of 7 volts. Current limiting for the zener is also needed, either built into the clock generator or through a resistor connected from the clock to $\mathrm{V}+$.

TL/H/5521-18
FIGURE 9. Using the ADC0854 as the System Supply Regulator

Typical Applications (Continued)

FIGURE 10. Generating $\mathbf{V}_{\mathbf{C C}}$ from the Comparator Clock

TL/H/5521-20
FIGURE 11. Remote Sensing-Clock and Power on One Wire

FIGURE 12. Protecting the Analog Input

TL/H/5521-22
FIGURE 13. One Component Window Comparator

[^9]Typical Applications (Continued)

FIGURE 14. Serial Input Temperature Controller
Note 1: ADC0854 does not require constant service from computer. Self controlled after one write to DI if $\overline{\mathrm{CS}}$ remains low.
Note 2: U_{1} : Solid State Relay, Potter Brumfield \#EOM1DB22
Note 3: Set Temp via. DI. Range: 0 to $125^{\circ} \mathrm{C}$

TL/H/5521-24
FIGURE 15. Load Cell Limit Comparator

- Differential Input elliminates need for instrumentation amplifier
- A total of 4 load cells can be monitored by ADC0854

Typical Applications (Continued)

FIGURE 16. 4 Channel Temperature Alarm

- Uses pseudo-differential input MUX mode
- 4 Thermocouple channels need only 1 cold-junction compensation network ($T_{\text {REF }}$)
- Range 0 to $300^{\circ} \mathrm{C}$

Typical Applications (Continued)

FIGURE 18. Pulse-Width Modulator

- Range of pulse-widths controlled via $\mathrm{R}_{1}, \mathrm{C}_{1}$

FIGURE 19. Serial Input 8-Bit DAC

Ordering Information

Part Number	Analog Input Channels	Total Unadjusted Error	Package	Temperature Range
ADC0852BJ	2	$\pm 1 / 2$	J08A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADC0852BCJ				$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0852BCN			N08E	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ADC0852CCJ		± 1	J08A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0852CCN			N08E	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ADC0854BJ	4	$\pm 1 / 2$	J14A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADC0854BCJ				$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0854BCN			N14A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ADC0854CCJ		± 1	J14A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADC0854CCN			N14A	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

National Semiconductor Corporation

ADC1001, ADC1021 10-Bit μ P Compatible A/D Converters

General Description

The ADC1001 and ADC1021 are CMOS, 10-bit successive approximation A/D converters. The 20-pin ADC1001 is pin compatible with the ADC0801 8 -bit A/D family. The 10 -bit data word is read in two 8-bit bytes, formatted left justified and high byte first. The six least significant bits of the second byte are set to zero, as is proper for a 16-bit word.
The 24-pin ADC1021 outputs 10 bits parallel and is intended for interface to a 16 -bit data bus.
Differential inputs provide low frequency input common mode rejection and allow offsetting the analog range of the converter. In addition, the reference input can be adjusted enabling the conversion of reduced analog ranges with 10 bit resolution.

Features

- ADC1001 is pin compatible with ADC0801 series 8-bit A/D converters
- Compatible with NSC800 and $8080 \mu \mathrm{P}$ derivatives-no interfacing logic needed
- Easily interfaced to $6800 \mu \mathrm{P}$ derivatives with minimal external logic
- Differential analog voltage inputs
- Logic inputs and outputs meet both MOS and TTL volt-
_ age level specifications
- Works with 2.5V (LM336) voltage reference

■ On-chip clock generator

- 0 V to 5 V analog input voltage range with single 5 V supply
- Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}, 2.5 \mathrm{~V}_{\mathrm{DC}}$, or analog span adjusted voltage reference
- $0.3^{\prime \prime}$ standard width 20 -pin DIP package or 24 pins with 10-bit parallel output

Key Specifications

\author{

- Resolution
 10 bits
 - Linearity error ± 1 LSB
 - Conversion time
 $200 \mu \mathrm{~S}$
}

Connection Diagrams

ADC1001 (for an 8-bit data bus)
Dual-In-Line Package

ADC1021 (for all 10-bit outputs in paralle) Dual-In-Line Package

TL./H/5675-12
Top View
*TRI-STATE output buffers which output 0 during $\overline{\text { RD }}$.

Ordering Information

Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Order Number	ADC1001CCJ-1	ADC1021CCJ-1	ADC1001CCJ	ADC1021CCJ
Package Outline	J20A	J 24 A	J 20 A	J 24 A

Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) (Note 3)	6.5 V
Logic Control Inputs	-0.3 V to +18 V
Voltage at Other Inputs and Outputs	-0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW
Lead Temp. (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
ESD Susceptibility (Note 10)	800 V

Operating Conditions (Notes 1\&2)
Temperature Range
ADC1001CCJ
$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$
$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
ADC1021CCJ
ADC1001CCJ-1
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
ADC1021CCJ-1
Range of V_{CC}
4.5 V_{DC} to $6.3 \mathrm{~V}_{\mathrm{DC}}$

Converter Characteristics

Converter Specifications: $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{D C}, T_{\mathrm{MIN}} \leq T_{A} \leq T_{M A X}$ and $\mathrm{f}_{\mathrm{CLK}}=410 \mathrm{kHz}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
ADC1001C, ADC1021C: Linearity Error Zero Error Full-Scale Error				$\begin{aligned} & \pm 1 \\ & \pm 2 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Total Ladder Resistance (Note 9)	Input Resistance at Pin 9	2.2	4.8		K Ω
Analog Input Voltage Range	(Note 4) V $(+)$ or V(-)	GND-0.05		$\mathrm{V}_{\mathrm{CC}}+0.05$	$V_{D C}$
DC Common-Mode Error	Over Analog Input Voltage Range		$\pm 1 / 8$		LSB
Power Supply Sensitivity	$\begin{aligned} & V_{C C}=5 \mathrm{~V}_{\mathrm{DC}} \pm 5 \% \text { Over } \\ & \text { Allowed } \mathrm{V}_{\text {IN }}(+) \text { and } \mathrm{V}_{\text {IN }}(-) \\ & \text { Voltage Range (Note 4) } \end{aligned}$		$\pm 1 / 8$		LSB

AC Electrical Characteristics

Timing Specifications: $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	MIn	Typ	Max	Units
T_{c}	Conversion Time	(Note 5) $\mathrm{f}_{\mathrm{CLK}}=410 \mathrm{kHz}$	$\begin{array}{r} 82 \\ 200 \\ \hline \end{array}$		$\begin{gathered} 89 \\ 217 \\ \hline \end{gathered}$	$1 / \mathrm{fCLK}$ $\mu \mathrm{S}$
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency	(Note 8)	100		1260	kHz
	Clock Duty Cycle		40		60	\%
CR	Conversion Rate In Free-Running Mode	$\overline{\mathrm{NTRR}}$ tied to $\overline{\mathrm{WR}}$ with $\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}_{\mathrm{CLK}}=410 \mathrm{kHz}$			4600	conv/s
$t^{W}(\overline{W R})$ L	Width of $\overline{W R}$ Input (Start Pulse Width)	$\overline{\mathrm{CS}}=0 \mathrm{~V}_{\mathrm{DC}}($ Note 6)	150			ns
$t_{\text {ACC }}$	Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Data Valid)	$C_{L}=100 \mathrm{pF}$		170	300	ns
$t_{1 H}, t_{0 H}$	TRI-STATE® Control (Delay from Rising Edge of $\overline{R D}$ to Hi-Z State)	$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (See TRI-STATE Test Circuits)		125	200	ns
$t_{W I}, t_{\text {RI }}$	Delay from Falling Edge of $\overline{\mathrm{WR}}$ or $\overline{\mathrm{RD}}$ to Reset of $\overline{\mathrm{INTR}}$			300	450	ns
$t_{1 \mathrm{rs}}$	INTR to 1st Read Set-Up Time		550	400		ns
$\mathrm{Cl}_{\mathrm{IN}}$	Input Capacitance of Logic Control Inputs			5	7.5	pF
COUT	TRI-STATE Output Capacitance (Data Buffers)			5	7.5	pF

DC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{D C}$ and $T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$, unless otherwise specified.

Symbol	Parameter	Conditions	MIn	Typ	Max	Units

CONTROL INPUTS [Note: CLK IN is the input of a Schmitt trigger circuit and is therefore specified separately]

$V_{I N}(1)$	Logical "1" Input Voltage (Except CLK IN)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}_{\mathrm{DC}}$	2.0		15	$V_{D C}$
$\mathrm{~V}_{\mathrm{IN}}(0)$	Logical "0" Input Voltage (Except CLK IN)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$			0.8	$\mathrm{~V}_{\mathrm{DC}}$
$\mathrm{I}_{\mathbb{N}}(1)$	Logical "1" Input Current (All Inputs)	$\mathrm{V}_{I N}=5 \mathrm{~V}_{\mathrm{DC}}$	0.005	1	$\mu \mathrm{~A}_{\mathrm{DC}}$	
$\mathrm{I}_{\mathrm{IN}}(0)$	Logical "0" input Current (All Inputs)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}_{\mathrm{DC}}$	-1	-0.005		$\mu \mathrm{~A}_{\mathrm{DC}}$

CLOCK IN

$V_{T}+$	CLK IN Positive Going Threshold Voltage		2.7	3.1	3.5	$V_{D C}$
$\mathrm{~V}_{\mathrm{T}^{-}}$	CLK IN Negative Going Threshold Voltage		1.5	1.8	2.1	$V_{D C}$
$\mathrm{~V}_{\mathrm{H}}$	CLK IN Hysteresis $\left(\mathrm{V}_{\mathrm{T}}+\right)-\left(\mathrm{V}_{\mathrm{T}}-\right)$	0.6	1.3	2.0	$\mathrm{~V}_{\mathrm{DC}}$	

OUTPUTS AND INTR

$\mathrm{V}_{\text {OUT }}(0)$	Logical "0" Output Voltage	$\mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ DC			0.4	$V_{D C}$
$V_{\text {OUT }}(1)$	Logical "1" Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$			$\begin{aligned} & V_{D C} \\ & V_{D C} \end{aligned}$
IOUT	TRI-STATE Disabled Output Leakage (All Data Buffers)	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}_{\mathrm{DC}} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{gathered} -100 \\ 3 \\ \hline \end{gathered}$	$\mu A_{D C}$ $\mu A_{D C}$
IsOURCE		$V_{\text {OUT }}$ Short to GND, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	4.5	6		$m A_{D C}$
ISINK		$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}_{\mathrm{CC}}, T_{A}=25^{\circ} \mathrm{C}$	9.0	16		$m A_{D C}$

POWER SUPPLY

| ICC | Supply Current (Includes
 Ladder Current) | $\mathrm{fCLK}=410 \mathrm{kHz}$,
 $V_{\mathrm{REF}} / 2=\mathrm{NC}, T_{A}=25^{\circ} \mathrm{C}$
 and $\overline{\mathrm{CS}}=1$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified. The separate A GND point should always be wired to the D GND.
Note 3: A zener diode exists, internally, from $V_{C C}$ to $G N D$ and has a typical breakdown voltage of $7 \mathrm{~V}_{\mathrm{DC}}$.
Note 4: For $\mathrm{V}_{\mathbb{N}}(-) \geq \mathrm{V}_{\mathrm{IN}}(+)$ the digital output code will be all zeros. Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near fullscale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{iN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process. The start request is internally latched, see Figure 1.
Note 6: The $\overline{\mathrm{CS}}$ input is assumed to bracket the $\overline{\mathrm{WR}}$ strobe input and therefore timing is dependent on the $\overline{\mathrm{WR}}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see Timing Diagrams).
Note 7: All typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 8: Accuracy is guaranteed at $\mathrm{f}_{\mathrm{CLK}}=410 \mathrm{kHz}$. At higher clock frequencies accuracy can degrade.
Note 9: The $V_{R E F / 2}$ pin is the center point of a two resistor divider (each resistor is $2.4 \mathrm{k} \Omega$) connected from V_{CC} to ground. Total ladder input resistance is the sum of these two equal resistors.
Note 10: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Typical Performance Characteristics

Timing Diagrams

Output Enable and Reset INTR

TL/H/5675-8
*The 24-pin ADC1021 outputs all 10 bits on each RD.
Note: All timing is measured from the 50% voltage points.

BYTE SEQUENCING FOR THE 20-PIN ADC1001

Byte Order	8-Bit Data Bus Connection							
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
1st	$\begin{gathered} \text { MSB } \\ \text { Bit } 9 \end{gathered}$	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2
2nd	Bit 1	$\begin{aligned} & \text { LSB } \\ & \text { Bit } 0 \end{aligned}$	0	0	0	0	0	0

Functional Description

The ADC1001, ADC1021 use an advanced potentiometric resistive ladder network. The analog inputs, as well as the taps of this ladder network, are switched into a weighted capacitor array. The output of this capacitor array is the input to a sampled data comparator. This comparator allows the successive approximation logic to match the analog difference input voltage $\left[\mathrm{V}_{\mathbb{I N}}(+)-\mathrm{V}_{\mathbb{I N}}(-)\right]$ to taps on the R network. The most significant bit is tested first and after 10 comparisons (80 clock cycles) a digital 10-bit binary code (all " 1 " $\mathrm{s}=$ full-scale) is transferred to an output latch and then an interrupt is asserted (INTR makes a high-to-low transition). The device may be operated in the free-running mode by connecting $\overline{\mathrm{NTR}}$ to the $\overline{\mathrm{WR}}$ inut with $\overline{\mathrm{CS}}=0$. To ensure start-up under all possible conditions, an external $\overline{W R}$ pulse is required during the first power-up cycle. A conversion in process can be interrupted by issuing a second start command.
On the high-to-low transition of the $\overline{W R}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{\mathrm{CS}}$ input and $\overline{\mathrm{WR}}$ input remain low, the A/D will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-tohigh transition.
A functional diagram of the A/D converter is shown in Figure 1. All of the inputs and outputs are shown and the major logic control paths are drawn in heavier weight lines.
The conversion is initialized by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 10 -bit shift register. Internal clock signals then transfer this " 1 " to the Q output of F/F1. The AND gate, G1, combines this "1" output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 ") the start F / F is reset and the 10 -bit shift register then can have the " 1 "

TL/H/5675-9
clocked in, which allows the conversion process to continue. If the set signal were to still be present, this reset pulse would have no effect and the 10 -bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals and the converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F/F.
After the " 1 " is clocked through the 10 -bit shift register (which completes the SAR search) it causes the new digital word to transfer to the TRI-STATE output latches. When this XFER signal makes a high-to-low transition the one shot fires, setting the INTR F/F. An inverting buffer then supplies the INTR output signal.
Note that this SET control of the INTR F/F remains low for aproximately 400 ns . If the data output is continuously enabled ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ both held low), the $\overline{\mathrm{NTR}}$ output will still signal the end of the conversion (by a high-to-low transition), because the SET input can control the Q output of the INTR F/F even though the RESET input is constantly at a " 1 " level. This INTR output will therefore stay low for the duration of the SET signal.
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled.

Zero and Full-Scale Adjustment

Zero error can be adjusted as shown in Figure 2. $\mathrm{V}_{\mathrm{IN}}(+)$ is forced to +2.5 mV ($+1 / 2$ LSB) and the potentiometer is adjusted until the digital output code changes from 000000 0000 to 0000000001.
Full-scale is adjusted as shown in Figure 3, with the $\mathrm{V}_{\mathrm{REF}} / 2$ input. With $\mathrm{V}_{\mathbb{I N}}(+)$ forced to the desired full-scale voltage less $11 / 2$ LSBs ($V_{F S}-11 / 2$ LSBs), $V_{\text {REF }} / 2$ is adjusted until the digital output code changes from 1111111110 to 11 11111111.

TL/H/5675-10

Typical Application

TL/H/5675-1

Block Diagram

Note 1: $\overline{\mathrm{CS}}$ shown twice for clarity.
Note 2: SAR = Successive Approximation Register.

TL/H/5675-13
FIGURE 1

National
Semiconductor Corporation

ADC1005, ADC1025 10-Bit μ P Compatible A/D Converters

General Description

The ADC1005 and ADC1025 are CMOS 10-bit successive approximation A/D converters. The 20-pin ADC1005 outputs 10-bit data in a two-byte format for interface with 8-bit microprocessors.
The 24-pin ADC1025 outputs 10 bits in parallel and is intended for 16 -bit data buses or stand-alone applications.
Both A-to-Ds have differential inputs to permit rejection of common-mode signals, allow the analog input range to be offset, and also to permit the conversion of signals not referred to ground. In addition, the reference voltage can be adjusted, allowing smaller voltage spans to be measured with 10-bit resolution.

Features

- Easy interface to all microprocessors
- Differential analog voltage inputs

■ Operates ratiometrically or with $5 \mathrm{~V}_{\mathrm{DC}}$ voltage reference or analog span adjusted voltage reference
(0 V to 5 V analog input voltage range with single 5 V supply

- On-chip clock generator
- TLL/MOS input/output compatible
- 0.3" standard width 20-pin DIP or 24-pin DIP with 10bit parallel output
- Available in 20 -pin or 28 -pin molded chip carrier package

Key Specifications

- Resolution

10 bits
回 Linearity Error $\pm 1 / 2 \mathrm{LSB}$ and $\pm 1 \mathrm{LSB}$

- Conversion Time
$50 \mu \mathrm{~s}$

Connection Diagrams

ADC1005 (for an 8-bit data bus)

Dual-In-Line Package

TL/H/5261-1
Top View

ADC1005 Molded Chip Carrier Package

TL/H/5261-19

[^10]| Absolute Maximum Ratings (Notes 1 \& 2) | |
| :---: | :---: |
| If Military/Aerospace specified contact the National Semicond Distributors for availability and sp | evices are required, uctor Sales Office/ ecifications. |
| Supply Voltage (V_{CC}) | 6.5 V |
| Logic Control Inputs | -0.3 V to +15 V |
| Voltage at Other Inputs and Outputs | -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ |
| Input Current Per Pin | $\pm 5 \mathrm{~mA}$ |
| Input Current Per Package | $\pm 20 \mathrm{~mA}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | 875 mW |
| Lead Temperature (Soldering, 10 seconds) | |
| Dual-In-Line Package (Plastic) | $260^{\circ} \mathrm{C}$ |
| Dual-In-Line Package (Ceramic) | $300^{\circ} \mathrm{C}$ |
| Surface Mount Package | |
| Vapor Phase (60 seconds) | $215^{\circ} \mathrm{C}$ |
| Infrared (15 seconds) | $220^{\circ} \mathrm{C}$ |
| ESD Susceptibility (Note 8) | 800 V |

Operating Ratings (Notes $1 \& 2$)

Supply Voltage (V_{CC}) 4.5 V to 6.0 V
Temperature Range
$\mathrm{T}_{\mathrm{MN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$
ADC1005BJ, ADC1005CJ $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
ADC1025BJ, ADC1025CJ
ADC1005BCJ, ADC1005CCJ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC1025BCJ, ADC1025CCJ
ADC1005BCJ-1, ADC1005CCJ-1 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
ADC1025BCJ-1, ADC1025CCJ-1
ADC1005BCN, ADC1005CCN
ADC1025BCN, ADC1025CCN
ADC1005BCV, ADC1005CCV
ADC1025BCV, ADC1025CCV

Electrical Characteristics The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}$, f $\mathrm{fLL}=1.8 \mathrm{MHz}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; All other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC10X5BJ, ADC10X5BCJ ADC10X5CJ, ADC10X5CCJ			ADC10X5BCJ-1, ADC10X5CCJ-1 ADC10X5BCN, ADC10X5CCN ADC10X5BCV, ADC10X5CCV			Limit Units
		$\left\lvert\, \begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}\right.$	Tested Limit (Note 6)	$\|$Design Limit (Note 7)	$\left\lvert\, \begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}\right.$	Tested Limit (Note 6)	Design Limit (Note 7)	
Converter Characteristics								
Linearity Error (Note 3) ADC10X5BJ, ADC10X5BCJ ADC10X5BCJ-1, BCN, BCV ADC10X5CJ, ADC10X5CCJ ADC10X5CCJ-1, CCN, CCV			$\begin{gathered} \pm 0.5 \\ \pm \mathbf{1} \end{gathered}$			$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Zero Error ADC10X5BJ, ADC10X5BCJ ADC10X5BCJ-1, BCN, BCV ADC10X5CJ, ADC10X5CCJ ADC10X5CCJ-1, CCN, CCV			$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$			$\begin{gathered} \pm 0.5 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{gathered} \pm 0.5 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \hline \end{aligned}$
Fullscale Error ADC10X5BJ, ADC10X5BCJ ADC10X5BCJ-1, BCN, BCV ADC10X5CJ, ADC10X5CCJ ADC10X5CCJ-1, CCN, CCV			$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$			$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 0.5 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Reference MIN Input MAX Resistance		$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 8.3 \end{aligned}$		$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 8.3 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Common-Mode MIN Input (Note 4) MAX	$\mathrm{V}_{\text {IN }}(+)$ or $\mathrm{V}_{\text {IN }}(-)$		$\begin{array}{\|l\|} \hline \mathbf{V}_{\text {cc }}+0.05 \\ \text { GND }-0.05 \end{array}$			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+0.05 \\ & \mathrm{GND}-0.05 \end{aligned}$	$\begin{aligned} & \text { Vcc+0.05 } \\ & \text { GND }-0.05 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
DC Common-Mode Error	Over Common-Mode Input Range	$\pm 1 / 8$	$\pm 1 / 4$		$\pm 1 / 8$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$\begin{aligned} & V_{C C}=5 \mathrm{~V}_{\mathrm{DC}} \pm 5 \% \\ & \mathrm{~V}_{\mathrm{REF}}=4.75 \mathrm{~V} \\ & \hline \end{aligned}$	$\pm 1 / 8$	$\pm 1 / 4$		$\pm 1 / 8$	$\pm 1 / 4$	$\pm 1 / 4$	LSB

Electrical Characteristics (Continued) The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{f}$, ${ }^{\text {LK }}=$ 1.8 MHz unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; All other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.								
Parameter	Conditions	ADC10X5BJ, ADC10X5BCJ ADC10X5CJ, ADC10X5CCJ			ADC10X5BCJ-1, ADC10X5CCJ-1 ADC10X5BCN, ADC10X5CCN ADC10X5BCV, ADC10X5CCV			Limit Units
		Typ (Note 5)	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 6) } \\ & \hline \end{aligned}$	Design Limit (Note 7)	Typ (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7) (Note 7)	
DC Characteristics								
$V_{\text {IN(1) }}$ Logical " 1 " Input Voltage MIN	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \text { (except CLK } \\ & \hline \end{aligned}$		2.0			2.0	2.0	V
$\mathrm{V}_{\text {IN }(0)}$, Logical "0" Input Voltage MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & (\text { Except CLK } \end{aligned}$		0.8			0.8	0.8	V
I ${ }^{\prime}$, Logical " 1 " Input Current MAX	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	0.005	1		0.005	1	1	$\mu \mathrm{A}$
${ }^{1 / N}$, Logical " 0 " Input Current MAX	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-0.005	-1		-0.005	-1	-1	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{T}+(\mathrm{MIN})}$, Minimum CLKIN Positive going Threshold Voltage		3.1	2.7		3.1	2.7	2.7	V
$\mathrm{V}_{\mathrm{T}(\mathrm{MAX})}$, Maximum $\mathrm{CLK}_{\text {IN }}$ Positive going Threshold Voltage		3.1	3.5		3.1	3.5	3.5	V
$\mathrm{V}_{\mathrm{T} \text {-(MIN) }}$, Minimum CLKIN Negative going Threshold Voltage		1.8	1.5		1.8	1.5	1.5	V
$\mathrm{V}_{\mathrm{T}-\text { (MAX) }}$, Maximum CLK I_{IN} Negative going Threshold Voltage		1.8	2.1		1.8	2.1	2.1	V
$\mathrm{V}_{\mathrm{H}(\mathrm{MIN})}$, Minimum CLK $\mathrm{IN}_{\mathrm{IN}}$ Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)		1.3	0.6		1.3	0.6	0.6	V
$\mathrm{V}_{\mathrm{H}(\mathrm{MAX})}$, Maximum CLK ${ }_{\text {IN }}$ Hysteresis ($\mathrm{V}_{\mathrm{T}+-} \mathrm{V}_{\mathrm{T}-}$)		1.3	2.0		1.3	2.0	2.0	V
VOUT(1), Logical "1" Output Voltage MIN	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { IOUT }=-360 \mu \mathrm{~A} \\ & \text { IOUT }=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$			$\begin{aligned} & 2.8 \\ & 4.6 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.4 \\ 4.5 \\ \hline \end{array}$	V
$\begin{array}{ll} \hline \text { VouT(0), Logical "0" } \\ \text { Output Voltage } & \text { MAX } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4			0.34	0.4	V
IOUT, TRI-STATE Output Current MAX	$\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$		$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -0.3 \\ 0.3 \\ \hline \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISOURCE, Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5		-14	-7.5	-6.5	mA
ISINK, Output Sink Current	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	16	8.0		16	9.0	8.0	mA
$\mathrm{I}_{\mathrm{Cc}, \text { Supply Current }}$ MAX	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=1.8 \mathrm{MHz} \\ & \mathrm{CS}=" 1 " \end{aligned}$	1.5	3		1.5	2.5	3	mA
AC Electrical Characteristics The following specifications apply for $V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply from $\mathbf{T}_{\text {miN }}$ to $\mathbf{T}_{\text {max }}$; All other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.								
Parameter	Condition		Typ (Note 5)		ested Limit Note 6)	Design Limit (Note 7)		
$f_{\text {CLK, }}$, Clock FrequencyMIN MAX					$\begin{aligned} & 0.2 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 2.6 \end{aligned}$		
					$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 40 \\ & 60 \end{aligned}$		\%

AC Electrical Characteristics The following specifications apply for $V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$; All other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$. (Continued)

Parameter	Conditions	Typ (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7)	Limit Units
tc, Conversion Time MIN MAX MIN MAX	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=1.8 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{CLK}}=1.8 \mathrm{MHz} \\ & \hline \end{aligned}$		$\begin{aligned} & 80 \\ & 90 \\ & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 80 \\ & 90 \\ & 45 \\ & 50 \end{aligned}$	$1 /$ fCLK 1/fCLK $\mu \mathrm{s}$ $\mu \mathrm{S}$
${ }^{\text {W }} \mathrm{W}_{(\overline{W R})}$ L , Minimum $\overline{W R}$ Pulse Width	$\overline{\mathrm{CS}}=0$	100	150	150	ns
$t_{\text {ACC }}$, Access Time (Delay from falling edge of $\overline{R D}$ to Output Data Valid)	$\begin{aligned} & \overline{C S}=0 \\ & C_{L}=100 \mathrm{pF}, R_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	170	300	300	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$, TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{Hi}-\mathrm{Z}$ State)	$\begin{aligned} & R_{L}=10 k, C_{L}=10 \mathrm{pF} \\ & R_{L}=2 k, C_{L}=100 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 125 \\ & 145 \end{aligned}$	230	$\begin{aligned} & 200 \\ & 230 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {WI }}, t_{\text {RI }}$, Delay from Falling Edge of $\overline{\text { WR or } \overline{R D}}$ to Reset of $\overline{\text { INTR }}$		300	450	450	ns
$\mathrm{t}_{\text {IRs }}$, $\overline{\text { NTR }}$ to 1st Read Set-up Time		400	550	550	ns
$\mathrm{C}_{\text {IN }}$, Capacitance of Logic Inputs		5		7.5	pF
Cout, Capacitance of Logic Outputs		5		7.5	pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to ground.
Note 3: Linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line which passes through the end points of the transfer characteristic.
Note 4: For $\mathrm{V}_{I N(-)} \geq \mathrm{V}_{I N(+)}$ the digital output code will be 0000000000 . Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than V_{CC} supply. Be careful, during testing at low V_{CC} levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog $V_{I N}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 V_{D C}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading.
Note 5: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 6: Tested and guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 7: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 8: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Functional Diagram

TL/H/5261-3

Typical Performance Characteristics

Timing Diagrams

Output Enable and Reset $\overline{\text { INTR }}$

Timing Diagrams (Continued)

Byte Sequencing for the 20-Pin ADC1005

Byte Order	8-Bit Data Bus Connection							
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1st	MSB	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
Bit 2								
2nd	Bit 1	LSB						
Bit 0	0	0	0	0	0	0		

Block Diagram

Functional Description

1.0 GENERAL OPERATION

A block diagram of the A/D converter is shown in Figure 1 All of the inputs and outputs are shown and the major logic control paths are drawn in heavier weight lines.

1.1 Converter Operation

The ADC1005, ADC1025 use an advanced potentiometric resistive ladder network. The analog inputs, as well as the taps of this ladder network are switched into a weighted capacitor array. The output of this capacitor array is the input to a sampled data comparator. This comparator allows the successive approximation logic to match the analog input voltage $\left[\mathrm{V}_{\mathrm{IN}}(+)-\mathrm{V}_{\mathrm{IN}}(-)\right]$ to taps on the R network. The most significant bit is tested first and after 10 comparisons (80 clock cycles) a digital 10-bit binary code (all " 1 "s $=$ full-scale) is transferred to an output latch.

1.2 Starting a Conversion

The conversion is initialized by taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 10-bit shift register, resets the interrupt (INTR) F/F and inputs a " 1 " to the D flop, F/F1, which is at the input end of the 10-bit shift register. Internal clock signals then transfer this " 1 " to the Q ouput of F/F1. The AND gate, G1, combines this "1" output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 ") the start $\mathrm{F} f \mathrm{~F}$ is reset and the 10 -bit shift register then can have the " 1 " clocked in, allowing the conversion process to continue. If the set signal were still present, this reset pulse would have no effect and the 10-bit shift register would continue to be held in the reset mode. This logic therefore allows for wide $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals. The converter will start after at least one of these signals returns high and the internal clocks again provide a reset signal for the start F/F.
To summarize, on the high-to-low transition of the $\overline{W R}$ input the internal SAR latches and the shift register stages are reset. As long as the $\overline{\mathrm{CS}}$ input and $\overline{W R}$ input remain low, the A/D will remain in a reset state. Conversion will start after at least one of these inputs makes a low-to-high transition.

1.3 Output Control

After the " 1 " is clocked through the 10 -bit shift register (which completes the SAR search) it causes the new digital word to transfer to the TRI-STATE output latches. When the XFER signal makes a high-to-low transition the one shot fires, setting the INTR F/F. An inverting buffer then supplies the INTR output signal.
Note that this SET control of the INTR F/F remains low for approximately 400 ns . If the data output is continuously enabled ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ both held low) the $\overline{\mathrm{NTR}}$ output will still signal the end of the conversion (by a high-to-low transition). This is because the SET input can control the Q output of the INTR F/F even though the RESET input is constantly at a " 1 " level. This INTR output will therefore stay low for the duration of the SET signal.
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{R D}$ being low will cause the INTR F/F to be reset and the TRI-STATE output latches will be enabled.

1.4 Free-Running and Self-Clocking Modes

For operation in the free-running mode an initializing pulse should be used, following power-up, to ensure circuit operation. In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{\mathrm{WR}}$ input is tied to the INTR output. This $\overline{\mathrm{WR}}$ and $\overline{\mathrm{NTR}}$ node should be momentarily forced to logic low following a power-up cycle to ensure start up.
The clock for the A/D can be derived from the CPU clock or an external RC can be added to provide self-clocking. The CLK IN makes use of a Schmitt trigger as shown in Figure 2.

FIGURE 2. Self-Clocking the A/D

2.0 REFERENCE VOLTAGE

The voltage applied to the reference input of these converters defines the voltage span of the analog input (the difference between $\mathrm{V}_{\text {IN }}(\mathrm{MAX})$ and $\left.\mathrm{V}_{\text {IN(MIN }}\right)$) over which the 1024 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the reference input resistance of typically $4.8 \mathrm{k} \Omega$. This pin is the top of a resistor divider string used for the successive approximation conversion.
In a ratiometric system (Figure 3a) the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{CC}. This technique relaxes the stability requirements of the system references as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy (Figure 3b), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with these converters.
The maximum value of the reference is limited to the V_{CC} supply voltage. The minimum value, however, can be small to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout, and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $V_{\text {REF }} / 1024$).

FIGURE 3a. Ratiometric

TL/H/5261-18
FIGURE 3b. Absolute with a Reduced Span
input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $V_{\text {REF }}$ pin for high resistance sources ($>1 \mathrm{k} \Omega$). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the detrimental effects of the voltage drop across this input resistance, which is due to the average value of the input current, can be eliminated with a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a linear function of the differential input voltage.

3.4 Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used, will not cause errors if the input currents settle out prior to the comparison time. If a low pass filter is required in the system, use a low valued series resistor ($\leq 1 \mathrm{k} \Omega$) for a passive RC section or add an op amp RC active low pass filter. For low source resistance applications ($50.1 \mathrm{k} \Omega$) a 4700 pF bypass capacitor at the inputs will prevent pickup due to series lead induction of a long wire. A 100Ω series resistor can be used to isolate this capacitor both the R and the C are placed outside the feedback loop - from the output of an op amp, if used.

3.5 Noise

The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $1 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired system noise pickup. Input bypass capacitors, placed from the analog inputs to ground, can reduce system noise pickup but can create analog scale errors. See section 3.2, 3.3, and 3.4 if input filtering is to be used.

Functional Description (Continued)

4.0 OFFSET AND REFERENCE ADJUSTMENT

4.1 Zero Offset

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $V(-)$ input and applying a small magnitude positive voltage to the $V(+)$ input. Zero error is the difference between the actual DC input voltage that is necessary to just cause an output digital code transition from 0000000000 to 0000000001 and the ideal $1 / 2$ LSB value ($1 / 2 \mathrm{LSB}=2.45 \mathrm{mV}$ for $\mathrm{V}_{\mathrm{REF}}=5.0 \mathrm{~V}_{\mathrm{DC}}$).
The zero of the A/D normally does not require adjustment. However, for cases where $V_{\mathbb{I N}(M I N)}$ is not ground and in reduced span applications ($V_{\text {REF }}<5 \mathrm{~V}$), an offset adjustment may be desired. The converter can be made to output an all zero digital code for an arbitrary input by biasing the A / D 's $\mathrm{V}_{\mathrm{IN}}(-)$ input at that voltage. This utilizes the differential input operation of the A/D.

4.2 Full Scale

The full-scale adjustment can be made by applying a differential input voltage that is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $V_{\text {REF }}$ input for a digital output code that is just changing from 1111111110 to 1111111111.

4.3 Adjusting for an Arbitrary Analog Input Voltage Range

If the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal that does not go to ground), this new zero reference should be properly adjusted first. A $\mathrm{V}_{\mathbb{I N}}(+)$ voltage that equals this desired zero reference plus $1 / 2$ LSB (where the LSB is calculated for the desired analog span, 1 LSB = analog span/1024) is applied to selected " + " input and the
zero reference voltage at the corresponding "-" input should then be adjusted to just obtain the 000 HEX $001_{\text {HEX }}$ code transition.
The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathbb{I N}}(+)$ input given by:

$$
V_{I N}(+) F S \text { adj }=V_{\text {MAX }}-1.5\left[\frac{\left(V_{\text {MAX }}-V_{\text {MIN }}\right)}{1024}\right]
$$

where $\mathrm{V}_{\mathrm{MAX}}=$ the high end of the analog input range and $\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced).
The $V_{\text {REF }}$ (or $V_{C C}$) voltage is then adjusted to provide a code change from 3 FF HEX to 3 FE HEX. This completes the adjustment procedure.
For an example see the Zero-Shift and Span-Adjust circuit below.

5.0 POWER SUPPLIES

Noise spikes on the V_{CC} supply line can cause conversion errors as the comparator will respond to this noise. A low inductance tantalum filter capacitor should be used close to the converter $\mathrm{V}_{\mathrm{CC}} \mathrm{pin}$ and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate LM340LAZ-5.0, TO-92, 5V voltage regulator for the converter (and the other analog circuitry) will greatly reduce digital noise on the V_{CC} supply.
A single point analog ground that is separate from the logic ground points should be used. The power supply bypass capacitor and the self-clocking capacitor (if used) should both be returned to the digital ground. Any $V_{\text {REF }}$ bypass capacitors, analog input filters capacitors, or input signal shielding should be returned to the analog ground point.

TL/H/5261-16
Figure 4. Zero-Shift and Span-Adjust ($2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V}$)

Typical Applications

TL/H/5261-13

Operating with Ratiometric Transducers

$\mathrm{V}_{\mathrm{IN}}(-)=0.15 \mathrm{~V}_{\mathrm{CC}}$
15% of $V_{C C} \leq V_{X D R} \leq 85 \%$ of $V_{C C}$

Handling $\pm 5 \mathrm{~V}$ Analog Inputs

TRI-STATE Test Circuits and Waveforms

TL/H/5261-7

$t_{r}=20 \mathrm{~ns}$

$\mathrm{t}_{\mathrm{r}}=20 \mathrm{~ns}$

Ordering Information

Part Number	Package Outline	Temperature Range	Linearity Error
ADC1005BCN	N20A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 1 / 2$ LSB
ADC1025BCN	N24C		
ADC1005BCV	V20A		
ADC1025BCV	V28A		
ADC1005BCJ-1	J20A		
ADC1025BCJ-1	J24F		
ADC1005BCJ	J20A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
ADC1025BCJ	J24F		
ADC1005BJ	J20A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ADC1025BJ	J24F		

Part Number	Package Outline	Temperature Range	Linearity Error
ADC1005CCN	N20A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	± 1 LSB
ADC1025CCN	N24C		
ADC1005CCV	V20A		
ADC1025CCV	V28A		
ADC1005CCJ-1	J20A		
ADC1025CCJ-1	J24F		
ADC1005CCJ	J20A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
ADC1025CCJ	J24F		
ADC1005CJ	J20A	$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
ADC1025CJ	J24F		

National Semiconductor Corporation

ADC1205/ADC1225 12-Bit Plus Sign μ P Compatible A/D Converters

General Description

The ADC1205 and ADC1225 are CMOS, 12-bit plus sign successive approximation A/D converters. The 24-pin ADC1205 outputs the 13-bit data result in two 8-bit bytes, formatted high-byte first with sign extended. The 28 -pin ADC1225 outputs a 13-bit word in parallel for direct interface to a 16 -bit data bus.
Negative numbers are represented in 2's complement data format. All digital signals are fully TTL and MOS compatible. A unipolar input (0 V to 5 V) can be accommodated with a single 5 V supply, while a bipolar input $(-5 \mathrm{~V}$ to $+5 \mathrm{~V})$ requires the addition of a 5 V negative supply.
The ADC1205B and ADC1225B have a maximum non-linearity over temperature of 0.012% of Full Scale, and the ADC1205C and ADC1225C have a maximum non-linearity of 0.0224% of Full Scale.

Key Specifications

- Resolution-12 bits plus sign
- Linearity Error- $\pm 1 / 2$ LSB and ± 1 LSB
- Conversion Time-100 $\mu \mathrm{s}$

Features

- Compatible with all μ Ps
- True differential analog voltage inputs
- 0 V to 5 V analog voltage range with single 5 V supply
- TTL/MOS input/output compatible
- Low power- 25 mW max
- Standard 24-pin or 28-pin DIP

Connection and Functional Diagrams

TL/H/5676-3

Absolute Maximum Ratings (Notes 1 \& 2)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage ($D V_{C C}$ and $A V_{C C}$)
6.5 V
Negative Supply Voltage (V^{-})
-15 V to GND
Logic Control Inputs
-0.3 V to +15 V

Voltage at Analog Inputs
$\left[\mathrm{V}_{\operatorname{IN}(+)}, \mathrm{V}_{\mathrm{IN}(-)}\right]$
Voltage at All Outputs, $\mathrm{V}_{\text {REF }}, \mathrm{V}_{\mathrm{OS}}$ Input Current per Pin Input Current per Package
$\left(\mathrm{V}^{-}\right)-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ -0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3\right) \mathrm{V}$ $\pm 5 \mathrm{~mA}$ $\pm 20 \mathrm{~mA}$
Storage Temperature Range
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Lead Temp. (Soldering, 10 seconds)
ESD Susceptibility (Note 12)

Operating Conditions (Notes 1 \& 2)
Temperature Range
$T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$
ADC1205BCJ, ADC1205CCJ
ADC1225BCJ, ADC1225CCJ
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
ADC1205BCJ-1, ADC1205CCJ-1
ADC1225BCJ-1, ADC1225CCJ-1
Supply Voltage ($D V_{C C}$ and $A V_{C C}$)
Negative Supply Voltage (V^{-})

Electrical Characteristics

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}$, $\mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz}, \mathrm{V}-=-5 \mathrm{~V}$ for bipolar input range, or $\mathrm{V}^{-}=\mathrm{GND}$ for unipolar input range unless otherwise specified. Bipolar input range is defined as $-5.05 \mathrm{~V} \leq \mathrm{V} \operatorname{IN}(+) \leq 5.05 \mathrm{~V}$; $-5.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\mathrm{IN}(+)}-\mathrm{V}_{\mathrm{IN}(-)}\right| \leq 5.05 \mathrm{~V}$. Unipolar input range is defined as $-0.05 \mathrm{~V} \leq \mathrm{V}_{\operatorname{IN}(+)} \leq 5.05 \mathrm{~V}$; $-0.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\operatorname{IN}(+)}-\mathrm{V}_{\operatorname{IN}(-)}\right| \leq 5.05 \mathrm{~V}$. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$ $=25^{\circ} \mathrm{C}$ (Notes 3, 4, 5, 6, 7).

Parameter	Conditions	ADC1205BCJ, ADC1205CCJ ADC1225BCJ, ADC1225CCJ			ADC1205BCJ-1, ADC1205CCJ-1ADC1225BCJ-1, ADC1225CCJ-1			Limit Units
		$\begin{gathered} \text { Typ } \\ \text { (Note 8) } \end{gathered}$	Tested Limit (Note 9)	Design Limit (Note 10)	Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	

CONVERTER CHARACTERISTICS

Linearity Error ADC1205BCJ, ADC1225BCJ ADC1205BCJ-1, ADC1225BCJ-1 ADC1205CCJ, ADC1225CCJ ADC1205CCJ-1, ADC1225CCJ-1	Unipolar Input Range (Note 11)		$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \hline \end{aligned}$
Unadjusted Zero Error	Unipolar Input Range		± 2			± 2	± 2	LSB
Unadjusted Positive and Negative Full-Scale Error	Unipolar Input Range		± 30			± 30	± 30	LSB
Negative Full-Scale Error	Unipolar Input Range, Full Scale Adj. to Zero			$\pm 1 / 2$			$\pm 1 / 2$	LSB
Linearity Error ADC1205BCJ, ADC1225BCJ ADC1205BCJ-1, ADC1225BCJ-1 ADC1205CCJ, ADC1225CCJ ADC1205CCJ-1, ADC1225CCJ-1	Bipolar Input Range (Note 11)		$\begin{gathered} \pm 1.5 \\ \pm 2 \end{gathered}$			$\begin{gathered} \pm 1.5 \\ \pm 2 \end{gathered}$	$\begin{gathered} \pm 1.5 \\ \pm 2 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \hline \end{aligned}$
Unadjusted Zero Error	Bipolar Input Range		± 2			± 2	± 2	LSB
Unadjusted Positive and Negative Full-Scale Error	Bipolar Input Range		± 30			± 30	± 30	LSB
Negative Full-Scale Error	Bipolar Input Range, Full Scale Adj. to Zero		± 2			± 2	± 2	LSB
Maximum Gain Temperature Coefficient		6		15	6		15	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Maximum Offset Temperature Coefficient		0.5		1.5	0.5		1.5	ppm $/{ }^{\circ} \mathrm{C}$
Minimum $\mathrm{V}_{\text {REF }}$ Input Resistance		4.0	2		4.0	2	2	k Ω
Maximum V REF Input Resistance		4.0	8		4.0	8	8	$\mathrm{k} \Omega$

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}$, f $\mathrm{CLK}=1.0 \mathrm{MHz}, \mathrm{V}^{-}=-5 \mathrm{~V}$, for bipolar input range, or $\mathrm{V}^{-}=\mathrm{GND}$ for unipolar input range unless otherwise specified. Bipolar input range is defined as $-5.05 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}(+)} \leq 5.05 \mathrm{~V}$; $-5.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{I N(+)}-\mathrm{V}_{I N(-)}\right| \leq 5.05 \mathrm{~V}$. Unipolar input range is defined as $-0.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}(+)} \leq 5.05 \mathrm{~V}$; $-0.05 \mathrm{~V} \leq \mathrm{V}_{\operatorname{IN}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\operatorname{IN}(+)}-\mathrm{V}_{\operatorname{IN}(-)}\right| \leq 5.05 \mathrm{~V}$. Boldface limits apply from $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$ $=25^{\circ} \mathrm{C}$ (Notes 3, 4, 5, 6, 7).

Parameter	Conditions	ADC1205BCJ, ADC1205CCJ ADC1225BCJ, ADC1225CCJ			ADC1205BCJ-1, ADC1205CCJ-1ADC1225BCJ-1, ADC1225CCJ-1			$\underset{\text { Units }}{\text { Limit }}$
		Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	
CONVERTER CHARACTERISTICS (Continued)								
Minimum Analog Input Voltage	Unipolar Input Range Bipolar Input Range		$\begin{aligned} & \text { GND-0.05 } \\ & -V_{C C}-0.05 \end{aligned}$			$\begin{aligned} & \text { GND-0.05 } \\ & -V_{C}-0.05 \end{aligned}$	$\begin{gathered} \text { GND-0.05 } \\ -V_{C C}-0.05 \end{gathered}$	V V
Maximum Analog Input Voltage	Unipolar Input Range Bipolar Input Range	$\mathrm{V}_{\mathrm{cc}}+0.05$	$\mathrm{V}_{\mathbf{C C}}+0.05$			$\begin{aligned} & v_{C C}+0.05 \\ & v_{C C}+0.05 \end{aligned}$	$\begin{aligned} & v_{\mathbf{C C}}+0.05 \\ & v_{\mathbf{C C}}+0.05 \end{aligned}$	v V
DC Common-Mode Error		$\pm 1 / 8$	$\pm 1 / 2$		$\pm 1 / 8$	$\pm 1 / 2$	$\pm 1 / 2$	LSB
Power Supply Sensitivity Zero Error Positive and Negative Full-Scale Error Linearity Error	$\begin{aligned} & A V_{C C}=D V_{C C}= \\ & 5 V \pm 5 \%, \\ & V^{-}=-5 V \pm 5 \% \end{aligned}$		$\begin{aligned} & \pm 3 / 4 \\ & \pm 3 / 4 \\ & \pm 1 / 4 \end{aligned}$			$\begin{aligned} & \pm 3 / 4 \\ & \pm 3 / 4 \\ & \pm 1 / 4 \end{aligned}$	$\begin{aligned} & \pm 3 / 4 \\ & \pm 3 / 4 \\ & \pm 1 / 4 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$

DIGITAL AND DC CHARACTERISTICS

$\mathrm{V}_{\text {IN(1) }}$, Logical "1" Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, All Inputs except CLK IN		2.0		2.0	2.0	V
$\mathrm{V}_{\text {IN }(0)}$, Logical " 0 " Input Voltage (Max)	$V_{C C}=4.75 \mathrm{~V}$, All Inputs except CLK IN		0.8		0.8	0.8	V
IN(1), Logical "1" Input Current (Max)	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	0.005	1	0.005		1	$\mu \mathrm{A}$
$I_{\text {IN(0) }}$, Logical " 0 " Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1	-0.005		-1	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{T}}{ }^{+}$(Min), Minimum PositiveGoing Threshold Voltage	CLK IN	3.1	2.7	3.1	2.7	2.7	V
$\mathrm{V}_{T^{+}}$(Max), Maximum PositiveGoing Threshold Voltage	CLK IN	3.1	3.5	3.1	3.5	3.5	V
$\mathrm{V}_{T^{-}}$(Min), Minimum NegativeGoing Threshold Voltage	CLK IN	1.8	1.4	1.8	1.4	1.4	V
$\mathrm{V}_{\mathrm{T}^{-}}$(Max), Maximum NegativeGoing Threshold Voltage	CLK IN	1.8	2.1	1.8	2.1	2.1	V
$\mathrm{V}_{\mathrm{H}}(\mathrm{Min})$, Minimum Hysteresis $\left[\mathrm{V}_{\mathrm{T}^{+}}\right.$(Min) $-\mathrm{V}_{T^{-}}$(Max)]	CLK IN	1.3	0.6	1.3	0.6	0.6	V
$\mathrm{V}_{\mathrm{H}}(\mathrm{Max})$, Maximum Hysteresis $\left[\mathrm{V}_{\mathrm{T}}+(\mathrm{Max})-\mathrm{V}_{\mathrm{T}^{-}}(\mathrm{Min})\right]$	CLK IN	1.3	2.1	1.3	2.1	2.1	V

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{DV}_{\mathrm{CC}}=\mathrm{AV}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz}, \mathrm{V}^{-}=-5 \mathrm{~V}$ for bipolar input range, or $\mathrm{V}^{-}=\mathrm{GND}$ for unipolar input range unless otherwise specified. Bipolar input range is defined as $-5.05 \mathrm{~V} \leq \mathrm{V}_{1 N(+)} \leq 5.05 \mathrm{~V}$; $-5.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\mathbb{I N}(+)}-\mathrm{V}_{\mathbb{N}(-)}\right| \leq 5.05 \mathrm{~V}$. Unipolar input range is defined as $-0.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}(+)} \leq 5.05 \mathrm{~V}$; $-0.05 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}(-)} \leq 5.05 \mathrm{~V}$ and $\left|\mathrm{V}_{\operatorname{IN}(+)}-\mathrm{V}_{\mathbb{I N}(-)}\right| \leq 5.05 \mathrm{~V}$. Boldface limits apply from $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}$ $=25^{\circ} \mathrm{C}($ Notes 3, 4, 5, 6, 7).

Parameter	Conditions	ADC1205BCJ, ADC1205CCJ ADC1225BCJ, ADC1225CCJ			ADC1205BCJ-1, ADC1205CCJ-1 ADC1225BCJ-1, ADC1225CCJ-1			Limit Units
		Typ (Note 8)	Tested Limit (Note 9)	$\begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 10) } \\ \hline \end{gathered}$	Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	

DIGITAL AND DC CHARACTERISTICS (Continued)

$V_{\text {OUT(1) }}$, Logical " 1 " Output Voltage (Min)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \text { loUT }=-360 \mu \mathrm{~A} \\ & \text { lout }=-10 \mu \mathrm{~A} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	V
$V_{\text {OUT(0) }}$, Logical " 0 " Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l} \mathrm{OUT}=1.6 \mathrm{~mA} \end{aligned}$		0.4		0.4	0.4	V
lout, TRI-STATE Output Leakage Current (Max)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -0.01 \\ 0.01 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\begin{gathered} -0.01 \\ 0.01 \\ \hline \end{gathered}$	$\begin{gathered} -0.3 \\ 0.3 \end{gathered}$	$\begin{gathered} -3 \\ 3 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
ISOURCE, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-12	-6.0	-12	-7.0	-6.0	mA
ISINK, Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	16	8.0	16	9.0	8.0	mA
DI ${ }_{\text {CC }}$, DV ${ }_{\text {CC }}$ Supply Current (Max)	$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \overline{\mathrm{CS}}=1$	1	3	1	2.5	3	mA
Alcc, $\mathrm{AV}_{\text {CC }}$ Supply Current (Max)	$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \overline{\mathrm{CS}}=1$	1	3	1	2.5	3	mA
I-, V- Supply Current (Max)	$\mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \overline{\mathrm{CS}}=1$	10	100	10	100	100	$\mu \mathrm{A}$

AC Electrical Characteristics

The following specifications apply for $D V_{C C}=A V_{C C}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Typ (Note 8)	Tested Limit (Note 9)	Design Limit (Note 10)	Limit Units
fCLK, Clock Frequency $\begin{array}{ll}\text { MIN } \\ & \text { MAX }\end{array}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\begin{array}{ll}\text { Clock Duty Cycle } & \text { MIN } \\ & \text { MAX }\end{array}$				$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
$\begin{array}{ll}\text { T }{ }_{\text {c }} \text {, Conversion Time } & \text { MIN } \\ & \text { MAX } \\ & \text { MIN } \\ & \text { MAX }\end{array}$	$\begin{aligned} \mathrm{f}_{\mathrm{CLK}} & =1.0 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{CLK}} & =1.0 \mathrm{MHz} \end{aligned}$			$\begin{aligned} & 108 \\ & 109 \\ & 108 \\ & 109 \end{aligned}$	1/fCLK 1/fcLK $\mu \mathrm{S}$ $\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{W}(\overline{W R}) \mathrm{L}, \overline{\mathrm{WR}} \text { Pulse Width MAX }}$		220		350	ns
$t_{\text {Acc }}$, Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Data Valid) (Max)	$C_{L}=100 \mathrm{pF}$	210		340	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{HH}}$, TRI-STATE Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State) (Max)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	170		290	ns
tpd $^{\text {PREADYOUT }}, \overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to READYOUT Delay (Max)		250		400	ns
(Max)		250		400	ns

[^11]
AC Electrical Characteristics (Continued)

Note 4: Two on-chip diodes are tied to each analog input as shown below.

TL/H/5676-4
Errors in the A / D conversion can occur if these diodes are forward biased more than 50 mV . This means that if $A V_{C C}$ and $D V_{C C}$ are minimum ($4.75 \mathrm{~V}_{\mathrm{DC}}$) and $\mathrm{V}-$ is minimum ($-4.75 \mathrm{~V}_{\mathrm{DC}}$), full-scale must be $\leq 4.8 \mathrm{~V}_{\mathrm{DC}}$.
Note 5: A diode exists between analog V_{CC} and digital V_{C}.

TL/H/5676-20
To guarantee accuracy, it is required that the $A V_{C C}$ and $D V_{C C}$ be connected together to a power supply with separate bypass filters at each $V_{C C}$ pin. Note 6: A diode exists between analog ground and digital ground.

TL/H/5676-21
To guarantee accuracy, it is required that the analog ground and digital ground be connected together externally.
Note 7: Accuracy is guaranteed at $\mathrm{f}_{\mathrm{CLK}}=1.0 \mathrm{MHz}$. At higher clock frequencies accuracy may degrade.
Note 8: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 9: Tested and guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 10: Guaranteed, but not 100% production tested. These limits are not used to calculate outgoing quality levels.
Note 11: Linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line which passes through positive full scale and zero, after adjusting zero error. (See Figures $1 b$ and 1c).
Note 12: Human body model; 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

aNALOG INPUT VOLTAGE [VIN($+1-\mathrm{VIN}_{\operatorname{IN}(-)]}$
TL/H/5676-8
FIGURE 1a. Transfer Characteristic

FIGURE 1b. Simplified Error Curve vs. Output Code Without Zero and Fullscale Adjustment

FIGURE 1c. Simplified Error Curve vs. Output Code after Zero/Fullscale Adjustment

FIGURE 2. TRI-STATE Test Circuits and Waveforms

Timing Diagrams

Transfer Characteristic for ADC1205 and ADC1225 Unipolar Input Range and Bipolar Input Range (digital output codes vs the difference of the analog inputs [$\left.\left.\mathrm{V}_{\mathrm{IN}(+)}-\mathrm{V}_{\mathrm{IN}(-)}\right]\right)$

FIGURE 3. Timing Diagram

TL/H/5676-13
FIGURE 4. Ready Out

FIGURE 5. Data Out

Functional Description

1.0 THE A/D CONVERSION

1.1 STARTING A CONVERSION

When using the ADC1225 or ADC1205 with a microprocessor, starting an A-to-D conversion is like writing to an external memory location. The $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ lines are used to start the conversion. The simplified logic (Figure 6) shows that the falling edge of $\overline{W R}$ with $\overline{C S}$ low clocks the D-type flipflop and initiates the conversion sequence. A new conversion can therefore be restarted before the end of the previous sequence. $\overline{\mathrm{NT}}$ going low indicates the conversion's end.

1.2 THE CONVERSION PROCESS (Numbers designated by [] refer to portions of Figure 6.)

The SARS LOGIC [2] controls the A-to-D conversion process. When 'sars' goes high the clock (clk) is gated to the TIMING GENERATOR [9]. One of the outputs of the TIMING GENERATOR, T_{z}, provides the clock for the Successive Approximation Register, SAR LOGIC [5]. The T_{z} clock rate is $1 / 8$ of the CLK IN frequency.
Inputs to the 12-BIT DAC [11] and control of the SAMPLED DATA COMPARATOR [10] sign logic are provided by the SAR LOGIC. The first step in the conversion process is to set the sign to positive (logic ' 0 ') and the input of the DAC to 000 (HEX notation). If the differential input, $\mathrm{V}_{\operatorname{IN}(+)}-\mathrm{V}_{\operatorname{IN}(-)}$, is positive the sign bit will remain low. If it is negative the sign bit will be set high. Differential inputs of only a few hundred microvolts are enough to provide full logic swings at the output of the SAMPLED DATA COMPARATOR.
The sign bit indicates the polarity of the differential input. If it is set high, the negative input must have been greater than the positive input. By reversing the polarity of the differential input, $\mathrm{V}_{\mathrm{IN}(+)}$ and $\mathrm{V}_{\mathrm{IN}(-)}$ are interchanged and the DAC sees the negative input as positive. The input polarity reversal is done digitally by changing the timing on the input sampling switches of the SAMPLED DATA COMPARATOR. Thus, with almost no additional circuitry, the A/D is extended from a unipolar 12-bit to a bipolar 12-bit (12-bit plus sign) device.
After determining the input polarity, the conversion proceeds with the successive approximation process. The SAR LOGIC successively tries each bit of the 12-BIT DAC. The most significant bit (MSB), B11, has a weight of $1 / 2$ of $V_{\text {REF }}$. The next bit, B10, has a weight of $1 / 4 \mathrm{~V}_{\text {REF }}$. Each successive bit is reduced in weight by a factor of 2 which gives the least significant bit (LSB) a weight of $1 / 4096$ V REF. $^{\text {R }}$
When the MSB is tried, the comparator compares the DAC output, $\mathrm{V}_{\mathrm{REF}} / 2$, to the analog input. If the analog input is greater than $\mathrm{V}_{\text {REF }} / 2$ the comparator tells the SAR LOGIC to set the MSB. If the analog input is less than $V_{\text {REF }} / 2$ the comparator tells the SAR LOGIC to reset the MSB. On the next bit-test the DAC output will either be $3 / 4 \mathrm{~V}_{\text {REF }}$ or $1 / 4$ $\mathrm{V}_{\text {REF }}$ depending on whether the MSB was set or not. Following this sequence through for each successive bit will approximate the analog input to within 1-bit (one part in 4096).

On completion of the LSB bit-test the conversion-complete flip-flop (CC) is set, signifying that the conversion is finished. The end-of-conversion (EOC) and interrupt (INT) lines are not changed at this time. Some internal housekeeping tasks must be completed before the outside world is notified that the conversion is finished.

Setting CC enables the UPDATE LOGIC [12]. This logic controls the transfer of data from the SAR LOGIC to the OUTPUT LATCH [6] and resets the internal logic in preparation for a new conversion. This means that when EOC goes high, a new conversion can be immediately started since the internal logic has already been reset. In the same way, data is transferred to the OUTPUT LATCH prior to issuing an interrupt. This assures that data can be read immediately after INT goes low.

2.0 READING THE A/D

The ADC 1225 makes all thirteen bits of the conversion result available in parallel. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low enables the TRI-STATE ${ }^{\circledR}$ output buffers. The conversion result is represented in 2's complement format.
The ADC1205 makes the conversion result available in two eight-bit bytes. The output format is 2 's complement with extended sign. Data is right justified and presented high byte first. With CS low and STATUS high, the high byte (DB12-DB8) will be enabled on the output buffers the first time $\overline{R D}$ goes low. When $\overline{R D}$ goes low a second time, the low byte (DB7-DB0) will be enabled. On each read operation, the 'byst' flip-flop is toggled so that on successive reads alternate bytes will be available on the outputs. The 'byst' flip-flop is always reset to the high byte at the end of a conversion. Table 1 below shows the data bit locations on the ADC1205.
The ADC1205's STATUS pin makes it possible to read the conversion status and the state of the 'byst' flip-flop. With $\overline{R D}, \overline{S T A T U S}$ and $\overline{\mathrm{CS}}$ low, this information appears on the data bus. The 'byst' status appears on pin 18 (DB2/DB10). A low output on pin 18 indicates that the next data read will be the high byte. A high output indicates that the next data read will be the low byte. A high status bit on pin 22 (DB6/ DB12) indicates that the conversion is in progress. A high output appears on pin 17 (DB1/DB9) when the conversion is completed and the data has been transferred to the output latch. A high output on pin 16 (DB0/DB8) indicates that the conversion has been completed and the data is ready to read. This status bit is reset when a new conversion is initiated, data is read, or status is read. When reading a conversion result, STATUS should always be brought high at least 600 ns before $\overline{\mathrm{RD}}$ goes low. If the conversion status information is not needed, the STATUS pin should be hardwired to V^{+}. Table 2 summarizes the meanings of the four status bits.

TABLE I. Data Bit Locations, ADC1205

| HIGH BYTE | DB12 | DB12 | DB12 | DB12 | DB11 | DB10 | DB9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | LOW BYTE | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

TABLE II. Status Bit Locations and Meanings

Status Bit Location	Status Bit	Meaning	Condition to Clear Status Bit
DB6	SARS	"High" indicates that the conversion is in progress	
DB2	BYST	"Low" indicates that the next data read is the high byte. "High" indicates that the next data read is the low byte	Status write or toggle it with data read

Functional Description (Continued)
TABLE II. Status Bit Locations and Meanings (Continued)

Status Bit Location	Status Bit	Meaning	Condition to Clear Status Bit
DB1	EOC	"High" indicates that the conversion is completed and data is transferred to the output latch.	
DB0	INT	"High" indicates that it is the end of the conversion and the data is ready to read	Data read or status read or status write

3.0 INTERFACE

3.1 RESET OF INTERRUPT

$\overline{\mathrm{INT}}$ goes low at the end of the conversion and indicates that data is transferred to the output latch. By reading data, $\overline{\mathrm{NT}}$ will be reset to high on the leading edge of the first read ($\overline{\mathrm{RD}}$ going low). $\overline{\text { INT }}$ is also reset on the leading (falling) edge of WR when starting a conversion.

3.2 READY OUT

To simplify the hardware connection to high speed microprocessors, a READY OUT line is provided. This allows the A-to-D to insert a wait state in the $\mu \mathrm{P}$'s read cycle. The equivalent circuit and the timing diagram for READY OUT is shown in Figures 7 and 8.

TL/H/5676-9
FIGURE 7. READY OUT Equivalent Circuit

TL/H/5676-10
FIGURE 8. READY OUT Timing Diagram

3.3 RESETTING THE A/D

All the internal logic can be reset, which will abort any conversion in process and reset the status bits. The reset function is achieved by performing a status write ($\overline{\mathrm{CS}}, \overline{\mathrm{WR}}$ and STATUS are low).

3.4 ADDITIONAL TIMING AND INTERFACE OPTIONS ADC1225

1. $\overline{\mathrm{WR}}$ and $\overline{\mathrm{RD}}$ can be tied together with $\overline{\mathrm{CS}}$ low continuously or strobed. The previous conversion's data will be available when the $\overline{W R}$ and $\overline{R D}$ are low as shown below.
One drawback is that, since the conversion is started on the falling edge and the data read on the rising edge of $\overline{W R} / \overline{R D}$, the first data access will have erroneous information depending on the power-up state of the internal output latches.
If the $\overline{\mathrm{WR}} / \overline{\mathrm{RD}}$ strobe is longer than the conversion time, INTR will never go low to signal the end of a conversion. The conversion will be completed and the output latches will be updated. In this case the READY OUT signal can be used to sense the end of the conversion since it will go low when the output latches are being updated.

FIGURE 9

Functional Description (Continued)

FIGURE 10

FIGURE 11

FIGURE 12

Functional Description (Continued)

FIGURE 13

When using this method of conversion only one strobe is necessary and the rising edge of $\overline{W R} / \overline{R D}$ can be used to read the current conversion results. These methods reduce the throughput time of the conversion since the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ cycles are combined.
2. With the standard timing $\overline{W R}$ pulse width longer than the conversion time a conversion is completed but the INTR will never go low to signal the end of a conversion. The output latches will be updated and valid information will be available when the $\overline{\mathrm{RD}}$ cycle is accomplished.
3. Tying $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low continuously and strobing $\overline{\mathrm{WR}}$ to initiate a conversion will also yield valid data. The INTR will never go low to signal the end of a conversion and the digital outputs will always be enabled, so using INTR to strobe the $\overline{W R}$ line for a continuous conversion cannot be done with this part.
A simple stand-alone circuit can be accomplished by driving $\overline{W R}$ with the inverse of the READY OUT signal using a simple inverter as shown below.

Functional Description (Continued)

 ADC1205Case 1 would be the only one that would appy to the ADC1205 since two $\overline{R D}$ strobes are necessary to retrieve the 13 bits of information on the 8 bit data bus. Simultaneously strobing WR and $\overline{\mathrm{RD}}$ low will enable the most significant byte on DB0-DB7 and start a conversion. Pulsing $\overline{W R} / \overline{R D}$ low before the end of this conversion will enable the least significant byte of data on the outputs and restart a conversion.

4.0 REFERENCE VOLTAGE

The voltage applied to the reference input of the converter defines the voltage span of the analog inputs (the difference between $\mathrm{V}_{\mathrm{IN}(+)}$ and $\mathrm{V}_{\mathrm{IN}(-)}$, over which 4096 positive output codes and 4096 negative output codes exist. The A-to-D can be used in either ratiometric or absolute reference applications. VREF must be connected to a voltage source capable of driving the reference input resistance (typically $4 \mathrm{k} \Omega$).
In a ratiometric system, the analog input voltage is proportional to the voltage used for the A/D reference. When this voltage is the system power supply, the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{CC}. This technique relaxes the stability requirement of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy, where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. In general, the magnitude of the reference voltage will require an initial adjustment to null out full-scale errors.

5.0 THE ANALOG INPUTS

5.1 DIFFERENTIAL VOLTAGE INPUTS AND COMMON MODE REJECTION

The differential inputs of the ADC1225 and ADC1205 actually reduce the effects of common-mode input noise, i.e., signals common to both $\mathrm{V}_{\mathrm{IN}(+)}$) and $\mathrm{V}_{\mathrm{IN}(-)}$ inputs (60 Hz is most typical). The time interval between sampling the " + " and "-" input is 4 clock periods. Therefore, a change in the common-mode voltage during this short time interval may cause conversion errors. For a sinusoidal common-mode signal the error would be:

$$
V_{\text {ERROR }}(\mathrm{MAX})=V_{\text {PEAK }}\left(2 \pi f_{\mathrm{CM}}\right) \frac{4}{\mathrm{f}_{\mathrm{CLK}}}
$$

where f_{CM} is the frequency of the common-mode signal, $V_{\text {PEAK }}$ is its peak voltage value and $f_{C L K}$ is the converter's clock frequency. In most cases $V_{\text {ERROR }}$ will not be significant. For a 60 Hz common-mode signal to generate a $1 / 4$ LSB error $(300 \mu \mathrm{~V})$ with the converter running at 1 MHz its peak value would have to be 200 mV .

5.2 INPUT CURRENT

Due to the sampling nature of the analog inputs, short duration spikes of current enter the " + " input and exit the " - " input at the leading clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period.

5.3 INPUT BYPASS CAPACITORS

Bypass capacitors at the inputs will average the current spikes mentioned in 5.2 and cause a DC current to flow
through the output resistance of the analog signal source. This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathrm{IN}(+)}$ input voltage at full-scale. For continuous conversions with a 1 MHz clock frequency and the $\mathrm{V}_{\mathrm{IN}(+)}$ input at 5 V , the average input current is approximately $5 \mu \mathrm{~A}$. For this reason bypass capacitors should not be used at the analog inputs for high resistance sources (RSOURCE 100Ω).
If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the detrimental effects of the voltage drop across this input resistance, due to the average value of the input current, can be minimized with a full-scale adjustment while the given source resistance and input bypass capacitor are both in place. This is effective because the average value of the input current is a linear function of the differential input voltage.

5.4 INPUT SOURCE RESISTANCE

Large values of source resistance where an input bypass capacitor is not used, will not cause errors as the input currents settle out prior to the comparison time. If a low pass filter is required in the system, use a low valued series resistor ($\mathrm{R} \leq 100 \Omega$) for a passive RC section or add an op amp RC active low pass filter. For low source resistance applications, ($R_{\text {SOURCE }} \leq 100 \Omega$) a $0.001 \mu \mathrm{~F}$ bypass capacitor at the inputs will prevent pickup due to series lead inductance of a long wire. A 100Ω series resistor can be used to isolate this capacitor - both the R and C are placed outside the feedback loop - from the output of an op amp, if used.

5.5 NOISE

The leads to the analog inputs should be kept as short as possible to minimize input noise coupling. Both noise and undesired digital clock coupling to these inputs can cause errors. Input filtering can be used to reduce the effects of these sources, but careful note should be taken of sections 5.3 and 5.4 if this route is taken.

6.0 POWER SUPPLIES

Noise spikes on the V_{CC} supply line can cause conversion errors as the comparator will respond to this noise. Low inductance tantalum capacitors of $1 \mu \mathrm{~F}$ or greater are recommended for supply bypassing. Separate bypass caps should be placed close to the $D V_{C C}$ and $A V_{C C}$ pins. If an unregulated voltage source is available in the system, a separate LM340LAZ-5.0 voltage regulator for the A-to-D's VCC (and other analog circuitry) will greatly reduce digital noise on the supply line.

7.0 ERRORS AND REFERENCE VOLTAGE ADJUSTMENTS

7.1 ZERO ADJUST

The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathrm{IN}(-)}$ input and applying a small magnitude positive voltage to the $V_{I N(+)}$ input. Zero error is the difference between the actual DC input voltage necessary to just cause an output digital code transition from all zeroes to $0,0000,0000,0001$ and the ideal $1 / 2$ LSB value ($1 / 2$ $\mathrm{LSB}=0.61 \mathrm{mV}$ for $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}_{\mathrm{DC}}$). Zero error can be adjusted as shown in Figure 15. $\mathrm{V}_{\mathrm{IN}(+)}$ is forced to 0.61 mV , and $\mathrm{V}_{\operatorname{IN}(-)}$ is forced to OV . The potentiometer is adjusted until the digital output code changes from all zeroes to $0,000,0000,0001$.

Functional Description (Continued)

A simpler, although slightly less accurate, approach is to ground $V_{I N(+)}$ and $V_{\operatorname{IN}(-) \text {, and adjust for all zeros at the }}$ output. Error will be well under $1 / 2$ LSB if the adjustment is done so that the potentiometer is "centered" within the $0,000,000$ range. A positive voltage at the $\mathrm{V}_{\text {Os }}$ input will reduce the output code. The adjustment range is +4 to -30 LSB.

TL/H/5676-11
FIGURE 15. Zero Adjust Circuit

7.2 POSITIVE AND NEGATIVE FULL-SCALE ADJUSTMENT

Unipolar Inputs

Apply a differential input voltage which is 1.5 LSB below the desired analog full-scale voltage $\left(V_{F}\right)$ and adjust the magni-
tude of the $\mathrm{V}_{\text {REF }}$ input so that the output code is just changing from $0,1111,1111,1110$ to $0,1111,1111,1111$.

Bipolar Inputs

Do the same procedure outlined above for the unipolar case and then change the differential input voltage so that the digital output code is just changing from $1,0000,0000,0001$ to $1,0000,0000,0000$. Record the differential input voltage, V_{X}. the ideal differential input voltage for that transition should be;

$$
\left(-V_{F}+\frac{V_{F}}{8192}\right)
$$

Calculate the difference between Vx and the ideal voltage;

$$
\Delta=V_{X}-\left(-V_{F}+\frac{V_{F}}{8192}\right)
$$

Then apply a differential input voltage of;

$$
\left(v_{x}-\frac{\Delta}{2}\right)
$$

and adjust the magnitude of $V_{\text {REF }}$ so the digital output code is just changing from 1,0000,0000,0001 to $1,0000,0000,0000$. That will obtain the positive and negative full-scale transition with symmetrical minimum error.

Typical Applications

*Input must have some current return path to signal ground

Protecting the Input

Operating with Ratiometric Transducers

TL/H/5676-17

Typical Applications (Continued)

+150 to $-55^{\circ} \mathrm{C}$ with $0.04^{\circ} \mathrm{C}$ resolution
Note: * resistors are 1% metal film types

Strain Gauge Converter with . 025% Resolution and Single Power Supply

TL/H/5676-19

Ordering Information

Temperature Range		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-\mathbf{4 0 ^ { \circ }} \mathbf{C}$ to $+85^{\circ} \mathrm{C}$	
Non-Linearity	0.012%	ADC1205BCJ-1	ADC1225BCJ-1	ADC1205BCJ	ADC1225BCJ
	0.024%	ADC1205CCJ-1	ADC1225CCJ-1	ADC1205CCJ	ADC1225CCJ
Package Outline		J24A	J28A	J24A	J28A

National
Semiconductor Corporation

ADC1210, ADC1211 12-Bit CMOS A/D Converters

General Description

The ADC1210, ADC1211 are low power, medium speed, 12bit successive approximation, analog-to-digital converters. The devices are complete converters requiring only the application of a reference voltage and a clock for operation. Included within the device are the successive approximation logic, CMOS analog switches, precision laser trimmed thin film R-2R ladder network and FET input comparator.
The ADC1210 offers 12-bit resolution and 12-bit accuracy, and the ADC1211 offers 12-bit resolution with 10-bit accuracy. The inverted binary outputs are directly compatible with CMOS logic. The ADC1210, ADC1211 will operate over a wide supply range, convert both bipolar and unipolar analog inputs, and operate in either a continuous conversion mode or logic-controlled START-STOP conversion mode. The devices are capable of making a 12-bit conversion in $100 \mu \mathrm{~s}$ typ, and can be connected to convert 10 bits in $30 \mu \mathrm{~s}$.

Both devices are available in military and industrial temperature ranges.

Features

- 12-bit resolution
- $\pm 3 / 4$ LSB or ± 2 LSB nonlinearity
- Single +5 V to $\pm 15 \mathrm{~V}$ supply range

■ $100 \mu \mathrm{~s} 12$-bit, $30 \mu \mathrm{~s}$ 10-bit conversion rate
■ CMOS compatible outputs

- Bipolar or unipolar analog inputs

■ $200 \mathrm{k} \Omega$ analog input impedance

Block Diagram

Connection Diagram

Dual-In-Line Package

Order Number ADC1210HD, ADC1210HCD, ADC1211HD, ADC1211HCD See NS Package D24D

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Maximum Reference Supply Voltage (V^{+}) 16V
Maximum Negative Supply Voltage (V^{-}) -20V
Voltage At Any Logic Pin $\quad \mathrm{V}++0.3 \mathrm{~V}$
Analog Input Voltage $\pm 15 \mathrm{~V}$
Maximum Digital Output Current $\pm 10 \mathrm{~mA}$
Maximum Comparator Output Current
50 mA

Comparator Output Short-Circuit Duration	5 Seconds
Power Dissipation	See Curves
Operating Temperature Range	
ADC1210HD, ADC1211HD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ADC1210HCD, ADC1211HCD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
ESD Susceptibility (Note 4)	TBD V

DC Electrical Characteristics (Notes 1 and 2)

Parameter	Conditions	ADC1210			ADC1211			Units
		Min	Typ	Max	Min	Typ	Max	
Resolution		12			12			Bits
Linearity Error	$\begin{aligned} & \text { (Note 3) } \\ & \mathrm{f}_{\mathrm{CLK}}=65 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{f}_{\mathrm{CLK}}=65 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & \pm 0.0183 \\ & \pm 0.0366 \end{aligned}$			± 0.0488	$\begin{aligned} & \% \text { FS } \\ & \% \mathrm{FS} \end{aligned}$
Full Scale Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unadjusted			0.20			0.50	\% FS
Zero Scale Error	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unadjusted			0.20			0.50	\% FS
Quantization Error				$\pm 1 / 2$			$\pm 1 / 2$	LSB
Input Resistor Values	R27, R28		20			20		k Ω
Input Resistor Values	R25, R26		200			200		k Ω
Input Resistor Ratios	R25/R26, R27/R28			0.8			0.8	\%
Logic "1" Input Voltage		8			8			V
Logic "0" Input Voltage				2			2	V
Logic "1" Input Current	$\mathrm{V}_{\mathrm{IN}}=10.24 \mathrm{~V}$			1			1	$\mu \mathrm{A}$
Logic "0" Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			-1			-1	$\mu \mathrm{A}$
Logic "1" Output Voltage	lout $\leq-1 \mu \mathrm{~A}$	9.2			9.2			V
Logic "0" Output Voltage	lout $\leq 1 \mu \mathrm{~A}$			0.5			0.5	V
Positive Supply Current	$\begin{aligned} & \mathrm{V}+=15 \mathrm{~V}, \mathrm{f} \text { CLK }=65 \mathrm{kHz}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		5	8		5	8	mA
Negative Supply Current	$\mathrm{V}^{-}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	6		4	6	mA

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Notes 1 and 2)

Parameter	Conditions	Min	Typ	Max	Units
Conversion Time			100	200	$\mu \mathrm{~s}$
Maximum Clock Frequency			130	65	kHz
Clock Pulse Width		100	50		ns
Propagation Delay From Clock to Data Output	$\mathrm{t}_{\mathrm{r}} \leq \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$		60	150	ns
(Q0 to Q11)					
Propagation Delay from Clock to Conversion	$\mathrm{t}_{\mathrm{r}} \leq \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$		60	150	ns
Complete					
Clock Rise and Fall Time				5	$\mu \mathrm{~ms}$
Input Capacitance			10		pF
Start Conversion Set-Up Time	30			ns	

Note 1: Unless otherwise noted, these specifications apply for $\mathrm{V}^{+}=10.240 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$, over the temperature range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for the $\mathrm{ADC1210HD}$, ADC1211HD, and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the ADC1210HCD, ADC1211HCD.
Note 2: All typical values are for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: Unless otherwise noted, this specification applies over the temperature range $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Provision is made to adjust zero scale error to 0 V and full-
scale to 10.2375 V during testing. Standard linearity test circuit is shown in Figure 5a.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Schematic Diagram

TL／H／5677－3
Note： 3 bits shown for clarity

Power Dissipation vs Temperature

TL／H／5677－4

TL／H／5677－5

1．0 THEORY OF OPERATION

The ADC1210，ADC1211 are successive approximation an－ alog－to－digital converters，i．e．，the conversion takes place 1 bit at a time by comparing the output of the internal D／A to the（unknown）input voltage．The START input（pin 13）， when taken low，causes the register to reset synchronously on the next CLOCK low－to－high transition．The MSB，Q11 is set to the low state，and the remaining bits，Q0 through Q10， will be set to the high state．The register will remain in this state until the $\overline{\mathrm{SC}}$ input is taken high．When START goes high，the conversion will begin on the low－to－high transition of the CLOCK pulse．Q11 will then assume the state of pin 23．If pin 23 is high，Q11 will be high；if pin 23 is low，Q11 will remain low．At the same time，the next bit Q10 is set low．All remaining bits，Q0－Q9 will remain unchanged（high）．This process will continue until the LSB（Q0）is found．When
the conversion process is completed，it is indicated by CON－ VERSION COMPLETE（ $\overline{\mathrm{CC}}$ ）（pin 14）going low．The logic levels at the data output pins（pins 1－12）are the comple－ mented－binary representation of the converted analog sig－ nal with Q11 being the MSB and Q0 being the LSB．The register will remain in the above state until the $\overline{\mathrm{SC}}$ is again taken low．
An application example is shown in Figure 1．In this case，a 0 to -10.2375 V input is being converted using the ADC1210 with $\mathrm{V}^{+}=10.240 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}$ ．Figure $1 b$ is the timing diagram for full scale input．Figure $1 c$ is the timing diagram for zero scale input，Figure $1 d$ is the timing diagram for -3.4125 V input $(010101010101=$ output $)$ ．

FIGURE 1a. ADC1210 Connected for OV to - 10.2375V (Natural Binary Output)

TL/H/5677-7
FIGURE 1b. Timing Diagram for $\mathbf{V}_{\mathbf{I N}}=$ Full Scale Input

FIGURE 1c. Timing Dlagram for $\mathrm{V}_{\text {IN }}=$ Zero Scale

FIGURE 1d. Timing Diagram for $\mathrm{V}_{\mathrm{IN}}=-3.4125 \mathrm{~V}$ (010101010101)

TABLE 1. Pin Assignments and Explanations

Pin Number	Mnemonic	Function
1-12	Q11-Q0	Digital (data) output pins. This information is a parallel 12-bit complemented binary representation of the converted analog signal. All data is valid when "Conversion Complete" goes low. Logic levels are ground and $\mathrm{V}+$.
13	$\overline{\text { SC }}$	Start Conversion is a logic input which causes synchronous reset of the successive approximation register and initiates conversion. Logic levels are ground and V^{+}.
14	$\overline{\mathrm{CC}}$	"Conversion Complete" is a digital output signal which indicates the status of the converter. When $\overline{\mathrm{CC}}$ is high, conversion is taking place, when low conversion is completed. Logic levels are ground and $\mathrm{V}+$.
15, 16	R27, R28	R27 and R28 are two application resistors connected to the comparator non-inverting input. The resistors may be used in various modes of operation. Their nominal values are $20 \mathrm{k} \Omega$ each. See Applications section.
17	+IN	Non-inverting input of the analog comparator. This node is used in various configurations and for compensation of the loop. See Applications section.
18, 19	R25, R26	R25 and R26 are two application resistors that are tied internally to the inverting input of the comparator. Their nominal values are $200 \mathrm{k} \Omega$ each. See Applications section. The R2 R ladder network will have the same temperature coefficient as these resistors.
20	V-	Negative supply voltage for bias of the analog comparator. Optionally may be grounded or operated with voltages to -20 V .
21	GND	Ground for both digital and analog signals.
22	$\mathrm{V}+\left(\mathrm{V}_{\text {REF }}\right)$	$\mathrm{V}+$ sets both maximum full scale and input and output logic levels.
23	CO	Comparator output.
24	CP_{p}	Clock is an input which causes the successive approximation (shift) register to advance through the conversion sequence. Logic levels are ground and $\mathrm{V}+$.

2.0 APPLICATIONS

2.1 Power Supply Considerations and Decoupling

Pin 22 is both the positive supply and voltage reference input to the ADC1210, ADC1211. The magnitude of V^{+}determines the input logic " 1 " threshold and the output voltage from the CMOS SAR. The device will operate over a range of $\mathrm{V}+$ from 5 V to 15 V . However, in order to preserve 12-bit accuracy, V^{+}should be well regulated (0.01%) and isolated from external switching transients. It is therefore recommended that pin 22 be decoupled with a $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor.
The V - supply (pin 20) provides negative bias for the FET comparator. Although pin 20 may be grounded in some applications, it must be at least 2 V more negative than the most negative analog input signal. When a negative supply is used, pin 20 should also be bypassed with $4.7 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$.
Grounding and circuit layout are extremely important in preserving 12-bit accuracy. The user is advised to employ separate digital and analog returns, and to make these PC board traces as "heavy" as practical.

2.2 Short Cycle for Improved Conversion Time (Figure 2)

The ADC1210, ADC1211 counting sequence may be truncated to decrease conversion time. For example, when using the ADC1211, 2 clock intervals may be "saved" if

10-bit conversion accuracy is taking place. The Q2 output should be "OR'd" with CONVERSION COMPLETE ($\overline{C C}$) in order to ensure that the register does not lock-up upon power turn-on.

TL/H/5677-10
FIGURE 2. Short Cycling the ADC1211 to improve 10-Bit Conversion Time (Continuous Conversion)

2.3 Logic Compatibility

The ADC1210, ADC1211 is intended to interface with CMOS logic levels: i.e., the logic inputs and outputs are directly compatible with series $54 \mathrm{C} / 74 \mathrm{C}$ and CD4000 family of logic components. The outputs of the ADC1210, ADC1211 will not drive LPTTL, TTL or PMOS logic directly without degrading accuracy. Various recommended interface techniques are shown in Figures 3 and 4.

2.4 Operating Configurations

Several recommended operating configurations are shown in Figure 5.

Applications Information (Continued)

2.5 Offset and Full Scale Adjust

A variety of techniques may be employed to adjust Offset and Full Scale on the ADC1210, ADC1211. A straight-forward Full Scale Adjust is to incrementally vary $\mathrm{V}+\left(\mathrm{V}_{\text {REF }}\right)$ to match the analog input voltage. A recommended technique is shown in Figure 6. An LM199 and low drift op amp(e.g., the LHOO44) are used to provide the precision reference. The ADC1210, ADC1211 is put in the continuous convert mode by shorting pins 13 and 14. An analog voltage equal to $V_{\text {REF }}$ minus $11 / 2$ LSB (10.23625 V) is applied to pins 18 and 19, and R1 is adjusted until the LSB flickers equally between logic " 1 " and logic " 0 " (all other out-
puts must be stable logic " 0 "). Offset Null is accomplished by then applying an analog input voltage equal to $1 / 2$ LSB at pins 18 and 19. R2 is adjusted until the LSB output flickers equally between logic " 1 " and logic " 0 " (all other bits are stable). In the circuit of Figure 6, the ADC1210, ADC1211 is configured for Complementary Binary logic and the values shown are for $\mathrm{V}^{+}=10.240 \mathrm{~V}, \mathrm{~V}_{\mathrm{FS}}=10.2375 \mathrm{~V}$, LSB $=2.5 \mathrm{mV}$.
An alternate technique is shown in Figure 7. In this instance, an LH0071 is used to provide the reference voltage. An analog input voltage equal to $V_{\text {REF }}$ minus $11 / 2$ LSB (10.23625 V) is applied to pins 18 and 19.

Applications Information (Continued)

$5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 15 \mathrm{~V}$
$0 \mathrm{~V} \leq \mathrm{V}_{1 N} \leq \mathrm{V}+$
Logical "1" $\leq 0.5 \mathrm{~V}$
Logical " $0^{\prime 2} \cong \mathrm{~V}^{+}$

FIGURE 5a. Single Supply Configuration, Complementary Logic

FIGURE 5b. High Voltage CMOS Compatible, OV to 10 V Input
TLH/5677-13

-

$\mathrm{V}+=10.24 \mathrm{~V}$
$-5.12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.12 \mathrm{~V}$
Logical " 1 " $\leq 0.5 \mathrm{~V}$
Logical " 0 " $\cong 10 \mathrm{~V}$
FIGURE 5c. Bipolar Input, Complementary Logic

Applications Information (Continued)

TL/H/5677-16
FIGURE 6. Offset and Full Scale Adjustment for Complementary Binary

R1 is adjusted until the LSB output flickers equally between logic " 1 " and logic " 0 " (all other outputs must be a stable logic " 0 "). For Offset Null, an analog voltage equal to $1 / 2$ LSB (1.25 mV) is then applied to pins 18 and 19, and R2, is adjusted until the LSB output flickers equally between logic " 1 " and " 0 ".

FIGURE 7. Offset and Full-Scale Adjustment Technique Using LH0071

In both techniques shown, adjusting the Full-Scale first and then Offset minimizes adjustment interaction. At least one iteration is recommended as a self-check.

2.6 START PULSE CONSIDERATIONS

To assure reliable conversion accuracy, the $\overline{\text { START }}$ ($\overline{\mathrm{SC}}$) pulse applied to pin 13 of the ADC1210 should be synchronized to the conversion clock. One simple way to do that is the circuit shown in Figure 8. Note that once a conversion cycle is initiated, the START signal cannot effect the conversion operation until it is completed.

TL/H/5677-19

The circuit insures that in no case can the ADC1210 make an error in the Most Significant Bit (MSB) decision. Without the circuit, it is possible for energy from the trailing edge of an asynchronous START pulse to be coupled into the ADC1210's comparator. If the analog input is near halfscale, the charge injected can force an error in the MSB decision. The circuit allows one clock period for this energy to dissipate before the decision is recorded.

2.7 ADC1210 CONVERSION AT $26 \mu \mathrm{~s}$

The ADC1210 can run at 500 kHz clock frequency, or 12-bit conversion time of $26 \mu \mathrm{~s}$ (Figure 9). The comparator output is clamped low until the successive approximation register (SAR) is ready to strobe in the data at the rising edge of the conversion clock. Comparator oscillation is suppressed and kept from influencing the conversion decisions, eliminating the need for the AC hysteresis circuit above clock frequency of 65 kHz that is recommended.

FIGURE 9. Conversion at $26 \mu \mathrm{~s}$
A complementary phased clock is required. The positive phase is used to clock the converter SAR as is normally the case. The same signal is buffered and inverted by the transistor. The open collector is wire-ORed to the output of the comparator. During the first half of the clock cycle (50% duty cycle), the comparator output is clamped and disabled, though its internal operation is still in normal working order. The last half cycle of the clock unclamps the comparator output. Thus, the output is permitted to slew to the final logic state just before the decision is logged into the SAR. The MM74C906 buffer (or with two inverting buffers) provides adequate propogation delay such that the comparator output data is held long enough to resolve any internal logic setup time requirements.

Applications Information (Continued)

The 500 kHz clock implies that the absolute minimum amount of time for the comparator output is unclamped is 1 $\mu \mathrm{s}$. Therefore, if the clock is not 50% duty cycle, this $1 \mu \mathrm{~s}$ requirement must be observed.

3.0 DEFINITION OF TERMS

Resolution: The Resolution of an A/D is an expression of the smallest change in input which will increment (or decrement) the output from one code to the next adjacent code. It is defined in number of bits, or 1 part in 2 . The ADC1210 and ADC1211 have a resolution of 12 bits or 1 part in 4,096 (0.0244\%).

Quantization Uncertainty: Quantization Uncertainty is a direct consequence of the resolution of the converter. All analog voltages within a given range are represented by a single digital output code. There is, therefore, an inherent conversion error even for a perfect A/D. As an example, the transfer characteristic of a perfect 3 -bit A/D is shown in Figure 10.

TL/H/5677-21

FIGURE 10. Quantization Uncertainty of a Perfect 3-Bit A/D

As can be seen, all input voltages between 0 V and 1 V are represented by an output code of 000 . All input voltages between 1 V and 2 V are represented by an output code of 001, etc. If the midpoint of the range is assumed to be the nominal value (e.g., 0.5 V), there is an Uncertainty of $\pm 1 / 2$ LSB. It is common practice to offset the converter $1 / 2$ LSB in order to reduce the Uncertainty to $\pm 1 / 2$ LSB is shown in Figure 11, rather than $+1,-0$ shown in Figure 10. Quantization Uncertainty can only be reduced by increasing Resolution. It is expressed as $\pm 1 / 2$ LSB or as an error percentage of full scale $(\pm 0.0122 \%$ FS for the ADC1210).

TL/H/5677-22

FIGURE 11. Transfer Characteristic Offset

 1/2 LSB to Minimize Quantizing UncertaintyLinearity Error: Linearity Error is the maximum deviation from a straight line passing through the end points of the A/D transfer characteristic. It is measured after calibrating Zero and Full Scale Error. Linearity is a performance characteristic intrinsic to the device and cannot be externally adjusted.

Zero Scale Error (or Offset): Zero Scale Error is a measure of the difference between the output of an ideal and the actual A/D for zero input voltage. As shown in Figure 12, the effect of Zero Scale Error is to shift the transfer characteristic to the right or left along the abscissa. Any voltage more negative than the LSB transition gives an output code of 000 . In practice, therefore, the voltage at which the 000 to 001 transition takes place is ascertained, this input voltage's departure from the ideal value is defined as the Zero Scale Error (Offset) and is expressed as a percentage of FS. In the example of Figure 12, the offset is 2 LSB's or 0.286% of F.

TL/H/5677-20
FIGURE 12. A/D Transfer Characteristic with Offset
The Zero Scale Error of the ADC1210, ADC1211 is caused primarily by offset voltage in the comparator. Because it is common practice to offset the A/D $1 / 2$ LSB to minimize Quantization Error, the offsetting techniques described in the Applications Section may be used to null Zero Scale Error and accomplish the 1/2 LSB offset at the same time.
Full Scale Error (or Gain Error): Full Scale Error is a measure of the difference between the output of an ideal A/D converter and the actual A / D for an input voltage equal to full scale. As shown in Figure 13, the Full Scale Error effect is to rotate the transfer characteristic angularly about the origin. Any voltage more positive than the Full Scale transition gives an output code of 111. In practice, therefore, the voltage at which the transition from 111 to 110 occurs is ascertained. The input voltage's departure from the ideal value is defined as Full Scale Error and is expressed as a percentage of FS. In the example of Figure 13, Full Scale Error is $11 / 2$ LSB's or 0.214% of $F S$.

TL/H/5677-23

FIGURE 13. Full Scale (Gain Error)

Full Scale Error of the ADC1210, ADC1211 is due primarily to mismatch in the R-2R ladder equivalent output impedance and input resistors R25, R26, R27, and R28. The gain error may be adjusted to zero as outlined in section 2.5.

Applications Information (Continued)

Monotonicity and Missing Codes: Monotonicity is a property of a D/A which requires an increasing or constant output voltage for an increasing digital input code. Monotonicity of a D/A converter does not, in itself, guarantee that an A / D built with that D/A will not have missing codes. However, the ADC1210 and ADC1211 are guaranteed to have no missing codes.
Conversion Time: The ADC1210, ADC1211 are successive approximation A/D converters requiring 13 clock intervals for a conversion to specified accuracy for the ADC1210 and 11 clocks for the ADC1211. There is a trade-off between accuracy and clock frequency due to settling time of the ladder and propagation delay through the comparator. By
modifying the hysteresis network around the comparator, conversions with 10 -bit accuracy can be made in $30 \mu \mathrm{~s}$. Replace R_{A}, R_{B} and C_{A} in Figure 5 with a $10 \mathrm{M} \Omega$ resistor between pin 23 (Comparator Output) and pin $17(+\mathbb{I N})$, and increase the clock rate to 366 kHz .
In order to prevent errors during conversion, the analog input voltage should not be allowed to change by more than $\pm 1 / 2$ LSB. This places a maximum slew rate of $12.5 \mu \mathrm{~V} / \mu \mathrm{s}$ on the analog input voltage. The usual solution to this restriction is to place a Sample and Hold in front of the A/D. For additional application information, refer to application note AN245.

ADC3511 3½-Digit Microprocessor Compatible A/D Converter ADC3711 33/4-Digit Microprocessor Compatible A/D Converter

General Description

The ADC3511 and ADC3711 (MM74C937, MM74C938-1) monolithic A/D converter circuits are manufactured using standard complementary MOS (CMOS) technology. A pulse modulation analog-to-digital conversion technique is used and requires no external precision components. In addition, this technique allows the use of a reference voltage that is the same polarity as the input voltage.
One 5V (TTL) power supply is required. Operating with an isolated supply allows the conversion of positive as well as negative voltages. The sign of the input voltage is automatically determined and indicated on the sign pin. If the power supply is not isolated, only one polarity of voltage may be converted.
The conversion rate is set by an internal oscillator. The frequency of the oscillator can be set by an external RC network or the oscillator can be driven from an external frequency source. When using the external RC network, a square wave output is available.
The ADC3511 and ADC3711 have been designed to provide addressed BCD data and are intended for use with microprocessors and other digital systems. BCD digits are selected on demand via 2 Digit Select (D0, D1) inputs. Digit Select inputs are latched by a low-to-high transition on the Digit Latch Enable (DLE) input and will remain latched as long as DLE remains high. A start conversion input and a
conversion complete output are included on both the ADC3511 and the ADC3711.

Features

- Operates from single 5V supply
- ADC3511 converts 0 to ± 1999 counts
- ADC3711 converts 0 to ± 3999 counts
- Addressed BCD outputs
- No external precision components necessary
- Easily interfaced to microprocessors or other digital systems
- Medium speed-200 ms/conversion
- TTL compatible
- Internal clock set with RC network or driven externally
- Overflow indicated by hex "EEEE" output reading as well as an overflow output

Applications

- Low cost analog-to-digital converter
- Eliminate analog multiplexing by using remote A/D converters
- Convert analog transducers (temperature, pressure, displacement, etc.) to digital transducers

Connection Diagram

Dual-In-Line Package

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Voltage at Any Pin
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating Temperature Range (T_{A})
Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

500 mW
Operating V_{CC} Range

Absolute Maximum V_{CC}
6.5 V

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds) $260^{\circ} \mathrm{C}$
ESD Susceptibility (Note 5) TBD V

DC Electrical Characteristics ADC3511CC, ADC3711CC
$4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \\ \hline \end{gathered}$	Max	Units
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage (Except $f_{i N}$)		$\mathrm{V}_{C C}-1.5$			V
$\mathrm{V}_{\mathbf{I N}(0)}$	Logical " 0 " Input Voltage (Except fiN)				1.5	v
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage (fin)		$v_{C C}-0.6$			v
$\mathrm{V}_{\mathbf{I N}(0)}$	Logical "0" Input Voltage (fin)				0.6	v
VOUT(1)	Logical "1" Output Voltage (Except 20, 21, 22, 2^{3})	$\mathrm{l}=360 \mu \mathrm{~A}$	$v_{C C}-0.4$			v
Vout(1)	Logical "1" Output Voltage ($2^{0}, 2^{1}, 2^{2}, 2^{3}$)	$\mathrm{l} \mathrm{O}=360 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-1.0$			v
Vout(0)	Logical "0" Output Voltage	$\mathrm{I}_{0}=1.6 \mathrm{~mA}$			0.4	V
$\ln (1)$	Logical "1" Input Current (SC, DLE, DO, D1)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$		0.005	1.0	$\mu \mathrm{A}$
$\operatorname{lin}(0)$	Logical "0" Input Current (SC, DLE, DO, D1)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
lcc	Supply Current	All Outputs Open		0.5	5.0	mA

AC Electrical Characteristics ADC3511CC, ADC3711CC

$V_{C C}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
fosc	Oscillator Frequency			0.6/RC		Hz
f_{IN}	Clock Frequency		100		640	kHz
fCONV	Conversion Rate	$\begin{aligned} & \text { ADC3511CC } \\ & \text { ADC3711CC } \\ & \hline \end{aligned}$	$\begin{array}{r} f_{I N} / 64,512 \\ f_{I N} / 129,024 \\ \hline \end{array}$			conversions/sec conversions/sec
tSCPW	Start Conversion Pulse Width		200		DC	ns
$\mathrm{t}_{\mathrm{pd} 0}, \mathrm{t}_{\mathrm{pd} 1}$	Propagation Delay DO, D1, to $2^{0}, 2^{1}, 2^{2}, 2^{3}$	DLE $=0 \mathrm{~V}$		2.0	5.0	$\mu \mathrm{s}$
$t_{\text {pdo }}, t_{\text {pd }} 1$	Propagation Delay DLE to 20, $\mathbf{2}^{1}, 2^{2}, 2^{3}$			2.0	5.0	$\mu \mathrm{s}$
${ }_{\text {tset-UP }}$	Set-Up Time D0, D1, to DLE	$\mathrm{t}_{\mathrm{HOLD}}=0 \mathrm{~ns}$		100	200	ns
$t_{\text {PWDLE }}$	Minimum Pulse Width Digit Latch Enable (Low)			100	200	ns

Converter Characteristics ADC3511CC, ADC3711CC $4.75 \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$,
$\mathrm{f}_{\mathrm{c}}=5$ conv. $/ \mathrm{sec}$ (ADC3511CC); 2.5 conv./sec (ADC3711CC); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
	Non-Linearity	$\begin{aligned} & V_{I N}=0-2 V \text { Full Scale } \\ & V_{I N}=0-200 \mathrm{mV} \text { Full Scale } \end{aligned}$	-0.05	± 0.025	+0.05	\% of Full-Scale (Note 3)
	Quantization Error		-1		+ 0	Counts
	Offset Error	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-0.5	+1.0	$+3.0$	mV (Note 4)
	Rollover Error		-0		+0	Counts
$\mathrm{V}_{\mathrm{IN}+}, \mathrm{V}_{\mathrm{IN} \text { - }}$	Analog Input Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-5	± 1	+5	nA

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All typicals are given for $T_{A}=25^{\circ} \mathrm{C}$.
Note 3: For the ADC3511CC: full-scale $=1999$ counts; therefore 0.025% of full-scale $=1 / 2$ count and 0.05% of full-scale $=1$ count. For the ADC3711CC: fullscale $=3999$ counts; therefore 0.025% of full-scale $=1$ count and 0.05% of full-scale $=2$ count.
Note 4: For full-scale $=2.000 \mathrm{~V}$: $1 \mathrm{mV}=1$ count for the ADC3511CC; $1 \mathrm{mV}=2$ counts for the ADC3711CC.
Note 5: Human body model, 100 pF discharged through a 1.5Ω resistor.

Block Diagram
ADC3511 3 ½-Digit A/D (*ADC3711 3 3/4-Digit A/D)

TL/H/5678-2

Applications Information

THEORY OF OPERATION

A schematic for the analog loop is shown in Figure 1. The output of SW1 is either at $V_{\text {REF }}$ or zero volts, depending on the state of the D flip-flop. If Q is at a high level, $V_{\text {OUT }}=V_{\text {REF }}$ and if Q is at a low level $V_{\text {OUT }}=0 \mathrm{~V}$. This voltage is then applied to the low pass filter comprised of R1 and C 1 . The output of this filter, V_{FB}, is connected to the negative input of the comparator, where it is compared to the analog input voltage, V_{IN}. The output of the comparator is connected to the D input of the D flip-flop. Information is then transferred from the D input to the Q and \bar{Q} outputs on the positive edge of clock. This loop forms an oscillator whose duty cycle is precisely related to the analog input voltage, V_{IN}.
An example will demonstrate this relationship. Assume the input voltage is equal to 0.500 V . If the Q output of the D flipflop is high then $V_{\text {OUT }}$ will equal $V_{\text {REF }}(2.000 \mathrm{~V})$ and V_{FB} will charge toward 2 V with a time constant equal to R1C1. At some time V_{FB} will exceed 0.500 V and the comparator output will switch to $O V$. At the next clock rising edge the Q output of the D flip-flop will switch to ground, causing $V_{\text {OUT }}$ to switch to $O V$. At this time, $V_{F B}$ will start discharging toward OV with a time constant R1C1. When V_{FB} is less than 0.5 V the comparator output will switch high. On the rising edge of the next clock the Q output of the D flip-flop will switch high and the process will repeat. There exists at the output of SW1 a square wave pulse train with positive amplitude $\mathrm{V}_{\text {REF }}$ and negative amplitude OV.

The DC value of this pulse train is:

$$
V_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}} \frac{t_{\mathrm{ON}}}{\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}}=\mathrm{V}_{\mathrm{REF}} \text { (duty cycle) }
$$

The lowpass filter will pass the DC value and then:

$$
\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}} \text { (duty cycle) }
$$

Since the closed loop system will always force $V_{F B}$ to equal $V_{I_{N}}$, we can then say that:

$$
\begin{aligned}
& V_{I N}=V_{F B}=V_{\text {REF }} \text { (duty cycle) } \\
& \text { or } \\
& \frac{V_{I N}}{V_{R E F}}=\text { (duty cycle) }
\end{aligned}
$$

The duty cycle is logically ANDed with the input frequency $f_{I N}$. The resultant frequency f equals:

$$
f=(\text { duty cycle }) \times(f / \mathbb{N})
$$

Frequency f is accumulated by counter no. 1 for a time determined by counter no. 2. The count contained in counter no. 1 is then:

$$
\begin{aligned}
& (\text { count })=\frac{f}{\left(f_{I N}\right) / N}=\frac{(\text { duty cycle }) \times\left(f_{I N}\right)}{\left(f_{I N}\right) / N} \\
& =\frac{V_{I N}}{V_{\text {REF }}} \times N
\end{aligned}
$$

For the ADC3511 $\mathrm{N}=2000$.
For the $\operatorname{ADC} 3711 \mathrm{~N}=4000$.

TL/H/5678-3

FIGURE 1. Analog Loop Schematic Pulse Modulation A/D Converter

Applications Information (Continued)

GENERAL INFORMATION

The timing diagram, shown in Figure 2, gives operation for the free running mode. Free running operation is obtained by connecting the Start Conversion input to logic " 1 " (V_{CC}). In this mode the analog input is continuously converted and the digit latches are updated at a rate equal to $64,512 \times$ $1 / \mathrm{f}_{\mathrm{IN}}$ for the ADC3511, or 129,024 for the ADC3711.

The rising edge of the Conversion Complete output indicates that new information has been transferred from the internal counter to the digit latches. This information will remain in the digit latches until the next low-to-high transition of the Conversion Complete output. A logic " 1 " will be maintained on the Conversion Complete output for a time equal to $64 \times 1 / \mathrm{f}_{\mathrm{N}}$ on the ADC3511, or $128 \times 1 / \mathrm{f}_{\mathrm{N}}$ on the ADC3711.

Figure 3 gives the operation using the Start Conversion input. It is important to note that the Start Conversion input and Conversion Complete output do not influence the actual analog-to-digital conversion in any way. Internally the ADC3511 and ADC3711 are always continuously converting the analog voltage present at their inputs. The Start Conversion input is used to control the transfer of information from the internal counter to the digit latches.

An RS latch on the Start Conversion input allows a broad range of input pulse widths to be used on this signal. As shown in Figure 3, the Conversion Complete output goes to a logic " 0 " on the rising edge of the Start Conversion pulse and goes to a logic " 1 " some time later when the new conversion is transferred from the internal counter to the display latch. Since the Start Conversion pulse can occur at any time during the conversion cycle, the amount of time from Start Conversion to Conversion Complete will vary. The maximum time is $64,512 \times 1 / \mathrm{f}_{\mathrm{IN}}\left(129,024 \times 1 / \mathrm{f}_{\mathrm{IN}}\right.$ for the ADC3711) and the minimum time is $256 \times 1 / \mathrm{f}_{\mathrm{IN}}(512 \times$ 1/fin) for the ADC3711).

SYSTEM DESIGN CONSIDERATIONS

The ADC3511 and ADC3711 have reduced the problem of high resolution, high accuracy analog-to-digital conversion to nearly the level of simplicity, economy, and compactness usually associated with digital logic circuitry. However, they are truly high precision analog devices, and require the same kind of design considerations given to all analog circuits. While great care has been taken in the design of the ADC3511 and ADC3711 to make their application as easy as possible, in order to utilize them to their full performance potential, good grounding, power supply distribution, decoupling, and regulation techniques should be exercised.

FIGURE 2. Conversion Cycle Timing Diagram for Free Running Operation (Times Shown in Parentheses are for the ADC3711)

TL/H/5678-4
FIGURE 3. Conversion Cycle Timing Diagram Operating with Start Conversion Input

DIGIT SELECT INPUTS			SELECTED DIGIT
DLE	D1	DO	
L	L	L	Digit 0（LSD）
L	L	H	Digit 1
L	H	L	Digit 2
L	H	H	Digit 3（MSD）
H	X	X	Unchanged

$\mathrm{L}=$ low logic level
$H=$ high logic level
$X=$ irrelevant logic level

The value of the Selected Digit is presented at the $2^{3}, 2^{2}, 2^{1}$ and 2^{0} outputs in BCD format．

Note 1：If the value of a digit changes while it is selected，that change will be reflected at the outputs．
Note 2：An overflow condition will be indicated by a high level on the OVERFLOW output（pin 5）and E16 in all digits．
Note 3：The sign of the input voltage，when these devices are operated in the bipolar mode，is indicated by the SIGN output（pin 8）．A high level indicates a positive voltage，a low level a negative．

Timing Diagrams

Typical Applications

Figure 4 shows the ADC3511 and ADC3711 connected to convert 0 to +2.000 volts full scale operating from a non－ isolated power supply．（Note that the ADC3511 converts 0 to +1999 counts full scale，while the ADC3711 converts 0 to +3999 counts full scale．）In this configuration the SIGN output（pin 8）should be ignored．Higher voltages can，of course，be converted by placing fixed dividers in the inputs， while lower voltages can be converted by placing fixed di－ viders in the feedback loop，as shown in Figure 6.
Figures 5 and 6 show systems operating with isolated sup－ plies that will convert both polarities of inputs． 60 Hz com－ mon－mode noise can become a problem in these config－
urations，so shielded transformers have been shown in the figures．The necessity for，and the type of shielding needed depends on the performance requirements，and the actual applications．
The filter capacitors connected to V_{FB}（pin 12）and $\mathrm{V}_{\text {FILTER }}$ （pin 11）should be of a low leakage variety．In the examples shown every 1.0 nA of leakage will cause approximately 0.1 mV error $\left(1.0 \times 10^{-9} \mathrm{~A} \times 100 \mathrm{k} \Omega=0.1 \mathrm{mV}\right)$ ．If the currents in both capacitors are exactly equal however，little error will result since the source impedances driving both capacitors are approximately matched．

National Semiconductor Corporation

ADD3501 3½ Digit DVM with Multiplexed 7-Segment Output

General Description

The ADD3501 monolithic DVM circuit is manufactured using standard complementary MOS (CMOS) technology. A pulse modulation analog-to-digital conversion technique is used and requires no external precision components. In addition, this technique allows the use of a reference voltage that is the same polarity as the input voltage.
One 5 V (TTL) power supply is required. Operating with an isolated supply allows the conversion of positive as well as negative voltages. The sign of the input voltage is automatically determined and output on the sign pin. If the power supply is not isolated, only one polarity of voltage may be converted.

The conversion rate is set by an internal oscillator. The frequency of the oscillator can be set by an external RC network or the oscillator can be driven from an external frequency source. When using the external RC network, a square wave output is available. It is important to note that great care has been taken to synchronize digit multiplexing with the A/D conversion timing to eliminate noise due to power supply transients.
The ADD3501 has been designed to drive 7-segment multiplexed LED displays directly with the aid of external digit buffers and segment resistors. Under condition of overrange, the overflow output will go high and the display will read + OFL or -OFL, depending on whether the input voltage is positive or negative. In addition to this, the most significant digit is blanked when zero.
A start conversion input and a conversion complete output are included on all 4 versions of this product.

Features

- Operates from single 5 V supply
- Converts OV to $\pm 1.999 \mathrm{~V}$
- Multiplexed 7 -segment
- Drives segments directly
- No external precision component necessary
- Accuracy specified over temperature
- Medium speed - 200ms/conversion
- Internal clock set with RC network or driven externally

■ Overrange Indicated by +OFL or -OFL display reading and OFLO output

- Analog inputs in applications shown can withstand ± 200 Volts

Applications

- Low cost digital power supply readouts
- Low cost digital multimeters
- Low cost digital panel meters
- Eliminate analog multiplexing by using remote A/D converters
- Convert analog transducers (temperature, pressure, displacement, etc.) to digital transducers

Connection Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Voltage at Any Pin
$$
-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}
$$
$$
\text { Operating Temperature Range }\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$
ESD Susceptibility (Note 3)

Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$	800 mW
derate at $\theta_{J A(M A X)}=125^{\circ} \mathrm{C} /$ Watt	
above $T_{A}=25^{\circ} \mathrm{C}$	
Operating V_{CC} Range	4.5 V to 6.0 V
Absolute Maximum $V_{C C}$	6.5 V
Lead Temp. (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics ADD3501

$4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V}$, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ(2)	Max	Units
$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage		$V_{C C}-1.5$			V
$\mathrm{V}_{\mathrm{IN}(0)}$	Logical " 0 " Input Voltage				1.5	V
V OUT(0)	Logical "0" Output Voltage (All Digital Outputs except Digit Outputs)	$\mathrm{l}_{0}=1.1 \mathrm{~mA}$			0.4	V
V OUT(0)	Logical "0" Output Voltage (Digit Outputs)	$\mathrm{I}_{0}=0.7 \mathrm{~mA}$			0.4	V
VOUT(1)	Logical "1" Output Voltage (All Segment Outputs)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=50 \mathrm{mA@} \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=30 \mathrm{mA@} \mathrm{~T}_{J}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{C C}-1.6 \\ & \mathrm{~V}_{\mathrm{CC}}-1.6 \end{aligned}$	$\begin{aligned} & V_{C C}-1.3 \\ & V_{C C}-1.3 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage (All Digital Outputs except Segment Outputs)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=500 \mu \mathrm{~A} \text { (Digit Outputs) } \\ & \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \text { (Conv. Complete, } \\ & +/-, \text { Oflo Outputs) } \end{aligned}$	$V_{C C}-0.4$			V
Isource	Output Source Current (Digit Outputs)	$\mathrm{V}_{\text {OUT }}=1.0 \mathrm{~V}$	2.0			mA
$\underline{1 N(1)}$	Logical "1" Input Current (Start Conversion)	$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
${ }^{\operatorname{IN}(0)}$	Logical " 0 " Input Current (Start Conversion)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-1.0			$\mu \mathrm{A}$
ICC	Supply Current	Segments and Digits Open		0.5	10	mA
fosc	Oscillator Frequency			0.6/RC		kHz
f_{IN}	Clock Frequency		100		640	kHz
fc_{C}	Conversion Rate			$\mathrm{f}_{\mathrm{IN}} / 64,512$		conv./sec
$\mathrm{f}_{\text {MUX }}$	Digit Mux Rate			$\mathrm{f}_{\mathrm{I}} / 256$		Hz
$t_{\text {BLANK }}$	Inter Digit Blanking Time			1/(32f ${ }_{\text {MUX }}$)		sec
tSCPW	Start Conversion Pulse Width		200		DC	ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All typicals given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Electrical Characteristics ADD3501

$t_{C}=5$ conversions/second, $0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Non-Linearity	$\mathrm{V}_{\text {IN }}=0-2 \mathrm{~V}$ Full Scale $\mathrm{V}_{\mathrm{IN}}=0-200 \mathrm{mV}$ Full Scale	$\begin{aligned} & -0.05 \\ & -0.05 \end{aligned}$	$\begin{aligned} & \pm 0.025 \\ & \pm 0.025 \end{aligned}$	$\begin{aligned} & +0.05 \\ & +0.05 \end{aligned}$	$\begin{gathered} \% \text { of } \\ \text { full scale } \end{gathered}$
Quantization Error		-1		+ 0	counts
Offset Error, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-0.5	+1.5	+3	mV
Rollover Error		-0		+0	counts
Analog Input Current $\left(\mathrm{V}_{\mathbb{I N}}+, \mathrm{V}_{\mathrm{IN}^{-}}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-5	± 0.5	+5	nA

Block Diagram

Theory of Operation

A schematic for the analog loop is shown in Figure 1. The output of SW1 is either at $V_{\text {REF }}$ or zero volts, depending on the state of the D flip-flop. If Q is at a high level $V_{\text {OUT }}=V_{\text {REF }}$ and if Q is at a low level $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$. This voltage is then applied to the low pass filter comprised of R1 and C 1 . The output of this filter, V_{FB}, is connected to the negative input of the comparator, where it is compared to the analog input voltage, V_{IN}. The output of the comparator is connected to the D input of the D flip-flop. Information is then transferred from the D input to the Q and Q outputs on the positive edge of clock. This loop forms an oscillator whose duty cycle is precisely related to the analog input voltage, V_{IN}.
An example will demonstrate this relationship. Assume the input voltage is equal to 0.500 V . If the Q output of the D flipflop is high then $V_{\text {OUT }}$ will equal $V_{\text {REF }}(2.000 \mathrm{~V})$ and $V_{F B}$ will charge toward 2 V with a time constant equal to $\mathrm{R}_{1} \mathrm{C}_{1}$. At some time V_{FB} will exceed 0.500 V and the comparator output will switch to OV . At the next clock rising edge the Q output of the D flip-flop will switch to ground, causing VOUT to switch to 0 V . At this time V_{FB} will start discharging toward 0 V with a time constant $\mathrm{R}_{1} \mathrm{C}_{1}$. When V_{FB} is less than 0.5 V the comparator output will switch high. On the rising edge of the next clock the Q output of the D flip-flop will switch high and the process will repeat. There exists at the output of SW1 a square wave pulse train with positive amplitude $\mathrm{V}_{\text {REF }}$ and negative amplitude OV.
The DC value of this pulse train is:
$V_{\text {OUT }}=V_{\text {REF }}\left(\frac{T_{\text {ON }}}{\text { TON }+T_{\text {OFF }}}\right)=V_{\text {REF }}$ (duty cycle)

The lowpass filter will pass the DC value and then:

$$
V_{F B}=V_{\text {REF }} \text { (duty cycle) }
$$

Since the closed loop system will always force V_{FB} to equal $\mathrm{V}_{\text {IN }}$, we can then say that:

$$
\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}} \text { (duty cycle) }
$$

or

$$
\frac{\mathrm{V}_{\mathrm{IN}}}{\mathrm{~V}_{\mathrm{REF}}}=\text { (duty cycle) }
$$

The duty cycle is logically ANDed with the input frequency $\mathrm{f}_{\mathrm{I} N}$. The resultant frequency f equals:

$$
f=(\text { duty cycle }) \times(\text { clock })
$$

Frequency f is accumulated by counter no. 1 for a time determined by counter no. 2 . The count contained in counter no. 1 is then:

$$
\begin{aligned}
(\text { count }) & =\frac{f}{(\text { clock }) / N}=\frac{(\text { duty cycle }) \times(\text { clock })}{(\text { clock }) / N} \\
& =\frac{V_{I N}}{V_{\text {REF }}} \times N
\end{aligned}
$$

For the ADD3501, $\mathrm{N}=2000$.

Schematic Diagram

Figure 1. Analog Loop Schematic Pulse Modulation A/D Converter

General Information

The timing diagram, shown in Figure 2, gives operation for the free running mode. Free running operation is obtained by connecting the Start Conversion input to logic " 1 " (V_{C}). In this mode the analog input is continuously converted and the display is updated at a rate equal to $64,512 \times 1 / \mathrm{f}_{\mathrm{I}} \mathrm{N}$.
The rising edge of the Conversion Complete output indicates that new information has been transferred from the internal counter to the display latch. This information will remain in the display latch until the next low-to-high transition of the Conversion Complete output. A logic " 1 " will be maintained on the Conversion Complete output for a time equal to $64 \times 1 / \mathrm{f}_{\mathrm{I}} \mathrm{N}$.
Figure 3 gives the operation using the Start Conversion input. It is important to note that the Start Conversion input and Conversion Complete output do not influence the actual analog-to-digital conversion in any way.

Internally the ADD3501 is always continuously converting the analog voltage present at its inputs. The Start Conversion input is used to control the transfer of information from the internal counter to the display latch.
An RS latch on the Start Conversion input allows a broad range of input pulse widths to be used on this signal. As shown in Figure 3, the Conversion Complete output goes to a logic " 0 " on the rising edge of the Start Conversion pulse and goes to a logic " 1 " some time later when the new conversion is transferred from the internal counter to the display latch. Since the Start Conversion pulse can occur at any time during the conversion cycle, the amount of time from Start Conversion to Conversion Complete will vary. The maximum time is $64,512 \times 1 / \mathrm{f}_{\mathrm{N}}$ and the minimum time is $256 \times 1 / \mathrm{f} / \mathrm{N}$.

Timing Waveforms

Figure 2. Conversion Cycle Timing Diagram for Free Running Operation

Figure 3. Conversion Cycle Timing Diagram Operating with Start Conversion Input

Applications

SYSTEM DESIGN CONSIDERATIONS

Perhaps the most important thing to consider when designing a system using the ADD3501 is power supply noise on the V_{CC} and ground lines. Because a single power supply is used and currents in the 300 mA range are being switched, good circuit layout techniques cannot be overemphasized. Great care has been exercised in the design of the ADD3501 to minimize these problems but poor printed circuit layout can negate these features.
Figures 4, 5, and 6 show schematics of DVM systems. An attempt has been made to show, on these schematics, the proper distribution for ground and V_{CC}. To help isolate digital and analog portions of the circuit, the analog $V_{C C}$ and ground have been separated from the digital $V_{C C}$ and ground. Care must be taken to eliminate high current from flowing in the analog V_{CC} and ground wires. The most effective method of accomplishing this is to use a single ground point and a single $V_{C C}$ point where all wires are brought together. In addition to this the conductors must be of sufficient size to prevent significant voltage drops.
To prevent switching noise from causing jitter problems, a voltage regulator with good high frequency response is necessary. The LM309 and the LM340-5 voltage regulators both function well and are shown in Figures 4, 5, and 6. Adding more filtering than is shown will in general increase
the jitter rather than decrease it. The most important characteristic of transients on the V_{CC} line is the duration of the transient and not its amplitude.
Figure 4 shows a DPM system which converts OV to 1.999 V operating from a non-isolated power supply. In this configuration the sign output could be + (logic " 1 ") or - (logic " 0 ") and it should be ignored. Higher voltages could be converted by placing a fixed divider on the input; lower voltages could be converted by placing a fixed divider on the feedback, as shown in Figure 6.
Figures 5 and 6 show systems operating with an isolated supply that will convert positive and negative inputs. 60 Hz common mode input becomes a problem in this configuration and a transformer with an electrostatic shield between primary and secondary windings is shown. The necessity for using a shielded transformer depends on the performance requirements and the actual application.
The filter capacitors connected to $V_{F B}$ (pin 14) and $V_{F L T}$ (pin 11) should be low leakage. In the application examples shown every 1.0 nA of leakage current will cause 0.1 mV error ($1.0 \times 10^{-9} \mathrm{~A} \times 100 \mathrm{k} \Omega=0.1 \mathrm{mV}$). If the leakage current in both capacitors is exactly the same no error will result since the source impedances driving them are matched.

Figure 4. 3½-Digit DPM, + 1.999 Volts Full Scale

Figure 5. $311 / 2$-Digit DPM, ± 1.999 Volts Full Scale

Figure 6. $31 / 2$-Digit DVM, Four Decade, $\pm 0.2 \mathrm{~V}, \pm 2 \mathrm{~V}, \pm 20 \mathrm{~V}$ and $\pm 200 \mathrm{~V}$ Full Scale

National Semiconductor Corporation

ADD3701 33/4 Digit DVM with Multiplexed 7-Segment Output

General Description

The ADD3701 (MM74C936-1) monolithic DVM circuit is manufactured using standard complementary MOS (CMOS) technology. A pulse modulation analog-to-digital conversion technique is used and requires no external precision components. In addition, this technique allows the use of a reference voltage that is the same polarity as the input voltage.
One 5 V (TTL) power supply is required. Operating with an isolated supply allows the conversion of positive as well as negative voltages. The sign of the input voltage is automatically determined and output on the sign pin. If the power supply is not isolated, only one polarity of voltage may be converted.
The conversion rate is set by an internal oscillator. The frequency of the oscillator can be set by an external RC network or the oscillator can be driven from an external frequency source. When using the external RC network, a square wave output is available. It is important to note that great care has been taken to synchronize digit multiplexing with the A/D conversion timing to eliminate noise due to power supply transients.
The ADD3701 has been designed to drive 7-segment multiplexed LED displays directly with the aid of external digit buffers and segment resistors. Under condition of overrange, the overflow output will go high and the display will read +OFL or -OFL, depending on whether the input voltage is positive or negative. In addition to this, the most significant digit is blanked when zero.
A start conversion input and a conversion complete output are included.

Features

- Operates from single 5 V supply
- Converts 0 to ± 3999 counts
- Multiplexed 7-segment
- Drives segments directly
- No external precision components necessary
- Accuracy specified over temperature
- Medium speed - $400 \mathrm{~ms} /$ conversion
- Internal clock set with RC network or driven externally
- Overrange indicated by + OFL or -OFL display reading and OFLO output
- Analog inputs in applications shown can withstand ± 200 Volts

Applications

■ Low cost digital power supply readouts

- Low cost digital multimeters
- Low cost digital panel meters
- Eliminate analog multiplexing by using remote A/D converters
- Convert analog transducers (temperature, pressure, displacement, etc.) to digital transducers
- Indicators and displays requiring readout up to 3999 counts

Connection Diagram

Order Number ADD3701CCN
See NS Package Number N28B

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Voltage at Any Pin except

Start Conversion

Voltage at Start Conversion
ESD Susceptibility (Note 5)

$$
\begin{array}{r}
-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V} \\
-0.3 \mathrm{~V} \text { to }+15.0 \mathrm{~V} \\
\mathrm{TBDV}
\end{array}
$$

Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	800 mW
Operating V_{CC} Range	4.5 V to 6.0 V

Absolute Maximum $V_{C C}$
6.5 V

Lead Temp. (Soldering, 10 seconds) $260^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics

$4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.25 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise specified.

	Parameter	Conditions	Min	Typ ${ }^{2}$	Max	Units
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage		$\mathrm{V}_{C C}-1.5$			V
$\mathrm{V}_{\text {IN }(0)}$	Logical "0" Input Voltage				1.5	V
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0" Output Voltage (All Digital Outputs Except Digital Outputs)	$\mathrm{l}_{0}=1.1 \mathrm{~mA}$			0.4	V
$V_{\text {OUT(0) }}$	Logical "0" Output Voltage (Digit Outputs)	$\mathrm{I}_{0}=0.7 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {OUT(1) }}$	Logical "1" Output Voltage (All Segment Outputs)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA} @ T_{J}=25^{\circ} \mathrm{C} V_{C C}=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA} @ T_{J}=100^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.6 \\ & \mathrm{~V}_{\mathrm{CC}}-1.6 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}-1.3 \\ & V_{C C}-1.3 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{V}_{\text {OUT(1) }}$	Logical " 1 " Output Voltage (All Digital Outputs Except Segment Outputs)	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=500 \mu \mathrm{~A} \text { (Digit Outputs) } \\ & \begin{aligned} & \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \text { (Conv. Complete, } \\ &+/- \text { OFLO Outputs) } \end{aligned} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}-0.4$			V
IsOURCE	Output Source Current (Digital Outputs)	$\mathrm{V}_{\text {OUT }}=1.0 \mathrm{~V}$	2.0			mA
${ }_{\operatorname{lin}(1)}$	Logical "1" Input Current (Start Conversion)	$V_{\text {IN }}=15 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\underline{1 N(0)}$	Logical "0" Input Current (Start Conversion)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-1.0			$\mu \mathrm{A}$
ICC	Supply Current	Segments and Digits Open		0.5	10	mA
fosc	Oscillator Frequency			0.6/RC		kHz
$\mathrm{fin}^{\text {d }}$	Clock Frequency		100		640	kHz
f_{C}	Conversion Rate			$\mathrm{fin}^{1} / 129,024$		conv./sec
$\mathrm{f}_{\text {MUX }}$	Digit Mux Rate			$\mathrm{fin}^{1} 512$		Hz
$t_{\text {BLANK }}$	Inter Digit Blanking Time			1/(32f ${ }_{\text {MUX }}$)		seconds
tscPw	Start Conversion Pulse Width		200		DC	ns

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All typicals given for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Full scale $=4000$ counts; therefore 0.025% of full scale $=1$ count and 0.05% of full scale $=2$ counts.
Note 4: For 2.000 Volts full scale, $1 \mathrm{mV}=2$ counts.
Note 5: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Electrical Characteristics (Continued)

$\mathrm{t}_{\mathrm{C}}=2.5$ conversions/second, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Conditions	Min	Typ ${ }^{2}$	Max	Units
Non-Linearity of Output Reading	$\begin{aligned} & V_{I N}=0-2 V \text { Full Scale } \\ & V_{I N}=0-200 \mathrm{mV} \text { Full Scale } \end{aligned}$	$\begin{aligned} & \hline-0.05 \\ & -0.05 \\ & \hline \end{aligned}$	$\begin{array}{r} \pm 0.025 \\ \pm 0.025 \\ \hline \end{array}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \\ & \hline \end{aligned}$	\% full scale (Note 3)
Quantization Error		-1		+0	counts
Offset Error, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-0.5	+1.5	+3	mV (Note 4)
Rollover Error		-0		+0	counts
Analog Input Current $\left(\mathrm{V}_{\mathrm{IN}^{+}}+\mathrm{V}_{\mathrm{IN}^{-}}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-5	± 1	+5	nA

Block Diagram

Theory of Operation

A schematic for the analog loop is shown in Figure 1. The output of SW1 is either at VREF or zero volts, depending on the state of the D flip-flop. If Q is at a high level, $V_{\text {OUT }}=V_{\text {REF }}$ and if Q is at a low level $V_{\text {OUT }}=0 \mathrm{~V}$. This voltage is then applied to the low pass filter comprised of R1 and C 1 . The output of this filter, V_{FB}, is connected to the negative input of the comparator, where it is compared to the analog input voltage, V_{IN}. The output of the comparator is connected to the D input of the D flip-flop. Information is then transferred from the D input to the Q and Q outputs on the positive edge of clock. This loop forms an oscillator whose duty cycle is precisely related to the analog input voltage, V_{IN}.
An example will demonstrate this relationship. Assume the input voltage is equal to 0.500 V . If the Q output of the D flipflop is high then $\mathrm{V}_{\text {OUT }}$ will equal $\mathrm{V}_{\text {REF }}(2.000 \mathrm{~V})$ and V_{FB} will charge toward 2 V with a time constant equal to $\mathrm{R}_{1} \mathrm{C}_{1}$. At some time V_{FB} will exceed 0.500 V and the comparator output will switch to OV . At the next clock rising edge the Q output of the D flip-flop will switch to ground, causing $V_{\text {OUT }}$ to switch to 0 V . At this time V_{FB} will start discharging toward 0 V with a time constant $\mathrm{R}_{1} \mathrm{C}_{1}$. When V_{FB} is less than 0.5 V the comparator output will switch high. On the rising edge of the next clock the Q output of the D flip-flop will switch high and the process will repeat. There exists at the output of SW1 a square wave pulse train with positive amplitude $\mathrm{V}_{\text {REF }}$ and negative amplitude 0 V .
The DC value of this pulse train is:

$$
V_{\text {OUT }}=V_{\text {REF }} \frac{t_{\text {ON }}}{t_{\text {ON }}+t_{\text {OFF }}}=V_{\text {REF }} \text { (duty cycle) }
$$

The lowpass filter will pass the DC value and then:

$$
\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}} \text { (duty cycle) }
$$

Since the closed loop system will always force $V_{F B}$ to equal $V_{I N}$, we can then say that:

$$
\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{REF}} \text { (duty cycle) }
$$

or

$$
\left.\frac{V_{I N}}{V_{\text {REF }}}=\text { (duty cycle }\right)
$$

The duty cycle is logically ANDed with the input frequency $f_{I N}$. The resultant frequency f equals:

$$
f=(\text { duty cycle }) \times(\text { clock })
$$

Frequency f is accumulated by counter no. 1 for a time determined by counter no. 2. The count contained in counter no. 1 is then:

$$
\begin{aligned}
(\text { count }) & =\frac{f}{(\text { clock }) / \mathrm{N}}=\frac{(\text { duty cycle }) \times(\text { clock })}{(\text { clock }) / \mathrm{N}} \\
& =\frac{V_{I N}}{V_{\text {REF }}} \times N
\end{aligned}
$$

For the ADD3701 $\mathrm{N}=4000$.

Schematic Diagram

FIGURE 1. Analog Loop Schematic Pulse Modulation A/D Converter

General Information

The timing diagram, shown in Figure 2, gives operation for the free running mode. Free running operation is obtained by connecting the Start Conversion input to logic "1" (VCC). In this mode the analog input is continuously converted and the display is updated at a rate equal to $129,024 \times 1 / \mathrm{f}_{\mathrm{I}}$.
The rising edge of the Conversion Complete output indicates that new information has been transferred from the internal counter to the display latch. This information will remain in the display latch until the next low-to-high transition of the Conversion Complete output. A logic " 1 " will be maintained on the Conversion Complete output for a time equal to $128 \times 1 / \mathrm{f}_{\mathrm{N}} \mathrm{N}$.
Figure 3 gives the operation using the Start Conversion input. It is important to note that the Start Conversion input and Conversion Complete output do not influence the actual analog-to-digital conversion in any way.

Internally the ADD3701 is always continuously converting the analog voltage present at its input. The Start Conversion input is used to control the transfer of information from the internal counter to the display latch.
An RS latch on the Start Conversion input allows a broad range of input pulse widths to be used on this signal. As shown in Figure 3, the Conversion Complete output goes to a logic " 0 " on the rising edge of the Start Conversion pulse and goes to a logic " 1 " some time later when the new conversion is transferred from the internal counter to the display latch. Since the Start Convërsion pulse can occur at any time during the conversion cycle, the amount of time from Start Conversion to Conversion Complete will vary. The maximum time is $129,024 \times 1 / \mathrm{fIN}_{\mathrm{N}}$ and the minimum time is $512 \times 1 / \mathrm{f}_{\mathrm{IN}}$.

Timing Waveforms

FIGURE 2. Conversion Cycle Timing Diagram for Free Running Operation

FIGURE 3. Conversion Cycle Timing Diagram Operating with Start Conversion Input

Applications

SYSTEM DESIGN CONSIDERATIONS

Perhaps the most important thing to consider when designing a system using the ADD3701 is power supply noise on the $V_{C C}$ and ground lines. Because a single power supply is used and currents in the 300 mA range are being switched, good circuit layout techniques cannot be overemphasized. Great care has been exercised in the design of the ADD3701 to minimize these problems but poor printed circuit layout can negate these features.
Figures 4, 5, and 6 show schematics of DVM systems. An attempt has been made to show, on these schematics, the proper distribution for ground and V_{Cc}. To help isolate digital and analog portions of the circuit, the analog $V_{C C}$ and ground have been separated from the digital $V_{C C}$ and ground. Care must be taken to eliminate high current from flowing in the analog $V_{C C}$ and ground wires. The most effective method of accomplishing this is to use a single ground point and a single V_{CC} point where all wires are brought together. In addition to this the conductors must be of sufficient size to prevent significant voltage drops.
To prevent switching noise from causing jitter problems, a voltage regulator with good high frequency response is necessary. The LM309 and the LM340-5 voltage regulators all function well and are shown in Figures 4, 5, and 6. Adding more filtering than is shown will in general increase the jitter rather than decrease it.

The most important characteristics of transients on the V_{CC} line is the duration of the transient and not its amplitude.
Figure 4 shows a DPM system which converts 0 to +3.999 counts operating from a non-isolated power supply. In this configuration the sign output could be + (logic " 1 ") or (logic " 0 ") and it should be ignored. Higher voltages could be converted by placing a fixed divider on the input; lower voltages could be converted by placing a fixed divider on the feedback, as shown in Figure 5.
Figures 5 and 6 show systems operating with an isolated supply that will convert positive and negative inputs. 60 Hz common mode input becomes a problem in this configuration and a transformer with an electrostatic shield between primary and secondary windings is shown. The necessity for using a shielded transformer depends on the performance requirements and the actual application.
The filter capacitors connected to V_{FB} (pin 14) and $\mathrm{V}_{\mathrm{FLT}}$ (pin 11) should be low leakage. In the application examples shown every 1.0 nA of leakage current will cause 0.1 mV error $\left(1.0 \times 10^{-9} \mathrm{~A} \times 100 \mathrm{k} \Omega=0.1 \mathrm{mV}\right)$. If the leakage current in both capacitors is exactly the same no error will result since the source impedances driving them are matched.

Figure 4. 33/4-Digital DPM, + 3.999 Count Full Scale

Figure 5. $33 / 4$-Digit DPM, ± 3.999 Counts Full Scale

Figure 6. $3 \sqrt[3]{4}$-Digit DVM, Four Decade, $\pm 0.4 \mathrm{~V}, \pm 4 \mathrm{~V}, \pm 40 \mathrm{~V}$, and $\pm 400 \mathrm{~V}$ Full Scale

Figure 7. ADD3701 Driving Liquid Crystal Display

DM2502, DM2503, DM2504 Successive Approximation Registers

General Description

The DM2502, DM2503 and DM2504 are 8-bit and 12-bit TTL registers designed for use in successive approximation A/D converters. These devices contain all the logic and control circuits necessary in combination with a D/A converter to perform successive approximation analog-to-digital conversions.
The DM2502 has 8 bits with serial capability and is not expandable. The DM2503 has 8 bits and is expandable without serial capability. The DM2504 has 12 bits with serial capability and expandability.
All three devices are available in ceramic DIP, ceramic flatpak, and molded Epoxy-B DIPs. The DM2502, DM2503 and

DM2504 operate over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the DM2502C, DM2503C and DM2504C operate over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Complete logic for successive approximation A/D converters
- 8-bit and 12-bit registers
- Capable of short cycle or expanded operation
- Continuous or start-stop operation
- Compatible with D/A converters using any logic code
- Active low or active high logic outputs
- Use as general purpose serial-to-parallel converter or ring counter

Logic Diagram

Connection Diagrams (Dual-In-Line and Flat Packages)

DM2502, DM2503

Order Number DM2502J, DM2502CJ, DM2503J
or DM2503CJ
See NS Package J16A Order Number DM2502CN or DM2503CN See NS Package N16A
Order Number DM2502W, DM2502CW, DM2503W, or DM2503CW
See NS Package W16A

DM2504

TOP VIEW
TL/F/5702-1
Order Number DM2504F or DM2504CJ See NS Package F24D
Order Number DM2504J or DM2504CJ See NS Package J24A
Order Number DM2504CN See NS Package N24A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Operating Conditions

Supply Voltage, V_{CC} DM2502C, DM2503C,	4.75	5.25	Vin
DM2504C	Max	Units	
DM2502, DM2503, DM2504	4.5	5.5	V
Temperature, TA DM2502C, DM2503C,	0	+70	${ }^{\circ} \mathrm{C}$
DM2504C DM2502, DM2503	-55	+125	${ }^{\circ} \mathrm{C}$
DM2504			

Electrical Characteristics (Notes 2 and 3) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Logical "1" Input Voltage (V_{IH})	$\mathrm{V}_{\mathrm{CC}}=$ Min	2.0			V
Logical "1" Input Current (l\|, CP Input D, \bar{E}, \bar{S} Inputs All Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{HH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{HH}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{array}{r} 40 \\ 80 \\ 1.0 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ mA
Logical "0" Input Voltage ($\mathrm{V}_{\text {IL }}$)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$			0.8	V
Logical "0" Input Current (IIL) CP, $\overline{\mathrm{S}}$ Inputs D, E Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -1.0 \\ -1.0 \\ \hline \end{array}$	$\begin{array}{r} -1.6 \\ -3.2 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Logical "1" Output Voltage (V) V_{OH})	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=0.48 \mathrm{~mA}$	2.4	3.6		V
Output Short Circuit Current (Note 4) (los)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max; } \mathrm{V}_{\mathrm{OUT}}=0.0 \mathrm{~V} ; \\ & \text { Output High; CP, } \mathrm{D}, \overline{\mathrm{~S}}, \text { High; } \overline{\mathrm{E}} \text { Low } \end{aligned}$	-10	-20	-45	mA
Logical '0"' Output Voltage (V_{OL})	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{OL}}=9.6 \mathrm{~mA}$		0.2	0.4	V
Supply Current (ICC) DM2502C DM2502 DM2503C DM2503 DM2504C DM2504	$\mathrm{V}_{\mathrm{CC}}=$ Max, All Outputs Low		$\begin{aligned} & 65 \\ & 65 \\ & 60 \\ & 60 \\ & 90 \\ & 90 \\ & \hline \end{aligned}$	$\begin{gathered} 95 \\ 85 \\ 90 \\ 80 \\ 124 \\ 110 \\ \hline \end{gathered}$	mA mA mA mA mA mA
Propagation Delay to a Logical "0" From CP to Any Output ($t_{\text {pdo }}$)		10	18	28	ns
Propagation Delay to a Logical " 0 " From \bar{E} to Q7 (Q11) Output ($\mathrm{t}_{\mathrm{pdo}}$)	CP High, $\overline{\text { S }}$ Low DM2503, DM2503C, DM2504, DM2504C Only		16	24	ns
Propagation Delay to a Logical " 1 " From CP to Any Output ($\mathrm{t}_{\mathrm{pd} 1}$)		10	26	38	ns
Propagation Delay to a Logical " 1 " From E to Q7 (Q11) Output ($t_{p d 1}$)	CP High, $\overline{\text { S }}$ Low DM2503, DM2503C, DM2504, DM2504C Only		13	19	ns
Set-Up Time Data Input ($\mathrm{ts}_{\text {S }}(\mathrm{D})$)		-10	4	8	ns
Set-Up Time Start Input ($\mathrm{t}_{\mathbf{S}(\mathrm{S}}$)		0	9	16	ns
Minimum Low CP Width (tpwL)			30	42	ns
Minimum High CP Width (tpwH)			17	24	ns
Maximum Clock Frequency ($\mathrm{f}_{\text {MAX }}$)		15	21		MHz

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified $\mathrm{min} / \mathrm{max}$ limits apply across the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range for the DM 2502 , DM 2503 and DM 2504 , and across the $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ range for the DM2502C, DM2503C and DM2504C. All typicals are given for $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.
Note 4: Only one output at a time should be shorted.

Application Information

OPERATION

The registers consist of a set of master latches that act as the control elements in the device and change state on the input clock high-to-low transition and a set of slave latches that hold the register data and change on the input clock low-to-high transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the DM2502 and DM2504 when the clock goes from low-to-high. There are no restrictions on the data input; it can change state at any time except during a short interval centered about the clock low-to-high transition. At the same time that data enters the register bit the next less significant bit register is set to a low ready for the next iteration.
The register is reset by holding the $\overline{\mathrm{S}}$ (Start) signal low during the clock low-to-high transition. The register synchronously resets to the state Q7 (11) low, and all the remaining register outputs high. The Q CC (Conversion Complete) signal is also set high at this time. The $\overline{\mathrm{S}}$ signal should not be brought back high until after the clock low-to-high transition in order to guarantee correct resetting. After the clock has gone high resetting the register, the $\overline{\mathrm{S}}$ signal must be removed. On the next clock low-to-high transition the data on the D input is set into the Q7 (11) register bit and the Q6 (10) register bit is set to a low ready for the next clock cycle. On the next clock low-to-high transition data enters the Q6 (10) register bit and Q5 (9) is set to a low. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into QO, the Qcc signal goes low, and the register is inhibited from further change until reset by a Start signal.
The DM2502, DM2503 and DM2504 have a specially tailored two-phase clock generator to provide nonoverlapping two-phase clock pulses (i.e., the clock waveforms intersect below the thresholds of the gates they drive). Thus, even at
very slow dV/dt rates at the clock input (such as from relatively weak comparator outputs), improper logic operation will not result.

LOGIC CODES

All three registers can be operated with various logic codes. Two's complement code is used by offsetting the comparator $1 / 2$ full range $+1 / 2$ LSB and using the complement of the MSB ($\overline{\mathrm{Q} 7}$ or $\overline{\mathrm{Q}} 11$) with a binary D/A converter. Offset binary is used in the same manner but with the MSB ($\bar{Q} 7$ or $\bar{Q} 11$). BCD D/A converters can be used with the addition of illegal code suppression logic.

ACTIVE HIGH OR ACTIVE LOW LOGIC

The register can be used with either D/A converters that require a low voltage level to turn on, or D/A converters that require a high voltage level to turn the switch on. If D/A converters are used which turn on with a low logic level, the resulting digital output from the register is active low. That is, a logic " 1 " is represented as a low voltage level. If D/A converters are used that turn on with a high logic level then the digital output is active high; a logic " 1 " is represented as a high voltage level.

EXPANDED OPERATION

An active low enable input, \bar{E}, on the DM2503 and DM2504 allows registers to be connected together to form a longer register by connecting the clock, D , and $\overline{\mathrm{S}}$ inputs in parallel and connecting the $Q_{C C}$ output of one register to the \bar{E} input of the next less significant register. When the start resets the register, the \bar{E} signal goes high, forcing the Q7 (11) bit high and inhibiting the register from accepting data until the previous register is full and its $Q_{\text {Cc }}$ goes low. If only one register is used the \bar{E} input should be held at a low logic level.

Timing Diagram

TL/F/5702-2

Application Information (Continued)

SHORT CYCLE

If all bits are not required, the register may be truncated and conversion time saved by using a register output going low rather then the $Q_{C C}$ signal to indicate the end of conversion. If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on power turn-on. This condition can be avoided by making the start input the OR function of $Q_{C C}$ and the appropriate register output.

COMPARATOR BIAS

To minimize the digital error below $\pm 1 / 2$ LSB, the comparator must be biased. If a D/A converter is used which requires a low voltage level to turn on, the comparator should be biased $+1 / 2$ LSB. If the D/A converter requires a high logic level to turn on, the comparator must be biased $-1 / 2$ LSB.

Definition of Terms

CP: The clock input of the register.
D: The serial data input of the register.
DO: The serial data out. (The D input delayed one bit).
$\overline{\mathrm{E}}$: The register enable. This input is used to expand the length of the register and when high forces the Q7 (11) register output high and inhibits conversion. When not used for expansion the enable is held at a low logic level (ground).
$Q_{i} i=7$ (11) to 0 : The outputs of the register.
$Q_{\mathbf{C c}}$: The conversion complete output. This output remains high during a conversion and goes low when a conversion is complete.
Q7 (11): The true output of the MSB of the register.
$\overline{\mathbf{Q}} 7$ (11): The complement output of the MSB of the register. $\overline{\mathbf{S}}$: The start input. If the start input is held low for at least a clock period the register will be reset to Q7 (11) low and all the remaining outputs high. A start pulse that is low for a shorter period of time can be used if it meets the set-up time requirements of the $\overline{\mathrm{S}}$ input.

Truth Table

DM2502, DM2503

Time	Inputs			Outputs ${ }^{1}$									
t_{n}	D	$\overline{\mathbf{S}}$	E2	D ${ }^{3}$	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	$Q_{\text {cc }}$
0	X	L	L	X	X	X	X	X	X	X	X	X	X
1	D7	H	L	X	L	H	H	H	H	H	H	H	H
2	D6	H	L	D7	D7	L	H	H	H	H	H	H	H
3	D5	H	L	D6	D7	D6	L	H	H	H	H	H	H
4	D4	H	L	D5	D7	D6	D5	L	H	H	H	H	H
5	D3	H	L	D4	D7	D6	D5	D4	L	H	H	H	H
6	D2	H	L	D3	D7	D6	D5	D4	D3	L	H	H	H
7	D1	H	L	D2	D7	D6	D5	D4	D3	D2	L	H	H
8	D0	H	L	D1	D7	D6	D5	D4	D3	D2	D1	L	H
9	X	H	L	D0	D7	D6	D5	D4	D3	D2	D1	DO	L
10	X	X	L	X	D7	D6	D5	D4	D3	D2	D1	D0	L
	X	X	H	X	H	NC							
Note 1: Truth table for DM2504 is extended to include 12 outputs. Note 2: Truth table for DM2502 does not include \bar{E} column or last line in truth table shown. Note 3: Truth table for DM2503 does not include DO column.								$\begin{aligned} & \mathrm{H}=\text { High Voltage Level } \\ & \mathrm{L}=\text { Low Voltage Level } \\ & \mathrm{X}=\text { Don't Care } \\ & \text { NC }=\text { No Change } \end{aligned}$					

Typical Applications

Typical Applications (Continued)
Fast Precision Analog-to-Digital Converter

National Semiconductor Corporation

LM131A/LM131, LM231A/LM231, LM331A/LM331 Precision Voltage-to-Frequency Converters

General Description

The LM131/LM231/LM331 family of voltage-to-frequency converters are ideally suited for use in simple low-cost circuits for analog-to-digital conversion, precision frequency-to-voltage conversion, long-term integration, linear frequency modulation or demodulation, and many other functions. The output when used as a voltage-to-frequency converter is a pulse train at a frequency precisely proportional to the applied input voltage. Thus, it provides all the inherent advantages of the voltage-to-frequency conversion techniques, and is easy to apply in all standard voltage-to-frequency converter applications. Further, the LM131A/ LM231A/LM331A attains a new high level of accuracy versus temperature which could only be attained with expensive voltage-to-frequency modules. Additionally the LM131 is ideally suited for use in digital systems at low power supply voltages and can provide low-cost analog-to-digital conversion in microprocessor-controlled systems. And, the frequency from a battery powered voltage-to-frequency converter can be easily channeled through a simple photoisolator to provide isolation against high common mode levels.
The LM131/LM231/LM331 utilizes a new temperaturecompensated band-gap reference circuit, to provide excellent accuracy over the full operating temperature range, at power supplies as low as 4.0 V . The precision timer circuit
has low bias currents without degrading the quick response necessary for 100 kHz voltage-to-frequency conversion. And the output is capable of driving 3 TTL loads, or a high voltage output up to 40 V , yet is short-circuit-proof against $V_{C c}$.

Features

- Guaranteed linearity 0.01% max
- Improved performance in existing voltage-to-frequency conversion applications
- Split or single supply operation

■ Operates on single 5 V supply

- Pulse output compatible with all logic forms
- Excellent temperature stability, $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max
- Low power dissipation, 15 mW typical at 5 V
. Wide dynamic range, $100 \mathrm{~dB} \min$ at 10 kHz full scale frequency
- Wide range of full scale frequency, 1 Hz to 100 kHz
- Low cost

Typical Applications

TL/H/5680-1

[^12]FIGURE 1. Simple Stand-Alone Voltage-to-Frequency Converter
with $\pm \mathbf{0 . 0 3 \%}$ Typical Linearity ($f=10 \mathrm{~Hz}$ to $11 \mathbf{~ k H z}$)

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage
Output Short Circuit to Ground Output Short Circuit to V_{CC} Input Voltage

Operating Ambient Temperature Range Power Dissipation (PD_{D} at $25^{\circ} \mathrm{C}$) and Thermal Resistance ($\theta_{\mathrm{j}} \mathrm{A}$)

(H Package) PD_{D}
$\boldsymbol{\theta}_{\mathrm{j}} \mathrm{A}$
(N Package) P_{D}
$\theta_{j} \mathrm{~A}$

Lead Temperature (Soldering, 10 sec .)
Dual-In-Line Package (Plastic)
Metal Can Package (TO-5)
ESD Susceptibility (Note 4)

LM131A/LM131
40V
Continuous
Continuous
-0.2 V to $+\mathrm{V}_{S}$
$\mathrm{T}_{\text {MIN }} \quad \mathrm{T}_{\text {MAX }}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

670 mW
$150^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 2)

Parameter	Conditions	Min	Typ	Max	Units
VFC Non-Linearity (Note 3)	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 20 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \end{aligned}$		$\begin{aligned} & \pm 0.003 \\ & \pm 0.006 \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.02 \end{aligned}$	\% FullScale \% FullScale
VFC Non-Linearity In Circuit of Figure 1	$\mathrm{V}_{\mathrm{S}}=15 \mathrm{~V}, \mathrm{f}=10 \mathrm{~Hz}$ to 11 kHz		± 0.024	± 0.14	\%FullScale
Conversion Accuracy Scale Factor (Gain) LM131, LM131A, LM231, LM231A LM331, LM331A	$\mathrm{V}_{\mathrm{IN}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=14 \mathrm{k} \Omega$	$\begin{aligned} & 0.95 \\ & 0.90 \end{aligned}$	$\begin{array}{r} 1.00 \\ 1.00 \\ \hline \end{array}$	$\begin{aligned} & 1.05 \\ & 1.10 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{kHz} / \mathrm{V} \\ & \mathrm{kHz} / \mathrm{V} \end{aligned}$
Temperature Stability of Gain LM131/LM231/LM331 LM131A/LM231A/LM331A	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 20 \mathrm{~V}$		$\begin{array}{r} \pm 30 \\ \pm 20 \\ \hline \end{array}$	$\begin{aligned} & \pm 150 \\ & \pm 50 \\ & \hline \end{aligned}$	ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Change of Gain with V_{S}	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{S} \leq 10 \mathrm{~V} \\ & 10 \mathrm{~V} \leq \mathrm{V}_{S} \leq 40 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.01 \\ 0.006 \end{gathered}$	$\begin{gathered} 0.1 \\ 0.06 \end{gathered}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
Rated Full-Scale Frequency	$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$	10.0			kHz
Gain Stability vs Time (1000 Hrs)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$		± 0.02		\% Full- Scale
Overrange (Beyond Full-Scale) Frequency	$\mathrm{V}_{\mathrm{IN}}=-11 \mathrm{~V}$	10			\%
INPUT COMPARATOR					
Offset Voltage LM131/LM231/LM331 LM131A/LM231A/LM331A	$\begin{aligned} & T_{\text {MIN }} \leq T_{A} \leq T_{M A X} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{M A X} \end{aligned}$		$\begin{aligned} & \pm 3 \\ & \pm 4 \\ & \pm 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 14 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \\ & \hline \end{aligned}$
Bias Current			-80	-300	nA
Offset Current			± 8	± 100	nA
Common-Mode Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	-0.2		$\mathrm{V}_{C C}-2.0$	V
TIMER					
Timer Threshold Voltage, Pin 5		0.63	0.667	0.70	$\times \mathrm{V}_{\text {S }}$
Input Bias Current, Pin 5 All Devices LM131/LM231/LM331 LM131A/LM231A/LM331A	$\begin{aligned} & V_{S}=15 \mathrm{~V} \\ & 0 V \leq V_{\text {PIN } 5} \leq 9.9 \mathrm{~V} \\ & V_{\text {PIN } 5}=10 \mathrm{~V} \\ & V_{\text {PIN } 5}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 10 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{gathered} \pm 100 \\ 1000 \\ 500 \end{gathered}$	nA nA nA
$\mathrm{V}_{\text {SAT PIN } 5}$ (Reset)	$\mathrm{I}=5 \mathrm{~mA}$		0.22	0.5	V

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified (Note 2) (Continued)

Parameter	Conditions	Min	Typ	Max	Units
CURRENT SOURCE (Pin 1)					
Output Current LM131, LM131A, LM231, LM231A LM331, LM331A	$\mathrm{R}_{\mathrm{S}}=14 \mathrm{k} \Omega, \mathrm{V}_{\text {PIN } 1}=0$	$\begin{array}{r} 126 \\ 116 \\ \hline \end{array}$	$\begin{aligned} & 135 \\ & 136 \\ & \hline \end{aligned}$	$\begin{array}{r} 144 \\ 156 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Change with Voltage	$0 \mathrm{~V} \leq \mathrm{V}_{\text {PIN } 1} \leq 10 \mathrm{~V}$		0.2	1.0	$\mu \mathrm{A}$
Current Source OFF Leakage LM131, LM131A LM231, LM231A, LM331, LM331A All Devices	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }}$		$\begin{gathered} 0.01 \\ 0.02 \\ 2.0 \\ \hline \end{gathered}$	$\begin{gathered} 1.0 \\ 10.0 \\ 50.0 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Operating Range of Current (Typical)			(10 to 500)		$\mu \mathrm{A}$
REFERENCE VOLTAGE (Pin 2)					
LM131, LM131A, LM231, LM231A LM331, LM331A		$\begin{aligned} & 1.76 \\ & 1.70 \end{aligned}$	$\begin{aligned} & 1.89 \\ & 1.89 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.02 \\ & 2.08 \end{aligned}$	$V_{D C}$ $V_{D C}$
Stability vs Temperature			± 60		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Stability vs Time, 1000 Hours			± 0.1		\%
LOGIC OUTPUT (Pin 3)					
$V_{S A T}$ OFF Leakage	$\begin{aligned} & \mathrm{I}=5 \mathrm{~mA} \\ & \mathrm{I}=3.2 \mathrm{~mA} \text { (2 TTL Loads), } \mathrm{T}_{\mathrm{MIN}} \leq T_{A} \leq T_{\mathrm{MAX}} \end{aligned}$		$\begin{gathered} 0.15 \\ 0.10 \\ \pm 0.05 \\ \hline \end{gathered}$	$\begin{gathered} 0.50 \\ 0.40 \\ 1.0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$
SUPPLY CURRENT					
LM131, LM131A, LM231, LM231A LM331, LM331A	$\begin{aligned} & V_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=40 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & 6.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All specifications apply in the circuit of Figure 3, with $4.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 40 \mathrm{~V}$, unless otherwise noted.
Note 3: Nonlinearity is defined as the deviation of fout from $\mathrm{V}_{\mathrm{IN}} \times\left(10 \mathrm{kHz} /-10 \mathrm{~V}_{\mathrm{DC}}\right)$ when the circuit has been trimmed for zero error at 10 Hz and at 10 kHz , over the frequency range 1 Hz to 11 kHz . For the timing capacitor, C_{T}, use NPO ceramic, Teflon ${ }^{\oplus}$, or polystyrene.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

Functional Block Diagram

TL/H/5680-2
FIGURE 1a

Typical Performance Characteristics

(All electrical characteristics apply for the circuit of Figure 3, unless otherwise noted.)

Typical Applications (Continued)

PRINCIPLES OF OPERATION OF A SIMPLIFIED VOLTAGE-TO-FREQUENCY CONVERTER

The LM131 is a monolithic circuit designed for accuracy and versatile operation when applied as a voltage-to-frequency (V -to-F) converter or as a frequency-to-voltage (F -to-V) converter. A simplified block diagram of the LM131 is shown in Figure 2 and consists of a switched current source, input comparator, and 1 -shot timer.
The operation of these blocks is best understood by going through the operating cycle of the basic V-to-F converter, Figure 2, which consists of the simplified block diagram of the LM131 and the various resistors and capacitors connected to it.
The voltage comparator compares a positive input voltage, V 1 , at pin 7 to the voltage, V_{x}, at pin 6 . If V 1 is greater, the comparator will trigger the 1 -shot timer. The output of the timer will turn ON both the frequency output transistor and the switched current source for a period $t=1.1 R_{t} C_{t}$. During this period, the current i will flow out of the switched current source and provide a fixed amount of charge, $Q=i \times t$, into the capacitor, C_{L}. This will normally charge V_{x} up to a higher level than V1. At the end of the timing period, the current i will turn OFF, and the timer will reset itself.
Now there is no current flowing from pin 1, and the capacitor C_{L} will be gradually discharged by R_{L} until V_{X} falls to the level of V 1 . Then the comparator will trigger the timer and start another cycle.
The current flowing into C_{L} is exactly $\left.\right|_{A V E}=i \times\left(1.1 \times R_{t} C_{t}\right)$ $\times f$, and the current flowing out of C_{L} is exactly $V_{x} / R_{L} \cong$ $V_{I N} / R_{L}$. If $V_{I N}$ is doubled, the frequency will double to maintain this balance. Even a simple V-to-F converter can provide a frequency precisely proportional to its input voltage over a wide range of frequencies.

TL/H/5680-4
FIGURE 2. Simplified Block Diagram of Stand-Alone Voltage-to-Frequency Converter Showing LM131 and External Components

DETAIL OF OPERATION, FUNCTIONAL BLOCK DIAGRAM (FIGURE 1a)

The block diagram shows a band gap reference which provides a stable $1.9 \cdot \mathrm{~V}_{D C}$ output. This $1.9 \mathrm{~V}_{\mathrm{DC}}$ is well regulated over a V_{S} range of 3.9 V to 40 V . It also has a flat, low temperature coefficient, and typically changes less than $1 / 2 \%$ over a $100^{\circ} \mathrm{C}$ temperature change.
The current pump circuit forces the voltage at pin 2 to be at 1.9 V , and causes a current $\mathrm{i}=1.90 \mathrm{~V} / \mathrm{R}_{\mathrm{S}}$ to flow. For $R_{s}=14 k, i=135 \mu A$. The precision current reflector provides a current equal to i to the current switch. The current switch switches the current to pin 1 or to ground depending on the state of the R_{S} flip-flop.
The timing function consists of an R flip-flop, and a timer comparator connected to the external $R_{t} C_{t}$ network. When the input comparator detects a voltage at pin 7 higher than pin 6, it sets the R_{S} flip-flop which turns ON the current switch and the output driver transistor. When the voltage at pin 5 rises to $2 / 3 \mathrm{~V}_{\mathrm{CC}}$, the timer comparator causes the R_{S} flip-flop to reset. The reset transistor is then turned ON and the current switch is turned OFF.
However, if the input comparator still detects pin 7 higher than pin 6 when pin 5 crosses $2 / 3 \mathrm{~V}_{\mathrm{CC}}$, the flip-flop will not be reset, and the current at pin 1 will continue to flow, in its attempt to make the voltage at pin 6 higher than pin 7 . This condition will usually apply under start-up conditions or in the case of an overload voltage at signal input. It should be noted that during this sort of overload, the output frequency will be 0 ; as soon as the signal is restored to the working range, the output frequency will be resumed.
The output driver transistor acts to saturate pin 3 with an ON resistance of about 50Ω. In case of overvoltage, the output current is actively limited to less than 50 mA .
The voltage at pin 2 is regulated at $1.90 \mathrm{~V}_{D C}$ for all values of i between $10 \mu \mathrm{~A}$ to $500 \mu \mathrm{~A}$. It can be used as a voltage reference for other components, but care must be taken to ensure that current is not taken from it which could reduce the accuracy of the converter.

PRINCIPLES OF OPERATION OF BASIC VOLTAGE-TO-FREQUENCY CONVERTER (FIGURE 1)

The simple stand-alone V-to-F converter shown in Figure 1 includes all the basic circuitry of Figure 2 plus a few components for improved performance.
A resistor, $\mathrm{R}_{\mathrm{IN}}=100 \mathrm{k} \Omega \pm 10 \%$, has been added in the path to pin 7 , so that the bias current at pin 7 (-80 nA typical) will cancel the effect of the bias current at pin 6 and help provide minimum frequency offset.
The resistance R_{S} at pin 2 is made up of a $12 \mathrm{k} \Omega$ fixed resistor plus a $5 \mathrm{k} \Omega$ (cermet, preferably) gain adjust rheostat. The function of this adjustment is to trim out the gain tolerance of the LM131, and the tolerance of R_{t}, R_{L} and C_{t}.

Typical Applications (Continued)

For best results, all the components should be stable low-temperature-coefficient components, such as metal-film resistors. The capacitor should have low dielectric absorption; depending on the temperature characteristics desired, NPO ceramic, polystyrene, Teflon or polypropylene are best suited.
A capacitor $\mathrm{C}_{\mathbb{N}}$ is added from pin 7 to ground to act as a filter for $V_{I N}$. A value of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ will be adequate in most cases; however, in cases where better filtering is required, a $1 \mu \mathrm{~F}$ capacitor can be used. When the RC time constants are matched at pin 6 and pin 7, a voltage step at V_{IN} will cause a step change in fout. If C_{IN} is much less than C_{L}, a step at $\mathrm{V}_{I N}$ may cause fout to stop momentarily.
A 47Ω resistor, in series with the $1 \mu \mathrm{~F} \mathrm{C}_{\mathrm{L}}$, is added to give hysteresis effect which helps the input comparator provide the excellent linearity (0.03% typical).

DETAIL OF OPERATION OF PRECISION V-TO-F CONVERTER (FIGURE 3)

In this circuit, integration is performed by using a conventional operational amplifier and feedback capacitor, C_{F}. When the integrator's output crosses the nominal threshold level at pin 6 of the LM131, the timing cycle is initiated.

The average current fed into the op amp's summing point (pin 2) is $i \times\left(1.1 R_{t} C_{t}\right) \times f$ which is perfectly balanced with $-\mathrm{V}_{\mathrm{IN}} / \mathrm{R}_{\mathrm{IN}}$. In this circuit, the voltage offset of the LM131 input comparator does not affect the offset or accuracy of the V-to-F converter as it does in the stand-alone V-to-F converter; nor does the LM131 bias current or offset current. Instead, the offset voltage and offset current of the operational amplifier are the only limits on how small the signal can be accurately converted. Since op amps with voltage offset well below 1 mV and offset currents well below 2 nA are available at low cost, this circuit is recommended for best accuracy for small signals. This circuit also responds immediately to any change of input signal (which a stand-alone circuit does not) so that the output frequency will be an accurate representation of V_{IN}, as quickly as 2 output pulses' spacing can be measured.
In the precision mode, excellent linearity is obtained because the current source (pin 1) is always at ground potential and that voltage does not vary with V_{IN} or fout. (In the stand-alone V-to-F converter, a major cause of non-linearity is the output impedance at pin 1 which causes ito change as a function of V_{IN}).
The circuit of Figure 4 operates in the same way as Figure 3, but with the necessary changes for high speed operation.

TL/H/5680-5
*Use stable components with low temperature coefficients. See Typical Applications section.
**This resistor can be $5 \mathrm{k} \Omega$ or $10 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$ to 22 V , but must be $10 \mathrm{k} \Omega$ for $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V}$ to 8 V .
***Use low offset voltage and low offset current op amps for A1: recommended types LM108, LM308A, LF411A
FIGURE 3. Standard Test Circuit and Applications Circuit, Precision Voltage-to-Frequency Converter

Typical Applications (Continued)

DETAILS OF OPERATION, FREQUENCY-TOVOLTAGE CONVERTERS (FIGURES 5 AND 6)

In these applications, a pulse input at f_{IN} is differentiated by a C-R network and the negative-going edge at pin 6 causes the input comparator to trigger the timer circuit. Just as with a V-to-F converter, the average current flowing out of pin 1 is $l_{\text {AVERAGE }}=\mathrm{i} \times\left(1.1 \mathrm{R}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}}\right) \times \mathrm{f}$.
In the simple circuit of FIGURE 5, this current is filtered in the network $R_{L}=100 \mathrm{k} \Omega$ and $1 \mu \mathrm{~F}$. The ripple will be less than 10 mV peak, but the response will be slow, with a
0.1 second time constant, and settling of 0.7 second to 0.1% accuracy.
In the precision circuit, an operational amplifier provides a buffered output and also acts as a 2 -pole filter. The ripple will be less than 5 mV peak for all frequencies above 1 kHz , and the response time will be much quicker than in Figure 5. However, for input frequencies below 200 Hz , this circuit will have worse ripple than Figure 5. The engineering of the filter time-constants to get adequate response and small enough ripple simply requires a study of the compromises to be made. Inherently, V-to-F converter response can be fast, but F-to-V response can not.
$V_{\text {OUT }}=f_{I_{N}} \times 2.09 \mathrm{~V} \times \frac{R_{L}}{R_{S}} \times\left(R_{t} C_{t}\right)$
*Use stable components with low temperature coefficients.
FIGURE 5. Simple Frequency-to-Voltage Converter, 10 kHz Full-Scale, $\pm \mathbf{0 . 0 6 \%}$ Non-Linearity

$$
V_{O U T}=-f_{I N} \times 2.09 V \times \frac{R_{F}}{R_{S}} \times\left(R_{t} C_{t}\right)
$$

TL/H/5680-8

$$
\text { SELECT } R x=\frac{\left(V_{S}-2 V\right)}{0.2 \mathrm{~mA}}
$$

*Use stable components with low temperature coefficients.
FIGURE 6. Precision Frequency-to-Voltage Converter, 10 kHz Full-Scale with 2-Pole Filter, $\pm \mathbf{0 . 0 1 \%}$ Non-Linearity Maximum

Typical Applications (Continued)
Light Intensity to Frequency Converter

TL/H/5680-9
*L14F-1, L14G-1 or L14H-1, photo transistor (General Electric Co.) or similar

Temperature to Frequency Converter

TL/H/5680-10

Typical Applications (Continued)

Analog-to-Digital Converter with Microprocessor

Remote Voltage-to-Frequency Converter with 2-Wire Transmitter and Receiver

Voltage-to-Frequency Converter with Square-Wave Output Using $\div 2$ Flip-Flop

Typical Applications (Continued)
Voltage-to-Frequency Converter with Isolators

TL/H/5680-17
Voltage-to-Frequency Converter with Isolators

TL/H/5680-19

Connection Diagrams

TL/H/5680-20
Note: Metal case is connected to pin 4 (GND.)
Order Number LM131AH, LM131H, LM231AH, LM231H, LM331AH or LM331H See NS Package Number H08C

Dual-In-Line Package

TL/H/5680-21
Order Number LM231AN, LM231N, LM331AN, or LM331N
See NS Package Number N08E

Schematic Diagram

National Semiconductor Corporation

MM54C905/MM74C905 12-Bit Successive Approximation Register

General Description

The MM54C905/MM74C905 CMOS 12-bit successive approximation register contains all the digit control and storage necessary for successive approximation analog-to-digital conversion. Because of the unique capability of CMOS to switch to each supply rail without any offset voltage, it can also be used in digital systems as the control and storage element in repetitive routines.

Features

- Wide supply voltage range
3.0 V to15V
- Guaranteed noise margin
- High noise immunity
- Low power TTL compatibility
$0.45 \mathrm{~V}_{\text {Cc }}$ typ

Provision for register extension or truncation

- Operates in START/STOP or continuous conversion mode
- Drive ladder switches directly. For 10 bits or less with 50k/100k R/2R ladder network

Connection Diagram

Dual-In-Line Package

TL/F/5712-1
Top View

Truth Table

TIME	INPUTS			OUTPUTS													
t_{n}	D	$\overline{\mathbf{S}}$	$\overline{\mathbf{E}}$	D0	Q11	Q10	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	01	Q0	$\overline{\mathbf{c}}$
0	X	L	L	X	X	X	X	X	X	X	X	X	X	X	X	X	X
1	D11	H	L	X	L	H	H	H	H	H	H	H	H	H	H	H	H
2	D10	H	L	D11	D11	L	H	H	H	H	H	H	H	H	H	H	H
3	D9	H	L	D10	D11	D10	L	H	H	H	H	H	H	H	H	H	H
4	D8	H	L	D9	D11	D10	D9	L	H	H	H	H	H	H	H	H	H
5	D7	H	L	D8	D11	D10	D9	D8	L	H	H	H	H	H	H	H	H
6	D6	H	L	D7	D11	D10	D9	D8	D7	L	H	H	H	H	H	H	H
7	D5	H	L	D6	D11	D10	D9	D8	D7	D6	L	H	H	H	H	H	H
8	D4	H	L	D5	D11	D10	D9	D8	D7	D6	D5	L	H	H	H	H	H
9	D3	H	L	D4	D11	D10	D9	D8	D7	D6	D5	D4	L	H	H	H	H
10	D2	H	L	D3	D11	D10	D9	D8	D7	D6	D5	D4	D3	L	H	H	H
11	D1	H	L	D2	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	L	H	H
12	D0	H	L	D1	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	L	H
13	X	H	L	D0	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	L
14	X	X	L	X	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	L
	X	X	H	X	H	NC											

[^13]| Absolute Maximum Ratings (Note 1) | | |
| :--- | :--- | ---: |
| If Military/Aerospace specified devices are required, | ESD Susceptibility (Note 4) | 400 V |
| contact the National Semiconductor Sales Office/ | Package Dissipation | |
| Distributors for availability and specifications. | Operating $V_{C C}$ Range | 500 mW |
| Voltage at Any Pin | -0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$ | Absolute Maximum V_{CC}
 Operating Temperature Range |
| MM74C905 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | Lead Temperature (Soldering, 10 seconds) | 3.0 V to 15 V |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | |

DC Electrical Characteristics Min/max limits apply across temperature range, unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Units
CMOS TO CMOS					
Logical "1" Input Voltage ($\mathrm{V}_{\mathrm{IN}(1)}$)	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Logical "0'Input Voltage ($\mathrm{V}_{\text {IN(0) }}$)	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Logical "1" Output Voltage (V ${ }_{\text {OUT(1) }}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Logical "0" Output Voltage (V ${ }_{\text {OUT(0) }}$)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, I_{\mathrm{O}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Logical "1" Input Current ($\operatorname{lin}(1)$) $^{\text {a }}$	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=15 \mathrm{~V}$		0.005	1.0	$\mu \mathrm{A}$
Logical " 0 " Input Current ($\mathrm{I}_{\mathrm{IN}(0)}$)	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
Supply Current (llcc)	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
CMOS/LPTTL INTERFACE					
```Logical "1" Input Voltage (VIN(1) MM54C905 MM74C905```	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1.5 \\ & \mathrm{~V}_{\mathrm{CC}}-1.5 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
```Logical "0" Input Voltage (VIN(0) MM54C905 MM74C905```	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
```Logical "1" Output Voltage (VOUT(1) MM54C905 MM74C905```	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \text { Logical "0" Output Voltage (VOUT(0)) } \\ & \text { MM54C905 } \\ & \text { MM74C905 } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet)					
Output Source Current (ISOURCE)   (P-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-1.75	-3.3		mA
Output Source Current (ISOURCE)   (P-Channel)	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-8.0	-15		mA
Output Sink Current (ISINK) (N-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1.75	3.6		mA
Output Sink Current (ISINK) (N-Channel)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	8.0	16		mA
Q11-Q0 Outputs Rsource	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	150		350	$\Omega$
$\mathrm{R}_{\text {SINK }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\text {OUT }}=0.3 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	80		230	$\Omega$

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Propagation Delay Time From Clock	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$		200	350	ns
Input To Outputs (Q0-Q11)(tpd(Q) ${ }^{\text {( }}$ )	$\mathrm{V}_{C C}=10 \mathrm{~V}$		80	150	ns
Propagation Delay Time From Clock	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		180	325	ns
Input To $\mathrm{D}_{\mathrm{O}}\left(\mathrm{t}_{\mathrm{pd}\left(\mathrm{D}_{\mathrm{O}}\right)}\right)$	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$		70	125	ns
Propagation Delay Time From Register	$\mathrm{V}_{C C}=5.0 \mathrm{~V}$		190	350	ns
Enable ( $\overline{\mathrm{E}})$ To Output (Q11) ( $\mathrm{t}_{\text {pd( }}(\overline{\mathrm{E}})$ )	$V_{C C}=10 \mathrm{~V}$		75	150	ns
Propagation Delay Time From Clock	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		190	350	ns
To $\overline{\mathrm{CC}}$ ( $\mathrm{tpd}_{\text {d }}(\overline{\mathrm{CC}})$ )	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$		75	0.50	ns
Data Input Set-UpTime (tDS)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \\ & \hline \end{aligned}$			ns ns
Start Input Set-Up Time (tss)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \\ & \hline \end{aligned}$			ns   ns
Minimum Clock Pulse Width (tpWL, $\mathrm{tpWH}^{\text {) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{array}{r} 250 \\ 100 \\ \hline \end{array}$	$\begin{gathered} 125 \\ 40 \\ \hline \end{gathered}$		ns   ns
Maximum Clock Rise and Fall Time ( $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ )	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$			$\begin{gathered} 15 \\ 5 \\ \hline \end{gathered}$	$\mu \mathbf{S}$ $\mu \mathrm{s}$
Maximum Clock Frequency ( $\mathrm{f}_{\mathrm{MAX}}$ )	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{gathered} 4 \\ 10 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
Clock Input Capacitance ( $\mathrm{C}_{\text {CLK }}$ )	Clock Input (Note 2)		10		pF
Input Capacitance ( $\mathrm{C}_{\mathrm{IN}}$ )	Any Other Input (Note 2)		5		pF
Power Dissipation Capacitance ( $\mathrm{CPD}^{\text {) }}$ )	(Note 3)		100		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\mathrm{C}_{\text {PD }}$ determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

## Typical Performance Characteristics


$T_{A}$ - AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$
-These points are guaranteed by automatic testing

$T_{A}$-AMBIENT TEMPERATURE ( C )
TL/F/5712-2
-These points are guaranteed by automatic testing.

## Timing Diagram



## Switching Time Waveforms



## Typical Performance Characteristics

## USER NOTES FOR A/D CONVERSION

The register can be used with either current switches that require a low voltage level to turn the switch ON or current switches that require a high voltage level to turn the switch ON. If current switches are used which turn ON with a low logic level, the resulting digit output from the register is active low. That is, a logic " 1 " is represented as a low voltage level. If current switches are used which turn ON with a high logic level, the resulting digit output is active high. A logic " 1 " is represented as a high voltage level.
For a maximum error of $\pm 1 / 2$ LSB, the comparator must be biased. If current switches that require a high voltage level to turn ON are used, the comparator should be biased $+1 / 2$ LSB and if the current switches require a low logic level to turn ON, then the comparator must be biased -1/2 LSB.

The register can be used to perform 2's complement conversion by offsetting the comparator one half full range $+1 / 2$ LSB and using the complement of the MSB Q11 as the sign bit.

If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on powerON. This situation can be overcome by making the START input the "OR" function of $\overline{\mathrm{CC}}$ and the appropriate register output.
The register, by suitable selection of register ladder network, can be used to perform either binary or BCD conversion.
The register outputs can drive the 10 bits or less with 50k/ 100k R/2R ladder network directly for $\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$ or higher. In order to drive the 12 -bit $50 \mathrm{k} / 100 \mathrm{k}$ ladder network and have the $\pm 1 / 2$ LSB resolution, the MM54C902/MM74C902 or MM54C904/MM74C904 is used as a buffer, three buffers for MSB (Q11), two buffers for Q10, and one buffer for Q9.

## Typical Applications

12-Bit Successive Approximation A-to-D Converter, Operating in Continuous Mode, Drives the 50k/100k Ladder Network Directly


## Definition of Terms

CP: Register clock input.
$\overline{\mathbf{C C}}$ : Conversion complete-this output remains at $\mathrm{V}_{\mathrm{OUT}(1)}$ during a conversion and goes to $\mathrm{V}_{\text {OUT }}(0)$ when conversion is complete.
D: Serial data input-connected to comparator output in A-to-D applications.
$\overline{\mathrm{E}}$ : Register enable-this input is used to expand the length of the register. When $\bar{E}$ is at $V_{I N(1)}$ Q11 is forced to $V_{\text {OUT(1) }}$ and inhibits conversion. When not used for expansion $E$ must be connected to $\operatorname{VIN(0)}$ (GND).
Q11: True register MSB output.
$\overline{\mathbf{Q}} 11$ : Complement of register MSB output.
Qi ( $\mathbf{i}=\mathbf{0}$ to 11): Register outputs.
$\overline{\mathbf{S}}$ : Start input-holding start input at $\mathrm{V}_{\mathbb{N}(0)}$ for at least one clock period will initiate a conversion by setting MSB (Q11) at $V_{\text {OUT(0) }}$ and all other output ( $\mathrm{Q}-10-\mathrm{Q} 0$ ) at $\mathrm{V}_{\text {OUT(1) }}$. If set-up time requirements are met, a conversion may be initiated by holding start input at $\mathrm{V}_{\mathrm{IN}(0)}$ for less than one clock period. DO: Serial data output-D input delayed by one clock period.

Section 4
Digital-to-Analog Converters

## Section 4 Contents

Digital-to-Analog Converters Definition of Terms ..... 4-3
Digital-to-Analog Converters Selection Guide ..... 4-4
DAC0800, DAC0801, DAC0802 8-Bit Digital-to-Analog Converters ..... 4-6
DAC0808, DAC0807, DAC0806 8-Bit D/A Converters ..... 4-15
DAC0830, DAC0831, DAC0832 8-Bit $\mu$ P Compatible Double-Buffered D to A Converters ..... 4-23
DAC1000, DAC1001, DAC1002, DAC1006, DAC1007, DAC1008, $\mu$ P Compatible, Double- Buffered D to A Converters ..... 4-41
DAC1020, DAC1021, DAC1022, DAC1220, DAC1221, DAC1222 12-Bit Binary Multiplying D/A Converters ..... 4-64
DAC1208, DAC1209, DAC1210, DAC1230, DAC1231, DAC1232 12-Bit $\mu$ P Compatible Double-Buffered D to A Converters ..... 4-74
DAC1218, DAC1219 12-Bit Multiplying D/A Converters ..... 4-89
DAC1265A, DAC1265 Hi-Speed 12-Bit D/A Converter with Reference ..... 4-100
DAC1266A, DAC1266 Hi-Speed 12-Bit D/A Converter ..... 4-109

* DAC1655 16-Bit D/A Converter ..... 4-117

National Semiconductor Corporation

## Definition of Terms D/A Converters

Conversion Time: The time required for a complete measurement by an analog-to-digital converter.
DC Common-Mode Error: This specification applies to ADCs with differential inputs. It is the change in the output code that occurs when the analog voltages on the two inputs are changed by an equal amount. It is expressed in LSBs.
Differential Nonlinearity: Ideally, any two adjacent digital codes correspond to measured analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step. For example, a DAC with a 1.5 LSB output change for a 1 LSB digital code change exhibits $1 / 2$ LSB differential non-linearity. Differential non-linearity may be expressed in fractional bits or as a percentage of full scale. A differential non-linearity greater than 1 LSB will lead to a non-monotonic transfer function in a DAC and missing codes in an ADC.
Gain Error (Full Scale Error): For an ADC, the difference (usually expressed in LSBs) between the input voltage that should ideally produce a full scale output code and the actual input voltage that produces that code. For DACs, it is the difference between the output voltage (or current) with full scale input code and the ideal voltage (or current) that should exist with a full scale input code.
Gain Temperature Coefficient (Full Scale Temperature Coefficient): Change in gain error divided by change in temperature. Usually expressed in parts per million per degree Celsius (ppm/ ${ }^{\circ} \mathrm{C}$ ).
Integral Nonlinearity (Linearity Error): Worst case deviation from the line between the endpoints (zero and full scale). Can be expressed as a percentage of full scale or in fractions of an LSB.
LSB (Least-Significant Bit): In a binary coded system this is the bit that carries the smallest value or weight. Its value is the full scale voltage (or current) divided by $2 n$, where $n$ is the resolution of the converter.
Monotonicity: A monotonic function has a slope whose sign does not change. A monotonic DAC has an output that changes in the same direction (or remains constant) for each increase in the input code. The converse is true for decreasing codes.
MSB (Most Significant Bit): In a binary coded system this is the bit that has the largest value or weight. Its value is one half of full scale.

Multiplying DAC: In a sense, every DAC is a multiplying DAC since the output voltage (or current) is equal to the reference voltage times a constant determined by the digital input code divided by $2^{n}$ ( $n$ is the number of bits of resolution). In a two quadrant multiplying DAC the reference voltage or the digital input code can change the output voltage polarity. If both the reference voltage and the digital code change the output voltage polarity, four quadrant multiplication exists.
Offset Error (Zero Error): In a DAC, this is the output voltage that exists when the input digital code is set to give an ideal output of zero volts. In the case of an ADC, this is the difference between the ideal input voltage ( $1 / 2$ LSB) and the actual input voltage that is needed to make the transition from zero to 1 LSB. All the digital codes in the transfer curve are offset by the same value. Many converters allow nulling of offset with an external potentiometer. Offset error is usually expressed in LSBs.
Power Supply Rejection (Power Supply Sensitivity): The sensitivity of a converter to changes in the dc power supply voltages.
Quantizing Error: The error inherent in all A/D conversions. Since even an "ideal" converter has finite resolution, any analog voltage that falls between two adjacent output codes will result in an output code that is inaccurate by up to $1 / 2$ LSB.
Ratiometric Operation: Many A/D applications require a stable and accurate reference voltage against which the input voltage is compared. This approach results in an absolute conversion. Some applications, however, use transducers or other signal sources whose output voltages are proportional to some external reference. In these ratiometric applications, the reference for the signal source should be connected to the reference input of the converter. Thus, any variations in the source reference voltage will also change the converter reference voltage and produce an accurate conversion.
Resolution: The smallest analog increment corresponding to a 1 LSB converter code change. For converters, resolution is normally expressed in bits, where the number of analog levels is equal to $2^{n}$. As an example, a 12-bit converter divides the analog signal into $2^{12}=4096$ discrete voltage (or current) levels.
Settling Time: The time from a change in input code until a DAC's output signal remains within $\pm 1 / 2$ LSB (or some other specified tolerance) of the final value.

## D/A Converter Selection Guide

Part No.	Resolution (Bits)	Linearity   @ $25^{\circ} \mathrm{C}$   \% (Max)	$\begin{aligned} & \text { Settling } \\ & \text { Time } \\ & (+1 / 2 \text { LSB }) \end{aligned}$	Supplies (V)	Temperature Range*			Package	Comments
					M	1	C		
ADC0852	8	0.19		5		-	-	8-Pin DIP	DAC, Comparator, Serial Input
ADC0854	8	0.19		5		-	-	14-Pin DIP	DAC, Comparator, Serial Input
DAC0800	8	0.19	100 ns	$\pm 5$ to $\pm 15$	-		-	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	High-Speed Multiplying
DAC0801	8	0.39	100 ns	$\pm 5$ to $\pm 15$	-		-	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	High-Speed Multiplying
DAC0802	8	0.10	100 ns	$\pm 5$ to $\pm 15$	-		-	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	High-Speed Multiplying
DAC0806	8	0.78	150 ns	$\pm 5$ to $\pm 15$			$\bullet$	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	Multiplying
DAC0807	8	0.39	150 ns	$\pm 5$ to $\pm 15$			-	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	Multiplying
DAC0808	8	0.19	150 ns	$\pm 5$ to $\pm 15$	-		-	$\begin{aligned} & \text { 16-Pin DIP } \\ & \text { 16-Pin S.O. } \end{aligned}$	Multiplying
DAC0830	8	0.05	$1 \mu \mathrm{~s}$	5 to 15	-	-	-	$\begin{aligned} & 20-\text { Pin DIP } \\ & 20-\mathrm{Pin} \text { S.O. } \\ & 20-\mathrm{Pin} \text { PCC } \\ & \hline \end{aligned}$	$\mu \mathrm{P}$ Compatible 4-Quadrant Multiplying
DAC0831	8	0.10	$1 \mu \mathrm{~s}$	5 to 15			$\bullet$	20-Pin DIP	$\mu$ P Compatible 4-Quadrant Multiplying
DAC0832	8	0.20	$1 \mu \mathrm{~s}$	5 to 15		-	-	$\begin{aligned} & 20-\text { Pin DIP } \\ & 20-\mathrm{Pin} \text { S.O. } \\ & 20-\mathrm{Pin} \text { PCC } \end{aligned}$	$\mu$ P Compatible 4-Quadrant Multiplying
DAC1000	10	0.05	500 ns	5 to 15	-	-	-	24-Pin DIP	$\mu$ P Compatible Double Buffered
DAC1001	10	0.1	500 ns	5 to 15			-	24-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered
DAC1002	10	0.2	500 ns	5 to 15	-	-	-	24-Pin DIP	$\mu$ P Compatible Double Buffered
DAC1006	10	0.05	500 ns	5 to 15	$\bullet$	-	-	20-Pin DIP	$\mu$ P Compatible Double Buffered
DAC1007	10	0.1	500 ns	5 to 15		-	-	20-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered
DAC1008	10	0.2	500 ns	5 to 15	-	-	$\bullet$	20-Pin DIP	$\mu \mathrm{P}$ Compatible Double Buffered

D/A Converter Selection Guide (Continued)

Part No.	Resolution (Bits)	Linearity   @ $\mathbf{2 5}^{\circ} \mathrm{C}$   \% (Max)	$\begin{aligned} & \text { Settling } \\ & \text { Time } \\ & (+1 / 2 \text { LSB }) \end{aligned}$	Supplies (V)	Temperature Range*			Package	Comments
					M	1	C		
DAC1020	10	0.05	500 ns	5 to 15	-	-	-	16-Pin DIP	4-Quadrant Multiplying
DAC1021	10	0.1	500 ns	5 to 15	-	$\bullet$	-	16-Pin DIP	4-Quadrant Multiplying
DAC1022	10	0.2	500 ns	5 to 15	-	-	-	16-Pin DIP	4-Quadrant   Multiplying
DAC1208	12	0.012	$1 \mu \mathrm{~s}$	5 to 15		$\bullet$	-	24-Pin DIP	$\mu$ P Compatible 4-Quadrant Multiplying
DAC1209	12	0.024	$1 \mu \mathrm{~S}$	5 to 15		$\bullet$	$\bullet$	24-Pin DIP	$\mu$ P Compatible 4-Quadrant Multiplying
DAC1210	12	0.05	$1 \mu \mathrm{~s}$	5 to 15		$\bullet$	-	24-Pin DIP	$\mu$ P Compatible   4-Quadrant   Multiplying
DAC1218	12	0.012	$1 \mu \mathrm{~s}$	5 to 15		-	-	18-Pin DIP	4-Quadrant Multiplying
DAC1219	12	0.024	$1 \mu \mathrm{~s}$	5 to 15		-	-	18-Pin DIP	4-Quadrant Multiplying
DAC1220	12	0.05	500 ns	5 to 15	-	$\bullet$	-	18-Pin DIP	4-Quadrant Multiplying
DAC1221	12	0.1	500 ns	5 to 15			-	18-Pin DIP	4-Quadrant Multiplying
DAC1222	12	0.2	500 ns	5 to 15	$\bullet$	-	-	18-Pin DIP	4-Quadrant   Multiplying
DAC1230	12	0.012	$1 \mu \mathrm{~s}$	5 to 15		-	-	20-Pin DIP	$\mu$ P Compatible 4-Quadrant Multiplying
DAC1231	12	0.024	$1 \mu \mathrm{~s}$	5 to 15		-	-	20-Pin DIP	$\mu$ P Compatible 4-Quadrant Multiplying
DAC1232	12	0.05	$1 \mu \mathrm{~s}$	5 to 15		-	-	20-Pin DIP	$\mu$ P Compatible 4-Quadrant Multiplying
DAC1265A	12	0.006	200 ns	$\pm 15$	$\bullet$		$\bullet$	24-Pin DIP	High-Speed
DAC1265	12	0.012	200 ns	$\pm 15$	$\bullet$		-	24-Pin DIP	High-Speed
DAC1266A	12	0.006	200 ns	$\pm 12$ to $\pm 15$	$\bullet$		$\bullet$	24-Pin DIP	High-Speed
DAC1266	12	0.012	200 ns	$\pm 12$ to $\pm 15$	-		-	24-Pin DIP	High-Speed

${ }^{*}$ Ambient temperature range for " M " is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, l " is $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, ~ " \mathrm{C}$ " $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## DAC0800/DAC0801/DAC0802 8-Bit Digital-to-Analog Converters

## General Description

The DAC0800 series are monolithic 8 -bit high-speed cur-rent-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns . When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of $20 \mathrm{Vp}-\mathrm{p}$ with simple resistor loads as shown in Figure 1. The reference-to-full-scale current matching of better than $\pm 1$ LSB eliminates the need for full-scale trims in most applications while the nonlinearities of better than $\pm 0.1 \%$ over temperature minimizes system error accumulations.
The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin, $\mathrm{V}_{\mathrm{LC}}$, grounded. Changing the $\mathrm{V}_{\mathrm{LC}}$ potential will allow direct interface to other logic families. The performance and characteristics of the device are essentially unchanged over the full $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ power supply range; power dissipation is only 33 mW with $\pm 5 \mathrm{~V}$ supplies and is independent of the logic input states.

The DAC0800, DAC0802, DAC0800C, DAC0801C and DAC0802C are a direct replacement for the DAC-08, DAC08A, DAC-08C, DAC-08E and DAC-08H, respectively.

## Features

- Fast settling output current	100 ns
- Full scale error	$\pm 1 \mathrm{LSB}$
■ Nonlinearity over temperature	$\pm 0.1 \%$
- Full scale current drift	$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- High output compliance	-10 V to +18 V
- Complementary current outputs	
- Interface directly with TTL, CMOS, PMOS and others	
- 2 quadrant wide range multiplying capability	
- Wide power supply range	$\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption	33 mW at $\pm 5 \mathrm{~V}$
- Low cost	

## Typical Applications



TL/H/5686-1
FIGURE 1. $\pm 20$ VP-p Output Digital-to-Analog Converter (Note 4)

## Ordering Information

Non-Linearity	Temperature   Range	Order Numbers					
		J Package (J16A)*		N Package (N16A)*		SO Package (M16A)	
$\pm 0.1 \% \mathrm{FS}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0802LJ	DAC-08AQ				
$\pm 0.1 \% \mathrm{FS}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	DAC0802LCJ	DAC-08HQ	DAC0802LCN	DAC-08HP	DAC0802LCM	
$\pm 0.19 \% \mathrm{FS}$	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	DAC0800LJ	DAC-08Q				
$\pm 0.19 \% \mathrm{FS}$	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$	DAC0800LCJ	DAC-08EQ	DAC0800LCN	DAC-08EP	DAC0800LCM	
$\pm 0.39 \% \mathrm{FS}$	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	DAC0801LCJ	DAC-08CQ	DAC0801LCN	DAC-08CP	DAC0801LCM	

[^14]Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage ( $\mathrm{V}^{+}-\mathrm{V}^{-}$)	$\pm 18 \mathrm{~V}$ or 36 V
Power Dissipation (Note 2)	500 mW
Reference Input Differential Voltage (V14 to V15)	V - to $\mathrm{V}^{+}$
Reference Input Common-Mode Range (V14, V15)	V - to $\mathrm{V}^{+}$
Reference Input Current	5 mA
Logic Inputs	V- to V-plus 36 V
Analog Current Outputs ( $\mathrm{V}_{\mathrm{S}^{-}}=-15 \mathrm{~V}$ )	4.25 mA
ESD Susceptibility (Note 3)	TBD V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$


Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
Surface Mount Package	
$\quad$ Vapor Phase ( 60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$

Operating Conditions (Note 1)

	Min	Max	Units
Temperature $\left(T_{A}\right)$			
DAC0802L	-55	+125	${ }^{\circ} \mathrm{C}$
DAC0800L	-55	+125	${ }^{\circ} \mathrm{C}$
DAC0800LC	0	+70	${ }^{\circ} \mathrm{C}$
DAC0801LC	0	+70	${ }^{\circ} \mathrm{C}$
DAC0802LC	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics The following specifications apply for $V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA}$ and $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq$ $\mathrm{T}_{\text {MAX }}$ unless otherwise specified. Output characteristics refer to both lout and IOUT.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { DAC0802L/ } \\ & \text { DAC0802LC } \end{aligned}$			$\begin{aligned} & \text { DAC0800L/ } \\ & \text { DAC0B00LC } \end{aligned}$			DAC0801LC			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
	Resolution Monotonicity Nonlinearity		$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{array}{\|c\|} \hline 8 \\ 8 \\ \pm 0.1 \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$\begin{array}{\|c\|} \hline 8 \\ 8 \\ \pm 0.19 \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{array}{\|c\|} \hline 8 \\ 8 \\ +0.39 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Bits } \\ & \text { Bits } \\ & \% \mathrm{FS} \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {s }}$	Settling Time	To $\pm 1 / 2$ LSB, All Bits Switched "ON" or "OFF", $T_{A}=25^{\circ} \mathrm{C}$ DAC0800L DAC0800LC		100	135		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 135 \\ & 150 \\ & \hline \end{aligned}$		100	150	ns   ns   ns
tPLH, tPHL	$\begin{aligned} & \hline \text { Propagation Delay } \\ & \text { Each Bit } \\ & \text { All Bits Switched } \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$		$\begin{aligned} & 35 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$
$\mathrm{TCl}_{\text {FS }}$	Full Scale Tempco			$\pm 10$	$\pm 50$		$\pm 10$	$\pm 50$		$\pm 10$	$\pm 80$	ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OC }}$	Output Voltage Compliance	Full Scale Current Change $<1 / 2$ LSB, $R_{\text {OUT }}>20 \mathrm{M} \Omega$ Typ	-10		18	-10		18	-10		18	V
$\mathrm{IFS4}$	Full Scale Current	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}, \mathrm{R} 14=5.000 \mathrm{k} \Omega \\ & \mathrm{R} 15=5.000 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	1.984	1.992	2.000	1.94	1.99	2.04	1.94	1.99	2.04	mA
$\mathrm{I}_{\text {FSS }}$	Full Scale Symmetry	$\mathrm{I}_{\mathrm{FS} 4}-\mathrm{I}_{\mathrm{FS} 2}$		$\pm 0.5$	$\pm 4.0$		$\pm 1$	$\pm 8.0$		$\pm 2$	$\pm 16$	$\mu \mathrm{A}$
Izs	Zero Scale Current			0.1	1.0		0.2	2.0		0.2	4.0	$\mu \mathrm{A}$
IFSR	Output Current Range	$\begin{aligned} & \mathrm{V}^{-}=-5 \mathrm{~V} \\ & \mathrm{~V}^{-}=-8 \mathrm{~V} \text { to }-18 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{v}_{\mathrm{IL}} \\ & \mathrm{~V}_{\text {IH }} \\ & \hline \end{aligned}$	Logic Input Levels Logic " 0 "' Logic " 1 "	$\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}$	2.0		0.8	2.0		0.8	2.0		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
$\begin{aligned} & I_{1 L} \\ & I_{1 H} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Logic Input Current } \\ & \text { Logic "0" } \\ & \text { Logic " } 1 \text { " } \end{aligned}$	$\begin{aligned} & V_{\mathrm{LC}}=0 \mathrm{~V} \\ & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+0.8 \mathrm{~V} \\ & 2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+18 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -2.0 \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{gathered} -10 \\ 10 \\ \hline \end{gathered}$		$\begin{aligned} & -2.0 \\ & 0.002 \\ & \hline \end{aligned}$	$\begin{gathered} -10 \\ 10 \\ \hline \end{gathered}$		$\begin{array}{r} -2.0 \\ 0.002 \\ \hline \end{array}$	$\begin{gathered} -10 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{V}_{\text {IS }}$	Logic Input Swing	$\mathrm{V}-=-15 \mathrm{~V}$	-10		18	-10		18	-10		18	V
$\mathrm{V}_{\text {THR }}$	Logic Threshold Range	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	-10		13.5	-10		13.5	-10		13.5	V
${ }_{15}$	Reference Bias Current			-1.0	-3.0		-1.0	-3.0		-1.0	-3.0	$\mu \mathrm{A}$
dl/dt	Reference Input Slew Rate	(Figure 12)	4.0	8.0		4.0	8.0		4.0	8.0		$\mathrm{mA} / \mu \mathrm{s}$
$\mathrm{PSSI}_{\text {FS }+}$	Power Supply Sensitivity	$4.5 \mathrm{~V} \leq \mathrm{V}+\leq 18 \mathrm{~V}$		0.0001	0.01		0.0001	0.01		0.0001	0.01	\%/\%
PSSIFS-		$\begin{aligned} & -4.5 \mathrm{~V} \leq \mathrm{V}-\leq 18 \mathrm{~V} \\ & \mathrm{l}_{\text {REF }}=1 \mathrm{~mA} \\ & \hline \end{aligned}$		0.0001	0.01		0.0001	0.01		0.0001	0.01	\%/\%
$\begin{array}{\|l} 1+ \\ 1- \end{array}$	Power Supply Current	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{l}_{\text {REF }}=1 \mathrm{~mA}$		$\begin{gathered} 2.3 \\ -4.3 \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ -5.8 \\ \hline \end{gathered}$		$\begin{gathered} 2.3 \\ -4.3 \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ -5.8 \\ \hline \end{gathered}$		$\begin{gathered} 2.3 \\ -4.3 \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ -5.8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & 1+ \\ & 1- \end{aligned}$		$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V},-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA}$		$\begin{gathered} 2.4 \\ -6.4 \end{gathered}$	$\begin{array}{c\|} 3.8 \\ -7.8 \\ \hline \end{array}$		$\begin{gathered} 2.4 \\ -6.4 \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ -7.8 \\ \hline \end{gathered}$		$\begin{gathered} 2.4 \\ -6.4 \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ -7.8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & 1+ \\ & 1- \\ & \hline \end{aligned}$		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{l}_{\mathrm{REF}}=2 \mathrm{~mA}$		$\begin{gathered} 2.5 \\ -6.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 3.8 \\ -7.8 \\ \hline \end{array}$		$\begin{gathered} 2.5 \\ -6.5 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} 3.8 \\ -7.8 \\ \hline \end{array}$		$\begin{gathered} 2.5 \\ -6.5 \\ \hline \end{gathered}$	$\begin{gathered} 3.8 \\ -7.8 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$

## Electrical Characteristics (Continued)

The following specifications apply for $V_{S}= \pm 15 \mathrm{~V}$, $I_{R E F}=2 \mathrm{~mA}$ and $T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$ unless otherwise specified. Output characteristics refer to both lout and IOUT.

Symbol	Parameter	Conditions	$\begin{aligned} & \text { DAC0802L/ } \\ & \text { DAC0802LC } \end{aligned}$			$\begin{aligned} & \text { DAC0800L/ } \\ & \text { DAC0800LC } \end{aligned}$			DAC0801LC			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
PD	Power Dissipation	$\begin{aligned} & \pm 5 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA} \\ & 5 \mathrm{~V},-15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA} \\ & \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=2 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 33 \\ 108 \\ 135 \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ 136 \\ 174 \\ \hline \end{gathered}$		$\begin{gathered} \hline 33 \\ 108 \\ 135 \end{gathered}$	$\begin{gathered} \hline 48 \\ 136 \\ 174 \\ \hline \end{gathered}$		$\begin{gathered} 33 \\ 108 \\ 135 \end{gathered}$	$\begin{gathered} \hline 48 \\ 136 \\ 174 \\ \hline \end{gathered}$	mW mW mW

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: The maximum junction temperature of the DAC0800, DAC0801 and DAC0802 is $125^{\circ} \mathrm{C}$. For operating at elevated temperatures, devices in the Dual-In-Line $J$ package must be derated based on a thermal resistance of $100^{\circ} \mathrm{C} / \mathrm{W}$, junction-to-ambient, $175^{\circ} \mathrm{C} / \mathrm{W}$ for the molded Dual-In-Line N package and $100^{\circ} \mathrm{C} / \mathrm{W}$ for the Small Outline M package.

Note 3: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 4: Pin-out numbers for the DAC080X represent the Dual-In-Line package. The Small Outline package pin-out differs from the Dual-In-Line package.

## Connection Diagrams



Block Diagram (Note 4)


## Typical Performance Characteristics



Note. Positive common-mode range is always (V+) - 1.5 V

Output Current vs Output Voltage (Output Voltage Compliance)


LSB Propagation Delay Vs IfS


Logic Input Current vs Input Voltage

$v_{i}$ - LOGIC inPut voltage (v)


[^15]Typical Performance Characteristics (Continued)


Power Supply Current vs - V


Power Supply Current vs Temperature


TL/H/5686-4

## Equivalent Circuit



FIGURE 2
Typical Applications (Continued)


$$
\begin{aligned}
& I_{F S} \approx \frac{+v_{\text {REF }}}{R_{R E F}} \times \frac{255}{256} \\
& I_{0}+T_{O}=l_{F S} \text { for all }
\end{aligned}
$$

logic states
For fixed reference, TTL operation,
typical values are:
$V_{\text {REF }}=10.000 \mathrm{~V}$
$R_{\text {REF }}=5.000 \mathrm{k}$
R15 $\approx R_{\text {REF }}$
$C_{C}=0.01 \mu \mathrm{~F}$
$\mathrm{V}_{\mathrm{LC}}=\mathrm{OV}$ (Ground)

FIGURE 3. Basic Positive Reference Operation (Note 4)


FIGURE 4. Recommended Full Scale Adjustment Circuit (Note 4)


TL/H/5686-16
$I_{F S} \approx \frac{-V_{\text {REF }}}{R_{\text {REF }}} \times \frac{255}{256} \quad \begin{aligned} & \text { Note. R REF sets IFS; R15 is } \\ & \text { for bias current cancellation }\end{aligned}$
FIGURE 5. Basic Negative Reference Operation (Note 4)

Typical Applications (Continued)


TL/H/5686-17

	B1	B2	B3	B4	B5	B6	B7	B8	I O $_{\mathbf{O}} \mathbf{~ m A}$	$\overline{I_{\mathbf{O}}} \mathbf{~ m A}$	$\mathbf{E}_{\mathbf{O}}$	$\overline{\mathbf{E}_{\mathbf{O}}}$
Full Scale	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	0.000
Full Scale-LSB	1	1	1	1	1	1	1	0	1.984	0.008	-9.920	-0.040
Half Scale+LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
Half Scale	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
Half Scale-LSB	0	1	1	1	1	1	1	1	0.992	1.000	-4.960	-5.000
Zero Scale+LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
Zero Scale	0	0	0	0	0	0	0	0	0.000	1.992	0.000	-9.960

FIGURE 6. Basic Unipolar Negative Operation (Note 4)


	B1	B2	B3	B4	B5	B6	B7	B8	$\mathbf{E}_{\mathbf{O}}$	$\overline{\mathbf{E}_{\mathbf{0}}}$
Pos. Full Scale	1	1	1	1	1	1	1	1	-9.920	+10.000
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	-9.840	+9.920
Zero Scale + LSB	1	0	0	0	0	0	0	1	-0.080	+0.160
Zero Scale	1	0	0	0	0	0	0	0	0.000	+0.080
Zero Scale-LSB	0	1	1	1	1	1	1	1	+0.080	0.000
Neg. Full Scale + LSB	0	0	0	0	0	0	0	1	+9.920	-9.840
Neg. Full Scale	0	0	0	0	0	0	0	0	+10.000	-9.920

FIGURE 7. Basic Bipolar Output Operation (Note 4)


TL/H/5686-18
If $R_{L}=\overline{R_{L}}$ within $\pm 0.05 \%$, output is symmetrical about ground

	B1	B2	B3	B4	B5	B6	B7	B8	$\mathbf{E}_{\mathbf{O}}$
Pos. Full Scale	1	1	1	1	1	1	1	1	+9.960
Pos. Full Scale-LSB	1	1	1	1	1	1	1	0	+9.880
(+)Zero Scale	1	0	0	0	0	0	0	0	+0.040
(-)Zero Scale	0	1	1	1	1	1	1	1	-0.040
Neg. Full Scale +LSB	0	0	0	0	0	0	0	1	-9.880
Neg. Full Scale	0	0	0	0	0	0	0	0	-9.960

FIGURE 8. Symmetrical Offset Binary Operation (Note 4)

Typical Applications (Continued)


TL/H/5686-19
For complementary output (operation as negative logic DAC), connect invert-
ing input of op amp to $\Gamma_{\mathrm{O}}$ (pin 2), connect $\mathrm{I}_{\mathrm{O}}$ (pin 4) to ground.
FIGURE 9. Positive Low Impedance Output Operation (Note 4)


TL/H/5686-20
For complementary output (operation as a negative logic DAC) connect non-inverting input of op am to $\bar{I}_{\mathrm{O}}$ (pin 2); connect $\mathrm{I}_{\mathrm{O}}$ (pin 4) to ground.
FIGURE 10. Negative Low Impedance Output Operation (Note 4)

$$
\begin{gathered}
V_{\mathrm{TH}}=\mathrm{V}_{\mathrm{LC}}+1.4 \mathrm{~V} \\
15 \mathrm{~V} \text { CMOS, HTL, HNIL } \\
V_{\mathrm{TH}}=7.6 \mathrm{~V}
\end{gathered}
$$



Note. Do not exceed negative logic input range of DAC.
FIGURE 11. Interfacing with Various Logic Families


Typical values: $\mathrm{R}_{\mathbb{I N}}=5 \mathrm{k},+\mathrm{V}_{\mathbb{I N}}=10 \mathrm{~V}$

FIGURE 12. Pulsed Reference Operation (Note 4)

Typical Applications (Continued)
(a) $I_{\text {REF }} \geq$ peak negative swing of $I_{I N}$



TL/H/5686-7
FIGURE 14. Settling Time Measurement (Note 4)

Typical Applications (Continued)


Note. For $1 \mu s$ conversion time with 8 -bit resolution and 7 -bit accuracy, an LM361 comparator replaces the LM319 and the reference current is doubled by reducing R1, R2 and R3 to $2.5 \mathrm{k} \Omega$ and R4 to $2 \mathrm{M} \Omega$.

FIGURE 15. A Complete $2 \mu \mathrm{~s}$ Conversion Time, 8-Bit A/D Converter (Note 4)

## DAC0808, DAC0807, DAC0806 8-Bit D/A Converters

## General Description

The DAC0808 series is an 8-bit monolithic digital-to-analog converter (DAC) featuring a full scale output current settling time of 150 ns while dissipating only 33 mW with $\pm 5 \mathrm{~V}$ supplies. No reference current (I REF) trimming is required for most applications since the full scale output current is typically $\pm 1$ LSB of 255 IREF/ 256. Relative accuracies of better than $\pm 0.19 \%$ assure 8 -bit monotonicity and linearity while zero level output current of less than $4 \mu \mathrm{~A}$ provides 8 -bit zero accuracy for $I_{\text {REF }} \geq 2 \mathrm{~mA}$. The power supply currents of the DAC0808 series are independent of bit codes, and exhibits essentially constant device characteristics over the entire supply voltage range.
The DAC0808 will interface directly with popular TTL, DTL or CMOS logic levels, and is a direct replacement for the

MC1508/MC1408. For higher speed applications, see DAC0800 data sheet.

## Features

- Relative accuracy: $\pm 0.19 \%$ error maximum (DAC0808)

■ Full scale current match: $\pm 1$ LSB typ

- 7 and 6-bit accuracy available (DAC0807, DAC0806)

■ Fast settling time: 150 ns typ

- Noninverting digital inputs are TTL and CMOS compatible
- High speed multiplying input slew rate: $8 \mathrm{~mA} / \mu \mathrm{s}$
- Power supply voltage range: $\pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Low power consumption: $33 \mathrm{~mW} @ \pm 5 \mathrm{~V}$

Block and Connection Diagrams


Dual-In-Line Package


TL/H/5687-2
Small-Outline Package


TL/H/5687-13

## Ordering Information

| ACCURACY | OPERATING TEMPERATURE | ORDER NUMBERS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RANGE |  |  |  |  |

[^16]

$V_{\text {EE }}$	$+18 V_{D C}$
Digital Input Voltage, V5-V12	$-10 V_{D C}$ to $+18 \mathrm{~V}_{\mathrm{DC}}$
Applied Output Voltage, $\mathrm{V}_{\mathrm{O}}$	$-11 \mathrm{~V}_{\mathrm{DC}}$ to $+18 \mathrm{~V}_{\mathrm{DC}}$
Reference Current, $\mathrm{I}_{14}$	5 mA
Reference Amplifier Inputs, V14, V15	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$
Power Dissipation (Note 3)	1000 mW
ESD Susceptibility (Note 4)	TBD

## Electrical Characteristics

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\text {REF }} / R 14=2 \mathrm{~mA}, \mathrm{DAC} 0808: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{DAC} 0808 \mathrm{C}, \mathrm{DAC0807C}, \mathrm{DAC} 0806 \mathrm{C}, \mathrm{T}_{\mathrm{A}}$ $=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and all digital inputs at high logic level unless otherwise noted.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{E}_{\mathrm{r}}$	Relative Accuracy (Error Relative to Full Scale lo)   DAC0808L (LM1508-8),   DAC0808LC (LM1408-8)   DAC0807LC (LM1408-7), (Note 5)   DAC0806LC (LM1408-6), (Note 5)   Settling Time to Within $1 / 2$ LSB   (Includes tpLH)	(Figure 4) $T_{A}=25^{\circ} \mathrm{C}(\text { Note } 6),$   (Figure 5)		150	$\begin{aligned} & \pm 0.19 \\ & \pm 0.39 \\ & \pm 0.78 \end{aligned}$	\%   \%   \%   \%   ns
$t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay Time	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 5)		30	100	ns
$\mathrm{TClO}_{0}$	Output Full Scale Current Drift			$\pm 20$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MSB   $\mathrm{V}_{\mathrm{IH}}$   $V_{\text {IL }}$	Digital Input Logic Levels High Level, Logic "1" Low Level, Logic "0"	(Figure 3)	2		0.8	$\begin{aligned} & V_{D C} \\ & V_{D C} \end{aligned}$
MSB	Digital Input Current High Level Low Level	(Figure 3)   $\mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}$   $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$		$\begin{gathered} 0 \\ -0.003 \\ \hline \end{gathered}$	$\begin{array}{r} 0.040 \\ -0.8 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$l_{15}$	Reference Input Bias Current	(Figure 3)		-1	-3	$\mu \mathrm{A}$
	Output Current Range	(Figure 3) $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 2.1 \\ & 4.2 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \\ \hline \end{gathered}$
10	Output Current   Output Current, All Bits Low	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=2.000 \mathrm{~V}, \\ & \mathrm{R} 14=1000 \Omega, \\ & \text { (Figure 3) } \\ & \text { (Figure 3) } \\ & \hline \end{aligned}$	1.9	$\begin{gathered} 1.99 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 2.1 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
	Output Voltage Compliance (Note 2) $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=1 \mathrm{~mA}$   $\mathrm{V}_{\mathrm{EE}}$ Below - 10V	$\mathrm{E}_{\mathrm{r}} \leq 0.19 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & -0.55,+0.4 \\ & -5.0,+0.4 \end{aligned}$	$\begin{aligned} & V_{D C} \\ & V_{D C} \end{aligned}$

Electrical Characteristics (Continued)
$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{REF}} / \mathrm{R} 14=2 \mathrm{~mA}, \mathrm{DAC0808}: \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{DAC0808C}, \mathrm{DAC} 0807 \mathrm{C}, \mathrm{DAC0806C}, \mathrm{~T}_{\mathrm{A}}$ $=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and all digital inputs at high logic level unless otherwise noted.)

Symbol	Parameter	Conditions	Min	Typ	Max	Units
SRI ${ }_{\text {REF }}$	Reference Current Slew Rate	(Figure 6)	4	8		$\mathrm{mA} / \mu \mathrm{s}$
	Output Current Power Supply Sensitivity	$-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{EE}} \leq-16.5 \mathrm{~V}$		0.05	2.7	$\mu \mathrm{A} / \mathrm{V}$
$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{EE}} \end{aligned}$	Power Supply Current (All Bits Low)	(Figure 3)		$\begin{gathered} 2.3 \\ -4.3 \end{gathered}$	$\begin{gathered} 22 \\ -13 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \\ & \hline \end{aligned}$	Power Supply Voltage Range	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Figure 3)	$\begin{gathered} 4.5 \\ -4.5 \\ \hline \end{gathered}$	$\begin{gathered} 5.0 \\ -15 \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ -16.5 \\ \hline \end{gathered}$	$\begin{aligned} & V_{D C} \\ & V_{D C} \\ & \hline \end{aligned}$
	Power Dissipation All Bits Low All Bits High	$\begin{aligned} & V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 33 \\ 106 \\ 90 \\ 160 \end{gathered}$	$\begin{aligned} & 170 \\ & 305 \end{aligned}$	mW   mW   mW   mW

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: Range control is not required.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, $T_{A}$. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maixmum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the dual-in-line J package when the board mounted is $100^{\circ} \mathrm{C} / \mathrm{W}$. For the dual-inline $N$ package, this number increases to $175^{\circ} \mathrm{C} / \mathrm{W}$ and for the small outline M package this number is $100^{\circ} \mathrm{C} / \mathrm{W}$.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: All current switches are tested to guarantee at least $50 \%$ of rated current.
Note 6: All bits switched.
Note 7: Pin-out numbers for the DAL080X represent the dual-in-line package. The small outline package pinout differs from the dual-in-line package.

## Typical Application



FIGURE 1. + 10V Output Digital to Analog Converter (Note 7)

## Typical Performance Characteristics

$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Logic Input Current vs Input Voltage

$V_{L}$ - LOGIC INPUT VOLTAGE (V)
Output Current vs Output Voltage (Output Voltage Compliance)


Typical Power Supply Current vs VEE


Bit Transfer Characteristics

$V_{L}$-LOGIC INPUT VOLTAGE (V)


Typical Power Supply Current vs VCc


Logic Threshold Voltage vs Temperature



Typical Power Supply Current vs Temperature


Reference Input Frequency Response


TL/H/5687-5
Unless otherwise specified: R14 = $\mathrm{R} 15=1 \mathrm{k} \Omega, \mathrm{C}=15 \mathrm{pF}$, pin 16 to $V_{E E} ; R_{L}=50 \Omega$, pin 4 to ground.
Curve A: Large Signal Bandwidth Method of Figure 7, VREF $=2 \mathrm{Vp}-\mathrm{p}$ offset 1 V above ground.
Curve B: Small Signal Bandwidth Method of Figure 7, $\mathrm{R}_{\mathrm{L}}=250 \Omega$, V REF $=50 \mathrm{mVp}-\mathrm{p}$ offset 200 mV above ground.
Curve C: Large and Small Signal Bandwidth Method of Figure 9 (no op $\left.\mathrm{amp}, \mathrm{R}_{\mathrm{L}}=50 \Omega\right), \mathrm{R}_{\mathrm{S}}=50 \Omega$, $\mathrm{V}_{\mathrm{REF}}=$ $2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=100 \mathrm{mVp}-\mathrm{p}$ centered at 0 V .


Test Circuits


TL/H/5687-6
$V_{1}$ and $I_{1}$ apply to inputs $A 1-A 8$.
The resistor tied to pin 15 is to temperature compensate the bias current and may not be necessary for all applications.
$l_{0}=K\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 4}{16}+\frac{A 5}{32}+\frac{A 6}{64}+\frac{A 7}{128}+\frac{A 8}{256}\right)$
where $K \cong \frac{V_{\text {REF }}}{R 14}$
and $A_{N}=$ " 1 " if $A_{N}$ is at high level
$A_{N}=$ " 0 " if $A_{N}$ is at low level

FIGURE 3. Notation Definitions Test Circuit (Note 7)


TL/H/5687-7
FIGURE 4. Relative Accuracy Test Circuit (Note 7)


FIGURE 5. Transient Response and Settling Time (Note 7)

## Test Circuits (Continued)



TL/H/5687-10
FIGURE 7. Positive VREF (Note 7)

FIGURE 6. Reference Current Slew Rate Measurement (Note 7)


TL/H/5687-11
FIGURE 8. Negative $\mathbf{V}_{\text {REF }}$ (Note 7)

## Application Hints

## REFERENCE AMPLIFIER DRIVE AND COMPENSATION

The reference amplifier provides a voltage at pin 14 for converting the reference voltage to a current, and a turn-around circuit or current mirror for feeding the ladder. The reference amplifier input currrent, $\mathrm{l}_{14}$, must always flow into pin 14, regardless of the set-up method or reference voltage polarity. Connections for a positive voltage are shown in Figure 7. The reference voltage source supplies the full current $\mathrm{I}_{14}$. For bipolar reference signals, as in the multiplying mode,


TL/H/5687-12
FIGURE 9. Programmable Gain Amplifier or Digital Attenuator Circuit (Note 7)

R15 can be tied to a negative voltage corresponding to the minimum input level. It is possible to eliminate R15 with only a small sacrifice in accuracy and temperature drift.
The compensation capacitor value must be increased with increases in R14 to maintain proper phase margin; for R14 values of $1,2.5$ and $5 \mathrm{k} \Omega$, minimum capacitor values are 15 , 37 and 75 pF . The capacitor may be tied to either $\mathrm{V}_{E E}$ or ground, but using $\mathrm{V}_{\mathrm{EE}}$ increases negative supply rejection.

## Application Hints (Continued)

A negative reference voltage may be used if R14 is grounded and the reference voltage is applied to R15 as shown in Figure 8. A high input impedance is the main advantage of this method. Compensation involves a capacitor to $V_{E E}$ on pin 16, using the values of the previous paragraph. The negative reference voltage must be at least 4 V above the $\mathrm{V}_{\mathrm{EE}}$ supply. Bipolar input signals may be handled by connecting R14 to a positive reference voltage equal to the peak positive input level at pin 15.
When a DC reference voltage is used, capacitive bypass to ground is recommended. The 5 V logic supply is not recommended as a reference voltage. If a well regulated 5 V supply which drives logic is to be used as the reference, R14 should be decoupled by connecting it to 5 V through another resistor and bypassing the junction of the 2 resistors with $0.1 \mu \mathrm{~F}$ to ground. For reference voltages greater than 5 V , a clamp diode is recommended between pin 14 and ground.
If pin 14 is driven by a high impedance such as a transistor current source, none of the above compensation methods apply and the amplifier must be heavily compensated, decreasing the overall bandwidth.

## OUTPUT VOLTAGE RANGE

The voltage on pin 4 is restricted to a range of -0.55 to 0.4 V when $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}$ due to the current switching methods employed in the DAC0808.
The negative output voltage compliance of the DAC0808 is extended to -5 V where the negative supply voltage is more negative than -10 V . Using a full-scale current of 1.992 mA and load resistor of $2.5 \mathrm{k} \Omega$ between pin 4 and ground will yield a voltage output of 256 levels between 0 and -4.980 V . Floating pin 1 does not affect the converter speed or power dissipation. However, the value of the load resistor determines the switching time due to increased voltage swing. Values of $R_{L}$ up to $500 \Omega$ do not significantly affect performance, but a $2.5 \mathrm{k} \Omega$ load increases worst-case settling time to $1.2 \mu \mathrm{~s}$ (when all bits are switched ON). Refer to the subsequent text section on Settling Time for more details on output loading.

## OUTPUT CURRENT RANGE

The output current maximum rating of 4.2 mA may be used only for negative supply voltages more negative than -8 V , due to the increased voltage drop across the resistors in the reference current amplifier.

## ACCURACY

Absolute accuracy is the measure of each output current level with respect to its intended value, and is dependent upon relative accuracy and full-scale current drift. Relative accuracy is the measure of each output current level as a fraction of the full-scale current. The relative accuracy of the DAC0808 is essentially constant with temperature due to
the excellent temperature tracking of the monolithic resistor ladder. The reference current may drift with temperature, causing a change in the absolute accuracy of output current. However, the DAC0808 has a very low full-scale current drift with temperature.
The DAC0808 series is guaranteed accurate to within $\pm 1 / 2$ LSB at a full-scale output current of 1.992 mA . This corresponds to a reference amplifier output current drive to the ladder network of 2 mA , with the loss of $1 \mathrm{LSB}(8 \mu \mathrm{~A})$ which is the ladder remainder shunted to ground. The input current to pin 14 has a guaranteed value of between 1.9 and 2.1 mA , allowing some mismatch in the NPN current source pair. The accuracy test circuit is shown in Figure 4. The 12bit converter is calibrated for a full-scale output current of 1.992 mA . This is an optional step since the DAC0808 accuracy is essentially the same between 1.5 and 2.5 mA . Then the DAC0808 circuits' full-scale current is trimmed to the same value with R14 so that a zero value appears at the error amplifier output. The counter is activated and the error band may be displayed on an oscilloscope, detected by comparators, or stored in a peak detector.

Two 8-bit D-to-A converters may not be used to construct a 16-bit accuracy D-to-A converter. 16-bit accuracy implies a total error of $\pm 1 / 2$ of one part in 65,536 or $\pm 0.00076 \%$, which is much more accurate than the $\pm 0.019 \%$ specification provided by the DAC0808.

## MULTIPLYING ACCURACY

The DAC0808 may be used in the multiplying mode with 8 -bit accuracy when the reference current is varied over a range of $256: 1$. If the reference current in the multiplying mode ranges from $16 \mu \mathrm{~A}$ to 4 mA , the additional error contributions are less than $1.6 \mu \mathrm{~A}$. This is well within 8 -bit accuracy when referred to full-scale.
A monotonic converter is one which supplies an increase in current for each increment in the binary word. Typically, the DAC0808 is monotonic for all values of reference current above 0.5 mA . The recommended range for operation with a DC reference current is 0.5 to 4 mA .

## SETTLING TIME

The worst-case switching condition occurs when all bits are switched ON, which corresponds to a low-to-high transition for all bits. This time is typically 150 ns for settling to within $\pm 1 / 2$ LSB, for 8 -bit accuracy, and 100 ns to $1 / 2$ LSB for 7 and 6-bit accuracy. The turn OFF is typically under 100 ns . These times apply when $\mathrm{R}_{\mathrm{L}} \leq 500 \Omega$ and $\mathrm{C}_{\mathrm{O}} \leq 25 \mathrm{pF}$.
Extra care must be taken in board layout since this is usually the dominant factor in satisfactory test results when measuring settling time. Short leads, $100 \mu \mathrm{~F}$ supply bypassing for low frequencies, and minimum scope lead length are all mandatory.

National Semiconductor Corporation

## DAC0830/DAC0831/DAC0832 8-Bit $\mu \mathrm{P}$ Compatible, Double-Buffered D to A Converters

## General Description

The DAC0830 is an advanced CMOS/Si-Cr 8-bit multiplying DAC designed to interface directly with the 8080, 8048, $8085, Z 80{ }^{\oplus}$, and other popular microprocessors. A deposited silicon-chromium R-2R resistor ladder network divides the reference current and provides the circuit with excellent temperature tracking characteristics ( $0.05 \%$ of Full Scale Range maximum linearity error over temperature). The circuit uses CMOS current switches and control logic to achieve low power consumption and low output leakage current errors. Special circuitry provides TTL logic input voltage level compatibility.
Double buffering allows these DACs to output a voltage corresponding to one digital word while holding the next digital word. This permits the simultaneous updating of any number of DACs.
The DAC0830 series are the 8-bit members of a family of microprocessor-compatible DACs (MICRO-DACTM). For applications demanding higher resolution, the DAC1000 series (10-bits) and the DAC1208 and DAC1230 (12-bits) are available alternatives.

## Features

- Double-buffered, single-buffered or flow-through digital data inputs
- Easy interchange and pin-compatible with 12-bit DAC1230 series
- Direct interface to all popular microprocessors
- Linearity specified with zero and full scale adjust onlyNOT BEST STRAIGHT LINE FIT.
- Works with $\pm 10 \mathrm{~V}$ reference-full 4 -quadrant multiplication
- Can be used in the voltage switching mode
- Logic inputs which meet TTL voltage level specs (1.4V logic threshold)
- Operates "STAND ALONE" (without $\mu \mathrm{P}$ ) if desired
- Available in 20-pin small-outline or molded chip carrier package


## Key Specifications

- Current settling time	$1 \mu \mathrm{~s}$
- Resolution	8 bits
- Linearity	8,9, or 10 bits
(guaranteed over temp.)	
- Gain Tempco	$0.0002 \% \mathrm{FS} /{ }^{\circ} \mathrm{C}$
■ Low power dissipation	20 mW
- Single power supply	5 to $15 \mathrm{~V}_{\mathrm{DC}}$

Typical Application


## Connection Diagrams (Top Views)

Dual-In-Line and
Small-Outline Packages

$\dagger$ This is necessary for the 12-bit DAC1230 series to permit interchanging from an 8 -bit to a 12-bit DAC with No PC board changes and no software changes, See applications section.

Molded Chip Carrier Package


TL/H/5608-22

Absolute Maximum Ratings (Notes $1 \& 2)$	
If Military/Aerospace specified devices are required,	
contact the National Semiconductor Sales Office/	
Distributors for availability and specifications.	
Supply Voltage (VCC)	$17 \mathrm{~V}_{\mathrm{DC}}$
Voltage at Any Digital Input	$\mathrm{V}_{\mathrm{CC}}$ to GND
Voltage at $\mathrm{V}_{\mathrm{REF}}$ Input	$\pm 25 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation	
at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)	500 mW
DC Voltage Applied to	
IOUT1 or lout2 (Note 4)	-100 mV to $\mathrm{V}_{\mathrm{CC}}$
ESD Susceptability (Note 14)	800 V


Lead Temperature (soldering, 10 sec.$)$	
Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
Surface Mount Package	
Vapor Phase $(60$ sec.)	$215^{\circ} \mathrm{C}$
Infrared $(15 \mathrm{sec})$.	$220^{\circ} \mathrm{C}$

## Operating Conditions

Temperature Range	$T_{\text {MIN }} \leq T_{A} \leq T_{M A X}$
Part numbers with 'LCN' suffix	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Part numbers with 'LCWM' suffix	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Part numbers with 'LCV' suffix	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Part numbers with 'LCJ' suffix	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Part numbers with 'LJ' suffix	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage at Any Digital Input	$V_{C C}$ to GND

Electrical Characteristics $\mathrm{V}_{\text {REF }}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathbf{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$.

Parameter		Conditions		See   Note	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{CC}}=15.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		$\begin{gathered} V_{C C}=5 V_{D C} \pm 5 \% \\ V_{C C}=12 V_{D C} \pm 5 \% \\ \text { to } 15 V_{D C} \pm 5 \% \\ \hline \end{gathered}$	Limit Units		
		Typ (Note 12)	Tested Limit (Note 5)		Design Limit (Note 6)					
CONVERTER CHARACTERISTICS										
Resolution							8	8	8	bits
Linearity Error Max   DAC0830LJ \& LCJ   DAC0832LJ \& LCJ   DAC0830LCN, LCWM \& LCV   DAC0831LCN   DAC0832LCN, LCWM \& LCV		Zero and full s $-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq$	usted	4, 8		$\begin{gathered} 0.05 \\ 0.2 \\ 0.05 \\ 0.1 \\ 0.2 \\ \hline \end{gathered}$	$\begin{gathered} 0.05 \\ 0.2 \\ 0.05 \\ 0.1 \\ 0.2 \\ \hline \end{gathered}$	\% FSR   \% FSR   \% FSR   \% FSR   \% FSR		
Differential Nonlinearity Max   DAC0830LJ \& LCJ   DAC0832LJ \& LCJ   DAC0830LCN, LCWM \& LCV   DAC0831LCN   DAC0832LCN, LCWM \& LCV		Zero and full s $-10 \mathrm{~V} \leq V_{\text {REF }} \leq$	usted	4, 8		$\begin{aligned} & \mathbf{0 . 1} \\ & \mathbf{0 . 4} \\ & 0.1 \\ & 0.2 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.4 \\ & 0.1 \\ & 0.2 \\ & 0.4 \end{aligned}$	\% FSR   \% FSR   \% FSR   \% FSR   \% FSR		
Monotonicity		$\begin{gathered} -10 V \leq V_{\text {REF }} \\ \leq+10 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { LJ \& } \\ & \text { LCN, } \end{aligned}$	4		$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	bits   bits		
Gain Error Max		Using Internal $-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }}$		7	$\pm 0.2$	$\pm 1$	$\pm 1$	\% FS		
Gain Error Tempco Max		Using internal			0.0002		0.0006	$\begin{gathered} \% \\ \text { FS/ } /{ }^{\circ} \mathrm{C} \end{gathered}$		
Power Supply Rejection		All digital inputs $\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=14.5 \mathrm{~V} \text { to } \\ 11.5 \mathrm{to} \\ 4.5 \mathrm{~V} \text { to } \end{array}$	ed hig		$\begin{gathered} 0.0002 \\ 0.0006 \\ 0.013 \\ \hline \end{gathered}$	$\begin{aligned} & 0.0025 \\ & 0.015 \\ & \hline \end{aligned}$		$\begin{gathered} \% \\ \text { FSR/V } \end{gathered}$		
Reference Input	Max				15	20	20	$\mathrm{k} \Omega$		
	Min				15	10	10	k $\Omega$		
Output Feedthrough Error		$V_{R E F}=20 \mathrm{Vp}-$   All data inputs	$\begin{aligned} & 00 \mathrm{kHz} \\ & \text { d low } \end{aligned}$		3			mVp-p		

Electrical Characteristics $\mathrm{V}_{\text {REF }}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Parameter		Conditions		See   Note	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{CC}}=15.75 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		$\begin{gathered} V_{C C}=5 V_{D C} \pm 5 \% \\ V_{C C}=12 V_{D C} \pm 5 \% \\ \text { to } 15 V_{D C} \pm 5 \% \\ \hline \end{gathered}$	Limit Units		
		Typ (Note 12)	Tested Limit (Note 5)		Design Limit   (Note 6)					
CONVERTER CHARACTERISTICS (Continued)										
Output Leakage Current Max	lout1			All data inputs latched low	LJ \& LCJ LCN, LCWM \& LCV	10		$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA
	IOUT2	All data inputs latched high	LJ \& LCJ LCN, LCWM \& LCV			$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA		
Output   Capacitance	Iout1   lout2	All data inputs latched low			$\begin{gathered} 45 \\ 115 \\ \hline \end{gathered}$			pF		
	IOUT1   IOUT2	All data inputs latched high			$\begin{gathered} 130 \\ 30 \\ \hline \end{gathered}$			pF		
DIGITAL AND DC CHARACTERISTICS										
Digital Input Voltages	Max	Logic Low LJ 4.75 V    LJ 15.75 V    LCJ 4.75 V    LCJ 15.75 V    LCN, LCWM, LCV				$\begin{aligned} & 0.6 \\ & 0.8 \\ & 0.7 \\ & 0.8 \\ & 0.95 \end{aligned}$	0.8	$V_{D C}$		
	Min	Logic High	LJ \& LCJ LCN, LCWM, LCV			$\begin{array}{r} 2.0 \\ 1.9 \\ \hline \end{array}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$V_{D C}$		
Digital Input Currents	Max	Digital inputs	.8V   LJ \& LCJ   LCN, LCWM, LCV		-50	$\begin{gathered} -200 \\ -160 \end{gathered}$	$\begin{array}{r} -200 \\ -200 \end{array}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$		
		Digital inputs $>$	OV   LJ \& LCJ   LCN, LCWM, LCV		0.1	$\begin{gathered} +10 \\ +8 \end{gathered}$	$\begin{array}{r} +10 \\ +10 \\ \hline \end{array}$	$\mu \mathrm{A}$		
Supply Current Drain	Max		LJ \& LCJ LCN, LCWM, LCV		1.2	$\begin{array}{r} 3.5 \\ 1.7 \end{array}$	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	mA		

Electrical Characteristics $V_{R E F}=10.000 V_{D C}$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathbf{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Symbol	Parameter	Conditions	See Note	$V_{C C}=15.75 \mathrm{~V}_{\mathrm{DC}}$		$V_{C C}=12 V_{D C} \pm 5 \%$   to $15 V_{D C} \pm 5 \%$   Design   Limit   (Note 6)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{VDC}$$\pm 5 \%$$\|$Design   Limit   (Note 6)	Limit Units
				Typ (Note 12)	$\begin{gathered} \text { Tested } \\ \text { Limit } \\ \text { (Note 5) } \end{gathered}$		Typ (Note 12)	Tested Limit (Note 5)		
AC CHARACTERISTICS										
$\mathrm{t}_{\mathrm{s}}$	Current Setting Time	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		1.0			1.0			$\mu \mathrm{s}$
tw	Write and XFER Pulse Width Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	$\begin{gathered} 11 \\ 9 \end{gathered}$	100	$\begin{aligned} & 250 \\ & 320 \end{aligned}$	320	375	$\begin{aligned} & 600 \\ & \mathbf{9 0 0} \end{aligned}$	900	
tos	Data Setup Time Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	9	100	$\begin{array}{r} 250 \\ \mathbf{3 2 0} \\ \hline \end{array}$	320	375	$\begin{array}{r} 600 \\ \mathbf{9 0 0} \\ \hline \end{array}$	900	
$t_{\text {DH }}$	Data Hold Time Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	9		$\begin{aligned} & 30 \\ & \mathbf{3 0} \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{CS}}$	Control Setup Time Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	9	110	$\begin{aligned} & 250 \\ & \mathbf{3 2 0} \end{aligned}$	320	600	$\begin{gathered} 900 \\ \mathbf{1 1 0 0} \\ \hline \end{gathered}$	1100	
${ }_{\text {t }}^{\text {CH }}$	Control Hold Time Min	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	9	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	10	0	0		

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temperature, $T_{A}$. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\text {JMAX }}=125^{\circ} \mathrm{C}$ (plastic) or $150^{\circ} \mathrm{C}$ (ceramic), and the typical junction-to-ambient thermal resistance of the J package when board mounted is $80^{\circ} \mathrm{C} / \mathrm{W}$. For the N package, this number increases to $100^{\circ} \mathrm{C} / \mathrm{W}$ and for the V package this number is $120^{\circ} \mathrm{C} / \mathrm{W}$.

Note 4: For current switching applications, both lout1 and lOUT2 must go to ground or the "Virtual Ground" of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\mathrm{OS}} \div \mathrm{V}_{\text {REF }}$. For example, if $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ then a 1 mV offset, $\mathrm{V}_{\mathrm{OS}}$, on loUT1 or louT2 will introduce an additional $0.01 \%$ linearity error.
Note 5: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 6: Guaranteed, but not $100 \%$ production tested. These limits are not used to calculate outgoing quality levels.
Note 7: Guaranteed at $V_{R E F}= \pm 10 V_{D C}$ and $V_{R E F}= \pm 1 V_{D C}$.
Note 8: The unit "FSR" stands for "Full Scale Range." "Linearity Error" and "Power Supply Rejection" specs are based on this unit to eliminate dependence on a particular VREF value and to indicate the true performance of the part. The "Linearity Error" specification of the DAC0830 is " $0.05 \%$ of FSR (MAX)". This guarantees that after performing a zero and full scale adjustment (see Sections 2.5 and 2.6 ), the plot of the 256 analog voltage outputs will each be within $0.05 \% \times \mathrm{V}_{\text {REF }}$ of a straight line which passes through zero and full scale.
Note 9: Boldface tested limits apply to the LJ and LCJ suffix parts only.
Note 10: A 100nA leakage current with $\mathrm{R}_{\mathrm{fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(100 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 / 10$ which is $0.02 \%$ of FS .
Note 11: The entire write pulse must occur within the valid data interval for the specified $t_{w}, t_{\mathrm{DS}}, t_{\mathrm{DH}}$, and ts $_{\mathrm{S}}$ to apply.
Note 12: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 13: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

## Switching Waveform



TL/H/5608-2

## Definition of Package Pinouts

Control Signals (All control signals level actuated)
$\overline{\mathbf{C S}} \quad \quad \quad$ Chip Select (active low). The $\overline{\mathrm{CS}}$ in combination with ILE will enable $\overline{W R}_{1}$.
ILE: Input Latch Enable (active high). The ILE in combination with $\overline{\mathrm{CS}}$ enables $\overline{\mathrm{WR}_{1}}$.
$\overline{W_{1}}$ : $\quad$ Write 1. The active low $\overline{W R}_{1}$ is used to load the digital input data bits (DI) into the input latch. The data in the input latch is latched when $\overline{\mathrm{WR}_{1}}$ is high. To update the input latch- $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}_{1}}$ must be low while ILE is high.
$\overline{W_{2}}$ : $\quad$ Write 2 (active low). This signal, in combination with XFER, causes the 8 -bit data which is available in the input latch to transfer to the DAC register.
$\overline{\text { XFER: }} \quad$ Transfer control signal (active low). The $\overline{X F E R}$ will enable $\overline{W R_{2}}$.

## Other Pin Functions

$\mathrm{DI}_{0}$-DI7: Digital Inputs. $\mathrm{Dl}_{0}$ is the least significant bit (LSB) and $\mathrm{DI}_{7}$ is the most significant bit (MSB).
Iout1: DAC Current Output 1. IOUT1 is a maximum for a digital code of all 1's in the DAC register, and is zero for all 0's in DAC register.
Iout2: DAC Current Output 2. Iout2 is a constant minus lout1, or lout1 + lout2 $=$ constant (I full scale for a fixed reference voltage).
$\mathbf{R}_{\mathrm{fb}}$ : Feedback Resistor. The feedback resistor is provided on the IC chip for use as the shunt
feedback resistor for the external op amp which is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) since it matches the resistors which are used in the on-chip R-2R ladder and tracks these resistors over temperature.
$V_{\text {REF }}$ Reference Voltage Input. This input connects an external precision voltage source to the internal R$2 R$ ladder. $\mathrm{V}_{\text {REF }}$ can be selected over the range of +10 to -10 V . This is also the analog voltage input for a 4-quadrant multiplying DAC application.
$\mathbf{V}_{\mathbf{C C}}$ : Digital Supply Voltage. This is the power supply pin for the part. $V_{C C}$ can be from +5 to $+15 V_{D C}$. Operation is optimum for +15 V DC.
GND: The pin 10 voltage must be at the same ground potential as louT1 and louT2 for current switching applications. Any difference of potential ( $\mathrm{V}_{\mathrm{OS}}$ pin 10) will result in a linearity change of

$$
\frac{V_{\text {OS }} \operatorname{pin} 10}{3 V_{\text {REF }}}
$$

For example, if $V_{\text {REF }}=10 \mathrm{~V}$ and pin 10 is 9 mV offset from lout1 and lout2 the linearity change will be $0.03 \%$.
Pin 3 can be offset $\pm 100 \mathrm{mV}$ with no linearity change, but the logic input threshold will shift.

## Linearity Error


a) End point test after zero and fs adj.

b) Best straight line

c) Shifting is adj. to pass best straight line test

## Definition of Terms

Resolution: Resolution is directly related to the number of switches or bits within the DAC. For example, the DAC0830 has $2^{8}$ or 256 steps and therefore has 8 -bit resolution.
Linearity Error: Linearity Error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.
National's linearity "end point test" (a) and the "best straight line" test (b,c) used by other suppliers are illustrated above. The "end point test" greatly simplifies the adjustment procedure by eliminating the need for multiple iterations of checking the linearity and then adjusting full scale until the linearity is met. The "end point test" guarantees that linearity is met after a single full scale adjust. (One adjustment vs. multiple iterations of the adjustment.) The "end point test" uses a standard zero and F.S. adjustment procedure and is a much more stringent test for DAC linearity.

Settling Time: Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value. Full-scale settling time requires a zero to full-scale or full-scale to zero output change.
Full-Scale Error: Full scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC0830 series, full-scale is VREF - 1LSB. For $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ and unipolar operation, $\mathrm{V}_{\text {FULL-SCALE }}=$ $10.0000 \mathrm{~V}-39 \mathrm{mV}=9.961 \mathrm{~V}$. Full-scale error is adjustable to zero.
Differential Nonlinearity: The difference between any two consecutive codes in the transfer curve from the theoretical 1 LSB is differential nonlinearity.
Monotonic: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. An 8-bit DAC which is monotonic to 8 bits simply means that increasing digital input codes will produce an increasing analog output.

Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output.


## Typical Performance Characteristics



TL/H/5608-5

## DAC0830 Series Application Hints

These DAC's are the industry's first microprocessor compatible, double-buffered 8 -bit multiplying D to A converters. Double-buffering allows the utmost application flexibility from a digital control point of view. This 20-pin device is also pin for pin compatible (with one exception) with the DAC1230, a 12-bit MICRO-DAC. In the event that a system's analog output resolution and accuracy must be upgraded, substituting the DAC1230 can be easily accomplished. By tying address bit $A_{0}$ to the ILE pin, a two-byte $\mu \mathrm{P}$ write instruction (double precision) which automatically increments the address for the second byte write (starting with $A_{0}=$ " 1 ") can be used. This allows either an 8 -bit or the 12-bit part to be used with no hardware or software changes. For the simplest 8-bit application, this pin should be tied to $V_{C C}$ (also see other uses in section 1.1).
Analog signal control versatility is provided by a precision R2R ladder network which allows full 4-quadrant multiplication of a wide range bipolar reference voltage by an applied digital word.

### 1.0 DIGITAL CONSIDERATIONS

A most unique characteristic of these DAC's is that the 8 -bit digital input byte is double-buffered. This means that the data must transfer through two independently controlled 8bit latching registers before being applied to the R-2R ladder network to change the analog output. The addition of a second register allows two useful control features. First, any DAC in a system can simultaneously hold the current DAC data in one register (DAC register) and the next data word in the second register (input register) to allow fast updating of the DAC output on demand. Second, and probably more important, double-buffering allows any number of DAC's in a
system to be updated to their new analog output levels simultaneously via a common strobe signal.
The timing requirements and logic level convention of the register control signals have been designed to minimize or eliminate external interfacing logic when applied to most popular microprocessors and development systems. It is easy to think of these converters as 8 -bit "write-only" memory locations that provide an analog output quantity. All inputs to these DAC's meet TTL voltage level specs and can also be driven directly with high voltage CMOS logic in nonmicroprocessor based systems. To prevent damage to the chip from static discharge, all unused digital inputs should be tied to $\mathrm{V}_{\mathrm{CC}}$ or ground. If any of the digital inputs are inadvertantly left floating, the DAC interprets the pin as a logic "1".

### 1.1 Double-Buffered Operation

Updating the analog output of these DAC's in a double-buffered manner is basically a two step or double write operation. In a microprocessor system two unique system addresses must be decoded, one for the input latch controlled by the $\overline{C S}$ pin and a second for the DAC latch which is controlled by the XFER line. If more than one DAC is being driven, Figure 2, the $\overline{\mathrm{CS}}$ line of each DAC would typically be decoded individually, but all of the converters could share a common XFER address to allow simultaneous updating of any number of DAC's. The timing for this operation is shown, Figure 3.
It is important to note that the analog outputs that will change after a simultaneous transfer are those from the DAC's whose input register had been modified prior to the XFER command.

## DAC0830 Series Application Hints（Continued）



FIGURE 2．Controlling Mutiple DACs

$\overline{\text { XFER }}$

FIGURE 3

The ILE pin is an active high chip select which can be de－ coded from the address bus as a qualifier for the normal $\overline{\mathrm{CS}}$ signal generated during a write operation．This can be used to provide a higher degree of decoding unique control sig－ nals for a particular DAC，and thereby create a more effi－ cient addressing scheme．
Another useful application of the ILE pin of each DAC in a multiple DAC system is to tie these inputs together and use this as a control line that can effectively＂freeze＂the out－ puts of all the DAC＇s at their present value．Pulling this line low latches the input register and prevents new data from being written to the DAC．This can be particularly useful in multiprocessing systems to allow a processor other than the
one controlling the DAC＇s to take over control of the data bus and control lines．If this second system were to use the same addresses as those decoded for DAC control（but for a different purpose）the ILE function would prevent the DAC＇s from being erroneously altered．
In a＂Stand－Alone＂system the control signals are generat－ ed by discrete logic．In this case double－buffering can be controlled by simply taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{XFER}}$ to a logic＂ 0 ＂，ILE to a logic＂1＂and pulling $\overline{W R_{1}}$ low to load data to the input latch．Pulling $\overline{W_{2}}$ low will then update the analog output．A logic＂ 1 ＂on either of these lines will prevent the changing of the analog output．

## DAC0830 Series Application Hints (Continued)



### 1.2 Single-Buffered Operation

In a microprocessor controlled system where maximum data throughput to the DAC is of primary concern, or when only one DAC of several needs to be updated at a time, a single-buffered configuration can be used. One of the two internal registers allows the data to flow through and the other register will serve as the data latch.
Digital signal feedthrough (see Section 1.5) is minimized if the input register is used as the data latch. Timing for this mode is shown in Figure 4.
Single-buffering in a "stand-alone" system is achieved by strobing $\overline{W_{1}}$ low to update the DAC with $\overline{\mathrm{CS}}, \overline{\mathrm{WR}}{ }_{2}$ and $\overline{\text { XFER }}$ grounded and ILE tied high.

### 1.3 Flow-Through Operation

Though primarily designed to provide microprocessor interface compatibility, the MICRO-DAC's can easily be configured to allow the analog output to continuously reflect the state of an applied digital input. This is most useful in applications where the DAC is used in a continuous feedback control loop and is driven by a binary up-down counter, or in function generation circuits where a ROM is continuously providing DAC data.
Simply grounding $\overline{\mathrm{CS}}, \overline{\mathrm{WR}_{1}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{XFER}}$ and tying ILE high allows both internal registers to follow the applied digital inputs (flow-through) and directly affect the DAC analog output.

### 1.4 Control Signal Timing

When interfacing these MICRO-DAC to any microprocessor, there are two important time relationships that must be considered to insure proper operation. The first is the minimum $\overline{W R}$ strobe pulse width which is specified as 900 ns for all valid operating conditions of supply voltage and ambient temperature, but typically a pulse width of only 180 ns is adequate if $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}_{\mathrm{DC}}$. A second consideration is that the guaranteed minimum data hold time of 50 ns should
be met or erroneous data can be latched. This hold time is defined as the length of time data must be held valid on the digital inputs after a qualified (via $\overline{\mathrm{CS}}$ ) $\overline{\mathrm{WR}}$ strobe makes a low to high transition to latch the applied data.
If the controlling device or system does not inherently meet these timing specs the DAC can be treated as a slow memory or peripheral and utilize a technique to extend the write strobe. A simple extension of the write time, by adding a wait state, can simultaneously hold the write strobe active and data valid on the bus to satisfy the minimum $\overline{W R}$ pulsewidth. If this does not provide a sufficient data hold time at the end of the write cycle, a negative edge triggered oneshot can be included between the system write strobe and the $\overline{W R}$ pin of the DAC. This is illustrated in Figure 5 for an exemplary system which provides a $250 \mathrm{~ns} \overline{\mathrm{WR}}$ strobe time with a data hold time of less than 10 ns .
The proper data set-up time prior to the latching edge (LO to HI transition) of the WR strobe, is insured if the WR pulsewidth is within spec and the data is valid on the bus for the duration of the DAC $\overline{W R}$ strobe.

### 1.5 Digital Signal Feedthrough

When data is latched in the internal registers, but the digital inputs are changing state, a narrow spike of current may flow out of the current output terminals. This spike is caused by the rapid switching of internal logic gates that are responding to the input changes.
There are several recommendations to minimize this effect. When latching data in the DAC, always use the input register as the latch. Second, reducing the $\mathrm{V}_{\mathrm{CC}}$ supply for the DAC from +15 V to +5 V offers a factor of 5 improvement in the magnitude of the feedthrough, but at the expense of internal logic switching speed. Finally, increasing $\mathrm{C}_{\mathrm{C}}$ (Figure 8) to a value consistent with the actual circuit bandwidth requirements can provide a substantial damping effect on any output spikes.

## DAC0830 Series Application Hints (Continued)



## FIGURE 5. Accommodating a High Speed System

### 2.0 ANALOG CONSIDERATIONS

The fundamental purpose of any $D$ to $A$ converter is to provide an accurate analog output quantity which is representative of the applied digital word. In the case of the DAC0830, the output, loutr, is a current directly proportional to the product of the applied reference voltage and the digital input word. For application versatility, a second output, lout2, is provided as a current directly proportional to the complement of the digital input. Basically:
louT $_{1}=\frac{V_{\text {REF }}}{15 \mathrm{k} \Omega} \times \frac{\text { Digital Input }}{256} ;$
loUT2 $=\frac{V_{\text {REF }}}{15 \mathrm{k} \Omega} \times \frac{255-\text { Digital Input }}{256}$
where the digital input is the decimal (base 10) equivalent of the applied 8 -bit binary word ( 0 to 255), $\mathrm{V}_{\text {REF }}$ is the voltage at pin 8 and $15 \mathrm{k} \Omega$ is the nominal value of the internal resistance, R, of the R-2R ladder network (discussed in Section 2.1).

Several factors external to the DAC itself must be considered to maintain analog accuracy and are covered in subsequent sections.

### 2.1 The Current Switching R-2R Ladder

The analog circuitry, Figure 6, consists of a silicon-chromium ( SiCr or Si -chrome) thin film R-2R ladder which is deposited on the surface oxide of the monolithic chip. As a result, there are no parasitic diode problems with the ladder (as there may be with diffused resistors) so the reference voltage, $\mathrm{V}_{\text {REF }}$, can range -10 V to +10 V even if $\mathrm{V}_{\mathrm{CC}}$ for the device is $5 \mathrm{~V}_{\mathrm{DC}}$.
The digital input code to the DAC simply controls the position of the SPDT current switches and steers the available ladder current to either lout1 or lout2 as determined by the logic input level (" 1 " or " 0 ") respectively, as shown in

Figure 6. The MOS switches operate in the current mode with a small voltage drop across them and can therefore switch currents of either polarity. This is the basis for the 4quadrant multiplying feature of this DAC.

### 2.2 Basic Unipolar Output Voltage

To maintain linearity of output current with changes in the applied digital code, it is important that the voltages at both of the current output pins be as near ground potential $\left(0 V_{D C}\right)$ as possible. With $\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}$ every millivolt appearing at either lout1 or lout2 will cause a $0.01 \%$ linearity error. In most applications this output current is converted to a voltage by using an op amp as shown in Figure 7.
The inverting input of the op amp is a "virtual ground" created by the feedback from its output through the internal 15 $\mathrm{k} \Omega$ resistor, $\mathrm{R}_{\mathrm{fb}}$. All of the output current (determined by the digital input and the reference voltage) will flow through $\mathrm{R}_{\mathrm{fb}}$ to the output of the amplifier. Two-quadrant operation can be obtained by reversing the polarity of $\mathrm{V}_{\text {REF }}$ thus causing lout1 to flow into the DAC and be sourced from the output of the amplifier. The output voltage, in either case, is always equal to louT $1 \times \mathrm{R}_{\mathrm{fb}}$ and is the opposite polarity of the reference voltage.
The reference can be either a stable $D C$ voltage source or an $A C$ signal anywhere in the range from -10 V to +10 V . The DAC can be thought of as a digitally controlled attenuator: the output voltage is always less than or equal to the applied reference voltage. The $\mathrm{V}_{\text {REF }}$ terminal of the device presents a nominal impedance of $15 \mathrm{k} \Omega$ to ground to external circuitry.
Always use the internal $\mathrm{R}_{\mathrm{fb}}$ resistor to create an output voltage since this resistor matches (and tracks with temperature) the value of the resistors used to generate the output current (lout1).

## DAC0830 Series Application Hints (Continued)



FIGURE 6


TL/H/5608-9

### 2.3 Op Amp Considerations

The op amp used in Figure 7 should have offset voltage nulling capability (See Section 2.5).
The selected op amp should have as low a value of input bias current as possible. The product of the bias current times the feedback resistance creates an output voltage error which can be significant in low reference voltage applications. BI-FET op amps are highly recommended for use with these DACs because of their very low input current.
Transient response and settling time of the op amp are important in fast data throughput applications. The largest stability problem is the feedback pole created by the feedback resistance, $\mathrm{R}_{\mathrm{fb}}$, and the output capacitance of the DAC. This appears from the op amp output to the ( - ) input and includes the stray capacitance at this node. Addition of a lead capacitance, $\mathrm{C}_{\mathrm{C}}$ in Figure 8, greatly reduces overshoot and ringing at the output for a step change in DAC output current.
Finally, the output voltage swing of the amplifier must be greater than $V_{\text {REF }}$ to allow reaching the full scale output voltage. Depending on the loading on the output of the amplifier and the available op àmp supply voltages (only $\pm 12$ volts in many development systems), a reference voltage less than 10 volts may be necessary to obtain the full analog output voltage range.

### 2.4 Bipolar Output Voltage with a Fixed Reference

The addition of a second op amp to the previous circuitry can be used to generate a bipolar output voltage from a fixed reference voltage. This, in effect, gives sign significance to the MSB of the digital input word and allows twoquadrant multiplication of the reference voltage. The polarity of the reference can also be reversed to realize full 4-quadrant multiplication: $\pm \mathrm{V}_{\text {REF }} \times \pm$ Digital Code $= \pm \mathrm{V}_{\text {OUT }}$. This circuit is shown in Figure 9.

This configuration features several improvements over existing circuits for bipolar outputs with other multiplying DACs. Only the offset voltage of amplifier 1 has to be nulled to preserve linearity of the DAC. The offset voltage error of the second op amp (although a constant output voltage error) has no effect on linearity. It should be nulled only if absolute output accuracy is required. Finally, the values of the resistors around the second amplifier do not have to match the internal DAC resistors, they need only to match and temperature track each other. A thin film 4-resistor network available from Beckman Instruments, Inc. (part no. 694-3-R10K-D) is ideally suited for this application. These resistors are matched to $0.1 \%$ and exhibit only $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ resistance tracking temperature coefficient. Two of the four available $10 \mathrm{k} \Omega$ resistors can be paralleled to form $R$ in Figure 9 and the other two can be used independently as the resistances labeled 2R.

### 2.5 Zero Adjustment

For accurate conversions, the input offset voltage of the output amplifier must always be nulled. Amplifier offset errors create an overall degradation of DAC linearity.
The fundamental purpose of zeroing is to make the voltage appearing at the DAC outputs as near $O V_{D C}$ as possible. This is accomplished for the typical DAC - op amp connection (Figure 7 ) by shorting out $\mathrm{R}_{\mathrm{fb}}$, the amplifier feedback resistor, and adjusting the $\mathrm{V}_{\text {OS }}$ nulling potentiometer of the op amp until the output reads zero volts. This is done, of course, with an applied digital code of all zeros if louT1 is driving the op amp (all one's for louta). The short around $R_{\mathrm{fb}}$ is then removed and the converter is zero adjusted.


OP Amp	$\mathbf{C}_{\mathbf{C}}$	$\mathbf{t}_{\mathbf{s}}$   (O to Full Scale)
LF356	22 pF	$4 \mu \mathrm{~s}$
LF351	22 pF	$5 \mu \mathrm{~s}$
LF357*	10 pF	$2 \mu \mathrm{~s}$
*2.4 KR RESISTOR ADDED FROM-INPUT TO		
GROUND TO INSURE STABILITY		


*THESE RESISTORS ARE AVAILABLE FROM BECKMAN INSTRUMENTS, INC. AS THEIR PART NO. 694-3-R10K-D


FIGURE 9

### 2.6 Full-Scale Adjustment

In the case where the matching of $\mathrm{R}_{\mathrm{fb}}$ to the $R$ value of the R-2R ladder (typically $\pm 0.2 \%$ ) is insufficient for full-scale accuracy in a particular application, the $\mathrm{V}_{\text {REF }}$ voltage can be adjusted or an external resistor and potentiometer can be added as shown in Figure 10 to provide a full-scale adjustment.
The temperature coefficients of the resistors used for this adjustment are an important concern. To prevent degradation of the gain error temperature coefficient by the external resistors, their temperature coefficients ideally would have to match that of the internal DAC resistors, which is a highly impractical constraint. For the values shown in Figure 10, if the resistor and the potentiometer each had a temperature coefficient of $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum, the overall gain error temperature coefficent would be degraded a maximum of $0.0025 \% /{ }^{\circ} \mathrm{C}$ for an adjustment pot setting of less than $3 \%$ of $\mathrm{R}_{\mathrm{fb}}$.

### 2.7 Using the DAC0830 in a Voltage Switching Configuration

The R-2R ladder can also be operated as a voltage switching network. In this mode the ladder is used in an inverted
manner from the standard current switching configuration. The reference voltage is connected to one of the current output terminals (lout1 for true binary digital control, IOUT2 is for complementary binary) and the output voltage is taken from the normal $\mathrm{V}_{\text {REF }}$ pin. The converter output is now a voltage in the range from $O V$ to $255 / 256 \mathrm{~V}_{\text {REF }}$ as a function of the applied digital code as shown in Figure 11.


FIGURE 10. Adding Full-Scale Adjustment

## DAC0830 Series Application Hints（Continued）



TL／H／5608－12
FIGURE 11．Voltage Mode Switching

This configuration offers several useful application advan－ tages．Since the output is a voltage，an external op amp is not necessarily required but the output impedance of the DAC is fairly high（equal to the specified reference input resistance of $10 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$ ）so an op amp may be used for buffering purposes．Some of the advantages of this mode are illustrated in Figures 12，13， 14 and 15.
There are two important things to keep in mind when using this DAC in the voltage switching mode．The applied refer－ ence voltage must be positive since there are internal para－ sitic diodes from ground to the IOUT1 and louT2 terminals which would turn on if the applied reference went negative． There is also a dependence of conversion linearity and

－Voltage switching mode eliminates output signal inversion and therefore a need for a negative power supply．
－Zero code output voltage is limited by the low level output saturation volt－ age of the op amp．The $2 \mathrm{k} \Omega$ pull－down resistor helps to reduce this volt－ age．
－Vos of the op amp has no effect on DAC linearity．
FIGURE 12．Single Supply DAC
gain error on the voltage difference between $\mathrm{V}_{\mathrm{CC}}$ and the voltage applied to the normal current output terminals．This is a result of the voltage drive requirements of the ladder switches．To ensure that all 8 switches turn on sufficiently （so as not to add significant resistance to any leg of the ladder and thereby introduce additional linearity and gain errors）it is recommended that the applied reference voltage be kept less than $+5 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{V}_{\mathrm{CC}}$ be at least 9 V more positive than $V_{\text {REF }}$ ．These restrictions ensure less than $0.1 \%$ linearity and gain error change．Figures 16， 17 and 18 characterize the effects of bringing $V_{\text {REF }}$ and $V_{C C}$ closer together as well as typical temperature performance of this voltage switching configuration．


TL／H／5608－13
－ $\mathrm{V}_{\mathrm{OUT}}=2.5 \mathrm{~V}\left(\frac{\mathrm{D}}{128}-1\right)$

## DAC0830 Series Application Hints (Continued)



FIGURE 14. Bipolar Output with Increased Output Voltage Swing


- Only a single +15 V supply required
- Non-interactive full-scale and zero code output adjustments
- $\mathrm{V}_{\text {MAX }}$ and $\mathrm{V}_{\text {MIN }}$ must be $\leq+5 \mathrm{VDC}$ and $z 0 \mathrm{~V}$.
- Incremental Output Step $=\frac{1}{256}\left(V_{\text {MAX }}-V_{\text {MIN }}\right)$.
- $\mathrm{V}_{\text {OUT }}=\frac{\mathrm{D}}{256}\left(\mathrm{~V}_{\text {MAX }}-\mathrm{V}_{\text {MIN }}\right)+\frac{255}{256} \mathrm{~V}_{\text {MIN }}$

FIGURE 15. Single Supply DAC with Level Shift and SpanAdjustable Output


FIGURE 16

Gain and Linearity Error Variation vs. Reference Voltage


FIGURE 17
Note: For these curves, $V_{\text {REF }}$ is the voltage applied to pin 11 (lout1) with pin 12 (lout2) grounded.


TL/H/5608-15
FIGURE 18

## DAC0830 Series Application Hints (Continued)

### 2.8 Miscellaneous Application Hints

These converters are CMOS products and reasonable care should be exercised in handling them to prevent catastrophic failures due to static discharge.
Conversion accuracy is only as good as the applied reference voltage so providing a stable source over time and temperature changes is an important factor to consider.
A "good" ground is most desirable. A single point ground distribution technique for analog signals and supply returns keeps other devices in a system from affecting the output of the DACs.
During power-up supply voltage sequencing, the -15 V (or -12 V ) supply of the op amp may appear first. This will cause the output of the op amp to bias near the negative supply potential. No harm is done to the DAC, however, as the on-chip $15 \mathrm{k} \Omega$ feedback resistor sufficiently limits the current flow from lout1 when this lead is internally clamped to one diode drop below ground.
Careful circuit construction with minimization of lead lengths around the analog circuitry, is a primary concern. Good high frequency supply decoupling will aid in preventing inadvertant noise from appearing on the analog output.

## Applications

## DAC Controlled Amplifier (Volume Control)



- $\mathrm{V}_{\text {OUT }}=\frac{-\mathrm{V}_{\text {IN }}(256)}{\mathrm{D}}$
- When $D=0$, the amplifier will go open loop and the output will saturate.
- Feedback impedance from the -input to the output varies from $15 \mathrm{k} \Omega$ to $\infty$ as the input code changes from full-scale to zero.

Overall noise reduction and reference stability is of particular concern when using the higher accuracy versions, the DAC0830 and DAC0831, or their advantages are wasted.

### 3.0 GENERAL APPLICATION IDEAS

The connections for the control pins of the digital input registers are purposely omitted. Any of the control formats discussed in Section 1 of the accompanying text will work with any of the circuits shown. The method used depends on the overall system provisions and requirements.
The digital input code is referred to as $D$ and represents the decimal equivalent value of the 8 -bit binary input, for example:

Pin 13   MSB     Pin 7   LSBDecimal Equivalent								
1	1	1	1	1	1	1	1	255
1	0	0	0	0	0	0	0	128
0	0	0	1	0	0	0	0	16
0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	0	0	0

Capacitance Multiplier


TL/H/5608-16

- $\mathrm{C}_{\text {Equiv }}=\mathrm{C}_{1}\left(1+\frac{256}{\mathrm{D}}\right)$
- Maximum voltage across the equivalent capacitance is
limited to $\frac{V_{\text {OMAX (op amp) }}}{256}$

$$
1+\frac{256}{D}
$$

$-\mathrm{C}_{2}$ is used to improve settling time of op amp.

Applications (Continued)
Variable fo, Variable $\mathbf{Q}_{\mathbf{0}}$, Constant BW Bandpass Filter


TL/H/5608-17

- $f_{O}=\frac{\sqrt{\frac{K D}{256}}}{2 \pi R_{1} C^{\prime}} ; Q_{O}=\sqrt{\frac{K D}{256}} \frac{\left(2 R_{Q}+R_{1}\right)}{R_{Q}(K+1)} ; 3 \mathrm{dbBW}=\frac{R_{Q}(K+1)}{2 \pi R_{1} C\left(2 R_{Q}+\mathrm{R}_{1}\right)}$
where $C_{1}=C_{2}=C ; K=\frac{R_{6}}{R_{5}}$ and $R_{1}=R$ of DAC $=15 \mathrm{k}$
- $H_{O}=1$ for $R_{I N}=R_{4}=R_{1}$
- Range of $\mathrm{fo}_{\mathrm{o}}$ and Q is $\approx 16$ to 1 for circuit shown. The range can be extended to 255 to 1 by replacing $R_{1}$ with a second DAC0830 driven by the same digital input word.
- Maximum $f_{0} \times Q$ product should be $\leq 200 \mathrm{kHz}$.

DAC Controlled Function Generator


TL/H/5608-18

- DAC controls the frequency of sine, square, and triangle outputs.
- $f=\frac{D}{256(20 k) C}$ for $V_{\text {OMAX }}=V_{\text {OMIN }}$ of square wave output and $R_{1}=3 R_{2}$.
- 255 to 1 linear frequency range; oscillator stops with $D=0$
- Trim symmetry and wave-shape for minimum sine wave distortion.


TL/H/5608-19
lout $=V_{\text {REF }}\left[\frac{1}{R_{1}}+\frac{D}{256 \mathrm{R}_{\mathrm{fb}}}\right]\left[1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{3}}\right]$

- DAC0830 linearly controls the current flow from the input terminal to the output terminal to be 4 mA (for $D=0$ ) to 19.94 mA (for $D=255$ ).
- Circuit operates with a terminal voltage differential of 16 V to 55 V .
- $P_{2}$ adjusts the magnitude of the output current and $P_{1}$ adjusts the zero to full scale range of output current.
- Digital inputs can be supplied from a processor using opto isolators on each input or the DAC latches can flow-through (connect control lines to pins 3 and 10 of the DAC) and the input data can be set by SPST toggle switches to ground (pins 3 and 10).

DAC Controlled Exponential Time Response


- Output responds exponentially to input changes and automatically stops when $V_{\text {OUT }}=V_{I N}$
- Output time constant is directly proportional to the DAC input code and capacitor C
- Input voltage must be positive (See section 2.7)


## Ordering Information

Temperature Range		$0^{\circ} \mathrm{C}$ to $+70^{\circ}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Non Linearity	0.05\% FSR	DAC0830LCN	DAC0830LCM	DAC0830LCV	DAC0830LCJ	DAC0830LJ
	0.1\% FSR	DAC0831LCN				
	0.2\% FSR	DAC0832LCN	DAC0832LCM	DAC0832LCV	DAC0832LCJ	DAC0832LJ
Package Outline		N20A-Molded DIP	M20B Small Outline	V20A Chip Carrier	J20A-Ceramic DIP	

National Semiconductor Corporation

## DAC1000, DAC1001, DAC1002, DAC1006, DAC1007, DAC1008 $\mu$ P Compatible, Double-Buffered D to A Converters

## General Description

The DAC1000/1/2 and DAC1006/7/8 are advanced CMOS/Si-Cr 10-, 9- and 8 -bit accurate multiplying DACs which are designed to interface directly with the 8080, 8048 , 8085, Z-80 and other popular microprocessors. These DACs appear as a memory location or an I/O port to the $\mu \mathrm{P}$ and no interfacing logic is needed.
These devices, combined with an external amplifier and voltage reference, can be used as standard D/A converters; and they are very attractive for multiplying applications (such as digitally controlled gain blocks) since their linearity error is essentially independent of the voltage reference. They become equally attractive in audio signal processing equipment as audio gain controls or as programmable attenuators which marry high quality audio signal processing to digitally based systems under microprocessor control.
All of these DACs are double buffered. They can load all 10 bits or two 8-bit bytes and the data format can be either right justified or left justified. The analog section of these DACs is essentially the same as that of the DAC1020.
The DAC1000 series are the 10-bit members of a family of microprocessor-compatible DAC's (MICRO-DACTM's). For applications requiring other resolutions, the DAC0830 series ( 8 bits) and the DAC1208 and DAC1230 (12 bits) are available alternatives.

Part \#	Accuracy   (bits)	Pin	Description		
DAC1000	10		Has all   logic   features		
DAC1001	9	24	20		For left-
:---					
justified					
data	,	DAC1002	8		
:---:	:---:				
DAC1006	10				
DAC1007	9				
DAC1008	8				

Features
■ Uses easy to adjust END POINT specs, NOT BEST STRAIGHT LINE FIT
■ Low power consumption

- Direct interface to all popular microprocessors.
- Integrated thin film on CMOS structure
- Double-buffered, single-buffered or flow through digital data inputs.
■ Loads two 8-bit bytes or a single 10-bit word.
■ Logic inputs which meet TTTL voltage level specs (1.4V logic threshold).
■ Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication.
- Operates STAND ALONE (without $\mu \mathrm{P}$ ) if desired.
- Available in $0.3^{\prime \prime}$ standard 20 -pin and $0.6^{\prime \prime} 24$-pin package.
■ Differential non-linearity selection available as special order.


## Key Specifications

- Output Current Settling Time

500 ns

- Resolution

10 bits

- Linearity
- Gain Tempco
- Low Power Dissipation (guaranteed over temp.)
$-0.0003 \%$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$
20 mW
(including ladder)
- Single Power Supply

5 to $15 V_{D C}$

## Typical Application

DAC1006/1007/1008


Absolute Maximum Ratings (Notes 1 \& 2)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )
$17 V_{D C}$
Voltage at Any Digital Input
Voltage at $V_{\text {REF }}$ Input
Storage Temperature Range
Package Dissipation at $T_{A}=25^{\circ} \mathrm{C}$ (Note 3) 500 mW
DC Voltage Applied to IOUT1 or IOUT2
(Note 4) $\quad-100 \mathrm{mV}$ to $\mathrm{V}_{\mathrm{CC}}$

ESD Susceptibility (Note 11)	800 V
Lead Temp. (Soldering, 10 seconds)	
Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
Operating Ratings (Note 1)	
Temperature Range	$\mathrm{T}_{\text {MiN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}}$
Part numbers with 'LCN' suffix	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Part numbers with 'LCJ' suffix	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Part numbers with 'LJ' suffix	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage at Any Digital Input	$\mathrm{V}_{\mathrm{CC}}$ to GND

## Electrical Characteristics

Tested at $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$ and $15.75 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted

Parameter	Conditions	See Note	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}_{\mathrm{DC}} \pm 5 \% \\ \text { to } 15 \mathrm{~V}_{\mathrm{DC}} \pm 5 \% \end{gathered}$			$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}} \pm 5 \%$			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Resolution					10			10	bits
Linearity Error	Endpoint adjust only   $T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$   $-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$ DAC1000 and 1006 DAC1001 and 1007 DAC1002 and 1008	$\begin{gathered} 4,7 \\ 6 \\ 5 \end{gathered}$			$\begin{gathered} 0.05 \\ 0.1 \\ 0.2 \end{gathered}$			$\begin{gathered} 0.05 \\ 0.1 \\ 0.2 \end{gathered}$	\% of FSR   \% of FSR   \% of FSR
Differential Nonlinearity	Endpoint adjust only $\mathrm{T}_{\text {MIN }}<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\text {MAX }}$   $-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$ DAC1000 and 1006 DAC1001 and 1007 DAC1002 and 1008	$\begin{gathered} 4,7 \\ 6 \\ 5 \end{gathered}$			$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.4 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.4 \\ & \hline \end{aligned}$	\% of FSR   \% of FSR   \% of FSR
Monotonicity	$\begin{array}{\|r\|} \hline T_{\text {MIN }}<T_{A}<T_{\text {MAX }} \\ -10 V \leq V_{\text {REF }} \leq+10 \mathrm{~V} \\ \text { DAC1000 and } 1006 \\ \text { DAC1001 and } 1007 \\ \text { DAC1002 and } 1008 \\ \hline \end{array}$	$\begin{gathered} 4,6 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ 9 \\ 8 \\ \hline \end{gathered}$			$\begin{gathered} 10 \\ 9 \\ 8 \\ \hline \end{gathered}$			bits bits bits
Gain Error	Using internal $\mathrm{R}_{\mathrm{fb}}$ $-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$	5	-1.0	$\pm 0.3$	1.0	-1.0	$\pm 0.3$	1.0	\% of FS
Gain Error Tempco	$T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$ Using internal $\mathrm{R}_{\mathrm{fb}}$	$\begin{aligned} & 6 \\ & 9 \end{aligned}$		-0.0003	-0.001		-0.0006	-0.002	\% of FS $/{ }^{\circ} \mathrm{C}$
Power Supply Rejection	All digital inputs latched high $\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=14.5 \mathrm{~V} \text { to } 15.5 \mathrm{~V} \\ 11.5 \mathrm{~V} \text { to } 12.5 \mathrm{~V} \\ 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{array}$			$\begin{aligned} & 0.003 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.010 \end{aligned}$		0.033	0.10	\% FSR/V   \% FSR/V   \% FSR/V
Reference Input Resistance			10	15	20	10	15	20	k $\Omega$
Output Feedthrough Error	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{f}=100 \mathrm{kHz} \\ & \text { All data inputs } \\ & \text { latched low } \\ & \text { D Package } \\ & \text { N Package } \end{aligned}$			$\begin{gathered} 130 \\ 90 \end{gathered}$			$\begin{gathered} 130 \\ 90 \end{gathered}$		$\begin{aligned} & m V_{p-p} \\ & m V_{p-p} \end{aligned}$
Output lout1   Capacitance louT2    louT1    louT2	All data inputs latched low All data inputs latched high			$\begin{gathered} 60 \\ 250 \\ 250 \\ 60 \\ \hline \end{gathered}$			$\begin{gathered} 60 \\ 250 \\ 250 \\ 60 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Supply Current Drain	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	6		0.5	3.5		0.5	3.5	mA

## Electrical Characteristics

Tested at $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}_{\mathrm{DC}}$ and $15.75 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted (Continued)

Parameter		Conditions	See Note	$\begin{gathered} V_{C C}=12 V_{D C} \pm 5 \% \\ \text { to } 15 V_{D C} \pm 5 \% \end{gathered}$			$V_{C C}=5 V_{\text {DC }} \pm 5 \%$			Units
				Min.	Typ.	Max.	Min.	Typ.	Max.	
Output Leakage Current lout1 IOUT2		$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$   All data inputs latched low   All data inputs latched high	6 $10$			$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$			$\begin{aligned} & 200 \\ & 200 \\ & \hline \end{aligned}$	nA nA
Digital Input Voltages		$T_{M I N} \leq T_{A} \leq T_{M A X}$ Low level LJ suffix LCJ, LCN suffix High level (all parts)	6	2.0		$\begin{gathered} 0.8 \\ 0.8,0.8 \end{gathered}$	2.0		$\begin{gathered} 0.6 \\ 0.7,0.8 \end{gathered}$	$V_{D C}$   $V_{D C}$   $V_{D C}$
Digital Input Currents		$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$   Digital inputs $<0.8 \mathrm{~V}$   Digital inputs $>2.0 \mathrm{~V}$	6		$\begin{gathered} -40 \\ 1.0 \end{gathered}$	$\begin{array}{r} -150 \\ +10 \\ \hline \end{array}$		$\begin{gathered} -40 \\ 1.0 \end{gathered}$	$\begin{array}{r} -150 \\ +10 \\ \hline \end{array}$	$\mu A_{D C}$   $\mu A_{D C}$
Current Settling Time	ts	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$			500			500		ns
Write and XFER Pulse Width	${ }^{\text {tw }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{1 H}=5 \mathrm{~V}, \\ \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \end{gathered}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 150 \\ & 320 \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ 100 \end{gathered}$		$\begin{array}{r} 320 \\ 500 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 250 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Data Set Up Time	$t_{\text {DS }}$	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{I H}=5 \mathrm{~V}, \\ T_{A}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \end{gathered}$	9	$\begin{array}{r} 150 \\ 320 \\ \hline \end{array}$	$\begin{gathered} 80 \\ 120 \end{gathered}$		$\begin{array}{r} 320 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 170 \\ 250 \\ \hline \end{array}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Data Hold Time	$t_{\text {DH }}$	$\begin{gathered} V_{I L}=O V, V_{I H}=5 V \\ T_{A}=25^{\circ} \mathrm{C} \\ T_{M I N} \leq T_{A} \leq T_{M A X} \end{gathered}$	9	$\begin{array}{r} 200 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$		$\begin{aligned} & 320 \\ & 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 220 \\ & 320 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Control Set Up Time	$\mathrm{t}_{\mathrm{CS}}$	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=5 \mathrm{~V}, \\ \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{gathered}$	9	$\begin{aligned} & 150 \\ & 320 \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ 100 \end{gathered}$		$\begin{array}{r} 320 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 180 \\ 260 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Control Hold Time	$\mathrm{t}_{\mathrm{CH}}$	$\begin{gathered} \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=5 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \end{gathered}$	9	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.

Note 4: For current switching applications, both lout1 and louT2 must go to ground or the "Virtual Ground" of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\mathrm{OS}} \div \mathrm{V}_{\text {REF }}$. For example, if $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ then a 1 mV offset, $\mathrm{V}_{\mathrm{OS}}$, on IOUT1 or IOUT2 will introduce an additional $0.01 \%$ linearity error.

Note 5: Guaranteed at $V_{\text {REF }}= \pm 10 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{V}_{\text {REF }}= \pm 1 \mathrm{~V}_{\mathrm{DC}}$.
Note 6: $T_{M I N}=0^{\circ} \mathrm{C}$ and $T_{M A X}=70^{\circ} \mathrm{C}$ for "LCN" suffix parts.
$T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {MAX }}=85^{\circ} \mathrm{C}$ for "LCJ" suffix parts
$T_{M I N}=55^{\circ} \mathrm{C}$ and $T_{M A X}=125^{\circ} \mathrm{C}$ for " $L J$ " suffix parts.
Note 7: The unit "FSR" stands for "Full Scale Range." "Linearity Error" and "Power Supply Rejection" specs are based on this unit to eliminate dependence on a particular $V_{\text {REF }}$ value and to indicate the true performance of the part. The "Linearity Error" specification of the DAC1000 is " $0.05 \%$ of FSR (MAX)." This guarantees that after performing a zero and full scale adjustment (See Sections 2.5 and 2.6 ), the plot of the 1024 analog voltage outputs will each be within $0.05 \% \times V_{\text {REF }}$ of a straight line which passes through zero and full scale.

Note 8: This specification implies that all parts are guaranteed to operate with a write pulse or transfer pulse width ( $\mathrm{t}_{\mathrm{w}}$ ) of 320 ns . A typical part will operate with $\mathrm{t}_{\mathrm{W}}$ of only 100 ns . The entire write pulse must occur within the valid data interval for the specified $\mathrm{t}_{\mathrm{w}}, \mathrm{t}_{\mathrm{DS}}, \mathrm{t}_{\mathrm{DH}}$, and $\mathrm{t}_{\mathrm{S}}$ to apply.
Note 9: Guaranteed by design but not tested.
Note 10: A 200 nA leakage current with $\mathrm{R}_{\mathrm{fb}}=20 \mathrm{~K}$ and $\mathrm{V}_{\mathrm{fEF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(200 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 \div 10$ which is $0.04 \%$ of FS .
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

## Switching Waveforms



TL/H/5688-2

## Typical Performance Characteristics



Digital Input Threshold
vs. Temperature


## Block and Connection Diagrams




TL/H/5688-4

DAC1006/1007/1008 (20-Pin Parts)


## DAC1000/1001/1002—Simple Hookup for a "Quick Look"



Notes:

1. For $V_{R E F}=-10.240 V_{D C}$ the output voltage steps are approximately 10 mV each.
2. Operation is set up for flow through-no latching of digital input data.
3. Single point ground is strongly recommended.

## DAC1006/1007/1008—Simple Hookup for a "Quick Look"



TL/H/5688-7

## Notes:

1. For $V_{R E F}=-10.240 V_{D C}$ the output voltage steps are approximately 10 mV each.
2. SW1 is a normally closed switch. While SW1 is closed, the DAC register is latched and new data can be loaded into the input latch via the 10 SW2 switches.
When SW1 is momentarily opened the new data is transferred from the input latch to the DAC register and is latched when SW1 again closes.

### 1.0 DEFINITION OF PACKAGE PINOUTS

1.1 Control Signals (All control signals are level actuated.)
$\overline{\mathbf{C S}}$ : Chip Select - active low, it will enable $\overline{\mathrm{WR}}$ (DAC10031008) or $W R_{1}$ (DAC1000-1002).
$\overline{W R}$ or $\overline{W_{1}}$ : Write - The active low $\overline{W R}$ (or $\overline{W R_{1}}$ -DAC1000-1002) is used to load the digital data bits (DI) into the input latch. The data in the input latch is latched when $\overline{W R}$ (or $\overline{W R_{1}}$ ) is high. The 10 -bit input latch is split into two latches; one holds 8 bits and the other holds 2 bits. The Byte1/Byte2 control pin is used to select both input latches when Byte1/Byte2 $=1$ or to overwrite the 2-bit input latch when in the low state.
$\overline{W_{2}}$ : Extra Write (DAC10Q0-1002) - The active low $\overline{W_{2}}$ is used to load the data from the input latch to the DAC register while XFER is low. The data in the DAC register is latched when $\mathrm{WR}_{2}$ is high.
Byte1/信yte2: Byte Sequence Control - When this control is high, all ten locations of the input latch are enabled. When low, only two locations of the input latch are enabled and these two locations are overwritten on the second byte write. On the DAC1006, 1007, and 1008, the Byte1/Byte2 must be low to transfer the 10-bit data in the input latch to the DAC register.
$\overline{X F E R}:$ Transfer Control Signal, active low - This signal, in combination with others, is used to transfer the 10-bit data which is available in the input latch to the DAC register see timing diagrams.
LJ/RJ: Left Justify/Right Justify (DAC1000-1002) — When $\mathrm{LJ} / \overline{\mathrm{RJ}}$ is high the part is set up for left justified (fractional) data format. (DAC1006-1008 have this done internally.) When $L J / \overline{R J}$ is low, the part is set up for right justified (integer) data.

### 1.2 Other Pin Functions

$D I_{i}(i=0$ to 9$)$ : Digital Inputs - $\mathrm{DI}_{0}$ is the least significant bit (LSB) and $\mathrm{DI}_{\mathrm{g}}$ is the most significant bit (MSB).
Iout1: DAC Current Output 1 - lout1 is a maximum for a digital input code of all 1 s and is zero for a digital input code of all 0 s .
Iout2: DAC Current Output 2 - IOUT2 is a constant minus
Iout1, or
$\mathrm{I}_{\mathrm{OUT} 1}+\mathrm{I}_{\mathrm{OUT} 2}=\frac{1023 \mathrm{~V}_{\text {REF }}}{1024 \mathrm{R}}$
where $R \cong 15 \mathrm{k} \Omega$.
$R_{\text {FB: }}$ : Feedback Resistor - This is provided on the IC chip for use as the shunt feedback resistor when an external op amp is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) because it matches the resistors used in the on-chip R-2R ladder and tracks these resistors over temperature.
$\mathbf{V}_{\text {REF }}$ : Reference Voltage Input - This is the connection for the external precision voltage source which drives the R-2R ladder. $\mathrm{V}_{\text {REF }}$ can range from -10 to +10 volts. This is also the analog voltage input for a 4 -quadrant multiplying DAC application.
$\mathbf{V}_{\mathbf{C c}}$ : Digital Supply Voltage - This is the power supply pin for the part. $\mathrm{V}_{\mathrm{CC}}$ can be from +5 to $+15 \mathrm{~V}_{\mathrm{DC}}$. Operation is optimum for +15 V . The input threshold voltages are nearly independent of $\mathrm{V}_{\mathrm{CC}}$. (See Typical Performance Characteristics and Description in Section 3.0, T2L compatible logic inputs.)
GND: Ground - the ground pin for the part.

### 1.3 Definition of Terms

Resolution: Resolution is directly related to the number of switches or bits within the DAC. For example, the DAC1000 has $2^{10}$ or 1024 steps and therefore has 10-bit resolution.
Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfer characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.
National's linearity test (a) and the "best straight line" test (b) used by other suppliers are illustrated below. The "best straight line" requires a special zero and FS adjustment for each part, which is almost impossible for user to determine. The "end point test" uses a standard zero and FS adjustment procedure and is a much more stringent test for DAC linearity.
Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output (which is the worst case).

## a. End Point Test After Zero and FS Adj.


b. Best Straight Line


Settling Time: Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value. Full-scale settling time requires a zero to full-scale or full-scale to zero output change.
Full-Scale Error: Full scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1000 series, full-scale is $\mathrm{V}_{\text {REF }}-1$ LSB. For $V_{\text {REF }}=-10 \mathrm{~V}$ and unipolar operation, $V_{\text {FULL }}$ SCALE $=10.0000 \mathrm{~V}-9.8 \mathrm{mV}=9.9902 \mathrm{~V}$. Full-scale error is adjustable to zero.
Monotoniclty: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 10 -bit DAC with 10-bit monotonicity will produce an increasing analog output when all 10 digital inputs are exercised. A 10-bit DAC with 9 -bit monotonicity will be monotonic when only the most significant 9 bits are exercised. Similarly, 8 -bit monotonicity is guaranteed when only the most significant 8 bits are exercised.

### 2.0 DOUBLE BUFFERING

These DACs are double-buffered, microprocessor compatible versions of the DAC1020 10-bit multiplying DAC. The addition of the buffers for the digital input data not only allows for storage of this data, but also provides a way to assemble the 10-bit input data word from two write cycles when using an 8-bit data bus. Thus, the next data update for the DAC output can be made with the complete new set of 10 -bit data. Further, the double buffering allows many DACs in a system to store current data and also the next data. The updating of the new data for each DAC is also not time critical. When all DACs are updated, a common strobe signal can then be used to cause all DACs to switch to their new analog output levels.

### 3.0 TTL COMPATIBLE LOGIC INPUTS

To guarantee TTL voltage compatibility of the logic inputs, a novel bipolar (NPN) regulator circuit is used. This makes the input logic thresholds equal to the forward drop of two diodes (and also matches the temperature variation) as occurs naturally in TTL. The basic circuit is shown in Figure 1. A curve of digital input threshold as a function of power supply voltage is shown in the Typical Performance Characteristics section.

### 4.0 APPLICATION HINTS

The DC stability of the VREF source is the most important factor to maintain accuracy of the DAC over time and temperature changes. A good single point ground for the analog signals is next in importance.
These MICRO-DAC converters are CMOS products and reasonable care should be exercised in handling them prior to final mounting on a PC board. The digital inputs are protected, but permanent damage may occur if the part is subjected to high electrostatic fields. Store unused parts in conductive foam or anti-static rails.

### 4.1 Power Supply Sequencing \& Decoupling

Some IC amplifiers draw excessive current from the Analog inputs to $V$ - when the supplies are first turned on. To prevent damage to the DAC - an external Schottky diode connected from lout1 or lout2 to ground may be required to prevent destructive currents in lout1 or IOUT2. If an LM741 or LF356 is used - these diodes are not required.
The standard power supply decoupling capacitors which are used for the op amp are adequate for the DAC.


TL/H/5688-9
FIGURE 1. Basic Logic Threshold Loop

### 4.2 Op Amp Blas Current \& Input Leads

The op amp bias current ( $\mathrm{I}_{\mathrm{B}}$ ) CAN CAUSE DC ERRORS. BIFETTM op amps have very low bias current, and therefore the error introduced is negligible. BI-FET op amps are strongly recommended for these DACs.
The distance from the lout1 pin of the DAC to the inverting input of the op amp should be kept as short as possible to prevent inadvertent noise pickup.

### 5.0 ANALOG APPLICATIONS

The analog section of these DACs uses an R-2R ladder which can be operated both in the current switching mode and in the voltage switching mode.
The major product changes (compared with the DAC1020) have been made in the digital functioning of the DAC. The analog functioning is reviewed here for completeness. For additional analog applications, such as multipliers, attenuators, digitally controlled amplifiers and low frequency sine wave oscillators, refer to the DAC1020 data sheet. Some basic circuit ideas are presented in this section in addition to complete applications circuits.

### 5.1 Operation In Current Switching Mode

The analog circuitry, Figure 2, consists of a silicon-chromium ( $\mathrm{Si}-\mathrm{Cr}$ ) thin film R-2R ladder which is deposited on the surface oxide of the monolithic chip. As a result, there is no parasitic diode connected to the $V_{\text {REF }}$ pin as would exist if diffused resistors were used. The reference voltage input ( $\mathrm{V}_{\mathrm{REF}}$ ) can therefore range from -10 V to +10 V .
The digital input code to the DAC simply controls the position of the SPDT current switches, SW0 to SW9. A logical 1 digital input causes the current switch to steer the avail-
able ladder current to the louti output pin. These MOS switches operate in the current mode with a small voltage drop across them and can therefore switch currents of either polarity. This is the basis for the 4 -quadrant multiplying feature of this DAC.

### 5.1.1 Providing a Unipolar Output Voltage with the DAC in the Current Switching Mode

A voltage output is provided by making use of an external op amp as a current-to-voltage converter. The idea is to use the internal feedback resistor, RFB , from the output of the op amp to the inverting ( - ) input. Now, when current is entered at this inverting input, the feedback action of the op amp keeps that input at ground potential. This causes the applied input current to be diverted to the feedback resistor. The output voltage of the op amp is forced to a voltage given by:

$$
V_{\text {OUT }}=-\left(\mathrm{lOUT}_{1} \times \mathrm{R}_{\text {FB }}\right)
$$

Notice that the sign of the output voltage depends on the direction of current flow through the feedback resistor.
In current switching mode applications, both current output pins (lout1 and louT2) should be operated at $0 \mathrm{~V}_{\mathrm{DC}}$. This is accomplished as shown in Figure 3. The capacitor, $\mathrm{C}_{\mathrm{C}}$, is used to compensate for the output capacitance of the DAC and the input capacitance of the op amp. The required feedback resistor, $\mathrm{R}_{\mathrm{FB}}$, is available on the chip (one end is internally tied to louti) and must be used since an external resistor will not provide the needed matching and temperature tracking. This circuit can therefore be simplified as
shown in Figure 4, where the sign of the reference voltage has been changed to provide a positive output voltage. Note that the output current, lout1, now flows through the R FB pin.

### 5.1.2 Providing a Bipolar Output Voltage with the DAC in the Current Switching Mode

The addition of a second op amp to the circuit of Figure 4 can be used to generate a bipolar output voltage from a fixed reference voltage Figure 5. This, in effect, gives sign significance to the MSB of the digital input word to allow two quadrant multiplication of the reference voltage. The polarity of the reference can also be reversed to realize the full fourquadrant multiplication.
The applied digital word is offset binary which includes a code to output zero volts without the need of a large valued resistor common to existing bipolar multiplying DAC circuits. Offset binary code can be derived from 2's complement data (most common for signed processor arithmetic) by inverting the state of the MSB in either software or hardware. After doing this the output then responds in accordance to the following expression:

$$
V_{O}=V_{\text {REF }} \times \frac{D}{512}
$$

where $V_{\text {REF }}$ can be positive or negative and $D$ is the signed decimal equivalent of the 2's complement processor data. $(-512 \leq \mathrm{D} \leq+511$ or $1000000000 \leq \mathrm{D} \leq 0111111111)$. If the applied digital input is interpreted as the decimal equivalent of a true binary word, $\mathrm{V}_{\text {OUT }}$ can be found by:
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {REF }}\left(\frac{\mathrm{D}-512}{512}\right)$
$0 \leq \mathrm{D} \leq 1023$
With this configuration, only the offset voltage of amplifier 1 need be nulled to preserve linearity of the DAC. The offset voltage error of the second op amp has no effect on linearity. It presents a constant output voltage error and should be nulled only if absolute accuracy is needed. Another advantage of this configuration is that the values of the external resistors required do not have to match the value of the internal DAC resistors; they need only to match and temperature track each other.

A thin film 4 resistor network available from Beckman Instruments, Inc. (part no. 694-3-R10K-D) is ideally suited for this application. Two of the four available $10 \mathrm{k} \Omega$ resistor can be paralleled to form R in Figure 5 and the other two can be used separately as the resistors labeled 2R.
Operation is summarized in the table below:

2's Comp. (Decimal)	2's Comp. (Binary)	Applied Digital Input	Applied True Binary (Decimal)	$+\mathrm{V}_{\text {REF }}$	- $\mathrm{V}_{\text {REF }}$
+511	0111111111	1111111111	1023	$V_{\text {REF }}-1$ LSB	$-\left\|V_{\text {REF }}\right\|+1$ LSB
+256	0100000000	1100000000	768	$\mathrm{V}_{\text {REF }} / 2$	$-\left\|\mathrm{V}_{\text {REF }}\right\| / 2$
0	0000000000	1000000000	512	0	0
-1	1111111111	0111111111	511	-1 LSB	+1 LSB
-256	1100000000	0100000000	256	$-\mathrm{V}_{\text {REF }} / 2$	$+\left\|V_{\text {REF }}\right\| / 2$
-512	1000000000	0000000000	0	$-\mathrm{V}_{\text {REF }}$	$+\left\|V_{\text {REF }}\right\|$

with: $1 \mathrm{LSB}=\frac{\left|\mathrm{V}_{\mathrm{REF}}\right|}{512}$


FIGURE 4. Providing a Unipolar Output Voltage


TL/H/5688-11
FIGURE 5. Providing a Bipolar Output Voltage with the DAC in the Current Switching Mode

### 5.2 Analog Operation in the Voltage Switching Mode

Some useful application circuits result if the R-2R ladder is operated in the voltage switching mode. There are two very important things to remember when using the DAC in the voltage mode. The reference voltage ( +V ) must always be positive since there are parasitic diodes to ground on the lout1 pin which would turn on if the reference voltage went negative. To maintain a degradation of linearity less than $\pm 0.005 \%$, keep $+V \leq 3 V_{D C}$ and $V_{C C}$ at least 10 V more positive than +V . Figures 6 and 7 show these errors for the voltage switching mode. This operation appears unusual, since a reference voltage $(+\mathrm{V})$ is applied to the lout1 pin and the voltage output is the $V_{\text {REF }}$ pin. This basic idea is shown in Figure 8.
This V gain stage as shown in Figure 9.

Notice that this is unipolar operation since all voltages are positive. A bipolar output voltage can be obtained by using a single op amp as shown in Figure 10. For a digital input code of all zeros, the output voltage from the $\mathrm{V}_{\text {REF }}$ pin is zero volts. The external op amp now has a single input of +V and is operating with a gain of -1 to this input. The output of the op amp therefore will be at -V for a digital input of all zeros. As the digital code increases, the output voltage at the $V_{\text {REF }}$ pin increases.
Notice that the gain of the op amp to voltages which are applied to the $(+)$ input is +2 and the gain to voltages which are applied to the input resistor, $R$, is -1 . The output voltage of the op amp depends on both of these inputs and is given by:

$$
V_{\text {OUT }}=(+V)(-1)+V_{\text {REF }}(+2)
$$



FIGURE 9. Amplifying the Voltage Mode Output (Single Supply Operation)


FIGURE 10. Providing a Bipolar Output Voltage with a Single Op Amp


TL/H/5688-13
FIGURE 11. Increasing the Output Voltage Swing

The output voltage swing can be expanded by adding 2 resistors to Figure 10 as shown in Figure 11. These added resistors are used to attenuate the +V voltage. The overall gain, $A_{V}(-)$, from the $+V$ terminal to the output of the op amp determines the most negative output voltage, $-4(+\mathrm{V})$ (when the $V_{\text {REF }}$ voltage at the + input of the op amp is zero) with the component values shown. The complete dynamic range of $V_{\text {OUT }}$ is provided by the gain from the $(+)$ input of the op amp. As the voltage at the $\mathrm{V}_{\text {REF }}$ pin ranges from $0 V$ to $+V(1023 / 1024)$ the output of the op amp will range from $-10 V_{D C}$ to $+10 \mathrm{~V}(1023 / 1024)$ when using a +V voltage of $+2.500 \mathrm{~V}_{\mathrm{DC}}$. The $2.5 \mathrm{~V}_{\mathrm{DC}}$ reference voltage can be easily developed by using the LM336 zener which can be biased through the $R_{F B}$ internal resistor, connected to $\mathrm{V}_{\mathrm{CC}}$.

### 5.3 Op Amp Vos Adjust (Zero Adjust) for Current Switching Mode

Proper operation of the ladder requires that all of the $2 R$ legs always go to exactly $0 V_{D C}$ (ground). Therefore offset voltage, $\mathrm{V}_{\mathrm{OS}}$, of the external op amp cannot be tolerated as every millivolt of $\mathrm{V}_{\text {OS }}$ will introduce $0.01 \%$ of added linearity error. At first this seems unusually sensitive, until it becomes clear the 1 mV is $0.01 \%$ of the 10 V reference! High resolution converters of high accuracy require attention to every detail in an application to achieve the available performance which is inherent in the part. To prevent this source of error, the $\mathrm{V}_{\mathrm{OS}}$ of the op amp has to be initially zeroed. This is the "zero adjust" of the DAC calibration sequence and should be done first.

If the $V_{O S}$ is to be adjusted there are a few points to consider. Note that no "dc balancing" resistance should be used in the grounded positive input lead of the op amp. This resistance and the input current of the op amp can also create errors. The low input biasing current of the BI-FET op amps makes them ideal for use in DAC current to voltage applications. The $\mathrm{V}_{\mathrm{OS}}$ of the op amp should be adjusted with a digital input of all zeros to force lout $=0 \mathrm{~mA} . \mathrm{A} 1 \mathrm{k} \Omega$ resistor can be temporarily connected from the inverting input to ground to provide a dc gain of approximately 15 to the $\mathrm{V}_{\text {OS }}$ of the op amp and make the zeroing easier to sense.

### 5.4 Full-Scale Adjust

The full-scale adjust procedure depends on the application circuit and whether the DAC is operated in the current switching mode or in the voltage switching mode. Techniques are given below for all of the possible application circuits.

### 5.4.1 Current Switching with Unipolar Output Voltage

After doing a "zero adjust," set all of the digital input levels HIGH and adjust the magnitude of $\mathrm{V}_{\text {REF }}$ for
$V_{\text {OUT }}=-$ (ideal $\left.\mathrm{V}_{\text {REF }}\right) \frac{1023}{1024}$
This completes the DAC calibration.

### 5.4.2 Current Switching with Bipolar Output Voltage

The circuit of Figure 12 shows the 3 adjustments needed. The first step is to set all of the digital inputs LOW (to force lout1 to 0 ) and then trim "zero adj." for zero volts at the inverting input (pin 2) of OA1. Next, with a code of all zeros still applied, adjust "-FS adj.", the reference voltage, for $V_{\text {OUT }}= \pm \mid\left(\right.$ ideal $\left.V_{\text {REF }}\right) \mid$. The sign of the output voltage will be opposite that of the applied reference.
Finally, set all of the digital inputs HIGH and adjust "+FS adj." for $V_{\text {OUT }}=V_{\text {REF }}(511 / 512)$. The sign of the output at this time will be the same as that of the reference voltage. The addition of the $200 \Omega$ resistor in series with the $V_{\text {REF }}$ pin of the DAC is to force the circuit gain error from the DAC to be negative. This insures that adding resistance to $R_{f b}$, with the $500 \Omega$ pot, will always compensate the gain error of the DAC.

### 5.4.3 Voltage Switching with a Unipolar Output Voltage

Refer to the circuit of Figure 13 and set all digital inputs LOW. Trim the "zero adj." for $V_{O U T}=0 V_{D C} \pm 1 \mathrm{mV}$. Then set all digital inputs HIGH and trim the "FS Adj." for:
$V_{\text {OUT }}=(+V)\left(1+\frac{R_{1}}{R_{2}}\right) \frac{1023}{1024}$
5.4.4 Voltage Switching with a Bipolar Output Voltage

Refer to Figure 14 and set all digital inputs LOW. Trim the "-FS Adj." for $\mathrm{V}_{\text {OUT }}=-2.5 \mathrm{~V}_{\mathrm{DC}}$. Then set all digital inputs HIGH and trim the "+FS Adj." for $V_{\text {OUT }}=+2.5(511 / 512)$ $\mathrm{V}_{\mathrm{DC}}$. Test the zero by setting the MS digital input HIGH and all the rest LOW. Adjust $V_{O S}$ of amp \#3, if necessary, and recheck the full-scale values.


FIGURE 12. Full Scale Adjust - Current Switching with Bipolar Output Voltage


FIGURE 13. Full Scale Adjust - Voltage Switching with a Unipolar Output Voltage


FIGURE 14. Voltage Switching with a Bipolar Output Voltage

### 6.0 DIGITAL CONTROL DESCRIPTION

The DAC1000 series of products can be used in a wide variety of operating modes. Most of the options are shown in Table 1. Also shown in this table are the section numbers of this data sheet where each of the operating modes is discussed. For example, if your main interest in interfacing to a $\mu \mathrm{P}$ with an 8 -bit data bus you will be directed to Section 6.1.0.

The first consideration is "will the DAC be interfaced to a $\mu \mathrm{P}$ with an 8 -bit or a 16-bit data bus or used in the stand-alone mode?" For the 8 -bit data bus, a second selection is made on how the 2nd digital data buffer (the DAC Latch) is updated by a transfer from the 1st digital data buffer (the Input Latch). Three options are provided: 1) an automatic transfer when the 2 nd data byte is written to the DAC, 2) a transfer which is under the control of the $\mu \mathrm{P}$ and can include more than one DAC in a simultaneous transfer, or 3) a transfer which is under the control of external logic. Further, the data format can be either left justified or right justified.
When interfacing to a $\mu \mathrm{P}$ with a 16 -bit data bus only two selections are available: 1) operating the DAC with a single digital data buffer (the transfer of one DAC does not have to be synchronized with any other DACs in the system), or 2) operating with a double digital data buffer for simultaneous
transfer, or updating, of more than one DAC.
For operating without a $\mu \mathrm{P}$ in the stand alone mode, three options are provided: 1) using only a single digital data buffer, 2) using both digital data buffers - "double buffered," or 3) allowing the input digital data to "flow through" to provide the analog output without the use of any data latches.
To reduce the required reading, only the applicable sections of 6.1 through 6.4 need be considered.

### 6.1 Interfacing to an 8-Bit Data Bus

Transferring 10 bits of data over an 8-bit bus requires two write cycles and provides four possible combinations which depend upon two basic data format and protocol decisions:

1. Is the data to be left justified (considered as fractional binary data with the binary point to the left) or right justified (considered as binary weighted data with the binary point to the right)?
2. Which byte will be transferred first, the most significant byte (MS byte) or the least significant byte (LS byte)?

Table 1

Operating Mode	Automatic Transfer			$\mu \mathrm{P}$ Control Transfer			External Transfer		
Data Bus	Section	Figu (24-Pin)	No.   (20-Pin)	Section	$\begin{aligned} & \text { Figur } \\ & (24-\mathrm{Pin}) \end{aligned}$	No. (20-Pin)	Section	$\begin{array}{r} \text { Figu } \\ (24-\text { Pin }) \end{array}$	No. (20-Pin)
8-Bit Data Bus (6.1.0)									
Right Justified (6.1.1)	6.2 .1	16		6.2.2	16		6.2.3	16	
Left Justified (6.1.2)	6.2.1	17	18	6.2.2	17	18	6.2.3	17	18
16-Bit Data Bus (6.3.0)	Single Buffered			Double Buffered			Flow Through		
	6.3.1	19	20	6.3.2	19	20	Not Applicable		
Stand Alone (6.4.0)	Single Buffered			Double Buffered			Flow Through		
	6.4.1	19	20	6.4.2	19	20	6.4.3	19	NA

These data possibilities are shown in Figure 15. Note that the justification of data depends on how the 10-bit data word is located within the 16 -bit data source (CPU) register. In either case, there is a surplus of 6 bits and these are shown as "don't care" terms (" $\times$ ") in this figure.
All of these DACs load 10 bits on the 1st write cycle. A particular set of 2 bits is then overwritten on the 2nd write cycle, depending on the justification of the data. This requires the 1st write cycle to contain the LS or LO Byte data group for all right justified data options. For all left justified data options, the 1st write cycle must contain the MS or Hi Byte data group.

### 6.1.1 Providing for Optional Data Format

The DAC1000/1/2 (24-pin parts) can be used for either data formatting by tying the LJ/RJ pin either high or low, respectively. A simplified logic diagram which shows the external connections to the data bus and the internal functions of both of the data buffer registers (Input Latch and DAC Register) is shown in Figure 16 for the right justified data operation. Figure 17 is for left justified data.

### 6.1.2 For Left Justified Data

For applications which require left justified data, DAC10061008 (20-pin parts) can be used. A simplified logic diagram which shows the external connections to the data bus and the internal functions of both of the data buffer registers (Input Latch and DAC Register) is shown in Figure 18. These parts require the MS or Hi Byte data group to be transferred on the 1st write cycle.

### 6.2 Controlling Data Transfer for an 8-Bit Data Bus

Three operating modes are possible for controlling the transfer of data from the Input Latch to the DAC Register, where it will update the analog output voltage. The simplest is the automatic transfer mode, which causes the data transfer to occur at the time of the 2nd write cycle. This is recommended when the exact timing of the changes of the DAC analog output are not critical. This typically happens where each DAC is operating individually in a system and the analog updating of one DAC is not required to be synchronized to any other DAC. For synchronized DAC updating, two options are provided: $\mu \mathrm{P}$ control via a common $\overline{\mathrm{XFER}}$ strobe or external update timing control via an external strobe. The details of these options are now shown.


FIGURE 17. Input Connections and Controls for DAC1000-1002 Left Justified Data Option


TL/H/5688-17
FIGURE 18. Input Connections and Controls for DAC1006/1007/1008 Left Justified Data

### 6.2.1 Automatic Transfer

This makes use of a double byte (double precision) write. The first byte ( 8 bits) is strobed into the input latch and the second byte causes a simultaneous strobe of the two remaining bits into the input latch and also the transfer of the complete 10-bit word from the input latch to the DAC register. This is shown in the following timing diagrams; the point in time where the analog output is updated is also indicated on these diagrams.

DAC1000/1001/1002 (24-Pin Parts)


DAC1006/1007/1008 (20-Pin Parts)


### 6.2.2 Transfer Using $\mu \mathbf{P}$ Write Stroke

The input latch is loaded with the first two write strobes. The $\overline{\text { XFER }}$ signal is provided by external logic, as shown below, to cause the transfer to be accomplished on a third write strobe. This is shown in the following diagrams:

## DAC1000/1001/1002 (24-Pin Parts)



DAC1006/1007/1008 (20-Pin Parts)


Where the Xfer control can be generated by using a second chip select as:

and the byte control can be derived from the address bus signals.
TL/H/5688-19

### 6.2.3 Transfer Using an External Strobe

This is similar to the previous operation except the $\overline{\mathrm{XFER}}$ signal is not provided by the $\mu \mathrm{P}$. The timing diagram for this is:

## DAC1000/1001/1002 (24-Pin Parts)



TL/H/5688-20

### 6.3 Interfacing to a 16-Bit Data Bus

The interface to a 16 -bit data bus is easily handled by connecting to 10 of the available bus lines. This allows a wiring selected right justified or left justified data format. This is shown in the connection diagrams of Figures 19 and 20, where the use of DB6 to DB15 gives left justified data operation. Note that any part number can be used and the Byte1/Byte2 control should be wired Hi .


FIGURE 19. Input Connections and Logic for DAC1000-1002 with 16-Bit Data Bus


TL/H/5688-21

FIGURE 20. Input Connections and Logic for DAC1006/1007/1008 with 16-Bit Data Bus

Three operating modes are possible: flow through, single buffered, or double buffered. The timing diagrams for these are shown below:


### 6.4 Stand Alone Operation

For applications for a DAC which are not under $\mu \mathrm{P}$ control (stand alone) there are two basic operating modes, single buffered and double buffered. The timing diagrams for these are shown below:

### 6.4.1 Single Buffered

DAC1000/1001/1002 (24-Pin Parts)


### 6.4.2 Double Buffered

DAC1000/1001/1002 (24-Pin Parts)


DAC1006/1007/1008 (20-Pin Parts)*


TL/H/5688-23
*For a connection diagram of this operating mode use Figure 18 for the Logic and Figure 20 for the Data Input connections.

### 6.4.3 Flow Through

This operating mode causes the 10-bit input word to directly create the DAC output without any latching involved.

```
DAC1000/1001/1002 (24-Pin Parts)
 WR1}=\overline{WR2}=\overline{\textrm{CS}}=\overline{\textrm{XFER}}=
 Byte 1/\overline{Byte2}}=
```


### 7.0 MICROPROCESSOR INTERFACE

The logic functions of the DAC1000 family have been oriented towards an ease of interface with all popular $\mu$ Ps. The following sections discuss in detail a few useful interface schemes.

### 7.1 DAC1001/1/2 to INS8080A Interface

Figure 21 illustrates the simplicity of interfacing the DAC1000 to an INS8080A based microprocessor system.

The circuit will perform an automatic transfer of the 10 bits of output data from the CPU to the DAC register as outlined in Section 6.2.1, "Controlling Data Transfer for an 8-Bit Data Bus."
Since a double byte write is necessary to control the DAC with the INS8080A, a possible instruction to achieve this is a PUSH of a register pair onto a "stack" in memory. The 16bit register pair word will contain the 10 bits of the eventual DAC input data in the proper sequence to conform to both


TL/H/5688-24
NOTE: DOUBLE BYTE STORES CAN BE USED.
e.g. THE INSTRUCTION SHLD F $\theta \theta 1$ STORES THE L REG INTO B1 AND THE H REG INTO B2 AND TRANSFERS THE RESULT TO THE DAC REGISTER. THE OPERAND OF THE SHLD INSTRUCTION MUST BE AN ODD ADDRESS FOR PROPER TRANSFER.

FIGURE 21. Interfacing the DAC1000 to the INS8080A CPU Group
the requirements of the DAC (with regard to right or left justified data) and the implementation of the PUSH instruction which will output the higher order byte of the register pair (i.e., register B of the BC pair) first. The DAC will actually appear as a two-byte "stack" in memory to the CPU. The auto-decrementing of the stack pointer during a PUSH allows using address bit 0 of the stack pointer as the Byte1/ $\overline{B y t e 2}$ and XFER strobes if bit 0 of the stack pointer address -1 , ( $\mathrm{SP}-1$ ), is a " 1 " as presented to the DAC. Additional address decoding by the DM8131 will generate a unique DAC chip select (CS) and synchronize this CS to the two memory write strobes of the PUSH instruction.
To reset the stack pointer so new data may be output to the same DAC, a POP instruction followed by instructions to insure that proper data is in the DAC data register pair before it is "PUSHED" to the DAC should be executed, as the POP instruction will arbitrarily alter the contents of a register pair.
Another double byte write instruction is Store H and L Direct (SHLD), where the HL register pair would temporarily contain the DAC data and the two sequential addresses for the DAC are specified by the instruction op code. The auto incrementing of the DAC address by the SHLD instruction permits the same simple scheme of using address bit 0 to generate the byte number and transfer strobes.

### 7.2 DAC1000 to MC6820/1 PIA Interface

In Figure 22 the DAC1000 is interfaced to an M6800 system through an MC6820/1 Peripheral Interface Adapter (PIA). In this case the CS pin of the DAC is grounded since the PIA is already mapped in the 6800 system memory space and no decoding is necessary. Furthermore, by using both Ports A and $B$ of the PIA the 10-bit data transfer, assumed right justified again in two 8 -bit bytes, is greatly simplified. The HIGH byte is loaded into Output Register A (ORA) of the

PIA, and the LOW byte is loaded into ORB. The 10-bit data transfer to the DAC and the corresponding analog output change occur simultaneously upon CB2 going LOW under program control. The 10 -bit data word in the DAC register will be latched (and hence VOUT will be fixed) when CB2 is brought back HIGH.
If both output ports of the PIA are not available, it is possible to interface the DAC1000 through a single port without much effort. However, additional logic at the CB2(or CA2) lines or access to some of the 6800 system control lines will be required.

### 7.3 Noise Considerations

A typical digital/microprocessor bus environment is a tremendous potential source of high frequency noise which can be coupled to sensitive analog circuitry. The fast edges of the data and address bus signals generate frequency components of 10 's of megahertz and can cause noise spikes to appear at the DAC output. These noise spikes occur when the data bus changes state or when data is transferred between the latches of the device.

In low frequency or DC applications, low pass filtering can reduce these noise spikes. This is accomplished by overcompensating the DAC output amplifier by increasing the value of the feedback capacitor ( $\mathrm{C}_{\mathrm{C}}$ in Figure 3).
In applications requiring a fast transient response from the DAC and op amp, filtering may not be feasible. Adding a latch, DM74LS374, as shown in Figure 23 isolates the device from the data bus, thus eliminating noise spikes that occur every time the data bus changes state. Another method for eliminating noise spikes is to add a sample and hold after the DAC op amp. This also has the advantage of eliminating noise spikes when changing digital codes.


NOTE: DATA HOLD TIME REDUCED TO THAT OF DM74LS374 ( $\approx 10 \mathrm{~ns}$ )


TL/H/5688-26
FIGURE 24. Digitally Controlled Amplifier/Attenuator

### 7.4 Digitally Controlled Amplifier/Attenuator

An unusual application of the DAC, Figure 24, applies the input voltage via the on-chip feedback resistor. The lower op amp automatically adjusts the $\mathrm{V}_{\text {REF }}$ IN voltage such that loUT1 is equal to the input current $\left(\mathrm{V}_{\mathbb{I N}} / \mathrm{Rf}_{\mathrm{B}}\right)$. The magnitude of this $\mathrm{V}_{\text {REF IN }}$ voltage depends on the digital word which is in the DAC register. loutz then depends upon both the magnitude of $\mathrm{V}_{\mathrm{IN}}$ and the digital word. The second op amp converts lout2 to a voltage, $\mathrm{V}_{\text {OUT }}$, which is given by:
$V_{\text {OUT }}=V_{\text {IN }}\left(\frac{1023-N}{N}\right)$, where $0<N \leq 1023$.

Note that $\mathrm{N}=0$ (or a digital code of all zeros) is not allowed or this will cause the output amplifier to saturate at either $\pm \mathrm{V}_{\mathrm{MAX}}$, depending on the sign of $\mathrm{V}_{\mathrm{IN}}$.
To provide a digitally controlled divider, the output op amp can be eliminated. Ground the lout2 pin of the DAC and $V_{\text {OUT }}$ is now taken from the lower op amp (which also drives the $\mathrm{V}_{\text {REF }}$ input of the DAC). The expression for $\mathrm{V}_{\text {OUT }}$ is now given by
$V_{\text {OUT }}=-\frac{V_{I N}}{M}$ where $M=$ Digital input (expressed as a $0<M<1$.


TL/H/5688-27
FIGURE 25. Digital to Synchro Converter

## Ordering Information

1. All Logic Features - 24-pin package.

Accuracy	Temperature Range		
	$-\mathbf{4 0} 0^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$	$-\mathbf{5 5} 5^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{0}^{\circ}$ to $+\mathbf{7 0} \mathbf{}{ }^{\circ} \mathbf{C}$
$0.05 \%$ (10-bit)	DAC1000LCJ	DAC1000LJ	DAC 1000 LCN
$0.10 \%$ (9-bit)			DAC1001LCN
$0.20 \%$ (8-bit)	DAC1002LCJ	DAC1002LJ	DAC1002LCN
Package Outline	J24A	J24A	N24A

2. For Left Justified Data - 20-pin package.

Accuracy	Temperature Range		
	$-\mathbf{4 0} 0^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$	$-\mathbf{5 5}{ }^{\circ} \mathrm{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathrm{C}$	$\mathbf{0}^{\circ}$ to $+\mathbf{7 0}{ }^{\circ} \mathrm{C}$
$0.05 \%$ (10-bit)   $0.10 \%$ (9-bit)   $0.20 \% ~(8-b i t) ~$	DAC1006LCJ	DAC1006LJ	DAC1006LCN
Package Outline	DAC1008LCJ	DAC1008LJ	DAC1007LCN
DAC1008LCN			

# DAC1020, DAC1021, DAC1022 10-Bit Binary Multiplying D/A Converter DAC1220, DAC1221, DAC1222 12-Bit Binary Multiplying D/A Converter 

## General Description

The DAC1020 and the DAC1220 are, respectively, 10 and 12-bit binary multiplying digital-to-analog converters. A deposited thin film R-2R resistor ladder divides the reference current and provides the circuit with excellent temperature tracking characteristics $\left(0.0002 \% /{ }^{\circ} \mathrm{C}\right.$ linearity error temperature coefficient maximum). The circuit uses CMOS current switches and drive circuitry to achieve low power consumption ( 30 mW max) and low output leakages ( 200 nA max). The digital inputs are compatible with DTL/TTL logic levels as well as full CMOS logic level swings. This part, combined with an external amplifier and voltage reference, can be used as a standard D/A converter; however, it is also very attractive for multiplying applications (such as digitally controlled gain blocks) since its linearity error is essentially independent of the voltage reference. All inputs are protected from damage due to static discharge by diode clamps to $\mathrm{V}^{+}$ and ground.
This part is available with 10 -bit ( $0.05 \%$ ), 9-bit ( $0.10 \%$ ), and 8 -bit ( $0.20 \%$ ) non-linearity guaranteed over temperature
(note 1 of electrical characteristics). The DAC1020, DAC1021 and DAC1022 are direct replacements for the 10bit resolution AD7520 and AD7530 and equivalent to the AD7533 family. The DAC1220, DAC1221 and DAC1222 are direct replacements for the 12-bit resolution AD7521 and AD7531 family.

## Features

- Linearity specified with zero and full-scale adjust only
- Non-linearity guaranteed over temperature
- Integrated thin film on CMOS structure
- 10-bit or 12-bit resolution
- Low power dissipation 10 mW @15V typ
- Accepts variable or fixed reference $-25 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 25 \mathrm{~V}$
- 4-quadrant multiplying capability
- Interfaces directly with DTL, TTL and CMOS
- Fast settling time-500 ns typ
- Low feedthrough error- $1 / 2$ LSB @100 kHz typ


## Equivalent Circuit



TL/H/5689-1
Ordering Information
10-BIT D/A CONVERTERS

Temperature Range		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
NonLinearity	0.05\%	DAC1020LCN	AD7520LN,AD7530LN	DAC1020LCJ	AD7520LD,AD7530LD	DAC1020LJ	AD7520UD
	0.10\%	DAC1021LCN	AD7520KN,AD7530KN	DAC1021LCJ	AD7520KD,AD7530KD	DAC1021LJ	AD7520TD
	0.20\%	DAC1022LCN	AD7520JN,AD7530JN	DAC1022LCJ	AD7520JD,AD7530JD	D́AC1022LJ	AD7520SD
Package Outline		N16A		J16A		J16A	
12-BIT D/A CONVERTERS							
Temperature Range		$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
NonLinearity	0.05\%	DAC1220LCN	AD7521LN,AD7531LN	DAC1220LCJ	AD7521LD,AD7531LD	DAC1220LJ	AD7521UD
	0.10\%	DAC1221LCN	AD7521KN,AD7531KN				
	0.20\%	DAC1222LCN	AD7521JN,AD7531JN	DAC1222LCJ	AD7521JD,AD7531JD	DAC1222LJ	AD7521SD
Package Outline		N18A		J18A		J18A	

[^17]Absolute Maximum Ratings (Note 5)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V+ to Gnd	17 V
VREF to Gnd	$\pm 25 \mathrm{~V}$
Digital Input Voltage Range	$\mathrm{V}+$ to Gnd
DC Voltage at Pin 1 or Pin 2 (Note 3)	-100 mV to $\mathrm{V}+$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.)	
Dual-In-Line Package (plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (ceramic)	$300^{\circ} \mathrm{C}$
ESD Susceptibility (Note 4)	800 V

Operating Ratings

	Min	Max	Units
Temperature (TA)			
DAC1020LJ, DAC1021LJ	-55	+125	${ }^{\circ} \mathrm{C}$
DAC1022LJ, DAC1220LJ	-55	+125	${ }^{\circ} \mathrm{C}$
DAC1222LJ	-55	+125	${ }^{\circ} \mathrm{C}$
DAC1020LCJ, DAC1021LCJ	-40	+85	${ }^{\circ} \mathrm{C}$
DAC1022LCJ, DAC1220LCJ	-40	+85	${ }^{\circ} \mathrm{C}$
DAC1222LCJ	-40	+85	${ }^{\circ} \mathrm{C}$
DAC1020LCN, DAC1021LCN	0	+70	${ }^{\circ} \mathrm{C}$
DAC1022LCN, DAC1220LCN	0	+70	${ }^{\circ} \mathrm{C}$
DAC1221LCN, DAC1222LCN	0	+70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ( $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Conditions	DAC1020, DAC1021, DAC1022			DAC1220, DAC1221, DAC1222			Units
		Min	Typ	Max	Min	Typ	Max	
Resolution		10			12			Bits
Linearity Error   10-Bit Parts   9-Bit Parts   8-Bit Parts	$\begin{aligned} & T_{\text {MIN }}<T_{A}<T_{\text {MAX }} \\ & -10 \mathrm{~V}<\mathrm{V}_{\text {REF }}<+10 \mathrm{~V}, \\ & \text { (Note 1) End Point Adjustment Only } \\ & \text { (See Linearity Error in Definition of Terms) } \\ & \text { DAC1020, DAC1220 } \\ & \text { DAC1021, DAC1221 } \\ & \text { DAC1022, DAC1222 } \\ & \hline \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.10 \\ & 0.20 \\ & \hline \end{aligned}$			$\begin{aligned} & 0.05 \\ & 0.10 \\ & 0.20 \\ & \hline \end{aligned}$	\% FSR   \% FSR   \% FSR
Linearity Error Tempco	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V}$   (Notes 1 and 2)			0.0002			0.0002	\% FS/ $/{ }^{\circ} \mathrm{C}$
Full-Scale Error	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V}$   (Notes 1 and 2)		0.3	1.0		0.3	1.0	\% FS
Full-Scale Error Tempco	$T_{\text {MIN }}<T_{A}<T_{\text {MAX }}$, (Note 2)			0.001			0.001	\% FS $/{ }^{\circ} \mathrm{C}$
Output Leakage Current IOUT 1 lout 2	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ All Digital Inputs Low All Digital Inputs High			$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$			$\begin{array}{r} 200 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
Power Supply Sensitivity	All Digital Inputs High, $14 \mathrm{~V} \leq \mathrm{V}+\leq 16 \mathrm{~V}$, (Note 2), (Figure 2)		0.005			0.005		\% FS/V
$V_{\text {REF }}$ Input Resistance		10	15	20	10	15	20	k $\Omega$
Full-Scale Current Settling Time	$R_{L}=100 \Omega \text { from } 0 \text { to } 99.95 \%$ FS   All Digital Inputs Switched Simultaneously		500			500		ns
$V_{\text {REF }}$ Feedthrough	All Digital Inputs Low,   $V_{\text {REF }}=20 \mathrm{Vp}-\mathrm{p}$ @ 100 kHz   J Package (Note 4)   N Package		6 2	$10$ $\begin{aligned} & 9 \\ & 5 \end{aligned}$		6 2	$10$ $\begin{aligned} & 9 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & m \vee p-p \\ & m \vee p-p \\ & m \vee p-p \end{aligned}$
Output Capacitance lout 1 lout 2	All Digital Inputs Low   All Digital Inputs High   All Digital Inputs Low   All Digital Inputs High		$\begin{gathered} 40 \\ 200 \\ 200 \\ 40 \\ \hline \end{gathered}$			$\begin{gathered} 40 \\ 200 \\ 200 \\ 40 \\ \hline \end{gathered}$		pF   pF   pF   pF

Electrical Characteristics ( $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=10.000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Continued)

Parameter	Conditions	DAC1020, DAC1021, DAC1022			DAC1220, DAC1221, DAC1222			Units
		Min	Typ	Max	Min	Typ	Max	
Digital Input Low Threshold High Threshold	$\begin{aligned} & \text { (Figure 1) } \\ & T_{\text {MIN }}<T_{A}<T_{\text {MAX }} \\ & T_{\text {MIN }}<T_{A}<T_{\text {MAX }} \end{aligned}$	2.4		0.8	2.4		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
Digital Input Current	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ Digital Input High Digital Input Low		$\begin{gathered} 1 \\ -50 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ -200 \end{gathered}$		$\begin{gathered} 1 \\ -50 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ -200 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Supply Current	All Digital Inputs High All Digital Inputs Low		$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{gathered} 1.6 \\ 2 \\ \hline \end{gathered}$		$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{gathered} 1.6 \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
Operating Power Supply Range	(Figures 1 and 2)	5		15	5		15	V

Note 1: $\mathrm{V}_{\text {REF }}= \pm 10 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}= \pm 1 \mathrm{~V}$. A linearity error temperature coefficient of $0.0002 \% \mathrm{FS}$ for a $45^{\circ} \mathrm{C}$ rise only guarantees $0.009 \%$ maximum change in linearity error. For instance, if the linearity error at $25^{\circ} \mathrm{C}$ is $0.045 \% \mathrm{FS}$ it could increase to $0.054 \%$ at $70^{\circ} \mathrm{C}$ and the DAC will be no longer a 10 -bit part. Note, however, that the linearity error is specified over the device full temperature range which is a more stringent specification since it inc/udes the linearity error temperature coefficient.

Note 2: Using internal feedback resistor as shown in Figure 3.
Note 3: Both IOUT 1 and lout 2 must go to ground or the virtual ground of an operational amplifier. If $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$, every millivolt offset between lout 1 or lout 2, $0.005 \%$ linearity error will be introduced.

Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 6: The maximum power dissipation must be derated at elevated temperatures and is dictated by $T_{J M A X}, \theta_{J A}$, and the ambient temepature, $T_{A}$. The maximum allowable power dissipation at any temperature is $P_{D}=\left(T_{J M A X}-T_{A}\right) / \theta_{J A}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$, and the typical junction-to-ambient thermal resistance of the J 18 package when board mounted is $85^{\circ} \mathrm{C} / \mathrm{W}$. For the J 16 package, this number increases to $90^{\circ} \mathrm{C} / \mathrm{W}$, for the N 18 package, $\theta_{\mathrm{JA}}$ is $120^{\circ} \mathrm{C} / \mathrm{W}$, and for the N 16 this number is $125^{\circ} \mathrm{C} / \mathrm{W}$.

## Typical Performance Characteristics



FIGURE 1. Digital Input Threshold vs Ambient Temperature


TL/H/5689-2
FIGURE 2. Gain Error Variation vs $\mathbf{V}+$

## Typical Applications

The following applications are also valid for 12-bit systems using the DAC1220 and 2 additional digital inputs.

## Operational Amplifier Bias Current (Figure Э)

The op amp bias current, $\mathrm{I}_{\mathrm{b}}$, flows through the 15 k internal feedback resistor. BI-FET op amps have low $\mathrm{I}_{\mathrm{b}}$ and, therefore, the $15 \mathrm{k} \times \mathrm{I}_{\mathrm{b}}$ error they introduce is negligible; they are strongly recommended for the DAC1020 applications.

## $V_{\text {OS }}$ Considerations

The output impedance, ROUT, of the DAC is modulated by the digital input code which causes a modulation of the operational amplifier output offset. It is therefore recommended to adjust the op amp $V_{\text {OS }}$. ROUT is $\sim 15 \mathrm{k}$ if more than 4 digital inputs are high; ROUT is $\sim 45 \mathrm{k}$ if a single digital input is high, and ROUT approaches infinity if all inputs are low.

## Operational Amplifier Vos Adjust (Figure 3)

Connect all digital inputs, A1-A10, to ground and adjust the potentiometer to bring the op amp $\mathrm{V}_{\text {OUT }}$ pin to within $\pm 1$ mV from ground potential. If $\mathrm{V}_{\text {REF }}$ is less than 10 V , a finer $V_{O S}$ adjustment is required. It is helpful to increase the resolution of the $V_{O S}$ adjust procedure by connecting a $1 \mathrm{k} \Omega$ resistor between the inverting input of the op amp to ground. After $V_{O S}$ has been adjusted, remove the $1 \mathrm{k} \Omega$.

## Full-Scale Adjust (Figure 4)

Switch high all the digital inputs, A1-A10, and measure the op amp output voltage. Use a $500 \Omega$ potentiometer, as shown, to bring $\left\|V_{\text {OUT }}\right\|$ to a voltage equal to $\mathrm{V}_{\text {REF }} \times$ 1023/1024.

SELECTING AND COMPENSATING THE OPERATIONAL AMPLIFIER

Op Amp Family	$\mathbf{C}_{\mathbf{F}}$	$\mathbf{R}_{\mathbf{i}}$	$\mathbf{P}$	$\mathbf{V}_{\mathbf{W}}$	Circuit Settling   Time, $\mathbf{t}_{\mathbf{s}}$	Circuit Small   Signal $\mathbf{B W}$
LF357	10 pF	2.4 k	25 k	$\mathrm{V}+$	$1.5 \mu \mathrm{~s}$	1 M
LF356	22 pF	$\infty$	25 k	$\mathrm{V}^{+}$	$3 \mu \mathrm{~s}$	0.5 M
LF351	24 pF	$\infty$	10 k	$\mathrm{V}-$	$4 \mu \mathrm{~s}$	0.5 M
LM741	0	$\infty$	10 k	$\mathrm{V}-$	$40 \mu \mathrm{~s}$	200 kHz


$V_{\text {OUT }}=-V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\cdots \cdot \frac{A 10}{1024}\right)$
$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq 10 \mathrm{~V}$
$0 \leq V_{\text {OUT }} \leq-\frac{1023}{1024} V_{\text {REF }}$
where $A_{N}=1$ if the $A_{N}$ digital input is high
$A_{N}=0$ if the $A_{N}$ digital input is low
FIGURE 3. Basic Connection: Unipolar or 2-Quadrant Multiplying Configuration (Digital Attenuator)

Typical Applications (Continued)


FIGURE 4. Full-Scale Adjust


FIGURE 5. Alternate Full-Scale Adjust: (Allows Increasing or Decreasing the Gain)

$\mathrm{V}_{\mathrm{OUT} 1}=-\mathrm{V}_{\text {REF }}\left(\frac{\mathrm{A} 1}{2}+\frac{\mathrm{A} 2}{4}+\frac{\mathrm{A} 3}{8}+\cdots \cdot \frac{\mathrm{A} 10}{1024}\right)$
TL/H/5689-4
$V_{\text {OUT2 }}=V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\cdots \cdot \frac{A 10}{1024}\right) \times\left(\frac{B 1}{2}+\frac{B 2}{4}+\frac{B 3}{8}+\bullet \cdot \frac{B 10}{1024}\right)$
where $V_{\text {REF }}$ can be an $A C$ signal
FIGURE 6. Precision Analog-to-Digital Multiplier

## Typical Applications (Continued)



TL/H/5689-5
$V_{\text {OUT }}=-V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\cdots+\frac{A 10}{1024}-\frac{1}{1024}\right)$
where: $A N=+1$ if $A_{N}$ input is high
$A N=-1$ if $A_{N}$ input is low

COMPLEMENTARY OFFSET BINARY
(BIPOLAR) OPERATION

DIGITAL INPUT						$V_{\text {OUT }}$				
0	0	0	0	0	0	0	0	0	0	$+V_{\text {REF }}$
0	0	0	0	0	0	0	0	0	1	$V_{\text {REF }} \times 1022 / 1024$
0	1	1	1	1	1	1	1	1	1	$V_{\text {REF }} \times 2 / 1024$
1	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	$-V_{\text {REF }} \times 2 / 1024$
1	1	1	1	1	1	1	1	1	1	$-V_{\text {REF }}(1022 / 1024)$

Note that:

- $\mathrm{I}_{\text {OUT } 1}+\mathrm{I}_{\text {OUT } 2}=\frac{\mathrm{V}_{\text {REF }}}{\mathrm{R}_{\text {LADDER }}} \times\left(\frac{1023}{1024}\right)$
- By doubling the output range we get half the resolution
- The 10M resistor, adds a 1 LSB "thump", to allow full offset binary operation where the output reaches zero for the half-scale code. If symmetrical output excursions are required, omit the 10M resistor.

FIGURE 7. Bipolar 4-Quadrant Multiplying Configuration

## Operational Amplifiers Vos Adjust (Figure 7)

a) Switch all the digital inputs high; adjust the $V_{O S}$ potentiometer of op amp $B$ to bring its output to a value equal to-(VREF/1024) (V).
b) Switch the MSB high and the remaining digital inputs low. Adjust the $\mathrm{V}_{\text {OS }}$ potentiometer of op amp A, to bring its output value to within a 1 mV from ground potential. For $V_{\text {REF }}<10 \mathrm{~V}$, a finer adjust is necessary, as already mentioned in the previous application.


TRUE OFFSET BINARY OPERATION

DIGITAL INPUT							V OUT			
1	1	1	1	1	1	1	1	1	1	$V_{\text {REF }} \times 1022 / 1024$
1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	$-V_{\text {REF }}$

$\mathrm{t}_{\mathrm{s}}=1.8 \mu \mathrm{~s}$
use LM336 for a voltage reference
FIGURE 8. Bipolar Configuration with a Single Op Amp

## Gain Adjust (Full-Scale Adjust)

Assuming that the external 10k resistors are matched to better than $0.1 \%$, the gain adjust of the circuit is the same with the one previously discussed.


- $R 4=\left(2 A_{V^{-}}-1\right) R, \frac{R 2}{R 1}=\frac{A_{V}^{-}}{A_{V^{-}}-1}$,
$R 3+R 1 \| R 2=R ; A^{-}=\frac{V_{\text {OUT(PEAK }}}{V_{\text {REF }}}, R=20 \mathrm{k}$
- Example: $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}$ (swing) $\cong \pm 10 \mathrm{~V}: \mathrm{A}^{-}=5 \mathrm{~V}$ Then R4 $=9 \mathrm{R}, \mathrm{R} 1=0.8 \mathrm{R} 2$. If $\mathrm{R} 1=0.2 \mathrm{R}$ then $\mathrm{R} 2=0.25 \mathrm{R}$, $\mathrm{R} 3=0.64 \mathrm{R}$

FIGURE 9. Bipolar Configuration with Increased Output Swing

where: $V_{\text {REF }}$ can be an $A C$ signal

- By connecting the DAC in the feedback loop of an operational amplifier a linear digitally control gain block can be realized
- Note that with all digital inputs low, the gain of the amplifier is infinity, that is, the op amp will saturate. In other words, we cannot divide the $\mathrm{V}_{\text {REF }}$ by zero!
FIGURE 10. Analog-to-Digital Divider (or Digitally Gain Controlled Amplifier)

$V_{\text {OUT }}=V_{\text {REF }}\left[\frac{\frac{\overline{A 1}}{2}+\frac{\overline{A 2}}{4}+\ldots+\frac{\overline{A 10}}{1024}}{\left.\frac{\frac{A 1}{2}+\frac{A 2}{4}+\ldots+\frac{A 10}{1024}}{}\right] \text { or } V_{\text {OUT }}=V_{\text {REF }}\left(\frac{1023-N}{N}\right), ~\left(\frac{A}{2}\right.}\right.$
where: $0 \leq N \leq 1023$
$N=0$ for $A_{N}=$ all zeros
$\mathrm{N}=1$ for $\mathrm{A} 10=1, \mathrm{~A} 1-\mathrm{A} 9=0$
$N=1023$ for $A_{N}=$ all 1's
FIGURE 11. Digitally controlled Amplifier-Attenuator

Typical Applications (Continued)


- Output frequency $=\frac{f_{C L K}}{512} ; f_{\text {MAX }} \cong 2 \mathrm{kHz}$
- Output voltage range $=0 \mathrm{~V}-10 \mathrm{~V}$ peak
- THD < 0.2\%
- Excellent amplitude and frequency stability with temperature
- Low pass filter shown has a 1 kHz corner (for output frequencies below 10 Hz , filter corner should be reduced)
- Any periodic function can be implemented by modifying the contents of the look up table ROM
- No start up problems

FIGURE 12. Precision Low Frequency Sine Wave Oscillator Using Sine Look-Up ROM

Typical Applications (Continued)


- Binary up/down counter digitally "ramps" the DAC output
- Can stop counting at any desired 10-bit input code
- Senses up or down count overflow and automatically reverses direction of count

FIGURE 13. A Useful Digital Input Code Generator for DAC Attenuator or Amplifier Circuits

## Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the D/A output. It is directly related to the number of switches or bits within the D/A. For example, the DAC1020 has $2^{10}$ or 1024 steps while the DAC1220 has $2^{12}$ or 4096 steps. Therefore, the DAC1020 has 10-bit resolution, while the DAC1220 has 12-bit resolution.
Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the $D / A$ transfer characteristic. It is measured after calibrating for zero (see $\mathrm{V}_{\text {OS }}$ adjust in typical applications) and fullscale. Linearity error is a design parameter intrinsic to the device and cannot be externally adjusted.

Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the D/A full-scale output.
Settling Time: Full-scale settling time requires a zero to fullscale or full-scale to zero output change. Settling time is the time required from a code transition until the D/A output reaches within $\pm 1 / 2$ LSB of final output value.
Full-Scale Error: Full-scale error is a measure of the output error between an ideal D/A and the actual device output. Ideally, for the DAC1020 full-scale is $V_{\text {REF }}-1$ LSB. For $V_{\text {REF }}=10 \mathrm{~V}$ and unipolar operation, $V_{\text {FULL }}$. SCALE $=10.0000 \mathrm{~V}-9.8 \mathrm{mV}=9.9902 \mathrm{~V}$. Full-scale error is adjustable to zero as shown in Figure 5.

(a) End point test after zero and full-scale adjust. The DAC has 1 LSB linearity error.

Note. (a), (b1) and (b2) above illustrate the difference between "end point" National's linearity test (a) and "best straight line" test. Note that both devices in (a) and (b2) meet the $\pm 1 / 2$ LSB linearity error specification but the end point test is a more "real life" way of characterizing the DAC.

## Connection Diagrams

DAC102X
Dual-In-Line Package


DAC122X Dual-In-Line Package


National Semiconductor Corporation
MICRO-DACTM DAC1208, DAC1209, DAC1210, DAC1230, DAC1231, DAC1232 12-Bit, $\mu$ P Compatible, Double-Buffered D to A Converters

## General Description

The DAC1208 and the DAC1230 series are 12-bit multiplying D to A converters designed to interface directly with a wide variety of microprocessors (8080, 8048, 8085, Z-80, etc.). Double buffering input registers and associated control lines allow these DACs to appear as a two-byte "stack" in the system's memory or I/O space with no additional interfacing logic required.
The DAC1208 series provides all 12 input lines to allow single buffering for maximum throughput when used with 16-bit processors. These input lines can also be externally configured to permit an 8 -bit data interface. The DAC1230 series can be used with an 8 -bit data bus directly as it internally formulates the 12-bit DAC data from its 8 input lines. All of these DACs accept left-justified data from the processor.
The analog section is a precision silicon-chromium ( $\mathrm{Si}-\mathrm{Cr}$ ) R-2R ladder network and twelve CMOS current switches. An inverted R-2R ladder structure is used with the binary weighted currents switched between the louT1 and IOUT2 maintaining a constant current in each ladder leg independent of the switch state. Special circuitry provides TTL logic input voltage level compatibility.
The DAC1208 series and DAC1230 series are the 12 -bit members of a family of microprocessor compatible DACs (MICRO-DACsTM). For applications requiring other resolutions, the DAC1000 series for 10-bit and DAC0830 series for 8 -bit are available alternatives.

## Features

- Linearity specified with zero and full-scale adjust only
- Direct interface to all popular microprocessors
- Double-buffered, single-buffered or flow through digital data inputs
- Logic inputs which meet TTL voltage level specs (1.4V logic threshold)
- Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication
- Operates stand-alone (without $\mu \mathrm{P}$ ) if desired
- All parts guaranteed 12-bit monotonic
- DAC1230 series is pin compatible with the DAC0830 series 8-bit MICRO-DACs


## Key Specifications

$\begin{array}{lr}\text { ■ Current Settling Time } & 1 \mu \mathrm{~s} \\ \text { ■ Resolution } & 12 \text { Bits }\end{array}$

- Linearity (Guaranteed over temperature)
- Gain Tempco
- Low Power Dissipation

10,11 , or 12 Bits of FS
$1.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
20 mW
$5 V_{D C}$ to $15 V_{D C}$

## Typical Application



TL/H/5690-1

Absolute Maximum Ratings		Operating Conditions				
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.   (Notes 1 and 2)		Lead Temperature (Soldering, 10 seconds)				$300^{\circ} \mathrm{C}$
		Temperature Range DAC1208LCJ, DAC1209LCJ,			$\mathrm{T}_{\mathrm{MII}}$	$\leq T_{A} \leq T_{M A X}$
Supply Voltage ( $\mathrm{V}_{\mathrm{CC}}$ )	$17 \mathrm{~V}_{\text {DC }}$	DAC1210LCJ, DAC1230LCJ,   DAC1231LCJ, DAC1232LCJ			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	
Voltage at Any Digital Input	$V_{C C}$ to GND	DAC1231LCJ, DAC1232LCJ   DAC1208LCJ-1, DAC1209LCJ			$\square$	
Voltage at $\mathrm{V}_{\text {REF }}$ Input	$\pm 25 \mathrm{~V}$	DAC1210LCJ-1, DAC1230LCJ-   DAC1231LCJ-1, DAC1232LCJ-			$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Range of $\mathrm{V}_{\mathrm{CC}}$			4.75 $\mathrm{V}_{\mathrm{DC}}$ to $16 \mathrm{~V}_{\mathrm{DC}}$	
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)	$500 \mathrm{~mW}$	Voltage at Any Digital Input				$V_{C C} \text { to GND }$
DC Voltage Applied to IOUT1 or IOUT2 (Note 4) -100 mV to $\mathrm{V}_{\mathrm{CC}}$						
ESD Susceptability 800V						
Electrical Characteristics						
$\mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{CC}}=11.4 \mathrm{~V}_{\mathrm{DC}}$ to $15.75 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply from $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ (see Note 13); all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.						
Parameter	Conditions	Notes	Typ   (Note 10)	Tested Limit (Note 5)	Design Limit (Note 6)	Units
Resolution			12	12	12	Bits
Linearity Error (End Point Linearity)	Zero and Full-Scale Adjusted   DAC1208, DAC1230   DAC1209, DAC1231   DAC1210, DAC1232	4, 7, 13		$\begin{aligned} & 0.012 \\ & 0.024 \\ & 0.050 \end{aligned}$	$\begin{gathered} 0.012 \\ 0.024 \\ 0.05 \end{gathered}$	\% of FSR   \% of FSR   \% of FSR
Differential Non-Linearity	Zero and Full-Scale Adjusted DAC1208, DAC1230 DAC1209, DAC1231 DAC1210, DAC1232	4, 7, 13		$\begin{aligned} & 0.018 \\ & 0.024 \\ & 0.050 \end{aligned}$	$\begin{gathered} 0.018 \\ 0.024 \\ 0.05 \end{gathered}$	\% of FSR   \% of FSR   \% of FSR
Monotonicity		4	12	12	12	Bits
Gain Error (Min)	Using Internal $\mathrm{R}_{\mathrm{Fb}}$$V_{\mathrm{ref}}= \pm 10 \mathrm{~V}, \pm 1 \mathrm{~V}$	7	-0.1	0.0		\% of FSR
Gain Error (Max)		7	-0.1	-0.2		\% of FSR
Gain Error Tempco		7	$\pm 1.3$		$\pm 6.0$	ppm of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection	All Digital Inputs Latched High	7	$\pm 3.0$	$\pm 30$		ppm of FSR/V
Reference Input Resistance (Min) Reference Input Resistance (Max)		13	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	k $\Omega$
Output Feedthrough Error	$\mathrm{V}_{\mathrm{REF}}=20 \mathrm{Vp-p,f}=100 \mathrm{kHz}$   All Data Inputs Latched Low	9	3.0			mVp-p
Output Capacitance	All Data Inputs lout1 Latched High IOUT2 All Data Inputs IOUT1 Latched Low IOUT2		.		$\begin{gathered} \hline 200 \\ 70 \\ 70 \\ 200 \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Supply Current Drain		13		2.0	2.5	mA
Output Leakage Current lout1 lout2	All Data Inputs Latched Low   All Data Inputs Latched High	$\begin{aligned} & 11,13 \\ & 11,13 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	nA
Digital Input Threshold	Low Threshold High Threshold	$\begin{aligned} & 13 \\ & 13 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 2.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.2 \end{aligned}$	$V_{D C}$   $V_{D C}$
Digital Input Currents	Digital Inputs $<0.8 \mathrm{~V}$   Digital Inputs $>2.2 \mathrm{~V}$	$\begin{aligned} & 13 \\ & 13 \\ & \hline \end{aligned}$		$\begin{gathered} -200 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} -200 \\ 10 \\ \hline \end{gathered}$	$\mu A_{D C}$   $\mu A_{D C}$

Electrical Characteristics (Continued)
$\mathrm{V}_{\text {REF }}=10.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{C C}=11.4 \mathrm{~V}_{\mathrm{DC}}$ to $15.75 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply from $T_{\text {MIN }}$ to $T_{\text {MAX }}$ (see Note 13); all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	See   Note	Typ   (Note 10)	Tested   Limit   (Note 5)	Design   Limit   (Note 6)	Units

## AC CHARACTERISTICS

$t_{s}$	Current Setting Time	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		1.0		$\mu \mathrm{s}$
tw	Write and XFER Pulse Width Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	8	50	$\begin{aligned} & 320 \\ & 320 \end{aligned}$	ns
${ }^{\text {t }}$ S	Data Setup Time Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		70	$\begin{aligned} & 320 \\ & 320 \end{aligned}$	
${ }^{\text {t }}$ DH	Data Hold Time Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		30	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	
$\mathrm{t}_{\mathrm{CS}}$	Control Setup Time Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		60	$\begin{aligned} & 320 \\ & 320 \end{aligned}$	
$\mathrm{t}_{\mathrm{CH}}$	Control Hold Time Min.	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$		0	10	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.
Note 4: Both lout1 and lout2 must go to ground or the virtual ground of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\text {OS }} \div \mathrm{V}_{\text {REF }}$. For example, if $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ then a 1 mV offset, $\mathrm{V}_{\mathrm{OS}}$, on lout1 or lout2 will introduce an additional $0.01 \%$ linearity error.
Note 5: Tested and guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 6: Design limits are guaranteed but not $100 \%$ tested. These limits are not used to calculate outgoing quality levels. Guaranteed for $\mathrm{V}_{\mathrm{CC}}=11.4 \mathrm{~V}$ to 15.75 V and $V_{\text {REF }}=-10 \mathrm{~V}$ to +10 V .
Note 7: The unit FSR stands for full-scale range. Linearity Error and Power Supply Rejection specs are based on this unit to eliminate dependence on a particular $V_{\text {REF }}$ value to indicate the true performance of the part. The Linearity Error specification of the DAC1208 is $0.012 \%$ of $\operatorname{FSR}$ (max). This guarantees that after performing a zero and full-scale adjustment, the plot of the 4096 analog voltage outputs will each be within $0.012 \% \times V_{\text {FEF }}$ of a straight line which passes through zero and full-scale. The unit ppm of FSR(parts per million of full-scale range) and ppm of FS(parts per million of full-scale) are used for convenience to define specs of very small percentage values, typical of higher accuracy converters. In this instance, 1 ppm of $\mathrm{FSR}=\mathrm{V}_{\text {REF }} / 10^{6}$ is the conversion factor to provide an actual output voltage quantity. For example, the gain error tempco spec of $\pm 6 \mathrm{ppm}$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ represents a worst-case full-scale gain error change with temperature from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ of $\pm(6)\left(V_{\text {REF }} / 10^{6}\right)\left(125^{\circ} \mathrm{C}\right)$ or $\pm 0.75\left(10^{-3}\right) V_{\text {REF }}$ which is $\pm 0.075 \%$ of $V_{\text {REF }}$.
Note 8: This spec implies that all parts are guaranteed to operate with a write pulse or transfer pulse width (tw) of 320 ns . A typical part will operate with tw of only 100 ns . The entire write pulse must occur within the valid data interval for the specified $\mathrm{t}_{\mathrm{W}}, \mathrm{t}_{\mathrm{DS}}, \mathrm{t}_{\mathrm{DH}}$ and $\mathrm{t}_{\mathrm{s}}$ to apply.
Note 9: To achieve this low feedthrough in the D package, the user must ground the metal lid. If the lid is leff floating the feedthrough is typically 6 mV .
Note 10: Typicals are at $25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 11: A 10 nA leakage current with $\mathrm{R}_{\mathrm{Fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(10 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 \% 10 \mathrm{~V}$ or $0.002 \%$ of FS .
Note 12: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 13: Tested limit for -1 suffix parts applies only at $25^{\circ} \mathrm{C}$.

## Connection Diagrams



## Dual-In-Line Package



TL/H/5690-2

See Ordering Information

## Switching Waveforms



## Typical Performance Characteristics




Data Set-Up Time, $t_{D S}$


## Definition of Package Pinouts

CONTROL SIGNALS (all control signals are level actuated) $\overline{\mathrm{CS}}$ : Chip Select (active low). The $\overline{\mathrm{CS}}$ will enable $\overline{\mathrm{WR1}}$.
$\overline{W R 1}$ : Write 1. The active low $\overline{W R 1}$ is used to load the digital data bits (DI) into the input latch. The data in the input latch is latched when WR1 is high. The 12 -bit input latch is split into two latches. One holds the first 8 bits, while the other holds 4 bits. The Byte 1/Byte 2 control pin is used to select both latches when Byte $1 / \overline{\text { Byte } 2}$ is high or to overwrite the 4-bit input latch when in the low state.
Byte 1/Byte 2: Byte Sequence Control. When this control is high, all 12 locations of the input latch are enabled. When low, only the four least significant locations of the input latch are enabled.
WR2: Write 2 (active low). The WR2 will enable XFER.
$\overline{\text { XFER: }}$ Transfer Control Signal (active low). This signal, in combination with WR2, causes the 12-bit data which is available in the input latches to transfer to the DAC register.
$\mathrm{Dl}_{0}$ to $\mathrm{Dl}_{11}$ : Digital Inputs. $\mathrm{Dl}_{0}$ is the least significant digital input (LSB) and $\mathrm{DI}_{11}$ is the most significant digital input (MSB).
Iout1: DAC Current Output 1. IOUT1 is a maximum for a digital code of all is in the DAC register, and is zero for all Os in the DAC register.
Iout2: DAC Current Output 2. IOUT2 is a constant minus IOUT1, or IOUT1 + lout2 $=$ constant (for a fixed reference voltage). This constant current is

$$
\mathrm{V}_{\mathrm{REF}} \times\left(1-\frac{1}{4096}\right)
$$

divided by the reference input resistance.
$\mathbf{R}_{\text {Fb }}$ : Feedback Resistor. The feedback resistor is provided on the IC chip for use as the shunt feedback resistor for the external op amp which is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) since it matches the resistors in the on-chip R-2R ladder and tracks these resistors over temperature.
$V_{\text {REF: }}$ Reference Voltage Input. This input connects an external precision voltage source to the internal R-2R ladder. $\mathrm{V}_{\text {REF }}$ can be selected over the range of 10 V to -10 V . This is also the analog voltage input for a 4-quadrant multiplying DAC application.
$\mathbf{V}_{\mathbf{C c}}$ : Digital Supply Voltage. This is the power supply pin for the part. $V_{C C}$ can be from $5 V_{D C}$ to $15 V_{D C}$. Operation is optimum for $15 \mathrm{~V}_{\mathrm{DC}}$.
GND: Pins 3 and 12 of the DAC1208, DAC1209, and DAC1210 must be connected to ground. Pins 3 and 10 of

a) End Point Test After Zero and FS Adjust
the DAC1230, DAC1231, and DAC1232 must be connected to ground. It is important that $\mathrm{lOUT}_{1}$ and $\mathrm{lOUT}_{2}$ are at ground potential for current switching applications. Any difference of potential ( $V_{O S}$ on these pins) will result in a linearity change of

$$
\frac{V_{O S}}{3 V_{R E F}}
$$

For example, if $\mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ and these ground pins are 9 mV offset from lout ${ }_{1}$ and lout ${ }_{2}$, the linearity change will be 0.03\%.

## Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the DAC output. It is directly related to the number of switches or bits within the DAC. For example, the DAC1208 has $2^{12}$ or 4096 steps and therefore has 12-bit resolution.
Linearity Error: Linearity error is the maximum deviation from a straight line passing through the endpoints of the DAC transfor characteristic. It is measured after adjusting for zero and full-scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.
National's linearity test (a) and the best straight line test (b) used by other suppliers are illustrated below. The best straight line (b) requires a special zero and FS adjustment for each part, which is almost impossible for the user to determine. The end point test uses a standard zero FS adjustment procedure and is a much more stringent test for DAC linearity.
Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output.
Settling Time: Full-scale current settling time requires zero to full-scale or full-scale to zero output change. Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value.
Full-Scale Error: Full-scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1208 or DAC1230 series, full-scale is $V_{\text {REF }}-1$ LSB. For $V_{\text {REF }}=10 \mathrm{~V}$ and unipolar operation, $V_{\text {FULL-SCALE }}=10.0000 \mathrm{~V}-2.44 \mathrm{mV}=9.9976 \mathrm{~V}$. Full-scale error is adjustable to zero.
Differential Non-Linearity: The difference between any two consecutive codes in the transfer curve from the theoretical 1 LSB is differential non-linearity.
Monotonic: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 12-bit DAC which is monotonic to 12 bits simply means that input increasing digital input codes will produce an increasing analog output.

b) Shifting FS Adjust to Pass
Best Straight Line Test

## Application Hints

### 1.0 DIGITAL INTERFACE

These DACs are designed to provide all of the necessary digital input circuitry to permit a direct interface to a wide variety of microprocessor systems. The timing and logic level convention of the input control signals allow the DACs to be treated as a typical memory device or I/O peripheral with no external logic required in most systems. Essentially these DACs can be mapped as a two-byte stack in memory (or I/O space) to receive their 12 bits of input data in two successive 8 -bit data writing sequences. The DAC1230 series is intended for use in systems with an 8-bit data bus. The DAC1208 series provides all 12 digital input lines which can be externally configured to be controlled from an 8-bit bus or can be driven directly from a 16-bit data bus.

All of the digital inputs to these DACs contain a unique threshold regulator circuit to maintain TTL voltage level compatibility independent of the applied $V_{C C}$ to the DAC. Any input can also be driven from higher voltage CMOS logic levels in non-microprocessor based systems. To prevent damage to the chip from static discharge, all unused digital inputs should be tied to $\mathrm{V}_{\mathrm{CC}}$ or ground. As a troubleshooting aid, if any digital input is inadvertently left floating, the DAC will interpret the pin as a logic " 1 ".
Double buffered digital inputs allow the DAC to internally format the 12 -bit word used to set the current switching R2 R ladder network (see section 2.0 ) from two 8 -bit data write cycles. Figures 1 and 2 show the internal data registers and their controlling logic circuitry. The timing diagrams for updating the DAC output are shown in sections 1.1, 1.2 and 1.3 for three possible control modes. The method used depends strictly upon the particular application.


FIGURE 1. DAC1208, DAC1209, DAC1210 Functional Diagram


## Application Hints (Continued)

### 1.1 Automatic Transfer

The 12-bit DAC word is automatically transferred to the DAC register and the R-2R ladder when the second write (the 4 LSBs of the data) occurs.


### 1.2 Independent Processor Transfer Control

In this case a separate address is decoded to provide the $\overline{\text { FFER }}$ signal. This allows the processor to load the next required DAC word but not change the analog output until some time later, most useful for the simultaneous updating of several DACs in a system where their XFER lines would be tied together.


### 1.3 Transfer via an External Strobe

This method is basically the same as the previous operation except the $\overline{\mathrm{XFER}}$ signal is provided by a device other than the processor. This allows the DAC to hold the code for a conditional analog output signal which will be required on demand from an external monitoring device (an analog voltage comparator for instance).


## Application Hints (Continued)

### 1.4 Left-Justified Data Format

It is important to realize that the input registers of these DACs are arranged to accept a left-justified data word from the microprocessor with the most significant 8 bits coming first (Byte 1) and the lower 4 bits second. Left justification simply means that the binary point is assumed to be located to the left of the most significant bit. Figure 3 shows how the 12 bits of DAC data should be arranged in 28 -bit registers of an 8 -bit processor before being written to the DAC.


TL/H/5690-10

### 1.5 16-Bit Data Bus Interface

The DAC1208 series provides all 12 digital input lines to permit a direct parallel interface to a 16-bit data bus. In this instance, double buffering is not always necessary (unless a simultaneous updating of several DACs or a data transfer via an external strobe is desired) so the 12-bit DAC register can be wired to flow-through whereby its Q outputs always reflect the state of its $D$ inputs. The external connections required and the timing diagram for this single buffered application are shown in Figure 4. Note that either left or rightjustified data from the processor can be accommodated with a 16-bit data bus.

### 1.6 Flow-Through Operation

Through primarily designed to provide microprocessor interface compatibility, the MICRO-DACs can easily be configured to allow the analog output to continuously reflect the state of an applied digital input. This is most useful in appli-

FIGURE 3. Left-Justified Data Format


## Application Hints (Continued)

cations where the DAC is used in a continuous feedback control loop and is driven by a binary up/down counter, or in function generation circuits where a ROM is continuously providing DAC data.
Only the DAC1208, DAC1209, DAC1210 devices can have all 12 inputs flow-through. Simply grounding $\overline{\mathrm{CS}}, \overline{\mathrm{WR} 1,} \overline{\text { WR2 }}$ and XFER and tying Byte 1/Byte 2 high allows both internal registers to follow the applied digital inputs (flow-through) and directly affect the DAC analog output.

### 1.7 Address Decoding Tips

It is possible to map the MICRO-DACs into system ROM space to allow more efficient use of existing address decoding hardware. The DAC in effect can share the same addresses of any number of ROM locations. The ROM outputs will only be enabled by a READ of its address (gated by the system READ strobe) and the DAC will only accept data that is written to the same address (gated by the system WRITE strobe).
The Byte 1/ $\overline{\text { Byte } 2}$ control function can easily be generated by the processor's least significant address bit (AO) by placing the DAC at two consecutive address locations and utilizing double-byte WRITE instructions which automatically increment or decrement the address. The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{XFER}}$ signals can then be decoded from the remaining address bits. Care must be taken in selecting the actual address used for Byte 1 of the DAC to prevent a carry (as a result of
incrementing the address for Byte 2) from propagating through the address word and changing any of the bits decoded for $\overline{\mathrm{CS}}$ or XFER. Figure 5 shows how to prevent this effect.
The same problem can occur from a borrow when an autodecremented address is used; but only if the processor's address outputs are inverted before being decoded.

### 1.8 Control Signal Timing

When interfacing these MICRO-DACs to any microprocessor, there are two important time relationships that must be considered to insure proper operation. The first is the minimum $\overline{W R}$ strobe pulse width which is specified as 320 ns for $\mathrm{V}_{\mathrm{CC}}=11.4 \mathrm{~V}$ to 15.75 V and operation over temperature, but typically a pulse width of only 250 ns is adequate. A second consideration is that the guaranteed minimum data hold time of 90 ns should be met or erroneous data can be latched. This hold time is defined as the length of time data must be held valid on the digital inputs after a qualified (via $\overline{\mathrm{CS}}) \overline{\mathrm{WR}}$ strobe makes a low to high transition to latch the applied data.
If the controlling device or system does not inherently meet these timing specs the DAC can be treated as a slow memory or peripheral and utilize a technique to extend the write strobe. A simple extension of the write time, by adding a wait state, can simultaneously hold the write strobe active and data valid on the bus to satisfy the minimum WR pulse

Write Cycle	Address Bits			
	15	2	1*	0**
First (Byte 1)	Address DAC		0	1
Second (Byte 2)			1	0

*Starting with a 0 prevents a carry on address incrementing.
**Used as Byte 1/Byte2 Control.
FIGURE 5


FIGURE 6. Accommodating a High Speed System

## Application Hints (Continued)

width. If this does not provide a sufficient data hold time at the end of the write cycle, a negative edge triggered oneshot can be included between the system write strobe and the WR pin of the DAC. This is illustrated in Figure 6 for an exemplary system which provides a 250 ns WR strobe time with a data hold time of only 10 ns .
The proper data set-up time prior to the latching edge (low to high transition) of the $\overline{W R}$ strobe, is insured if the $\overline{W R}$ pulse width is within spec and the data is valid on the bus for the duration of the DAC $\overline{W R}$ strobe.

### 1.9 Digital Signal Feedthrough

A typical microprocessor is a tremendous potential source of high frequency noise which can be coupled to sensitive analog circuitry. The fast edges of the data and address bus signals generate frequency components of 10's of megahertz and may cause fast transients to appear at the DAC output, even when data is latched internally.
In low frequency or DC applications, low pass filtering can reduce the magnitude of any fast transients. This is most
easily accomplished by over-compensating the DAC output amplifier by increasing the value of its feedback capacitor. In applications requiring a fast output response from the DAC and op amp, filtering may not be feasible. In this event, digital signals can be completely isolated from the DAC circuitry, by the use of a DM74LS374 latch, until a valid $\overline{\mathrm{CS}}$ signal is applied to update the DAC. This is shown in Figure 7.
A single TRI-STATE ${ }^{\circledR}$ data buffer such as the DM81LS95 can be used to isolate any number of DACs in a system. Figure 8 shows this isolating circuitry and decoding hardware for a multiple DAC analog output card. Pull-up resistors are used on the buffer outputs to limit the impedance at the DAC digital inputs when the card is not selected. A unique feature of this card is that the DAC $\overline{X F E R}$ strobes are controlled by the data bus. This allows a very flexible update of any combination of analog outputs via a transfer word which would contain a zero in the bit position assigned to any of the DACs required to change to a new output value.


TL/H/5690-14
FIGURE 8. TRI-STATE® Buffers Isolate the Data and Control Lines from the DACs. A Transfer Word Provides a Flexible Update.

## Application Hints (Continued)

### 2.0 ANALOG APPLICATIONS

The analog output signal for these DACs is derived from a conventional R-2R current switching ladder network. A detailed description of this network can be found on the DAC1000 series data sheet. Basically, output lout1 provides a current directly proportional to the product of the applied reference voltage and the digital input word. A second output, lout2 will be a current proportional to the complement of the digital input. Specifically:

$$
\begin{aligned}
& \text { IOUT1 }=\frac{V_{\text {REF }}}{R} \times \frac{D}{4096} ; \\
& \text { IOUT2 }=\frac{V_{\text {REF }}}{R} \times \frac{4095-D}{4096}
\end{aligned}
$$

where $D$ is the decimal equivalent of the applied 12-bit binary word (ranging from 0 to 4095), $\mathrm{V}_{\text {REF }}$ is the voltage applied to the $V_{\text {REF }}$ terminal and $R$ is the internal resistance of the $R-2 R$ ladder. $R$ is nominally $15 \mathrm{k} \Omega$.

### 2.1 Obtaining a Unipolar Output Voltage

To maintain linearity of output current with changes in the applied digital code, it is important that the voltages at both of the current output pins be as near ground potential ( 0 $\mathrm{V}_{\mathrm{DC}}$ ) as possible. With $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}$ every millivolt appearing at either IOUT1 or lout2 will cause a $0.01 \%$ linearity error. In most applications this output current is converted to a voltage by using an op amp as shown in Figure 9.

The inverting input of the op amp is a virtual ground created by the feedback from its output through the internal $15 \mathrm{k} \Omega$ resistor, $\mathrm{R}_{\mathrm{Fb}}$. All of the output current (determined by the digital input and the reference voltage) will flow through $\mathrm{R}_{\mathrm{Fb}}$ to the output of the amplifier. Two-quadrant operation can be obtained by reversing the polarity of $\mathrm{V}_{\text {REF }}$ thus causing lout1 to flow into the DAC and be sourced from the output of the amplifier. The output voltage, in either case, is always equal to $\mathrm{l}_{\mathrm{OUT} 1} \times \mathrm{R}_{\mathrm{Fb}}$ and is the opposite polarity of the reference voltage.
The reference can be either a stable DC voltage source or an $A C$ signal anywhere in the range from -10 V to +10 V . The DAC can be thought of as a digitally controlled attenuator: the output voltage is always less than the applied reference voltage. The $\mathrm{V}_{\text {REF }}$ terminal of the device presents a nominal impedance of $15 \mathrm{k} \Omega$ to ground to external circuitry.
Always use the internal $R_{F b}$ resistor to create an output voltage since this resistor matches (and tracks with temperature) the value of the resistors used to generate the output current (louti).
The selected op amp should have as low a value of input bias current as possible. The product of the bias current times the feedback resistance creates an output voltage error which can be significant in low reference voltage applications. BI-FETTM op amps are highly recommended for use with these DACs because of their very low input current.


## Application Hints (Continued)

Transient response and settling time of the op amp are important in fast data throughput applications. The largest stability problem is the feedback pole created by the feedback resistance, $\mathrm{R}_{\mathrm{Fb}}$, and the output capacitance of the DAC. This appears from the op amp output to the ( - ) input and includes the stray capacitance at this node. Addition of a lead capacitance, $\mathrm{C}_{\mathrm{C}}$ in Figure 9, greatly reduces overshoot and ringing at the output for a step change in DAC output current.

### 2.1.1 Zero and Full-Scale Adjustments

For accurate conversions, the input offset voltage of the output amplifier must always be nulled. Amplifier offset errors create an overall degradation of DAC linearity.
The fundamental purpose of zeroing is to make the voltage appearing at the DAC outputs as near $0 V_{D C}$ as possible. This is accomplished by shorting out $\mathrm{R}_{\mathrm{Fb}}$, the amplifier feedback resistor, and adjusting the vos nulling potentiometer of the op amp until the output reads zero volts. This is done, of course, with an applied digital code of all zeros if lout1 is driving the op amp (all ones for lout2). The short around $R_{F b}$ is then removed and the converter is zero adjusted.
A unique feature of this series of DACs is that the full-scale or gain error is guaranteed to be negative. The gain error specification is a measure of how close the value of the
internal feedback resistor, $\mathrm{R}_{\mathrm{Fb}}$, matches the $\mathrm{R}-2 \mathrm{R}$ ladder resistors. A negative gain error indicates that $R_{F b}$ is a smaller resistance value than it should be. To adjust this gain error, some resistance must always be added in series with $\mathrm{R}_{\mathrm{Fb}}$. The $50 \Omega$ potentiometer shown is sufficient to adjust the worst-case gain error for these devices.

### 2.2 Bipolar Output Voltage from a Fixed Reference

The addition of a second op amp to the unipolar circuit can generate a bipolar output voltage from a fixed reference voltage. This, in effect, gives sign significance to the MSB of the digital input word to allow two quadrant multiplication of the reference voltage. The polarity of the reference can also be reversed to realize full 4 -quadrant multiplication. This circuit is shown in Figure 10.
This configuration features several improvements over existing circuits for a bipolar output shown with other multiplying DACs. Only the offset voltage of amplifier 1 affects the linearity of the DAC. The offset voltage error of the second op amp (although a constant output error) has no effect on linearity. In addition, this configuration offers a non-interactive positive and negative full-scale calibration procedure.


FIGURE 10. Bipolar Output Voltage Configuration

## Application Hints (Continued)

### 2.2.1 Zero and Full-Scale Adjustments

To calibrate the bipolar output circuit, three adjustments are required. The first step is to set all of the digital inputs LOW (to force IOUT1 to 0 ) then null the $\mathrm{V}_{\text {OS }}$ of amplifier 1 by setting the voltage at its inverting input (pin 2) to zero volts. Next, with a code of all zeros still applied, adjust "-fullscale adjust", the reference voltage, for $\mathrm{V}_{\text {OUT }}= \pm \mid \mathrm{V}_{\text {REF }}$ ideal. The polarity of the output voltage at this time will be opposite that of the applied reference. Finally, set all of the digital inputs HIGH and adjust "+full-scale adjust" for

$$
V_{\text {OUT }}=V_{\text {REF }} \frac{2047}{2048}
$$

The polarity of the output will be the same as that of the reference voltage.

### 3.0 APPLICATION IDEAS

In this section the digital input word is represented by the letter $D$ and is equal to the decimal equivalent of the 12-bit binary input. Hence $D$ can be any integer value between 0 and 4095.

## Composite Amplifier for Good DC Characteristics and Fast Output Response



High Voltage, Power DAC


Application Hints (Continued)
High Current Controller


TL/H/5690-18
8-Bit Course, 4-Bit Vernier DAC


TL/H/5690-20

## Ordering Information

Part Number	Non-Linearity	Package	Temperature Range
DAC1208LCJ	0.012\%	J24A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1208LCJ-1	0.012\%	J24A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1209LCJ	0.024\%	J24A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1209LCJ-1	0.024\%	J24A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1210LCJ	0.050\%	J24A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1210LCJ-1	0.050\%	J24A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1230LCJ	0.012\%	J20A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1230LCJ-1	0.012\%	J20A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1231LCJ	0.024\%	J20A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1231LCJ-1	0.024\%	J20A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DAC1232LCJ	0.050\%	J20A Cerdip	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DAC1232LCJ-1	0.050\%	J20A Cerdip	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

## DAC1218, DAC1219 <br> 12-Bit Binary Multiplying D/A Converter

## General Description

The DAC1218 and the DAC1219 are 12-bit binary, 4-quadrant multiplying D to A converters. The linearity, differential non-linearity and monotonicity specifications for these converters are all guaranteed over temperature. In addition, these parameters are specified with standard zero and fullscale adjustment procedures as opposed to the impractical best fit straight line guarantee.
This level of precision is achieved though the use of an advanced silicon-chromium ( SiCr ) R-2R resistor ladder network. This type of thin-film resistor eliminates the parasitic diode problems associated with diffused resistors and allows the applied reference voltage to range from -25 V to 25 V , independent of the logic supply voltage.
CMOS current switches and drive circuitry are used to achieve low power consumption ( 20 mW typical) and minimize output leakage current errors ( 10 nA maximum). Unique digital input circuitry maintains TTL compatible input threshold voltages over the full operating supply voltage range.
The DAC1218 and DAC1219 are direct replacements for the AD7541 series, AD7521 series, and AD7531 series with a significant improvement in the linearity specification. In applications where direct interface of the D to A converter to
a microprocessor bus is desirable, the DAC1208 and DAC1230 series eliminate the need for additional interface logic.

## Features

■ Linearity specified with zero and full-scale adjust only
■ Logic inputs which meet TTL voltage level specs (1.4V logic threshold)

- Works with $\pm 10 \mathrm{~V}$ reference-full 4-quadrant multiplication
- All parts guaranteed 12-bit monotonic


## Key Specifications

$\begin{array}{lr}\text { ■ Current Settling Time } & 1 \mu \mathrm{~s} \\ \text { - Resolution } & 12 \text { Bits } \\ \text { - Linearity (Guaranteed } & 12 \text { Bits (DAC1218) } \\ \text { over temperature) } & 11 \text { Bits (DAC1219) } \\ \text { ■ Gain Tempco } & 1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \text { ■ Low Power Dissipation } & 20 \mathrm{~mW} \\ \text { - Single Power Supply } & 5 \mathrm{~V}_{\mathrm{DC}} \text { to } 15 \mathrm{~V}_{\mathrm{DC}}\end{array}$

Typical Application


TL/H/5691-1
$V_{\text {OUT }}=-V_{\text {REF }}\left(\frac{A 1}{2}+\frac{A 2}{4}+\frac{A 3}{8}+\ldots \frac{A 12}{4096}\right)$
where: $A N=1$ if digital input is high
AN $=0$ if digital input is low

Connection Diagram

Absolute Maximum Ratings (Notes 1 and 2)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (VCC)	$17 \mathrm{~V}_{\mathrm{DC}}$
Voltage at Any Digital Input	$\mathrm{V}_{\mathrm{CC}}$ to GND
Voltage at $\mathrm{V}_{\text {REF }}$ Input	$\pm 25 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)	500 mW
DC Voltage Applied to louT1 or louT2	-100 mV to $\mathrm{V}_{\mathrm{CC}}$
(Note 4)	
Lead Temp. (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$
ESD Susceptibility (Note 11)	800 V

## Operating Conditions

Temperature Range

Range of $\mathrm{V}_{\mathrm{CC}}$
$5 V_{D C}$ to $16 V_{D C}$
$V_{C C}$ to $G N D$

## Electrical Characteristics

$\mathrm{V}_{\mathrm{REF}}=10.000 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{C C}=11.4 \mathrm{~V}_{\mathrm{DC}}$ to $15.75 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise noted. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$ (see Note 9); all other limits $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	Notes	Typ   (Note 10)	Tested Limit (Note 11)	Design Limit (Note 12)	Units
Resolution			12	12	12	Bits
Linearity Error (End Point Linearity)	Zero and Full-Scale   Adjusted   DAC1218   DAC1219	4, 5, 9		$\begin{aligned} & 0.012 \\ & 0.024 \end{aligned}$	$\begin{aligned} & 0.012 \\ & 0.024 \end{aligned}$	\% of FSR   $\%$ of FSR
Differential Non-Linearity	Zero and Full-Scale   Adjusted   DAC1218   DAC1219	4, 5, 9		$\begin{aligned} & 0.018 \\ & 0.024 \end{aligned}$	$\begin{aligned} & 0.018 \\ & 0.024 \end{aligned}$	\% of FSR   \% of FSR
Monotonicity		4	12	12	12	Bits
Gain Error (Min)	Using Internal $\mathrm{R}_{\mathrm{Fb}}$,$V_{\mathrm{REF}}= \pm 10 \mathrm{~V}, \pm 1 \mathrm{~V}$	5	-0.1	0.0		\% of FSR
Gain Error (Max)		5	-0.1	-0.2		\% of FSR
Gain Error Tempco		5	$\pm 1.3$		$\pm 6.0$	ppm of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection	All Digital Inputs High	5	$\pm 3.0$	$\pm 30$		ppm of FSR/V
Reference Input Resistance	(Min)	9	15	10	10	$\mathrm{k} \Omega$
	(Max)	9	15	20	20	$\mathrm{k} \Omega$
Output Feedthrough Error	$V_{\text {REF }}=120 \mathrm{Vp-p}, \mathrm{f}=100 \mathrm{kHz}$   All Data Inputs Low	6	3.0			mVp-p
Output Capacitance	All Data Inputs IOUT1 High lout2 All Data Inputs lout1 Low IOUT2				$\begin{gathered} 200 \\ 70 \\ 70 \\ 200 \end{gathered}$	pF   pF   pF   pF
Supply Current Drain		9		2.0	2.5	mA
Output Leakage Current Iout1 IOUT2	All Data Inputs Low   All Data Inputs High	7,9		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Digital Input Threshold	Low Threshold High Threshold	9		$\begin{aligned} & 0.8 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.2 \end{aligned}$	$V_{D C}$   $V_{D C}$
Digital Input Currents	Digital Inputs $<0.8 \mathrm{~V}$   Digital Inputs $>2.2 \mathrm{~V}$	9		$\begin{gathered} -200 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} -200 \\ 10 \\ \hline \end{gathered}$	$\mu A_{D C}$ $\mu A_{D C}$
$\mathrm{t}_{\text {s }}$ Current Settling Time	$R_{L}=100 \Omega$, Output Settled to $0.01 \%$, All Digital Inputs Switched Simultaneously		1			$\mu \mathrm{S}$

## Electrical Characteristics Notes

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless otherwise specified.
Note 3: This 500 mW specification applies for all packages. The low intrinsic power dissipation of this part (and the fact that there is no way to significantly modify the power dissipation) removes concern for heat sinking.
Note 4: Both lout1 and lout2 must go to ground or the virtual ground of an operational amplifier. The linearity error is degraded by approximately $\mathrm{V}_{\text {OS }} \div \mathrm{V}_{\mathrm{REF}}$. For example, if $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ then a 1 mV offset, $\mathrm{V}_{\mathrm{OS}}$, on IOUT1 or louT2 will introduce an additional $0.01 \%$ linearity error.
Note 5: The unit FSR stands for full-scale range. Linearity Error and Power Supply Rejection specs are based on this unit to eliminate dependence on a particular $V_{\text {REF }}$ value to indicate the true performance of the part. The Linearity Error specification of the DAC1218 is $0.012 \%$ of FSR. This guarantees that after performing a zero and full-scale adjustment, the plot of the 4096 analog voltage outputs will each be within $0.012 \% \times V_{\text {REF }}$ of a straight line which passes through zero and fullscale. The unit ppm of FSR (parts per million of full-scale range) and ppm of FS (parts per million of full-scale) are used for convenience to define specs of very small percentage values, typical of higher accuracy converters. 1 ppm of $\mathrm{FSR}=\mathrm{V}_{\mathrm{REF}} / 10^{6}$ is the conversion factor to provide an actual output voltage quantity. For example, the gain error tempco spec of $\pm 6 \mathrm{ppm}$ of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ represents a worst-case full-scale gain error change with temperature from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ of $\pm(6)\left(V_{\text {REF }} / 10^{6}\right)\left(125^{\circ} \mathrm{C}\right)$ or $\pm 0.75\left(10^{-3}\right) V_{\text {REF }}$ which is $\pm 0.075 \%$ of $V_{\text {REF }}$.
Note 6: To achieve this low feedthrough in the D package, the user must ground the metal lid. If the lid is left floating the feedthrough is typically 6 mV .
Note 7: A 10 nA leakage current with $\mathrm{R}_{\mathrm{Fb}}=20 \mathrm{k}$ and $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ corresponds to a zero error of $\left(10 \times 10^{-9} \times 20 \times 10^{3}\right) \times 100 \% 10 \mathrm{~V}$ or $0.002 \%$ of FS .
Note 8: Human body model, 100 pF discharged through $1.5 \mathrm{k} \Omega$ resistor.
Note 9: Tested limit for -1 suffix parts applies only at $25^{\circ} \mathrm{C}$.
Note 10: Typicals are at $25^{\circ} \mathrm{C}$ and represent the most likely parametric norm.
Note 11: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 12: Design limits are guaranteed but not $100 \%$ production tested. These limits are not used to calculate outgoing quality levels.

## Typical Performance Characteristics



## Definition of Package Pinouts

(A1-A12): Digital Inputs. A12 is the least significant digital input (LSB) and A1 is the most significant digital input (MSB).
Iouti: DAC Current Output 1. IOUT1 is a maximum for a digital input of all 1 s , and is zero for a digital input of all 0 s .
Iout2: DAC Current Output 2. IOUT2 is a constant minus lout1, or lout1 $+l_{\text {OUT2 }}=$ constant (for a fixed reference voltage).
$\mathbf{R}_{\text {Fb }}$ : Feedback Resistor. The feedback resistor is provided on the IC chip for use as the shunt feedback resistor for the external op amp which is used to provide an output voltage for the DAC. This on-chip resistor should always be used (not an external resistor) since it matches the resistors in the on-chip R-2R ladder and tracks these resistors over temperature.
$\mathbf{V}_{\text {REF: }}$ Reference Voltage Input. This input connects to an external precision voltage source to the internal R-2R ladder. V REF can be selected over the range of 10 V to -10 V . This is also the analog voltage input for a 4-quadrant multiplying DAC application.
$\mathbf{V}_{\mathbf{C C}}$ : Digital Supply Voltage. This is the power supply pin for the part. $\mathrm{V}_{\mathrm{CC}}$ can be from $5 \mathrm{~V}_{\mathrm{DC}}$ to $15 \mathrm{~V}_{\mathrm{DC}}$. Operation is optimum for $15 \mathrm{~V}_{\mathrm{DC}}$.
GND: Ground. This is the ground for the circuit.

## Definition of Terms

Resolution: Resolution is defined as the reciprocal of the number of discrete steps in the DAC output. It is directly related to the number of switches or bits within the DAC. For example, the DAC1218 has $2^{12}$ or 4096 steps and therefore has 12-bit resolution.

Linearity Error: Linearity error in the maximum deviation from a straight line passing through the endpoints of the

DAC transfer characteristic. It is measured after adjusting for zero and full scale. Linearity error is a parameter intrinsic to the device and cannot be externally adjusted.
National's linearity test (a) and the best straight line test (b) used by other suppliers are illustrated below. The best straight line (b) requires a special zero and FS adjustment for each part, which is almost impossible for the user to determine. The end point test uses a standard zero FS adjustment procedure and is a much more stringent test for DAC linearity.
Power Supply Sensitivity: Power supply sensitivity is a measure of the effect of power supply changes on the DAC full-scale output.
Settling Time: Full-scale current settling time requires zero to full-scale or full-scale to zero output change. Settling time is the time required from a code transition until the DAC output reaches within $\pm 1 / 2$ LSB of the final output value.
Full-scale Error: Full-scale error is a measure of the output error between an ideal DAC and the actual device output. Ideally, for the DAC1218 full-scale is $V_{\text {REF }}-1$ LSB. For $\mathrm{V}_{\mathrm{REF}}=10 \mathrm{~V}$ and unipolar operation, $\mathrm{V}_{\text {FULL }}-$ SCALE $=10.0000 \mathrm{~V}-2.44 \mathrm{mV}=9.9976 \mathrm{~V}$. Full-scale error is adjustable to zero.
Differential Non-Linearity: The difference between any two consecutive codes in the transfer curve from the theoretical 1 LSB is differential non-linearity.
Monotonic: If the output of a DAC increases for increasing digital input code, then the DAC is monotonic. A 12-bit DAC which is monotonic to 12 bits simply means that input increasing digital input codes will produce an increasing analog output.
b) Shifting FS adjust to pass best straight line test


TL/H/5691-3

## Application Hints

The DAC1218 and DAC1219 are pin-for-pin compatible with the DAC1220 series but feature 12 and 11-bit linearity specifications. To preserve this degree of accuracy, care must be taken in the selection and adjustments of the output amplifier and reference voltage. Careful PC board layout is important, with emphasis made on compactness of components to prevent inadvertent noise pickup and utilization of single point grounding and supply distribution.

### 1.0 BASIC CIRCUIT DESCRIPTION

Figure 1 illustrates the R-2R current switching ladder network used in the DAC1218 and DAC1219. As a function of the logic state of each digital input, the binarily weighted current in each leg of the ladder is switched to either IOUT1 or lout2. The voltage potential at louT1 and lout2 must be at zero volts to keep the current in each leg the same, independent of the switch state.
The switches operate with a small voltage drop across them and can therefore conduct currents of either polarity. This permits the reference to be positive or negative, thereby allowing 4 -quadrant multiplication by the digital input word. The reference can be a stable DC source or a bipolar AC signal within the range of $\pm 10 \mathrm{~V}$, for specified accuracy, with an absolute maximum range of $\pm 25 \mathrm{~V}$. The reference can also exceed the applied $V_{C C}$ of the DAC.
The maximum output current from either lout1 or lOUT2 is equal to

$$
\frac{V_{\mathrm{REF}(\max )}}{R}\left(\frac{4095}{4096}\right)
$$

where $R$ is the reference input resistance (typically $15 \mathrm{k} \Omega$ ). A high level on any digital input steers current to lout1 and a low level steers current to lout2.

### 2.0 CREATING A UNIPOLAR OUTPUT VOLTAGE (A DIGITAL ATTENUATOR)

To generate an output voltage and keep the potential at the current output terminals at OV , an op amp current to voltage converter is used. As shown in Figure 2, the current from lout 1 flows through the feedback resistor, forcing a proportional voltage at the amplifier output. The voltage at loUT1 is held at a virtual ground potential. The feedback resistor is provided on the chip and should always be used as it matches and tracks the R value of the R-2R ladder. The output voltage is the opposite polarity of the applied reference voltage.

### 2.1 Amplifier Considerations

To maintain linearity of the output voltage with changing digital input codes the input offset voltage of the amplifier must be nulled. The resistance from lout1 to ground ( $\mathrm{R}_{\text {louT1 }}$ ) varies non-linearly with the applied digital code from a minimum of R with all ones applied to the input to near $\infty$ with an all zeros code. Any offset voltage between the amplifier inputs appears at the output with a gain of

$$
1+\frac{R_{F}}{R_{\text {loUT1 }}}
$$

Since $R_{\mathrm{l}_{\text {OUT }}}$ varies with the input code, any offset will degrade output linearity. (See Note 4 of Electrical Characteristics.)
If the desired amplifier does not have offset balancing pins available (it could be part of a dual or quad package) the nulling circuit of Figure 3 can be used. The voltage at the non-inverting input will be set to $-V_{\text {OS }}$ initially to force the inverting input to OV . The common technique of summing current into the amplifier summing junction cannot be used as it directly introduces a zero code output current error.

## Application Hints (Continued)



TL/H/5691-5
FIGURE 2. Unipolar Output Voltage


TL/H/5691-6
FIGURE 3. Zeroing an Amplifier Which Does Not Have Balancing Provisions

The selected amplifier should have as low an input bias current as possible since input bias current contributes to the current flowing through the feedback resistor. BI-FETTM op amps such as the LF356 or LF351 or bipolar op amps with super $\beta$ input transistors like the LM11 or LM308A produce negligible errors.

### 2.2 Zero and Full-Scale Adjustments

The fundamental purpose is to make the output voltages as near $0 V_{D C}$ as possible. This is accomplished in the circuit of Figure 2 by shorting out the amplifier feedback resistance, and adjusting the $\mathrm{V}_{\mathrm{OS}}$ nulling potentiometer of the op amp until the output reads zero volts. This is done, of course, with an applied digital input of all zeros if IOUT1 is driving the op amp (all ones for loutz). The feedback short is then removed and the converter is zero adjusted.
A unique characteristic of these DACs is that any full-scale or gain error is always negative. This means that for a fullscale input code the output voltage, if not inherently correct, will always be less than what it should be. This ensures that adding an appropriate resistance in series with the internal feedback resistor, $\mathrm{R}_{\mathrm{Fb}}$, will always correct for any gain error. The $50 \Omega$ potentiometer in Figure 2 is all that is needed to adjust the worst case DAC gain error.
Conversion accuracy is only as good as the applied reference voltage, so providing a source that is stable over time and temperature is important.

### 2.3 Output Settling Time

The output voltage settling time for this circuit in response to a change of the digital input code (a full-scale change is the worst case) is a combination of the DAC's output current settling characteristics and the settling characteristics of the output amplifier. The amplifier settling is further degraded by a feedback pole formed by the feedback resistance and the DAC output capacitance (which varies with the digital code). First order compensation for this pole is achieved by adding a feedback zero with capacitor $\mathrm{C}_{\mathrm{C}}$ shown in Figure 2.
In many applications output response time and settling is just as important as accuracy. It can be difficult to find a single op amp that combines excellent DC characteristics (low $\mathrm{V}_{\mathrm{OS}}, \mathrm{V}_{\mathrm{OS}}$ drift and bias current) with fast response and settling time. BI-FET op amps offer a reasonable compromise of high speed and good DC characteristics. The circuit of Figure 4 illustrates a composite amplifier connection that combines the speed of a BI-FET LF351 with the excellent DC input characteristics of the LM11. If output settling time is not so critical, the LM11 can be used alone.
Figure 5 is a settling time test circuit for the complete voltage output DAC circuit. The circuit allows the settling time of the DAC amplifier to be measured to a resolution of 1 mV out of a zero to $\pm 10 \mathrm{~V}$ full-scale output change on an oscilloscope. Figure 6 summarizes the measured settling times for several output amplifiers and feedback compensation capacitors.

## Application Hint (Continued)



TL/H/5691-7
FIGURE 4. Composite Output Amplifier Connection


TL/H/5691-8
FIGURE 5. DAC Settling Time Test Circuit

Amplifier	$\mathbf{C}_{\mathbf{C}}$	Settling Time to $\mathbf{0 . 0 1 \%}$
LM11	20 pF	$30 \mu \mathrm{~s}$
LF351	15 pF	$8 \mu \mathrm{~s}$
LF351	30 pF	$5 \mu \mathrm{~s}$
Composite	20 pF	$8 \mu \mathrm{~s}$
LM11-LF351	15 pF	$6 \mu \mathrm{~s}$
LF356		

FIGURE 6. Some Measured Settling Times

## Application Hints (Continued)

### 3.0 OBTAINING A BIPOLAR OUTPUT VOLTAGE FROM A FIXED REFERENCE

The addition of a second op amp to the circuit of Figure 2 can generate a bipolar output voltage from a fixed reference voltage (Figure 7). This, in effect gives sign significance to the MSB of the digital input word to allow two quadrant multiplication of the reference voltage. The polarity of the reference voltage can also be reversed to realize full 4-quadrant multiplication.
The output responds in accordance to the following expression:

$$
V_{O}=V_{R E F}\left(\frac{D-2048}{2048}\right), 0 \leq D \leq 4095
$$

where $D$ is the decimal equivalent of the true binary input word. This configuration inherently accepts a code (halfscale or $D=2048$ ) to provide OV out without requiring an external $1 / 2$ LSB offset as needed by other bipolar multiplying DAC circuits.
Only the offset voltage of amplifier A1 need be nulled to preserve linearity. The gain setting resistors around A2 must match and track each other. A thin film, 4-resistor network available from Beckman Instruments, Inc. (part no. 694-3-R10K-D) is ideally suited for this application. Two of the four résistors can be paralleled to form $R$ and the other two can be used separately as the resistors labeled 2R.
Operation is summarized in the table below:

MSB	Applied Digital Input											Decimal Equivalent	$+\mathrm{V}_{\text {REF }} \quad \mathrm{V}_{\text {OUT }}{ }^{\text {- }}$ VREF	
		.	.	.	.	.	.	.	.		LSB			
1	1	1	1	1	1	1	1	1	1	1	1	4095	$V_{\text {REF }}-1$ LSB	$-V_{\text {REF }} \mid+1$ LSB
1	1	0	0	0	0	0	0	0	0	0	0	3072	$V_{\text {REF }} / 2$	$-\left\|\mathrm{V}_{\text {REF }}\right\| / 2$
1	0	0	0	0	0	0	0	0	0	0	0	2048	0	0
0	1	1	1	1	1	1	1	1	1	1	1	2047	-1 LSB	+ 1 LSB
0	1	0	0	0	0	0	0	0	0	0	0	1024	$-\mathrm{V}_{\text {REF }} / 2$	$+\left\|\mathrm{V}_{\mathrm{REF}}\right\|^{\prime} 2$
0	0	0	0	0	0	0	0	0	0	0	0	0	$-V_{\text {REF }}$	$+\left\|\mathrm{V}_{\text {REF }}\right\|$

Where 1 LSB $=\frac{\left|V_{\text {REF }}\right|}{2048}$


* $0.1 \%$ matching

FIGURE 7. Obtaining a Bipolar Output from a Fixed Reference

## Application Hints (Continued)

### 3.1 Zero and Full-Scale Adjustments

The three adjustments needed for this circuit are shown in Figure 7. The first step is to set all of the digital inputs LOW (to force lout1 to 0 ) and then trim "zero adjust" for zero volts at the inverting input (pin 2) of OA1. Next, with a code of all zeros still applied, adjust "- full-scale adjust", the reference voltage, for $\mathrm{V}_{\text {OUT }}= \pm \mid$ (ideal $\left.\mathrm{V}_{\text {REF }}\right) \mid$. The sign of the output voltage will be opposite that of the applied reference. Finally, set all of the digital inputs HIGH and adjust "+ fullscale adjust" for $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {REF }}(511 / 512)$. The sign of the output at this time will be the same as that of the reference voltage. This + full-scale adjustment scheme takes into account the effects of the $\mathrm{V}_{\mathrm{OS}}$ of amplifier A2 (as long as this offset is less than $0.1 \%$ of $V_{\text {REF }}$ ) and any gain errors due to external resistor mismatch.

### 4.0 MISCELLANEOUS APPLICATION HINTS

The devices are CMOS products and reasonable care should be exercised in handling them to prevent catastrophic failures due to electrostatic discharge.
During power-up supply voltage sequencing, the negative supply of the output amplifier may appear first. This will typically cause the output of the op amp to bias near the negative supply potential. No harm is done to the DAC, however, as the on-chip $15 \mathrm{k} \Omega$ feedback resistor sufficiently limits the current flow from louty when this lead is clamped to one diode drop below ground.
As a general rule, any unused digital inputs should be tied high or low as required by the application. As a troubleshooting aid, if any digital input is left floating, the DAC will interpret that input as a logical 1 level.

## Additional Application Ideas

For the circuits shown, D represents the decimal equivalent of the binary digital input code. D ranges from 0 (for an all zeros input code) to 4095 (for an all ones input code) and for any code can be determined from:

$$
D=2048(A 1)+1024(A 2)+512(A 2)+\ldots 2(A 11)+1(A 12)
$$

where $A N=1$ if that input is high $\mathrm{AN}=0$ if that input is low


## Additional Application Ideas (Continued)



High Current Controller


## Additional Application Ideas (Continued)

DAC Controlled Function Generator


TL/H/5691-13

Digitally Programmable Pulse-Width Generator

$P W \cong \frac{C(7.5 \mathrm{~V})(4096)\left(\mathrm{R}_{\mathrm{Fb}}\right)}{\mathrm{D} \mid \mathrm{V}_{\mathrm{REF}}}$

National
Semiconductor Corporation

## DAC1265A, DAC1265 Hi-Speed 12-Bit D/A Converter with Reference

## General Description

The DAC1265A and DAC1265 are fast 12-bit digital to analog converters with internal voltage reference. These DACs use 12 precision high speed bipolar current steering switches, control amplifier, thin film resistor network, and buried zener voltage reference to obtain a high accuracy, very fast analog output current. The DAC1265A and DAC1265 have 10\%-90\% full-scale transition time under 35 ns and settle to less than $1 / 2$ LSB in 200 ns . The buried zener reference has long-term stability and temperature drift characteristics comparable to the best discrete or separate IC references.
These digital to analog converters are recommended for applications in CRT displays, precision instruments and data acquisition systems requiring throughput rates as high as 5 MHz for full range transitions.

## Features

■ Bipolar current output DAC and voltage reference

- Fully differential, non-saturating precision current switch - R RUt and Cout do not change with digital input code.
- Internal buried zener reference - 10V $\pm 1 \%$ max
- Precision thin film resistors for use with external op amp for voltage out or as input resistors for a successive approximation A/D converter
- Superior replacement for 12 -bit D/A converters of this type


## Key Specifications

- Resolution and Monotonicity 12 Bits
- Linearity 12 Bits
(Guaranteed over temperature)
- Output Current Settling Time 400 ns max to $0.01 \%$
- Gain Tempco $\pm 15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max

■ Power Supply Sensitivity $\pm 10 \mathrm{ppm}$ of FS/\% VSUPPLY

Block and Connection Diagrams


## Absolute Maximum Ratings

If Military／Aerospace specified devices are required， contact the National Semiconductor Sales Office／ Distributors for availability and specifications．

Supply Voltage（V＋and $\mathrm{V}-)$	$\pm 18 \mathrm{~V}$
Current Output（Pin 9）Voltage	$-3 \mathrm{~V}, 12 \mathrm{~V}$
Logic Input Voltage	$-1 \mathrm{~V}, 7 \mathrm{~V}$
Reference Input Voltage（Pin 6）	$\pm 12 \mathrm{~V}$
Analog GND to Power GND	$\pm 1 \mathrm{~V}$
Bipolar Offset	$\pm 12 \mathrm{~V}$
10V Range	$\pm 12 \mathrm{~V}$

20V Range
V－to +24 V
Power Dissipation（Note 1）
Short－Circuit Duration（Pins 4 to 12）
Operating Temperature Range
DAC1265AJ，DAC1265LJ
DAC1265ACJ，DAC1265LCJ
Storage Temperature Range
Maximum Junction Temperature
Lead Temperature（Soldering， 10 seconds）
ESD Susceptibility（Note 13）

Electrical Characteristics $V_{S U P P L Y}= \pm 15 \mathrm{~V} \pm 5 \%$ unless otherwise noted．Boldface limits apply over tem－ perature， $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$ ．For all other limits $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ ．

Parameter	Conditions	See Note	DAC1265A			DAC1265			Units
			Typ （Note 11）	Tested Limit （Note 2）	Design Limit （Note 3）	Typ （Note 11）	Tested Limit （Note 2）	Design Limit （Note 3）	

## CONVERTER CHARACTERISTICS

Resolution					12			12		Bits
Linearity Error Max	Zero and Full－Scale Adjusted   AJ and LJ Suffix Parts ACJ and LCJ Suffix Parts		4	$\pm 1 / 8$	$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$	$\pm 1 / 2$	$\pm 1 / 4$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 3 / 4 \end{aligned}$	$\pm 3 / 4$	LSB
Differential Non－Linearity Max	Zero and Full－Scale Adjusted			$\pm 1 / 4$	$\pm 1 / 2$		$\pm 1 / 2$	$\pm 3 / 4$		
Monotonicity	AJ and LJ Suffix Parts ACJ and LCJ Suffix Parts				$\begin{aligned} & 12 \\ & 12 \end{aligned}$	12		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	12	Bits
Full－Scale （Gain）Error Max	$\mathrm{R} 2=50 \Omega$ in Figure 1		5	$\pm 0.1$	$\pm 0.20$		$\pm 0.1$	$\pm 0.20$		\％Full－ Scale
Offset Error Max All Bits OFF， Logic＂0＂	Unipolar（Figure 1 Pin 8 Open）		6	$\pm 0.01$	$\pm 0.05$		$\pm 0.01$	$\pm 0.05$		
	Bipolar（R1 and R2 $=50 \Omega$ in Figure 2）		7	$\pm 0.05$	$\pm 0.1$		$\pm 0.05$	$\pm 0.15$		
$\begin{aligned} & \text { Zero Error Max } \\ & \text { MSB ON } \end{aligned}$	Bipolar（R1 and R2 $=50 \Omega$ in Figure 2）		8	$\pm 0.05$	$\pm 0.1$		$\pm 0.05$	$\pm 0.15$		
Gain   Adjustment   Range Min	$\mathrm{R} 2=50 \Omega \pm 50 \Omega$ in Figure 1				$\pm 0.2$			$\pm 0.2$		
Bipolar Offset   Adjustment   Range Min	$\mathrm{R} 1=50 \Omega \pm 50 \Omega \text { and } \mathrm{R} 2=50 \Omega$ in Figure 2				$\pm 0.15$			$\pm 0.15$		
Full－Scale（Gain） Temperature Coefficients Max	Using the Internal Reference	AJ and LJ Suffix ACJ and LCJ Suffix	9	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	15	20	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	30	50	ppm $/{ }^{\circ} \mathrm{C}$
Unipolar Offset Temperature Coefficients Max		AJ and LJ Suffix ACJ and LCJ Suffix		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2	
Bipolar Zero Temperature Coefficients Max		AJ and LJ Suffix ACJ and LCJ Suffix		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	10	10	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	10	10	
Output Resistance	Exclusive of Offset and Range $\mathrm{R}_{\mathrm{S}}$			7.5	6 to 10		7.5	6 to 10		k $\Omega$

Electrical Characteristics (Continued) $V_{S U P P L Y}= \pm 15 \mathrm{~V} \pm 5 \%$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathbf{A}} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	See   Note	DAC1265A			DAC1265			Units
			$\begin{gathered} \text { Typ } \\ \text { (Note 11) } \end{gathered}$	Tested Limit (Note 2)		$\begin{array}{\|c\|} \text { Typ } \\ \text { (Note 11) } \end{array}$			
Current Output	Unipolar		-2	$\begin{gathered} -1.6 \text { to } \\ -2.4 \end{gathered}$		-2	$\begin{gathered} -1.6 \text { to } \\ -2.4 \end{gathered}$		mA
	Bipolar		$\pm 1.0$	$\begin{gathered} \pm 0.8 \text { to } \\ \pm 1.2 \end{gathered}$		$\pm 1.0$	$\begin{gathered} \pm 0.8 \text { to } \\ \pm 1.2 \end{gathered}$		
Output   Capacitance			25			25			pF
Output Noise (FS, 10V Range)	10 Hz to 100 kHz with Internal Reference		40			40			$\mu \mathrm{Vrms}$
Typ Output Voltage Ranges	Using Internal Offset and Range $\mathrm{R}_{\text {S }}$		$\pm 2.5, \pm 5, \pm 10,0$ to 5,0 to 10						V
Reference Input Resistance			20.8	15 to 25		20.8	15 to 25		k $\Omega$
Output   Compliance   Voltage					$\left\lvert\, \begin{gathered} -1.5 \text { to } \\ 10 \end{gathered}\right.$			$\begin{array}{\|c\|} -1.5 \text { to } \\ 10 \end{array}$	V
REFERENCE OUTPUT CHARACTERISTICS									
Reference   Voltage Min    Max	lREF $=1.5 \mathrm{~mA}$		10.00	9.90		10.00	9.90		V
				10.10			10.10		
Temperature Coefficient			$\pm 8$			$\pm 12$			$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Reference Output Current Min				3.0			3.0		mA
Output   Resistance Max	$\mathrm{fo}_{\mathrm{O}}=1 \mathrm{kHz}, 0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {REF }} \leq 3 \mathrm{~mA}$		0.05	1.0		0.05	1.0		$\Omega$

DIGITAL AND DC CHARACTERISTICS

Logic Input Voltage	Logic High AJ and LJ Suffix   Bit ON ACJ and LCJ Suffix			$\begin{gathered} 2 \text { to } 5.5 \\ 1.9 \text { to } 5.5 \end{gathered}$	2 to 5.5		$\begin{gathered} 2 \text { to } 5.5 \\ 1.9 \text { to } 5.5 \\ \hline \end{gathered}$	2 to 5.5	V
	Logic Low AJ and LJ Suffix   Bit OFF ACJ and LCJ Suffix			$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	0.8		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	0.8	
Logic Input Current Max	Logic High AJ and LJ Suffix   ACJ and LCJ Suffix  		$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 300 \\ & 280 \\ & \hline \end{aligned}$	300	$\begin{aligned} & 150 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{r} 300 \\ 280 \\ \hline \end{array}$	300	$\mu \mathrm{A}$
	$\begin{array}{cc}\text { Logic Low } & \begin{array}{c}\text { AJ and LJ Suffix } \\ \text { ACJ and LCJ Suffix }\end{array} \\ & \end{array}$		$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{gathered} 100 \\ 90 \end{gathered}$	100	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{gathered} 100 \\ 90 \end{gathered}$	100	
Power Supply Current Max	$\mathrm{V}+$ Supply $=15 \mathrm{~V} \pm 10 \%$		3	5		3	5		mA
	$V-$ Supply $=-15 \mathrm{~V} \pm 10 \%$		-12	-18		-12	-18		
Power Dissipation Max	$V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$		225	345		225	345		mW
Power Supply Sensitivity Max	$V+$ Supply $=15 \mathrm{~V} \pm 10 \%$	10	$\pm 3$	$\pm 10$		$\pm 3$	$\pm 10$		ppm of FS/   \% VSUPPLY
	V - Supply $=-15 \mathrm{~V} \pm 10 \%$	10	$\pm 15$	$\pm 25$		$\pm 15$	$\pm 25$		

Electrical Characteristics（Continued）$V_{S U P P L Y}= \pm 15 \mathrm{~V} \pm 5 \%$ unless otherwise noted．Boldface limits apply
over temperature，$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$ ．For all other limits $T_{A}=25^{\circ} \mathrm{C}$ ．

Parameter	Conditions	See   Note	DAC1265A			DAC1265			Units
			Typ   （Note 11）	Tested Limit （Note 2）	Design   Limit   （Note 3）	Typ （Note 11）			
AC CHARACTERISTICS									
Settling   Time Max	FSR Change		200		400	200		400	ns
Full－Scale   Transition Max	10\％to $90 \%$ Rise Time Plus Delay Time		15		30	15		30	ns
	90\％to 10\％Fall Time Plus Delay Time		30		50	30		50	

Note 1：The typical $\theta_{\mathrm{JA}}$ of the 24－pin package is $80^{\circ} \mathrm{C} / \mathrm{W}$ ．
Note 2：Tested and guaranteed to National＇s AOQL（Average Outgoing Quality Level）．
Note 3：Guaranteed，but not $100 \%$ production tested．These limits are not used to calculate outgoing quality levels．
Note 4：Linearity error $=\frac{V_{\text {OUT }}-V_{\text {OFFSET }}-\left(D \times V_{\text {LSB }}\right)}{V_{\text {LSB }}}$ where $V_{\text {LSB }}=\frac{V_{F S}-V_{\text {OFFSET }}}{4095}$ and $D$ is the digital input（ 0 to 4095）which produced $V_{\text {OUT }}$ ．
Note 5：Percent gain error for 10 V range $=\frac{\left(V_{F S}-V_{\text {OFFSET }}\right)-(4095 / 4096) 10 \mathrm{~V}}{10 \mathrm{~V}} \times 100$ ．
Note 6：Unipolar offset error for 10 V range $=\left(\mathrm{V}_{\text {OUT }} / 10 \mathrm{~V}\right) \times 100$ in percent of full－scale．
Note 7：Bipolar offset error for 10 V range $=\frac{\mathrm{V}_{\text {OUT }}-(-5 \mathrm{~V})}{10 \mathrm{~V}} \times 100$ in percent of full－scale．
Note 8：Bipolar zero error for 10 V range $=\left(\mathrm{V}_{\text {OUT }} / 10 \mathrm{~V}\right) \times 100$ in percent of full－scale．
Note 9：Gain error tempco $=\frac{\left(V_{F S}-V_{\text {OFFSET }}\right) \text { at }\left(T_{\text {MAX }} \text { or } T_{\text {MIN }}\right)-\left(V_{F S}-V_{\text {OFFSET }}\right) \text { at } 25^{\circ} \mathrm{C}}{10 \mathrm{~V} \text { range } \times\left(T_{\text {MAX }} \text { or } \mathrm{T}_{\text {MIN }}-25^{\circ} \mathrm{C}\right)} \times 10^{6}$ in ppm／${ }^{\circ} \mathrm{C}$ ．
Note 10：Power supply sensitivity for 10 V range $=106 \times \frac{\left(\mathrm{V}_{\text {FS }}-\mathrm{V}_{\text {OFFSET }}\right) \text { at }(16.5 \mathrm{~V} \text { or }-13.5 \mathrm{~V})-\left(\mathrm{V}_{\text {FS }}-\mathrm{V}_{\text {OFFSET }}\right) \text { at }(13.5 \mathrm{~V} \text { or }-16.5 \mathrm{~V})}{10 \mathrm{~V} \times 20 \%}$ in ppm of $\mathrm{FS} / \% \mathrm{~V}_{\mathrm{S}}$ ．
The opposite supply is held at -15 V or +15 V respectively．
Note 11：Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm．
Note 12：Absolute Maximum Ratings indicate limits beyond which damage to the device may occur．DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions．
Note 13：Human body model， 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor．

## Functional Description and Applications

## 1．0 BUFFERED VOLTAGE OUTPUT CONNECTION

The standard current－to－voltage conversion connections us－ ing an operational amplifier are shown here with the pre－ ferred trimming techniques．If a low offset operational ampli－ fier（LF401A）is used，excellent performance can be ob－ tained in many situations without trimming（an op amp with less than 0.5 mV maximum offset voltage should be used to keep offset errors below $1 / 2$ LSB）．Unipolar zero will typically be within $\pm 1 / 2$ LSB（plus op amp offset），and if a $50 \Omega$ fixed resistor is substituted for the $100 \Omega$ trimmer（R2，Figure 1）， full－scale accuracy will be within $0.1 \%$（ $0.20 \%$ maximum）． Substituting a $50 \Omega$ resistor for the $100 \Omega$ bipolar offset trim－ mer（R1，Figure 2）will give a bipolar zero error typically within $\pm 2$ LSB（ $0.05 \%$ ）．

## 1．1 Unipolar Configuration（Figure 1）

This configuration will provide a unipolar OV to 9.9976 V out－ put range．

## Step 1－Offset Adjust（Zero）

Turn all bits OFF and adjust zero trimmer，R1，until the out－ put reads 0.000 V （ $1 \mathrm{LSB}=2.44 \mathrm{mV}$ ）．In most cases this trim is not needed．

## Step 2－Gain Adjust

Turn all bits ON and adjust $100 \Omega$ gain trimmer，R2，until the output is 9.9976 V （full－scale adjusted to 1 LSB less than nominal full－scale of 10.000 V ）．If a 10.2375 V full－scale is desired（exactly $2.5 \mathrm{mV} / \mathrm{bit}$ ），insert a $120 \Omega$ resistor in series with the gain resistor at pin 10 to the op amp output．

## 1．2 Bipolar Configuration（Figure 2）

This configuration will provide a bipolar output voltage from -5.000 V to 4.9976 V ，with positive full－scale occurring with all bits ON （all 1s）．

## Step 1－Offset Adjust

Turn OFF all bits．Adjust $100 \Omega$ offset trimmer，R1，to give -5.000 V output．

## Step 2－Gain Adjust

Turn ON all bits．Adjust $100 \Omega$ gain trimmer，R2，to give a reading of 4.9976 V ．
Please note that it is not necessary to trim the op amp to obtain full accuracy at room temperature．In most bipolar situations，an op amp trim is unnecessary unless the un－ trimmed offset drift of the op amp is excessive．Bipolar zero error（MSB bit ON）is not adjusted separately and is typically $< \pm 0.05 \%$ of FS after offset and gain adjust．

Functional Description and Applications (Continued)


TL/H/5242-3

FIGURE 1. OV to 10V Unipolar Voltage Output


FIGURE 2. $\pm 5 \mathrm{~V}$ Bipolar Voltage Output

## Functional Description and Applications (Continued)

### 1.3 Other Voltage Ranges (Figure 3)

The DAC1265A and DAC1265 can also be easily configured for a unipolar 0 V to 5 V range or $\pm 2.5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$ bipolar ranges by using the additional 5 k application resistor provided at the 20 V range R terminal, pin 11 . For a 5 V range ( 0 V to 5 V or $\pm 2.5 \mathrm{~V}$ ), the two 5 k resistors are used in parallel by shorting pin 11 to pin 9 and connecting pin 10 to the op amp output and the bipolar offset either left open for unipolar or connected through a $100 \Omega$ pot to the REF OUT for the bipolar range. For the $\pm 10 \mathrm{~V}$ range use the 5 k resistors in series by connecting only pin 11 to the op amp output and connecting the bipolar offset as shown. The $\pm 10 \mathrm{~V}$ option is shown in Figure 3.

### 2.0 INTERNAL/EXTERNAL REFERENCE USE

The performance of the DAC1265A and DAC1265 is specified with the internal reference driving the DAC since all trimming and testing (especially for full-scale error and bipolar operation) is done in this configuration.

The internal reference has sufficient buffering to drive external circuitry in addition to the reference currents required for the DAC (typically 0.5 mA to REF IN and 1.0 mA to BIPOLAR OFFSET, if used). A minimum of 1.5 mA is available for driving external circuits. The reference is typically trimmed to $\pm 0.2 \%$, then tested and guaranteed to $\pm 1.0 \%$ maximum error. The temperature coefficient is comparable to that of the full-scale TC for a particular grade.

### 3.0 DIGITAL INPUT

The DAC1265A and DAC1265 use a standard positive true straight binary code for unipolar outputs (all 1s give fullscale output), and an offset binary code for bipolar output ranges. In the bipolar mode, with all Os on the inputs, the output will go to negative full-scale; with $100 . . .00$ (only the MSB on), the output will be 0.00 V ; with all 1 s , the output will go to positive full-scale.
The threshold of the digital input circuitry is set at 1.4 V and does not vary with supply voltage. The input lines can interface with any type of 5 V logic, TTL/DTL or CMOS, and have sufficiently low input currents to interface easily with unbuffered CMOS logic. The configuration of the input circuit is shown in Figure 4. The input line can be modeled as a 30 $\mathrm{k} \Omega$ resistance connected to a -0.7 V rail.


TL/H/5242-6
FIGURE 4. Equivalent Digital Input Circuit


FIGURE 3. $\pm 10 \mathrm{~V}$ Voltage Output

## Functional Description and Applications (Continued)

### 4.0 APPLICATION OF ANALOG AND POWER GROUNDS

The DAC1265A and DAC1265 have separate analog and power ground pins to allow optimum connections for low noise and high speed performance. The two ground lines can be separated by up to 200 mV without any loss in performance. There may be some loss in linearity beyond that level. If these DACs are to be used in a system in which the two grounds will be ultimately connected at some distance from the device, it is recommended that parallel back-toback diodes be connected between the ground lines near the device to prevent a fault condition.
The analog ground at pin 5 is the ground reference point for the internal reference and is thus the "high quality" ground; it should be connected directly to the analog reference point of the system. The power ground at pin 12 can be connected to the most convenient ground reference point; analog power return is preferred, but digital ground is acceptable. If power ground contains high frequency noise beyond 200 mV , this noise may feed through the converter, so that some caution will be required in applying these grounds.

### 5.0 OUTPUT VOLTAGE COMPLIANCE

The DAC1265A and DAC1265 have a typical output compliance range from -2 V to 10 V . The current-steering output stages will be unaffected by changes in the output terminal voltage over that range. However, there is an equivalent output impedance of 8 k in parallel with 25 pF at the output terminal which produces an equivalent error current if the voltage deviates from power ground. This is a linear effect that does not change with input code. Operation beyond the compliance limits may cause either output stage satura-
tion or breakdown which results in non-linear performance. Compliance limits are not affected by the positive power supply, but are a function of output current and negative supply.

### 6.0 DIRECT UNBUFFERED VOLTAGE OUTPUT FOR CABLE DRIVING

The wide compliance range allows direct current-to-voltage conversion with just an output resistor. Figure 5 shows a connection using the gain and bipolar output resistors to give a $\pm 1.60 \mathrm{~V}$ bipolar swing. In this situation, the digital code is complementary binary. Other combinations of internal and external output resistors ( $\mathrm{R}_{\mathrm{x}}$ ) can be used to scale to alternate voltage ranges, simply by appropriately scaling the 0 mA to -2 mA unipolar output current and using the 10.0 V reference voltage for bipolar offset. For example, setting $R_{x}=2.67 \mathrm{k} \Omega$ gives a $\pm 1 \mathrm{~V}$ range with a $1 \mathrm{k} \Omega$ equivalent output impedance.
This connection is especially useful for directly driving a long cable at high speed. Using a $50 \Omega$ resistor for $R_{x}$ would allow interface to a $50 \Omega$ cable with a $\pm 50 \mathrm{mV}$ full-scale swing.

### 7.0 HIGH SPEED 12-BIT A/D CONVERTERS

The fast settling characteristics of the DAC1265A and DAC1265 make them ideal for high speed successive approximation A/D converters. The internal reference and trimmed internal resistors allow a 12-bit converter system to be constructed with a minimum parts count. Shown in Figure 6 is a configuration using standard components; this system completes a full 12-bit conversion in $10 \mu$ s unipolar or bipolar. This converter will be accurate to $\pm 1 / 2$ LSB of 12 bits and have a typical gain TC of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.


TL/H/5242-7

FIGURE 5. Unbuffered Bipolar Voltage Output

## Functional Description and Applications (Continued)

In the unipolar mode, the system range is 0 V to 9.9976 V , with each bit having a value of 2.44 mV . For true conversion accuracy, an A/D converter should be trimmed so that a given output code results from input levels from $1 / 2$ LSB below to $1 / 2$ LSB above the exact voltage represented by that code. Therefore, the converter zero point should be trimmed with an input voltage of 1.22 mV ; trim R1 until the LSB just begins to appear in the output code (all other bits " 0 "). For full-scale, use an input voltage of 9.9963 V (10V-1 LSB- $1 / 2$ LSB); then trim R2 until the LSB just begins to appear (all other bits " 1 ").
The bipolar signal range is -5.0 V to 4.9976 V . Bipolar offset trimming is done by applying a -4.9988 V input signal and trimming R3 for the LSB transition (all other bits " 0 ").
Full-scale is set by applying 4.9963 V and trimming R2 for the LSB transition (all other bits " 1 "). In many applications,
the pretrimmed internal resistors are sufficiently accurate that external trimmers will be unnecessary, especially in situations requiring less than full 12 -bit $\pm 1 / 2$ LSB accuracy.
For fastest operation, the impedance at the comparator summing node must be minimized. However, lowering the impedance will reduce the voltage signal to the comparator (at an equivalent impedance at the summing node of $1 \mathrm{k} \Omega$, $1 \mathrm{LSB}=0.5 \mathrm{mV}$ ), to the point that comparator performance will be sacrificed. The contribution to this impedance from the DAC will vary with the input configuration (Figure 6, Input Ranges Table).
To prevent dynamic errors, the input signal should have a low dynamic source impedance, such as that of the LF411A op amp.


FIGURE 6. Fast Precision Analog to Digital Converter

## Definition of Terms

Digital Inputs: The DAC1265A and DAC1265 accept digital input codes in binary format and may be user connected for any one of three binary codes: straight binary, two's complement, or offset binary.

Digital Input MSB LSB	Analog Output		
	Straight Binary	Offset   Binary	Two's Complement*
$\begin{aligned} & 000 \ldots 000 \\ & 011 \ldots . .111 \\ & 100 \ldots 000 \\ & 111 \ldots . .111 \end{aligned}$	$\begin{gathered} \text { zero } \\ 1 / 2 \mathrm{FS}-1 \mathrm{LSB} \\ 1 / 2 \mathrm{FS} \\ +\mathrm{FS}-1 \mathrm{LSB} \end{gathered}$	$\begin{gathered} - \text { FS (Full-Scale) } \\ \text { zero-1 LSB } \\ \text { zero } \\ + \text { FS-1 LSB } \\ \hline \end{gathered}$	$\begin{gathered} \text { zero } \\ +F S-1 \text { LSB } \\ -F S \\ \text { zero }-1 \text { LSB } \end{gathered}$

*Invert MSB with external inverter to obtain Two's Complement coding
Linearity Error: Linearity error of a D/A converter is an important measure of its accuracy. It describes the deviation from an ideal straight line transfer curve drawn between zero (all bits OFF) and full-scale (all bits ON).
Differential Non-Linearity: For a D/A converter, it is the difference between the actual output voltage change and the ideal ( 1 LSB) voltage change for a one-bit change in code. A differential non-linearity of $\pm 1$ LSB or less guarantees monotonicity; i.e., the output always increases and never decreases for an increasing input. It is guaranteed by testing the major carry transitions, i.e., $100 . . .000$ to 011...111, etc.

Settling Time: Settling time is the time required for the output to settle to within the specified error band for any input
code transition. It is usually specified for a full-scale or major carry transition.
Gain Tempco: The change in full-scale analog output over the specified temperature range expressed in parts per million of full-scale per ${ }^{\circ} \mathrm{C}$ (ppm of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ ). Gain error is measured with respect to $25^{\circ} \mathrm{C}$ at high ( $\mathrm{T}_{\text {MAX }}$ ) and low ( $\mathrm{T}_{\text {MIN }}$ ) temperatures. Gain tempco is calculated for both high ( $\mathrm{T}_{\mathrm{MAX}}-25^{\circ} \mathrm{C}$ ) and low ( $25^{\circ} \mathrm{C}-\mathrm{T}_{\text {MIN }}$ ) ranges by dividing the gain error by the respective change in temperature. The specification is the larger of the two representing worstcase drift.
Offset Tempco: The change in analog output with all bits OFF over the specified temperature range expressed in parts per million of full-scale per ${ }^{\circ} \mathrm{C}$ (ppm of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ ). Offset error is measured with respect to $25^{\circ} \mathrm{C}$ at high ( $\mathrm{T}_{\text {MAX }}$ ) and low ( $\mathrm{T}_{\text {MIN }}$ ) temperatures. Offset tempco is calculated for both high ( $T_{\text {MAX }}-25^{\circ} \mathrm{C}$ ) and low ( $25^{\circ} \mathrm{C}-\mathrm{T}_{\text {MIN }}$ ) ranges by dividing the offset error by the respective change in temperature. The specification given is the larger of the two, representing worst-case drift.
Power Supply Sensitivity: Power supply sensitivity is a measure of the change in gain and offset of the D/A converter resulting from a change in -15 V or +15 V supplies. It is specified under DC conditions and expressed as parts per million of full-scale per percent of change in power supply (ppm of FS/\%).

## Ordering Information

Temperature Range		$\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{7 0} \mathbf{0}^{\circ} \mathbf{C}$	$-\mathbf{5 5}{ }^{\circ} \mathbf{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$
Linearity Error   Over Temperature	$\pm 1 / 2$ Bit	DAC1265ACJ	DAC1265AJ
	$\pm 3 / 4 \mathrm{Bit}$	DAC1265LCJ	DAC1265LJ

## 谷 <br> National <br> Semiconductor <br> Corporation <br> DAC1266A, DAC1266 Hi-Speed 12-Bit D/A Converter

## General Description

The DAC1266A and DAC1266 are fast 12-bit digital to ana$\log$ converters. These DACs use 12 precision high speed bipolar current steering switches, control amplifier, and a thin film resistor network to obtain a high accuracy, very fast analog output current. The DAC1266A and DAC1266 have $10 \%-90 \%$ full-scale transition time under 30 ns and settle to less than $1 / 2$ LSB in 200 ns .

These digital to analog converters are recommended for applications in CRT displays, precision instruments and data acquisition systems requiring throughput rates as high as 5 MHz for full range transitions.

## Features

- Bipolar current output DAC
- Fully differential, non-saturating precision current switch - R RUT and COUT do not change with digital input code
- Precision thin film resistors for use with external op amp for voltage out or as input resistors for a successive approximate A/D converter
■ Superior replacement for 12-bit D/A converters of this type


## Key Specifications

- Resolution and Monotonicity

12 Bits

- Linearity 12 Bits (Guaranteed over temperature)
■ Output Current Settling Time 400 ns max to $0.01 \%$
- Full-Scale Transition Time (10\%-90\%) 30 ns

■ Power Supply Sensitivity $\pm 15 \mathrm{ppm}$ of $\mathrm{FS} / \% \mathrm{~V}_{\text {SUPPLY }}$

## Block and Connection Diagrams



Absolute Maximum Ratings (Note 11)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage ( $\mathrm{V}^{-}$)
OV to -18V
Current Output (Pin 9) Voltage $-3 \mathrm{~V}, 12 \mathrm{~V}$
Logic Input Voltage
Reference Input Voltage (Pin 5)

$$
-1 \mathrm{~V}, 7 \mathrm{~V}
$$

$\pm 12 \mathrm{~V}$
Analog GND to Power GND $\pm 1 V$
Bipolar Offset $\pm 12 \mathrm{~V}$
10V Range $\pm 12 \mathrm{~V}$

20V Range	$V-$ to +24 V
Power Dissipation (Note 1)	1000 mW
Operating Temperature Range	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$
DAC1266AJ, DAC1266LJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DAC1266ACJ, DAC1266LCJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$
ESD Susceptibility (Note 12)	TBD

Electrical Characteristics $V_{S U P P L Y}=-15 \mathrm{~V} \pm 5 \%$ and $V_{R E F}=10.000 \mathrm{~V}$ unless otherwise noted. Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	See Note	DAC1266A			DAC1266			Units
			Typ	Tested Limit (Note 2)	Design Limit (Note 3)	Typ	Tested Limit (Note 2)	$\begin{aligned} & \text { Design } \\ & \text { Limit } \\ & \text { (Note 3) } \\ & \hline \end{aligned}$	
CONVERTER CHARACTERISTICS									
Resolution				12			12		Bits
Linearity Error Max	Zero and Full-Scale Adjusted   AJ and LJ Suffix Parts ACJ and LCJ Suffix Parts	4	$\pm 1 / 8$	$\begin{aligned} & \pm 1 / 4 \\ & \pm 1 / 2 \end{aligned}$	$\pm 1 / 2$	$\pm 1 / 4$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 3 / 4 \end{aligned}$	$\pm 3 / 4$	LSB
Differential Non-Linearity Max	Zero and Full-Scale Adjusted		$\pm 1 / 4$	$\pm 1 / 2$		$\pm 1 / 2$	$\pm 3 / 4$		
Monotonicity	$A J$ and $L J$ Suffix Parts ACJ and LCJ Suffix Parts			$\begin{aligned} & 12 \\ & 12 \end{aligned}$	12		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	12	Bits
Full-Scale (Gain) Error Max	$\mathrm{R} 2=50 \Omega$ in Figure 1	5	$\pm 0.1$	$\pm 0.20$		$\pm 0.1$	$\pm 0.20$		\% FullScale
Offset Error Max All Bits OFF, Logic "0"	Unipolar (Figure 1 Pin 7 Open)	6	$\pm 0.01$	$\pm 0.05$		$\pm 0.01$	$\pm 0.05$		
	Bipolar (R1 and R2 $=50 \Omega$ in Figure 2)	7	$\pm 0.05$	$\pm 0.1$		$\pm 0.05$	$\pm 0.15$		
$\begin{aligned} & \text { Zero Error Max } \\ & \text { MSB ON } \\ & \hline \end{aligned}$	Bipolar (R1 and R2 $=50 \Omega$ in Figure 2)	8	$\pm 0.05$	$\pm 0.1$		$\pm 0.05$	$\pm 0.15$		
Gain Adjustment Range Min	$R 2=50 \Omega \pm 50 \Omega$ in Figure 1			$\pm 0.2$			$\pm 0.2$		
Bipolar Offset   Adjustment   Range Min	$\mathrm{R} 1=50 \Omega \pm 50 \Omega$ and $\mathrm{R} 2=50 \Omega$ in Figure 2			$\pm 0.15$			$\pm 0.15$		
Full-Scale (Gain) Temperature Coefficients Max	AJ and LJ Suffix ACJ and LCJ Suffix	9	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	3	3	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	10	10	ppm $/{ }^{\circ} \mathrm{C}$
Unipolar Offset Temperature Coefficients Max	AJ and LJ Suffix ACJ and LCJ Suffix		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	2	
Bipolar Zero   Temperature Coefficients Max	AJ and LJ Suffix $A C J$ and LCJ Suffix		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	10	10	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	10	10	
Output Resistance	Exclusive of Offset and Range RS		7.5	6 to 10		7.5	6 to 10		k $\Omega$
Current Output	Unipolar		-2	$\begin{gathered} -1.6 \text { to } \\ -2.4 \\ \hline \end{gathered}$		-2	$\begin{gathered} -1.6 \text { to } \\ -2.4 \\ \hline \end{gathered}$		mA
	Bipolar		$\pm 1.0$	$\begin{aligned} & \pm 0.8 \text { to } \\ & \pm 1.2 \end{aligned}$		$\pm 1.0$	$\begin{gathered} \pm 0.8 \text { to } \\ \pm 1.2 \end{gathered}$		

Electrical Characteristics (Continued) $\mathrm{V}_{\text {SUPPLY }}=-15 \mathrm{~V} \pm 5 \%$ and $\mathrm{V}_{\text {REF }}=10.000 \mathrm{~V}$ unless otherwise noted.
Boldface limits apply over temperature, $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }}$. For all other limits $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	$\left\|\begin{array}{c} \text { See } \\ \text { Note } \end{array}\right\|$	DAC1266A			DAC1266			Units
			Typ	Tested Limit (Note 2)	$\begin{array}{\|c\|} \hline \text { Design } \\ \text { Limit } \\ \text { (Note 3) } \\ \hline \end{array}$	Typ			
Output   Capacitance			25			25			pF
Typ Output Voltage Ranges	Using Internal Offset and Range RS		$\pm 2.5, \pm 5, \pm 10,0$ to 5,0 to 10						V
Reference Input Resistance			20.8	15 to 25		20.8	15 to 25		k $\Omega$
Output Compliance Voltage					$\begin{array}{\|c\|} \hline-1.5 \text { to } \\ 10 \end{array}$			$\begin{array}{\|c\|} \hline-1.5 \text { to } \\ 10 \end{array}$	V

## DIGITAL AND DC CHARACTERISTICS

Logic Input Voltage		Logic High Bit ON	AJ and LJ Suffix ACJ and LCJ Suffix			$\left.\begin{aligned} & 2 \text { to } 5.5 \\ & 1.9 \text { to } 5.5 \end{aligned} \right\rvert\,$	2 to 5.5		$\begin{array}{\|l\|} \hline 2 \text { to } 5.5 \\ 1.9 \text { to } 5.5 \\ \hline \end{array}$	2 to 5.5	V
	Max	Logic Low Bit OFF	AJ and LJ Suffix ACJ and LCJ Suffix			$\begin{gathered} 0.8 \\ 1.0 \end{gathered}$	0.8		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	0.8	
Logic Input Current Max		Logic High	AJ and LJ Suffix and LCJ Sufix		$\begin{array}{\|l\|} \hline 150 \\ 150 \end{array}$	$\begin{gathered} 300 \\ 280 \end{gathered}$	300	$\begin{array}{\|l\|} \hline 150 \\ 150 \\ \hline \end{array}$	$\begin{gathered} 300 \\ 280 \end{gathered}$	300	$\mu \mathrm{A}$
		Logic Low	AJ and LJ Suffix and LCJ Suffix		$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 90 \\ \hline \end{gathered}$	100	$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 90 \\ \hline \end{gathered}$	100	
Power Supply Current Max		V-Supply	$\pm 10 \%$		-12	-18		-12	-18		mA
Power   Dissipation Max		V-Supply			180	270		180	270		mW
Power Supply Sensitivity Max		V - Supply	V $\pm 5 \%$	10	$\pm 15$	$\pm 25$		$\pm 15$	$\pm 25$		ppm of FS/   \% VSUPPLY
		V-Supply	$5 \mathrm{~V} \pm 10 \%$	10	$\pm 15$	$\pm 25$		$\pm 15$	$\pm 25$		

## AC CHARACTERISTICS

Settling   Time Max	FSR Change		200		400	200		400	ns
Full-scale   Transition Max	Delay Plus 10\% to 90\% Rise Time		15		30	15		30	
	Delay Plus $90 \%$ to 10\% Fall Time		30		50	30		50	ns

Note 1: The typical $\theta_{\mathrm{JA}}$ of the 24-pin package is $80^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Tested and guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 3: Guaranteed, but not $100 \%$ production tested. These limits are not used to calculate outgoing quality levels.
Note 4: Linearity error $=\frac{V_{\text {OUT }}-V_{\text {OFFSET }}-\left(D \times V_{\text {LSB }}\right)}{V_{\text {LSB }}}$ where $V_{\text {LSB }}=\frac{V_{F S}-V_{\text {OFFSET }}}{4095}$ and $D$ is the digital input (0 to 4095) which produced $V_{\text {OUT }}$.
Note 5: Percent gain error for 10 V range $=\frac{\left(\mathrm{V}_{\mathrm{FS}}-\mathrm{V}_{\text {OFFSET }}\right)-(4095 / 4096) \mathrm{V}_{\text {REF }}}{\mathrm{V}_{\text {REF }}} \times 100$.
Note 6: Unipolar offset error for 10 V range $=\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {REF }}\right) \times 100$ in percent of full-scale.
Note 7: Bipolar offset error for 10 V range $=\frac{\mathrm{V}_{\mathrm{OUT}}-\left(-\mathrm{V}_{\mathrm{REF}} / 2\right)}{\mathrm{V}_{\mathrm{REF}}} \times 100$ in percent of full-scale.
Note 8: Bipolar zero error for 10V range $=\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {REF }}\right) \times 100$ in percent of full-scale.
Note 9: Gain error tempco $=\frac{\left(V_{F S}-V_{\text {OFFSET }}\right) \text { at }\left(T_{\text {MAX }} \text { or } T_{M I N}\right)-\left(V_{F S}-V_{\text {OFFSET }}\right) \text { at } 25^{\circ} \mathrm{C}}{10 \mathrm{~V} \text { range } \times\left(T_{\text {MAX }} \text { or } T_{M I N}-25^{\circ} \mathrm{C}\right)} \times 10^{6}$ in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Note 10: Power supply sensitivity for 10 V range $=106 \times \frac{\left(V_{\text {FS }}-V_{\text {OFFSET }}\right) \text { at }(-13.5 \mathrm{~V})-\left(V_{\text {FS }}-V_{\text {OFFSET }}\right) \text { at }(-16.5 \mathrm{~V})}{V_{\text {REF }} \times 20 \%}$ in ppm of $\mathrm{FS} / \% \mathrm{~V}_{\mathrm{S}}$.
Note 11: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 12: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.

## Functional Description and Applications

### 1.0 BUFFERED VOLTAGE OUTPUT CONNECTION

The standard current-to-voltage conversion connections using an operational amplifier are shown here with the preferred trimming techniques. If a low offset operational amplifier (LF401A) is used, excellent performance can be obtained in many situations without trimming (an op amp with less than 0.5 mV maximum offset voltage should be used to keep offset errors below $1 / 2$ LSB). Unipolar zero will typically be within $\pm 1 / 2$ LSB (plus op amp offset), and if a $50 \Omega$ fixed resistor is substituted for the $100 \Omega$ trimmer (R2, Figure 1), full-scale accuracy will be within $0.1 \%$ ( $0.20 \%$ maximum). Substituting a $50 \Omega$ resistor for the $100 \Omega$ bipolar offset trimmer (R1, Figure 2) will give a bipolar zero error typically within $\pm 2$ LSB ( $0.05 \%$ ).

### 1.1 Unipolar Configuration (Figure 1)

This configuration will provide a unipolar OV to 9.9976 V output range.

## Step 1-Offset Adjust (Zero)

Turn all bits OFF and adjust zero trimmer, R1, until the output reads 0.000 V ( $1 \mathrm{LSB}=2.44 \mathrm{mV}$ ). In most cases this trim is not needed.

## Step 2-Gain Adjust

Turn all bits ON and adjust $100 \Omega$ gain trimmer, R2, until the output is 9.9976 V (full-scale adjusted to 1 LSB less than nominal full-scale of 10.000 V ). If a 10.2375 V full-scale is desired (exactly $2.5 \mathrm{mV} / \mathrm{bit}$ ), insert a $120 \Omega$ resistor in series with the gain resistor at pin 10 to the op amp output or use the LH0071 voltage reference.

### 1.2 Bipolar Configuration (Figure 2)

This configuration will provide a bipolar output voltage from -5.000 V to 4.9976 V , with positive full-scale occurring with all bits ON (all 1s).

## Step 1—Offset Adjust

Turn OFF all bits. Adjust $100 \Omega$ offset trimmer, R1, to give -5.000 V output.

## Step 2-Gain Adjust

Turn ON all bits. Adjust $100 \Omega$ gain trimmer, R2, to give a reading of 4.9976 V .
Please note that it is not necessary to trim the op amp to obtain full accuracy at room temperature. In most bipolar situations, an op amp trim is unnecessary unless the untrimmed offset drift of the op amp is excessive. Bipolar zero error (MSB bit ON) is not adjusted separately and is typically $< \pm 0.05 \%$ of FS after offset and gain adjust.

### 1.3 Other Voltage Ranges (Figure 3)

The DAC1266A and DAC1266 can also be easily configured for a unipolar 0 V to 5 V range or $\pm 2.5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$ bipolar ranges by using the additional 5 k application resistor provided at the 20 V range R terminal, pin 11 . For a 5 V span ( 0 V to 5 V or $\pm 2.5 \mathrm{~V}$ ), the two 5 k resistors are used in parallel by shorting pin 11 to pin 9 and connecting pin 10 to the op amp output and the bipolar offset either left open for unipolar or connected through a $100 \Omega$ pot to the external

*Power and analog ground must have
FIGURE 1. 0V to 10V Unipolar Voltage Output a common current return path. See section 3.0 for proper connections.

Functional Description and Applications (Continued)


TL/H/5068-6
*Power and analog ground must have a common current return path. See section 3.0 for proper connections.
FIGURE 2. $\pm 5 \mathrm{~V}$ Bipolar Voltage Output


TL/H/5068-3
FIGURE 3. $\pm 10 \mathrm{~V}$ Voltage Output section 3.0 for proper connections.

## Functional Description and

## Applications (Continued)

reference for the bipolar range. For the $\pm 10 \mathrm{~V}$ range use the $5 k$ resistors in series by connecting only pin 11 to the op amp output and connecting the bipolar offset as shown. The $\pm 10 \mathrm{~V}$ option is shown in Figure 3.

### 2.0 DIGITAL INPUT

The DAC1266A and DAC1266 use a standard positive true straight binary code for unipolar outputs (all is give fullscale output), and an offset binary code for bipolar output ranges. In the bipolar mode, with all 0 s on the inputs, the output will go to negative full-scale; with $100 . . .00$ (only the MSB on), the output will be 0.00 V ; with all 1 s , the output will go to positive full-scale.
The threshold of the digital input circuitry is set at 1.4 V and does not vary with supply voltage. The input lines can interface with any type of 5 V logic, TTL/DTL or CMOS, and have sufficiently low input currents to interface easily with unbuffered CMOS logic. The configuration of the input circuit is shown in Figure 4. The input line can be modelled as a 30 $\mathrm{k} \Omega$ resistance connected to a -0.7 V rail.


FIGURE 4. Equivalent Digital Input Circuit

### 3.0 APPLICATION OF ANALOG AND POWER GROUND

The DAC1266A and DAC1266 have separate analog and power ground pins to allow optimum connections for low noise and high speed performance. The two ground lines can be separated by up to 200 mV without any loss in performance. There may be some loss in linearity beyond that level. If these DACs are to be used in a system in which the two grounds will be ultimately connected at some distance from the device, it is recommended that parallel back-toback diodes be connected between the ground lines near the device to prevent a fault condition.

The analog ground at pin 3 is the ground reference point for the internal reference and is thus the "high quality" ground; it should be connected directly to the analog reference point of the system. The power ground at pin 12 can be connected to the most convenient ground reference point; analog power return is preferred, but digital ground is acceptable. If power ground contains high frequency noise beyond 200 mV , this noise may feed through the converter, so that some caution will be required in applying these grounds.

### 4.0 OUTPUT VOLTAGE COMPLIANCE

The DAC1266A and DAC1266 have a typical output compliance range from -2 V to 10 V . The current-steering output stages will be unaffected by changes in the output terminal voltage over that range. However, there is an equivalent output impedance of 8 k in parallel with 25 pF at the output terminal which produces an equivalent error current if the voltage deviates from power ground. This is a linear effect that does not change with input code. Operation beyond the compliance limits may cause either output stage saturation or breakdown which results in non-linear performance. Compliance limits are a function of output current and negative supply.

### 5.0 DIRECT UNBUFFERED VOLTAGE OUTPUT FOR CABLE DRIVING

The wide compliance range allows direct current-to-voltage conversion with just an output resistor. Figure 5 shows a connection using the gain and bipolar output resistors to give a $\pm 1.60 \mathrm{~V}$ bipolar swing. In this situation, the digital code is complementary binary. Other combinations of internal and external output resistors ( $\mathrm{R}_{\mathrm{X}}$ ) can be used to scale to alternate voltage ranges, simply by appropriately scaling the 0 mA to -2 mA unipolar output current and using the 10.0 V reference voltage for bipolar offset. For example, setting $R_{X}=2.67 \mathrm{k} \Omega$ gives a $\pm 1 \mathrm{~V}$ range with a $1 \mathrm{k} \Omega$ equivalent output impedance.
This connection is especially useful for directly driving a long cable at high speed. Using a $50 \Omega$ resistor for RX would allow interface to a $50 \Omega$ cable with a $\pm 50 \mathrm{mV}$ full-scale swing.

### 6.0 HIGH SPEED 12-BIT A/D CONVERTERS

The fast settling characteristics of the DAC1266A and DAC1266 make them ideal for high speed successive approximation A/D converters. Shown in Figure 6 is a configuration using standard components; this system completes a full 12-bit conversion in $10 \mu \mathrm{~s}$ unipolar or bipolar. This converter will be accurate to $\pm 1 / 2$ LSB of 12 bits and have a typical gain TC of $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Functional Description and Applications (Continued)


FIGURE 5. Unbuffered Bipolar Voltage Output


FIGURE 6. Fast Precision Analog to Digital Converter

## Functional Description and

## Applications (Continued)

In the unipolar mode, the system range is 0 V to 9.9976 V , with each bit having a value of 2.44 mV . For true conversion accuracy, an A/D converter should be trimmed so that a given output code results from input levels from $1 / 2$ LSB below to $1 / 2$ LSB above the exact voltage represented by that code. Therefore, the converter zero point should be trimmed with an input voltage of 1.22 mV ; trim R1 until the LSB just begins to appear in the output code (all other bits " 0 "). For full-scale, use an input voltage of 9.9963 V (10V-1 LSB- $1 / 2$ LSB); then trim R2 until the LSB just begins to appear (all other bits "1").
The bipolar signal range is -5.0 V to 4.9976 V . Bipolar offset trimming is done by applying a -4.9988 V input signal and trimming R3 for the LSB transition (all other bits " 0 ").
Full-scale is set by applying a 4.9963 V and trimming R2 for the LSB transition (all other bits " 1 "). In many applications, the pretrimmed internal resistors are sufficiently accurate that external trimmers will be unnecessary, especially in situations requiring less than full 12 -bit $\pm 1 / 2$ LSB accuracy.
For fastest operation, the impedance at the comparator summing node must be minimized. However, lowering the impedance will reduce the voltage signal to the comparator (at an equivalent impedance at the summing node of $1 \mathrm{k} \Omega$, $1 \mathrm{LSB}=0.5 \mathrm{mV}$ ), to the point that comparator performance will be sacrificed. The contribution to this impedance from the DAC will vary with the input configuration (Figure 6, Input Ranges Table).
To prevent dynamic errors, the input signal should have a low dynamic source impedance, such as that of the LF411A op amp.

## Definition of Terms

Digital Inputs: The DAC1266A and DAC1266 accept digital input codes in binary format and may be user connected for any one of three binary codes: straight binary, two's complement, or offset binary.

Digital   Input	Analog Output		
	Straight   Binary	Offset   Binary	Two's   Complement*
	zero	-FS (Full-Scale)	zero
$011 \ldots 111$	$1 / 2$ FS-1 LSB		
zero-1 LSB			
$100 \ldots 000$	FSS-1 LSB		
1/2 FS			
zero			
+FS-1 LSB	+FS-1 LSB	-FS	
zero-1 LSB			

*Invert MSB with external inverter to obtain Two's Complement coding

Linearity Error: Linearity Error of a D/A converter is an important measure of its accuracy. It describes the deviation from an ideal straight line transfer curve drawn between zero (all bits OFF) and full-scale (all bits ON).
Differential Non-Linearity: For a D/A converter, it is the difference between the actual output voltage change and the ideal (1 LSB) voltage change for a one-bit change in code. A differential non-linearity of $\pm 1$ LSB or less guarantees monotonicity; i.e., the output always increases and never decreases for an increasing input. It is guaranteed by testing the major carry transitions; i.e., $100 \ldots 000$ to 011... 111 etc.

Settling Time: Settling time is the time required for the output to settle to within the specified error band for any input code transition. It is usually specified for a full-scale or major carry transition.
Gain Tempco: The change in full-scale analog output over the specified temperature range expressed in parts per million of full-scale per ${ }^{\circ} \mathrm{C}\left(\mathrm{ppm}\right.$ of $\left.\mathrm{FS} /{ }^{\circ} \mathrm{C}\right)$. Gain error is measured with respect to $25^{\circ} \mathrm{C}$ at high ( $\mathrm{T}_{\mathrm{MAX}}$ ) and low ( $\mathrm{T}_{\text {MIN }}$ ) temperatures. Gain tempco is calculated for both high ( $\mathrm{T}_{\text {MAX }}-25^{\circ} \mathrm{C}$ ) and low ( $25^{\circ} \mathrm{C}-\mathrm{T}_{\text {MIN }}$ ) ranges by dividing the gain error by the respective change in temperature. The specification is the larger of the two representing worstcase drift.
Offset Tempco: The change in analog output with all bits OFF over the specified temperature expressed in parts per million of full-scale per ${ }^{\circ} \mathrm{C}$ ( ppm of $\mathrm{FS} /{ }^{\circ} \mathrm{C}$ ). Offset error is measured with respect to $25^{\circ} \mathrm{C}$ at high ( $\mathrm{T}_{\text {MAX }}$ ) and low ( $\mathrm{T}_{\text {MIN }}$ ) temperatures. Offset tempco is calculated for both high ( $\mathrm{T}_{\text {MAX }}-25^{\circ} \mathrm{C}$ ) and low ( $25^{\circ} \mathrm{C}-\mathrm{T}_{\text {MIN }}$ ) ranges by dividing the offset error by the respective change in temperature. The specification given is the larger of the two, representing worst-case drift.
Power Supply Sensitivity: Power supply sensitivity is a measure of the change in gain and offset of the D/A converter resulting from a change in -15 V supply. It is specified under DC conditions and expressed as parts per million of full-scale per percent of change in power supply (ppm of FS/\%).

## Ordering Information

Temperature Range		$\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{7 0}{ }^{\circ} \mathbf{C}$	$-\mathbf{5 5 ^ { \circ }} \mathbf{C}$ to $+\mathbf{1 2 5}{ }^{\circ} \mathbf{C}$
Linearity Error   Over Temperature	$\pm 1 / 2$ Bit	DAC1266ACJ	DAC1266AJ
	$\pm 3 / 4$ Bit	DAC1266LCJ	DAC1266LJ

## DAC1655 16-Bit D/A Converter

## General Description

The DAC1655 is a 16 -bit digital-to-analog converter. The DAC1655 consists of CMOS switches and thin film SiCr resistors connected to form a 4 k potentiometer with an output impedance of $40 \mathrm{k} \Omega$. This 16 -bit D/A converter is monotonic to 16 bits over the specified temperature range. Force and sense functions minimize gain and offset errors.
The analog output voltage range is GND to the applied voltage reference.
The power dissipation is 28 mW at 10 V supply. The power dissipation of each internal resistor does not change regardless of input data code which results in very low superposition error.

These digital-to-analog converters are recommended as 16 -bit digitally controlled potentiometers. They look identical to mechanical potentiometers within the digital supply common mode voltage range.
The DAC1655 is also ideal for applications in precision instruments and data acquisition systems.

## Features

- 16-bit monotonicity over temperature
- Full potentiometer capability
- Single 5 V to 15 V supply operation
- 0 V to 10 V output with constant $40 \mathrm{k} \Omega$ output impedance
- Offset error: $\pm 0.002 \%$ of full scale
- Full scale error: $\pm 0.003 \%$ of full scale
- Full scale tempco: $\pm 0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Integral nonlinearity: $\pm 0: 012 \%$ or $\pm 0.05 \%$
- Settling time: $14 \mu \mathrm{~s}$ to 16 bits

四 Output noise: $25 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
( Supply current: $300 \mu \mathrm{~A}$

- STD 0.6" 24-pin dual-in-line package

Typical Application


Connection Diagram
Dual-In-Line Package
(MSB) $\mathrm{D}_{15}-1 \begin{array}{ll} & 24 \\ \mathrm{D}_{14}-\text {-DIGITAL GND } \\ \mathrm{D}_{13}-3 & 23\end{array}$
TL/H/9286-2

Top View

Section 5
Sample and Hold
Section 5 Contents
Sample and Hold Definition of Terms ..... 5-3
Sample and Hold Selection Guide ..... 5-4
LF198/LF298/LF198A/LF398A Monolithic Sample and Hold Circuits ..... 5-5
LF13006/LF13007 Digital Gain Set ..... 5-15
LH0023/LH0023C/LH0043/LH0043C Sample and Hold Circuits ..... 5-22
LH0053/LH0053C High Speed Sample and Hold Amplifier ..... 5-23
LH0091 True RMS to DC Converter ..... 5-24
LH0094 Multifunction Converter ..... 5-29

Acquisition Time: The time required to acquire a new analog input voltage with an output step of 10 V . Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.
Aperture Time: The delay required between "Hold" command and an input analog transition, so that the transition does not affect the held output.
Dynamic Sampling Error: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.

Gain Error: The ratio of output voltage swing to input voltage swing in the sample mode expressed as a percent difference.
Hold Settling Time: The time required for the output to settle within 1 mV of final value after the "hold" logic command.

Hold Step: The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (DC) analog input voltage. Logic swing is 5 V .

## Sample and Hold Selection Guide

	LF198A	LF398A	LF198	LF398	LF298	Units
Accuracy Gain/Offset Error	0.01	0.01	0.02	0.02	0.02	\% Max
Offset Voltage	2	3	5	10	5	mV Max
$\begin{gathered} \text { Droop Rate }\left(25^{\circ} \mathrm{C}\right) \\ \mathrm{C}_{\mathrm{S}}=1000 \mathrm{pF} \\ \mathrm{C}_{\mathrm{S}}=10000 \mathrm{pF} \end{gathered}$	$\begin{gathered} 30 \\ 3 \end{gathered}$	$\mathrm{mV} / \mathrm{sec}$				
$\begin{aligned} & \text { Acquisition Time }\left(25^{\circ} \mathrm{C}\right) \\ & \mathrm{C}_{\mathrm{S}}=1000 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{S}}=10000 \mathrm{pF} \end{aligned}$	$\begin{gathered} 4 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 20 \end{gathered}$	$\begin{gathered} 4 \\ 20 \\ \hline \end{gathered}$	$\mu \mathrm{s}$
Aperture Time ( $25^{\circ} \mathrm{C}$ )	25	25	25	25	25	ns
Temperature Range	-55 to +125	0 to +70	-55 to +125	0 to +70	-25 to +85	${ }^{\circ} \mathrm{C}$
Comment	Low Drift	Low Drift	General Purpose	General Purpose	Low Drift	

National
Semiconductor Corporation

## LF198/LF298/LF398, LF198A/LF398A Monolithic Sample and Hold Circuits

## General Description

The LF198/LF298/LF398 are monolithic sample and hold circuits which utilize BI-FET technology to obtain ultra-high dc accuracy with fast acquisition of signal and low droop rate. Operating as a unity gain follower, dc gain accuracy is $0.002 \%$ typical and acquisition time is as low as $6 \mu$ s to $0.01 \%$. A bipolar input stage is used to achieve low offset voltage and wide bandwidth. Input offset adjust is accomplished with a single pin, and does not degrade input offset drift. The wide bandwidth allows the LF198 to be included inside the feedback loop of 1 MHz op amps without having stability problems. Input impedance of $10{ }^{10} \Omega$ allows high source impedances to be used without degrading accuracy. P-channel junction FET's are combined with bipolar devices in the output amplifier to give droop rates as low as $5 \mathrm{mV} / \mathrm{min}$ with a $1 \mu \mathrm{~F}$ hold capacitor. The JFET's have much lower noise than MOS devices used in previous designs and do not exhibit high temperature instabilities. The overall design guarantees no feed-through from input to output in the hold mode, even for input signals equal to the supply voltages.

## Features

- Operates from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies
- Less than $10 \mu \mathrm{~s}$ acquisition time
- TTL, PMOS, CMOS compatible logic input
$■ 0.5 \mathrm{mV}$ typical hold step at $\mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$
- Low input offset
- 0.002\% gain accuracy
- Low output noise in hold mode
- Input characteristics do not change during hold mode
- High supply rejection ratio in sample or hold
- Wide bandwidth

Logic inputs on the LF198 are fully differential with low input current, allowing direct connection to TTL, PMOS, and CMOS. Differential threshold is 1.4 V . The LF198 will operate from $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ supplies. It is available in an 8 -lead TO-5 package.
An " $A$ " version is available with tightened electrical specifications.

## Typical Connection and Performance Curve



## Connection Diagrams



Order Number LF398N or LF398AN See NS Package Number N08E


## Metal Can Package



TOP VIEW
TL/H/5692-11
Order Number LF198H, LF298H, LF398H, LF198AH or LF398AH See NS Package Number H08C

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

```
Power Dissipation (Package Limitation) (Note 1) 500 mW Operating Ambient Temperature Range
\begin{tabular}{lr}
LF198/LF198A & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
LF298 & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
LF398/LF398A & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Input Voltage
Equal to Supply Voltage
Logic To Logic Reference Differential Voltage +7V, -30V (Note 2)

Output Short Circuit Duration	Indefinite
Hold Capacitor Short Circuit Duration	10 sec
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ (typicals)	
H package	$215^{\circ} \mathrm{C} / \mathrm{W}$ (Board mount in still air)
	$85^{\circ} \mathrm{C} / \mathrm{W}$ (Board mount in $400 \mathrm{LF} /$ min air flow)
N package	$115^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}$ (typical)	$20^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics (Note 3)

Parameter	Conditions	LF198/LF298			LF398			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage, (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$   Full Temperature Range		1	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		2	$\begin{gathered} 7 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current, (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$   Full Temperature Range		5	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		10	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1010			$10^{10}$		$\Omega$
Gain Error	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$   Full Temperature Range		0.002	$\begin{gathered} 0.005 \\ 0.02 \end{gathered}$		0.004	$\begin{aligned} & 0.01 \\ & 0.02 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Feedthrough Attenuation Ratio at 1 kHz	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$	86	96		80	90		dB
Output Impedance	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \text { "HOLD" mode } \\ & \text { Full Temperature Range } \end{aligned}$		0.5	$\begin{aligned} & 2 \\ & 4 \end{aligned}$		0.5	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
"HOLD" Step, (Note 4)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=0$		0.5	2.0		1.0	2.5	mV
Supply Current, (Note 6)	$\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2	10		2	10	$\mu \mathrm{A}$
Leakage Current into Hold Capacitor (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Note } 5)$   Hold Mode		30	100		30	200	pA
Acquisition Time to 0.1\%	$\begin{aligned} \Delta \mathrm{V}_{\text {OUT }}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}} & =1000 \mathrm{pF} \\ \mathrm{C}_{\mathrm{h}} & =0.01 \mu \mathrm{~F} \end{aligned}$		$\begin{gathered} 4 \\ 20 \end{gathered}$			$\begin{gathered} 4 \\ 20 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
Hold Capacitor Charging Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		5			5		mA
Supply Voltage Rejection Ratio	$\mathrm{V}_{\text {OUT }}=0$	80	110		80	110		dB
Differential Logic Threshold	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	1.4	2.4	0.8	1.4	2.4	V

Electrical Characteristics (Continued) (Note 3)

Parameter	Conditions	LF198A			LF398A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage, (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$   Full Temperature Range		1	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		2	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input Bias Current, (Note 6)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$   Full Temperature Range		5	$\begin{aligned} & 25 \\ & 75 \end{aligned}$		10	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		1010			$10^{10}$		$\Omega$
Gain Error	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$   Full Temperature Range		0.002	$\begin{gathered} 0.005 \\ 0.01 \\ \hline \end{gathered}$		0.004	$\begin{gathered} 0.005 \\ 0.01 \\ \hline \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
Feedthrough Attenuation Ratio at 1 kHz	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$	86	96		86	90		dB
Output Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \text { "HOLD" mode }$ Full Temperature Range		0.5	$\begin{aligned} & 1 \\ & 4 \end{aligned}$		0.5	$\begin{aligned} & 1 \\ & 6 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
"HOLD" Step, (Note 4)	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\text {OUT }}=0$		0.5	1		1.0	1	mV
Supply Current, (Note 6)	$\mathrm{T}_{\mathrm{j}} \geq 25^{\circ} \mathrm{C}$		4.5	5.5		4.5	6.5	mA
Logic and Logic Reference Input Current	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$		2	10		2	10	$\mu \mathrm{A}$
Leakage Current into Hold Capacitor (Note 6)	$\begin{aligned} & T_{\mathrm{j}}=25^{\circ} \mathrm{C},(\text { Note } 5) \\ & \text { Hold Mode } \end{aligned}$		30	100		30	100	pA
Acquisition Time to 0.1\%	$\begin{array}{r} \Delta V_{\text {OUT }}=10 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=1000 \mathrm{pF} \\ \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F} \end{array}$		$\begin{gathered} 4 \\ 20 \end{gathered}$	$\begin{gathered} 6 \\ 25 \\ \hline \end{gathered}$		$\begin{gathered} 4 \\ 20 \end{gathered}$	$\begin{gathered} 6 \\ 25 \\ \hline \end{gathered}$	$\mu \mathrm{S}$ $\mu \mathrm{s}$
Hold Capacitor Charging Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		5			5		mA
Supply Voltage Rejection Ratio	$\mathrm{V}_{\text {OUT }}=0$	90	110		90	110		dB
Differential Logic Threshold	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.8	1.4	2.4	0.8	1.4	2.4	V

Note 1: The maximum junction temperature of the LF198/LF198A is $150^{\circ} \mathrm{C}$, for the LF298, $115^{\circ} \mathrm{C}$, and for the LF398/LF398A, $100^{\circ} \mathrm{C}$. When operating at elevated ambient temperature, the power dissipation must be derated based on a thermal resistance $\left(\Theta_{j A}\right)$ of $150^{\circ} \mathrm{C} / \mathrm{W}$.
Note 2: Although the differential voltage may not exceed the limits given, the common-mode voltage on the logic pins may be equal to the supply voltages without causing damage to the circuit. For proper logic operation, however, one of the logic pins must always be at least 2 V below the positive supply and 3 V above the negative supply.
Note 3: Unless otherwise specified, the following conditions apply. Unit is in "sample" mode, $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C},-11.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+11.5 \mathrm{~V}, \mathrm{C}_{\mathrm{h}}=0.01 \mu \mathrm{~F}$, and $R_{L}=10 \mathrm{k} \Omega$. Logic reference voltage $=0 \mathrm{~V}$ and logic voltage $=2.5 \mathrm{~V}$.
Note 4: Hold step is sensitive to stray capacitive coupling between input logic signals and the hold capacitor. 1 pF , for instance, will create an additional 0.5 mV step with a 5 V logic swing and a $0.01 \mu \mathrm{~F}$ hold capacitor. Magnitude of the hold step is inversely proportional to hold capacitor value.
Note 5: Leakage current is measured at a junction temperature of $25^{\circ} \mathrm{C}$. The effects of junction temperature rise due to power dissipation or elevated ambient can be calculated by doubling the $25^{\circ} \mathrm{C}$ value for each $11^{\circ} \mathrm{C}$ increase in chip temperature. Leakage is guaranteed over full input signal range.
Note 6: These parameters guaranteed over a supply voltage range of $\pm 5$ to $\pm 18 \mathrm{~V}$, and an input range of $-\mathrm{V}_{\mathrm{S}}+3.5 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq+\mathrm{V}_{\mathrm{S}}-3.5 \mathrm{~V}$.

## Typical Performance Characteristics




Typical Performance Characteristics (Continued)





Hold Step


Phase and Gain (Input to Output, Small Signal)



Feedthrough Rejection Ratio (Hold Mode)

"Hold" Settling Time*


See definition




## Typical Performance Characteristics (Continued)

Output Transient at Start of Sample Mode


Output Transient at Start of Hold Mode


## Logic Input Configurations

TTL \& CMOS
$\mathbf{3 V} \leq \mathbf{V}_{\mathrm{L}}($ Hi State $) \leq \mathbf{7 V}$


Threshold $=1.4 \mathrm{~V}$


CMOS


Threshold $=0.6\left(\mathrm{~V}^{+}\right)+1.4 \mathrm{~V}$


Threshold $=0.6\left(\mathrm{~V}^{+}\right)-1.4 \mathrm{~V}$


Threshold $\approx+4 V$

Op Amp Drive


## Application Hints

## Hold Capacitor

Hold step, acquisition time, and droop rate are the major trade-offs in the selection of a hold capacitor value. Size and cost may also become important for larger values. Use of the curves included with this data sheet should be helpful in selecting a reasonable value of capacitance. Keep in mind that for fast repetition rates or tracking fast signals, the capacitor drive currents may cause a significant temperature rise in the LF198.
A significant source of error in an accurate sample and hold circuit is dielectric absorption in the hold capacitor. A mylar cap, for instance, may "sag back" up to $0.2 \%$ after a quick change in voltage. A long "soak" time is required before the circuit can be put back into the hold mode with this type of capacitor. Dielectrics with very low hysteresis are polystyrene, polypropylene, and Teflon. Other types such as mica and polycarbonate are not nearly as good. Ceramic is unusable with > $1 \%$ hysteresis. The advantage of polypropylene over polystyrene is that it extends the maximum ambient temperature from $85^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. "NPO" or "COG" capacitors are now available for $125^{\circ} \mathrm{C}$ operation and also have low dielectric absorption. For more exact data, see the curve Dielectric Absorption Error. The hysteresis numbers on the curve are final values, taken after full relaxation. The hysteresis error can be significantly reduced if the output of the LF198 is digitized quickly after the hold mode is initiated. The hysteresis relaxation time constant in polypropylene, for instance, is $10-50 \mathrm{~ms}$. If A-to-D conversion can be made within 1 ms , hysteresis error will be reduced by a factor of ten.

## DC and AC Zeroing

DC zeroing is accomplished by connecting the offset adjust pin to the wiper of a $1 \mathrm{k} \Omega$ potentiometer which has one end tied to $\mathrm{V}+$ and the other end tied through a resistor to ground. The resistor should be selected to give $\approx 0.6 \mathrm{~mA}$ through the 1 k potentiometer.
AC zeroing (hold step zeroing) can be obtained by adding an inverter with the adjustment pot tied input to output. A 10 pF capacitor from the wiper to the hold capacitor will give $\pm 4 \mathrm{mV}$ hold step adjustment with a $0.01 \mu \mathrm{~F}$ hold capacitor and 5 V logic supply. For larger logic swings, a smaller capacitor ( $<10 \mathrm{pF}$ ) may be used.

## Logic Rise Time

For proper operation, logic signals into the LF198 must have a minimum $\mathrm{dV} / \mathrm{dt}$ of $1.0 \mathrm{~V} / \mu \mathrm{s}$. Slower signals will cause excessive hold step. If a R/C network is used in front of the logic input for signal delay, calculate the slope of the waveform at the threshold point to ensure that it is at least $1.0 \mathrm{~V} / \mu \mathrm{s}$.

## Sampling Dynamic Signals

Sample error to moving input signals probably causes more confusion among sample-and-hold users than any other parameter. The primary reason for this is that many users make the assumption that the sample and hold amplifier is truly locked on to the input signal while in the sample mode. In actuality, there are finite phase delays through the circuit creating an input-output differential for fast moving signals. In addition, although the output may have settled, the hold capacitor has an additional lag due to the $300 \Omega$ series resis-
tor on the chip. This means that at the moment the "hold" command arrives, the hold capacitor voltage may be somewhat different than the actual analog input. The effect of these delays is opposite to the effect created by delays in the logic which switches the circuit from sample to hold. For example, consider an analog input of $20 \mathrm{Vp}-\mathrm{p}$ at 10 kHz . Maximum dV/dt is $0.6 \mathrm{~V} / \mu \mathrm{s}$. With no analog phase delay and 100 ns logic delay, one could expect up to ( $0.1 \mu \mathrm{~s}$ ) $(0.6 \mathrm{~V} / \mu \mathrm{s})=60 \mathrm{mV}$ error if the "hold" signal arrived near maximum $\mathrm{dV} / \mathrm{dt}$ of the input. A positive-going input would give a +60 mV error. Now assume a $1 \mathrm{MHz}(3 \mathrm{~dB})$ bandwidth for the overall analog loop. This generates a phase delay of 160 ns . If the hold capacitor sees this exact delay, then error due to analog delay will be $(0.16 \mu \mathrm{~s})(0.6 \mathrm{~V} / \mu \mathrm{s})$ $=-96 \mathrm{mV}$. Total output error is +60 mV (digital) -96 mV (analog) for a total of -36 mV . To add to the confusion, analog delay is proportioned to hold capacitor value while digital delay remains constant. A family of curves (dynamic sampling error) is included to help estimate errors.
A curve labeled Aperture Time has been included for sampling conditions where the input is steady during the sampling period, but may experience a sudden change nearly coincident with the "hold" command. This curve is based on a 1 mV error fed into the output.
A second curve, Hold Settling Time indicates the time required for the output to settle to 1 mV after the "hold" command.

## Digital Feedthrough

Fast rise time logic signals can cause hold errors by feeding externally into the analog input at the same time the amplifier is put into the hold mode. To minimize this problem, board layout should keep logic lines as far as possible from the analog input. Grounded guarding traces may also be used around the input line, especially if it is driven from a high impedance source. Reducing high amplitude logic signals to 2.5 V will also help.

Guarding Technique


TL/H/5692-5
Use 10-pin layout. Guard around $\mathrm{C}_{\mathrm{h}}$ is tied to output.

Functional Diagram


Typical Applications (Continued)

*For lower gains, the LM108 must be frequency compensated
Use $\approx \frac{100}{A_{V}} \mathrm{pF}$ from comp 2 to ground

Sample and Difference Circuit (Output Follows Input in Hold Mode)

$V_{\text {OUT }}=V_{B}+\Delta V_{I N}$ (HOLD MODE)
TL/H/5692-7

Ramp Generator with Variable Reset Level

$\begin{gathered}\text { *Select for ramp rate } \\ R 2 \geq 10 k\end{gathered} \frac{\Delta V}{\Delta T}=\frac{1.2 V}{(R 2)\left(C_{h}\right)}$

Integrator with Programmable Reset Level

${ }_{\substack{\text { Reser } \\ \text { EGBate }}}$

$V_{\text {OUT }}$ (Hold Mode) $=\left[\frac{1}{(R 1)\left(C_{h}\right)} \int_{0}^{t} V_{I N} d t\right]+\left[V_{R}\right]$

Output Holds at Average of Sampled Input


Reset Stabilized Amplifier (Gain of 1000)


Increased Slew Current


Fast Acquisition, Low Droop Sample \& Hold



Capacitor Hysteresis Compensation

*Select for time constant $\mathrm{C} 1=\frac{\tau}{100 \mathrm{k}}$
**Adjust for amplitude

Differential Hold


TL/H/5692-10

## Definition of Terms

Hold Step: The voltage step at the output of the sample and hold when switching from sample mode to hold mode with a steady (dc) analog input voltage. Logic swing is 5 V .
Acquisition Time: The time required to acquire a new ana$\log$ input voltage with an output step of 10 V . Note that acquisition time is not just the time required for the output to settle, but also includes the time required for all internal nodes to settle so that the output assumes the proper value when switched to the hold mode.
Gain Error: The ratio of output voltage swing to input voitage swing in the sample mode expressed as a per cent difference.

Hold Settling Time: The time required for the output to settle within 1 mV of final value after the "hold" logic command.
Dynamic Sampling Error: The error introduced into the held output due to a changing analog input at the time the hold command is given. Error is expressed in mV with a given hold capacitor value and input slew rate. Note that this error term occurs even for long sample times.
Aperture Time: The delay required between "Hold" command and an input analog transition, so that the transition does not affect the held output.

## LF13006/LF13007 Digital Gain Set

## General Description

The LF13006 and LF13007 are precision digital gain sets used for accurately setting non-inverting op amp gains. Gains are set with a 3-bit digital word which can be latched in with $\overline{W R}$ and $\overline{\mathrm{CS}}$ pins. All digital inputs are TTL and CMOS compatible.
The LF13006 shown below will set binary scaled gains of 1 , $2,4,8,16,32,64$, and 128. The LF13007 will set gains of 1 , $2,5,10,20,50$, and 100 (a common attenuator sequence). In addition, both versions have several taps and two uncommitted matching resistors that allow customization of the gain.
The gains are set with precision thin film resistors. The low temperature coefficient of the thin film resistors and their excellent tracking result in gain ratios which are virtually independent of temperature.

The LF13006, LF13007 used in conjunction with an amplifier not only satisfies the need for a digitally programmable amplifier in microprocessor based systems, but is also useful for discrete applications, eliminating the need to find $0.5 \%$ resistors in the ratio of 100 to 1 which track each other over temperature.

## Features

- TTL and CMOS compatible logic levels
- Microprocessor compatible
- Gain error 0.5\% max
- Binary or scope knob gains
- Wide supply range +5 V to $\pm 18 \mathrm{~V}$
- Packaged in 16-pin DIP


## Block Diagram and Typical Application (LF13006)



TL/H/5114-1
Note: $R \cong 15 \mathrm{k} \Omega$
Order Number LF13006N or LF13007N See NS Package Number N16A

Absolute Maximum Ratings
If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
$\begin{array}{lr}\text { Supply Voltage, } V^{+} \text {to } \mathrm{V}- & 36 \mathrm{~V} \\ \text { Supply Voltage, } \mathrm{V}+\text { to GND } & 25 \mathrm{~V} \\ \text { Voltage at Any Digital Input } \\ \text { Analog Voltage } & \mathrm{V}+\text { to GND }\end{array}$

Supply Voltage, $\mathrm{V}+$ to $\mathrm{V}-$	36 V
Supply Voltage, $\mathrm{V}+$ to GND	25 V
Voltage at Any Digital Input	$\mathrm{V}+$ to GND
Analog Voltage	$\mathrm{V}+$ to $\left(\mathrm{V}^{-}+2 \mathrm{~V}\right)$

Operating Ratings (Note 1)
Operating Temperature Range $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)
$260^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

Parameter	Conditions	Typ (Note 3)	Tested Limit (Note 4)	Design Limit (Note 5)	Units
Gain Error	AOUT $= \pm 10 \mathrm{~V}$ ANA GND $=0 \mathrm{~V}$ $I_{\text {INPUT }}<10 \mathrm{nA}$	0.3	0.5	0.5	\%(max)
Gain Temperature Coefficient	$\begin{aligned} & \text { AOUT }= \pm 10 \mathrm{~V} \\ & \text { ANA GND }=0 \mathrm{~V} \end{aligned}$	0.001			\%/ ${ }^{\circ} \mathrm{C}$
Digital Input Voltage Low High		$\begin{aligned} & 1.4 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 2.0 \end{aligned}$	$V(\max )$   $V(\min )$
Digital Input Current Low High	$\begin{aligned} & V_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V} \end{aligned}$	$\begin{gathered} -38 \\ 0.0001 \\ \hline \end{gathered}$	$\begin{gathered} -100 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} -100 \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & \mu \mathrm{A}(\max ) \\ & \mu \mathrm{A}(\max ) \end{aligned}$
Positive Power Supply Current	All Logic Inputs Low	2	5	5	mA(max)
Negative Power Supply Current	All Logic Inputs Low	-1.7	-5	-5	mA(max)
	$\mathrm{V}_{\text {IL }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	40		100	ns (min)
$\overline{\text { Chip }} \overline{\text { Select }}$ Set-Up Time, $\mathrm{t}_{\text {CS }}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=5 \mathrm{~V}$	60		120	ns (min)
$\overline{\text { Chip Select }}$ Hold Time, $\mathrm{t}_{\mathrm{CH}}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{H}}=5 \mathrm{~V}$	0		0	ns (min)
DIG IN Set-Up Time, $\mathrm{t}_{\text {DS }}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	80		150	ns (min)
DIG IN Hold Time, $\mathrm{t}_{\text {DH }}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}$	0		0	$\mathrm{ns}(\mathrm{min})$
Switching Time for Gain Change	(Note 4)	200			$\mathrm{ns}(\mathrm{max})$
Switch On Resistance		3			k ת
Unit Resistance, R		15	12-18		$\mathrm{k} \Omega$
R1 and R2 Mismatch		0.3	0.5	0.5	\%(max)
R1/R2 Temperature Coefficient		0.001			\%/ ${ }^{\circ} \mathrm{C}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: Parameters are specified at $\mathrm{V}^{+}=15 \mathrm{~V}$ and $\mathrm{V}^{-}=-15 \mathrm{~V}$. Min $\mathrm{V}^{+}$to ground voltage is 5 V . Min $\mathrm{V}^{+}$to $\mathrm{V}^{-}$voltage is 5 V . Boldface numbers apply over full operating temperature ranges. All other numbers apply at $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.
Note 3: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 4: Guaranteed and $100 \%$ production tested.
Note 5: Guaranteed (but not 100\% production tested) over the operating temperature. These limits are not used to calculate outgoing quality levels.
Note 6: Settling time for gain change is the switching time for gain change plus settling time (see section on Settling Time).
Note 7: $\overline{\mathrm{WR}}$ minimum high threshold voltage increases to 2.4 V under the extreme conditions when all three digital inputs are simultaneously taken from 0 V to 5 V at a slew rate of greater than $500 \mathrm{~V} / \mu \mathrm{S}$.

## Connection Diagram

GAIN TABLE

Digital Input			Gain			
		LF13006		LF13007		
DIG in 1	DIG in 2	DIG in 3	AOUT	B OUT	A OUT	B OUT
0	0	0	1	1	1	1
0	0	1	2	1.25	1.25	1
0	1	0	4	2.5	2	1.6
0	1	1	8	5	5	4
1	0	0	16	10	10	8
1	0	1	32	20	20	16
1	1	0	64	40	50	40
1	1	1	128	80	100	80

Switching Waveforms


TL/H/5114-3

Block Diagram and Typical Application (Continued) (LF13007)


TL/H/5114-4
Note: $R \cong 15 \mathrm{k} \Omega$

## Typical Performance Characteristics




## Application Information

## FLOW-THROUGH OPERATION

THE LF13006, LF13007 can be operated with control lines $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ grounded. In this mode new data on the digital inputs will immediately set the new gain value. Input data cannot be latched in this mode.

## INPUT CURRENT

Current flowing through the input (pin 2) due to bias current of the op amp will result in a gain error due to switch impedance. Normally this error is very small. For example, 10 nA of bias current flowing through $3 \mathrm{k} \Omega$ of switch resistance will result in an error of $30 \mu \mathrm{~V}$ at the summing node. However, applications that have significant current flowing through the input must take this effect into account.

## SETTLING TIME

Settling time is a function of the particular op amp used with the LF13006/7 and the gain that is selected. It can be optimized and stability problems can be prevented through the
use of a lead capacitor from the inverting input to the output of the amplifier. A lead capacitor is effective whenever the feedback around an amplifier is resistive, whether with discrete resistors or with the LF13006/7. It compensates for the feedback pole created by the parallel resistance and capacitance from the inverting input of the op amp to AC ground.

## Settling Time Test Circuit



TL/H/5114-6


## Typical Settling Time Curves




TL/H/5114-7

* Unstable at $C_{L}$ less than 2 pF


## Typical Applications

Variable Capacitance Multiplier
$\mathrm{C}_{\text {effective }}=\mathrm{C}_{1}$ (gain set \#)
Note: Output swing at input op amp


TL/H/5114-8

## Variable Time Constant Filter



TL/H/5114-9

Typical Applications (Continued)
Programmable Current Source


TL/H/5114-10

$$
{ }^{1} \mathrm{OUT}=\frac{1.2 \mathrm{~V}}{120 \Omega}\left[\frac{1}{\text { gain set \# }}\right]
$$

Inverting Gains


TL/H/5114-12
Inverting gain with high input impedance can be obtained with the LF13006, LF13007 by using the two on-board resistors and a dual op amp as shown.

Switchable Gain of $\pm 1$


TL/H/5114-11
Note: Digital code $=000, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{iN}}$;
Digital code $=001, V_{\text {OUT }}=-V_{I N}$

Programmable Differential Amp


TL/H/5114-13

Note 1: Actual gain=set gain-1 since LF13006s are in
"inverting mode".
Note 2: Set gain must be same on both LF13006s.

Typical Applications (Continued)


## LH0023/LH0023C/LH0043/LH0043C Sample and Hold Circuits

## General Description

The LH0023/LH0023C and LH0043/LH0043C are complete sample and hold circuits including input buffer amplifier, FET output amplifier, analog signal sampling gate, TTL compatible logic circuitry and level shifting. They are designed to operate from standard $\pm 15 \mathrm{~V}$ DC supplies, but provision is made on the LH0023/LH0023C for connection of a separate +5 V logic supply in minimum noise applications. The principal difference between the LHOO23/ LH0023C and the LH0043/LH0043C is a 10:1 trade-off in performance between sample accuracy and sample acquisition time. Devices are pin compatible except for TTL logic polarity.
The LH0023/LH0023C and LH0043/LH0043C are ideally suited for a wide variety of sample and hold applications including data acquisition, analog to digital conversion, synchronous demodulation, and automatic test setup. They offer significant cost and size reduction over equivalent module or discrete designs. Each device is available in a hermetic TO-8 package and is completely specified over both full military and industrial temperature ranges.
The LHOO23 and LH0043 are specified for operation over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military temperature range. The LH0023G and LH0043C are specified for operation over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

## Features

LH0023/LH0023C
■ Sample accuracy-0.01\% max

- Hold drift rate $-0.5 \mathrm{mV} / \mathrm{sec}$ typ
- Sample acquisition time-100 $\mu$ s max for 20 V
- Aperture time-150 ns typ
- Wide analog input range $- \pm 10 \mathrm{~V}$ min
- Logic input-TTL/DTL compatible
- Offset adjustable to zero with single 10k pot
- Output short circuit proof


## LH0043/LH0043C

- Sample acquisition time-15 $\mu \mathrm{s}$ max for 20 V $4 \mu \mathrm{~s}$ typ for 5 V
- Aperture time-20 ns typ
- Hold drift rate-1 mV/sec typ

■ Sample accuracy-0.1\% max

- Wide analog input range $- \pm 10 \mathrm{~V}$ min
- Logic input-TTL/DTL compatible
- Offset adjustable to zero with single 10k pot
- Output short circuit protection


## Connection Diagrams



## LH0053/LH0053C High Speed Sample and Hold Amplifier

## General Description

The LH0053/LH0053C is a high speed sample and hold circuit capable of acquiring a 20 V step signal in under $5.0 \mu \mathrm{~s}$.
The device is ideally suited for a variety of high speed data acquisition applications including analog buffer memories for $A$ to $D$ conversion and synchronous demodulation.

## Features

- Sample acquisition time $10 \mu \mathrm{~s}$ max. for 20 V signal
- FET switch for preset or reset function
- Sample accuracy null
- Offset adjust to OV
- DTL/TTL compatible FET gate
- Single storage capacitor


## Schematic and Connection Diagrams



## AC Test Circuit

Acquisition Time Test Circuit


National
PRELIMINARY
Semiconductor Corporation

## LH0091 True RMS to DC Converter

## General Description

The LH0091, rms to dc converter generates a dc output equal to the rms value of any input per the transfer function:

$$
\mathrm{E}_{\mathrm{OUT}(\mathrm{DC})}=\sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{E}_{1 N^{2}}(\mathrm{t}) \mathrm{dt}}
$$

The device provides rms conversion to an accuracy of $0.1 \%$ of reading using the external trim procedure. It is possible to trim for maximum accuracy ( $0.5 \mathrm{mV} \pm 0.05 \%$ typ) for decade ranges i.e., $10 \mathrm{mV} \rightarrow 100 \mathrm{mV}, 0.7 \mathrm{~V} \rightarrow 7 \mathrm{~V}$, etc.

Features

- Low cost
- True rms conversion
- $0.5 \%$ of reading accuracy untrimmed

■ $0.05 \%$ of reading accuracy with external trim

- Minimum component count
- Input voltage to $\pm 15 \mathrm{~V}$ peak for $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$
- Uncommitted amplifier for filtering, gain, or high crest factor configuration
- Military or commercial temperature range.


## Block and Connection Diagrams



Dual-In-Line Package Order Number LH0091D or LH0091CD See Package D16D


TL/H/5694-1

## Simplified Schematic



TL/H/5694-2
Note: Dotted lines denote external connections.

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage
Input Voltage $\pm 15 \mathrm{~V}$ peak
Output Short Circuit Duration
$\pm 22 \mathrm{~V}$

Continuous

Operating Temperature Range	$T_{\text {MIN }}$	$T_{\text {MAX }}$
LH0091	$-55^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$
LH0091C	$-25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
Storage Temperature Range		
LH0091	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
LH0091C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Lead Temp. (Soldering, 10 seconds)		$260^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted
Transfer Function $=E_{O(D C)}=\sqrt{\frac{1}{T} \int_{0}^{T} E_{I N^{2}}(t) d t}$

Parameter	Conditions	Min	Typ	Max	Units
ACCURACY (See Definition of Terms)					
Total Unadjusted Error	$50 \mathrm{mVrms} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{Vrms}$ (Figure 1)		20, $\pm 0.5$	$40, \pm 1.0$	mV , \%
Total Adjusted Error	$50 \mathrm{mVrms} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{Vrms}$ (Figure 3)		$0.5, \pm 0.05$	$1, \pm 0.2$	mV , \%
Total Unadjusted Error vs Temperature	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		0.25, $\pm 0.2 \%$		$\mathrm{mV}, \% /{ }^{\circ} \mathrm{C}$
Total Unadjusted Error vs Supply Voltage			1		$\mathrm{mV} / \mathrm{V}$
AC PERFORMANCE					
Frequency for Specified Adjusted Error	$\begin{array}{\|l} \text { Input }=7 \mathrm{Vrms}, \text { Sinewave }(\text { Figure 3) } \\ \text { Input }=0.7 \mathrm{Vrms} \text {, Sinewave (Figure 3) } \\ \text { Input }=0.1 \mathrm{Vrms} \text {, Sinewave (Figure 3) } \\ \hline \end{array}$	30	$\begin{aligned} & 70 \\ & 40 \\ & 20 \\ & \hline \end{aligned}$		kHz   KHz   kHz
Frequency for 1\% Additional Error	$\begin{array}{\|l\|} \hline \text { Input }=7 \mathrm{Vrms}, \text { Sinewave } \text { (Figure 3) } \\ \text { Input }=0.7 \mathrm{Vrms} \text {, Sinewave (Figure 3) } \\ \text { Input }=0.1 \mathrm{Vrms} \text {, Sinewave (Figure 3) } \\ \hline \end{array}$	100	$\begin{gathered} 200 \\ 75 \\ 50 \\ \hline \end{gathered}$		kHz   kHz   kHz
Bandwidth (3 dB)	$\begin{array}{\|l\|} \hline \text { Input }=7 \mathrm{Vrms}, \text { Sinewave } \text { (Figure 3) } \\ \text { Input }=0.7 \mathrm{Vrms} \text {, Sinewave (Figure 3) } \\ \text { Input }=0.1 \mathrm{Vrms} \text {, Sinewave (Figure 3) } \\ \hline \end{array}$		$\begin{gathered} 2 \\ 1.5 \\ 0.8 \end{gathered}$		MHz   MHz   MHz
Crest Factor	Rated Adjusted Accuracy Using the High Crest Factor Circuit (Figure 5)	5	10		
INPUT CHARACTERISTICS					
Input Voltage Range	For Rated Performance	$\pm 0.05$		$\pm 11$	Vpeak
Input Impedance		4.5	5		$\mathrm{k} \Omega$
OUTPUT CHARACTERISTICS					
Rated Output Voltage	$\mathrm{R}_{\mathrm{L}} \geq 2.5 \mathrm{k} \Omega$	10			V
Output Short Circuit Current			22		mA
Output Impedance			1		$\Omega$

## POWER SUPPLY REQUIREMENTS

Operating Range		$\pm 5$		$\pm 20$	V
Quiescent Current	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		14	18	mA

Op Amp Electrical Characteristics $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		1.0	10	mV
los	Input Offset Current			4.0	200	nA
$\mathrm{I}_{\mathrm{B}}$	Input Bias Current			30	500	nA
$\mathrm{R}_{\mathrm{IN}}$	Input Resistance			2.5		$\mathrm{M} \Omega$
AOL	Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	15	160		$\mathrm{V} / \mathrm{mv}$
$\mathrm{V}_{0}$	Output Voltage Swing	$\mathrm{R}=10 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$		V
$V_{1}$	Input Voltage Range		$\pm 10$			V
CMRR	Common-Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		90		dB
PSRR	Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		96		dB
ISC	Output Short-Circuit Current			25		mA
$\mathrm{S}_{\mathrm{r}}$	Slew Rate (Unity Gain)			0.5		$\mathrm{V} / \mu \mathrm{s}$
BW	Small Signal Bandwidth			1.0		MHz

Refer to RETS0091D drawing for Military specifications.

## Typical Performance Characteristics

Error vs Frequency




TL/H/5694-3

Typical Applications (All applications require power supply by-pass capacitors.)


TL/H/5694-4
$\mathrm{C}_{\mathrm{EXT}} \geq 1 \mu \mathrm{~F}$; frequency $\geq 1 \mathrm{kHz}$
FIGURE 1. LH0091 Basic Connection (No Trim)



Note. When converting signals with a crest factor $\geq 2$, the LH0091 should be connected as shown. Note that this circuit utilizes a 20 k resistor to drop the input current by a factor of five. The frequency response will correspond to a voltage which is $1 / 5 \mathrm{e}_{\mathrm{IN}}$.
Note that the extra op amp in the LH0091 may be used to build a gain of 5 amplifier to restore the output voltage.


TL/H/5694-7
Note. Respond time of the dc output voltage is dominated by the RC time constant consisting of the total resistance between pins 9 and 10 and the external capacitor, $\mathrm{C}_{\mathrm{EX}}$.

FIGURE 5. High Crest Factor Circuit

## Definition of Terms

True rms to dc Converter: A device which converts any signal ( $\mathrm{ac}, \mathrm{dc}, \mathrm{ac}+\mathrm{dc}$ ) to the dc equivalent of the rms value.

Error: is the amount by which the actual output differs from the theoretical value. Error is defined as a sum of a fixed term and a percent of reading term. The fixed term remains constant, regardless of input while the percent of reading term varies with the input.

Total Unadjusted Error: The total error of the device without any external adjustments.

Bandwidth: The frequency at which the output dc voltage drops to 0.707 of the dc value at low frequency.

Frequency for Specified Error: The error at low frequency is governed by the size of the external averaging capacitor. At high frequencies, error is dependent on the frequency response of the internal circuitry. The frequency for specified error is the maximum input frequency for which the output will be within the specified error band (i.e., frequency for $1 \%$ error means the input frequency must be less than 200 kHz to maintain an output with an error of less than $1 \%$ of the initial reading.

Crest Factor: is the peak value of a waveform divided by the rms value of the same waveform. For high crest factor signals, the performance of the LH0091 can be improved by using the high crest factor connection.

## LH0094 Multifunction Converter

## General Description

The LH0094 multifunction converter generates an output voltage per the transfer function:
$E_{O}=V_{y}\left(\frac{V_{z}}{V_{X}}\right)^{m}, 0.1 \leq m \leq 10, m$ continuously adjustable m is set by 2 resistors.

## Features

- Low cost
- Versatile

■ High accuracy-0.05\%

- Wide supply range $- \pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Minimum component count
- Internal matched resistor pair for setting $\mathrm{m}=2$ and $\mathrm{m}=0.5$


## Applications

- Precision divider, multiplier
- Square root
- Square
- Trigonometric function generator
- Companding
- Linearization
- Control systems
- Log amp

Block and Connection Diagrams
Dual-In-Line Package


Order Number LH0094D or LH0094CD See NS Package Number D16D


## Simplified Schematic



Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage
$\pm 22 \mathrm{~V}$
Input Voltage
Output Short-Circuit Duration
$\pm 22 \mathrm{~V}$
Continuous

Operating Temperature Range

LH0094CD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LH0094D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LH0094D	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LH0094CD	
Lead Temperature	
(Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

## Electrical Characteristics

$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified. Transfer function: $E_{O}=V_{Y} \frac{V_{Z}}{V_{X}} ; 0.1 \leq m \leq 10 ; O V \leq V_{X}, V_{Y}, V_{Z} \leq 10 V$

Parameter	Conditions	LH0094			LH0094C			Units
		Min	Typ	Max	Min	Typ	Max	

## ACCURACY

Multiply	$\mathrm{E}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Z}} \mathrm{V}_{\mathrm{Y}}\left(0.03 \leq \mathrm{V}_{\mathrm{Y}} \leq 10 \mathrm{~V} ; 0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10 \mathrm{~V}\right)$							\% F.S.
Untrimmed	(Figure 2)		0.25	0.45		0.45	0.9	(10V)
External Trim	(Figure 3)		0.10			0.1		\% F.S.
	vs. Temperature		0.2			0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Divide	$\mathrm{E}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{Z}} / V_{\mathrm{X}}$							
Untrimmed	(Figure 4), $\left.0.5 \leq \mathrm{V}_{\mathrm{X}} \leq 10 ; 0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right)$		0.25	0.45		0.45	0.9	\% F.S.
External Trim	(Figure 5), ( $\left.0.1 \leq \mathrm{V}_{\mathrm{X}} \leq 10 ; 0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right)$		0.10			0.1		\% F.S.
	vs. Temperature		0.2			0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Square Root	$\mathrm{E}_{\mathrm{O}}=10 \sqrt{\mathrm{~V}_{\mathrm{z}} / 10}$							
Untrimmed	(Figure 8), $\left(0.03 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right.$		0.25	0.45		0.45	0.9	\% F.S.
External Trim	(Figure 9), $\left(0.01 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right.$		0.15			0.15		\% F.S.
Square	$\mathrm{E}_{\mathrm{O}}=10\left(\mathrm{~V}_{\mathrm{Z}} / 10\right)^{2}\left(0.1 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right)$							
Untrimmed	(Figure 6)	0.5	1.0		1.0	2.0	\% F.S.	
External Trim	(Figure 7)	0.15			0.15		\% F.S.	
Low Level	$\mathrm{E}_{\mathrm{O}}=\sqrt{10 \mathrm{~V}_{\mathrm{Z}}} ; 5.0 \mathrm{mV} \leq \mathrm{V}_{\mathrm{Z}} \leq 10 \mathrm{~V}$, (Figure 10)		0.05			0.05		\% F.S.
Square Root								
Exponential	$\mathrm{m}=0.2, \mathrm{E}_{\mathrm{O}}=10\left(\mathrm{~V}_{\mathrm{Z}} / 10\right)^{2}$ (Figure 11), $\left(0.1 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right)$		0.05			0.08		\% F.S.
Circuits	$m=5.0, E_{O}=10\left(V_{\mathrm{Z}} / 10\right)^{5}$ (Figure 11), $\left(1.0 \leq \mathrm{V}_{\mathrm{Z}} \leq 10\right)$		0.05			0.08		\% F.S.

## OUTPUT OFFSET

	$V_{X}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{Z}}=0$		2.0	5.0		5.0	10	mV

## AC CHARACTERISTICS

3 dB Bandwidth Noise	$\begin{aligned} & m=1.0, V_{X}=10 \mathrm{~V}, V_{Y}=0.1 V_{r m s} \\ & 10 \mathrm{~Hz} \text { to } 1.0 \mathrm{kHz}, \mathrm{~m}=1.0, V_{Y}=V_{Z}=0 V \\ & V_{X}=10 \mathrm{~V} \\ & V_{X}=0.1 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 10 \\ 100 \\ 300 \\ \hline \end{array}$			$\begin{array}{r} 10 \\ \\ 100 \\ 300 \end{array}$		kHz   $\mu \mathrm{V} / \mathrm{rms}$   $\mu \mathrm{V} / \mathrm{rms}$
EXPONENT								
m		$\begin{gathered} 0.2 \text { to } \\ 5.0 \end{gathered}$	$\begin{gathered} 0.1 \text { to } \\ 10 \end{gathered}$		$\begin{gathered} 0.2 \text { to } \\ 5.0 \end{gathered}$	$\begin{gathered} 0.1 \text { to } \\ 10 \end{gathered}$		
INPUT CHARACTERISTICS								
Input Voltage Input Impedance	(For Rated Performance) (All Inputs)	$\begin{gathered} 0 \\ 98 \end{gathered}$	100	10	$\begin{gathered} 0 \\ 98 \end{gathered}$	100	10	$\begin{gathered} \mathrm{V} \\ \mathrm{k} \Omega \end{gathered}$
OUTPUT CHARACTERISTICS								
Output Swing Output Impedance Supply Current	$\begin{aligned} & \left(R_{\mathrm{L}} \leq 10 \mathrm{k}\right) \\ & \left(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\right)(\text { Note } 1) \end{aligned}$	10	$\begin{aligned} & 12 \\ & 1.0 \\ & 3.0 \\ & \hline \end{aligned}$	5.0	10	$\begin{aligned} & 12 \\ & 1.0 \\ & 3.0 \\ & \hline \end{aligned}$	5.0	$\begin{gathered} \mathrm{V} \\ \Omega \\ \mathrm{~mA} \\ \hline \end{gathered}$

Note 1: Refer to RETS0094D drawing for specifications of the military LH00940 version.

## Applications Information

## GENERAL INFORMATION

Power supply bypass capacitors ( $0.1 \mu \mathrm{~F}$ ) are recommended for all applications.
The LH0094 series is designed for positive input signals only. However, negative input up to the supply voltage will not damage the device.
A clamp diode (Figure 1) is recommended for those applications in which the inputs may be subjected to open circuit or negative input signals.

For basic applications (multiply, divide, square, square root) it is possible to use the device without any external adjustments or components. Two matched resistors are provided internally to set m for square or square root.

When using external resistors to set m, such resistors should be as close to the device as possible.

## SELECTION OF RESISTORS TO SET m

## Internal Matched Resistors

$\mathrm{R}_{\mathrm{A}}$ and $\mathrm{R}_{\mathrm{B}}$ are matched internal resistors. They are $100 \Omega \pm 10 \%$, but matched to $0.1 \%$.
(a) $m=2^{*}$

(b) $m=0.5^{*}$


TL/H/5695-2
*No external resistors required, strap as indicated

## External Resistors

The exponent is set by 2 external resistors or it may be continuously varied by a single trim pot. (R1 + R2 $\leq 500 \Omega$.
(a) $m=1$


TL/H/5695-3
(b) $\mathrm{m}<1$


$$
m=\frac{R 2}{R 1+R 2} R 1+R 2 \approx 200 \Omega
$$

(c) $m>1$


$$
m=\frac{R 1+R 2}{R 2}
$$

TL/H/5695-4

## ACCURACY (ERROR)

The accuracy of the LH0094 is specified for both externally adjusted and unadjusted cases.
Although it is customary to specify the errors in percent of full-scale (10V), it is seen from the typical performance curves that the actual errors are in percent of reading. Thus, the specified errors are overly conservative for small input voltages. An example of this is the LH0094 used in the multiplication mode. The specified typical error is $0.25 \%$ of fullscale ( 25 mV ). As seen from the curve, the unadjusted error is $\approx 25 \mathrm{mV}$ at 10 V input, but the error is less than 10 mV for inputs up to 1 V . Note also that if either the multiplicand or the multiplier is at less than 10 V , ( 5 V for example) the unadjusted error is less. Thus, the errors specified are at full-scale-the worst case.

The LH0094 is designed such that the user is able to externally adjust the gain and offset of the device-thus trim out all of the errors of conversion. In most applications, the gain adjustment is the only external trim needed for super accu-racy-except in division mode, where a denominator offset adjust is needed for small denominator voltages.

## EXPONENTS

The LH0094 is capable of performing roots to 0.1 and powers up to 10 . However, care should be taken when applying these exponent-otherwise, results may be misinterpreted. For example, consider the $1 / 10$ th power of a number: i.e., 0.001 raised to 0.1 power is $0.5011 ; 0.1$ raised to the 0.1 power is 0.7943 ; and 10 raised to the 0.1 power is 1.2589 . Thus, it is seen that while the input has changed 4 decades, the output has only changed a little more than a factor of 2 . It is also seen that with as little as 1 mV of offset, the output will also be greater than zero with zero input.

## Applications Information (Continued)

## 1. CLAMP DIODE CONNECTION


$E_{O}=V_{y}\left(\frac{V_{z}}{V_{X}}\right)^{m}$
$0.1 \leq \mathrm{m} \leq 10$
Note. This clamp diode connection is recommended for those applications in which the inputs may be subject to open circuit or negative signals.

FIGURE 1. Clamp Diode Connection

## 2. MULTIPLY



FIGURE 2a. LH0094 Used to Multiply (No External Adjustment)


FIGURE 2b. Typical Performance of LH0094 in Multiply Mode Without External Adjustment


$$
\frac{V_{y} V_{z}}{10} \quad m=1
$$

Trim Procedure
Set $V_{Z}=V_{Y}=10 \mathrm{~V}$
Adjust R2 until output $=10.000 \mathrm{~V}$

FIGURE 3. Precision Multiplier (0.02\% Typ) with 1 External Adjustment

## Applications Information (Continued)



FIGURE 4a. LH0094 Used to Divide (No External Adjustment)


FIGURE 4b. Typical Performance, Divide Mode, Without External Adjustments

Trim Procedures
Apply 10 V to $\mathrm{V}_{\mathrm{Y}}, 0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{X}}$ and $\mathrm{V}_{\mathrm{Z}}$. Adjust R3 until $\mathrm{E}_{\mathrm{O}}=10.000 \mathrm{~V}$.

Apply 10.000 V to all inputs.
Adjust R2 until $\mathrm{E}_{\mathrm{O}}=10.000 \mathrm{~V}$
Repeat procedure.


FIGURE 5. Precision Divider (0.05\% Typ)

## 4. SQUARE



FIGURE 6a. Basic Connection of LH0094 $(\mathrm{m}=2)$ without External Adjustment Using Internal Resistors to Set m


TL/H/5695-6
FIGURE 6b. Squaring Mode without External Adjustment

## Applications Information (Continued)

4. SQUARE (Continued)



FIGURE 7. Precision Squaring Circuit (0.15\% Typ)
5. SQUARE ROOT


FIGURE 8a. Basic Connection of LH0094 ( $\mathrm{m}=0.5$ ) without External Adjustment Using Internal Resistors to Set m



FIGURE 8b. Typical Performance Curve Square Root, No External Adjustment


FIGURE 9. Precision Square Rooter (0.15\% Typ)

## Applications Informat̂ion (Continued)

6. LOW LEVEL SQUARE ROOT

## Typical Applications



FIGURE 11. Precision Exponentiator ( $\mathrm{m}=0.2$ to 5 )

Typical Applications (Continued)


Note. The LH0094 may be used to generate a voltage equivalent to:

$$
\begin{aligned}
& V 0=\sqrt{V 1^{2}+V 2^{2}} \\
& V 0=V 2+\frac{V 1^{2}}{V 0+V 2} \\
& V 0^{2}+V 0 V 2=V 2 V 0+V 2^{2}+V 1^{2} \\
& V 0^{2}=V 1^{2}+V 2^{2} \\
& \therefore V 0=\sqrt{V 1^{2}+V 2^{2}} \quad V 1, V 20 \rightarrow 10 V \\
& R \approx 10 \mathrm{k}
\end{aligned}
$$

National Semiconductor resistor array RA08-10k is recommended
FIGURE 12. Vector Magnitude Function


Note. The LH0094 may be used in direct measurement of gas flow.

$$
\begin{gathered}
\text { Flow }=k \sqrt{\frac{P \Delta P}{T}} \\
E_{O}=10 \frac{V_{P}}{V_{T}} \times \frac{V_{\Delta P}}{E_{O}} \\
E_{O}{ }^{2}=10 \frac{V_{P} V_{\Delta P}}{V T} \\
E_{O}=\sqrt{10 \frac{V P V_{\Delta P}}{V T}} \\
P=\text { Absolute pressure } \\
T=\text { Absolute temperature } \\
\Delta P=\text { Pressure drop }
\end{gathered}
$$

FIGURE 13. Mass Gas Flow Circuit

Typical Applications (Continued)


Note. The LH0094 may also be used to generate the Log of a ratio of 2 voltages. The output is taken from pin 14 of the LH0094 for the Log application.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{LOG}}=\mathrm{K} 1 \frac{\mathrm{KT}}{\mathrm{q}} \ell \mathrm{n} \frac{\mathrm{~V}_{\mathrm{Z}}}{\mathrm{~V}_{\mathrm{X}}} \\
& \text { where } \mathrm{K} 1=\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2} \\
& \text { If } \mathrm{K} 1=\frac{1}{\mathrm{KT} / \mathrm{q} \ell \mathrm{n} 10} \\
& \text { then } \mathrm{E}_{\mathrm{LOG}}=\log _{10} \frac{V_{\mathrm{Z}}}{\mathrm{~V}_{\mathrm{X}}} \\
& \mathrm{R} 1=15.9 \mathrm{R} 2 \\
& \mathrm{R} 2 \approx 400 \Omega
\end{aligned}
$$

R2 must be a thermistor with a tempco of $\approx 0.33 \% /{ }^{\circ} \mathrm{C}$ to be compensated over temperature.

FIGURE 14. Log Amp Application

Section 6
Temperature Sensors

## Section 6 Contents

Temperature Sensor Selection Guide ......................................................... . 6-3
LM34/LM34A/LM34C/LM34CA/LM34D Precision Fahrenheit Temperature Sensors ....... 6-4
LM35/LM35A/LM35C/LM35CA/LM35D Precision Centigrade Temperature Sensors ....... . 6-12
LM135/LM235/LM335/LM135A/LM235A/LM335A Precision Temperature Sensors . . . . . . . . 6-21
LM3911 Temperature Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30

$\text { National } \begin{aligned} & \text { Nemiconductor } \\ & \text { Corporation } \end{aligned}$			
Temperature Sensor Selection Guide			
Part	Temp. Range	*Accuracy	Output Scale
LM34A	$-50^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$	$\pm 2.0^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$
LM34	$-50^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$	$\pm 3.0{ }^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$
LM34CA	$-40^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F}$	$\pm 2.0^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$
LM34C	$-40^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F}$	$\pm 3.0^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$
LM34D	$+32^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$	$\pm 4.0^{\circ} \mathrm{F}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$
LM35A	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\pm 1.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
LM35	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\pm 1.5^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
LM35CA	$-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$	$\pm 1.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
LM35C	$-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$	$\pm 1.5^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
LM35D	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
LM134-3	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 3.0^{\circ} \mathrm{C}$	$\mathrm{ISET}{ }^{\circ} \mathrm{k}$
LM134-6	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 6.0^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {SET }} \propto{ }^{\circ} \mathrm{k}$
LM234-3	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 3.0{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {SET }} \propto{ }^{\circ} \mathrm{k}$
LM234-6	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 6.0^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {SET }} \propto{ }^{\circ} \mathrm{k}$
LM135A	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\pm 1.3^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{k}$
LM135	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{k}$
LM235A	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1.3^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{k}$
LM235	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{k}$
LM335A	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 2.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{k}$
LM335	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 4.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{k}$
LM3911	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 10.0^{\circ} \mathrm{C}$	$10 \mathrm{mV} /{ }^{\circ} \mathrm{k}$ (or ${ }^{\circ} \mathrm{F}$ )

*Note: Accuracy is measured over $T(M i n)$ to $T($ Max $)$ uncalibrated
Note: The LM134/234/334 3-Terminal Adjustable current sources Datasheet can be found in Linear 1, Section 1.

National Semiconductor Corporation

# LM34/LM34A/LM34C/LM34CA/LM34D Precision Fahrenheit Temperature Sensors 

## General Description

The LM34 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Fahrenheit temperature. The LM34 thus has an advantage over linear temperature sensors calibrated in degrees Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Fahrenheit scaling. The LM34 does not require any external calibration or trimming to provide typical accuracies of $\pm 1 / 2^{\circ} \mathrm{F}$ at room temperature and $\pm 112^{\circ} \mathrm{F}$ over a full -50 to $+300^{\circ} \mathrm{F}$ temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM34's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies or with plus and minus supplies. As it draws only $70 \mu \mathrm{~A}$ from its supply, it has very low self-heating, less than $0.2^{\circ} \mathrm{F}$ in still air. The LM34 is rated to operate over a $-50^{\circ}$ to $+300^{\circ} \mathrm{F}$ temperature range, while the LM 34 C is rated for a $-40^{\circ}$ to $+230^{\circ} \mathrm{F}$ range ( $0^{\circ} \mathrm{F}$ with improved accuracy). The LM34 series is available packaged in hermetic TO-46 transistor packages,

## Connection Diagrams

TO-46
Metal Can Package*


TL/H/6685-1
*Case is connected to negative pin.
Order Numbers LM34H, LM34AH, LM34CH, LM34CAH or LM34DH
See NS Package Number H03H

TO-92
Plastic Package


BOTTOM VIEW
TL/H/6685-2
Order Number LM34CZ or LM34DZ
See NS Package Number Z03A
while the LM34C is also available in the plastic TO-92 transistor package. The LM34 is a complement to the LM35 (Centigrade) temperature sensor.

## Features

- Calibrated directly in degrees Fahrenheit
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{F}$ scale factor
- $1.0^{\circ} \mathrm{F}$ accuracy guaranteed (at $+77^{\circ} \mathrm{F}$ )
- Rated for full $-50^{\circ}$ to $+300^{\circ} \mathrm{F}$ range
- Suitable for remote applications

■ Low cost due to wafer-level trimming
■ Operates from 5 to 30 volts

- Less than $70 \mu \mathrm{~A}$ current drain
- Low self-heating, $0.18^{\circ} \mathrm{F}$ in still air
- Nonlinearity only $\pm 0.5^{\circ} \mathrm{F}$ typical
. Low-impedance output, $0.4 \Omega$ for 1 mA load


## Typical Applications



TL/H/6685-3
FIGURE 1. Basic Fahrenheit Temperature Sensor
$\left(+5^{\circ}\right.$ to $\left.+300^{\circ} \mathrm{F}\right)$


CHOOSE $\mathrm{R}_{1}=\left(-\mathrm{V}_{\mathrm{S}}\right) / 50 \mu \mathrm{~A}$ $V_{\text {OUT }}=+3,000 \mathrm{mVAT}+300^{\circ} \mathrm{F}$ $=+750 \mathrm{mV}$ AT $+75^{\circ} \mathrm{F}$
$=-500 \mathrm{mV}$ AT $-50^{\circ} \mathrm{F}$

TL/H/6685-4
FIGURE 2. Full-Range Fahrenheit Temperature Sensor

Absolute Maximum Ratings (Note 10)
If Milltary/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	+35 V to -0.2 V
Output Voltage	+6 V to -1.0 V
Output Current	10 mA
Storage Temperature,	
TO-46 Package	$-76^{\circ} \mathrm{F}$ to $+356^{\circ} \mathrm{F}$
TO-92 Package	$-76^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$

Lead Temp. (Soldering, 10 seconds)

TO-46 Package	$+300^{\circ} \mathrm{C}$
TO-92 Package	$+260^{\circ} \mathrm{C}$

Specified Operating Temp. Range (Note 2)
$T_{\text {MIN }}$ to $T_{\text {MAX }}$
LM34, LM34A $\quad-50^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$
LM34C, LM34CA $\quad-40^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F}$
LM34D
$+32^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$

## DC Electrical Characteristics (Note 1, Note 6)

Parameter	Conditions	LM34A			LM34CA			Units (Max)
		Typical	Tested Limit (Note 4)	Design Limit   (Note 5)	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	
Accuracy (Note 7)	$\begin{aligned} & T_{A}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{A}=0^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.6 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \\ & \pm 2.0 \end{aligned}$		$\begin{aligned} & \pm 0.4 \\ & \pm 0.6 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 3.0 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	$\pm 0.35$		$\pm 0.7$	$\pm 0.30$		$\pm 0.6$	${ }^{\circ} \mathrm{F}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.9 \\ +10.1 \end{array}$		+10.0		$\begin{array}{r} +9.9 \\ +10.1 \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{F}, \min$   $\mathrm{mV} /{ }^{\circ} \mathrm{F}$, max
Load Regulation (Note 3)	$\begin{aligned} & T_{A}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \\ & 0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 0.4 \\ \pm 0.5 \end{gathered}$	$\pm 1.0$	$\pm 3.0$	$\begin{array}{r}  \pm 0.4 \\ \pm \mathbf{0 . 5} \end{array}$	$\pm 1.0$	$\pm 3.0$	$\mathrm{mV} / \mathrm{mA}$   $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	$\pm 0.05$	$\pm 0.1$	$\begin{aligned} & \pm 0.01 \\ & \pm \mathbf{0 . 0 2} \end{aligned}$	$\pm 0.05$	$\pm 0.1$	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \end{aligned}$	$\begin{gathered} 75 \\ \mathbf{1 3 1} \\ 76 \\ \mathbf{1 3 2} \end{gathered}$	90   92	$\begin{aligned} & 160 \\ & 163 \end{aligned}$	$\begin{gathered} 75 \\ 116 \\ 76 \\ 117 \end{gathered}$	90   92	$\begin{aligned} & 139 \\ & 142 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{array}{r} +0.5 \\ +\mathbf{1 . 0} \end{array}$	2.0	3.0	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	2.0	3.0	$\mu \mathrm{A}$   $\mu \mathrm{A}$
Temperature Coefficient of Quiescent Current		+0.30		+ 0.5	+0.30		+ 0.5	$\mu \mathrm{A} /{ }^{\circ} \mathrm{F}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $I_{L}=0$	+3.0		+5.0	+3.0		+ 5.0	${ }^{\circ} \mathrm{F}$
Long-Term Stability	$T_{j}=T_{\text {MAX }}$ for 1000 hours	$\pm 0.16$			$\pm 0.16$			${ }^{\circ} \mathrm{F}$

Note 1: Unless otherwise noted, these specifications apply: $-50^{\circ} \mathrm{F} \leq T_{j} \leq+300^{\circ} \mathrm{F}$ for the LM34 and LM34A; $-40^{\circ} \mathrm{F} \leq T_{j} \leq+230^{\circ} \mathrm{F}$ for the LM34C and LM34CA; and $+32^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+212^{\circ} \mathrm{F}$ for the LM34D. $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}$ and $\mathrm{L}_{\mathrm{LOAD}}=50 \mu \mathrm{~A}$ in the circuit of Figure $2 ;+6 \mathrm{Vdc}$ for LM 34 and LM 34 A for $230^{\circ} \mathrm{F} \leq \mathrm{T}_{j} \leq$ $300^{\circ} \mathrm{F}$. These specifications also apply from $+5^{\circ} \mathrm{F}$ to $\mathrm{T}_{\text {MAX }}$ in the circuit of Figure 1.
Note 2: Thermal resistance of the TO-46 package is $292^{\circ} \mathrm{F} / \mathrm{W}$ junction to ambient and $43^{\circ} \mathrm{F} / \mathrm{W}$ junction to case. Thermal resistance of the TO-92 package is $324^{\circ} \mathrm{F} / \mathrm{W}$ junction to ambient.
Note 3: Regulation is measured at constant junction temperature using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 4: Tested limits are guaranteed and $100 \%$ tested in production.
Note 5: Design limits are guaranteed (but not $100 \%$ production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 6: Specification in BOLDFACE TYPE apply over the full rated temperature range.
Note 7: Accuracy is defined as the error between the output voltage and $10 \mathrm{mV} /{ }^{\circ} \mathrm{F}$ times the device's case temperature at specified conditions of voltage, current, and temperature (expressed in ${ }^{\circ} \mathrm{F}$ ).
Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line over the device's rated temperature range.
Note 9: Quiescent current is defined in the circuit of Figure 1.
Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions (see Note 1).

DC Electrical Characteristics (Note 1, Note 6) (Continued)

Parameter	Conditions	LM34			LM34C, LM34D			Units (Max)
		Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	
Accuracy, LM34, LM34C (Note 7)	$\begin{aligned} & T_{A}=+77^{\circ} \mathrm{F} \\ & T_{A}=0^{\circ} \mathrm{F} \\ & T_{A}=T_{\text {MAX }} \\ & T_{A}=T_{\mathrm{MIN}} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.8 \\ & \pm 1.0 \\ & \pm 1.6 \\ & \pm 1.6 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 3.0 \end{aligned}$	$\pm 3.0$	$\begin{aligned} & \pm 0.8 \\ & \pm 1.0 \\ & \pm 1.6 \\ & \pm 1.6 \\ & \hline \end{aligned}$	$\pm 2.0$	$\begin{aligned} & \pm 3.0 \\ & \pm 3.0 \\ & \pm 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \end{aligned}$
Accuracy, LM34D (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$				$\begin{aligned} & \pm 1.2 \\ & \pm 1.8 \\ & \pm 1.8 \\ & \hline \end{aligned}$	$\pm 3.0$	$\begin{aligned} & \pm 4.0 \\ & \pm 4.0 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \\ & { }^{\circ} \mathrm{F} \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	$\pm 0.6$		$\pm 1.0$	$\pm 0.4$		$\pm 1.0$	${ }^{\circ} \mathrm{F}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.8 \\ +10.2 \\ \hline \end{array}$		$+10.0$		$\begin{array}{r} +9.8 \\ +10.2 \\ \hline \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{F}, \min$ $\mathrm{mV} /{ }^{\circ} \mathrm{F}, \max$
Load Regulation (Note 3)	$\begin{aligned} & T_{A}=+77^{\circ} \mathrm{F} \\ & T_{\text {MIN }} \leq T_{A} \leq+150^{\circ} \mathrm{F} \\ & 0 \leq \mathrm{L}_{\mathrm{L}} \leq 1 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{array}{r}  \pm 0.4 \\ \pm \mathbf{0 . 5} \end{array}$	$\pm 2.5$	$\pm 6.0$	$\begin{array}{r}  \pm 0.4 \\ \pm \mathbf{0 . 5} \end{array}$	$\pm 2.5$	$\pm 6.0$	$\mathrm{mV} / \mathrm{mA}$   $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	$\pm 0.1$	$\pm 0.2$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	$\pm 0.1$	$\pm 0.2$	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & V_{\mathrm{S}}=+5 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 75 \\ 131 \\ 76 \\ \mathbf{1 3 2} \\ \hline \end{gathered}$	$\begin{aligned} & 100 \\ & 103 \end{aligned}$	$\begin{array}{r} 176 \\ 181 \\ \hline \end{array}$	$\begin{gathered} 75 \\ 116 \\ 76 \\ 117 \\ \hline \end{gathered}$	$\begin{aligned} & 100 \\ & 103 \end{aligned}$	$\begin{array}{r} 154 \\ 159 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+77^{\circ} \mathrm{F} \\ & 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} +0.5 \\ +\mathbf{1 . 0} \\ \hline \end{array}$	3.0	5.0	$\begin{aligned} & 0.5 \\ & 1.0 \\ & \hline \end{aligned}$	3.0	5.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Temperature Coefficient of Quiescent Current		+0.30		+ 0.7	+0.30		+ 0.7	$\mu \mathrm{A} /{ }^{\circ} \mathrm{F}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $I_{L}=0$	+3.0		+ 5.0	+3.0		+5.0	${ }^{\circ} \mathrm{F}$
Long-Term Stability	$\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {MAX }}$ for 1000 hours	$\pm 0.16$			$\pm 0.16$			${ }^{\circ} \mathrm{F}$



## Typical Applications

The LM34 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about $0.02^{\circ} \mathrm{F}$ of the surface temperature. This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM34 die would be at an intermediate temperature between the surface temperature and the air temperature. This is expecially true for the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, so its temperature might be closer to the air temperature than to the surface temperature.
To minimize this problem, be sure that the wiring to the LM34, as it leaves the device, is held at the same temperature as the surface of interest. The easiest way to do this is to cover up these wires with a bead of epoxy which will insure that the leads and wires are all at the same temperature as the surface, and that the LM34 die's temperature will not be affected by the air temperature.
The TO-46 metal package can also be soldered to a metal surface or pipe without damage. Of course in that case, the $V_{-}$terminal of the circuit will be grounded to that metal. Alternatively, the LM34 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM34 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often
used to insure that moisture cannot corrode the LM34 or its connections.
These devices are sometimes soldered to a small, lightweight heat fin to decrease the thermal time constant and speed up the response in slowly-moving air. On the other hand, a small thermal mass may be added to the sensor to give the steadiest reading despite small deviations in the air temperature.

## Capacitive Loads

Like most micropower circuits, the LM34 has a limited ability to drive heavy capacitive loads. The LM34 by itself is able to drive 50 pF without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see Figure 3. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see Figure 4. When the LM34 is applied with a $499 \Omega$ load resistor (as shown), it is relatively immune to wiring capacitance because the capacitance forms a bypass from ground to input, not on the output. However, as with any linear circuit connected to wires in a hostile environment, its performance can be affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR's transients, etc., as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass capacitor from $\mathrm{V}_{\mathrm{IN}}$ to ground and a series R-C damper such as $75 \Omega$ in series with 0.2 or $1 \mu \mathrm{~F}$ from output to ground are often useful. These are shown in the following circuits.


TL/H/6685-7
FIGURE 3. LM34 with Decoupling from Capacitive Load


TL/H/6685-8
FIGURE 4. LM34 with R-C Damper
Temperature Rise of LM34 Due to Self-Heating (Thermal Resistance)

Conditions	TO-46,   No Heat Sink	TO-46,   Small Heat Fin*	TO-92,   No Heat Sink	TO-92,   Small Heat Fin**
Still air	$720^{\circ} \mathrm{F} / \mathrm{W}$	$180^{\circ} \mathrm{F} / \mathrm{W}$	$324^{\circ} \mathrm{F} / \mathrm{W}$	$252^{\circ} \mathrm{F} / \mathrm{W}$
Moving air	$180^{\circ} \mathrm{F} / \mathrm{W}$	$72^{\circ} \mathrm{F} / \mathrm{W}$	$162^{\circ} \mathrm{F} / \mathrm{W}$	$126^{\circ} \mathrm{F} / \mathrm{W}$
Still oil	$180^{\circ} \mathrm{F} / \mathrm{W}$	$72^{\circ} \mathrm{F} / \mathrm{W}$	$162^{\circ} \mathrm{F} / \mathrm{W}$	$126^{\circ} \mathrm{F} / \mathrm{W}$
Stirred oil	$90^{\circ} \mathrm{F} / \mathrm{W}$	$54^{\circ} \mathrm{F} / \mathrm{W}$	$81^{\circ} \mathrm{F} / \mathrm{W}$	$72^{\circ} \mathrm{F} / \mathrm{W}$
(Clamped to metal, infinite heat sink)	$\left(43^{\circ} \mathrm{F} / \mathrm{W}\right)$			

[^18]
## Typical Applications (Continued)

## Two-Wire Remote Temperature Sensor

 (Grounded Sensor)

TL/H/6685-9


TL/H/6685-11

Expanded Scale Thermometer ( $50^{\circ}$ to $80^{\circ}$ Fahrenheit, for Example Shown)


TL/H/6685-13

Two-Wire Remote Temperature Sensor (Output Referred to Ground)


TL/H/6685-10

Fahrenheit Thermometer (Analog Meter)


TL/H/6685-12

Temperature-to-Digital Converter (Serial Output, $+128^{\circ}$ F Full Scale)


## Typical Applications (Continued)

LM34 with Voltage-to-Frequency Converter and Isolated Output ( $3^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F} ; \mathbf{3 0 ~ H z}$ to $\mathbf{3 0 0 0 ~ H z}$ )


TL/H/6685-15


[^19]
## Typical Applications (Continued)

Temperature-to-Digital Converter
(Parallel TRI-STATE ${ }^{\oplus}$ Outputs for Standard Data Bus to $\mu \mathbf{P}$ Interface, $128^{\circ}$ F Full Scale)


L/H/6685-17

Temperature Controller


TL/H/6685-18

## Block Diagram



National Semiconductor Corporation

## LM35/LM35A/LM35C/LM35CA/LM35D Precision Centigrade Temperature Sensors

## General Description

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in ${ }^{\circ}$ Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of $\pm 1 / 4^{\circ} \mathrm{C}$ at room temperature and $\pm 3 / 4^{\circ} \mathrm{C}$ over a full -55 to $+150^{\circ} \mathrm{C}$ temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only $60 \mu \mathrm{~A}$ from its supply, it has very low self-heating, less than $0.1^{\circ} \mathrm{C}$ in still air. The LM35 is rated to operate over a $-55^{\circ}$ to $+150^{\circ} \mathrm{C}$ temperature range, while the LM35C is rated for a $-40^{\circ}$ to $+110^{\circ} \mathrm{C}$ range ( $-10^{\circ}$ with improved accuracy). The LM35 series is

## Connection Diagrams

## TO-46 <br> Metal Can Package*



TL/H/5516-1
*Case is connected to negative pin
Order Number LM35H, LM35AH, LM35CH, LM35CAH or LM35DH See NS Package Number H 03 H

TO-92
Plastic Package


BOTTOM VIEW
TL/H/5516-2
Order Number LM35CZ or LM35DZ See NS Package Number Z03A
available packaged in hermetic TO-46 transistor packages, while the LM35C is also available in the plastic TO-92 transistor package.

## Features

- Calibrated directly in ${ }^{\circ}$ Celsius (Centigrade)
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ scale factor
- $0.5^{\circ} \mathrm{C}$ accuracy guaranteeable (at $+25^{\circ} \mathrm{C}$ )
- Rated for full $-55^{\circ}$ to $+150^{\circ} \mathrm{C}$ range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4 to 30 volts
- Less than $60 \mu \mathrm{~A}$ current drain

■ Low self-heating, $0.08^{\circ} \mathrm{C}$ in still air

- Nonlinearity only $\pm 1 / 4^{\circ} \mathrm{C}$ typical
- Low impedance output, $0.1 \Omega$ for 1 mA load


## Typical Applications



TL/H/5516-3
FIGURE 1. Basic Centigrade Temperature Sensor ( $+\mathbf{2}^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ )


FIGURE 2. Full-Range Centigrade Temperature Sensor

## Absolute Maximum Ratings (Note 10)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Voltage

$$
\begin{array}{r}
+35 \mathrm{~V} \text { to }-0.2 \mathrm{~V} \\
+6 \mathrm{~V} \text { to }-1.0 \mathrm{~V} \\
10 \mathrm{~mA} \\
-60^{\circ} \mathrm{C} \text { to }+180^{\circ} \mathrm{C} \\
-60^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
$$

Output Current
Storage Temp., TO-46 Package,

Lead Temp. (Soldering, 10 seconds):

$$
\begin{array}{ll}
\text { TO-46 Package, } & 300^{\circ} \mathrm{C} \\
\text { TO-92 Package, } & 260^{\circ} \mathrm{C}
\end{array}
$$

Specified Operating Temperature Range: $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Note 2)
LM35, LM35A
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM35C, LM35CA
$-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1) (Note 6)

Parameter	Conditions	LM35A			LM35CA			Units   (Max.)
		Typical		Design Limit (Note 5)	Typical		Design Limit (Note 5)	
Accuracy   (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.3 \\ & \pm 0.4 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \\ & \pm 1.0 \end{aligned}$		$\begin{aligned} & \pm 0.2 \\ & \pm 0.3 \\ & \pm 0.4 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Nonlinearity (Note 8)	$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$	$\pm 0.18$		$\pm 0.35$	$\pm 0.15$		$\pm 0.3$	${ }^{\circ} \mathrm{C}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.9 \\ +10.1 \end{array}$		+ 10.0		$\begin{array}{r} +9.9 \\ +10.1 \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Load Regulation $\text { (Note 3) } 0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA}$	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm \mathbf{0 . 5} \end{aligned}$	$\pm 1.0$	$\pm 3.0$	$\begin{array}{r}  \pm 0.4 \\ \pm \mathbf{0 . 5} \end{array}$	$\pm 1.0$	$\pm 3.0$	$\mathrm{mV} / \mathrm{mA}$   $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	$\pm 0.05$	$\pm 0.1$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	$\pm 0.05$	$\pm 0.1$	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & V_{S}=+5 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & V_{\mathrm{S}}=+5 \mathrm{~V} \\ & V_{\mathrm{S}}=+30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & V_{\mathrm{S}}=+30 \mathrm{~V} \end{aligned}$	$\begin{gathered} 56 \\ \mathbf{1 0 5} \\ 56.2 \\ \mathbf{1 0 5 . 5} \end{gathered}$	67   68	$\begin{aligned} & 131 \\ & 133 \end{aligned}$	$\begin{gathered} 56 \\ 91 \\ 56.2 \\ \mathbf{9 1 . 5} \end{gathered}$	67   68	$\begin{aligned} & 114 \\ & 116 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{S} \leq 30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{S} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	1.0	2.0	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	1.0	2.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Temperature Coefficient of Quiescent Current		+0.39		+ 0.5	+0.39		+ 0.5	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Minimum Temperature for Rated Accuracy	In circuit of Figure $1, \mathrm{I}_{\mathrm{L}}=0$	+1.5		+2.0	+1.5		+2.0	${ }^{\circ} \mathrm{C}$
Long Term Stability	$\begin{gathered} T_{J}=T_{\text {MAX }} \text {, for } \\ 1000 \text { hours } \end{gathered}$	$\pm 0.08$			$\pm 0.08$			${ }^{\circ} \mathrm{C}$

Note 1: Unless otherwise noted, these specifications apply: $-55^{\circ} \mathrm{C} \leq T_{J} \leq+150^{\circ} \mathrm{C}$ for the LM 35 and LM35A; $-40^{\circ} \leq T_{J} \leq+110^{\circ} \mathrm{C}$ for the LM35C and LM35CA; and $0^{\circ} \leq T_{J} \leq+100^{\circ} \mathrm{C}$ for the LM35D. $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}$ and $\mathrm{I}_{\text {LOAD }}=50 \mu \mathrm{~A}$, in the circuit of Figure 2 . These specifications also apply from $+2^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}$ in the circuit of Figure 1. Specifications in boldface apply over the full rated temperature range.
Note 2: Thermal resistance of the TO-46 package is $440^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, and $24^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.

Electrical Characteristics (Note 1) (Note 6) (Continued)

Parameter	Conditions	LM35			LM35C, LM35D			Units   (Max.)
		Typical		Design Limit (Note 5)	Typical			
Accuracy, LM35, LM35C (Note 7)	$\begin{aligned} & \mathrm{T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-10^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 1.5 \end{aligned}$	$\pm 1.5$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \\ & \pm 0.8 \\ & \pm 0.8 \end{aligned}$	$\pm 1.0$	$\begin{aligned} & \pm 1.5 \\ & \pm 1.5 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Accuracy,   LM35D   (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \\ & \hline \end{aligned}$				$\begin{aligned} & \pm 0.6 \\ & \pm 0.9 \\ & \pm 0.9 \end{aligned}$	$\pm 1.5$	$\begin{aligned} & \pm 2.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	$\pm 0.3$		$\pm 0.5$	$\pm 0.2$		$\pm 0.5$	${ }^{\circ} \mathrm{C}$
Sensor Gain   (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{array}{r} +9.8 \\ +10.2 \end{array}$		+10.0		$\begin{array}{r} +9.8 \\ +10.2 \end{array}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Load Regulation (Note 3) $0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{array}{r}  \pm 0.4 \\ \pm \mathbf{0 . 5} \end{array}$	$\pm 2.0$	$\pm 5.0$	$\begin{aligned} & \pm 0.4 \\ & \pm \mathbf{0 . 5} \end{aligned}$	$\pm 2.0$	$\pm 5.0$	$\mathrm{mV} / \mathrm{mA}$   $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	$\pm 0.1$	$\pm 0.2$	$\begin{gathered} \pm 0.01 \\ \pm \mathbf{0 . 0 2} \end{gathered}$	$\pm 0.1$	$\pm 0.2$	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 56 \\ 105 \\ 56.2 \\ \mathbf{1 0 5 . 5} \end{gathered}$	80   82	$\begin{array}{r} 158 \\ 161 \\ \hline \end{array}$	$\begin{gathered} 56 \\ \mathbf{9 1} \\ 56.2 \\ \mathbf{9 1 . 5} \end{gathered}$	80   82	$\begin{array}{r} 138 \\ 141 \\ \hline \end{array}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{S} \leq 30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{S} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	2.0	3.0	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	2.0	3.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Temperature Coefficient of Quiescent Current		+0.39		+0.7	+0.39		$+0.7$	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $\mathrm{I}_{\mathrm{L}}=0$	+1.5		+2.0	+1.5		+2.0	${ }^{\circ} \mathrm{C}$
Long Term Stability	$\begin{gathered} T_{J}=T_{\text {MAX }} \text {, for } \\ 1000 \text { hours } \end{gathered}$	$\pm 0.08$			$\pm 0.08$			${ }^{\circ} \mathrm{C}$

Note 3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 4: Tested Limits are guaranteed and $100 \%$ tested in production.
Note 5: Design Limits are guaranteed (but not $100 \%$ production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 6: Specifications in boldface apply over the full rated temperature range.
Note 7: Accuracy is defined as the error between the output voltage and $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ times the device's case temperature, at specified conditions of voltage, current, and temperature (expressed in ${ }^{\circ} \mathrm{C}$ ).
Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.
Note 9: Quiescent current is defined in the circuit of Figure 1.
Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 1.

## Typical Performance Characteristics




Quiescent Current
vs. Temperature
(In Circuit of Figure 2.)



Minimum Supply
Voltage vs. Temperature


Accuracy vs. Temperature (Guaranteed)


Thermal Response in Still Air


Quiescent Current
vs. Temperature
(In Circuit of Figure 1.)


TL/H/5516-17

Accuracy vs. Temperature (Guaranteed)


TL/H/5516-18

## Applications

The LM35 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about $0.01^{\circ} \mathrm{C}$ of the surface temperature.
This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM35 die would be at an intermediate temperature between the surface temperature and the air temperature. This is expecially true for the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, so its temperature might be closer to the air temperature than to the surface temperature.
To minimize this problem, be sure that the wiring to the LM35, as it leaves the device, is held at the same temperature as the surface of interest. The easiest way to do this is to cover up these wires with a bead of epoxy which will insure that the leads and wires are all at the same temperature as the surface, and that the LM35 die's temperature will not be affected by the air temperature.

The TO-46 metal package can also be soldered to a metal surface or pipe without damage. Of course, in that case the V - terminal of the circuit will be grounded to that metal. Alternatively, the LM35 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM35 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to insure that moisture cannot corrode the LM35 or its connections.

These devices are sometimes soldered to a small lightweight heat fin, to decrease the thermal time constant and speed up the response in slowly-moving air. On the other hand, a small thermal mass may be added to the sensor, to give the steadiest reading despite small deviations in the air temperature

Temperature Rise of LM35 Due To Self-heating (Thermal Resistance)

	TO-46,   no heat sink	TO-46,   small heat fin*	TO-92,   no heat sink	TO-92,   small heat fin**
Still air	$400^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$180^{\circ} \mathrm{C} / \mathrm{W}$	$140^{\circ} \mathrm{C} / \mathrm{W}$
Moving air	$100^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$70^{\circ} \mathrm{C} / \mathrm{W}$
Still oil	$100^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$70^{\circ} \mathrm{C} / \mathrm{W}$
Stirred oil	$50^{\circ} \mathrm{C} / \mathrm{W}$	$30^{\circ} \mathrm{C} / \mathrm{W}$	$45^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$
(Clamped to metal,				
Infinite heat sink)	$\left(24^{\circ} \mathrm{C} / \mathrm{W}\right)$			

*Wakefield type 201, or $\mathbf{1}^{\prime \prime}$ disc of $0.020^{\prime \prime}$ sheet brass, soldered to case, or similar.
** TO-92 package glued and leads soldered to $1^{1 \prime}$ square of $1 / 16^{\prime \prime}$ printed circuit board with 2 oz. foil or similar.

## Typical Applications (Continued)



TL/H/5516-19
FIGURE 3. LM35 with Decoupling from Capacitive Load

## CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited ability to drive heavy capacitive loads. The LM35 by itself is able to drive 50 pf without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see Figure 3. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see Figure 4.
When the LM35 is applied with a $200 \Omega$ load resistor as shown in Figure 5, 6, or 8, it is relatively immune to wiring


FIGURE 4. LM35 with R-C Damper
capacitance because the capacitance forms a bypass from ground to input, not on the output. However, as with any linear circuit connected to wires in a hostile environment, its performance can be affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR transients, etc, as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass capacitor from $\mathrm{V}_{\mathbb{I N}}$ to ground and a series R-C damper such as $75 \Omega$ in series with 0.2 or $1 \mu \mathrm{~F}$ from output to ground are often useful. These are shown in Figures 13, 14, and 16.

Typical Applications (Continued)


TL/H/5516-5
FIGURE 5. Two-Wire Remote Temperature Sensor (Grounded Sensor)


TL/H/5516-7
FIGURE 7. Temperature Sensor, Single Supply, $-55^{\circ}$ to $+150^{\circ} \mathrm{C}$


FIGURE 9. 4-To-20 mA Current Source $\left(\mathbf{0}^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$


TL/H/5516-6
FIGURE 6. Two-Wire Remote Temperature Sensor (Output Referred to Ground)


TL/H/5516-8
FIGURE 8. Two-Wire Remote Temperature Sensor (Output Referred to Ground)


TL/H/5516-10
FIGURE 10. Fahrenheit Thermometer

## Typical Applications (Continued)



TL/H/5516-11
FIGURE 11. Centigrade Thermometer (Analog Meter)


TL/H/5516-12
FIGURE 12. Expanded Scale Thermometer ( $50^{\circ}$ to $80^{\circ}$ Fahrenheit, for Example Shown)


TL/H/5516-13
FIGURE 13. Temperature To Digital Converter (Serial Output) ( $+128^{\circ} \mathrm{C}$ Full Scale)


TL/H/5516-14
FIGURE 14. Temperature To Digital Converter (Parallel TRI-STATE® Outputs for Standard Data Bus to $\mu \mathrm{P}$ Interface) ( $128^{\circ} \mathrm{C}$ Full Scale)

## Typical Applications (Continued)


$*=1 \%$ or $2 \%$ film resistor
-Trim $R_{B}$ for $V_{B}=3.075 \mathrm{~V}$
-Trim $R_{C}$ for $V_{C}=1.955 \mathrm{~V}$

- Trim $R_{A}$ for $V_{A}=0.075 \mathrm{~V}+100 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times T_{\text {ambient }}$
-Example, $V_{A}=2.275 \mathrm{~V}$ at $22^{\circ} \mathrm{C}$
FIGURE 15. Bar-Graph Temperature Display (Dot Mode)

FIGURE 16. LM35 With Voltage-To-Frequency Converter And Isolated Output $\left(2^{\circ} \mathrm{C}\right.$ to $+150^{\circ} \mathrm{C} ; 20 \mathrm{~Hz}$ to 1500 Hz )

Block Diagram


TL/H/5516-21

National Semiconductor Corporation

## LM135/LM235/LM335, LM135A/LM235A/LM335A Precision Temperature Sensors

## General Description

The LM135 series are precision, easily-calibrated, integrated circuit temperature sensors. Operating as a 2-terminal zener, the LM135 has a breakdown voltage directly proportional to absolute temperature at $+10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. With less than $1 \Omega$ dynamic impedance the device operates over a current range of $400 \mu \mathrm{~A}$ to 5 mA with virtually no change in performance. When calibrated at $25^{\circ} \mathrm{C}$ the LM135 has typically less than $1^{\circ} \mathrm{C}$ error over a $100^{\circ} \mathrm{C}$ temperature range. Unlike other sensors the LM135 has a linear output.
Applications for the LM135 include almost any type of temperature sensing over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range. The low impedance and linear output make interfacing to readout or control circuitry especially easy.

The LM135 operates over a $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ temperature range while the LM235 operates over a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM335 operates from $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. The LM135/LM235/LM335 are available packaged in hermetic TO-46 transistor packages while the LM335 is also available in plastic TO-92 packages.

## Features

- Directly calibrated in ${ }^{\circ}$ Kelvin
- $1^{\circ} \mathrm{C}$ initial accuracy available
- Operates from $400 \mu \mathrm{~A}$ to 5 mA
- Less than $1 \Omega$ dynamic impedance
- Easily calibrated
- Wide operating temperature range
- $200^{\circ} \mathrm{C}$ overrange
- Low cost


## Schematic Diagram



TL/H/5698-1

## Connection Diagrams

TO-92
Plastic Package


Order Number LM335Z or LM335AZ See NS Package Number Z03A

TO-46 Metal Can Package*


TL/H/5698-8
*Case is connected to negative pin
Order Number LM135H, LM235H, LM335H, LM135AH, LM235AH or LM335AH See NS Package Number H03H

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
(Note 4)
Reverse Current 15 mA
Forward Current 10 mA
Storage Temperature

```
TO-46 Package
TO-92 Package
\(-60^{\circ} \mathrm{C}\) to \(+180^{\circ} \mathrm{C}\)
\(-60^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
```

Specified Operating Temp. Range

	Continuous	Intermittent   (Note 2)
LM135, LM135A	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$
LM235, LM235A	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LM335, LM335A	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temp. (Soldering, 10 seconds)		
TO-92 Package:	$260^{\circ} \mathrm{C}$	
TO-46 Package:	$300^{\circ} \mathrm{C}$	

## Temperature Accuracy LM135/LM235, LM135A/LM235A (Note 1)

Parameter	Conditions	LM135A/LM235A			LM135/LM235			Units
		Min	Typ	Max	Min	Typ	Max	
Operating Output Voltage	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	2.97	2.98	2.99	2.95	2.98	3.01	V
Uncalibrated Temperature Error	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		1	3	${ }^{\circ} \mathrm{C}$
Uncalibrated Temperature Error	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{C}} \leq \mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		1.3	2.7		2	5	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$ Calibration	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{C}} \leq \mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	1		0.5	1.5	${ }^{\circ} \mathrm{C}$
Calibrated Error at Extended Temperatures	$\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\text {MAX }}$ (Intermittent)		2			2		${ }^{\circ} \mathrm{C}$
Non-Linearity	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	0.5		0.3	1	${ }^{\circ} \mathrm{C}$

Temperature Accuracy Lм 335, Lм 335 A (Note 1)

Parameter	Conditions	LM335A			LM335			Units
		Min	Typ	Max	Min	Typ	Max	
Operating Output Voltage	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	2.95	2.98	3.01	2.92	2.98	3.04	V
Uncalibrated Temperature Error	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		1	3		2	6	${ }^{\circ} \mathrm{C}$
Uncalibrated Temperature Error	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{C}} \leq \mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		2	5		4	9	${ }^{\circ} \mathrm{C}$
Temperature Error with $25^{\circ} \mathrm{C}$ Calibration	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{C}} \leq \mathrm{T}_{\text {MAX }}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5	1		1	2	${ }^{\circ} \mathrm{C}$
Calibrated Error at Extended Temperatures	$\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{MAX}}$ (Intermittent)		2			2		${ }^{\circ} \mathrm{C}$
Non-Linearity	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.3	1.5		0.3	1.5	${ }^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM135/LM235LM135A/LM235A			LM335   LM335A			Units
		Min	Typ	Max	Min	Typ	Max	
Operating Output Voltage Change with Current	$400 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 5 \mathrm{~mA}$ At Constant Temperature		2.5	10		3	14	mV
Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.5			0.6		$\Omega$
Output Voltage Temperature Coefficient			+10			+10		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Time Constant	Still Air   $100 \mathrm{ft} / \mathrm{Min}$ Air   Stirred Oil		$\begin{gathered} 80 \\ 10 \\ 1 \end{gathered}$			80 10 1		sec   sec   sec
Time Stability	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		0.2			0.2		${ }^{\circ} \mathrm{C} / \mathrm{khr}$

Note 1: Accuracy measurements are made in a well-stirred oil bath. For other conditions, self heating must be considered.
Note 2: Continuous operation at these temperatures for 10,000 hours for $H$ package and 5,000 hours for $Z$ package may decrease life expectancy of the device.
Note 3: Thermal Resistance TO-92 TO-46 $\theta_{\text {JA }}$ (junction to ambient) $\quad 202^{\circ} \mathrm{C} / \mathrm{W} 400^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JC}}$ (junction to case) $\quad 170^{\circ} \mathrm{C} / \mathrm{W} \mathrm{N} / \mathrm{A}$
Note 4: Refer to RETS 135 H for military specifications.

## Typical Performance Characteristics



Thermal Response in Stirred Oil Bath



## Application Hints

## CALIBRATING THE LM135

Included on the LM135 chip is an easy method of calibrating the device for higher accuracies. A pot connected across the LM135 with the arm tied to the adjustment terminal allows a 1-point calibration of the sensor that corrects for inaccuracy over the full temperature range.
This single point calibration works because the output of the LM135 is proportional to absolute temperature with the extrapolated output of sensor going to OV output at $0^{\circ} \mathrm{K}$ $\left(-273.15^{\circ} \mathrm{C}\right)$. Errors in output voltage versus temperature are only slope (or scale factor) errors so a slope calibration at one temperature corrects at all temperatures.
The output of the device (calibrated or uncalibrated) can be expressed as:

$$
V_{O U T_{T}}=V_{O U T_{T}} \times \frac{T}{T_{0}}
$$

where $T$ is the unknown temperature and $T_{0}$ is a reference temperature, both expressed in degrees Kelvin. By calibrating the output to read correctly at one temperature the output at all temperatures is correct. Nominally the output is calibrated at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$.

To insure good sensing accuracy several precautions must be taken. Like any temperature sensing device, self heating can reduce accuracy. The LM135 should be operated at the lowest current suitable for the application. Sufficient current, of course, must be available to drive both the sensor and the calibration pot at the maximum operating temperature as well as any external loads.
If the sensor is used in an ambient where the thermal resistance is constant, self heating errors can be calibrated out. This is possible if the device is run with a temperature stable current. Heating will then be proportional to zener voltage and therefore temperature. This makes the self heating error proportional to absolute temperature the same as scale factor errors.

## WATERPROOFING SENSORS

Meltable inner core heat shrinkable tubing such as manufactured by Raychem can be used to make low-cost waterproof sensors. The LM335 is inserted into the tubing about $1 / 2^{\prime \prime}$ from the end and the tubing heated above the melting point of the core. The unfilled $1 / 2^{\prime \prime}$ end melts and provides a seal over the device.

## Typical Applications



Calibrated Sensor


TL/H/5698-9
${ }^{*}$ Calibrate for 2.982 V at $25^{\circ} \mathrm{C}$

Average Temperature Sensing

TL/H/5698-18

Wide Operating Supply


TL/H/5698-10
Remote Temperature Sensing


TL/H/5698-19
Wire length for $1^{\circ} \mathrm{C}$ error due to wire drop

	$I_{R}=1 \mathrm{~mA}$	$I_{R}=0.5 \mathrm{~mA}^{*}$
AWG	FEET	FEET
14	4000	8000
16	2500	5000
18	1600	3200
20	1000	2000
22	625	1250
24	400	800
*For $I_{R}=$	0.5 mA, the trim pot must be deleted.	

Typical Applications (Continued)



TL/H/5698-5


## Typical Applications (Continued)

Ground Referred Fahrenheit Thermometer

*Adjust R2 for 2.554 V across LM336. Adjust R1 for correct output.

Centigrade Thermometer



TL/H/5698-24
*To calibrate adjust R2 for 2.554 V across LM336. Adjust R1 for correct output.

THERMOCOUPLE COLD JUNCTION COMPENSATION Compensation for Grounded Thermocouple


*Select R3 for proper thermocouple type		
THERMO-	R3	SEEBECK
COUPLE	$\mathbf{( \pm 1 \% )}$	COEFFICIENT
J	$377 \Omega$	$52.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
T	$308 \Omega$	$42.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
K	$293 \Omega$	$40.8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
S	$45.8 \Omega$	$6.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Adjustments: Compensates for both sensor and resistor tolerances

1. Short LM329B
2. Adjust R1 for Seebeck Coefficient times ambient temperature (in degrees K) across R3.
3. Short LM335 and adjust R2 for voltage across R3 corresponding to thermocouple type

J	14.32 mV	K	11.17 mV
T	11.79 mV	S	1.768 mV

TL/H/5698-6


## Typical Applications (Continued)



Typical Applications (Continued)

## Ground Referred Centigrade Thermometer



TL/H/5698-16

## Definition of Terms

Operating Output Voltage: The voltage appearing across the positive and negative terminals of the device at specified conditions of operating temperature and current.
Uncalibrated Temperature Error: The error between the operating output voltage at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ and case temperature at specified conditions of current and case temperature.

Calibrated Temperature Error: The error between operating output voltage and case temperature at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$ over a temperature range at a specified operating current with the $25^{\circ} \mathrm{C}$ error adjusted to zero.

National Semiconductor Corporation

## LM3911 Temperature Controller

## General Description

The LM3911 is a highly accurate temperature measurement and/or control system for use over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. Fabricated on a single monolithic chip, it includes a temperature sensor, a stable voltage reference and an operational amplifier.
The output voltage of the LM3911 is directly proportional to temperature in degrees Kelvin at $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$. Using the internal op amp with external resistors any temperature scale factor is easily obtained. By connecting the op amp as a comparator, the output will switch as the temperature transverses the set-point making the device useful as an on-off temperature controller.
An active shunt regulator is connected across the power leads of the LM3911 to provide a stable 6.8V voltage reference for the sensing system. This allows the use of any power supply voltage with suitable external resistors.
The input bias current is low and relatively constant with temperature, ensuring high accuracy when high source impedance is used. Further, the output collector can be returned to a voltage higher than 6.8 V allowing the LM3911 to drive lamps and relays up to a 35 V supply.

The LM3911 uses the difference in emitter-base voltage of transistors operating at different current densities as the basic temperature sensitive element. Since this output depends only on transistor matching the same reliability and stability as present op amps can be expected.
The LM3911 is available in two package styles, a metal can TO-46 and an 8-lead epoxy mini-DIP. In the epoxy package all electrical connections are made on one side of the device allowing the other 4 leads to be used for attaching the LM3911 to the temperature souce. The LM3911 is rated for operation over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

## Features

■ Uncalibrated accuracy $\pm 10^{\circ} \mathrm{C}$

- Internal op amp with frequency compensation
- Linear output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{K}\left(10 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$

■ Can be calibrated in degrees Kelvin, Celsius or Fahrenheit
■ Output can drive loads up to 35 V

- Internal stable voltage reference
- Low cost

Block Diagram


## Typical Applications

Ground Referred Centigrade Thermometer


[^20]Basic Temperature Controller


Proportioning Temperature


Note 1: C 1 determines proportioning frequency $\mathrm{f} \approx \frac{1}{2 \mathrm{R} 4 \mathrm{C} 1}$
Note 2: $\mathrm{R} 10=\frac{|\mathrm{V}+|+|\mathrm{V}-|-7 \mathrm{~V}}{0.0015 \mathrm{~A}}$
Note 3: Either $\mathrm{V}^{-}$or $\mathrm{V}+$ can be ground

## Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Supply Current (Externally Set)
10 mA
Output Collector Voltage, V++ 36 V

Feedback Input Voltage Range
OV to +7.0 V
Electrical Characteristics
(Note 1)

Parameter	Conditions	Min	Typ	Max	Units
SENSOR					
Output Voltage	$\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$, (Note 2)	2.36	2.48	2.60	V
Output Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, (Note 2)	2.88	2.98	3.08	V
Output Voltage	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$, (Note 2)	3.46	3.58	3.70	V
Linearity	$\Delta T=100^{\circ} \mathrm{C}$		0.5	2	\%
Long-Term Stability			0.3		\%
Repeatability			0.3		\%
VOLTAGE REFERENCE					
Reverse Breakdown Voltage	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{z}} \leq 5 \mathrm{~mA}$	6.55	6.85	7.25	V
Reverse Breakdown Voltage Change With Current	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{z}} \leq 5 \mathrm{~mA}$		10	35	mV
Temperature Stability			20	85	mV
Dynamic Impedance	$\mathrm{I}_{\mathrm{z}}=1 \mathrm{~mA}$		3.0		$\Omega$
RMS Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$		30		$\mu \mathrm{V}$
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$		6.0		mV
OP AMP					
Input Bias Current	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		35	150	nA
Input Bias Current			45	250	nA
Voltage Gain	$\mathrm{R}_{\mathrm{L}}=36 \mathrm{k}, \mathrm{V}++=36 \mathrm{~V}$	2500	15000		$\mathrm{V} / \mathrm{V}$
Output Leakage Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 3)		0.2	2	$\mu \mathrm{A}$
Output Leakage Current	(Note 3)		1.0	8	$\mu \mathrm{A}$
Output Source Current	$V_{\text {OUT }} \leq 3.70$	10			$\mu \mathrm{A}$
Output Sink Current	$1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 36 \mathrm{~V}$	2.0			mA

Note 1: These specifications apply for $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ and $0.9 \mathrm{~mA} \leq \mathrm{I}_{\text {SUPPLY }} \leq 1.1 \mathrm{~mA}$ unless otherwise specified; $\mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}$.
Note 2: The output voltage applies to the basic thermometer configuration with the output and input terminals shorted and a load resistance of $\geq 1.0 \mathrm{M} \Omega$. This is the feedback sense voltage and includes errors in both the sensor and op amp. This voltage is specified for the sensor in a rapidly stirred oil bath. The output is referred to $\mathrm{V}^{+}$.
Note 3: The output leakage current is specified with $\geq 100 \mathrm{mV}$ overdrive. Since this voltage changes with temperature, the voltage drive for turn-off changes and is defined as $V_{\text {OUT }}$ (with output and input shorted) -100 mV . This specification applies for $\mathrm{V}_{\text {OUT }}=36 \mathrm{~V}$.

## Application Hints

Although the LM3911 is designed to be totally trouble-free, certain precautions should be taken to insure the best possible performance.
As with any temperature sensor, internal power dissipation will raise the sensor's temperature above ambient. Nominal suggested operating current for the shunt regulator is 1.0 mA and causes 7.0 mW of power dissipation. In free, still, air this raises the package temperature by about $1.2^{\circ} \mathrm{K}$. Although the regulator will operate at higher reverse currents and the output will drive loads up to 5.0 mA , these higher currents will raise the sensor temperature to about $19^{\circ} \mathrm{K}$ above ambient-degrading accuracy. Therefore, the sensor should be operated at the lowest possible power level.
With moving air, liquid or surface temperature sensing, selfheating is not as great a problem since the measured
media will conduct the heat from the sensor. Also, there are many small heat sinks designed for transistors which will improve heat transfer to the sensor from the surrounding medium. A small finned clip-on heat sink is quite effective in free-air. It should be mentioned that the LM3911 die is on the base of the package and therefore coupling to the base is preferable.
The internal reference regulator provides a temperature stable voltage for offsetting the output or setting a comparison point in temperature controllers. However, since this reference is at the same temperature as the sensor temperature, changes will also cause reference drift. For application where maximum accuracy is needed an external reference should be used. Of course, for fixed temperature controllers the internal reference is adequate.

Output Short Circuit Duration
Indefinite
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 seconds) $260^{\circ} \mathrm{C}$

## Typical Performance Characteristics

> Temperature Conversion
> $T_{\text {CENTIGRADE }}=T_{C}$
> $T_{\text {FAHRENHEIT }}=T_{F}$
> $T_{\text {KELVIN }}=T_{K}$
> $T_{K}=T_{C}+273.16$
> $T_{C}=\left(40+T_{F}\right) \frac{5}{9}-40$
> $T_{F}=\left(40+T_{C}\right) \frac{9}{5}-40$



Reference Regulation


Op Amp Input Current


Thermal Time Constant in Stirred Oil Bath




Thermal Time Constant in Still Air


Schematic Diagram


Typical Applications (Continued)
Basic Thermometer for Negative Supply
Basic Thermometer for Positive Supply


$$
R_{S}=\left(V^{-}-6.8 \mathrm{~V}\right) \times 10^{3} \Omega
$$

External Frequency Compensation for Greater Stability when Driving


Operating With External Zener for Lower Power Dissipation

*Depends on Zener current.

Increasing Gain and Output Drive


Temperature Controller With Hysteresis

*Output goes positive on temperature increase
$\dagger$ Set temperature

## Typical Applications (Continued)

Thermometer With Meter Output

$R 1^{*}=\frac{\left(V_{Z}\right) 0.01 \Delta T}{I_{M}\left(V_{Z}-0.01 T_{0}\right)} *$
Select $\mathrm{I}_{\mathrm{Q}} \leq \frac{2 \mathrm{~V}}{\mathrm{R}_{1}}$
$\mathrm{R} 2=\frac{0.01 \mathrm{~T}_{\mathrm{O}}-\mathrm{I}_{\mathrm{Q}} \mathrm{R} 1}{\mathrm{I}_{\mathrm{Q}}}$
$\mathrm{R} 3=\frac{\mathrm{V}_{\mathrm{Z}}}{\mathrm{l}_{\mathrm{Q}}}-\mathrm{R} 1-\mathrm{R} 2$
$\left(10 \leq \frac{2 V}{R 1}\right)$
$V_{\mathbf{z}}=$ Shunt regulator voltage (use 6.85)
$\Delta \mathrm{T}=$ Meter temperature span ( ${ }^{\circ} \mathrm{K}$ )
$I_{M}=$ Meter full scale current (A)
$\mathrm{T}_{\mathrm{O}}=$ Meter zero temperature ( ${ }^{\circ} \mathrm{K}$ )
$\mathrm{l}_{\mathrm{Q}}=$ Current through R1, R2, R3 at zero meter current ( $10 \mu \mathrm{~A}$ to 1.0 mA ) (A)
*Values shown for:
$\mathrm{T}_{\mathrm{O}}=300^{\circ} \mathrm{K}, \Delta \mathrm{T}=100^{\circ} \mathrm{K}$,

$$
I_{M}=1.0 \mathrm{~mA}, I_{Q}=100 \mu \mathrm{~A}
$$

**The 0.01 in the above and following equations is in units of $\mathrm{V} /{ }^{\circ} \mathrm{K}$ or $\mathrm{V} /{ }^{\circ} \mathrm{C}$, and is a result of the basic $0.01 \mathrm{~V} /{ }^{\circ} \mathrm{K}$ sensitivity of the transducer

Meter Thermometer With Trimmed Output

*Selected as for meter thermometer except To should be $5^{\circ} \mathrm{K}$ more than desired and $\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$
$\dagger$ Calibrates $\mathrm{T}_{0}$

Ground Referred Thermometer


Two Terminal Temperature to Current Transducer*


$$
R 2(\Omega)=\frac{\left(V_{Z}-0.01 T_{L}\right)\left(I_{H}-\frac{0.01 T_{H}}{R 1}\right)+\left(V_{Z}-0.01 T_{H}\right)\left(\frac{0.01 T_{L}}{R 1}-I_{L}\right) * *}{\frac{0.01}{R 1 R_{3}}\left[T_{H}\left(V_{Z}-0.01 T_{L}\right)-T_{L}\left(V_{Z}-0.01 T_{H}\right)\right]}
$$

$$
R 3(\Omega) \geq \frac{V_{Z}\left(\frac{T_{H}}{T_{L}}-1\right)}{I_{H}-\frac{I_{L} T_{H}}{T_{L}}}
$$

$$
\frac{1}{R 4}=\frac{1}{\left(V_{Z}-0.01 T_{L}\right)(R 2)}\left[\frac{(R 2)\left(0.01 \mathrm{~T}_{L}\right)}{R 1}+\frac{\left(\frac{V_{Z}-0.01 T_{L}}{R 2}-I_{L}\right)}{\frac{1}{R 2}+\frac{1}{R 3}}\right]-\frac{1}{R 2}
$$

$$
T_{L}=\text { Temperature for } I_{L}(K)
$$

$T_{H}=$ Temperature for $\mathrm{I}_{\mathrm{H}}(\mathrm{K})$
$\mathrm{V}_{\mathrm{Z}}=$ Zener voltage ( V )
$I_{L}=$ Low temperature output current (A)
$I_{H}=$ High temperature output current (A)
*Values shown for lout $=1 \mathrm{~mA}$ to 10 mA for $10^{\circ} \mathrm{F}$ to $100^{\circ} \mathrm{F}$
$\dagger$ Set temperature
**The 0.01 in the above and following equations is in units of $\mathrm{V} /{ }^{\circ} \mathrm{K}$ or $\mathrm{V} /{ }^{\circ} \mathrm{C}$, and is a result of the basic $0.01 \mathrm{~V} /{ }^{\circ} \mathrm{K}$ sensitivity of the transducer

## Typical Applications (Continued)

Over Temperature Detectors With Common Output


Two-Wire Remote A.C. Electronic Thermostat (Gas or Oil Furnace Control)

*Solenoid or 6-15W heater
$\dagger$ Pot will provide about a $50^{\circ} \mathrm{F}$ to $90^{\circ} \mathrm{F}$ setting range. The trim resistor ( 100 k ) is selected to bring $70^{\circ} \mathrm{F}$ near the middle of the pot rotation.
SCR heating, by proper positioning, can preheat the sensor giving control anticipation as is presently used in many home thermostats.

Electronic Thermostat


Typical Applications (Continued)
Three-Wire Electronic Thermostat


Kelvin Thermometer With Ground Referred Output


$$
R_{S}=\frac{V_{S}+-6.8 \mathrm{~V} \times 10^{3} \Omega}{2}
$$

## Connection Diagrams



Dual-In-Line Package


TO-46 Package


TOP VIEW
Note: Pin 4 connected to case.
TL/H/5701-7
Order Number LM3911H-46 See NS Package H04A

Section 7
Voltage References

7
$\pi$
Section 7 Contents
Voltage Reference Selection Guide ..... 7-3
LH0070 Series BCD Buffered Reference/LH0071 Series Precision Buffered Reference ..... 7-7
LM103 Reference Diode ..... 7-11
LM113/LM313 Precision Reference ..... 7-12
LM129/LM329 Precision Reference ..... 7-15
LM134/LM234/LM334 3-Terminal Adjustable Current Sources ..... 7-20
LM136-2.5/LM236-2.5/LM336-2.5V Reference Diode ..... 7-28
LM136-5.0/LM236-2.5/LM336-2.5V Reference Diode ..... 7-35
LM168/LM268/LM368 Precision Voltage Reference ..... 7-42

* LM169/LM369 Precision Voltage Reference ..... 7-48
LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode ..... 7-58
LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode ..... 7-64
LM185/LM285/LM385 Adjustable Micropower Voltage References ..... 7-69
LM199/LM299/LM399/LM3999 Precision Reference ..... 7-76
* LM368-2.5 Precision Voltage Reference ..... 7-85
* LM581 Voltage Reference Precision 10-Volt ..... 7-91

National Semiconductor Corporation							
Reverse Breakdown Voltage ( $\mathrm{V}_{\mathrm{R}}$ )	Device	Operating Temp. Range*	Voltage   Tolerance   Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, $\mathrm{I}_{\mathrm{R}}$	Output Dynamic Impedance (Typ)
				ppm $/{ }^{\circ} \mathrm{C}$   (Max)	Over   Range		
1.22	LM113-2	M	$\pm 1 \%$	50 (Typ)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	0.8
1.22	LM113-1	M	$\pm 2 \%$	50 (Typ)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	0.8
1.22	LM113	M	$\pm 5 \%$	100 (Typ)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	0.8
1.22	LM313	C	$\pm 5 \%$	100 (Typ)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 20 mA	0.8
1.235	LM185BX-1.2	M	$\pm 1 \%$	30	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM185BY-1.2	M	$\pm 1 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM185-1.2	M	$\pm 1 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM285BX-1.2	I	$\pm 1 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM285BY-1.2	1	$\pm 1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM285-1.2	1	$\pm 1 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM385BX-1.2	C	$\pm 1 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM385BY-1.2	C	$\pm 1 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM385B-1.2	C	$\pm 1 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
1.235	LM385-1.2	C	+2\%, -2.4\%	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$15 \mu \mathrm{~A}$ to 20 mA	1
1.24 to 5.3 (Adj.)	LM185B	M	$\pm 1 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM185BX	M	$\pm 1 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM185BY	M	$\pm 1 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM285BX	1	$\pm 1 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM285BY	1	$\pm 1 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM285	1	$\pm 2 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM385BX	C	$\pm 1 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$13 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM385BY	C	$\pm 1 \%$	$50$	$0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}$	$13 \mu \mathrm{~A}$ to 20 mA	0.3
1.24 to 5.3 (Adj.)	LM385	C	$\pm 2 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$13 \mu \mathrm{~A}$ to 20 mA	0.3
2.49	LM136A	M	$\pm 1 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM136	M	$\pm 2 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM236A	1	$\pm 1 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM236	1	$\pm 2 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM336	1	$\pm 4 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.49	LM336B	C	$\pm 2 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.4
2.5	LM185BX-2.5	M	$\pm 1.5 \%$	30	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM185BY-2.5	M	$\pm 1.5 \%$	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM185B-2.5	M	$\pm 1.5 \%$	150	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM285BX-2.5	1	$\pm 1.5 \%$	30	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM285BY-2.5	1	$\pm 1.5 \%$	50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM285-2.5	1	$\pm 1.5 \%$	150	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM385BX-2.5	C	$\pm 1.5 \%$	30	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM385BY-2.5	C	$\pm 1.5 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM385B-2.5	C	$\pm 1.5 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1
2.5	LM385-2.5	C	$\pm 3 \%$	150	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mu \mathrm{~A}$ to 20 mA	1

Shunt Type (Continued)

Reverse Breakdown Voltage ( $\mathbf{V}_{\mathrm{R}}$ )	Device	Operating Temp. Range*	Voltage   Tolerance   $\operatorname{Max}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Temperature Drift		Operating Current Range, $I_{R}$	Output Dynamic Impedance (Typ)
				$\begin{gathered} \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \text { (Max) } \end{gathered}$	Over   Range		
5.0	LM136A	M	$\pm 1 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.8
5.0	LM136	M	$\pm 2 \%$	72	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.8
5.0	LM236A	1	$\pm 1 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.8
5.0	LM236	1	$\pm 2 \%$	72	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.8
5.0	LM336B	C	$\pm 2 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.8
5.0	LM336	C	$\pm 4 \%$	54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$400 \mu \mathrm{~A}$ to 10 mA	0.8
6.9	LM129A	M	+3\%, -2\%	10	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.6
6.9	LM129B	M	+3\%, -2\%	20	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.6
6.9	LM129C	M	+3\%, -2\%	50	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.6
6.9	LM329B	C	$\pm 5 \%$	50	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
6.9	LM329C	C	$\pm 5 \%$	20	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
6.9	LM329D	C	$\pm 5 \%$	100	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 15 mA	0.8
6.95	LM199A	M	$\pm 2 \%$	0.5			0.5
6.95	LM199A-20	M	Same as LM199A with 20 ppm guaranteed long term drift.				
6.95	LM199	M	$\pm 2 \%$	1.0	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
6.95	LM299A	1	$\pm 2 \%$	0.5	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
6.95	LM299A-20	1	Same as LM299A with 20 ppm guaranteed long term drift.				
6.95	LM299	1	$\pm 2 \%$	1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
6.95	LM399A	C	$\pm 5 \%$	1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
6.95	LM399A-50	C	Same as LM399A with 50 ppm guaranteed long term drift.				
6.95	LM399	C	$\pm 5 \%$	2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$500 \mu \mathrm{~A}$ to 10 mA	0.5
6.95	LM3999	C	$\pm 5 \%$	5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$600 \mu \mathrm{~A}$ to 10 mA	0.6

${ }^{*} \mathrm{C}$ (Commercial) $=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{I}$ (Industrial) $=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the LM 236 and $\mathrm{LM} 299, \mathrm{I}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for all others.
$M$ (Military) $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

## Current References

Output Current Range	Device	Operating Temperature Range	Set Current Error			Operating Voltage Range	Set Current Temperature Dependence*
			$2 \mu \mathrm{~A}$ to $10 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$ to 1 mA	1 mA to 5 mA		
$2 \mu \mathrm{~A}$ to 10 mA	LM134	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 8 \%$	$\pm 3 \%$	$\pm 5 \%$	1 V to 40V	0.96T to 0.104T
$2 \mu \mathrm{~A}$ to 10 mA	LM134-3	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	N/A	$\pm 1 \%$	N/A	1 V to 40 V	0.98T to 0.102T
$2 \mu \mathrm{~A}$ to 10 mA	LM134-6	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	N/A	$\pm 2 \%$	N/A	1 V to 40V	0.97T to 0.103T
$2 \mu \mathrm{~A}$ to 10 mA	LM234	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 8 \%$	$\pm 3 \%$	$\pm 5$	1 V to 40 V	0.96 T to 0.104T
$2 \mu \mathrm{~A}$ to 10 mA	LM234-3	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	N/A	$\pm 1 \%$	N/A	1 V to 40 V	0.98 T to 0.102T
$2 \mu \mathrm{~A}$ to 10 mA	LM234-6	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	N/A	$\pm 2 \%$	N/A	1 V to 40 V	0.97T to 0.103T
$2 \mu \mathrm{~A}$ to 10 mA	LM334	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$\pm 12 \%$	$\pm 6 \%$	$\pm 8 \%$	1 V to 40 V	0.96T to 0.104T

*Set current changes linearly with temperature at a rate of $0.33 \% /{ }^{\circ} \mathrm{C}$.

Series Type (Buffered Output)																						
Output   Voltage	Device	Oper.   Temp.   Range*	Voltage   Tolerance   Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Temperature Drift				Load Reg. ppm/mA	Over   Current   Range	Quiescent Current (mA)											
					$\begin{array}{\|c} \hline \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \text { (Max) } \end{array}$		Over   Range															
2.5	LM368Y-2.5	C		$\pm 0.2 \%$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		25	0 mA to +10 mA	0.55											
2.5	LM368-2.5	C		$\pm 0.2 \%$			25	0 mA to +10 mA	0.55													
5.0	LM168BY-5.0	M		$\pm 0.05 \%$	10				$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		10	-10 mA to +10 mA	0.35									
5.0	LM268BY-5.0	1		$\pm 0.05 \%$	15		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		10	-10 mA to +10 mA	0.35											
5.0	LM368BY-5.0	C		$\pm 0.1 \%$	20		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		10	-10 mA to +10 mA	0.35											
5.0	LM368-5.0	C		$\pm 0.1 \%$	30		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		10	-10 mA to +10 mA	0.35											
10	LM169B	M		$\pm 0.05 \%$	3		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		8	-10 mA to +10 mA	1.8											
10	LM168BY-10	M		$\pm 0.05 \%$	10		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		10	-10 mA to +10 mA	0.35											
10	LH0070-2	M		$\pm 0.05 \%$	8		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		60	0 to 5 mA	5											
10	LM169	M		$\pm 0.05 \%$	5		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		8	-10 mA to +10 mA	1.8											
10	LM581U	M		$\pm 0.05 \%$	10		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		50	0 mA to 5 mA	1.8											
10	LH0070-0	M		$\pm 0.1 \%$	40		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		60	0 mA to 5 mA	5											
10	LM581T	M		$\pm 0.1 \%$	10		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		50	0 mA to 5 mA	1.8											
10	LH0070-1	M		$\pm 0.1 \%$	20		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		60	0 mA to 5 mA	5											
10	LM581S	M		$\pm 0.3 \%$	30		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		50	0 mA to 5 mA	1.8											
10	LM268BY-10	1		$\pm 0.05 \%$	15		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		10	-10 mA to +10 mA	0.35											
10	LM581L	C		$\pm 0.05 \%$	5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		50	0 mA to 5 mA	1.8											
10	LM369C	C		$\pm 0.05 \%$	10		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		8	-10 mA to +10 mA	1.8											
10	LM369	C		$\pm 0.05 \%$	5		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		8	-10 mA to +10 mA	1.8											
10	LM369B	C		$\pm 0.05 \%$	3		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		8	-10 mA to +10 mA	1.8											
10	LM581K	C		$\pm 0.1 \%$	10		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		50	0 mA to 5 mA	1.8											
10	LM368Y-10	C		$\pm 0.1 \%$	20		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		10	-10 mA to +10 mA	0.35											
10	LM368-10	C		$\pm 0.1 \%$	30		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		10	-10 mA to +10 mA	0.35											
10	LM369D	C		$\pm 0.1 \%$	30		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		8	-10 mA to +10 mA	2											
10	LM581J	C		$\pm 0.3 \%$	30		$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		50	0 mA to 5 mA	1.8											
10.24	LH0071-2	M		$\pm 0.05 \%$	8		$-40^{\circ} \mathrm{C}$	to $+85^{\circ} \mathrm{C}$	60	0 mA to 5 mA	5											
10.24	LH0071-1	M		$\pm 0.1 \%$	20		$-40^{\circ} \mathrm{C}$	to $+85^{\circ} \mathrm{C}$	60	0 mA to 5 mA	5											
10.24	LH0071-0	M		$\pm 0.1 \%$	30		$-40^{\circ} \mathrm{C}$	to $+85^{\circ} \mathrm{C}$	60	0 mA to 5 mA	5											
${ }^{*} \mathrm{C}($ Commercial $)=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{I}$ (Industrial) $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{M}$ (Military) $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$   Low Current Reference Diodes																						
Output Voltage	Device	Operating Temp. Range*		Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$		Temperature Drift				Operating Current Range, $I_{R}$	Output Dynamic Impedance (Typ)											
					pm $/{ }^{\circ} \mathrm{C}$   (Max)	Over   Range																
3.0	LM103-3.0	M				$\pm 10 \%$			-1700	$-55^{\circ} \mathrm{C}$ to	$+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25									
3.3	LM103-3.3	M		$\pm 10 \%$			-1500	$-55^{\circ} \mathrm{C}$ to	$+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25											
3.6	LM103-3.6	M		$\pm 10 \%$			-1400	$-55^{\circ} \mathrm{C}$ to	$+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25											
3.9	LM103-3.9	M		$\pm 10 \%$			-1300	$-55^{\circ} \mathrm{C}$ to	$+125^{\circ} \mathrm{C}$	$10 \mu \mathrm{~A}$ to 10 mA	25											

[^21]
## "Reference Grade" Voltage Regulators*

Output Voltage	Device	Operating Temperature Range	Voltage Tolerance Max, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Output Variation Over Operating Range	Load Reg. ppm/mA	Line Reg. ppm/V		Quiescent Current
Adjustable:   1.235 V to 30 V	$\begin{aligned} & \text { LP2951 } \\ & \text { LP2951AC } \\ & \text { LP2951C } \end{aligned}$	$\left\|\begin{array}{l} -55^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{array}\right\|$	$\begin{gathered} \pm 0.5 \% \\ \pm 0.5 \% \\ \pm 1 \% \end{gathered}$	$\begin{gathered} \pm 0.5 \% \\ \pm 0.5 \% \\ \pm 1 \% \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \\ & 83 \end{aligned}$		$120 \mu \mathrm{~A}$ $120 \mu \mathrm{~A}$ $120 \mu \mathrm{~A}$
Programmable: 5V, 6V, 10V, 12V, 15 V	LH0075   LH0075C	$\left\|\begin{array}{c} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{array}\right\|$	$\begin{gathered} \pm 0.5 \% \\ \pm 1 \% \end{gathered}$	$\begin{gathered} \pm 0.14 \% \text { (Typ) } \\ \pm 0.3 \% \text { (Тур) } \end{gathered}$	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \mathrm{~mA} \\ 200 \mathrm{~mA} \\ \hline \end{array}$	$\begin{gathered} 8 \mathrm{~mA} \\ 10 \mathrm{~mA} \end{gathered}$
$\begin{aligned} & \text { Programmable } \\ & -5 \mathrm{~V},-6 \mathrm{~V},-10 \mathrm{~V} \\ & -10 \mathrm{~V},-15 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|l} \text { LH0076 } \\ \text { LH0076C } \end{array}$	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \pm 0.5 \% \\ \pm 1 \% \end{gathered}$	$\begin{gathered} \pm 0.14 \% \text { (Тур) } \\ \pm 0.3 \% \text { (Тур) } \\ \hline \end{gathered}$	$\begin{array}{r} 15 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \mathrm{~mA} \\ 200 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 15 \mathrm{~mA} \\ & 15 \mathrm{~mA} \end{aligned}$
5 V 5 V	$\left\|\begin{array}{l} \text { LP2950AC } \\ \text { LP2950C } \end{array}\right\|$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 0.5 \% \\ \pm 1 \% \end{gathered}$	$\begin{gathered} \pm 0.5 \% \\ \pm 1 \% \end{gathered}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 42 \\ & 83 \end{aligned}$	$\begin{aligned} & 100 \mathrm{~mA} \\ & 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 120 \mu \mathrm{~A} \\ & 120 \mu \mathrm{~A} \end{aligned}$

*For more information on these circuits, refer to the Voltage Regulator section of the Databook.

National Semiconductor Corporation

## LH0070 Series Precision BCD Buffered Reference LH0071 Series Precision Binary Buffered Reference

## General Description

The LH0070 and LH0071 are precision, three terminal, voltage references consisting of a temperature compensated zener diode driven by a current regulator and a buffer amplifier. The devices provide an accurate reference that is virtually independent of input voltage, load current, temperature and time. The LH0070 has a 10.000 V nominal output to provide equal step sizes in BCD applications. The LH0071 has a 10.240 V nominal output to provide equal step sizes in binary applications.
The output voltage is established by trimming ultra-stable, low temperature drift, thin film resistors under actual operating circuit conditions. The devices are shortcircuit proof in both the current sourcing and sinking directions.

The LH0070 and LH0071 series combine excellent long term stability, ease of application, and low cost, making
them ideal choices as reference voltages in precision $D$ to $A$ and A to D systems.

## Features

■ Accuracy output voltage

- Single supply operation
11.4 V to 40 V
- Low output impedance
- Excellent line regulation
$0.1 \mathrm{mV} / \mathrm{V}$
- Low zener noise
- 3-lead TO-5 (pin compatible with the LM109)
- Short circuit proof
- Low standby current

Equivalent Schematic


## Connection Diagram

TO-5 Metal Can Package


BOTTOM VIEW
TL/H/5550-7
Order Number LH0070-0H, LH0071-OH, LH0070-1H,
LH0071-1H, LH0070-2H or LH0071-2H See NS Package Number H03B

## Typical Applications


*Note: The output of the LH0070 and LH0071 may be adjusted to a precise voltage by using the above circuit since the supply current of the devices is relatively small and constant with temperature and input voltage. For the circuit shown, supply sensitivities are degraded slightly to $0.01 \% / \mathrm{V}$ change in $\mathrm{V}_{\text {OUT }}$ for changes in $\mathrm{V}_{\mathbb{I N}}$ and $\mathrm{V}^{-}$.
An additional temperature drift of $0.0001 \% /{ }^{\circ} \mathrm{C}$ is added due to the variation of supply current with temperature of the LH0070 and LH0071. Sensitivity to the value of R1, R2 and R3 is less than $0.001 \% / \%$.

## Absolute Maximum Ratings

## If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. <br> (Note 4)

Supply Voltage 40V
Power Dissipation (See Curve)
600 mW

Short Circuit Duration
Output Current
Operating Temperature Range
Storage Temperature Range
Lead Temp. (Soldering, 10 seconds)

Continuous

$$
\pm 20 \mathrm{~mA}
$$

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
-65^{\circ} \mathrm{C} \text { to } \pm 150^{\circ} \mathrm{C}
$$

$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	Min	Typ	Max	Units
$\begin{aligned} & \text { Output Voltage } \\ & \text { LH0070 } \\ & \text { LH0071 } \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 10.000 \\ 10.24 \end{gathered}$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Output Accuracy $\begin{aligned} & -0,-1 \\ & -2 \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & \pm 0.03 \\ & \pm 0.02 \end{aligned}$	$\begin{gathered} \pm 0.1 \\ \pm 0.05 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Output Accuracy $\begin{aligned} & -0,-1 \\ & -2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$			$\begin{aligned} & \pm 0.3 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Output Voltage Change With Temperature $\begin{aligned} & -0 \\ & -1 \\ & -2 \end{aligned}$	(Note 2)		$\begin{aligned} & \pm 0.02 \\ & \pm 0.01 \end{aligned}$	$\begin{gathered} \pm 0.2 \\ \pm 0.1 \\ \pm 0.04 \end{gathered}$	$\begin{aligned} & \text { \% } \\ & \% \\ & \% \end{aligned}$
Line Regulation $\begin{aligned} & -0,-1 \\ & -2 \\ & \hline \end{aligned}$	$13 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 33 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.03 \end{gathered}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Input Voltage Range	$\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega$	11.4		40	V
Load Regulation	$0 \mathrm{~mA} \leq 1$ OUT $\leq 5 \mathrm{~mA}$		0.01	0.03	\%
Quiescent Current	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 33 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}$	1	3	5	mA
Change In Quiescent Current	$\Delta \mathrm{V}_{1 \mathrm{~N}}=20 \mathrm{~V}$ From 23 V To 33V		0.75	1.5	mA
Output Noise Voltage	$B W=0.1 \mathrm{~Hz}$ To $10 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		20		$\mu \vee p$-p
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}$		0.01		\%/Vp-p
Output Resistance			0.2	0.6	$\Omega$
Long Term Stability $\begin{aligned} & -0,-1 \\ & -2 \end{aligned}$	$T_{A}=25^{\circ} \mathrm{C}$ (Note 3)			$\begin{gathered} \pm 0.2 \\ \pm 0.05 \end{gathered}$	\%/yr.   \%/yr.
```Thermal Resistance 0ja 0jc}\mathrm{ (Junction to Case)```	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$		$\begin{array}{r} 200 \\ 100 \\ \hline \end{array}$		$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$

Note 1: Unless otherwise specified, these specifications apply for $\mathrm{V}_{\mathrm{IN}}=15.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, and over the temperature range of $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$.
Note 2: This specification is the difference in output voltage measured at $T_{A}=85^{\circ} \mathrm{C}$ and $T_{A}=25^{\circ} \mathrm{C}$ or $T_{A}=25^{\circ} \mathrm{C}$ and $T_{A}=-25^{\circ} \mathrm{C}$ with readings taken after test chamber and device-under-test stabilization at temperature using a suitable precision voltmeter.
Note 3: This parameter is guaranteed by design and not tested.
Note 4: Refer to the following RETS drawings for military specifications: RETS0070-0H for LH0070-OH RETS0071-OH for LH0071-OH RETS0070-1H for LH0070-1H RETS0071-1H for LH0071-1H RETS $0070-2 \mathrm{H}$ for LH0070-2H RETS0071-2H for LH0071-2H

Typical Performance Characteristics

Quiescent Current vs Input Voltage

Normalized Output Voltage vs Temperature

Typical Applications (Continued)

Precision Process Control Interface

Negative 10V Reference

Boosted Reference For Low Input Voltages

LM103 Reference Diode**

General Description

The LM103 is a two-terminal monolithic reference diode electrically equivalent to a breakdown diode. The device makes use of the reverse punch-through of double-diffused transistors, combined with active circuitry, to produce a breakdown characteristic which is ten times sharper than single-junction zener diodes at low voltages. Breakdown voltages from 3.0V to 3.9 V are available; and, although the design is optimized for operation between $100 \mu \mathrm{~A}$ and 1 mA , it is completely specified from $10 \mu \mathrm{~A}$ to 10 mA .

Features

- Exceptionally sharp breakdown

■ Low dynamic impedance from $10 \mu \mathrm{~A}$ to 10 mA

Performance guaranteed over full military temperature range

- Planar, passivated junctions for stable operation
- Low capacitance.

The LM103, packaged in a hermetically sealed, modified TO-46 header is useful in a wide range of circuit applications from level shifting to simple voltage regulation. It can also be employed with operational amplifiers in producing breakpoints to generate nonlinear transfer functions. Finally, its unique characteristics recommend it as a reference element in low voltage power supplies with input voltages down to 4 V .

Schematic and Connection Diagrams

Typical Applications

Saturating Servo Preamplifier with Rate Feedback

200 mA Positive Regulator

[^22]National Semiconductor Corporation

LM113/LM313 Reference Diode

General Description

The LM113/LM313 are temperature compensated, low voltage reference diodes. They feature extremely-tight regulation over a wide range of operating currents in addition to an unusually-low breakdown voltage and good temperature stability.
The diodes are synthesized using transistors and resistors in a monolithic integrated circuit. As such, they have the same low noise and long term stability as modern IC op amps. Further, output voltage of the reference depends only on highly-predictable properties of components in the IC; so they can be manufactured and supplied to tight tolerances.

- Dynamic impedance of 0.3Ω from $500 \mu \mathrm{~A}$ to 20 mA
- Temperature stability typically 1% over $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ range (LM113), $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (LM313)
- Tight tolerance: $\pm 5 \%, \pm 2 \%$ or $\pm 1 \%$

The characteristics of this reference recommend it for use in bias-regulation circuitry, in low-voltage power supplies or in battery powered equipment. The fact that the breakdown voltage is equal to a physical property of silicon-the ener-gy-band gap voltage-makes it useful for many tempera-ture-compensation and temperature-measurement functions.

Features

- Low breakdown voltage: 1.220V

Schematic and Connection Diagrams

Metal Can Package

Order Number LM113H or LM113-1H or LM113-2H or LM313H See NS Package Number H02A

Typical Applications

Level Detector for Photodiode

Low Voltage Regulator

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 3)

Power Dissipation (Note 1)
Reverse Current
Forward Current

100 mW 50 mA 50 mA

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature
(Soldering, 10 seconds) $300^{\circ} \mathrm{C}$
Operating Temperature Range
LM113 LM313
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Characteristics (Note 2)

Parameter	Conditions	Min	Typ	Max	Units
Reverse Breakdown Voltage LM113/LM313 LM113-1 LM113-2	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$	$\begin{aligned} & 1.160 \\ & 1.210 \\ & 1.195 \end{aligned}$	$\begin{gathered} 1.220 \\ 1.22 \\ 1.22 \end{gathered}$	$\begin{aligned} & 1.280 \\ & 1.232 \\ & 1.245 \end{aligned}$	$\begin{aligned} & V \\ & v \\ & v \end{aligned}$
Reverse Breakdown Voltage Change	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		6.0	15	mV
Reverse Dynamic Impedance	$\begin{aligned} & I_{R}=1 \mathrm{~mA} \\ & I_{R}=10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.2 \\ 0.25 \\ \hline \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \hline \end{aligned}$
Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$		0.67	1.0	V
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \end{aligned}$		5		$\mu \mathrm{V}$
Reverse Breakdown Voltage Change with Current	$\begin{aligned} & 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$			15	mV
Breakdown Voltage Temperature Coefficient	$\begin{aligned} & 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$		0.01		\%/ ${ }^{\circ} \mathrm{C}$

Note 1: For operating at elevated temperatures, the device must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction and a thermal resistance of $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case or $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient.
Note 2: These specifications apply for $T_{A}=25^{\circ} \mathrm{C}$, unless stated otherwise. At high currents, breakdown voltage should be measured with lead lengths less than $1 / 4$ inch. Kelvin contact sockets are also recommended. The diode should not be operated with shunt capacitances between 200 pF and $0.1 \mu \mathrm{~F}$, unless isolated by at least a 100Ω resistor, as it may oscillate at some currents.
Note 3: Refer to the following RETS drawings for military specifications: RETS113-1X for LM113-1, RETS113-2X for LM113-2 or RETS113X for LM113.

Typical Performance Characteristics

Reverse Dynamic Impedance

Reverse Characteristics

Typical Performance Characteristics (Continued)

TL/H/5713-4
Typical Applications (Continued)

Amplifier Biasing for Constant Gain with Temperature

Constant Current Source

Thermometer

National Semiconductor Corporation

LM129/LM329 Precision Reference

General Description

The LM129 and LM329 family are precision multi-current temperature-compensated 6.9 V zener references with dynamic impedances a factor of 10 to 100 less than discrete diodes. Constructed in a single silicon chip, the LM129 uses active circuitry to buffer the internal zener allowing the device to operate over a 0.5 mA to 15 mA range with virtually no change in performance. The LM129 and LM329 are available with selected temperature coefficients of 0.001 , $0.002,0.005$ and $0.01 \% /{ }^{\circ} \mathrm{C}$. These new references also have excellent long term stability and low noise.
A new subsurface breakdown zener used in the LM129 gives lower noise and better long-term stability than conventional IC zeners. Further the zener and temperature compensating transistor are made by a planar process so they are immune to problems that plague ordinary zeners. For example, there is virtually no voltage shift in zener voltage due to temperature cycling and the device is insensitive to stress on the leads.

The LM129 can be used in place of conventional zeners with improved performance. The low dynamic impedance
simplifies biasing and the wide operating current allows the replacement of many zener types.
The LM129 is packaged in a 2-lead TO-46 package and is rated for operation over a $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The LM329 for operation over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ is available in both a hermetic TO-46 package and a TO-92 epoxy package.

Features

国 0.6 mA to 15 mA operating current
区 0.6Ω dynamic impedance at any current
Available with temperature coefficients of $0.001 \% /{ }^{\circ} \mathrm{C}$
a $7 \mu \mathrm{~V}$ wideband noise

- 5% initial tolerance
0.002\% long term stability
- Low cost
- Subsurface zener

Connection Diagrams

Pin 2 is electrically connected to case
Order Number LM129AH, LM129BH, LM129CH, LM329AH, LM329BH, LM329CH or LM329DH See NS Package H02A

Typical Applications

Simple Reference

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 2)

Reverse Breakdown Current
Forward Current 2 mA
Operating Temperature Range

LM129	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM329	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Information	
TO-92 package: 10 sec.	$260^{\circ} \mathrm{C}$
TO-46 package: 10 sec.	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Note 1)

Parameter	Conditions	LM129A, B, C			LM329A, B, C, D			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA} \end{aligned}$	6.7	6.9	7.2	6.6	6.9	7.25	V
Reverse Breakdown Change with Current (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA} \end{aligned}$		9	14		9	20	mV
Reverse Dynamic Impedance (Note 3)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.6	1		0.8	2	Ω
RMS Noise	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 10 \mathrm{~Hz} \leq \mathrm{F} \leq 10 \mathrm{kHz} \end{aligned}$		7	20		7	100	$\mu \mathrm{V}$
Long Term Stability (1000 hours)	$\begin{aligned} & \mathrm{T}_{A}=45^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.3 \% \end{aligned}$		20			20		ppm
Temperature Coefficient LM129A, LM329A LM129B, LM329B LM129C, LM329C LM329D	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		$\begin{gathered} 6 \\ 15 \\ 30 \end{gathered}$	$\begin{aligned} & 10 \\ & 20 \\ & 50 \end{aligned}$		$\begin{gathered} 6 \\ 15 \\ 30 \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ 20 \\ 50 \\ 100 \\ \hline \end{gathered}$	ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$
Change In Reverse Breakdown Temperature Coefficient	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		1			1		ppm/ ${ }^{\circ} \mathrm{C}$
Reverse Breakdown Change with Current	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		12			12		mV
Reverse Dynamic Impedance	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 15 \mathrm{~mA}$		0.8			1		Ω

Note 1: These specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ for the LM 129 and $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ for the LM 329 unless otherwise specified. The maximum junction temperature for an LM129 is $150^{\circ} \mathrm{C}$ and LM329 is $100^{\circ} \mathrm{C}$. For operating at elevated temperature, devices in TO-46 package must be derated based on a thermal resistance of $440^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient or $80^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. For the TO-92 package, the derating is based on $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.4^{\prime \prime}$ leads from a PC board and $160^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient with $0.125^{\prime \prime}$ lead length to a PC board.
Note 2: Refer to RETS129H for LM129 family military specifications.
Note 3: These changes are tested on a pulsed basis with a low duty-cycle. For changes versus temperature, compute in terms of tempco.

Typical Applications (Continued)

External Reference for Temperature Transducer

OUTPUT
$\int 10 \mathrm{mV} /{ }^{\circ} \mathrm{K}$

Typical Applications (Continued)

Buffered Reference with Single Supply

TL/H/5714-3

Schematic Diagram

Typical Performance Characteristics

LM134/LM234/LM334
 3-Terminal Adjustable Current Sources

General Description

The LM134/LM234/LM334 are 3-terminal adjustable current sources featuring 10,000:1 range in operating current, excellent current regulation and a wide dynamic voltage range of 1 V to 40 V . Current is established with one external resistor and no other parts are required. Initial current accuracy is $\pm 3 \%$. The LM134/LM234/LM334 are true floating current sources with no separate power supply connections. In addition, reverse applied voltages of up to 20 V will draw only a few dozen microamperes of current, allowing the devices to act as both a rectifier and current source in AC applications.
The sense voltage used to establish operating current in the LM134 is 64 mV at $25^{\circ} \mathrm{C}$ and is directly proportional to absolute temperature (${ }^{\circ} \mathrm{K}$). The simplest one external resistor connection, then, generates a current with $\approx+0.33 \% /{ }^{\circ} \mathrm{C}$ temperature dependence. Zero drift operation can be obtained by adding one extra resistor and a diode.
Applications for the new current sources include bias networks, surge protection, low power reference, ramp generation, LED driver, and temperature sensing. The LM134-3/

LM234-3 and LM134-6/LM234-6 are specified as true temperature sensors with guaranteed initial accuracy of $\pm 3^{\circ} \mathrm{C}$ and $\pm 6^{\circ} \mathrm{C}$, respectively. These devices are ideal in remote sense applications because series resistance in long wire runs does not affect accuracy. In addition, only 2 wires are required.
The LM134 is guaranteed over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM234 from $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ and the LM334 from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. These devices are available in TO-46 hermetic, TO-92 and SO-8 plastic packages.

Features

- Operates from 1 V to 40 V
- $0.02 \% / \mathrm{V}$ current regulation
- Programmable from $1 \mu \mathrm{~A}$ to 10 mA
- True 2-terminal operation
- Available as fully specified temperature sensor
$\pm 3 \%$ initial accuracy

Connection Diagrams

Order Number LM334M
See NS Package Number M08A

TO-46 Metal Can Package

TL/H/5697-12
Bottom View
Pin 3 is electrically connected to case.
Order Number LM134H, LM134H-3, LM134H-6, LM234H, LM234H-3,

LM234H-6, or LM334H See NS Package Number H03H

T0-92
Plastic Package

TL/H/5697-10
Bottom View
Order Number LM334Z, LM234Z-3 or LM234Z-6
See NS Package Number Z03A

Basic 2-Terminal Current Source

TL/H/5697-1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V^{+}to V^{-}Forward Voltage	
LM134/LM234	40 V
LM334/LM134-3/LM134-6/LM234-3/LM234-6	30 V
V^{+}to V^{-}Reverse Voltage	20 V
R Pin to V^{-}Voltage	5 V
Set Current	10 mA
Power Dissipation	400 mW

Operating Temperature Range (Note 4)	
LM134/LM134-3/LM134-6	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM234/LM234-3/LM234-6	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
LM334	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Soldering Information	
TO-92 Package $(10 \mathrm{sec})$.	$260^{\circ} \mathrm{C}$
TO-46 Package $(10 \mathrm{sec})$.	$300^{\circ} \mathrm{C}$
SO Package	
Vapor Phase $(60$ sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics
(Note 1)

Parameter	Conditions	LM134/LM234			LM334			Units
		Min	Typ	Max	Min	Typ	Max	
Set Current Error, $\mathrm{V}^{+}=2.5 \mathrm{~V}$, (Note 2)	$\begin{aligned} & 10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{ISET} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}}<10 \mu \mathrm{~A} \end{aligned}$			3			$\begin{gathered} 6 \\ 8 \\ 12 \end{gathered}$	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$
Ratio of Set Current to V^{-}Current	$\begin{aligned} & 100 \mu \mathrm{~A} \leq I_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq I_{\mathrm{SET}} \leq 5 \mathrm{~mA} \\ & 2 \mu \mathrm{~A} \leq I_{\mathrm{SET}} \leq 100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	14	$\begin{aligned} & 18 \\ & 14 \\ & 18 \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \\ & \hline \end{aligned}$	14	$\begin{aligned} & 18 \\ & 14 \\ & 18 \\ & \hline \end{aligned}$	26 26	
Minimum Operating Voltage	$\begin{aligned} & 2 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 100 \mu \mathrm{~A} \\ & 100 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{SET}} \leq 5 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$		V
Average Change in Set Current with Input Voltage	$\begin{aligned} & 2 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1.5 \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 40 \mathrm{~V} \\ & 1 \mathrm{~mA}<\mathrm{I}_{\mathrm{SET}} \leq 5 \mathrm{~mA} \\ & 1.5 \mathrm{~V} \leq \mathrm{V} \leq 5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V} \leq 40 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \\ & \\ & 0.03 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \\ & \\ & 0.03 \\ & 0.02 \end{aligned}$	$\begin{gathered} 0.1 \\ 0.05 \end{gathered}$	$\begin{aligned} & \text { \%/V } \\ & \% / \mathrm{V} \\ & \\ & \% / \mathrm{V} \\ & \% / \mathrm{V} \end{aligned}$
Temperature Dependence of Set Current (Note 3)	$25 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	0.96 T	T	1.04 T	0.96 T	T	1.04 T	
Effective Shunt Capacitance			15			15		pF

Note 1: Unless otherwise specified, tests are performed at $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ with pulse testing so that junction temperature does not change during test.
Note 2: Set current is the current flowing into the V^{+}pin. It is determined by the following formula: $I_{\mathrm{SET}}=67.7 \mathrm{mV} / \mathrm{R}_{\mathrm{SET}}$ (@ $25^{\circ} \mathrm{C}$). Set current error is expressed as a percent deviation from this amount. ISET increases at $0.336 \% /{ }^{\circ} \mathrm{C} @ T_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Note 3: $I_{S E T}$ is directly proportional to absolute temperature $\left({ }^{\circ} \mathrm{K}\right)$. $I_{S E T}$ at any temperature can be calculated from: $I_{S E T}=I_{0}\left(T / T_{0}\right)$ where I_{0} is $I_{S E T}$ measured at T_{0} (${ }^{\circ} \mathrm{K}$).
Note 4: For elevated temperature operation, T_{j} max is:

LM134	$150^{\circ} \mathrm{C}$		
LM234	$125^{\circ} \mathrm{C}$		
LM334	$100^{\circ} \mathrm{C}$		
Thermal Resistance	T0-92	TO-46	SO-8
θ_{ja} (Junction to Ambient)	$\begin{gathered} 180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime} \text { leads }\right) \\ 160^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime} \text { leads }\right) \end{gathered}$	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jc} (Junction to Case)	N/A	$32^{\circ} \mathrm{C} / \mathrm{W}$	N/A

Electrical Characteristics (Note 1) (Continued)

Parameter	Conditions	LM134-3, LM234-3			LM134-6, LM234-6			Units
		Min	Typ	Max	Min	Typ	Max	
Set Current Error, $\mathrm{V}^{+}=2.5 \mathrm{~V}$, (Note 2)	$\begin{aligned} & 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \end{aligned}$			± 1			± 2	\%
Equivalent Temperature Error				± 3			± 6	${ }^{\circ} \mathrm{C}$
Ratio of Set Current to VCurrent	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	14	18	26	14	18	26	
Minimum Operating Voltage	$100 \mu \mathrm{~A}_{\text {SET }} \leq 1 \mathrm{~mA}$		0.9			0.9		V
Average Change in Set Current with Input Voltage	$\begin{aligned} & 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{SET}} \leq 1 \mathrm{~mA} \\ & 1.5 \leq \mathrm{V}+\leq 5 \mathrm{~V} \\ & 5 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.03 \end{aligned}$		$\begin{aligned} & 0.02 \\ & 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \% / V \\ & \% / V \\ & \hline \end{aligned}$
Temperature Dependence of Set Current (Note 3) and	$100 \mu \mathrm{~A} \leq \mathrm{I}_{\text {SET }} \leq 1 \mathrm{~mA}$	0.98T	T	1.02T	0.97T	T	1.03 T	
Equivalent Slope Error				± 2			± 3	\%
Effective Shunt Capacitance			15			15		pF

Typical Performance Characteristics

Start-Up

TL/H/5697-2

Typical Performance Characteristics（Continued）

Turn－On Voltage

TL／H／5697－3
will be increased by about 12 dB ．In many cases，this is acceptable and a single stage amplifier can be built with a voltage gain exceeding 2000.

LEAD RESISTANCE

The sense voltage which determines operating current of the LM134 is less than 100 mV ．At this level，thermocouple or lead resistance effects should be minimized by locating the current setting resistor physically close to the device． Sockets should be avoided if possible．It takes only 0.7Ω contact resistance to reduce output current by 1% at the 1 mA level．

SENSING TEMPERATURE

The LM134 makes an ideal remote temperature sensor be－ cause its current mode operation does not lose accuracy over long wire runs．Output current is directly proportional to absolute temperature in degrees Kelvin，according to the following formula：

$$
\mathrm{I}_{\mathrm{SET}}=\frac{\left(227 \mu \mathrm{~V} /{ }^{\circ} \mathrm{K}\right)(\mathrm{T})}{\mathrm{R}_{\mathrm{SET}}}
$$

Calibration of the LM1 34 is greatly simplified because of the fact that most of the initial inaccuracy is due to a gain term （slope error）and not an offset．This means that a calibration consisting of a gain adjustment only will trim both slope and zero at the same time．In addition，gain adjustment is a one point trim because the output of the LM134 extrapolates to zero at $0^{\circ} \mathrm{K}$ ，independent of $\mathrm{R}_{\text {SET }}$ or any initial inaccuracy．

This property of the LM134 is illustrated in the accompany－ ing graph．Line abc is the sensor current before trimming．

Application Hints (Continued)

Line $a^{\prime} b^{\prime} c^{\prime}$ is the desired output. A gain trim done at T2 will move the output from b to b^{\prime} and will simultaneously correct the slope so that the output at T1 and T3 will be correct. This gain trim can be done on R $\mathrm{R}_{\text {SET }}$ or on the load resistor used to terminate the LM134. Slope error after trim will normally be less than $\pm 1 \%$. To maintain this accuracy, however, a low temperature coefficient resistor must be used for $\mathrm{R}_{\text {SET }}$.

Typical Applications (Continued)

Zero Temperature Coefficient Current Source

TL/H/5697-13
*Select ratio of R1 to RSET to obtain zero drift. I+ ≈ 2 I $_{\text {SET }}$

Ground Referred Fahrenheit Thermometer

TL/H/5697-15
*Select R3 $=V_{\text {REF }} / 583 \mu \mathrm{~A}$. $\mathrm{V}_{\text {REF }}$ may be any stable positive voltage $\geq 2 \mathrm{~V}$ Trim R3 to calibrate

A $33 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift of $\mathrm{R}_{\text {SET }}$ will give a 1% slope error because the resistor will normally see about the same temperature variations as the LM134. Separating RSET from the LM134 requires 3 wires and has lead resistance problems, so is not normally recommended. Metal film resistors with less than $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift are readily available. Wire wound resistors may also be used where best stability is required.

Terminating Remote Sensor for Voltage Output

TL/H/5697-14

Low Output Impedance Thermometer

TL/H/5697-6
*Output impedance of the LM134 at the "R" pin is approximately $\frac{-R_{0} \Omega}{16}$ where R_{0} is the equivalent external resistance connected to the V^{-}pin. This negative resistance can be reduced by a factor of 5 or more by inserting an equivalent resistor in series with the output.

Typical Applications (Continued)
Low Output Impedance Thermometer

Higher Output Current

*Select R1 and C1 for optimum stability

Low Input Voltage Reference Driver

Ramp Generator

Typical Applications (Continued)

1.2V Reference Operates on $10 \mu \mathrm{~A}$ and 2 V

TL/H/5697-20
*Select ratio of R1 to R2 to obtain zero temperature drift
1.2V Regulator with 1.8 V Minimum Input

TL/H/5697-7
*Select ratio of R1 to R2 for zero temperature drift

TL/H/5697-22
*Select Q1 or Q2 to ensure at least 1 V across the LM134. $\mathrm{V}_{\mathrm{p}}\left(1-\mathrm{I}_{\mathrm{SET}} / \mathrm{I}_{\mathrm{DSS}}\right) \geq 1.2 \mathrm{~V}$.

Typical Applications (Continued)

Generating Negative Output Impedance

TL/H/5697-23
${ }^{*} \mathrm{Z}_{\text {OUT }} \approx-16 \bullet R 1\left(R 1 / V_{\mathrm{IN}}\right.$ must not exceed $\left.\mathrm{I}_{\mathrm{SET}}\right)$

TL/H/5697-9
*Use minimum value required to ensure stability of protected device. This minimizes inrush current to a direct short.

Schematic Diagram

TL/H/5697-11

LM136-2.5/LM236-2.5/LM336-2.5V Reference Diode

General Description

The LM136-2.5/LM236-2.5 and LM336-2.5 integrated circuits are precision 2.5 V shunt regulator diodes. These monolithic IC voltage references operate as a low-tempera-ture-coefficient 2.5 V zener with 0.2Ω dynamic impedance. A third terminal on the LM136-2.5 allows the reference voltage and temperature coefficient to be trimmed easily.
The LM136-2.5 series is useful as a precision 2.5 V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 2.5 V make it convenient to obtain a stable reference from 5 V logic supplies. Further, since the LM136-2.5 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.
The LM136-2.5 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM236-2.5 is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Both are packaged in a TO-46 package. The LM336-2.5 is rated for operation over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and is available in a TO-92 plastic package.

Features

- Low temperature coefficient
- Wide operating current of $400 \mu \mathrm{~A}$ to 10 mA
- 0.2Ω dynamic impedance
- $\pm 1 \%$ initial tolerance available
- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
- Fast turn-on
- Three lead transistor package

Connection Diagrams

TO-92
Plastic Package

TL/H/5715-8
Bottom View
Order Number LM336Z-2.5 or LM336BZ-2.5
See NS Package Number Z03A

TL/H/5715-20 Bottom View

Order Number LM136H-2.5, LM236H-2.5, LM336H-2.5, LM136AH-2.5 or LM236AH-2.5 See NS Package Number H03H

TL/H/5715-12
Top View
Order Number LM336M-2.5 or LM336BM-2.5 See NS Package Number M08A

Typical Applications

2.5V Reference

TL/H/5715-9

Wide Input Range Reference Temperature Coefficient

TL/H/5715-11

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Reverse Current	15 mA
Forward Current	10 mA
Storage Temperature	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM136	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM236	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Soldering Information

TO-92 Package (10 sec.)	$260^{\circ} \mathrm{C}$
TO-46 Package $(10 \mathrm{sec})$.	$300^{\circ} \mathrm{C}$
SO Package	
\quad Vapor Phase $(60 \mathrm{sec})$.	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)

Parameter	Conditions	LM136A-2.5/LM236A-2.5 LM136-2.5/LM236-2.5			$\begin{gathered} \text { LM336B-2.5 } \\ \text { LM336-2.5 } \end{gathered}$			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \\ & \mathrm{LM} 136 / \mathrm{LM} 236 / \mathrm{LM} 336 \\ & \mathrm{LM} 136 \mathrm{~A} / \mathrm{LM} 236 \mathrm{~A}, \mathrm{LM} 336 \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{array}{r} 2.440 \\ 2.465 \\ \hline \end{array}$	$\begin{array}{r} 2.490 \\ 2.490 \\ \hline \end{array}$	$\begin{array}{r} 2.540 \\ 2.515 \\ \hline \end{array}$	$\begin{aligned} & 2.390 \\ & 2.440 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.490 \\ 2.490 \\ \hline \end{array}$	$\begin{array}{r} 2.590 \\ 2.540 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Reverse Breakdown Change With Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 400 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \end{aligned}$		2.6	6		2.6	10	mV
Reverse Dynamic Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.2	0.6		0.2	1	Ω
Temperature Stability (Note 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{R}} \text { Adjusted to } 2.490 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \text {, (Figure 2) } \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}(\mathrm{LM} 336) \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \text { (LM236) } \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \text { (LM136) } \end{aligned}$		$\begin{array}{r} 3.5 \\ 12 \\ \hline \end{array}$	$\begin{gathered} 9 \\ 18 \\ \hline \end{gathered}$		1.8	6	mV mV mV
Reverse Breakdown Change With Current	$400 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		3	10		3	12	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.4	1		0.4	1.4	Ω
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		20			20		ppm

Note 1: Unless otherwise specified, the LM136-2.5 is specified from $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, the $\mathrm{LM} 236-2.5$ from $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and the $\mathrm{LM} 336-2.5$ from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 2: Temperature stability for the LM336 and LM236 family is guaranteed by design. Design limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels. Stability is defined as the maximum change in $\mathrm{V}_{\text {ref }}$ from $25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{A}}(\min)$ or T_{A} (max).
Note 3: For elevated temperature operation, T_{j} max is:

LM136	$150^{\circ} \mathrm{C}$
LM236	$125^{\circ} \mathrm{C}$
LM336	$100^{\circ} \mathrm{C}$

Thermal Resistance	TO-92	TO-46	SO-8
θ_{ja} (Junction to Ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ leads $)$ $170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ lead $)$	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{ja} (Junction to Case)	n / a	$80^{\circ} \mathrm{C} / \mathrm{W}$	n / a

Typical Performance Characteristics

TL/H/5715-3

Application Hints

The LM136 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.
Figure 1 shows an LM136 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to adjust for both the initial device tolerance and inaccuracies in buffer circuitry.

FIGURE 1. LM136 With Pot for Adjustment of Breakdown Voltage
(Trim Range $= \pm 120 \mathrm{mV}$ typical)

If minimum temperature coefficient is desired, two diodes can be added in series with the adjustment potentiometer as shown in Figure 2. When the device is adjusted to 2.490 V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1N914, 1 N4148 or a 1 N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136. It is usually sufficient to mount the diodes near the LM136 on the printed circuit board. The absolute resistance of R1 is not critical and any value from $2 k$ to $20 k$ will work.

TL/H/5715-4
FIGURE 2. Temperature Coefficient Adjustment (Trim Range $= \pm 70 \mathrm{mV}$ typical)

Typical Applications (Continued)

TL/H/5715-5
\dagger Efficiency $\approx 80 \%$

Precision Power Regulator with Low Temperature Coefficient

*Adjust for 3.75V across R1

Trimmed 2.5V Reference with Temperature Coefficient Independent of Breakdown Voltage

Typical Applications (Continued)
Adjustable Shunt Regulator

Typical Applications (Continued)

TL/H/5715-19

Typical Applications (Continued)

Low Noise Buffered Reference

TL/H/5715-7

Schematic Diagram

LM136－5．0／LM236－5．0／LM336－5．0，5．0V Reference Diode

General Description

The LM136－5．0／LM236－5．0／LM336－5．0 integrated circuits are precision 5.0 V shunt regulator diodes．These monolithic IC voltage references operate as a low temperature coeffi－ cient 5.0 V zener with 0.6Ω dynamic impedance．A third ter－ minal on the LM136－5．0 allows the reference voltage and temperature coefficient to be trimmed easily．
The LM136－5．0 series is useful as a precision 5.0 V low volt－ age reference for digital voltmeters，power supplies or op amp circuitry．The 5．0V makes it convenient to obtain a sta－ ble reference from low voltage supplies．Further，since the LM136－5．0 operates as a shunt regulator，it can be used as either a positive or negative voltage reference．
The LM136－5．0 is rated for operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM236－5．0 is rated over a $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range．Both are packaged in a TO－46
package．The LM336－5．0 is rated for operation over a $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ temperature range and is available in a TO－92 plas－ tic package．For applications requiring 2.5 V see LM136－2．5．

Features

－Adjustable 4 V to 6 V
（ Low temperature coefficient
（1）Wide operating current of $600 \mu \mathrm{~A}$ to 10 mA
－ 0.6Ω dynamic impedance
$\pm 1 \%$ initial tolerance available
－Guaranteed temperature stability
－Easily trimmed for minimum temperature drift
四 Fast turn－on
（⿴囗十㐅 Three lead transistor package

Connection Diagrams

TO－92
Plastic Package

TL／H／5716－4
Bottom View
Order Number LM336Z－5．0 or
LM336BZ－5．0
See NS Package Number Z03A

TO－46
Metal Can Package

TL／H／5716－5
Bottom View
Order Number LM136H－5．0，
LM236H－5．0，LM 136AH－5．0 or LM236AH－5．0
See NS Package Number H03H

5．0V Reference with Minimum Temperature Coefficient

SO Package

Order Number LM336M－5．0 or
LM236BM－5．0
See NS Package Number H03H

Trimmed 4V to 6V Reference with Temperature Coefficient Independent of Breakdown Voltage

TL／H／5716－3
Does not affect temperature coefficient

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Reverse Current	15 mA
Forward Current	10 mA
Storage Temperature	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
LM136-5.0	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LM236-5.0	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM336-5.0	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Soldering Information

TO-92 Package (10 sec.)	$260^{\circ} \mathrm{C}$
TO-46 Package (10 sec.)	$300^{\circ} \mathrm{C}$
SO Package	
Vapor Phase $(60 \mathrm{sec})$.	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)

Parameter	Conditions	LM136A-5.0/LM236A-5.0 LM136-5.0/LM236-5.0			$\begin{gathered} \text { LM336B-5.0 } \\ \text { LM336-5.0 } \end{gathered}$			Units
		Min	Typ	Max	Min	Typ	Max	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \\ & \text { LM136-5.0/LM236-5.0/LM336-5.0 } \\ & \text { LM136A-5.0/LM236A-5.0, LM336B-5.0 } \end{aligned}$	$\begin{gathered} 4.9 \\ 4.95 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 5.00 \end{aligned}$	$\begin{gathered} 5.1 \\ 5.05 \end{gathered}$	$\begin{gathered} 4.8 \\ 4.90 \end{gathered}$	$\begin{aligned} & 5.00 \\ & 5.00 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Reverse Breakdown Change With Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & 600 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA} \end{aligned}$		6	12		6	20	mV
Reverse Dynamic Impedance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.6	1.2		0.6	2	Ω
Temperature Stability	$\begin{aligned} & V_{R} \text { Adjusted } 5.00 \mathrm{~V} \\ & \left.\mathrm{I}_{R}=1 \mathrm{~mA}, \text { (Figure } 2\right) \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C}(\mathrm{LM} 336-5.0) \\ & -25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}(\text { LM } 236-5.0) \\ & -55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}(\text { LM } 136-5.0) \\ & \hline \end{aligned}$		$\begin{gathered} 7 \\ 20 \end{gathered}$	$\begin{aligned} & 18 \\ & 36 \end{aligned}$		4	12	mV mV mV
Reverse Breakdown Change With Current	$600 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}$		6	17		6	24	mV
Adjustment Range	Circuit of Figure 1		± 1			± 1		V
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		0.8	1.6		0.8	2.5	Ω
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$		20			20		ppm

Note 1: Unless otherwise specified, the LM136-5.0 is specified from $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$, the $\mathrm{LM} 236-5.0$ from $-25^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ and the $\mathrm{LM} 336-5.0$ from $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$.
Note 2: Temperature stability for the LM336 and LM236 family is guaranteed by design. Design limits are guaranteed (but not 100% percent production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels. Stability is defined as the maximum charge in $V_{\text {REF }}$ from $25^{\circ} \mathrm{C}$ to $T_{A}(\min)$ or $T_{A}(\max)$.
Note 3: For elevated temperature operation, $T_{j} \max$ is:

LM136	$150^{\circ} \mathrm{C}$
LM236	$125^{\circ} \mathrm{C}$
LM336	$100^{\circ} \mathrm{C}$

Thermal Resistance	TO-92	TO-46	SO-8
$\theta_{\text {ja }}$ (Junction to Ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ Leads) $170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ Leads)	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{ja} (Junction to Case)	N / A	$80^{\circ} \mathrm{C} / \mathrm{W}$	N/A

Typical Performance Characteristics

Zener Noise Voltage

Dynamic Impedance

TL/H/5716-2

Forward Characteristics

TL/H/5716-8

Application Hints

The LM136-5.0 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.
Figure 1 shows an LM136-5.0 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to adjust for both the initial device tolerance and inaccuracies in buffer circuitry.

If minimum temperature coefficient is desired, four diodes can be added in series with the adjustment potentiometer as shown in Figure 2. When the device is adjusted to 5.00 V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1N914, 1 N4148 or a 1N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136-5.0. It is usually sufficient to mount the diodes near the LM136-5.0 on the printed circuit board. The absolute resistance of the network is not critical and any value from $2 k$ to $20 k$ will work. Because of the wide adjustment range, fixed resistors should be connected in series with the pot to make pot setting less critical.

Application Hints (Continued)

TL/H/5716-9
FIGURE 1. LM136-5.0 with Pot for Adjustment of
Breakdown Voltage (Trim Range $= \pm 1.0 \mathrm{~V}$ Typical)

TL/H/5716-10
FIGURE 2. Temperature Coefficient Adjustment (Trim Range $= \pm 0.5 \mathrm{~V}$ Typical)

Typical Applications (Continued)

Precision Power Regulator with Low Temperature Coefficient

Typical Applications (Continued)

Typical Applications (Continued)

Op Amp with Output Clamped

5.0V Square Wave Calibrator

Low Noise Buffered Reference

Bipolar Output Reference

10V Buffered Reference

Wide Input Range Reference

LM168/LM268/LM368 Precision Voltage Reference

General Description

The LM168/LM368 are precision, monolithic, temperaturecompensated voltage references. The LM168 makes use of thin-film technology enhanced by the discrete laser trimming of resistors to achieve excellent Temperature coefficient (Tempco) of $\mathrm{V}_{\text {OUT }}$ (as low as $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$), along with tight initial tolerance, (as low as 0.02%). The trim scheme is such that individual resistors are cut open rather than being trimmed (partially cut), to avoid resistor drift caused by electromigration in the trimmed area. The LM168 also provides excellent stability vs. changes in input voltage and output current (both sourcing and sinking). This device is available in output voltage options of 5.0 V and 10.0 V and will operate in both series or shunt mode. Also see the LM368-2.5 data sheet for a 2.5 V output. The devices are short circuit proof when sourcing current. A trim pin is made available for fine trimming of $V_{\text {OUT }}$ or for obtaining intermediate values without greatly affecting the Tempco of the device.

Features

- $300 \mu \mathrm{~A}$ operating current
- Low output impedance
- Excellent line regulation (. $0001 \% / \mathrm{V}$ typical)

■ Single-supply operation

- Externally trimmable
- Low temperature coefficient
- Operates in series or shunt mode
- 10.0 V or 5.0 V
- Excellent initial accuracy (0.02% typical)

TL/H/5522-19
Top View
Order Number LM368N-5.0, LM368M-5.0 or LM268BYN-5.0 See NS Package Number M08A or N08E

Typical Applications

Series Regulator

TL/H/5522-2

Metal Can Package

TL/H/5522-1
Top View
*case connected to V -
Order Number LM168BYH-10, LM168BYH-5.0, LM268BYH-10, LM268BYH-5.0, LM368YH-10, LM368YH-5.0, LM368H-10, LM368H-5.0 See NS Package Number H08C

Shunt Regulator

Absolute Maximum Ratings (Note 8)	
Input Voltage (Series Mode)	35 V
Reverse Current (Shunt Mode)	50 mA
Power Dissipation	600 mW
Storage Temperature Range	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
LM168	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM268	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM368	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Soldering Information

DIP (N) Package, 10 sec.	$+260^{\circ} \mathrm{C}$
TO-5 (H) Package, 10 sec.	$+300^{\circ} \mathrm{C}$
SO (M) Package, Vapor Phase (60 sec.)	$+215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$+220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)

Parameter	Conditions	LM168/LM268/LM368			
		Typical	Tested Limit (Note 2)	Design Limit (Note 3)	Units (Max. unless noted)
Vout Error: LM168B, LM268B LM368		$\begin{aligned} & \pm 0.02 \\ & \pm 0.02 \end{aligned}$	$\begin{gathered} \pm 0.05 \\ \pm 0.1 \end{gathered}$		$\begin{aligned} & \% \\ & \% \end{aligned}$
Line Regulation	$\left(\mathrm{V}_{\text {OUT }}+3 \mathrm{~V}\right) \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	± 0.0001	± 0.0005		\%/V
Load Regulation (Note 4)	$\begin{aligned} & 0 \mathrm{~mA} \leq I_{\text {SOURCE }} \leq 10 \mathrm{~mA} \\ & -10 \mathrm{~mA} \leq I_{\text {SINK }} \leq 0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \pm 0.0003 \\ \pm 0.003 \end{gathered}$	$\begin{aligned} & \pm 0.001 \\ & \pm 0.008 \end{aligned}$		\%/mA \%/mA
Thermal Regulation	$\mathrm{T}=20 \mathrm{mS}$ (Note 5)	± 0.005	± 0.01		\%/100 mW
Quiescent Current		250	350		$\mu \mathrm{A}$
Change of Quiescent Current vs. $\mathrm{V}_{\text {IN }}$	$\left(\mathrm{V}_{\text {OUT }}+3 \mathrm{~V}\right) \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	3	5		$\mu \mathrm{A} / \mathrm{V}$
Temperature Coefficient of $\mathrm{V}_{\text {OUT }}$ (see graph): LM168BY (Note 6) LM268BY LM368Y LM368	$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 5 \\ \pm 7.5 \\ \pm 11 \\ \pm 15 \end{gathered}$	$\begin{aligned} & \pm 10 \\ & \pm 15 \\ & \pm 20 \end{aligned}$	± 30	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0$	30	70	100	mA
Noise: $10.0 \mathrm{~V}: 0.1-10 \mathrm{~Hz}$ $100 \mathrm{~Hz}-10 \mathrm{kHz}$ $6.2 \mathrm{~V}: 0.1-10 \mathrm{~Hz}$ $100 \mathrm{~Hz}-10 \mathrm{kHz}$ $5.0 \mathrm{~V}: 0.1-10 \mathrm{~Hz}$ $100 \mathrm{~Hz}-10 \mathrm{kHz}$		$\begin{gathered} 30 \\ 1100 \\ 20 \\ 700 \\ 16 \\ 575 \end{gathered}$			uVp-p $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $u V p-p$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $u \vee p-p$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$V_{\text {OUT }}$ Adjust Range: 10.000 V 5.000 V	$\mathrm{OV} \leq \mathrm{V}_{\text {PIN5 }} \leq \mathrm{V}_{\text {OUT }}$	$\begin{gathered} 4.5-17.0 \\ 4.4-7.0 \\ \hline \end{gathered}$		$\begin{gathered} 6.0-15.5 \\ 4.5-6.0 \end{gathered}$	\vee min. V min.

Note 1: Unless otherwise noted, these specifications apply: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{I N}=15 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=0,0 \leq \mathrm{C}_{\mathrm{L}} \leq 200 \mathrm{pF}$, Circuit is operating in Series Mode. Or, circuit is operating in Shunt Mode, $\mathrm{V}_{I N}=+15 \mathrm{~V}$ or $\mathrm{V}_{I N}=\mathrm{V}_{\text {OUT }}$, $T A=+25^{\circ} \mathrm{C}$, $\mathrm{I}_{\text {LOAD }}=-1.0 \mathrm{~mA}, 0 \leq \mathrm{C}_{\mathrm{L}} \leq 200 \mathrm{pF}$.
Note 2: Tested Limits are guaranteed and 100% tested in production.
Note 3: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 4: The LM168 has a Class B output, and will exhibit transients at the crossover point. This point occurs when the device is asked to sink approximately $120 \mu \mathrm{~A}$. In some applications it may be advantageous to preload the output to either $\mathrm{V}_{\mathbb{I N}}$ or Ground, to avoid this crossover point.
Note 5: Thermal Regulation is defined as the change in the output Voltage at a time T after a step change in power dissipation of 100 mW .
Note 6: Temperature Coefficient of $V_{\text {OUT }}$ is defined as the worst case delta- $V_{\text {OUT }}$ measured at Specified Temperatures divided by the total span of the Specified Temperature Range (See graphs). There is no guarantee that the Specified Temperatures are exactly at the minimum or maximum deviation.
Note 7 : In metal can (H), $\theta_{\mathrm{J}-\mathrm{C}}$ is $75^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{\mathrm{J}-\mathrm{A}}$ is $150^{\circ} \mathrm{C} / \mathrm{W}$. In plastic DIP, $\theta_{\mathrm{J}-\mathrm{A}}$ is $160^{\circ} \mathrm{C} / \mathrm{W}$. In $\mathrm{S} 0-8, \theta_{\mathrm{J}-\mathrm{A}}$ is $180^{\circ} \mathrm{C} / \mathrm{W}$, in $\mathrm{TO}-92, \theta_{\mathrm{J}-\mathrm{A}}$ is $160^{\circ} \mathrm{C} / \mathrm{W}$.
Note 8: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its Rated Operating Conditions (see Note 1 and Conditions).

Typical Performance Characteristics (Note 1)

Quiescent Current vs. Input Voltage and Temperature

Output Impedance vs. Frequency (Sourcing Current)

Temperature Coefficient: LM368-10 (Curve A)

Typical Temperature Coefficient Calculations:

> LM368-10 (see Curve A)

$$
\begin{aligned}
\mathrm{T} . \mathrm{C} . & =7.7 \mathrm{mV} /\left(70^{\circ} \times 10 \mathrm{~V}\right) \\
& =11 \times 10 \mathrm{E}-6=11 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Dropout Voltage vs. Output Current (Series Mode Sourcing Current)
Output Change vs. Output Current

Output Impedance vs. Frequency (Sinking Current)

Temperature Coefficient: LM168-10 (Curve C)

LM168-10 (see Curve C)
T.C. $=9.35 \mathrm{mV} /\left(180^{\circ} \times 10 \mathrm{~V}\right)$
$=5.2 \times 10 \mathrm{E}-6=5.2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Output Noise vs. Frequency
(1) LM368 alone.
(2) with $0.01 \mu \mathrm{f}$ Mylar, Trim to Gnd.
(3) with 10Ω in series with $10 \mu \mathrm{f}, \mathrm{V}_{\text {OUT }}$ to Gnd.
(4) with Both.

Typical Applications

Wide Range Trimmable Regulator

TL/H/5522-7

TL/H/5522-9

TL/H/5522-11

Narrow Range Trimmable Regulator ($\pm \mathbf{1 \%} \mathbf{m i n}$.)

Typical Applications (Continued)

Multiple Output Voltages

TL/H/5522-14

TL/H/5522-13

TL/H/5522-15

TL/H/5522-17

Typical Applications (Continued)

Buffered High-Current Reference with Filter

Simplified Schematic Diagram

*Reg. U.S. Pat. Off

National

LM169/LM369 Precision Voltage Reference

General Description

The LM169/LM369 are precision monolithic temperaturecompensated voltage references. They are based on a buried zener reference as pioneered in the LM199 references, but do not require any heater, as they rely on special tem-perature-compensation techniques (Patent Pending). The LM169 makes use of thin-film technology enhanced by the discrete laser trimming of resistors to achieve excellent Temperature coefficient (Tempco) of $V_{\text {out }}$ (as low as 1 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$), along with tight initial tolerances (as low as 0.01%). The trim scheme is such that individual resistors are cut open rather than being trimmed (partially cut), to avoid resistor drift caused by electromigration in the trimmed area. The LM169 also provides excellent stability vs. changes in input voltage and output current (both sourcing and sinking). The devices have a 10.000 V output and will operate in either series or shunt mode; the output is short-circuit-proof to ground. A trim pin is available which permits fine-trimming of $\mathrm{V}_{\text {out }}$, and also permits filtering to greatly decrease the output noise by adding a small capacitor (0.05 to $0.5 \mu \mathrm{~F}$).

Features

- Low Tempco of $V_{\text {out }}$
- Excellent initial accuracy (0.003\%)
- Excellent line regulation (2 ppm/V)
- Excellent output impedance
- Excellent thermal regulation
- Low noise
- Easy to filter output noise
- Low dissipation - 20 mW
- Operates in series or shunt mode

Connection Diagrams

Metal Can Package (H)

TL/H/9110-1
Top View
(Case is connected to ground.)
*Do not connect; internal connection for factory trims

Order Number LM169H, LM169BH, LM369H, LM369BH, See NS Package Number H08C

Dual-In-Line Package (\mathbf{N}) or S.O. Package (M)

TL/H/9110-5
Top View
Order Number LM369DM, LM369N, LM369BN, LM369CN or LM369DN See NS Package Number M08A or N08E

TO-92 Plastic Package (Z)

TL/H/9110-28 Bottom View

Order Number LM369DZ See NS Package Number Z03A

Absolute Maximum Ratings (Note 8)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Input Voltage (Series Mode) 35 V
Reverse Current (Shunt Mode)
Power Dissipation (Note 7)
Storage Temperature Range
Operating Temperature Range LM169 LM369

50 mA 600 mW
$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
($T_{j} \min$ to $T_{j} \max$)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Soldering Information

DIP (N) Package, 10 sec.	$+260^{\circ} \mathrm{C}$
TO-5 (H) Package, 10 sec.	$+300^{\circ} \mathrm{C}$
SO (M) Package, Vapor Phase (60 sec. $)$	$+215^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.
ESD Tolerance
$C_{\text {zap }}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{zap}}=1.5 \mathrm{k}$
800 V

Electrical Characteristics, LMM169, LMR369 (Note 1)

Parameter	Conditions	Typical	Tested Limits (Note 2)		Units (Max Unless Noted)
$V_{\text {out }}$ Nominal		$+10.000$			\checkmark
$\mathrm{V}_{\text {out }}$ Error	(Note 11)	$\begin{gathered} 50 \\ 0.50 \end{gathered}$	$\begin{gathered} \pm 500 \\ \pm 5 \end{gathered}$		ppm mV
$V_{\text {out }}$ Tempco LM169B, LM369B LM169, LM369 LM369C (Note 6) (Note 11)	$\begin{aligned} & T_{\min }<T_{j}<T_{\max } \\ & T_{\min }<T_{j}<T_{\max } \\ & T_{\min }<T_{j}<T_{\max } \end{aligned}$	$\begin{gathered} 1.5 \\ 2.7 \\ 6 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 10 \end{aligned}$	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Line Regulation	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	2.0	4.0	8.0	ppm/V
Load Regulation Sourcing Sinking (Note 12) (Note 4, Note 9)	0 to 10 mA 0 to -10 mA	$\begin{gathered} +3 \\ +80 \end{gathered}$	$\begin{array}{r} \pm 8.0 \\ +150 \end{array}$	20.0	ppm/mA ppm/mA
Thermal Regulation Sourcing Sinking (Note 12) (Note 5)	$(\mathrm{t}=10 \mathrm{msec}$ After Load is Applied)	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	± 20	-	$\mathrm{ppm} / 100 \mathrm{~mW}$ $\mathrm{ppm} / 100 \mathrm{~mW}$
Supply Current		1.4	1.8	2.0	mA
Δ Supply Current	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	0.06	0.12	0.2	mA
Short Circuit Current		27	$\begin{aligned} & 15 \\ & 50 \end{aligned}$	$\begin{aligned} & 11 \\ & 65 \end{aligned}$	$m A \min$ mA max
Noise Voltage	10 Hz to 1 kHz 0.1 Hz to 10 Hz (10 Hz to 10 kHz , $\left.\mathrm{C}_{\text {filter }}=0.1 \mu \mathrm{~F}\right)$	$\begin{gathered} 10 \\ 4 \\ 4 \end{gathered}$	30 - -	-	$\mu \vee$ rms $\mu \vee$ p-p $\mu \vee \mathrm{rms}$
Long-term Stability (Non-Cumulative) (Note 10)	1000 hours, $T_{j}<T_{\text {max }}$ (Measured at $+25^{\circ} \mathrm{C}$)	6	-	-	ppm
Temperature Hysteresis of $\mathrm{V}_{\text {out }}$	$\Delta T=25^{\circ} \mathrm{C}$	3	-	-	ppm
Output Shift per $1 \mu \mathrm{~A}$ at Pin 5		1500	2600	-	ppm

Electrical Characteristics LM369D (Note 1)

Parameter	Conditions	Typical	Tested Limits (Note 2)		Units (Max Unless Noted)
$V_{\text {out }}$ Nominal		+10.000			V
$V_{\text {out }}$ Error, LM369D		$\begin{aligned} & 70 \\ & 0.7 \end{aligned}$	$\begin{gathered} \pm 1000 \\ \pm 10.0 \end{gathered}$	-	ppm mV
$V_{\text {out }}$ Tempco (Note 6)	$\mathrm{T}_{\text {min }} \leq \mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\text {max }}$	5		30	ppm $/{ }^{\circ} \mathrm{C}$
Line Regulation	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	2.4	± 6.0	12	ppm/V
Load Regulation Sourcing Sinking (Note 12) (Note 4, Note 9)	0 to 10 mA 0 to -10 mA	$\begin{gathered} +3 \\ +80 \end{gathered}$	$\begin{gathered} \pm 12 \\ +160 \end{gathered}$	± 25	ppm/mA ppm/mA
Thermal Regulation Sourcing Sinking (Note 12) (Note 5)	$\text { (t = } 10 \mathrm{msec}$ After Load is Applied)	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	± 25 -	-	ppm/100 mW ppm/100 mW
Supply Current		1.5	2.0	2.4	mA
Δ Supply Current	$13 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}$	0.06	0.16	0.3	mA
Short Circuit Current		27	$\begin{array}{r} 14 \\ 50 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 65 \\ & \hline \end{aligned}$	$m A \min$ mA max
Noise Voltage	10 Hz to 1 kHz 0.1 Hz to 10 Hz (10 Hz to 10 kHz , $\left.\mathrm{C}_{\text {filter }}=0.1 \mu \mathrm{~F}\right)$	$\begin{gathered} 10 \\ 4 \\ 4 \end{gathered}$	30 - -	-	$\mu \vee$ rms $\mu \vee \mathrm{p}-\mathrm{p}$ $\mu \mathrm{V}$ rms
Long-Term Stability (Non-Cumulative)	1000 Hours, $\mathrm{T}_{\mathrm{j}}<\mathrm{T}_{\text {max }}$ (Measured at $\left.+25^{\circ} \mathrm{C}\right)$	8	-	-	ppm
Temperature Hysteresis of $\mathrm{V}_{\text {out }}$	$\Delta T=25^{\circ} \mathrm{C}$	5	-	-	ppm
Output Shift Per $1 \mu \mathrm{~A}$ at Pin 5		1500	2800	-	ppm

Note 1: Unless otherwise noted, these conditions apply: $T_{j}=+25^{\circ} \mathrm{C}, 13 \mathrm{~V} \leq \mathrm{V}_{\mathrm{in}} \leq 17 \mathrm{~V}, 0 \leq \mathrm{I}_{\mathrm{load}} \leq 1.0 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=\leq 200 \mathrm{pF}$. Specifications in BOLDFACED TYPE apply over the rated operating temperature range.
Note 2: Tested limits are guaranteed and 100\% tested in production.
Note 3: Design Limits are guaranteed (but not 100\% production tested) over the indicated temperature and supply voltage ranges. These limits are not to be used to calculate outgoing quality levels.
Note 4: The LM169 has a Class B output, and will exhibit transients at the crossover point. This point occurs when the device is required to sink approximately 1.0 mA . In some applications it may be advantageous to pre-load the output to either $\mathrm{V}_{\text {in }}$ or to ground, to avoid this crossover point.
Note 5: Thermal regulation is defined as the change in the output voltage at a time T after a step change of power dissipation of 100 mW .
Note 6: Temperature Coefficient of $\mathrm{V}_{\text {OUT }}$ is defined as the worst-case $\Delta \mathrm{V}_{\text {out }}$ measured at Specified Temperatures divided by the total span of the Specified Temperature Range (see graphs). There is no guarantee that the Specified Temperatures are exactly at the minimum or maximum deviation.
Note 7: In metal can (H), $\theta_{\mathrm{J}-\mathrm{C}}$ is $75^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{\mathrm{J}-\mathrm{A}}$ is $150^{\circ} \mathrm{C} / \mathrm{W}$. In plastic DIP, $\theta_{\mathrm{J}-\mathrm{A}}$ is $160^{\circ} \mathrm{C} / \mathrm{W}$. In $\mathrm{S} 0-8, \theta_{\mathrm{J}-\mathrm{A}}$ is $180^{\circ} \mathrm{C} / \mathrm{W}$, in $\mathrm{TO}-92, \theta_{\mathrm{J}-\mathrm{A}}$ is $160^{\circ} \mathrm{C} / \mathrm{W}$.
Note 8: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications are not guaranteed beyond the Rated Operating Conditions.

Note 9: Regulation is measured at constant temperature using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specifications for Thermal Regulation and Tempco. Load Regulation is measured at a point on the output pin $1 / 8^{\prime \prime}$ below the bottom of the package. Note 10: Consult factory for availability of devices with Guaranteed Long-term Stability.

Note 11: Consult factory for availability of devices with tighter Accuracy and Tempco Specifications.
Note 12: In Sinking mode, connect $0.1 \mu \mathrm{~F}$ tantalum capacitor from output to ground.

Typical Performance Characteristics (Note 1)

Quiescent Current vs Input Voltage and Temperature

Output Impedance vs Frequency

Output Noise vs Frequency

Dropout Voltage vs
Output Current (Series Mode Sourcing Current)

Ripple Rejection vs Frequency

Output Noise vs Filter

Capacitor

LM369 Temperature

 Coefficient

LM169 Temperature Coefficient

Typical Temperature Coefficient Calculations:
LM169 (see curve above):
$\mathrm{T} . \mathrm{C} .=1.6 \mathrm{mV} /\left(180^{\circ} \times 10 \mathrm{~V}\right)$
$=8.9 \times 10^{-7}=0.89 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
LM369 (see curve at left):
$\mathrm{T} . \mathrm{C} .=0.5 \mathrm{mV} /\left(75^{\circ} \times 10 \mathrm{~V}\right)$
$=6.7 \times 10^{-7}=0.67 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Application Hints

The LM169/LM369 can be applied in the same way as any other voltage reference. The adjacent Typical Applications Circuits suggest various uses for the LM169/LM369. The LM169 is recommended for applications where the highest stability and lowest noise is required over the full military temperature range. The LM369 is suitable for limited-temperature operation. The curves showing the Noise vs. Capacitance in the Typical Performance Characteristics section show graphically that a modest capacitance of 0.1 to 0.3 microfarads can cut the broadband noise down to a level of only a few microvolts, less than 1 ppm of the output voltage. The capacitor used should be a low-leakage type. For the temperature range 0 to $50^{\circ} \mathrm{C}$, polyester or Mylar® will be suitable, but at higher temperatures, a premium film capacitor such as polypropylene is recommended. For operation at $+125^{\circ} \mathrm{C}$, a Teflon ${ }^{\circledR}$ capacitor would be required, to ensure sufficiently low leakage. Ceramic capacitors may seem to do the job, but are not recommended for production use, as the high-K ceramics cannot be guaranteed for low leakage, and may exhibit piezo-electric effects, converting vibration or mechanical stress into excessive electrical noise.
Additionally, the inherent superiority of the LM169/369's buried Zener diode provides freedom from low-frequency noise, wobble, and jitter, in the frequency range 0.01 to 10 Hertz, where capacitive filtering is not feasible.
Pins 1, 3, 7, and 8 of the LM169/369 are connected to internal trim circuits which are used to trim the device's output voltage and Tempco during final testing at the factory. Do not connect anything to these pins, or improper operation may result. These pins would not be damaged by a short to ground, or by Electrostatic Discharges; however, keep them away from large transients or AC signals, as stray capacitance could couple noises into the output. These pins may be cut off if desired. Alternatively, a shield foil can be laid out on the printed circuit board, surrounding these pins and pin 5, and this guard foil can be connected to ground or to $\mathrm{V}_{\text {out }}$, effectively acting as a guard against AC coupling and DC leakages.
The trim pin (pin 5) should also be guarded away from noise signals and leakages, as it has a sensitivity of 15 millivolts of $\Delta \mathrm{V}_{\text {out }}$ per microampere. The trim pin can also be used in
the circuits shown, to provide an output trim range of ± 10 millivolts. Trimming to a wider range is possible, but is not recommended as it may degrade the Tempco and the Tempco linearity at temperature extremes. For example, if the output were trimmed up to 10.240 V , the Tempco would be degraded by $8 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. As a general rule, Tempco will be degraded by $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ per 30 mV of output adjustment.
The output can sink current as well as source it, but the output impedance is much better for sourcing current. Also, the LM169/369 requires a $0.1 \mu \mathrm{~F}$ tantalum capacitor (or, $0.1 \mu \mathrm{~F}$ in series with 10Ω) bypass from the output to ground, for stable operation in shunt mode (output sinking current). The output has a class-B stage, so if the load current changes from sourcing to sinking, an output transient will occur. To avoid this transient, it may be advisable to preload the output with a few milliamperes of load to ground. The LM169/369 does have an excellent tolerance of load capacitance, and in cases of load transients, electrolytic or tantalum capacitors in the range 1 to 500 microfarads have been shown to improve the output impedance without degrading the dynamic stability of the device. The LM169/369 are rated to drive an output of $\pm 10 \mathrm{~mA}$, but for best accuracy, any load current larger than 1 mA can cause thermal errors (such as, $1 \mathrm{~mA} \times 5 \mathrm{~V} \times 4 \mathrm{ppm} / 100 \mathrm{~mW}=0.2 \mathrm{ppm}$ or 2 microvolts) and degrade the ultimate precision of the output voltage.
The output is short-circuit-proof to ground. However, avoid overloads at high ambient temperatures, as a prolonged short-circuit may cause the junction temperature to exceed the Absolute Maximum Temperature. The device does not include a thermal shut-down circuit. If the output is pulled to a positive voltage such as +15 or +20 V , the output current will be limited, but overheating may occur. Avoid such overloads for voltages higher than +20 V , for more than 5 seconds, or, at high ambient temperatures.
The LM169/369 has an excellent long-term stability, and is suitable for use in high-resolution Digital Voltmeters or Data Acquisition systems. Its long-term stability is typically 3 to 10 ppm per 1000 hours when held near $T_{\text {max }}$, and slightly better when operated at room temperature. Contact the factory for availability of devices with proven long-term stability.

Typical Applications

Series Reference

TL/H/9110-2

Shunt Reference with Optional Trim

Series Reference with Optional Filter for Reduced Noise

Typical Applications (Continued)

Multiple Output Voltages

TL/H/9110-10

TL/H/9110-9

R $=$ Thin Film Resistor Network
0.05\% Matching and 5 ppm Tracking
(Beckman 694-3-R-10K-A),
(Caddock T-914-10K-100-05)
(Allen Bradley F08B103A)
or similar.

Typical Applications (Continued)

Precision Wide-Range Current Source

TL/H/9110-18
$\begin{aligned} A_{1}= & \text { LF411A, LM607, LM308A } \\ & \text { or similar }\end{aligned}$
$Q_{1}, Q_{2}=$ high β PNP,
PN4250, 2N3906,
or similar
" = Part of Precision Resistor Network,
$\pm 0.05 \%$ Matching,
(Allen Bradley F08B103A)
(Caddock T-914-10K-100-05)
(Beckman 694-3-R-10K-A)
or similar

R = Thin Film Resistor Network 0.05\% Matching and 5 ppm Tracking (Beckman 694-3-R-10K-A), (Caddock T-914-10K-100-05) (Allen Bradley F08B103A) or similar.

TL/H/9110-14
$A_{1}, A_{2}, A_{3}=L F 411 A$, LM607, or similar

$2 k \leq R x \leq 10 M$
TL/H/9110-16

Typical Applications (Continued)

Precision Wide-Range Current Sink
$I_{\text {out }}=\frac{10 V}{R x}$
$A_{1}=$ LM11, LM607 or similar.
$(\mathrm{V} 3+2 \mathrm{~V}) \leq \mathrm{V}_{\text {out }} \leq+20 \mathrm{~V}$.
Q1, Q2 $=$ high Beta NPN, 2N3707, 2N3904 or similar.

TL/H/9110-19
Digitally Variable Supply

Typical Applications (Continued)

$200 \Omega \leq R \leq 1 k$
When N pieces of LM369 are used, the $V_{\text {out }}$ noise is decreased by a factor of $\frac{1}{\sqrt{N}}$
If the output buffer is not used, for lowest noise add $0.1 \mu \mathrm{~F}$ Mylar D^{∞} from ground to pin 5 of each LM369.

LM169 Block Diagram

*Do not connect; internal connection for factory trim.

National Semiconductor Corporation

LM185-1.2/LM285-1.2/LM385-1.2 Micropower Voltage Reference Diode

General Description

The LM185-1.2/LM285-1.2/LM385-1.2 are micropower 2terminal band-gap voltage regulator diodes. Operating over a $10 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. Onchip trimming is used to provide tight voltage tolerance. Since the LM185-1.2 band-gap reference uses only transistors and resistors, low noise and good long term stability result.
Careful design of the LM185-1.2 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.
The extremely low power drain of the LM185-1.2 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life.

Further, the wide operating current allows it to replace older references with a tighter tolerance part.
The LM185-1.2 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range while the LM285-1.2 is rated $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385-1.2 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185-1.2/LM285-1.2 are available in a hermetic TO-46 package and the LM285-1.2/LM385-1.2 are also available in a lowcost TO-92 molded package, as well as S.O.

Features

- Operating current of $10 \mu \mathrm{~A}$ to 20 mA
- 1% and 2% initial tolerance
- 1Ω dynamic impedance
- Low temperature coefficient
- Low voltage reference- 1.235 V
- 2.5V device also available-LM385-2.5

Connection Diagrams

TO-92
Plastic Package (Z)

TL/H/5518-10

Order Number LM385Z-1.2, LM385BZ-1.2, LM385BXZ-1.2, LM385BYZ-1.2, LM285BXZ-1.2, LM285BYZ-1.2 or LM285Z-1.2 See NS Package Number Z03A

TO-46 Metal Can Package (H)

TL/H/5518-6 Bottom View

Order Number LM185H-1.2, LM185BXH-1.2, LM185BYH-1.2, LM285H-1.2, LM285BXH-1.2 or LM285BYH-1.2
See NS Package Number H02A

TL/H/5518-9
Order Number LM285M-1.2, LM385M-1.2 or LM385BM-1.2 See NS Package Number M08A

Applications

Wide Input Range Reference

TL/H/5518-8

Centigrade Thermometer

Calibration

1. Adjust R1 so that $\mathrm{V} 1=$ temp at $1 \mathrm{mV} /{ }^{\circ} \mathrm{K}$
2. Adjust V2 to $\mathbf{2 7 3 . 2 \mathrm { mV }}$
\dagger_{Q} for 1.3 V to 1.6 V battery voltage $=50 \mu \mathrm{~A}$ to $150 \mu \mathrm{~A}$

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 6)
Reverse Current
30 mA
Forward Current
Operating Temperature Range

```
LM185-1.2
LM285-1.2
LM385-1.2
```

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering information	
TO-92 package: 10 sec.	$260^{\circ} \mathrm{C}$
TO-46 package: 10 sec.	$300^{\circ} \mathrm{C}$
SO package: Vapor phase $(60 \mathrm{sec})$.	$215^{\circ} \mathrm{C}$
Infrared (15 sec.$)$	$220^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)

Parameter	Conditions	LM185-1.2LM185BX-1.2LM185BY-1.2LM285-1.2LM285BX-1.2LM285BY-1.2			LM385-1.2 LM385B-1.2 LM385BX-1.2 LM385BY-1.2			Units Limit
		Typ	Tested Limit (Note 2)	$\begin{gathered} \text { Design } \\ \text { Limit } \\ \text { (Note 3) } \end{gathered}$	Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
Reverse Breakdown Voltage	$T_{A}=25^{\circ} \mathrm{C}, I_{M I N} \leq I_{R} \leq I_{M A X}$ LM185-1.2/LM285-1.2/LM385B-1.2 LM385-1.2	1.235	$\begin{aligned} & 1.223 \\ & 1.247 \end{aligned}$		$\begin{aligned} & 1.235 \\ & 1.235 \end{aligned}$	$\begin{aligned} & 1.223 \\ & 1.247 \\ & 1.205 \\ & 1.260 \\ & \hline \end{aligned}$		$\mathrm{V}_{\text {MIN }}$ $V_{\text {MAX }}$ $V_{\text {MIN }}$ $V_{\text {MAX }}$
Minimum Operating Current		8	10	20	8	15	20	$\mu \mathrm{A}$
Reverse Breakdown	$\mathrm{I}_{\text {MIN }} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA}$		1	1.5		1	1.5	mV
Voltage Change with Current	$1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}$		10	20		20	25	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} . \mathrm{f}=20 \mathrm{~Hz}$	1			1			Ω
Wideband Noise (rms)	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	60			60			$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}=1000 \mathrm{Hr} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	20			20			ppm
Average Temperature Coefficient (Note 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & \mathrm{X} \text { Series } \\ & \mathrm{Y} \text { Series } \\ & \text { Other Versions } \end{aligned}$		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Note 1: Parameters identified with boldface type apply at temperature extremes and for $\mathrm{I}_{\mathrm{MIN}}<\mathrm{I}_{\mathrm{R}}<20 \mathrm{~mA}$, unless otherwise specified. All other numbers apply at
$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.
Note 2: Guaranteed and 100% production tested.
Note 3: Guaranteed (but not 100% production tested) over the operating temperature and input current ranges. These limits are not to be used to calculate outgoing quality levels.
Note 4: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures between the operating $T_{\text {MAX }}$ and $T_{M I N}$, divided by $T_{\text {MAX }}-T_{\text {MIN }}$. The measured temperatures are $-55^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$.
Note 5: For elevated temperature operation, $T_{j} \max$ is:
LM185 $150^{\circ} \mathrm{C}$

LM285
LM385

Thermal Reslstance	TO-92	TO-46	SO-8
$\theta_{\text {ja }}$ (junction to ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ leads) $170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ leads)	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jc }}$ (junction to case)	n / a	$80^{\circ} \mathrm{C} / \mathrm{W}$	n / a

Note 6: Refer to RETS185H-1.2 for military specifications.

Typical Performance Characteristics

Applications (Continued)

Micropower Reference
from 9V Battery

Reference from 1.5V Battery

LM385 Applications

Micropower* 5V Regulator

${ }^{*} \mathrm{l}_{\mathrm{Q}} \cong 30 \mu \mathrm{~A}$

Micropower* 10V Reference

$$
{ }^{*} I_{Q} \cong 20 \mu \mathrm{~A} \text { standby current }
$$

Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources

$$
{ }^{\text {lout }}=\frac{1.23 \mathrm{~V}}{\mathrm{R} 2}
$$

LM385 Applications (Continued)

METER THERMOMETERS

Calibration

1. Short LM385-1.2, adjust R3 for lout $=$ temp at $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in centigrade
\dagger_{Q} at $1.3 \mathrm{~V} \cong 500 \mu \mathrm{~A}$
l_{Q} at $1.6 \mathrm{~V} \cong 2.4 \mathrm{~mA}$

Callbration

1. Short LM385-1.2, adjust R3 for lout $=$ temp at $1.8 \mu A /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in ${ }^{\circ} \mathrm{F}$

Micropower Thermocouple Cold Junction Compensator

TL/H/5518-5
Adjustment Procedure

1. Adjust TC ADJ pot until voltage across R1 equals Kelvin temperature multiplied by the thermocouple Seebeck coefficient.
2. Adjust zero ADJ pot until voltage across R2 equals the thermocouple Seebeck coefficient multiplied by 273.2.

Seebeck Coefficlent $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$	R1 (Ω)	R2 (Ω)	Voltage Across R1 $@ 255^{\circ} \mathrm{C}$	Voltage Across R2 (mV)
			$(\mathbf{m V})$	
52.3	523	1.24 k	15.60	14.32
42.8	432	1 k	12.77	11.78
40.8	412	953Ω	12.17	11.17
6.4	63.4	150Ω	1.908	1.766

Typical supply current $50 \mu \mathrm{~A}$

Schematic Diagram

National Semiconductor Corporation

LM185-2.5/LM285-2.5/LM385-2.5 Micropower Voltage Reference Diode

General Description

The LM185-2.5/LM285-2.5/LM385-2.5 are micropower 2terminal band-gap voltage regulator diodes. Operating over a $20 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. Onchip trimming is used to provide tight voltage tolerance. Since the LM-185-2.5 band-gap reference uses only transistors and resistors, low noise and good long term stability result.
Careful design of the LM185-2.5 has made the device exceptionally tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.
The extremely low power drain of the LM185-2.5 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life.

Further, the wide operating current allows it to replace older references with a tighter tolerance part. For applications requiring 1.2V see LM185-1.2.
The LM185-2.5 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range while the LM285-2.5 is rated $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385-2.5 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185-2.5/LM285-2.5 are available in a hermetic TO-46 package and the LM285-2.5/LM385-2.5 are also available in a lowcost TO-92 molded package, as well as S.O.

Features

- Operating current of $20 \mu \mathrm{~A}$ to 20 mA
- 1.5% and 3% initial tolerance
m 1Ω dynamic impedance
- Low temperature coefficient
- Low voltage reference-2.5V

Applications

Wide Input Range Reference

TL/H/5519-12

Micropower Reference from 9V Battery

Connection Diagrams

TO-92
Plastic Package

TL/H/5519-8

Bottom View

Order Number LM285BXZ-2.5, LM285BYZ-2.5, LM285Z-2.5, LM385Z-2.5, LM385BZ-2.5, LM385BXZ-2.5 or LM385BYZ-2.5 See NS Package Number Z03A

TO-46 Metal Can Package

TL/H/5519-13
Bottom View
Order Number LM185H-2.5, LM185BXH-2.5, LM185BYH-2.5, LM285H-2.5, LM285BXH-2.5 or LM285BYH-2.5
See NS Package Number H02A

SO Package

Order Number LM285M-2.5, LM385M-2.5 or LM385BM-2.5 See NS Package Number M08A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 6)

Reverse Current	30 mA
Forward Current	10 mA
Operating Temperature Range	
LM185-2.5	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LM285-2.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
LM385-2.5	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage Temperature $\quad-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Soldering Information TO-92 Package (10 sec.) $260^{\circ} \mathrm{C}$ TO-48 Package (10 sec .) $300^{\circ} \mathrm{C}$ SO Package Vapor Phase (60 sec.$) \quad 215^{\circ} \mathrm{C}$ Infrared (15 sec .) $220^{\circ} \mathrm{C}$
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)

Parameter	Conditions	LM185-2.5LM185BX-2.5LM185BY-2.5LM285-2.5LM285BX-2.5LM285BY-2.5			$\begin{array}{r} \text { LM385-2.5 } \\ \text { LM385B-2.5 } \\ \text { LM385BX-2.5 } \\ \text { LM385BY-2.5 } \end{array}$			Units Limit
		Typ	$\begin{aligned} & \text { Tested } \\ & \text { Limit } \\ & \text { (Note 2) } \end{aligned}$	Design Limit (Note 3)	Typ	Tested Limit (Note 2)	$\begin{aligned} & \text { Design } \\ & \text { Limit } \\ & \text { (Note 3) } \\ & \hline \end{aligned}$	
Reverse Breakdown Voltage	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, I_{\text {MIN }} \leq I_{\mathrm{R}} \leq I_{\text {MAX }} \\ & \text { LM185-2.5/LM285-2.5/LM385B-2.5 } \end{aligned}$ LM385-2.5	2.5	$\begin{aligned} & 2.462 \\ & 2.538 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 2.462 \\ & 2.538 \\ & 2.425 \\ & 2.575 \end{aligned}$		$V_{\text {MIN }}$ $V_{\text {MAX }}$ $V_{\text {MIN }}$ $V_{\text {MAX }}$
Minimum Operating Current		13	20	30	13	20	30	$\mu \mathrm{A}$
Reverse Breakdown Voltage Change with Current	$\begin{aligned} & 20 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 1 \mathrm{~mA} \\ & 1 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 20 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 20 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{f}=20 \mathrm{~Hz}$	1			1			Ω
Wideband Noise (rms)	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A} \\ & 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz} \end{aligned}$	120			120			$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A}, \mathrm{~T}=1000 \mathrm{Hr} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$	20			20			ppm
Average Temperature Coefficient (Note 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} \\ & \mathrm{X} \text { Series } \\ & \text { Y Series } \\ & \text { Other Versions } \end{aligned}$		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	150	

Note 1: Parameters identified with boldface type apply at temperature extremes and for $I_{M I N}<I_{R}<20 \mathrm{~mA}$, unless otherwise specified. All other numbers apply at $T_{A}=T_{J}=25^{\circ} \mathrm{C}$.
Note 2: Guaranteed and 100% production tested.
Note 3: Guaranteed (but not 100\% production tested) over the operating temperature and input current ranges. These limits are not to be used to calculate outgoing quality levels.
Note 4: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures between the operating TMAX and $T_{\text {MIN }}$, divided by $T_{\text {MAX }}-T_{\text {MIN }}$. The measured temperatures are $-55^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$.
Note 5: For elevated temperature operation, $T_{J} \max$ is:

LM185 LM285 LM385	$\begin{aligned} & 150^{\circ} \mathrm{C} \\ & 125^{\circ} \mathrm{C} \\ & 100^{\circ} \mathrm{C} \end{aligned}$		
Thermal Resistance	TO-92	TO-46	SO-8
$\boldsymbol{\theta}_{\mathrm{ja}}$ (Junction to Ambient)	$\begin{gathered} 180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right. \text { leads) } \\ 170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime} \text { leads }\right) \end{gathered}$	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
$\boldsymbol{\theta}_{\mathrm{j}}$ (Junction to Case)	n/a	$80^{\circ} \mathrm{C} / \mathrm{W}$	n / a

[^23]
Typical Performance Characteristics

Reverse Dynamic Impedance

LM385-2.5 Applications

Micropower* 10V Reference

${ }^{*} l_{Q} \cong 40 \mu \mathrm{~A}$
TL/H/5519-9
Precision $1 \mu \mathrm{~A}$ to 1 mA Current Sources

$$
\text { "lout }=\frac{2.5 \mathrm{~V}}{\mathrm{R} 2}
$$

METER THERMOMETERS

Callbration

1. Short LM385-2.5, adjust R3 for IOUT $=$ temp at $1 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in centigrade

TL/H/5519-5
Calibration

1. Short LM385-2.5, adjust R3 for IOUT $=$ temp at $1.8 \mu \mathrm{~A} /{ }^{\circ} \mathrm{K}$
2. Remove short, adjust R2 for correct reading in ${ }^{\circ} \mathrm{F}$

LM385-2.5 Applications (Continued)

Schematic Diagram

TL/H/5519-1

LM185/285/385 Adjustable Micropower Voltage Reference

General Description

The LM185/LM285/LM385 are micropower 3-terminal adjustable band-gap voltage reference diodes. Operating from 1.24 to 5.3 V and over a $10 \mu \mathrm{~A}$ to 20 mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185 band-gap reference uses only transistors and resistors, low noise and good long-term stability result.
Careful design of the LM185 has made the device tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.
The extremely low power drain of the LM185 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose an-
alog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.
The LM185 is rated for operation over a $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range, while the LM285 is rated $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and the LM385 $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LM185 is available in a hermetic TO-46 package and the LM285/LM385 are available in a low-cost TO-92 molded package, as well as S.O.

Features

- Adjustable from 1.24 V to 5.30 V
- Operating current of $10 \mu \mathrm{~A}$ to 20 mA
- 1% and 2% initial tolerance
- 1Ω dynamic impedance
- Low temperature coefficient

Connection Diagrams

TO-92
Plastic Package

TL/H/5250-9

Bottom View

Order Number LM285BXZ, LM285BYZ, LM285Z, LM385BXZ, LM385BYZ or LM385Z See NS Package Number Z03A

Block Diagram

TO-46 Metal Can Package

TL/H/5250-1
Bottom View
Order Number LM185BH, LM185BXH or LM185BYH See NS Package Number H03A

Order Number LM285M or LM385M See NS Package Number M08A
5.0V Reference

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 6)

Reverse Current 30 mA
Forward Current 10 mA
Operating Temperature Range

LM185 Series	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LM285 Series	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LM385 Series	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Soldering Information

TO-92 Package (10 sec.$)$	$260^{\circ} \mathrm{C}$
TO-46 Package $(10 \mathrm{sec})$.	$300^{\circ} \mathrm{C}$
SO Package	
\quad Vapor Phase $(60$ sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	$220^{\circ} \mathrm{C}$

See An-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)

Parameter	Conditions	LM185BX, LM185BY LM185B, LM285BX LM285BY, LM285			LM385BX, LM385BY LM385			Unit Limit
		Typ	Tested Limit (Note 2)	Design Limit (Note 3)	Typ	Tested Limit (Note 2)	Design Limit (Note 3)	
Reference Voltage	$\begin{array}{rc} \hline \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} & \\ & \text { B-Series } \\ & \text { LM285 and } \\ & \text { LM385 } \end{array}$	1.240	$\begin{gathered} 1.252 \\ \mathbf{1 . 2 5 5} \\ 1.228 \\ \mathbf{1 . 2 1 5} \end{gathered}$		1.240	$\begin{aligned} & 1.252 \\ & 1.228 \end{aligned}$	$\begin{aligned} & 1.255 \\ & 1.215 \end{aligned}$	$\begin{aligned} & V_{\max } \\ & V_{\min } \end{aligned}$
		1.240	$\begin{aligned} & 1.265 \\ & 1.215 \end{aligned}$	$\begin{aligned} & 1.270 \\ & 1.205 \end{aligned}$		$\begin{aligned} & 1.265 \\ & 1.215 \end{aligned}$	$\begin{aligned} & 1.270 \\ & 1.205 \end{aligned}$	$V_{\text {max }}$ $V_{\text {min }}$
Reference Voltage Change with Current	$\begin{aligned} & I_{\min }<I_{R}<1 \mathrm{~mA} \\ & 1 \mathrm{~mA}<I_{R}<20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 0.2 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 20 \end{aligned}$	$\begin{gathered} 0.2 \\ 5 \end{gathered}$	$\begin{gathered} 1 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 25 \\ & \hline \end{aligned}$	mV max $m V$ max
Dynamic Output Impedance	$\begin{array}{\|c} \begin{array}{l} I_{R}=100 \mu A, f=100 ~ H z \\ I_{A C}=0.1 \\ V_{R} \\ \\ V_{R}=5.3 V \end{array} \\ \hline \end{array}$	$\begin{aligned} & 0.3 \\ & 0.7 \\ & \hline \end{aligned}$			$\begin{gathered} 0.4 \\ 1 \\ \hline \end{gathered}$			ohm ohm
Reference Voltage Change with Output Voltage	$I_{R}=100 \mu \mathrm{~A}$	1	3	6	2	5	10	mV max
Feedback Current		13	20	25	16	30	35	$n A \max$
Minimum Operating Current (see curve)	$\begin{aligned} & V_{R}=V_{\mathrm{REF}} \\ & \mathrm{~V}_{\mathrm{R}}=5.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} 6 \\ 30 \\ \hline \end{gathered}$	$\begin{array}{r} 9 \\ 45 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 50 \\ & \hline \end{aligned}$	$\begin{gathered} 7 \\ 35 \end{gathered}$	$\begin{aligned} & 11 \\ & 55 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 \\ & 60 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ min $\mu \mathrm{A}$ min
Output Wideband Noise	$\begin{aligned} & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, 10 \mathrm{~Hz}<\mathrm{f}<10 \mathrm{kHz} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\text {REF }} \\ & V_{\text {OUT }}=5.3 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 170 \\ \hline \end{gathered}$			$\begin{gathered} 50 \\ 170 \\ \hline \end{gathered}$			$\mu \mathrm{V}$ rms $\mu \mathrm{V}$ rms
Average Temperature Coefficient (Note 4)	$\begin{array}{cc} \hline \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A} & \text { X-Series } \\ & \text { Y-Series } \\ \text { LM185B, LM285 } \\ \text { and LM385 } \end{array}$		30			30		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ \max
			50			50		ppm $/{ }^{\circ} \mathrm{C}$ max
				150			150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ \max
Long Term Stability	$\begin{aligned} & I_{R}=100 \mu \mathrm{~A}, \mathrm{~T}=1000 \mathrm{hr} \\ & T_{R}=25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C} \end{aligned}$	20			20			ppm

Note 1: Parameters identified with boldface type apply at temperature extremes and for $I_{\text {min }}<I_{R}<20 \mathrm{~mA}$ and for $\mathrm{V}_{\mathrm{REF}}<\mathrm{V}_{\mathrm{OUT}}<5.3 \mathrm{~V}$. All other numbers apply at $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Note 2: Guaranteed and 100% production tested.
Note 3: Guaranteed (but not 100% production tested) over the operating temperature and input current ranges. These limits are not to be used to calculate outgoing quality levels.
Note 4: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures from $T_{\text {min }}$ to $T_{\text {max }}$, divided by $T_{\text {max }}-T_{\text {min }}$. The measured temperatures are $-55,-40,0,25,70,85,125^{\circ} \mathrm{C}$.
Note 5: For elevated temperature operation, T_{j} max is:

LM185	$150^{\circ} \mathrm{C}$
LM285	$125^{\circ} \mathrm{C}$
LM385	$100^{\circ} \mathrm{C}$

Note 6: Refer to RETS185H for military specifications.

Thermal Resistance	TO-92	TO-46	SO-8
θ_{ja} (Junction to Ambient)	$180^{\circ} \mathrm{C} / \mathrm{W}\left(0.4^{\prime \prime}\right.$ leads) $170^{\circ} \mathrm{C} / \mathrm{W}\left(0.125^{\prime \prime}\right.$ leads)	$440^{\circ} \mathrm{C} / \mathrm{W}$	$165^{\circ} \mathrm{C} / \mathrm{W}$
θ_{jc} (Junction to Case)	n / a	$80^{\circ} \mathrm{C} / \mathrm{W}$	n / a

Typical Performance Characteristics

Typical Applications (Continued)

Precision 10V Reference

25V Low Current Shunt Regulator

Serles-Shunt 20 mA Regulator

Low AC Noise Reference

200 mA Shunt Regulator

High Efficiency Low Power Regulator

Typical Applications (Continued)

Voltage Level Detector

Fast Positive Clamp $2.4 \mathrm{~V}+\Delta \mathrm{V}_{\mathrm{D} 1}$

Bidirectional Adjustable Clamp

$$
\pm 1.8 \mathrm{~V} \text { to } \pm 2.4 \mathrm{~V}
$$

Voltage Level Detector

Bidirectional Clamp $\pm 2.4 \mathrm{~V}$

Bidirectional Adjustable Clamp $\pm 2.4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$

Typical Applications (Continued)

Simple Floating Current Detector

Precision Floating Current Detector

* D 1 can be any LED, $\mathrm{V}_{\mathrm{F}}=1.5 \mathrm{~V}$ to 2.2 V at 3 mA . D1 may act as an indicator. D1 will be on if $I_{\text {THRESHOLD }}$ falls below the threshold current, except with $\mathrm{I}=0$.

Typical Applications (Continued)

Centigrade Thermometer, $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

Freezer Alarm

Schematic Diagram

TL/H/5250-8

LM199/LM299/LM399/LM3999 Precision Reference

General Description

The LM199 series are precision, temperature-stabilized monolithic zeners offering temperature coefficients a factor of ten better than high quality reference zeners. Constructed on a single monolithic chip is a temperature stabilizer circuit and an active reference zener. The active circuitry reduces the dynamic impedance of the zener to about 0.5Ω and allows the zener to operate over 0.5 mA to 10 mA current range with essentially no change in voltage or temperature coefficient. Further, a new subsurface zener structure gives low noise and excellent long term stability compared to ordinary monolithic zeners. The package is supplied with a thermal shield to minimize heater power and improve temperature regulation.
The LM199 series references are exceptionally easy to use and free of the problems that are often experienced with ordinary zeners. There is virtually no hysteresis in reference voltage with temperature cycling. Also, the LM199 is free of voltage shifts due to stress on the leads. Finally, since the unit is temperature stabilized, warm up time is fast.

The LM199 can be used in almost any application in place of ordinary zeners with improved performance. Some ideal applications are analog to digital converters, calibration standards, precision voltage or current sources or precision power supplies. Further in many cases the LM199 can replace references in existing equipment with a minimum of wiring changes.

Connection Diagrams

Metal Can Package

TL/H/5717-14
Top View
LM199/LM299/LM399 (See Table on fourth page) NS Package Number H04D

Plastic Package TO-92

Bottom View
LM3999 (See Table on fourth page) NS Package Number Z03A

The LM199 series devices are packaged in a standard hermetic TO-46 package inside a thermal shield. The LM199 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the LM299 is rated for operation from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the LM399 is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
The LM3999 is packaged in a standard TO-92 package and is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Features

■ Guaranteed $0.0001 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient

- Low dynamic impedance - 0.5Ω

■ Initial tolerance on breakdown voltage - 2\%
■ Sharp breakdown at $400 \mu \mathrm{~A}$

- Wide operating current - $500 \mu \mathrm{~A}$ to 10 mA
- Wide supply range for temperature stabilizer
- Guaranteed low noise
- Low power for stabilization - 300 mW at $25^{\circ} \mathrm{C}$

■ Long term stability - 20 ppm

- Proven reliability, low-stress packaging in TO-46 inte-grated-circuit hermetic package, for low hysteresis after thermal cycling. 33 million hours MTBF at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ($\mathrm{T}_{\mathrm{J}}=+86^{\circ} \mathrm{C}$)
- Certified long term stability available

Functional Block Diagrams

LM199/LM299/LM399

TL/H/5717-15

LM3999

Absolute Maximum Ratings
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the following Reliability Electrical Test Specifications documents: RETS199X for LM199, RETS199AX for LM199A.
Temperature Stabilizer Voltage

```
    LM199/LM299/LM399
    40V
    36V
    LM3999
Reverse Breakdown Current 20 mA
Forward Current
```

```
LM199/LM299/LM399
```

LM199/LM299/LM399
LM3999
1 mA
1 mA
-0.1 mA

```

\section*{Electrical Characteristics (Note 2)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multicolumn{3}{|c|}{LM199/LM299} & \multicolumn{3}{|c|}{LM399} & \multirow{2}{*}{Units} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Reverse Breakdown Voltage & \(0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}\) & 6.8 & 6.95 & 7.1 & 6.6 & 6.95 & 7.3 & V \\
\hline Reverse Breakdown Voltage Change with Current & \(0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}\) & & 6 & 9 & & 6 & 12 & mV \\
\hline Reverse Dynamic Impedance & \(\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}\) & & 0.5 & 1 & & 0.5 & 1.5 & \(\Omega\) \\
\hline Reverse Breakdown Temperature Coefficient & \(\left.\begin{array}{lr}-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
+85^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\end{array}\right\} \quad\) LM199 \(\quad\)\begin{tabular}{ll}
\(-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}\) & LM299 \\
\(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\) & LM399
\end{tabular} & & \begin{tabular}{l}
0.00003 \\
0.0005 \\
0.00003
\end{tabular} & \[
\begin{aligned}
& 0.0001 \\
& 0.0015 \\
& 0.0001
\end{aligned}
\] & & 0.00003 & 0.0002 & \[
\begin{aligned}
& \% /{ }^{\circ} \mathrm{C} \\
& \% /{ }^{\mathrm{C}} \\
& \% /{ }^{\circ} \mathrm{C} \\
& \% /{ }^{\mathrm{C}}
\end{aligned}
\] \\
\hline RMS Noise & \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & & 7 & 20 & & 7 & 50 & \(\mu \mathrm{V}\) \\
\hline Long Term Stability & \begin{tabular}{l}
Stabilized, \(22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}\), \\
1000 Hours, \(\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%\)
\end{tabular} & & 20 & & & 20 & & ppm \\
\hline Temperature Stabilizer Supply Current & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { Still Air, } \mathrm{V}_{\mathrm{S}}=30 \mathrm{~V} \\
& \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & & \[
\begin{aligned}
& 8.5 \\
& 22 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
14 \\
28 \\
\hline
\end{array}
\] & & 8.5 & 15 & mA \\
\hline Temperature Stabilizer Supply Voltage & & 9 & & 40 & 9 & & 40 & V \\
\hline Warm-Up Time to 0.05\% & \(\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 3 & & & 3 & & sec. \\
\hline Initial Turn-on Current & \(9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\), (Note 3) & & 140 & 200 & & 140 & 200 & mA \\
\hline
\end{tabular}

Electrical Characteristics (Note 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Parameter} & \multirow{2}{*}{Conditions} & \multicolumn{3}{|c|}{LM3999} & \multirow{2}{*}{Units} \\
\hline & & Min & Typ & Max & \\
\hline Reverse Breakdown Voltage & \(0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}\) & 6.6 & 6.95 & 7.3 & V \\
\hline Reverse Breakdown Voltage Change with Current & \(0.6 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}\) & & 6 & 20 & mV \\
\hline Reverse Dynamic Impedance & \(\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}\) & & 0.6 & 2.2 & \(\Omega\) \\
\hline Reverse Breakdown Temperature Coefficient & \(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\) & & 0.0002 & 0.0005 & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline RMS Noise & \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & & 7 & & \(\mu \mathrm{V}\) \\
\hline Long Term Stability & \begin{tabular}{l}
Stabilized, \(22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}\), \\
1000 Hours, \(\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%\)
\end{tabular} & & 20 & & ppm \\
\hline Temperature Stabilizer & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Still Air, \(\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}\) & & 12 & 18 & mA \\
\hline Temperature Stabilizer Supply Voltage & & & & 36 & V \\
\hline Warm-Up Time to 0.05\% & \(V_{S}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 5 & & sec. \\
\hline Initial Turn-On Current & \(9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 140 & 200 & mA \\
\hline
\end{tabular}

Electrical Characteristics (Note 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Condltions} & \multicolumn{3}{|r|}{LM199A, LM299A} & \multicolumn{3}{|c|}{LM399A} & \multirow{2}{*}{Units} \\
\hline & & MIn & Typ & Max & Min & Typ & Max & \\
\hline Reverse Breakdown Voltage & \(0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}\) & 6.8 & 6.95 & 7.1 & 6.6 & 6.95 & 7.3 & V \\
\hline Reverse Breakdown Voltage Change with Current & \(0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}\) & & 6 & 9 & & 6 & 12 & mV \\
\hline Reverse Dynamic Impedance & \(\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}\) & & 0.5 & 1 & & 0.5 & 1.5 & \(\Omega\) \\
\hline Reverse Breakdown Temperature Coefficient & \(\left.\begin{array}{ll}-55^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C} \\
+85^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}\end{array}\right\} \quad\) LM199A \begin{tabular}{ll}
\(-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}\) & LM299A \\
\(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\) & LM399A
\end{tabular} & &  &  & & 0.00003 & 0.0001 & \[
\begin{aligned}
& \% /{ }^{\circ} \mathrm{C} \\
& \% /{ }^{\circ} \mathrm{C} \\
& \% /{ }^{\circ} \mathrm{C} \\
& \% /{ }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline RMS Noise & \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & & 7 & 20 & & 7 & 50 & \(\mu \mathrm{V}\) \\
\hline Long Term Stability & \begin{tabular}{l}
Stabilized, \(22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}\), \\
1000 Hours, \(\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%\)
\end{tabular} & & 20 & & & 20 & & ppm \\
\hline Temperature Stabilizer Supply Current & \[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C}, \text { Still Air, } \mathrm{V}_{S}=30 \mathrm{~V} \\
& T_{A}=-55^{\circ} \mathrm{C}
\end{aligned}
\] & & \[
\begin{aligned}
& 8.5 \\
& 22 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
14 \\
28 \\
\hline
\end{array}
\] & & 8.5 & 15 & mA \\
\hline Temperature Stabilizer Supply Voltage & & 9 & & 40 & 9 & & 40 & V \\
\hline Warm-Up Time to 0.05\% & \(V_{S}=30 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}\) & & 3 & & & 3 & & sec. \\
\hline Initial Turn-on Current & \(9 \leq V_{S} \leq 40, T_{A}=+25^{\circ} \mathrm{C}\), (Note 3) & & 140 & 200 & & 140 & 200 & mA \\
\hline
\end{tabular}

\section*{Electrical Characteristics (Note 2)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{Condltions} & \multicolumn{3}{|l|}{LM199AH-20, LM299AH-20} & \multicolumn{3}{|c|}{LM399AH-50} & \multirow[t]{2}{*}{Units} \\
\hline & & Min & Typ & Max & Min & Typ & Max & \\
\hline Reverse Breakdown Voltage & \(0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}\) & 6.8 & 6.95 & 7.1 & 6.6 & 6.95 & 7.3 & V \\
\hline Reverse Breakdown Voltage Change With Current & \(0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 10 \mathrm{~mA}\) & & 6 & 9 & & 6 & 12 & mV \\
\hline Reverse Dynamic Impedance & \(\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}\) & & 0.5 & 1 & & 0.5 & 1.5 & \(\Omega\) \\
\hline Reverse Breakdown Temperature Coefficient & \[
\left.\begin{array}{ll}
-55^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \\
85^{\circ} \mathrm{C} \leq T_{A} \leq 125^{\circ} \mathrm{C}
\end{array}\right\} \text { LM199A } \begin{array}{ll}
-25^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} & \text { LM299A } \\
0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} & \text { LM399A } \\
\hline
\end{array}
\] & &  & 0.00005 0.0010 0.00005 & & 0.00003 & 0.0001 & \[
\begin{array}{|l|}
\hline \% /{ }^{\circ} \mathrm{C} \\
\hline
\end{array}
\] \\
\hline RMS Noise & \(10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}\) & & 7 & 20 & & 7 & 50 & \(\mu \mathrm{V}\) \\
\hline Long Term Stability & Stabilized, \(22^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 28^{\circ} \mathrm{C}\), 1000 Hours, \(\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA} \pm 0.1 \%\) & & 8 & 20 & & 9 & 50 & ppm \\
\hline Temperature Stabilizer Supply Current & \[
\begin{aligned}
& T_{A}=25^{\circ} \mathrm{C}, \text { Still Air, } V_{S}=30 \mathrm{~V} \\
& T_{A}=55^{\circ} \mathrm{C}
\end{aligned}
\] & & \[
\begin{aligned}
& 8.5 \\
& 22 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
14 \\
28 \\
\hline
\end{array}
\] & & 8.5 & 15 & mA \\
\hline Temperature Stabilizer Supply Voltage & & 9 & & 40 & 9 & & 40 & V \\
\hline Warm-Up Time to 0.05\% & \(\mathrm{V}_{\mathrm{S}}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & 3 & & & 3 & & S \\
\hline Initial Turn-on Current & \(9 \leq \mathrm{V}_{S} \leq 40, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), (Note 3) & & 140 & 200 & & 140 & 200 & mA \\
\hline
\end{tabular}

Note 1: The substrate is electrically connected to the negative terminal of the temperature stabilizer. The voltage that can be applied to either terminal of the reference is 40 V more positive or 0.1 V more negative than the substrate.
Note 2: These specifications apply for 30 V applied to the temperature stabilizer and \(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\) for the \(\mathrm{LM} 199 ;-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) for the LM 299 and \(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\) for the LM399 and LM3999.
Note 3: This initial current can be reduced by adding an appropriate resistor and capacitor to the heater circuit. See the performance characteristic graphs to determine values.
Note 4: Do not wash the LM199 with its polysulfone thermal shield in TCE.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|c|}
\hline Initial Tolerance & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) & \(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & \begin{tabular}{l}
NS \\
Package
\end{tabular} \\
\hline 2\% & & LM299AH & LM199AH & H04D \\
\hline 5\% & LM399H LM399AH & LM299H & LM199H & H04D \\
\hline 5\% & LM39992 & & & Z03A \\
\hline Guaranteed Long Term Stability & LM399AH-50 & LM299AH-20 & LM199AH-20 & H04D \\
\hline
\end{tabular}

\section*{Certified Long Term Drift}

The National Semiconductor LM199AH-20, LM299AH-20, and LM399AH-50 are ultra-stable Zener references specially selected from the production runs of LM199AH, LM299AH, LM399AH and tested to confirm a long-term stability of 20,20 , or 50 ppm per 1000 hours, respectively. The devices are measured every 168 hours and the voltage of each device is logged and compared in such a way as to show the deviation from its initial value. Each measurement is taken with a probable-worst-case deviation of \(\pm 2 \mathrm{ppm}\), compared to the Reference Voltage, which is derived from several groups of NBS-traceable references such as LM199AH-20's, 1N827's, and saturated standard cells, so
that the deviation of any one group will not cause false indications. Indeed, this comparison process has recently been automated using a specially prepared computer program which is custom-designed to reject noisy data (and require a repeat reading) and to record the average of the best 5 of 7 readings, just as a sagacious standards engineer will reject unbelievable readings.
The typical characteristic for the LM199AH-20 is shown below. This computerized print-out form of each reference's stability is shipped with the unit.

\section*{Typical Characteristics}

National Semiconductor Certified Long Term Drift
\begin{tabular}{|c|c|}
\hline Hrs & Drift \\
\hline 168 & -20 \\
336 & -24 \\
504 & -36 \\
672 & -34 \\
840 & -40 \\
1008 & -36 \\
\hline
\end{tabular}
LM199AH-20
Part \#6849
Limits
LM199AH-20 \(140 \mu \mathrm{~V}\)
LM299AH-20 \(140 \mu \mathrm{~V}\)
LM399AH-20 \(350 \mu \mathrm{~V}\)

Testing Conditions
\(\begin{array}{lr}\text { Heater Voltage } & 30 \mathrm{~V} \\ \text { Zener Current } & 1 \mathrm{~mA} \\ \text { Ambient Temp. } & 25^{\circ} \mathrm{C}\end{array}\)


TL/H/5717-12

\section*{Typical Performance Characteristics}


\section*{Typical Applications}


Negative Heater Supply with
Positive Reference


Buffered Reference With Single Supply



\section*{Typical Applications (Continued)}


\section*{Typical Applications (Continued)}

OV to 20V Power Reference


Blpolar Output Reference


Voltage Reference


TL/H/5717-9

Schematic Diagrams


TL/H/5717-01

Reference


PRELIMINARY

\section*{LM368-2.5 Precision Voltage Reference}

\section*{General Description}

The LM368-2.5 is a precision, monolithic, temperature-compensated voltage reference. The LM368-2.5 makes use of thin-film technology enhanced by the discrete laser trimming of resistors to achieve excellent Temperature coefficient (Tempco) of \(\mathrm{V}_{\text {OUT }}\) (as low as \(11 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) ), along with tight initial tolerance, (as low as \(0.02 \%\) ). The trim scheme is such that individual resistors are cut open rather than being trimmed (partially cut), to avoid resistor drift caused by electromigration in the trimmed area. The LM368-2.5 also provides excellent stability vs. changes in input voltage and output current. The output is short circuit proof. A trim pin is made available for fine trimming of VOUT or for obtaining intermediate values without greatly affecting the Tempco of the device.

\section*{Features}
- \(400 \mu \mathrm{~A}\) operating current
- Low output impedance
- Excellent line regulation (.0001\%/V typical)
- Single-supply operation
- Externally trimmable
- Low temperature coefficient
- Excellent initial accuracy ( \(0.02 \%\) typical)
- Best reference available for low-voltage operation \(\left(\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.500 \mathrm{~V}\right)\)

\section*{Connection Diagrams}

Dual-In-Line Package ( N ) or S.O. Package (M)


Top View
Order Number LM368M-2.5 or LM368N-2.5
See NS Package Number M08A or N08E


TL/H/8446-1
Top View
*case connected to V -
Order Number LM368H-2.5 LM368YH-2.5 See NS Package Number H08C

\section*{Typical Applications}

\section*{Low Voltage Reference}


TL/H/8446-2

Absolute Maximum Ratings (Note 7 )
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.
\begin{tabular}{lr} 
Input Voltage & 35 V \\
Power Dissipation & 600 mW \\
Storage Temperature Range & \(-60^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular}
\begin{tabular}{ll} 
Soldering Information & \\
DIP (N) Package (10 sec.) & \(+260^{\circ} \mathrm{C}\) \\
TO-5 (H) Package (10 sec.) & \(+300^{\circ} \mathrm{C}\) \\
SO (M) Package, Vapor Phase ( 60 sec. \()\) & \(+215^{\circ} \mathrm{C}\) \\
Infrared (15 sec.) & \(+220^{\circ} \mathrm{C}\)
\end{tabular}

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics (Note 1)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multicolumn{4}{|c|}{LM368-2.5} \\
\hline & & Typical & Tested Llmit (Note 2) & Design LImit (Note 3) & \(\qquad\) \\
\hline V OUT Error: LM368 & & \(\pm 0.02\) & \(\pm 0.2\) & & \% \\
\hline Line Regulation & \(5.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}\) & \(\pm 0.0001\) & \(\pm 0.0005\) & & \%/V \\
\hline Load Regulation (Note 8) & \(0 \mathrm{~mA} \leq \mathrm{I}_{\text {SOURCE }} \leq 10 \mathrm{~mA}\) & \(\pm 0.0003\) & \(\pm 0.0025\) & & \%/mA \\
\hline Thermal Regulation & \(\mathrm{T}=20 \mathrm{mS}\) (Note 4) & \(\pm 0.005\) & \(\pm 0.02\) & & \%/100 mW \\
\hline Quiescent Current & & 350 & 550 & & \(\mu \mathrm{A}\) \\
\hline Change of Quiescent Current vs. \(\mathrm{V}_{\text {IN }}\) & \(5.0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq 30 \mathrm{~V}\) & 3 & 5 & & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline \begin{tabular}{l}
Temperature Coefficient of \(V_{\text {OUT }}\) (see graph): LM368Y-2.5 (Note 5) \\
LM368-2.5
\end{tabular} & \[
\begin{aligned}
& 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\
& 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}
\end{aligned}
\] & \[
\begin{aligned}
& \pm 11 \\
& \pm 15
\end{aligned}
\] & \(\pm 20\) & \(\pm 30\) & \begin{tabular}{l}
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) \\
\(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Short Circuit Current & \(\mathrm{V}_{\text {OUT }}=0\) & 30 & 70 & 100 & mA \\
\hline \[
\begin{array}{ll}
\text { Noise: } & 0.1-10 \mathrm{~Hz} \\
& 100 \mathrm{~Hz}-10 \mathrm{kHz} \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
12 \\
420 \\
\hline
\end{array}
\] & & & \begin{tabular}{l}
uVp-p \\
\(\mathrm{nV} / \sqrt{\mathrm{Hz}}\)
\end{tabular} \\
\hline \(V_{\text {OUT }}\) Adjust Range & \(0 \leq \mathrm{V}_{\text {PIN } 5} \leq \mathrm{V}_{\text {OUT }}\) & 1.9-5.2 & & 2.2-5.0 & \(V\) min. \\
\hline
\end{tabular}

Note 1: Unless otherwise noted, these specifications apply: \(T_{A}=25^{\circ} \mathrm{C}, 4.9 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 10.5 \mathrm{~V}, 0 \leq \mathrm{l}_{\mathrm{LOAD}} \leq 0.5 \mathrm{~mA}, 0 \leq \mathrm{C}_{\mathrm{L}} \leq 200 \mathrm{pF}\).
Note 2: Tested Limits are guaranteed and \(100 \%\) tested in production.
Note 3: Design Limits are guaranteed (but not 100\% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 4: Thermal Regulation is defined as the change in the output Voltage at a time \(T\) after a step change in power dissipation of 100 mW .
Note 5: Temperature Coefficient of VOUT is defined as the worst case delta-V Temperature Range (See graphs). There is no guarantee that the Specified Temperatures are exactly at the minimum or maximum deviation.
Note 6: In metal can (H), \(\theta_{\mathrm{J}-\mathrm{C}}\) is \(75^{\circ} \mathrm{C} / \mathrm{W}\) and \(\theta_{\mathrm{JJ}-\mathrm{A}}\) is \(150^{\circ} \mathrm{C} / \mathrm{W}\). In plastic DIP, \(\theta_{\mathrm{J}-\mathrm{A}}\) is \(160^{\circ} \mathrm{C} / \mathrm{W}\). In SO-8, \(\theta_{\mathrm{J}-\mathrm{A}}\) is \(180^{\circ} \mathrm{C} / \mathrm{W}\), in TO-92, \(\theta_{\mathrm{J}-\mathrm{A}}\) is \(160^{\circ} \mathrm{C} / \mathrm{W}\).
Note 7: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its Rated Operating Conditions (see Note 1 and Conditions).
Note 8: Load regulation is measured on the output pin at a point \(1 / \mathrm{s}^{\prime \prime}\) below the base of the package. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

\section*{Typical Performance Characteristics (Note 1)}


Output Change vs. Output Current

(1) LM368 as is
(2) with \(0.01 \mu \mathrm{f}\) Mylar, Trim to Gnd.
(3) with \(10 \Omega\) in series with \(10 \mu\) f, Vout to Gnd.
(4) with Both.


Typical Temperature Coefficient Calculations:
LM368-2.5 (see Curve A)
\[
\mathrm{T} . \mathrm{C} .=1.7 \mathrm{mV} /\left(70^{\circ} \times 2.5 \mathrm{~V}\right)
\]
\[
=9.7 \mathrm{ppm} /{ }^{\circ} \mathrm{C}
\]

Output Noise vs.
Frequency


Wide Range Trimmable Regulator


Narrow Range Trimmable Regulator ( \(\pm \mathbf{1 \%}\) min.)



TL/H/8446-7

\(R=\) Thin Film Resistor Network,
\(\pm 0.05 \%\) Matching and 5 ppm Tracking
(Beckman 694-3-R-10K-A),
(Caddock T-914-10K-100-05)
or similar.

Typical Applications (Continued)
Multiple Output Voltages


TL/H/8446-9


R \(=\) Thin Film Resistor Network 0.05\% Matching and 5 ppm Tracking
(Beckman 694-3-R-10K-A),
(Caddock T-914-10K-100-05)
or similar.

TL/H/8446-10


Typical Applications (Continued)

\section*{Buffered High-Current Reference with Filter}


\section*{Simplified Schematic Diagram}


TL/H/8446-14
*Reg. U.S. Pat. Off.

\section*{LM581 Precision 10－Volt Voltage Reference}

\section*{General Description}

The LM581 Series are precision monolithic temperature－ compensated voltage references．They are based on a bur－ ied zener reference as pioneered in the LM199 references， but do not require any heater，as they rely on special tem－ perature－compensation techniques（Patent Pending）．The LM581 makes use of thin－film technology enhanced by the discrete laser trimming of resistors to achieve excellent Temperature coefficient（Tempco）of \(\mathrm{V}_{\text {out }}\)（as low as 1 \(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\) ），along with tight initial tolerances（as low as \(0.01 \%\) ）．The trim scheme is such that individual resistors are cut open rather than being trimmed（partially cut），to avoid resistor drift caused by electromigration in the trimmed area．The LM581 also provides excellent stability vs．changes in input voltage and output current（both sourc－ ing and sinking）．The devices have a 10.000 V output and will operate in either series or shunt mode；the output is short－circuit－proof to ground．

\section*{Features}
．Low Tempco of \(V_{\text {out }}\)
四 Excellent initial accuracy（ \(0.008 \%\) ）
四 Excellent line regulation（ \(2 \mathrm{ppm} / \mathrm{V}\) ）
回 Excellent output impedance
（1）Excellent thermal regulation
m Low noise
龱 Low dissipation－ 20 mW
－Operates in series or shunt mode
（1）Direct replacement for AD581

\section*{Connection Diagram}


TL／H／9217－1
（Case is connected to ground．）
Order Number LM581JH，LM581KH， LM581LH，LM581SH，LM581TH or LM581UH See NS Package Number H03B

\section*{Typical Applications}

\section*{Series Regulator}


TL／H／9217－2

Shunt Regulators


TL／H／9217－3

Section 8
Surface Mount

\section*{Section 8 Contents}Surface Mount8-3

National Semiconductor Corporation

\footnotetext{
Cost pressures today are forcing many electronics manufacturers to automate their production lines. Surface mount technology plays a key role in this cost-savings trend because:
1. The mounting of devices on the PC board surface eliminates the expense of drilling holes;
2. The use of pick-and-place machines to assemble the PC boards greatly reduces labor costs;
3. The lighter and more compact assembled products resulting from the smaller dimensions of surface mount packages mean lower material costs.
Production processes now permit both surface mount and insertion mount components to be assembled on the same PC board.
}

\section*{SURFACE MOUNT PACKAGING AT NATIONAL}

To help our customers take advantage of this new technology, National has developed a line of surface mount packages. Ranging in lead counts from 3 to 360, the package offerings are summarized in Table I.
Lead center spacing keeps shrinking with each new generation of surface mount package. Traditional packages (e.g., DIPs) have a 100 mil lead center spacing. Surface mount packages currently in production (e.g., SOT, SOIC, PCC, LCC, LDCC) have a 50 mil lead center spacing. Surface mount packages in production release (e.g., PQFP) have a 25 mil lead center spacing. Surface mount packages in development (e.g., TAPEPAKTM) will have a lead center spacing of only 12-20 mils.

TABLE I. Surface Mount Packages from National
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Package Type & Small Outline Transistor (SOT) & Small Outline IC (SOIC) & Plastic Chip Carrier (PCC) & Plastic Quad Flat Pack (PQFP) & \begin{tabular}{l}
TAPEPAKTM \\
(TP)
\end{tabular} & Leadless Chip Carrier (LCC) (LDCC) & Leaded Chip Carrier
\(\square\) \\
\hline Package Material & Plastic & Plastic & Plastic & Plastic & Plastic & Ceramic & Ceramic \\
\hline Lead Bend & Gull Wing & Gull Wing & J-Bend & Gull Wing & Gull Wing & - & Gull Wing \\
\hline Lead Center Spacing & 50 Mils & 50 Mils & 50 Mils & 25 Mils & 20, 15, 12 Mils & 50 Mils & 50 Mils \\
\hline Tape \& Reel Option & Yes & Yes & Yes & tbd & tbd & No & No \\
\hline Lead Counts & \begin{tabular}{l}
SOT-23 \\
High Profile SOT-23 \\
Low Profile
\end{tabular} & \[
\begin{aligned}
& \text { SO-8(*) } \\
& \text { SO-14(*) } \\
& \text { SO-14 Wide(*) } \\
& \text { SO-16(*) } \\
& \text { SO-16 Wide(*) } \\
& \text { SO-20(*) } \\
& \text { SO-24(*) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PCC-20(*) } \\
& \text { PCC-28(*) } \\
& \text { PCC-44(*) } \\
& \text { PCC-68 } \\
& \text { PCC-84 } \\
& \text { PCC-124 }
\end{aligned}
\] & \begin{tabular}{l}
PQFP-84 \\
PQFP-100 \\
PQFP-132 \\
PQFP-196(*) \\
PQFP-244
\end{tabular} & TP-40 (*)
TP-68
TP-84
TP-132
TP-172
TP-220
TP-284
TP-360 & \[
\begin{aligned}
& \text { LCC-18 } \\
& \text { LCC-20(*) } \\
& \text { LCC-28 } \\
& \text { LCC-32 } \\
& \text { LCC-44 (*) } \\
& \text { LCC-48 } \\
& \text { LCC-52 } \\
& \text { LCC-68 } \\
& \text { LCC-84 } \\
& \text { LCC-124 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LDCC-44 } \\
& \text { LDCC-68 } \\
& \text { LDCC-84 } \\
& \text { LDCC-124 }
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
*In production (or planned) for linear products.
}

LINEAR PRODUCTS IN SURFACE MOUNT
Linear functions available in surface mount include:
- Op amps
- Comparators
- Regulators
- References
- Data conversion
- Industrial
- Consumer
- Automotive

A complete list of linear part numbers in surface mount is presented in Table III. Refer to the datasheet in the appropriate chapter of this databook for a complete description of the device. In addition, National is continually expanding the list of devices offered in surface mount. If the functions you need do not appear in Table III, contact the sales office or distributor branch nearest you for additional information.
Automated manufacturers can improve their cost savings by using Tape-and-Reel for surface mount devices. Simplified handling results because hundreds-to-thousands of semiconductors are carried on a single Tape-and-Reel pack (see ordering and shipping information-printed later in this sec-tion-for a comparison of devices/reel vs. devices/rail for those surface mount package types being used for linear products). With this higher device count per reel (when compared with less than a 100 devices per rail), pick-and-place machines have to be re-loaded less frequently and lower labor costs result.
With Tape-and-Reel, manufacturers save twice-once from using surface mount technology for automated PC board assembly and again from less device handling during shipment and machine set-up.

\section*{BOARD CONVERSION}

Besides new designs, many manufacturers are converting existing printed circuit board designs to surface mount. The resulting PCB will be smaller, lighter and less expensive to manufacture; but there is one caveat-be careful about the thermal dissipation capability of the surface mount package.
Because the surface mount package is smaller than the traditional dual-in-line package, the surface mount package is not capable of conducting as much heat away as the DIP (i.e., the surface mount package has a higher thermal resist-ance-see Table II).
The silicon for most National devices can operate up to a \(150^{\circ} \mathrm{C}\) junction temperature (check the datasheet for the rare exception). Like the DIP, the surface mount package can actually withstand an ambient temperature of up to \(125^{\circ} \mathrm{C}\) (although a commercial temperature range device will only be specified for a max ambient temperature of \(70^{\circ} \mathrm{C}\) and an industrial temperature range device will only be specified for a max ambient temperature of \(85^{\circ} \mathrm{C}\) ). See AN-336, "Understanding Integrated Circuit Package Power Capabilities", (reprinted in the appendix of each linear databook volume) for more information.

TABLE II: Surface Mount Package Thermal Resistance Range*
\begin{tabular}{|l|c|}
\hline Package & \begin{tabular}{c} 
Thermal Resistance** \\
\(\left(\theta_{\mathbf{\prime} \mathbf{A},}{ }^{\circ} \mathbf{C} / \mathbf{W}\right)\)
\end{tabular} \\
\hline SO-8 & \(120-175\) \\
SO-14 & \(100-140\) \\
SO-14 Wide & \(70-110\) \\
SO-16 & \(90-130\) \\
SO-16 Wide & \(70-100\) \\
SO-20 & \(60-90\) \\
SO-24 & \(55-85\) \\
\hline PCC-20 & \(70-100\) \\
PCC-28 & \(60-90\) \\
PCC-44 & \(40-60\) \\
\hline
\end{tabular}
*Actual thermal resistance for a particular device depends on die size. Refer to the datasheet for the actual \(\theta_{\mathrm{j} A}\) value.
**Test conditions: PCB mount (FR4 material), still air (room temperature), copper traces ( \(150 \times 20 \times 10\) mils).
Given a max junction temperature of \(150^{\circ} \mathrm{C}\) and a maximum allowed ambient temperature, the surface mount device will be able to dissipate less power than the DIP device. This factor must be taken into account for new designs.
For board conversion, the DIP and surface mount devices would have to dissipate the same power. This means the surface mount circuit would have a lower maximum allowable ambient temperature than the DIP circuit. For DIP circuits where the maximum ambient temperature required is substantially lower than the maximum ambient temperature allowed, there may be enough margin for safe operation of the surface mount circuit with its lower maximum allowable ambient temperature. But where the maximum ambient temperature required of the DIP current is close to the maximum allowable ambient temperature, the lower maximum ambient temperature allowed for the surface mount circuit may fall below the maximum ambient temperature required. The circuit designer must be aware of this potential pitfall so that an appropriate work-around can be found to keep the surface mount package from being thermally overstressed in the application.

\section*{SURFACE MOUNT LITERATURE}

National has published extensive literature on the subject of surface mount packaging. Engineers from packaging, quality, reliability, and surface mount applications have pooled their experience to provide you with practical hands-on knowledge about the construction and use of surface mount packages.
The applications note AN-450 "Surface Mounting Methods and their Effect on Product Reliability" is referenced on each SMD datasheet. In addition, "Wave Soldering of Surface Mount Components" is reprinted in this section for your information.

TABLE III. Linear Surface Mount Current Device Listing

\section*{Amplifiers and Comparators}
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline LF347WM & LM392M \\
LF351M & LM393M \\
LF451CM & LM741CM \\
LF353M & LM1458M \\
\cline { 1 - 1 } LF355M & LM2901M \\
LF356M & LM2902M \\
LF357M & LM2903M \\
LF444CWM & LM2904M \\
\hline LM10CWM & LM2924M \\
LM10CLWM & LM3403M \\
\cline { 1 - 1 } LM308M & LM4250M \\
LM308AM & LM324M \\
LM310M & LM339M \\
LM311M & LM365WM \\
LM318M & LM607CM \\
LM319M & LMC669BCWM \\
LM324M & LMC669CCWM \\
\hline LM339M & LF441CM \\
\hline LM346M & \\
LM348M & \\
LM358M & \\
LM359M & \\
\hline
\end{tabular}

\section*{Regulators and References}
\begin{tabular}{|l|l|}
\hline Part Number & \multicolumn{1}{|c|}{ Part Number } \\
\hline LM317LM & LM2931M-5.0 \\
LF3334M & LM3524M \\
\hline LM336M-2.5 & LM78L05ACM \\
LF336BM-2.5 & LM78L12ACM \\
LM336M-5.0 & LM78L15ACM \\
LM336BM-5.0 & LM79L05ACM \\
LM337LM & LM79L12ACM \\
\hline LM385M & LM79L15ACM \\
LM385M-1.2 & LP2951ACM \\
\cline { 1 - 1 } LM385BM-1.2 & LP2951CM \\
\cline { 1 - 1 } LM385M-2.5 & \\
LM385BM-2.5 & \\
LM723CM & \\
LM2931CM & \\
\hline
\end{tabular}

\section*{Data Acquisition Circuits}
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline ADC0802LCV & ADC1025BCV \\
ADC0802LCWM & ADC1025CCV \\
ADC0804LCV & DAC0800LCM \\
ADC0804LCWM & DAC0801LCM \\
ADC0808CCV & DAC0802LCM \\
ADC0809CCV & DAC0806LCM \\
\hline ADC0811BCV & DAC0807LCM \\
ADC0811CCV & DAC0808LCM \\
ADC0819BCV & DAC0830LCWM \\
ADC0819CCV & DAC0830LCV \\
ADC0820BCV & DAC0832LCWM \\
ADC0820CCV & DAC0832LCV \\
\hline ADC0838BCV & \\
ADC0838CCV & \\
ADC0841BCV & \\
ADC0841CCV & \\
ADC0848BCV & \\
ADC0848CCV & \\
ADC1005BCV & \\
ADC1005CCV & \\
\hline
\end{tabular}

\section*{Industrial Functions}
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline AH5012CM & LM13600M \\
LF13331M & LM13700M \\
LF13509M & LMC555CM \\
LF13333M & LM567CM \\
LM555CM & MF4CWM-50 \\
\hline LM556CM & MF4CWM-100 \\
LM567CM & MF6CWM-50 \\
LM1496M & MF10CCWM \\
LM2917M & MF6CWM-100 \\
\hline LM3046M & MF5CWM \\
\hline LM3086M & \\
LM3146M & \\
\hline
\end{tabular}

\section*{Commercial and Automotive}
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline LM386M-1 & LM1837M \\
LM592M & LM1851M \\
LM831M & LM1863M \\
LM832M & LM1865M \\
LM833M & LM1870M \\
\hline LM837M & LM1894M \\
LM838M & LM1964V \\
\hline LM1131CM & LM2893M \\
& LM3361AM \\
\hline
\end{tabular}

\section*{Hybrids}
\begin{tabular}{|l|l|}
\hline Part Number & Part Number \\
\hline LH0002E & LH0032E \\
LH4002E & LH0033E \\
\hline
\end{tabular}

\section*{A FINAL WORD}

National is a world leader in the design and manufacture of surface mount components.
Because of design innovations such as perforated copper leadframes, our small outline package is as reliable as our DIP-the laws of physics would have meant that a straight "junior copy" of the DIP would have resulted in an "S.O." package of lower reliability. You benefit from this equivalence of reliability. In addition, our ongoing vigilance at each step of the production process assures that the reliability we designed in stays in so that only devices of the highest quality and reliability are shipped to your factory.
Our surface mount applications lab at our headquarters site in Santa Clara, California continues to research (and publish) methods to make it even easier for you to use surface mount technology. Your problems are our problems.
When you think "Surface Mount"-think "National"!

\section*{Ordering and Shipping Information}

When you order a surface mount semiconductor, it will be in one of the several available surface mount package types. Specifying the Tape-and-Reel method of shipment means that you will receive your devices in the following quantities per Tape-and-Reel pack: SMD devices can also be supplied in conventional conductive rails.

\section*{Short-Form Procurement Specification}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{TAPE FORMAT} & & & & Direction of & \\
\hline & \multicolumn{2}{|c|}{Trailer (Hub End)*} & Carrier* & \multicolumn{2}{|r|}{Leader (Start End)*} \\
\hline & Empty Cavities, min (Unsealed Cover Tape) & Empty Cavities, min (Sealed Cover Tape) & Filled Cavities (Sealed Cover Tape) & Empty Cavities, min (Sealed Cover Tape) & Empty Cavities, min (Unsealed Cover Tape) \\
\hline \multicolumn{6}{|l|}{Small Outline IC} \\
\hline SO-8 (Narrow) & 2 & 2 & 2500 & 5 & 5 \\
\hline SO-14 (Narrow) & 2 & 2 & 2500 & 5 & 5 \\
\hline SO-14 (Wide) & 2 & 2 & 1000 & 5 & 5 \\
\hline SO-16 (Narrow) & 2 & 2 & 2500 & 5 & 5 \\
\hline SO-16 (Wide) & 2 & 2 & 1000 & 5 & 5 \\
\hline SO-20 (Wide) & 2 & 2 & 1000 & 5 & 5 \\
\hline SO-24 (Wide) & 2 & 2 & 1000 & 5 & 5 \\
\hline \multicolumn{6}{|l|}{Plastic Chip Carrier IC} \\
\hline PCC-20 & 2 & 2 & 1000 & 5 & 5 \\
\hline PCC-28 & 2 & 2 & 750 & 5 & 5 \\
\hline PCC-44 & 2 & 2 & 500 & 5 & 5 \\
\hline
\end{tabular}

\footnotetext{
*The following diagram identifies these sections of the tape and Pin \# 1 device orientation.
}

Short-Form Procurement Specification (Continued)
device orientation


TL/XX/0026-8

\section*{MATERIALS}
- Cavity Tape: Conductive PVC (less than \(10^{5}\) Ohms/Sq)
- Cover Tape: Polyester
(1) Conductive cover available
- Reel:
(1) Solid 80 pt fibreboard (standard)
(2) Conductive fibreboard available
(3) Conductive plastic (PVC) available

TAPE DIMENSIONS (24 Millimeter Tape or Less)


Short-Form Procurement Specification (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & W & P & F & E & \(\mathrm{P}_{2}\) & \(\mathrm{P}_{0}\) & D & T & \(\mathrm{A}_{0}\) & \(\mathrm{B}_{0}\) & \(\mathrm{K}_{0}\) & \(\mathrm{D}_{1}\) & R \\
\hline \multicolumn{14}{|l|}{Small Outline IC} \\
\hline \[
\begin{aligned}
& \text { SO-8 } \\
& \text { (Narrow) }
\end{aligned}
\] & \(12 \pm .30\) & \(8.0 \pm .10\) & \(5.5 \pm .05\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & . \(30 \pm .10\) & \(6.4 \pm .10\) & \(5.2 \pm .10\) & \(2.1 \pm .10\) & \(1.55 \pm .05\) & 30 \\
\hline \begin{tabular}{l}
SO-14 \\
(Narrow)
\end{tabular} & \(16 \pm .30\) & \(8.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & . \(30 \pm .10\) & \(6.5 \pm .10\) & \(9.0 \pm .10\) & \(2.1 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline \begin{tabular}{l}
SO-14 \\
(Wide)
\end{tabular} & \(16 \pm .30\) & \(12.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & . \(30 \pm .10\) & 10.9 \(\pm .10\) & \(9.5 \pm .10\) & \(3.0 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline \begin{tabular}{l}
SO-16 \\
(Narrow)
\end{tabular} & \(16 \pm .30\) & \(8.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & . \(30 \pm .10\) & \(6.5 \pm .10\) & \(10.3 \pm .10\) & \(2.1 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline \[
\begin{aligned}
& \text { SO-16 } \\
& \text { (Wide) } \\
& \hline
\end{aligned}
\] & \(16 \pm .30\) & \(12.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & \(.30 \pm .10\) & \(10.9 \pm .10\) & 10.76 \(\pm .10\) & \(3.0 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline \[
\begin{aligned}
& \text { SO-20 } \\
& \text { (Wide) } \\
& \hline
\end{aligned}
\] & \(24 \pm .30\) & \(12.0 \pm .10\) & \(11.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & . \(30 \pm .10\) & 10.9 \(\pm .10\) & \(13.3 \pm .10\) & \(3.0 \pm .10\) & \(2.05 \pm .05\) & 50 \\
\hline \[
\begin{aligned}
& \text { SO-24 } \\
& \text { (Wide) }
\end{aligned}
\] & \(24 \pm .30\) & 12.0土.10 & 11.5 \(\pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & . \(30 \pm .10\) & \(10.9 \pm .10\) & \(15.85 \pm .10\) & \(3.0 \pm .10\) & 2.05 \(\pm .05\) & 50 \\
\hline
\end{tabular}

\section*{Plastic Chip Carrier IC}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PCC-20 & \(16 \pm .30\) & \(12.0 \pm .10\) & \(7.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & \(.30 \pm .10\) & \(9.3 \pm .10\) & \(9.3 \pm .10\) & \(4.9 \pm .10\) & \(1.55 \pm .05\) & 40 \\
\hline PCC-28 & \(24 \pm .30\) & \(16.0 \pm .10\) & \(11.5 \pm .10\) & \(1.75 \pm .10\) & \(2.0 \pm .05\) & \(4.0 \pm .10\) & \(1.55 \pm .05\) & \(.30 \pm .10\) & \(13.0 \pm .10\) & \(13.0 \pm .10\) & \(4.9 \pm .10\) & \(2.05 \pm .05\) & 50 \\
\hline
\end{tabular}

Note 1: \(A_{0}, B_{0}\) and \(K_{0}\) dimensions are measured 0.3 mm above the inside wall of the cavity bottom.
Note 2: Tape with components shall pass around a mandril radius R without damage.
Note 3: Cavity tape material shall be PVC conductive (less than \(10^{5} \mathrm{Ohms} / \mathrm{Sq}\) ).
Note 4: Cover tape material shall be polyester ( \(30-65\) grams peel-back force).
Note 5: \(D_{1}\) Dimension is centered within cavity.
Note 6: All dimensions are in millimeters.

\section*{REEL DIMENSIONS}


TL/XX/0026-10

STARTM* Surface Mount Tape and Reel

\section*{Short-Form Procurement Specifications (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & A (Max) & B (Min) & C & D (Min) & N (Min) & G & T (Max) \\
\hline 12 mm Tape & SO-8 (Narrow) & \(\frac{(13.00)}{(330)}\) & \(\frac{.059}{1.5}\) & \(\frac{.512 \pm .002}{13 \pm 0.05}\) & \(\frac{.795}{20.2}\) & \(\frac{1.969}{50}\) & \(\frac{0.488}{12.4}{ }_{-0}^{+.000}\) & \(\frac{.724}{18.4}\) \\
\hline 16 mm Tape & SO-14 (Narrow) SO-14 (Wide) SO-16 (Narrow) SO-16 (Wide) PCC-20 & \(\frac{(13.00)}{(330)}\) & \(\frac{.059}{1.5}\) & \(\frac{.512 \pm .002}{13 \pm 0.05}\) & \(\frac{.795}{20.2}\) & \(\frac{1.969}{50}\) & \(\frac{0.646}{16.4}{ }_{-0}^{+.000}\) & \(\frac{.882}{22.4}\) \\
\hline 24 mm Tape & SO-20 (Wide) SO-24 (Wide) PCC-28 & \(\frac{(13.00)}{(330)}\) & \(\frac{.059}{1.5}\) & \(\frac{.512 \pm .002}{13 \pm 0.05}\) & \(\frac{.795}{20.2}\) & \(\frac{1.969}{50}\) & \(\frac{0.960}{24.4}{ }_{-0}^{+.000}\) & \(\frac{1.197}{30.4}\) \\
\hline 32 mm Tape & PCC-44 & \(\frac{(13.00)}{(330)}\) & \(\frac{.059}{1.5}\) & \(\frac{.512 \pm .002}{13 \pm 0.05}\) & \(\frac{.795}{20.2}\) & \(\frac{1.969}{50}\) & \(\frac{1.276}{32.4}{ }_{-0}^{+.000}\) & \(\frac{1.512}{38.4}\) \\
\hline
\end{tabular}

\section*{LABEL}

Human and Machine Readable Label is provided on reel. A variable (C.P.I) density code 39 is available. NSC STD label (7.6 C.P.I.)

\section*{FIELD}

Lot Number
Date Code

\section*{Revision Level}

National Part No. I.D.
Qty.
EXAMPLE


TL/XX/0026-11
Fields are separated by at least one blank space.
Future Tape-and-Reel packs will also include a smaller-size bar code label (high-density code 39) at the beginning of the tape. (This tape label is not available on current production.) National Semiconductor will also offer additional labels containing information per your specific specification.

\section*{Wave Soldering of Surface Mount Components}

\section*{ABSTRACT}

In facing the upcoming surge of "surface mount technology", many manufacturers of printed circuit boards have taken steps to convert some portions of their boards to this new process. However, as the availability of surface mount components is still limited, may have taken to mixing the lead-inserted standard dual-in-line packages (DIPs) with the surface mounted devices (SMDs). Furthermore, to take advantage of using both sides of the board, surface-mounted components are generally adhered to the bottom side of the board while the top side is reserved for the conventional lead-inserted packages. If processed through a wave solder machine, the semiconductor components are now subjected to extra thermal stresses (now that the components are totally immersed into the molten solder).
A discussion of the effect of wave soldering on the reliability of plastic semiconductor packages follows. This is intended to highlight the limitations which should be understood in the use of wave soldering of surface mounted components.

\section*{ROLE OF WAVE-SOLDERING IN APPLICATION OF SMDs}

The generally acceptable methods of soldering SMDs are vapor phase reflow soldering and IR reflow soldering, both requiring application of solder paste on PW boards prior to placement of the components. However, sentiment still exists for retaining the use of the old wave-soldering machine.

\section*{Wave Soldering of Surface Mount Components (Continued)}

The reasons being:
1) Most PC Board Assembly houses already possess wave soldering equipment. Switching to another technology such as vapor phase soldering requires substantial investment in equipment and people.
2) Due to the limited number of devices that are surface mount components, it is necessary to mix both lead inserted components and surface mount components on the same board.
3) Some components such as relays and switches are made of materials which would not be able to survive the temperature exposure in a vapor phase or IR furnace.

\section*{PW BOARD ASSEMBLY PROCEDURES}

There are two considerations in which through-hole ICs may be combined with surface mount components on the PW Board:
a) Whether to mount ICs on one or both sides of the board.
b) The sequence of soldering using Vapor Phase, IR or Wave Soldering singly or combination of two or more methods.

The various processes that may be employed are:
A) Wave Solder before Vapor/IR reflow solder.
1. Components on the same side of PW Board.

Lead insert standard DIPS onto PW Board Wave solder (conventional)
Wash and lead trim
Dispense solder paste on SMD pads
Pick and place SMDs onto PW Board Bake

Vapor phase/IR reflow
Clean
2. Components on opposite side of PW Board.

Lead insert standard DIPs onto PW Board
Wave Solder (conventional)
Clean and lead trim
Invert PW Board
Dispense solder paste on SMD pads
Dispense drop of adhesive on SMD sites (optional for smaller components)
Pick and place SMDs onto board
Bake/Cure
Invert board to rest on raised fixture
Vapor/IR reflow soldering
Clean
B) Vapor/IR reflow solder then Wave Solder.
1. Components on the same side of PW Board.

Solder paste screened on SMD side of Printed Wire Board
Pick and place SMDs
Bake
Vapor/IR reflow
Lead insert on same side as SMDs
Wave solder
Clean and trim underside of PCB
C) Vapor/IR reflow only.
1. Components on the same side of PW Board.

Trim and form standard DIPs in "gull wing" configuration
Solder paste screened on PW Board
Pick and place SMDs and DIPs
Bake
Vapor/IR reflow
Clean
2. Components on opposite sides of PW Board.

Solder paste screened on SMD-side of Printed Wire Board
Adhesive dispensed at central location of each component
Pick and place SMDs
Bake
Solder paste screened on all pads on DIP-side or alternatively apply solder rings (performs) on leads
Lead insert DIPs
Vapor/IR reflow
Clean and lead trim
D) Wave Soldering Only
1. Components on opposite sides of PW Board.

Adhesive dispense on SMD side of PW Board
Pick and place SMDs
Cure adhesive
Lead insert top side with DIPs
Wave solder with SMDs down and into solder bath
Clean and lead trim
All of the above assembly procedures can be divided into three categories for I.C. Reliability considerations:
1) Components are subjected to both a vapor phase/IR heat cycle then followed by a wave-solder heat cycle or vice versa.
2) Components are subjected to only a vapor phase/IR heat cycle.
3) Components are subjected to wave-soldering only and SMDs are subjected to heat by immersion into a solder pot.
Of these three categories, the last is the most severe regarding heat treatment to a semiconductor device. However, note that semiconductor molded packages generally possess a coating of solder on their leads as a final finish for solderability and protection of base leadframe material. Most semiconductor manufacturers solder-plate the component leads, while others perform hot solder dip. In the latter case the packages may be subjected to total immersion into a hot solder bath under controlled conditions (manual operation) or be partially immersed while in a 'pallet' where automatic wave or DIP soldering processes are used. It is, therefore, possible to subject SMDs to solder heat under certain conditions and not cause catastrophic failures.

\section*{Wave Soldering of Surface Mount Components (Continued)}

\section*{THERMAL CHARACTERISTICS OF MOLDED INTEGRATED CIRCUITS}

Since Plastic DIPs and SMDs are encapsulated with a thermoset epoxy, the thermal characteristics of the material generally correspond to a TMA (Thermo-Mechanical Analysis) graph. The critical parameters are (a) its Linear thermal expansion characteristics and (b) its glass transition temperature after the epoxy has been fully cured. A typical TMA graph is illustrated in Figure 1. Note that the epoxy changes to a higher thermal expansion once it is subjected to temperatures exceeding its glass transition temperature. Metals (as used on lead frames, for example) do not have this characteristic and generally will have a consistent Linear thermal expansion over the same temperature range.
In any good reliable plastic package, the choice of lead frame material should be such to match its thermal expansion properties to that of the encapsulating epoxy. In the event that there is a mismatch between the two, stresses can build up at the interface of the epoxy and metal. There now exists a tendency for the epoxy to separate from the metal lead frame in a manner similar to that observed on bimetallic thermal range.
In most cases when the packages are kept at temperatures below their glass transition, there is a small possibility of separation at the expoxy-metal interface. Howerver, if the package is subjected to temprature above its glass-transition temperature, the epoxy will begin to expand much faster than the metal and the probability of separation is greatly increased.

\section*{CONVENTIONAL WAVE-SOLDERING}

Most wave-soldering operations occur at temperatures between \(240-260^{\circ} \mathrm{C}\). Conventional epoxies for encapsulation have glass-transition temperature between \(140-170^{\circ} \mathrm{C}\). An I.C. directly exposed to these temperatures risks its long term functionality due to epoxy/metal separation.
Fortunately, there are factors that can reduce that element of risk:
1) The PW board has a certain amount of heat-sink effect and tends to shield the components from the temperature of the solder (if they were placed on the top side of the board). In actual measurements, DIPs achieve a temperature between \(120-150^{\circ} \mathrm{C}\) in a 5 -second pass over the solder. This accounts for the fact that DIPs mounted in the conventional manner are reliable.
2) In conventional soldering, only the tip of each lead in a DIP would experience the solder temperature because the epoxy and die are standing above the PW board and out of the solder bath.

\section*{EFFECT ON PACKAGE PERFORMANCE BY EPOXY-METAL SEPARATION}

In wave soldering, it is necessary to use fluxes to assist the solderability of the components and PW boards. Some facilities may even process the boards and components through some form of acid cleaning prior to the soldering temperature. If separation occurs, the flux residues and acid residues (which may be present owing to inadequate cleaning) will be forced into the package mainly by capillary action as the residues move away from the solder heat source. Once the package is cooled, these contaminants are now trapped within the package and are available to diffuse with moisture from the epoxy over time. It should be noted that electrical tests performed immediately after soldering generally will give no indication of this potential problem. In any case, the end result will be corrosion of the chip metallization over time and premature failure of the device in the field.

\section*{VAPOR PHASE/IR REFLOW SOLDERING}

In both vapor phase and IR reflow soldering, the risk of separation between epoxy/metal can also be high. Operating temperatures are \(215^{\circ} \mathrm{C}\) (vapor phase) or \(240^{\circ} \mathrm{C}\) (IR) and duration may also be longer ( \(30 \mathrm{sec}-60 \mathrm{sec}\) ). On the same theoretical basis, there should also be separation. However, in both these methods, solder paste is applied to the pads of the boards; no fluxes are used. Also, the devices are not immersed into the hot solder. This reduces the possibility of solder forcing itself into the epoxy-lead frame interface. Furthermore, in the vapor phase system, the soldering environment is "oxygen-free" and considered "contaminant free". Being so, it could be visualized that as far as reliability with respect to corrosion, both of these methods are advantageous over wave soldering.

\section*{BIAS MOISTURE TEST}

A bias moisture test was designed to determine the effect on package performance. In this test, the packages are pressured in a stream chamber to accelerate penetration of moisture into the package. An electrical bias is applied on the device. Should there be any contaminants trapped within the package, the moisture will quickly form an electrolyte and cause the electrodes (which are the lead fingers), the gold wire and the aluminum bond-pads of the silicon device to corrode. The aluminum bond-pads, being the weakest link of the system, will generally be the first to fail.
This proprietary accelerated bias/moisture pressure-test is significant in relation to the life test condition at \(85^{\circ} \mathrm{C}\) and

FIGURE 1. Thermal Expansion and Glass Transition Temperature


\section*{Wave Soldering of Surface Mount Components (Continued)}
\(85 \%\) relative humidity. Once cycle of approximately 100 hours has been shown to be equivalent to 2000 hours in the \(85 / 85\) condition. Should the packages start to fail within the first cycle in the test, it is anticipated that the boards with these components in the harsh operating environment ( \(85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}\) ) will experience corrosion and eventual electrical failures within its first 2000 hours of operation.
Whether this is significant to a circuit board manufacturer will obviously be dependent on the products being manufactured and the workmanship or reliability standards. Generally in systems with a long warranty and containing many components, it is advisable both on a reputation and cost basis to have the most reliable parts available.

\section*{TEST RESULTS}

The comparison of vapor phase and wave-soldering upon the reliability of molded Small-Outline packages was performed using the bias moisture test (see Table IV). It is clearly seen that vapor phase reflow soldering gave more consistent results. Wave-soldering results were based on manual operation giving variations in soldering parameters such as temperature and duration.

TABLE IV. Vapor Phase vs. Wave Solder
```

1. Vapor phase (60 sec. exposure @ 215`
= 9 failures/1723 samples
= 0.5% (average over 32 sample lots)
2. Wave solder (2 sec total immersion @ 260O)
= 16 failures/1201 samples
= 1.3% (average over 27 sample lots)
Package: SO-14 lead
Test: Bias moisture test 85% R.H.,
85}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ for }2000\mathrm{ hours
Device: LM324M
```

In Table V we examine the tolerance of the Small-Outlined (SOIC) package to varying immersion time in a hot solder pot. SO-14 lead molded packages were subjected to the bias moisture test after being treated to the various soldering conditions and repeated four (4) times. End point was an electrical test after an equivalent of 4000 hours 85/85 test Results were compared for packages by itself against packages which were surface-mounted onto a FR-4 printed wire board.

TABLE V. Summary of Wave Solder Results ( \(85 \%\) R.H. \(/ 85^{\circ} \mathrm{C}\) Blas Molsture Test, 2000 hours) (\# Failures/Total Tested)
\begin{tabular}{|l|c|c|}
\hline & Unmounted & Mounted \\
\hline \begin{tabular}{l} 
Control/Vapor Phase \\
15 sec @ \(215^{\circ} \mathrm{C}\)
\end{tabular} & \(0 / 114\) & \(.0 / 84\) \\
\hline \begin{tabular}{l} 
Solder Dip \\
2 sec @ \(260^{\circ} \mathrm{C}\)
\end{tabular} & \(2 / 144\) (1.4\%) & \(0 / 85\) \\
\hline \begin{tabular}{l} 
Solder Dip \\
4 sec @ \(260^{\circ} \mathrm{C}\)
\end{tabular} & - & \(0 / 83\) \\
\hline \begin{tabular}{l} 
Solder Dip \\
6 sec @ \(260^{\circ} \mathrm{C}\)
\end{tabular} & \(13 / 248(5.2 \%)\) & \(1 / 76(1.3 \%)\) \\
\hline \begin{tabular}{l} 
Solder Dip \\
10 sec @ \(260^{\circ} \mathrm{C}\)
\end{tabular} & \(14 / 127(11.0 \%)\) & \(3 / 79(3.8 \%)\) \\
\hline \begin{tabular}{l} 
Package: \(\mathrm{SO}-14\) lead \\
Device: LM 324 M
\end{tabular} & \\
\hline
\end{tabular}

Since the package is of very small mass and experiences a rather sharp thermal shock followed by stresses created by the mismatch in expansion, the results show the package being susceptible to failures after being immersed in excess of 6 seconds in a solder pot. In the second case where the packages were mounted, the effect of severe temperature excursion was reduced. In the second case where the packages were mounted, the effect of severe temperature excursion was reduced. In any case, because of the repeated treatment, the package had failures when subjected in excess of 6 seconds immersion in hot solder. The safety margin is therefore recommended as maximum 4 seconds immersion. If packages were immersed longer than 4 seconds, there is a probable chance of finding some long term reliability failures even though the immediate electrical test data could be acceptable.
Finally, Table VI examines the bias moisture test performed on surface mount (SOIC) components manufactured by various semiconductor houses. End point was an electrical test after an equivalent of 6000 hours in a 85/85 test. Failures were analyzed and corrosion was checked for in each case to detect flaws in package integrity.

\section*{TABLE VI. U.S. Manufacturers Integrated Circuits Reliability in Various Solder Environments}
(\# Failure/Total Tested)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Package \\
SO-8
\end{tabular} & \begin{tabular}{c} 
Vapor \\
Phase \\
30 sec
\end{tabular} & \begin{tabular}{c} 
Wave \\
Solder \\
2 sec
\end{tabular} & \begin{tabular}{c} 
Wave \\
Solder \\
4 sec
\end{tabular} & \begin{tabular}{c} 
Wave \\
Solder \\
\(\mathbf{6 ~ s e c ~}\)
\end{tabular} & \begin{tabular}{c} 
Wave \\
Solder \\
10 sec
\end{tabular} \\
\hline Manuf A & \(8 / 30^{*}\) & \(1 / 30^{*}\) & 0.30 & \(12 / 30^{*}\) & \(16 / 30^{*}\) \\
Manuf B & \(2 / 30^{*}\) & \(8 / 30^{*}\) & \(2 / 30^{*}\) & \(22 / 30^{*}\) & \(20 / 30^{*}\) \\
Manuf C & \(0 / 30\) & \(0 / 29\) & \(0 / 29\) & \(0 / 30\) & \(0 / 30\) \\
\hline Manuf D & \(1 / 30^{*}\) & \(0 / 30\) & \(12 / 30^{*}\) & \(14 / 30^{*}\) & \(2 / 30^{*}\) \\
Manuf E & \(1 / 30^{* *}\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) \\
Manuf F & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) \\
Manuf G & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) & \(0 / 30\) \\
\hline
\end{tabular}
*Corrosion-failures
**No Visual Defects-Non-corrosion failures
Test: Accelerated Bias Moisture Test; \(85 \%\) R.H. \(/ 85^{\circ} \mathrm{C}, 6000\) equivalent hours.

\section*{SUMMARY}

Based on the results presented, it is noted that surfacemounted components are as reliable as standard molded DIP packages. Whereas DIPs were never processed by being totally immersed in a hot solder wave during printed circuit board soldering, surface mounted components such as SOICs (Small Outline) are expected to survive a total immersion in the hot solder in order to capitalize on maximum population on boards. Being constructed from a thermoset plastic of relatively low Tg compared to the soldering temperature, the ability of the package to survive is dependent on the time of immersion and also the cleanliness of material. The results indicate that one should limit the immersion time of package in the solder wave to a maximum of 4 seconds in order to truly duplicate the reliability of a DIP. As the package size is reduced, as in a SO-8 lead, the requirement becomes even more critical. This is shown by the various manufacturers' performance. Results indicate there is room for improvement since not all survived the hot solder immersion without compromise to lower reliability.

\section*{Small Outline (SO) Package Surface Mounting MethodsParameters and Their Effect on Product Reliability}

The SO (small outline) package has been developed to meet customer demand for ever-increasing miniaturization and component density.

COMPONENT SIZE COMPARISON


Because of its small size, reliability of the product assembled in SO packages needs to be carefully evaluated.
SO packages at National were internally qualified for production under the condition that they be of comparable reliability performance to a standard dual in line package under all accelerated environmental tests. Figure \(A\) is a summary of accelarated bias moisture test performance on 30V bipolar and 15 V CMOS product assembled in SO and DIP (control) packages.


TL/XX/0026-15
FIGURE A

In order to achieve reliability performance comparable to DIPs-SO packages are designed and built with materials and processes that effectively compensate for their small size.
All SO packages tested on \(85 \%\) RA, \(85^{\circ} \mathrm{C}\) were assembled on PC conversion boards using vapor-phase reflow soldering. With this approach we are able to measure the effect of surface mounting methods on reliability of the process. As illustrated in Figure A no significant difference was detected between the long term reliability performance of surface mounted S.O. packages and the DIP control product for up to 6000 hours of accelerated \(85 \% / 85^{\circ} \mathrm{C}\) testing.

\section*{SURFACE-MOUNT PROCESS FLOW}

The standard process flowcharts for basic surface-mount operation and mixed-lead insertion/surface-mount operations, are illustrated on the following pages.
Usual variations encountered by users of SO packages are:
- Single-sided boards, surface-mounted components only.
- Single-sided boards, mixed-lead inserted and surfacemounted components.
- Double-sided boards, surface-mounted components only.
- Double-sided boards, mixed-lead inserted and surfacemounted components.
In consideration of these variations, it became necessary for users to utilize techniques involving wave soldering and adhesive applications, along with the commonly-used vaporphase solder reflow soldering technique.

\section*{PRODUCTION FLOW}

Basic Surface-Mount Production Flow


Mixed Surface-Mount and Axial-Leaded Insertion Components Production Flow


TL/XX/0026-17

Thermal stress of the packages during surface-mounting processing is more severe than during standard DIP PC board mounting processes. Figure \(B\) illustrates package temperature versus wave soldering dwell time for surface mounted packages (components are immersed into the molten solder) and the standard DIP wave soldering process. (Only leads of the package are immersed into the molten solder).


FIGURE B
For an ideal package, the thermal expansion rate of the encapsulant should match that of the leadframe material in order for the package to maintain mechanical integrity during the soldering process. Unfortunately, a perfect matchup of thermal expansion rates with most presently used packaging materials is scarce. The problem lies primarily with the epoxy compound.
Normally, thermal expansion rates for epoxy encapsulant and metal lead frame materials are linear and remain fairly close at temperatures approaching \(160^{\circ} \mathrm{C}\), Figure C. At lower temperatures the difference in expansion rate of the two materials is not great enough to cause interface separation. However, when the package reaches the glass-transition temperature ( \(\mathrm{T}_{\mathrm{g}}\) ) of epoxy (typically \(160-165^{\circ} \mathrm{C}\) ), the thermal expansion rate of the encapsulant increases sharply, and the material undergoes a transition into a plastic state. The epoxy begins to expand at a rate three times or more greater than the metal leadframe, causing a separation at the interface.


FIGURE C

When this happens during a conventional wave soldering process using flux and acid cleaners, process residues and even solder can enter the cavity created by the separation and become entrapped when the material cools. These contaminants can eventually diffuse into the interior of the package, especially in the presence of moisture. The result is die contamination, excessive leakage, and even catastrophic failure. Unfortunately, electrical tests performed immediately following soldering may not detect potential flaws.
Most soldering processes involve temperatures ranging up to \(260^{\circ} \mathrm{C}\), which far exceeds the glass-transition temperature of epoxy. Clearly, circuit boards containing SMD packages require tighter process controls than those used for boards populated solely by DIPs.
Figure \(D\) is a summary of accelerated bias moisture test performance on the 30V bipolar process.
Group 1 - Standard DIP package
Group 2 - SO packages vapor-phase reflow soldered on PC boards

Group 3-6 SO packages wave soldered on PC boards
Group 3 - dwell time 2 seconds
4 - dwell time 4 seconds
5 - dwell time 6 seconds
6 - dwell time 10 seconds


FIGURE D
It is clear based on the data presented that SO packages soldered onto PC boards with the vapor phase reflow process have the best long term bias moisture performance and this is comparable to the performance of standard DIP packages. The key advantage of reflow soldering methods is the clean environment that minimized the potential for contamination of surface mounted packages, and is preferred for the surface-mount process.
When wave soldering is used to surface mount components on the board, the dwell time of the component under molten solder should be no more than 4 seconds, preferrably under 2 seconds in order to prevent damage to the component. Non-Halide, or (organic acid) fluxes are highly recommended.

\section*{PICK AND PLACE}

The choice of automatic (all generally programmable) pick-and-place machines to handle surface mounting has grown considerably, and their selection is based on individual needs and degree of sophistication.

The basic component-placement systems available are classified as:
(a) In-line placement
- Fixed placement stations
- Boards indexed under head and respective components placed
(b) Sequential placement
- Either a \(X-Y\) moving table system or a \(\theta, X-Y\) moving pickup system used
-Individual components picked and placed onto boards
(c) Simultaneous placement
- Multiple pickup heads
- Whole array of components placed onto the PCB at the same time
(d) Sequential/simultaneous placement
- X-Y moving table, multiple pickup heads system
- Components placed on PCB by successive or simultaneous actuation of pickup heads
The SO package is treated almost the same as surfacemount, passive components requiring correct orientation in placement on the board.

Pick and Place Action


\section*{BAKE}

This is recommended, despite claims made by some solder paste suppliers that this step be omitted.
The functions of this step are:
- Holds down the solder globules during subsequent reflow soldering process and prevents expulsion of small solder balls.
- Acts as an adhesive to hold the components in place during handling between placement to reflow soldering.
- Holds components in position when a double-sided sur-face-mounted board is held upside down going into a va-por-phase reflow soldering operation.
- Removes solvents which might otherwise contaminate other equipment.
- Initiates activator cleaning of surfaces to be soldered.
- Prevents moisture absorption.

The process is moreover very simple. The usual schedule is about 20 minutes in a \(65^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}\) (dependent on solvent system of solder paste) oven with adequate venting. Longer bake time is not recommended due to the following reasons:
- The flux will degrade and affect the characteristics of the paste.
- Solder globules will begin to oxidize and cause solderability problems.
- The paste will creep and after reflow, may leave behind residues between traces which are difficult to remove and vulnerable to electro-migration problems.

\section*{REFLOW SOLDERING}

There are various methods for reflowing the solder paste, namely:
- Hot air reflow
- Infrared heating (furnaces)
- Convectional oven heating
- Vapor-phase reflow soldering
- Laser soldering

For SO applications, hot air reflow/infrared furnace may be used for low-volume production or prototype work, but va-por-phase soldering reflow is more efficient for consistency and speed. Oven heating is not recommended because of "hot spots" in the oven and uneven melting may result. Laser soldering is more for specialized applications and requires a great amount of investment.

\section*{HOT GAS REFLOW/INFRARED HEATING}

A hand-held or table-mount air blower (with appropriate orifice mask) can be used.
The boards are preheated to about \(100^{\circ} \mathrm{C}\) and then subjected to an air jet at about \(260^{\circ} \mathrm{C}\). This is a slow process and results may be inconsistent due to various heat-sink properties of passive components.
Use of an infrared furnace is the next step to automating the concept, except that the heating is promoted by use of IR lamps or panels. The main objection to this method is that certain materials may heat up at different rates under IR radiation and may result in damage to these components (usually sockets and connectors). This could be minimized by using far-infrared (non-focused) system.

\section*{VAPOR-PHASE REFLOW SOLDERING}

Currently the most popular and consistent method, vaporphase soldering utilizes a fluoroinert fluid with excellent heat-transfer properties to heat up components until the solder paste reflows. The maximum temperature is limited by the vapor temperature of the fluid.
The commonly used fluids (supplied by 3M Corp) are:
- FC-70, \(215^{\circ} \mathrm{C}\) vapor (most applications) or FX-38
- FC-71, \(253^{\circ} \mathrm{C}\) vapor (low-lead or tin-plate)

HTC, Concord, CA, manufactures equipment that utilizes this technique, with two options:
- Batch systems, where boards are lowered in a basket and subjected to the vapor from a tank of boiling fluid.
- In-line conveyorized systems, where boards are placed onto a continuous belt which transports them into a concealed tank where they are subjected to an environment of hot vapor.
Dwell time in the vapor is generally on the order of 15-30 seconds (depending on the mass of the boards and the loading density of boards on the belt).


The question of thermal shock is asked frequently because of the relatively sharp increase in component temperature from room temperature to \(215^{\circ} \mathrm{C}\). SO packages mounted on representative boards have been tested and have shown little effect on the integrity of the packages. Various packages, such as cerdips, metal cans and TO-5 cans with glass seals, have also been tested.

Vapor-Phase Furnace


TL/XX/0026-23
Batch-Fed Production Vapor-Phase Soldering Unit


IMMERSION HEATER -
TL/XX/0026-24

Solder Joints on a SO-14 Package on PCB


TL/XX/0026-25

\section*{PRINTED CIRCUIT BOARD}

The SO package is molded out of clean, thermoset plastic compound and has no particular compatibility problems with most printed circuit board substrates.
The package can be reliably mounted onto substrates such as:
- G10 or FR4 glass/resin
- FR5 glass/resin systems for high-temperature applications
- Polymide boards, also high-temperature applications
- Ceramic substrates

General requirements for printed circuit boards are:
- Mounting pads should be solder-plated whenever applicable.
- Solder masks are commonly used to prevent solder bridging of fine lines during soldering.
The mask also protects circuits from processing chemical contamination and corrosion.
If coated over pre-tinned traces, residues may accumulate at the mask/trace interface during subsequent reflow, leading to possible reliability failures.
Recommended application of solder resist on bare, clean traces prior to coating exposed areas with solder.
General requirements for solder mask:
- Good pattern resolution.
- Complete coverage of circuit lines and resistance to flaking during soldering.
- Adhesion should be excellent on substrate material to keep off moisture and chemicals.
- Compatible with soldering and cleaning requirements.

\section*{SOLDER PASTE SCREEN PRINTING}

With the initial choice of printed circuit lithographic design and substrate material, the first step in surface mounting is the application of solder paste.

Solder Joints on a SO-14 Package on PCB


TL/XX/0026-26
The typical lithographic "footprints" for SO packages are illustrated below. Note that the \(0.050^{\prime \prime}\) lead center-center spacing is not easily managed by commercially-available air pressure, hand-held dispensers.
Using a stainless-steel, wire-mesh screen stencilled with an emulsion image of the substrate pads is by far the most common and well-tried method. The paste is forced through the screen by a V-shaped plastic squeegee in a sweeping manner onto the board placed beneath the screen.
The setup for SO packages has no special requirement from that required by other surface-mounted, passive components. Recommended working specifications are:
- Use stainless-steel, wire-mesh screens, \#80 or \#120, wire diameter 2.6 mils. Rule of thumb: mesh opening should be approximately 2.5-5 times larger than the average particle size of paste material.
- Use squeegee of Durometer 70.
- Experimentation with squeegee travel speed is recommended, if available on machine used.
- Use solder paste of mesh 200-325.
- Emulsion thickness of \(0.005^{\prime \prime}\) usually used to achieve a solder paste thickness (wet) of about \(0.008^{\prime \prime}\) typical.
- Mesh pattern should be 90 degrees, square grid.
- Snap-off height of screen should not exceed \(1 / 8^{\prime \prime}\), to avoid damage to screens and minimize distortion.

\section*{SOLDER PASTE}

Selection of solder paste tends to be confusing, due to numerous formulations available from various manufacturers. In general, the following guidelines are sufficient to qualify a particular paste for production:
- Particle sizes (see photographs below). Mesh 325 (approximately 45 microns) should be used for general purposes, while larger (solder globules) particles are preferred for leadless components (LCC). The larger particles can easily be used for SO packages.
- Uniform particle distribution. Solder globules should be spherical in shape with uniform diameters and minimum amount of elongation (visual under 100/200 \(\times\) magnification). Uneven distribution causes uneven melting and subsequent expulsion of smaller solder balls away from their proper sites.

RECOMMENDED SOLDER PADS FOR SO PACKAGES

- Composition, generally 60/40 or 63/37 Sn/Pb. Use 62/36 \(\mathrm{Sn} / \mathrm{Pb}\) with \(2 \% \mathrm{Ag}\) in the presence of Au on the soldering area. This formulation reduces problems of metal leaching from soldering pads.
- RMA flux system usually used.
- Use paste with aproximately 88-90\% solids.

SO-16L, SO-20


TL/XX/0026-28

\section*{Comparison of Particle Size/Shape of Various Solder Pastes}


TL/XX/0026-30
TL/XX/0026-31

Comparison of Particle Size/Shape of Various Solder Pastes (Continued)

Solder Paste Screen on Pads

\(200 \times\) Fry Metal (63/37)


TL/XX/0026-33

\section*{CLEANING}

The most critical process in surface mounting SO packages is in the cleaning cycle. The package is mounted very close to the surface of the substrate and has a tendency to collect residue left behind after reflow soldering.
Important considerations in cleaning are:
- Time between soldering and cleaning to be as short as possible. Residue should not be allowed to solidify on the substrate for long periods of time, making it difficult to dislodge.
- A low surface tension solvent (high penetration) should be employed. Solvents commercially available are:

Freon TMS (general purpose)
Freon TE35/TP35 (cold-dip cleaning)
Freon TES (general purpose)
It should also be noted that these solvents generally will leave the substrate surface hydrophobic (moisture repellent), which is desirable.

Prelete or 1,1,1-Trichloroethane
Kester 5120/5121
- A defluxer system which allows the workpiece to be subjected to a solvent vapor, followed by a rinse in pure solvent and a high-pressure spray lance are the basic requirments for low-volume production.
- For volume production, a conveyorized, multiple hot solvent spray/jet system is recommended.
- Rosin, being a natural occurring material, is not readily soluble in solvents, and has long been a stumbling block to the cleaning process. In recent developments, synthetic flux (SA flux), which is readily soluble in Freon TMS solvent, has been developed. This should be explored where permissible.
The dangers of an inadequate cleaning cycle are:
- Ion contamination, where ionic residue left on boards would cause corrosion to metallic components, affecting the performance of the board.
- Electro-migration, where ionic residue and moisture present on electrically-biased boards would cause dentritic growth between close spacing traces on the substrate, resulting in failures (shorts).

\section*{REWORK}

Should there be a need to replace a component or re-align a previously disturbed component, a hot air system with appropriate orifice masking to protect surrounding components may be used.
When rework is necessary in the field, specially-designed tweezers that thermally heat the component may be used to remove it from its site. The replacement can be fluxed at the

Hot-Air Solder Rework Station


\section*{Hot-Air Rework Machine}


TL/XX/0026-36
lead tips or, if necessary, solder paste can be dispensed onto the pads using a varimeter. After being placed into position, the solder is reflowed by a hot-air jet or even a standard soldering iron.

\section*{WAVE SOLDERING}

In a case where lead insertions are made on the same board as surface-mounted components, there is a need to include a wave-soldering operation in the process flow.
Two options are used:
- Surface mounted components are placed and vapor phase reflowed before auto-insertion of remaining components. The board is carried over a standard wave-solder system and the underside of the board (only lead-inserted leads) soldered.
- Surface-mounted components are placed in position, but no solder paste is used. Instead, a drop of adhesive about 5 mils maximum in height with diameter not exceeding \(25 \%\) width of the package is used to hold down the package. The adhesive is cured and then proceeded to autoinsertion on the reverse side of the board (surface-mounted side facing down). The assembly is then passed over a "dual wave" soldering system. Note that the surfacemounted components are immersed into the molten solder.
Lead trimming will pose a problem after soldering in the latter case, unless the leads of the insertion components are pre-trimmed or the board specially designed to localize certain areas for easy access to the trim blade.
The controls required for wave soldering are:
- Solder temperature to be \(240-260^{\circ} \mathrm{C}\). The dwell time of components under molten solder to be short (preferably kept under 2 seconds), to prevent damage to most components and semiconductor devices.
- RMA (Rosin Mildly Activated) flux or more aggressive OA (Organic Acid) flux are applied by either dipping or foam fluxing on boards prior to preheat and soldering. Cleaning procedures are also more difficult (aqueous, when OA flux is used), as the entire board has been treated by flux (unlike solder paste, which is more or less localized). Nonhalide OA fluxes are highly recommended.
- Preheating of boards is essential to reduce thermal shock on components. Board should reach a temperature of about \(100^{\circ} \mathrm{C}\) just before entering the solder wave.
- Due to the closer lead spacings ( \(0.050^{\prime \prime}\) vs \(0.100^{\prime \prime}\) for dual-in-line packages), bridging of traces by solder could occur. The reduced clearance between packages also causes "shadowing" of some areas, resulting in poor solder coverage. This is minimized by dual-wave solder systems.


A typical dual-wave system is illustrated below, showing the various stages employed. The first wave typically is in turbulence and given a transverse motion (across the motion of the board). This covers areas where "shadowing" occurs. A second wave (usually a broad wave) then proceeds to perform the standard soldering. The departing edge from the solder is such to reduce "icicles," and is still further reduced by an air knife placed close to the final soldering step. This air knife will blow off excess solder (still in the fluid stage) which would otherwise cause shorts (bridging) and solder bumps.

\section*{AQUEOUS CLEANING}
- For volume production, a conveyorized system is often used with a heated recirculating spray wash (water temperature \(130^{\circ} \mathrm{C}\) ), a final spray rinse (water temperature \(45-55^{\circ} \mathrm{C}\) ), and a hot \(\left(120^{\circ} \mathrm{C}\right)\) air/air-knife drying section.
- For low-volume production, the above cleaning can be done manually, using several water rinses/tanks. Fastdrying solvents, like alcohols that are miscible with water, are sometimes used to help the drying process.
- Neutralizing agents which will react with the corrosive materials in the flux and produce material readily soluble in water may be used; the choice depends on the type of flux used.
- Final rinse water should be free from chemicals which are introduced to maintain the biological purity of the water. These materials, mostly chlorides, are detrimental to the assemblies cleaned because they introduce a fresh amount of ionizable material.

TL/XX/0026-37


\section*{CONFORMAL COATING}

Conformal coating is recommended for high-reliability PCBs to provide insulation resistance, as well as protection against contamination and degradation by moisture.
Requirements:
- Complete coating over components and solder joints.
- Thixotropic material which will not flow under the packages or fill voids, otherwise will introduce stress on solder joints on expansion.
- Compatibility and possess excellent adhesion with PCB material/components.
- Silicones are recommended where permissible in application.

\section*{SMD Lab Support}

\section*{FUNCTIONS}

Demonstration-Introduce first-time users to surfacemounting processes.
Service-Investigate problems experienced by users on surface mounting.
Reliability Builds-Assemble surface-mounted units for reliability data acquisition.

Techniques-Develop techniques for handling different materials and processes in surface mounting.
Equipment-In conjunction with equipment manufacturers, develop customized equipments to handle high density, new technology packages developed by National.
In-House Expertise-Availability of in-house expertise on semiconductor research/development to assist users on packaging queries.

Section 9 Appendices/ Physical Dimensions
Section 9 Contents
Appendix A General Product Marking and Code Explanation ..... 9-3
Appendix B Application Note Referenced by Part Number ..... 9-4
Appendix C Summary of Commercial Reliability Programs ..... 9-10
Appendix D Military Aerospace Programs from National Semiconductor ..... 9-11
Appendix E Understanding Integrated Circuit Package Power Capabilities ..... 9-18
Appendix F How to Get the Right Information from a Datasheet ..... 9-23
Appendix G Obsolete Product Replacement Guide ..... 9-27
Appendix H Products Not Recommended for New Design ..... 9-28
Physical Dimensions ..... 9-29
Bookshelf
Distributors

National
Semiconductor
Corporation

\section*{Appendix B}

\section*{APPLICATION NOTE REFERENCED BY PART NUMBER}

> National Semiconductor Linear Application notes are normally written to explain the operation and use of a particular device or family of IC's, or to present alternative technical solutions. The following PART NUMBER index references the published application notes that would offer application assistance for those specific IC's.
> The 1986 Linear Applications Handbook is a complete text for all current Application Notes for both Monolithic and Hybrid products. Specific Application Notes are available upon request through National Semiconductor Sales Offices.

\section*{DEVICE NUMBER}

\section*{APPLICATION NOTE}
ADCXXXX...................................................................................................... . . . AN-156
ADC80 ................................................................................................... AN-36 36

ADC0801
ADC0802 AN-233, AN-271, AN-274, AN-280, AN-281, AN-294, LB-53

ADC0803
ADC0804
ADC0805

\section*{.} AN-233, AN-274, AN-276, AN-280, AN-281, LB-53

ADC0809 .......................................................................................... . AN-247, AN-280
ADC0816 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-193, AN-247, AN-258, AN-280
ADC0817. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-247, AN-258, AN-280
ADC0820 ..................................................................................................... . . . . . . . . . . .
ADC0831 ........................................................................................ . . AN-280, AN-281
ADC0832 ....................................................................................... . AN-280, AN-281
ADC0833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-280, AN- A 281
ADC0834 ........................................................................................... . AN-280, AN-281
ADC0838 ......................................................................................... . AN-280, AN-281

ADC1005 .................................................................................................. . AN-280
ADC1210 ..................................................................................................... . . AN-245

ADC3511 ..................................................................................................... . AN-200
ADC3701 .................................................................................................... . . AN-200
ADC3711 ................................................................................................. \(A\). \({ }^{\text {AN-200 }}\)
AH0014..................................................................................................... . AN-38
AH0019.................................................................................................... . . AN-38
CD4016.................................................................................................. . . AB-10
DACXXXX.................................................................................................. . . . . . . . .
DAC0830 .................................................................................................. AN-284

DAC0832 ............................................................................................. . AN-271, AN-284
DAC1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DAC1001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-271, AN-275, AN-277, AN-284
DAC1002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-271, AN-275, AN-277, AN-284
DAC1006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-271, AN-275, AN-277, AN-284


\section*{DEVICE NUMBER}

APPLICATION NOTE
DAC1008...................................................................... . AN-271, AN-275, AN-277, AN-284
DAC1020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-263, AN-269, AN-293, AN-294, AN-299
DAC1021 ................................................................................................... . . . . . . . . . . . . .
DAC1022 ................................................................................................ . . . . . . . .
DAC1208 .......................................................................................... . . . . . .

DAC1210 ............................................................................................. AN-271, AN-284
DAC1218 .................................................................................................... . AN-293
DAC1220 .............................................................................................. . . . . . . . .
DAC1221 .................................................................................................... . . AN-269
DAC1222 ................................................................................................. AN-269
DAC1230 ................................................................................................. AN-284
DAC1231 .......................................................................................... AN-271, AN-284
DAC1232 ........................................................................................... . . . . . . . . .

DH0034....................................................................................................... . . AN-253
DH0035................................................................................................... . . . . . . .

DS8608..................................................................................................... . . . . . . . . . .

DT1060..................................................................................................... . . . . AN-287
DTSW250E2 .............................................................................................. . . . . AN-287

INS8070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-260
LF111..................................................................................................................

LF198 ............................................................................................... . . AN-245, AN-294
LF311 ...................................................................................................... . . AN-301
LF347 . . . . . . . . . . . . . . . . . . . . . . . . AN-256, AN-262, AN-263, AN-265, AN-266, AN-301, AN-344, AN-447
LF351 . . . . . . . . . . . . . . . . . . . . . . AN-242, AN-263, AN-266, AN-271, AN-275, AN-293, AN-447, Appendix C


LF353 . . . . . . . AN-256, AN-258, AN-263, AN-264, AN-271, AN-285, AN-293, AN-447, LB-44, Appendix D
LF356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-253, AN-258, AN-260, AN-263, AN-266, AN-271, AN-272, AN-275, AN-293, AN-294, AN-295, AN-301, AN-447
LF357
AN-263, AN-447, LB-42
LF398. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-247, AN-258, AN-266, AN-294, AN-298, LB-45
LF400 AN-428, AN-447
LF411 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-294, AN-301, AN-344, AN-447
LF412 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-272, AN-299, AN-301, AN-344, AN-447

LF13006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-344
LF13007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-344
LF13331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-294, AN-447
LF13508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-289, AN-360, AN-447
LF13509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-289, AN-295, AN-447
LH0002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-13, AN-63, AN-227, AN-244, AN-263, AN-272, AN-301
LH0022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-63, AN-75
LH0023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-245, AN-360
LH0024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN- A 253
LH0032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-242, AN-244, AN-253
LH0033
AN-48, AN-115, AN-227, AN-253
LH0042
AN-63

\section*{DEVICE NUMBER}

LH0043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-245
LH0052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-63
LH0053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN- 245
LH0062 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN- AN
LH0063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-227
LH0070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-301

LH0082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-244, AN-266
LH0086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AN-245, AN-360
LH0091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-180

LH0101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-261
LH1605 ......................................................................................................... . . AN-343
LM10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-211, AN-247, AN-258, AN-271, AN-288, AN-299, AN-300
LM11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-241, AN-242, AN-260, AN-266, AN-271
LM12....................................................................................................... AN-446
LM101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-4, AN-13, AN-20, AN-24, AN-75, LB-42, Appendix A
LM101A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-29, AN-30, AN-31, AN-79, AN-241, LB-1, LB-2, LB-4, LB-8,
LB-14, LB-16, LB-19, LB-28
LM102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-4, AN-13, AN-30, LB-1, LB-5, LB-6, LB-11
LM103
AN-110, LB-41
LM104
AN-21, LB-3, LB-7, LB-10, LB-40
LM105
LM106
AN-21, AN-23, AN-110, LB-3, LB-7, LB-10
.AN-41, LB-6, LB-12
LM107
AN-20, AN-31, LB-1, LB-12, LB-19, Appendix A
LM108
AN-29, AN-30, AN-31, AN-63, AN-79, AN-211, AN-241, LB-14, LB-15, LB-21
LM108A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .AN-260, LB-15, LB-19
LM109 ................................................................................................ AN-42, LB-15
LM109A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-41, AN-103, LB-12, LB-16, LB-32, LB-39
LM112
AN-63, LB-19
LM113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-56, AN-110, LB-21, LB-24, LB-28, LB-37
LM117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-178, AN-181, AN-182, LB-46, LB-47
LM117HV ..................................................................................................... LB-46, LB-47
LM118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LB-17, LB-19, LB-21, LB-23, Appendix A

LM120........................................................................................................... . . AN-182
LM121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-79, AN-104, AN-184, AN-260, LB-22
LM121A.........................................................................................................
LM122 .................................................................................................... . . . . . . . . .

LM126 ......................................................................................................... . . AN-82
LM129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-173,AN-178, AN-262, AN-266
LM131 .......................................................................................... . AN-210, Appendix D
LM131A .................................................................................................... . . . . . . . . .
LM134 ......................................................................................................... . . . .
LM135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-225, AN-262, AN-292, AN-298
LM137 ....................................................................................................... . . . . .
LM137HV ...................................................................................................... . . . . . . .
LM138 ........................................................................................................ . . . . .
LM139.............................................................................................................. . . AN-74
LM143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-127, AN-271
LM148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................... . . AN- 260

\section*{DEVICE NUMBER}

APPLICATION NOTE
LM150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM158.................................................................................................... . . . . . . . . .
LM160 .......................................................................................................... . . . . . . . . . . . .
LM161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-87, AN-266

LM194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-222, LB-21
LM195...................................................................................................... . . AN-110
LM199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-161, AN-260, AN-360
LM199A ...................................................................................................... . AN-161
LM211 ............................................................................................................. . . . . . .


LM231A ................................................................................................. AN-225
LM235........................................................................................................... . . . . . . . . .
LM239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-74
LM258........................................................................................................... . . . . AN-116
LM260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-87
LM261......................................................................................................... . . AN-87
LM301A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-178, AN-181, AN-222
LM304 ......................................................................................................... LB-40
LM308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-88, AN-184, AN-272, LB-22, LB-28, Appendix D
LM308A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-225, LB-24
LM309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-178, AN-182
LM311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-41, AN-103, AN-260, AN-263, AN-288, AN-294, AN-295, AN-307, LB-12, LB-16, LB-18, LB-39
LM313...................................................................................................... . AN-263
LM316....................................................................................................... AN-25
LM317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM317H................................................................................................................ . . .
LM318. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-115, AN-299, LB-21
LM319 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM320.......................................................................................................... . . . AN-288
LM321 .......................................................................................................... .
LM324 . . . . . . . . . . . . . . . . . . . . . . . AN-88, AN-258, AN-274, AN-284, AN-301, LB-44, AB-25, Appendix C
LM329 ........................................................... AN-256, AN-263, AN-284, AN-295, AN-301
LM329B ................................................................................................. AN-225
LM330
AN-301
LM331 . . . . . . . . . . . AN-210, AN-240, AN-265, AN-278, AN-285, AN-311, LB-45, Appendix, C Appendix D
LM331A ..............................................................................................
LM334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-242, AN-256, AN-284
LM335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-225, AN-263, AN-295
LM336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-202, AN-247, AN-258
LM337 ........................................................................................................ . . . . . . . .
LМззв . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LB-49, LB-51
LM339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-74, AN-245, AN-274
LM340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-103, AN-182

LM342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LM347 ............................................................................................................. LB-44

LM349 ........................................................................................................... LB-42
LM358
.AN-116, AN-247, AN-271, AN-274, AN-284, AN-298, Appendix C
DEVICE NUMBER APPLICATION NOTE
LM359 AN-278, AB-24
LM360 ..... AN-87
LM361 ..... AN-87, AN-294
LM363 ..... AN-271
LM380 ..... AN-69, AN-146
LM381 ..... AN-64, AN-104
LM382 ..... AN-147
LM385 AN-242, AN-256, AN-301, AN-344
LM386 ..... LB-54
LM389 AN-256, AN-263, AN-264, AN-274
LM391 ..... AN-272
LM392 AN-274, AN-286
LM393 AN-271, AN-274, AN-293
LM394 AN-262, AN-263, AN-264, AN-271, AN-293, AN-299, AN-311, LB-52LM395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AN-178, AN-181, AN-262, AN-263, AN-266, AN-301, LB-28
LM399 ..... AN-184
LM555 ..... AB-7
LM556 ..... AB-7
LM565 ..... AN-46, AN-146
LM566 ..... AN-146
LM567 ..... AN-46
LM709 ..... AN-24, AN-30
LM710 ..... AN-41, LB-12
LM725 ..... LB-22
LM741 AN-75, AN-79, LB-19, LB-22
LM832 AN-386, AN-390
LM833 ..... AN-346
LM1036 ..... AN-390
LM1310 ..... AN-81
LM1524 AN-272, AN-288, AN-292, AN-293
LM1800 ..... AN-81, AN-147
LM1812 ..... AB-20
LM1818 ..... AN-407
LM1820 ..... LB-29
LM1823 ..... AN-391
LM1828 Appendix B
LM1830 ..... AB-10
LM1837 ..... AN-407
LM1845 Appendix B
LM1863 ..... AN-381, AN-382
LM1865 ..... AN-382, AN-390
LM1870 ..... AN-382
LM1886 ..... AN-402
LM1889 ..... AN-402
LM1894 AN-384, AN-386 ..... AN-390
LM1897 ..... AN-407
LM2878 ..... AN-147
LM2889 ..... AN-391, AN-402
LM2907 ..... AN-162
LM2917 ..... AN-162
LM2931 ..... AB-12
LM2931CT ..... AB-11
DEVICE NUMBER APPLICATION NOTELM3045AN-286
LM3046 AN-146, AN-299
LM3089 ..... AN-147
LM3524 AN-272, AN-288, AN-292, AN-293LM3820AN-147, LB-29
LM3900 AN-72, AN-263, AN-274, AN-278, LB-20, AB-24
LM3909 ..... AN-154
LM3911 ..... LB-27
LM3914 LB-48, AB-25
LM3915 ..... AN-386
LM3999 ..... AN161
LM4250 AN-88, LB-34
LM7800 ..... AN-178
LM78L12 ..... AN-146
LMC835 ..... AN-435
LP324 ..... AN-284
MF10 ..... AN-307
MM1458 ..... AN-116
MM1558 ..... AN-116
MM1558C ..... AN-116
MM2716 ..... LB-54
MM54104 AN-252, AN-287, LB-54
MM57110 ..... AN-382
MM74C00 ..... AN-88
MM74C02 ..... AN-88
MM74C04 ..... AN-88
MM74C948 ..... AN-193
MM74LS138 ..... LB-54
2N4339 ..... AN-32
LH4101 ..... AN-480
LM34/35 ..... AN-460
LM32900 ..... AN-478
LM3578 ..... AB-30
LPXXXX ..... AN-462
LM34 ..... AN-462
LM35 ..... AN-462
LM385 ..... AN-462
LMC13334 ..... AN-462
LP2950 ..... AN-462
LP2951 ..... AN-462
LP311 ..... AN-462
LP324 ..... AN-462
LP339 ..... AN-462
LP365 AN-462

\title{
Appendix C \\ Summary of Commercial Reliability Programs
}

\section*{General}

National Semiconductor Commercial Reliability Programs provide a broad range of off-the-shelf enhanced semiconductor products that supply an extra measure of quality and reliability needed in high-stress or difficult to service applications.
National's A+ and B+ programs allow each individual customer to:
- Minimize the need for incoming electrical inspection
- Eliminate the need and associated costs of using independent testing laboratories
- Reduction in infant mortality rate
- Reduction in reworked board costs
- Reduction in warranty and service costs

\section*{A+ Product Enhancement}

The A+ Product Enhancement incorporates the benefits of the Multiple-Pass and Elevated Temperature along with "BURN-IN."
The A+ Program provides:
- \(100 \%\) Temperature Cycling
- \(100 \%\) Electrical Testing at Room and High Temperature
- 100\% Burn-In Testing Combining Increased Temperature with Applied Voltage
- Acceptable Quality Levels Greater than Industry Norm

Typical A+ Flow is:
- SEM
- Assembly and Seal
- Four Hour \(150^{\circ} \mathrm{C}\) Bake
- Five Temperature Cycles \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+100^{\circ} \mathrm{C}\right)\)
- High Temperature Electrical Test
- Electrical Test
- Burn-In (160 hours at a minimum junction temperature of \(125^{\circ} \mathrm{C}\) )
- DC Parametric and Function Tests
- Tightened Quality Control Inspection Plans

Note: Certain products may follow slightly different process flows dictated by specific capabilities and device characteristics, consult NSC.

\section*{P + Product Enhancement}

The \(\mathrm{P}+\) product enhancement program applies to regulator devices and offers an added advantage. \(\mathrm{P}+\) involves a dynamic self-heating burn-in that tests the thermal shutdown of the regulator. \(\mathrm{P}+\) is proven more effective than the standard \(125^{\circ} \mathrm{C}\) burn-in as an early screen for infant mortality defects. It sharply reduces the cost of testing incoming components. Reliability Report L-140 further explains the P+ process. The following chart lists regulators which receive \(\mathrm{P}+\) prior to shipment and at no additional cost.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Device }} & \multicolumn{5}{|c|}{ Package Types } \\
\cline { 2 - 6 } & \begin{tabular}{c} 
TO-3 \\
K STEEL
\end{tabular} & TO-39 H & TO-220 T & TO-202 P & TO-92 Z \\
\hline LM109/309 & X & X & & & \\
\hline LM117/317 & X & X & X & X & \\
\hline LM117HV/317HV & X & X & & & \\
\hline LM120/320 & X & X & X & X & \\
\hline LM123/323 & X & & & & \\
\hline LM137/337 & X & X & X & X & \\
\hline LM137HV/337HV & X & X & & & \\
\hline LM138/338 & X & & & & \\
\hline LM140/340 & X & X & X & X & \\
\hline LM145/345 & X & & & & \\
\hline LM150/250/350 & X & & & & \\
\hline LM196/396 & X & & & & \\
\hline LM2930/2935/2940/2984 & & & X & & \\
\hline LM2931 & & & X & & X \\
\hline LM78XX & & & X & & \\
\hline
\end{tabular}

National
Semiconductor
Corporation

\section*{Appendix D Military Aerospace Programs from National Semiconductor}

This appendix is intended to provide a brief overview of military products available from National Semiconductor. For further information, refer to our 1987 Reliability Handbook.

\section*{MIL-M-38510}

The MIL-M-38510 Program, which is sometimes called the JAN IC Program, is administered by the Defense Electronics Supply Center (DESC). The purpose of this program is to provide the military community with standardized products that have been manufactured and screened to governmentcontrolled specifications in government-certified facilities. All 38510 manufacturers must be formally qualified and their products listed on DESC's Qualified Products List (QPL) before devices can be marked and shipped as JAN product.
There are two processing levels specified within MIL-M38510: Classes \(S\) and \(B\). Class \(S\) is typically specified for space flight applications, while Class B is used for aircraft and ground systems. National is a major supplier of both classes of devices. Screening requirements are outlined in Table III.
Tables I and II explain the JAN device marking system.
Copies of MIL-M-38510, the QPL, and other related documents may be obtained from:

Naval Publications and Forms Center 5801 Tabor Avenue
Philadelphia, PA 19120
(212) 697-2179

\section*{DESC Specifications}

DESC specifications are issued to provide standardized versions of devices which are not yet available as JAN product. MIL-STD-883 Class B screening is coupled with tightly controlled electrical specifications which have been written to allow a manufacturer to use his standard electrical tests. A current listing of National's DESC specification offerings can be obtained from our franchised distributors, sales offices, or DESC. DESC is located in Dayton, Ohio.

\section*{MIL-STD-883}

Although originally intended to establish uniform test methods and procedures, MIL-STD-883 has also become the general specification for non-JAN military product. Revision C of this document defines the minimum requirements for a device to be marked and advertised as 883 -compliant. Included are design and construction criteria, documentation controls, electrical and mechanical screening requirements, and quality control procedures. Details can be found in paragraph 1.2.1 of MIL-STD-883.
National offers both 883 Class B and 883 Class S product. The screening requirements for both classes of product are outlined in Table III.
As with DESC specifications, a manufacturer is allowed to use his standard electrical tests provided that all critical parameters are tested. Also, the electrical test parameters, test conditions, test limits, and test temperatures must be clearly documented. At National Semiconductor, this information is available via our RETS (Reliability Electrical Test Specification Program). The RETS document is a complete description of the electrical tests performed and is controlled by our QA department. Individual copies are available upon request.
Some of National's older products are not completely compliant with MIL-STD-883 but are still required for use in military systems. These devices are screened to the same stringent requirements as 883 product but are marked "-MIL".

\section*{Military Screening Program (MSP)}

National's Military Screening Program was developed to make screened versions of advanced products such as gate arrays and microprocessors available more quickly than is possible for JAN and 883 devices. Through this program, screened product is made available for prototypes and breadboards prior to or during the JAN or 883 qualification activities. MSP products receive the \(100 \%\) screening of Table III but are not subjected to Group C and D quality conformance testing. Other criteria such as electrical testing and temperature range will vary depending upon individual device status and capability.

TABLE I. The MIL-M-38510 Part Marking

\(\mathrm{Cl} 24-1\)
TABLE II. JAN Package Codes
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
38510 \\
\text { Package } \\
\text { Designation }
\end{gathered}
\] & Microcircuit Industry Description \\
\hline A & 14-Pin \(1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}\) (metal) flat pack \\
\hline B & 14-Pin \(3 / 16^{\prime \prime} \times 1 / 4^{\prime \prime}\) flat pack \\
\hline C & 14-Pin \(1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}\) dual-in-line \\
\hline D & 14-Pin \(1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}\) (ceramic) flat pack \\
\hline E & 16-Pin \(1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime}\) dual-in-line \\
\hline F & ```
16-Pin 1/4" X 3/8"\prime}(metal or ceramic
    flat pack
``` \\
\hline G & 8-pin TO-99 can or header \\
\hline H & 10-pin 1/4" \(\times 1 / 4^{\prime \prime}\) (metal) flat pack \\
\hline I & 10-pin TO-100 can or header \\
\hline \(J\) & 24-pin 1/2" \(\times 1-1 / 4^{\prime \prime}\) dual-in-line \\
\hline K & 24-pin \(3 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}\) flat pack \\
\hline L & 24-pin 1/4" \(\times 1-1 / 4^{\prime \prime}\) dual-in-line \\
\hline M & 12-pin TO-101 can or header \\
\hline N & (Note 1) \\
\hline \(P\) & 8 -pin 1/4" \(\times 3 / 8^{\prime \prime}\) dual-in-line \\
\hline Q & 40-pin 3/16" \(\times 2-1 / 16^{\prime \prime}\) dual-in-line \\
\hline R & 20-pin 1/4" \(\times 1-1 / 16^{\prime \prime}\) dual-in-line \\
\hline S & 20 -pin \(1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime}\) flat pack \\
\hline T & (Note 1) \\
\hline U & (Note 1) \\
\hline V & 18-pin \(3 / 8^{\prime \prime} \times 15 / 16^{\prime \prime}\) dual-in-line \\
\hline W & 22-pin 3/8" \(\times 1-1 / 8^{\prime \prime}\) dual-in-line \\
\hline X & (Note 1) \\
\hline Y & (Note 1) \\
\hline Z & (Note 1) \\
\hline 2 & 20-terminal \(0.350^{\prime \prime} \times 0.350^{\prime \prime}\) chip carrier \\
\hline 3 & 28-terminal \(0.450^{\prime \prime} \times 0.450^{\prime \prime}\) chip carrier \\
\hline
\end{tabular}

Note 1: These letters are assigned to packages by individual detail specifications and may be assigned to different packages in different specifications.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{TABLE III. 100\% Screening Requirements} \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Screen}} & \multicolumn{2}{|l|}{Class S} & \multicolumn{2}{|l|}{Class B} \\
\hline & & Method & Reqmt & Method & Reqmt \\
\hline 1. & Wafer Lot Acceptance & 5007 & All Lots & & - \\
\hline 2. & Nondestructive Bond Pull & 2023 & 100\% & & - \\
\hline 3. & Internal Visual (Note 1) & 2010, Condition A & 100\% & 2010, Condition B & 100\% \\
\hline 4. & Stabilization Bake & 1008, Condition C, 24 hrs. Min. & 100\% & 1008, Condition C, 24 hrs. Min. & 100\% \\
\hline 5. & Temp. Cycling (Note 2) & 1010, Condition C & 100\% & 1010, Condition C & 100\% \\
\hline 6. & Constant Acceleration & \begin{tabular}{l}
2001, Condition E (Min.) \\
\(Y_{1}\) Orientation Only
\end{tabular} & 100\% & \begin{tabular}{l}
2001, Condition E, (Min.), \\
\(\mathrm{Y}_{1}\) Orientation Only
\end{tabular} & 100\% \\
\hline 7. & Visual Inspection (Note 3) & & 100\% & & 100\% \\
\hline 8. & Particle Impact Noise Detection (PIND) & 2020, Condition A (Note 4) & 100\% & & - \\
\hline 9. & Serialization & (Note 5) & 100\% & & - \\
\hline 10. & Interim (Pre-Burn-In) Electrical Parameters & Per Applicable Device Specification (Note 13) & 100\% & Per Applicable Device Specification (Note 6) & - \\
\hline 11. & Burn-In Test & \[
\begin{aligned}
& 1015 \\
& 240 \text { Hrs. @ } 125^{\circ} \mathrm{C} \mathrm{Min.} \\
& \text { (Cond. F Not Allowed) }
\end{aligned}
\] & 100\% & \[
\begin{aligned}
& 1015 \\
& 160 \text { Hrs. @ } 125^{\circ} \mathrm{C} \text { Min. }
\end{aligned}
\] & 100\% \\
\hline 12. & Interim (Post-Burn-In) Electrical Parameters & Per Applicable Device Specification (Note 13) & 100\% & & \\
\hline 13. & Reverse Bias Burn-In (Note 7) & 1015; Test Condition A, C, 72 Hrs @ \(150^{\circ} \mathrm{C}\) Min. (Cond. F Not Allowed) & 100\% & & - \\
\hline 15. & PDA Calculation & 5\% Parametric (Note 14), \(3 \%\) Functional \(-25^{\circ} \mathrm{C}\) & All Lots & 5\% Parametric (Note 14) & All Lots \\
\hline & \begin{tabular}{l}
Final Electrical Test \\
a) Static Tests \\
1) \(25^{\circ} \mathrm{C}\) (Subgroup 1, Table I, 5005) \\
2) Max \& Min Rated Operating Temp. (Subgroups 2, 3, Table I, 5005) \\
b) Dynamic Tests \& Switching Tests, \(25^{\circ} \mathrm{C}\) (Subgroups 4, 9, Table I, 5005) \\
c) Functional Test, \(25^{\circ} \mathrm{C}\) (Subgroup 7, Table I, 5005)
\end{tabular} & Per Applicable Device Specification & \[
\begin{aligned}
& 100 \% \\
& 100 \% \\
& 100 \% \\
& 100 \%
\end{aligned}
\] & Per Applicable Device Specification & \[
\begin{aligned}
& 100 \% \\
& 100 \% \\
& 100 \% \\
& 100 \%
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE III. 100\% Screening Requirements (Continued)
\begin{tabular}{ll|l|c|c|c}
\hline \multirow{2}{*}{ Screen } & \multicolumn{2}{|c|}{ Class S } & \multicolumn{2}{c}{ Class B } \\
\cline { 3 - 6 } & \multicolumn{1}{|c|}{ Method } & Reqmt & Method & Reqmt \\
\hline 17. & Seal Fine, Gross & 1014 & \(100 \%\), (Note 8) & 1014 & \(100 \%\), (Note 9) \\
\hline 18. & Radiographic (Note 10) & 2012 Two Views & \(100 \%\) & & - \\
\hline 19. & \begin{tabular}{l}
Qualification or Quality Conformance \\
Inspection Test Sample Selection
\end{tabular} & (Note 11) & Samp. & (Note 11) & Samp. \\
\hline 20. & External Visual (Note 12) & 2009 & \(100 \%\) & & \(100 \%\) \\
\hline
\end{tabular}

Note 1: Unless otherwise specified, at the manufacturer's option, test samples for Group B, bond strength (Method 5005) may be randomly selected prior to or following internal visual (Method 5004), prior to sealing provided all other specification requirements are satisfied (e.g. bond strength requirements shall apply to each inspection lot, bond failures shall be counted even if the bond would have failed internal visual).
Note 2: For Class B devices, this test may be replaced with thermal shock method 1011, test condition A, minimum.
Note 3: At the manufacturer's option, visual inspection for catastrophic failures may be conducted after each of the thermal/mechanical screens, after the sequence or after seal test. Catastrophic failures are defined as missing leads, broken packages, or lids off.
Note 4: The PIND test may be performed in any sequence after step 6 and prior to step 16. See MIL-M-38510, paragraph 4.6.3.
Note 5: Class \(S\) devices shall be serialized prior to interim electrical parameter measurements.
Note 6: When specified, all devices shall be tested for those parameters requiring delta calculations.
Note 7: Reverse bias burn-in is a requirement only when specified in the applicable device specification. The order of performing burn-in and reverse bias burn-in may be inverted.
Note 8: For Class S devices, the seal test may be performed in any sequence between step 16 and step 19, but it shall be performed after all shearing and forming operations on the terminals.
Note 9: For Class B devices, the fine and gross seal tests shall be performed separate or together in any sequence and order between step 6 and step 20 except that they shall be performed after all shearing and forming operations on the terminals. When \(100 \%\) seal screen cannot be performed after shearing and forming (e.g. flatpacks and chip carriers) the seal screen shall be done \(100 \%\) prior to these operations and a sample test (LTPD \(=5\)) shall be performed on each inspection lot following these operations. If the sample fails, \(100 \%\) rescreening shall be required.
Note 10: The radiographic screen may be performed in any sequence after step 19.
Note 11: Samples shall be selected for testing in accordance with the specific device class and lot requirements of Method 5005
Note 12: External Visual shall be performed on the lot any time after step 19 and prior to shipment.
Note 13: Read and Record when past burn-in delta measurements are specified.
Note 14: PDA shall apply to all static, dynamic, functional, and switching measurements at either \(25^{\circ} \mathrm{C}\) or maximum rated operating temperature.

Military Analog Products Available From National Semiconductor
Listed below are the military class B Analog devices available from National Semiconductor. Many of these are also available as Class \(S\) product. Additional information including new product plans can be obtained from our sales offices.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Device Type & \[
\begin{aligned}
& \text { Mil } \\
& \text { Class B }
\end{aligned}
\] & \[
\begin{gathered}
883 \\
\text { Class B }
\end{gathered}
\] & Desc & JAN & Device Type & \[
\begin{gathered}
\text { Mil * }^{2} \\
\text { Class B }
\end{gathered}
\] & \[
\begin{gathered}
883 \\
\text { Class B }
\end{gathered}
\] & Desc & JAN \\
\hline AH0014D & \(x\) & & & & LH0032G & \(x\) & & x & \\
\hline AH0015D & X & & & & LH0033AG & x & & & \\
\hline AH0019D & x & & & & LH0033G & \(x\) & & \(x\) & \\
\hline LF111H & x & & & & LH0036G & x & & & \\
\hline LF11201D & & x & & & LH0038D & \(x\) & & & \\
\hline LF11202D & & X & & & LH0041G & x & & & \\
\hline LF11331D & & x & & & LH0042D & x & & & \\
\hline LF11332D & & x & & & LH0042H & x & & & \\
\hline LF11333D & & x & & & LH0043G & x & & & \\
\hline LF11508D & x & & & & LH0044AH & \(x\) & & & \\
\hline LF11509D & x & & & & LH0044H & X & & & \\
\hline LF147D & & x & & & LH0052H & x & & & \\
\hline LF155AH & & x & & & LH0053G & x & & & \\
\hline LF155H & & X & & x & LH0061K & X & & & \\
\hline LF155J-8 & & & & x & LH0062D & x & & & \\
\hline LF155W & & & & x & LH0062H & \(x\) & & & \\
\hline LF156AH & & \(x\) & & & LH0063K & x & & & \\
\hline LF156H & & x & & \(x\) & LH0070-0H & x & & & \\
\hline LF156J-8 & & & & x & LH0070-1H & X & & & \\
\hline LF156W & & & & x & LH0070-2H & x & & & \\
\hline LF157AH & & x & & & LH0071-OH & x & & & \\
\hline LF157H & & x & & & LH0071-1H & x & & & \\
\hline LF198H & & \(x\) & & & LH0071-2H & x & & & \\
\hline LF411MH & & x & & \(x\) & LH0075G & x & & & \\
\hline LF411W & & & & \(x\) & LH0076G & \(x\) & & & \\
\hline LF412MH & & x & & x & LH0082D & x & & & \\
\hline LF441MH & x & & & & LH0084D & x & & & \\
\hline LF442MH & & \(x\) & & & LH0086D & X & & & \\
\hline LF444MD & & x & & & LH0091D & x & & & \\
\hline LH0002H & & x & x & & LH0094D & \(x\) & & & \\
\hline LH0003H & \(x\) & & & & LH00101AK & x & & & \\
\hline LH0004H & \(x\) & & & & LH0101K & x & & & \\
\hline LH0020G & X & & & & LH2101AD & & \(x\) & & \\
\hline LH0021K & x & & & & LH2108AD & & x & & \\
\hline LH0022D & \(x\) & & & & LH2108D & & x & & \\
\hline LH0022H & X & & & & LH2110D & & x & & \\
\hline LH0023G & x & & & & LH2111D & & x & & \\
\hline LH0024H & x & & & & LH2111F & x & & & \\
\hline
\end{tabular}
*Some older products are not completely compliant with MIL-STD-883 but are still required for use in military systems. These devices are screened to the same stringent requirements as 883 product but are marked "-MIL".

Listed below are the military class B Analog devices available from National Semiconductor. Many of these are also available as Class \(S\) product. Additional information including new product plans can be obtained from our sales offices.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Device Type & \[
\begin{gathered}
\text { Mil * } \\
\text { Class B }
\end{gathered}
\] & \[
\begin{gathered}
883 \\
\text { Class B }
\end{gathered}
\] & Desc & JAN & Device Type & Class B & \[
\begin{gathered}
883 \\
\text { Class B }
\end{gathered}
\] & Desc & JAN \\
\hline LH24250F & x & & & & LM117HVH & & x & \(x\) & \\
\hline LM10H & & x & & & LM117HVKSTL & & x & \(x\) & \\
\hline LM101AH & & x & & x & LM117KSTEEL & & x & x & x \\
\hline LM101AJ-14 & & \(x\) & & x & LM118H & & x & & \(x\) \\
\hline LM101AJ & & x & & & LM118J-8 & & x & & x \\
\hline LM101AW & & & & x & LM118J & & x & & \\
\hline LM102H & & x & & & LM118W & & & & x \\
\hline Liv103H-3.0 & & x & x & & LM119H & & x & x & \\
\hline LM103H-3.3 & & \(x\) & \(x\) & & LM119J & & x & x & \\
\hline LM103H-3.6 & & x & x & & LM120H-12 & & x & & \\
\hline LM103H-3.9 & & x & x & & LM120H-15 & & x & & \\
\hline LM104H & & \(x\) & & & LM120H-5.0 & & x & & \\
\hline LM105H & & \(x\) & & & LM120K-12 & & x & & \\
\hline LM106H & & x & & & LM120K-15 & & x & & \\
\hline LM107H & & x & & & LM120K-5.0 & & x & & \\
\hline LM107J-14 & & \(x\) & & & LM121AH & & x & & \\
\hline LM107J & & x & & & LM121H & & x & & \\
\hline LM108AH & & x & & \(x\) & LM122H & & x & & \\
\hline LM108AJ-8 & & x & & x & LM123KSTEEL & & x & & \\
\hline LM108AJ & & x & & & LM124AJ & & X & & \\
\hline LM108AW & & & & x & LM124J & & x & & x \\
\hline LM108H & & \(x\) & & & LM125H & & x & & \\
\hline LM108J-8 & & x & & & LM126H & & x & & \\
\hline LM108J & & x & & & LM129AH & & x & & \\
\hline LM109H & & x & & & LM129BH & & x & & \\
\hline LM109KSTEEL & & x & & & LM131AH & & x & & \\
\hline LM11H & & x & & & LM131H & & x & & \\
\hline LM110H & & x & & & LM135H & & x & & \\
\hline LM110J-8 & & x & & & LM136AH-2.5 & & x & x & \\
\hline LM110J & & x & & & LM136H-2.5 & & x & & \\
\hline LM111H & & x & & x & LM136H-5.0 & & x & & \\
\hline LM111J & & x & & x & LM137H & & \(x\) & \(x\) & \\
\hline LM111W & & & & X & LM137HVH & & \(x\) & x & \\
\hline LM112H & & x & & & LM137HVKSTEEL & & \(x\) & \(x\) & \\
\hline LM113-1H & & x & x & & LM137KSTEEL & & x & x & \\
\hline LM113-2H & & \(x\) & \(x\) & & LM138KSTEEL & & \(x\) & & \\
\hline LM113H & & x & \(x\) & & LM139AJ & & \(x\) & & \\
\hline LM117H & & x & \(x\) & x & LM139J & & x & & x \\
\hline
\end{tabular}
*Some older products are not completely compliant with MIL-STD-883 but are still required for use in military systems. These devices are screened to the same stringent requirements as 883 product but are marked "-MIL".

\section*{Military Analog Products Available From National Semiconductor}

Listed below are the military class B Analog devices available from National Semiconductor. Many of these are also available as Class \(S\) product. Additional information including new product plans can be obtained from our sales offices.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Device Type & \[
\begin{gathered}
\text { Mil * } \\
\text { Class B }
\end{gathered}
\] & \[
\begin{gathered}
883 \\
\text { Class B }
\end{gathered}
\] & Desc & JAN & Device Type & \[
\begin{gathered}
\text { Mil }^{*} \\
\text { Class B }
\end{gathered}
\] & \[
\begin{gathered}
883 \\
\text { Class B }
\end{gathered}
\] & Desc & JAN \\
\hline LM139W & & & & x & LM185H-1.2 & & x & & \\
\hline LM140AK-12 & & \(x\) & & & LM193AH & & \(x\) & & \\
\hline LM140AK-15 & & x & & & LM193H & & x & & \(x\) \\
\hline LM140AK-5.0 & & \(x\) & & & LM193J-8 & & & & \(x\) \\
\hline LM140K-12 & & x & & & LM193W & & & & x \\
\hline LM140K-15 & & x & & & LM194H & & x & & \\
\hline LM140K-5.0 & & \(x\) & & & LM195H & & \(x\) & & \\
\hline LM140LAH-12 & & x & & & LM195K & & x & & \\
\hline LM140LAH-15 & & \(x\) & & & LM199AH-20 & & x & & \\
\hline LM140LAH-5.0 & & x & & & LM199AH & & x & & \\
\hline LM143H & & x & x & & LM199H & & x & & \\
\hline LM144H & & x & x & & LM4250H & \(x\) & & & \\
\hline LM145K-5.0 & & \(x\) & & & LM4250J & x & & & \\
\hline LM145K-5.2 & & \(x\) & & & LM555H & & x & & \\
\hline LM146J & & \(x\) & & & LM555J & & x & & \\
\hline LM148J & & \(x\) & & x & LM556J & x & & & \\
\hline LM149J & & x & & & LM567H & & x & & \\
\hline LM150KSTEEL & x & & & & LM709AH & & x & & \\
\hline LM1536H & & \(x\) & x & & LM709H & & x & & \\
\hline LM1558H & & \(x\) & & & LM710H & & x & & \\
\hline LM1558J & & \(x\) & & & LM723H & & x & & \\
\hline LM158AH & & \(x\) & & & LM723J & & & & x \\
\hline LM158AJ & & \(x\) & & & LM725H & & x & & \\
\hline LM158H & & x & & & LM733H & x & & & \\
\hline LM158J & & x & & & LM741AJ-14 & & x & & \\
\hline LM1596H & x & & & & LM741AJ & & x & & \\
\hline LM160H & & \(x\) & & & LM741H & & \(x\) & & x \\
\hline LM160J-14 & & \(x\) & & & LM7415-14 & & \(x\) & & \\
\hline LM160J & & x & & & LM741J & & x & & \(x\) \\
\hline LM161F & x & & & & LM741W & & & & \(x\) \\
\hline LM161H & & \(x\) & & & LM747H & & \(x\) & & x \\
\hline LM161J & & \(x\) & & & LM747J & & \(x\) & & \\
\hline LM185BXH-1.2 & & \(x\) & & & LM748H & & \(x\) & & \\
\hline LM185BYH-1.2 & & x & & & LM748J & & x & & \\
\hline
\end{tabular}
*Some older products are not completely compliant with MIL-STD-883 but are still required for use in military systems. These devices are screened to the same stringent requirements as 883 product but are marked "-MIL".

National Semiconductor Corporation

\section*{INTRODUCTION}

The short and long term reliability of National Semiconductor's interface circuits, like any integrated circuit, is very dependent on its environmental condition. Beyond the mechanical/environmental factors, nothing has a greater influence on this reliability than the electrical and thermal stress seen by the integrated circuit. Both of these stress issues are specifically addressed on every interface circuit data sheet, under the headings of Absolute Maximum Ratings and Recommended Operating Conditions.
However, through application calls, it has become clear that electrical stress conditions are generally more understood than the thermal stress conditions. Understanding the importance of electrical stress should never be reduced, but clearly, a higher focus and understanding must be placed on thermal stress. Thermal stress and its application to interface circuits from National Semiconductor is the subject of this application note.

\section*{FACTORS AFFECTING DEVICE RELIABILITY}

Figure 1 shows the well known "bathtub" curve plotting failure rate versus time. Similar to all system hardware (mechanical or electrical) the reliability of interface integrated circuits conform to this curve. The key issues associated with this curve are infant mortality, failure rate, and useful life.

TL/H/9312-1
FIGURE 1. Failure Rate vs Time
Infant mortality, the high failure rate from time to to t1 (early life), is greatly influenced by system stress conditions other than temperature, and can vary widely from one application to another. The main stress factors that contribute to infant mortality are electrical transients and noise, mechanical maltreatment and excessive temperatures. Most of these failures are discovered in device test, burn-in, card assembly and handling, and initial system test and operation. Although important, much literature is available on the subject of infant mortality in integrated circuits and is beyond the scope of this application note.

Failure rate is the number of devices that will be expected to fail in a given period of time (such as, per million hours). The mean time between failure (MTBF) is the average time (in hours) that will be expected to elapse after a unit has failed before the next unit failure will occur. These two primary "units of measure" for device reliability are inversely related:
\[
\text { MTBF }=\frac{1}{\text { Failure Rate }}
\]

Although the "bathtub" curve plots the overall failure rate versus time, the useful failure rate can be defined as the percentage of devices that fail per-unit-time during the flat portion of the curve. This area, called the useful life, extends between t1 and t2 or from the end of infant mortality to the onset of wearout. The useful life may be as short as several years but usually extends for decades if adequate design margins are used in the development of a system.
Many factors influence useful life including: pressure, mechanical stress, thermal cycling, and electrical stress. However, die temperature during the device's useful life plays an equally important role in triggering the onset of wearout.

\section*{FAILURE RATES vs TIME AND TEMPERATURE}

The relationship between integrated circuit failure rates and time and temperature is a well established fact. The occurrence of these failures is a function which can be represented by the Arrhenius Model. Well validated and predominantly used for accelerated life testing of integrated circuits, the Arrhenius Model assumes the degradation of a performance parameter is linear with time and that MTBF is a function of temperature stress. The temperature dependence is an exponential function that defines the probability of occurrence. This results in a formula for expressing the lifetime or MTBF at a given temperature stress in relation to another MTBF at a different temperature. The ratio of these two MTBFs is called the acceleration factor F and is defined by the following equation:
\[
F=\frac{X 1}{X 2}=\exp \left[\frac{E}{K}\left(\frac{1}{T 2}-\frac{1}{T 1}\right)\right]
\]

Where: \(\mathrm{X} 1=\) Failure rate at junction temperature T 1
\(\mathrm{X} 2=\) Failure rate at junction temperature T2
\(\mathrm{T}=\) Junction temperature in degrees Kelvin
\(E=\) Thermal activation energy in electron volts (ev)
\(\mathrm{K}=\) Boltzman's constant

However, the dramatic acceleration effect of junction temperature (chip temperature) on failure rate is illustrated in a plot of the above equation for three different activation energies in Figure 2. This graph clearly demonstrates the importance of the relationship of junction temperature to device failure rate. For example, using the 0.99 ev line, a \(30^{\circ}\) rise in junction temperature, say from \(130^{\circ} \mathrm{C}\) to \(160^{\circ} \mathrm{C}\), results in a 10 to 1 increase in failure rate.

TL/H/9312-2
FIGURE 2. Failure Rate as a Function
of Junction Temperature

\section*{DEVICE THERMAL CAPABILITIES}

There are many factors which affect the thermal capability of an integrated circuit. To understand these we need to understand the predominant paths for heat to transfer out of the integrated circuit package. This is illustrated by Figures 3 and 4.
Figure 3 shows a cross-sectional view of an assembled integrated circuit mounted into a printed circuit board.
Figure 4 is a flow chart showing how the heat generated at the power source, the junctions of the integrated circuit
flows from the chip to the ultimate heat sink, the ambient environment. There are two predominant paths. The first is from the die to the die attach pad to the surrounding package material to the package lead frame to the printed circuit board and then to the ambient. The second path is from the package directly to the ambient air.
Improving the thermal characteristics of any stage in the flow chart of Figure 4 will result in an improvement in device thermal characteristics. However, grouping all these characteristics into one equation determining the overall thermal capability of an integrated circuit/package/environmental condition is possible. The equation that expresses this relationship is:
\[
T_{J}=T_{A}+P_{D}\left(\theta_{J A}\right)
\]

Where: \(T_{J}=\) Die junction temperature
\(T_{A}=\) Ambient temperature in the vicinity device
\(P_{D}=\) Total power dissipation (in watts)
\(\theta_{\mathrm{JA}}=\) Thermal resistance junction-to-ambient
\(\theta_{\mathrm{JA}}\), the thermal resistance from device junction-to-ambient temperature, is measured and specified by the manufacturers of integrated circuits. National Semiconductor utilizes special vehicles and methods to measure and monitor this parameter. All circuit data sheets specify the thermal characteristics and capabilities of the packages available for a given device under specific conditions-these package power ratings directly relate to thermal resistance junction-to-ambient or \(\theta_{\mathrm{JA}}\).
Although National provides these thermal ratings, it is critical that the end user understand how to use these numbers to improve thermal characteristics in the development of his system using IC components.

TL/H/9312-3
FIGURE 3. Integrated Circuit Soldered into a Printed Circuit Board (Cross-Sectional View)

TL/H/9312-4
FIGURE 4. Thermal Flow (Predominant Paths)

\section*{DETERMINING DEVICE OPERATING JUNCTION TEMPERATURE}

From the above equation the method of determining actual worst-case device operating junction temperature becomes straightforward. Given a package thermal characteristic, \(\boldsymbol{\theta}_{\mathrm{JA}}\), worst-case ambient operating temperature, \(\mathrm{T}_{\mathrm{A}}(\max)\), the only unknown parameter is device power dissipation, \(P_{\text {D }}\). In calculating this parameter, the dissipation of the integrated circuit due to its own supply has to be considered, the dissipation within the package due to the external load must also be added. The power associated with the load in a dynamic (switching) situation must also be considered. For example, the power associated with an inductor or a capacitor in a static versus dynamic (say, 1 MHz) condition is significantly different.
The junction temperature of a device with a total package power of 600 mW at \(70^{\circ} \mathrm{C}\) in a package with a thermal resistance of \(63^{\circ} \mathrm{C} / \mathrm{W}\) is \(108^{\circ} \mathrm{C}\).
\[
T_{J}=70^{\circ} \mathrm{C}+\left(63^{\circ} \mathrm{C} / \mathrm{W}\right) \times(0.6 \mathrm{~W})=108^{\circ} \mathrm{C}
\]

The next obvious question is, "how safe is \(108^{\circ} \mathrm{C}\) ?"

\section*{MAXIMUM ALLOWABLE JUNCTION TEMPERATURES}

What is an acceptable maximum operating junction temperature is in itself somewhat of a difficult question to answer. Many companies have established their own standards based on corporate policy. However, the semiconductor industry has developed some defacto standards based on the device package type. These have been well accepted as numbers that relate to reasonable (acceptable) device lifetimes, thus failure rates.
National Semiconductor has adopted these industry-wide standards. For devices fabricated in a molded package, the maximum allowable junction temperature is \(150^{\circ} \mathrm{C}\). For these devices assembled in ceramic or cavity DIP packages, the maximum allowable junction temperature is \(175^{\circ} \mathrm{C}\). The numbers are different because of the differences in package types. The thermal strain associated with the die package interface in a cavity package is much less than that exhibited in a molded package where the integrated circuit chip is in direct contact with the package material.
Let us use this new information and our thermal equation to construct a graph which displays the safe thermal (power) operating area for a given package type. Figure 5 is an example of such a graph. The end points of this graph are easily determined. For a 16 -pin molded package, the maximum allowable temperature is \(150^{\circ} \mathrm{C}\); at this point no power dissipation is allowable. The power capability at \(25^{\circ} \mathrm{C}\) is 1.98 W as given by the following calculation:
\[
\mathrm{P}_{\mathrm{D}} @ 25^{\circ} \mathrm{C}=\frac{T_{J}(\max)-T_{\mathrm{A}}}{\theta_{\mathrm{JA}}}=\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{63^{\circ} \mathrm{C} / \mathrm{W}}=1.98 \mathrm{~W}
\]

The slope of the straight line between these two points is minus the inversion of the thermal resistance. This is referred to as the derating factor.
\[
\text { Derating Factor }=-\frac{1}{\theta_{\mathrm{JA}}}
\]

As mentioned, Figure 5 is a plot of the safe thermal operating area for a device in a 16 -pin molded DIP. As long as the intersection of a vertical line defining the maximum ambient temperature (\(70^{\circ} \mathrm{C}\) in our previous example) and maximum device package power (600 mW) remains below the maximum package thermal capability line the junction temperature will remain below \(150^{\circ} \mathrm{C}\)-the limit for a molded package. If the intersection of ambient temperature and package power fails on this line, the maximum junction temperature will be \(150^{\circ} \mathrm{C}\). Any intersection that occurs above this line will result in a junction temperature in excess of \(150^{\circ} \mathrm{C}\) and is not an appropriate operating condition.

TL/H/9312-5
FIGURE 5. Package Power Capability vs Temperature
The thermal capabilities of all integrated circuits are expressed as a power capability at \(25^{\circ} \mathrm{C}\) still air environment with a given derating factor. This simply states, for every degree of ambient temperature rise above \(25^{\circ} \mathrm{C}\), reduce the package power capability stated by the derating factor which is expressed in \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\). For our example-a \(\theta_{\mathrm{JA}}\) of \(63^{\circ} \mathrm{C} / \mathrm{W}\) relates to a derating factor of \(15.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\).

\section*{FACTORS INFLUENCING PACKAGE THERMAL RESISTANCE}

As discussed earlier, improving any portion of the two primary thermal flow paths will result in an improvement in overall thermal resistance junction-to-ambient. This section discusses those components of thermal resistance that can be influenced by the manufacturer of the integrated circuit. It also discusses those factors in the overall thermal resistance that can be impacted by the end user of the integrated circuit. Understanding these issues will go a long way in understanding chip power capabilities and what can be done to insure the best possible operating conditions and, thus, best overall reliability.

\section*{Die Size}

Figure 6 shows a graph of our 16-pin DIP thermal resistance as a function of integrated circuit die size. Clearly, as the chip size increases the thermal resistance decreases-this relates directly to having a larger area with which to dissipate a given power.

TL/H/9312-6
FIGURE 6. Thermal Resistance vs Die Size

\section*{Lead Frame Material}

Figure 7 shows the influence of lead frame material (both die attach and device pins) on thermal resistance. This graph compares our same 16 -pin DIP with a copper lead frame, a Kovar lead frame, and finally an Alloy 42 type lead frame-these are lead frame materials commonly used in the industry. Obviously the thermal conductivity of the lead frame material has a significant impact in package power capability. Molded interface circuits from National Semiconductor use the copper lead frame exclusively.

TL/H/9312-7
FIGURE 7. Thermal Resistance vs Lead Frame Material

\section*{Board vs Socket Mount}

One of the major paths of dissipating energy generated by the integrated circuit is through the device leads. As a result of this, the graph of Figure 8 comes as no surprise. This compares the thermal resistance of our 16-pin package soldered into a printed circuit board (board mount) compared to the same package placed in a socket (socket mount). Adding a socket in the path between the PC board and the device adds another stage in the thermal flow path, thus increasing the overall thermal resistance. The thermal capabilities of National Semiconductor's interface circuits are specified assuming board mount conditions. If the devices are placed in a socket the thermal capabilities should be reduced by approximately \(5 \%\) to \(10 \%\).

TL/H/9312-8

\section*{FIGURE 8. Thermal Resistance vs Board or Socket Mount}

\section*{Air Flow}

When a high power situation exists and the ambient temperature cannot be reduced, the next best thing is to provide air flow in the vicinity of the package. The graph of Figure 9 illustrates the impact this has on thermal resistance. This graph plots the relative reduction in thermal resistance normalized to the still air condition for our 16 -pin molded DIP. The thermal ratings on National Semiconductor's interface circuits data sheets relate to the still air environment.

TL/H/9312-9
FIGURE 9. Thermal Resistance vs Air Flow

\section*{Other Factors}

A number of other factors influence thermal resistance. The most important of these is using thermal epoxy in mounting ICs to the PC board and heat sinks. Generally these techniques are required only in the very highest of power applications.
Some confusion exists between the difference in thermal resistance junction-to-ambient (\(\theta_{\mathrm{JA}}\)) and thermal resistance junction-to-case (\(\theta_{\mathrm{Jc}}\)). The best measure of actual junction temperature is the junction-to-ambient number since nearly all systems operate in an open air environment. The only situation where thermal resistance junction-to-case is important is when the entire system is immersed in a thermal bath and the environmental temperature is indeed the case temperature. This is only used in extreme cases and is the exception to the rule and, for this reason, is not addressed in this application note.

\section*{NATIONAL SEMICONDUCTOR \\ PACKAGE CAPABILITIES}

Figures 10 and 11 show composite plots of the thermal characteristics of the most common package types in the National Semiconductor Linear Circuits product family. Figure 10 is a composite of the copper lead frame molded package. Figure 11 is a composite of the ceramic (cavity) DIP using poly die attach. These graphs represent board mount still air thermal capabilities. Another, and final, thermal resistance trend will be noticed in these graphs. As the number of device pins increase in a DIP the thermal resistance decreases. Referring back to the thermal flow chart, this trend should, by now, be obvious.

\section*{RATINGS ON INTERFACE CIRCUITS DATA SHEETS}

In conclusion, all National Semiconductor Linear Products define power dissipation (thermal) capability. This information can be found in the Absolute Maximum Ratings section of the data sheet. The thermal information shown in this application note represents average data for characterization of the indicated package. Actual thermal resistance can vary from \(\pm 10 \%\) to \(\pm 15 \%\) due to fluctuations in assembly quality, die shape, die thickness, distribution of heat sources on the die, etc. The numbers quoted in the linear data

Molded (N Package) DIP* Copper Leadframe-HTP Die Attach Board MountStill Air

*Packages from 8-to 20 -pin 0.3 mil width
TL/H/9312-10 22-pin 0.4 mil width
24- to 40 -pin 0.6 mil width
FIGURE 10. Thermal Resistance vs Die Size vs Package Type (Molded Package)
sheets reflect a \(15 \%\) safety margin from the average numbers found in this application note. Insuring that total package power remains under a specified level will guarantee that the maximum junction temperature will not exceed the package maximum.
The package power ratings are specified as a maximum power at \(25^{\circ} \mathrm{C}\) ambient with an associated derating factor for ambient temperatures above \(25^{\circ} \mathrm{C}\). It is easy to determine the power capability at an elevated temperature. The power specified at \(25^{\circ} \mathrm{C}\) should be reduced by the derating factor for every degree of ambient temperature above \(25^{\circ} \mathrm{C}\). For example, in a given product data sheet the following will be found:
\begin{tabular}{ll}
Maximum Power Dissipation* at \(25^{\circ} \mathrm{C}\) \\
Cavity Package & 1509 mW \\
Molded Package & 1476 mW
\end{tabular}
* Derate cavity package at \(10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\); derate molded package at \(11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(25^{\circ} \mathrm{C}\).
If the molded package is used at a maximum ambient temperature of \(70^{\circ} \mathrm{C}\), the package power capability is 945 mW .
\(\mathrm{P}_{\mathrm{D}} @ 70^{\circ} \mathrm{C}=1476 \mathrm{~mW}-\left(11.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right) \times\left(70^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)\)
\[
=945 \mathrm{~mW}
\]

Cavity (J Package) DIP* Poly Die Attach Board Mount-Still Air

*Packages from 8- to 20-pin 0.3 mil width TL/H/9312-11 22-pin 0.4 mil width
24- to 48-pin 0.6 mil width
FIGURE 11. Thermal Resistance vs Die Size vs Package Type (Cavity Package)

(BOARD MOUNT)
TL/H/9312-12
FIGURE 12

National Semiconductor Corporation

\title{
APPENDIX F How to Get the Right Information From a Data Sheet
}

\author{
Not All Data Sheets Are Created Alike, and False Assumptions Could Cost an Engineer Time and Money
}

\section*{By Robert A. Pease}

When a new product arrives in the marketplace, it hopefully will have a good, clear data sheet with it.
The data sheet can show the prospective user how to apply the device, what performance specifications are guaranteed and various typical applications and characteristics. If the data-sheet writer has done a good job, the user can decide if the product will be valuable to him, exactly how well it will be of use to him and what precautions to take to avoid problems.

\section*{SPECIFICATIONS}

The most important area of a data sheet specifies the characteristics that are guaranteed-and the test conditions that apply when the tests are done. Ideally, all specifications that the users will need will be spelled out clearly. If the product is similar to existing products, one can expect the data sheet to have a format similar to other devices.
But, if there are significant changes and improvements that nobody has seen before, then the writer must clarify what is meant by each specification. Definitions of new phrases or characteristics may even have to be added as an appendix.
For example, when fast-settling operational amplifiers were first introduced, some manufacturers defined settling time as the time after slewing before the output finally enters and stays within the error-band; but other manufacturers included the slewing time in their definition. Because both groups made their definitions clear, the user was unlikely to be confused or misled.
However, the reader ought to be on the alert. In a few cases, the data-sheet writer is playing a specsmanship game, and is trying to show an inferior (to some users) aspect of a product in a light that makes it look superior (which it may be, to a couple of users).

\section*{GUARANTEES}

When a data sheet specifies a guaranteed minimum value, what does it mean? An assumption might be made that the manufacturer has actually tested that specification and has great confidence that no part could fail that test and still be shipped. Yet that is not always the case.
For instance, in the early days of op amps (20 years ago), the differential-input impedance might have been guaranteed at \(1 \mathrm{M} \Omega\)-but the manufacturer obviously did not measure the impedance. When a customer insisted, "I have to know how you measure this impedance," it had to be explained that the impedance was not measured, but that the base current was. The correlation between \(\mathrm{I}_{\mathrm{b}}\) and \(\mathrm{Z}_{\mathrm{in}}\) permitted the substitution of this simple dc test for a rather messy, noisy, hard-to-interpret test.

Every year, for the last 20 years, manufacturers have been trying to explain, with varying success, why they do not measure the \(Z_{\text {in }}\) per se, even though they do guarantee it
In other cases, the manufacturer may specify a test that can be made only on the die as it is probed on the wafer, but cannot be tested after the die is packaged because that signal is not accessible any longer. To avoid frustrating and confusing the customer, some manufacturers are establishing two classes of guaranteed specifications:
- The tested limit represents a test that cannot be doubted, one that is actually performed directly on 100 percent of the devices, 100 percent of the time.
- The design limit covers other tests that may be indirect, implicit or simply guaranteed by the inherent design of the device, and is unlikely to cause a failure rate (on that test), even as high as one part per thousand.
Why was this distinction made? Not just because customers wanted to know which specifications were guaranteed by testing, but because the quality-assurance group insisted that it was essential to separate the tested guarantees from the design limits so that the AQL (assurance-quality level) could be improved from 0.1 percent to down below 100 ppm.
Some data sheets guarantee characteristics that are quite expensive and difficult to test (even harder than noise) such as long-term drift (20 ppm or 50 ppm over 1,000 hours).
The data sheet may not tell the reader if \(i_{i}\) is measured, tested or estimated. One manufacturer may perform a 100percent test, while another states, "Guaranteed by sample testing." This is not a very comforting assurance that a part is good, especially in a critical case where only a long-term test can prove if the device did meet the manufacturer's specification. If in doubt, question the manufacturer.

\section*{TYPICALS}

Next to a guaranteed specification, there is likely to be another in a column labeled "typical".
It might mean that the manufacturer once actually saw one part as good as that. It could indicate that half the parts are better than that specification, and half will be worse. But it is equally likely to mean that, five years ago, half the parts were better and half worse. It could easily signify that a few parts might be slightly better, and a few parts a lot worse; after all, if the noise of an amplifier is extremely close to the theoretical limit, one cannot expect to find anything much better than that, but there will always be a few noisy ones. If the specification of interest happens to be the bias current (\(l_{b}\)) of an op amp, a user can expect broad variations. For example, if the specification is 200 nA maximum, there might be many parts where \(\mathrm{I}_{\mathrm{b}}\) is 40 nA on one batch (where the beta is high), and a month later, many parts where the \(I_{b}\) is 140 nA when the beta is low.

Absolute Maximum Ratings (Note 11)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
\begin{tabular}{lr}
Supply Voltage & +35 V to -0.2 V \\
Output Voltage & +6 V to -1.0 V \\
Output Current & 10 mA \\
Storage Temperature, & \\
TO-46 Package & \(-76^{\circ} \mathrm{F}\) to \(+356^{\circ} \mathrm{F}\) \\
TO-92 Package & \(-76^{\circ} \mathrm{F}\) to \(+300^{\circ} \mathrm{F}\)
\end{tabular}

Supply Voltage

Output Cur
Storage Temperature,

TO-92 Package
\(-76^{\circ} \mathrm{F}\) to \(+300^{\circ} \mathrm{F}\)

Lead Temp. (Soldering, 4 seconds) *
\begin{tabular}{ll}
TO-46 Package & \(+300^{\circ} \mathrm{C}\) \\
TO-92 Package & \(+260^{\circ} \mathrm{C}\)
\end{tabular}

Specified Operating Temp. Range (Note 2)
\(T_{\text {MIN }}\) to \(T_{\text {MAX }}\)
LM34, LM34A \(-50^{\circ} \mathrm{F}\) to \(+300^{\circ} \mathrm{F}\)
LM34C, LM34CA \(-40^{\circ} \mathrm{F}\) to \(+230^{\circ} \mathrm{F}\)
LM34D \(+32^{\circ} \mathrm{F}\) to \(+212^{\circ} \mathrm{F}\)

DC Electrical Characteristics (Note 1, Note 6)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Conditions} & \multicolumn{3}{|c|}{LM34A} & \multicolumn{3}{|c|}{LM34CA} & \multirow[b]{2}{*}{Units (ivax)} \\
\hline & & Typical & Tested Limit (Note 4) & Design Limit (Note 5) & Typical & Tested Limit (Note 4) & Design Limit (Note 5) & \\
\hline Accuracy (Note 7) & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \pm 0.4 \\
& \pm 0.6 \\
& \pm 0.8 \\
& \pm 0.8
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1.0 \\
& \pm 2.0 \\
& \pm 2.0
\end{aligned}
\] & & \[
\begin{aligned}
& \pm 0.4 \\
& \pm 0.6 \\
& \pm 0.8 \\
& \pm 0.8
\end{aligned}
\] & \[
\begin{aligned}
& \pm 1.0 \\
& \pm 2.0
\end{aligned}
\] & \[
\begin{aligned}
& \pm 2.0 \\
& \pm 3.0
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{F} \\
& { }^{\circ} \mathrm{F} \\
& { }^{\circ} \mathrm{F} \\
& { }^{\circ} \mathrm{F}
\end{aligned}
\] \\
\hline Nonlinearity (Note 8) & \(\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}\) & \(\pm 0.35\) & & \(\pm 0.7\) & \(\pm 0.30\) & & \(\pm 0.6\) & \({ }^{\circ} \mathrm{F}\) \\
\hline Sensor Gain (Average Slope) & \(\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}\) & +10.0 & \[
\begin{array}{r}
+9.9 \\
+10.1
\end{array}
\] & & + 10.0 & & \[
\begin{array}{r}
+9.9 \\
+10.1
\end{array}
\] & \(\mathrm{mV} /{ }^{\circ} \mathrm{F}, \min\) \(m V /{ }^{\circ} \mathrm{F}, \max\) \\
\hline Load Regulation (Note 3) & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \\
& 0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\pm 0.4 \\
\pm \mathbf{0 . 5}
\end{array}
\] & \(\pm 1.0\) & \(\pm 3.0\) & \[
\begin{array}{r}
\pm 0.4 \\
\pm 0.5
\end{array}
\] & \(\pm 1.0\) & \(\pm 3.0\) & \(\mathrm{mV} / \mathrm{mA}\) \(\mathrm{mV} / \mathrm{mA}\) \\
\hline Line Regulation (Note 3) & \[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+77^{\circ} \mathrm{F} \\
& 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V}
\end{aligned}
\] & \[
\begin{gathered}
\pm 0.01 \\
\pm \mathbf{0 . 0 2}
\end{gathered}
\] & \(\pm 0.05\) & \(\pm 0.1\) & \[
\begin{gathered}
\pm 0.01 \\
\pm \mathbf{0 . 0 2}
\end{gathered}
\] & \(\pm 0.05\) & \(\pm 0.1\) & \[
\begin{aligned}
& \mathrm{mV} / \mathrm{V} \\
& \mathrm{mV} / \mathrm{V}
\end{aligned}
\] \\
\hline Quiescent Current (Note 9) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},+77^{\circ} \mathrm{F} \\
& \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+77^{\circ} \mathrm{F} \\
& \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V}
\end{aligned}
\] & \[
\begin{gathered}
75 \\
131 \\
76 \\
\mathbf{1 3 2}
\end{gathered}
\] & \[
\begin{aligned}
& 90 \\
& 92
\end{aligned}
\] & \[
\begin{aligned}
& 160 \\
& 163 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
75 \\
116 \\
76 \\
117 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 90 \\
& 92
\end{aligned}
\] & \[
\begin{aligned}
& 139 \\
& 142 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline Change of Quiescent Current (Note 3) & \[
\begin{aligned}
& 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+77^{\circ} \mathrm{F} \\
& 5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& +0.5 \\
& +1.0
\end{aligned}
\] & 2.0 & 3.0 & \[
\begin{aligned}
& 0.5 \\
& 1.0
\end{aligned}
\] & 2.0 & 3.0 & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline Temperature Coefficient of Quiescent Current & & +0.30 & & +0.5 & +0.30 & & + 0.5 & \(\mu \mathrm{A} /{ }^{\circ} \mathrm{F}\) \\
\hline Minimum Temperature for Rated Accuracy & In circuit of Figure 1,
\[
\mathrm{I}_{\mathrm{L}}=0
\] & +3.0 & & +5.0 & +3.0 & & +5.0 & \({ }^{\circ} \mathrm{F}\) \\
\hline Long-Term Stability & \(\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {MAX }}\) for 1000 hours & \(\pm 0.16\) & & & \(\pm 0.16\) & & & \({ }^{\circ} \mathrm{F}\) \\
\hline
\end{tabular}

Note 1: Unless otherwise noted, these specifications apply: \(-50^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+300^{\circ} \mathrm{F}\) for the LM34 and LM34A; \(-40^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+230^{\circ} \mathrm{F}\) for the LM34C and
LM34CA; and \(+32^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq+212^{\circ} \mathrm{F}\) for the LM34D. \(\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}\) and \(\mathrm{L}_{\text {LOAD }}=50 \mu \mathrm{~A}\) in the circuit of Figure \(2 ;+6 \mathrm{Vdc}\) for LM 34 and LM 34 A for \(230^{\circ} \mathrm{F} \leq \mathrm{T}_{\mathrm{j}} \leq\) \(300^{\circ} \mathrm{F}\). These specifications also apply from \(+5^{\circ} \mathrm{F}\) to \(\mathrm{T}_{\text {MAX }}\) in the circuit of Figure 1.
Note 2: Thermal resistance of the TO-46 package is \(292^{\circ} \mathrm{F} / \mathrm{W}\) junction to ambient and \(43^{\circ} \mathrm{F} / \mathrm{W}\) junction to case. Thermal resistance of the TO-92 package is \(324^{\circ} \mathrm{F} / \mathrm{W}\) junction to ambient.
Note 3: Regulation is measured at constant junction temperature using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 4: Tested limits are guaranteed and \(100 \%\) tested in production.
Note 5: Design limits are guaranteed (but not \(100 \%\) production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 6: Specification in BOLDFACE TYPE apply over the full rated temperature range.
Note 7: Accuracy is defined as the error between the output voltage and \(10 \mathrm{mV} /{ }^{\circ} \mathrm{F}\) times the device's case temperature at specified conditions of voltage, current, and temperature (expressed in \({ }^{\circ} \mathrm{F}\)).
Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line over the device's rated temperature range.
Note 9: Quiescent current is defined in the circuit of Figure 1.
Note 10: Contact factory for availability of LM34CAZ.
* * \({ }_{\text {Note 11: }}\) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions (see Note 1).

\section*{A Point-By-Point Look}

Let's look a little more closely at the data sheet of the National Semiconductor LM34, which happens to be a temperature sensor.

Note 1 lists the nominal test conditions and test circuits in which all the characteristics are defined. Some additional test conditions are listed in the column "Conditions", but Note 1 helps minimize the clutter.
Note 2 gives the thermal impedance, (which may also be shown in a chart or table).
Note 3 warns that an output impedance test, if done with a long pulse, could cause significant self-heating and thus, error.
Note 6 is intended to show which specs apply at all rated temperatures.
Note 7 is the definition of the "Accuracy" spec, and Note 8 the definition for non-linearity. Note 9 states in what test circuit the quiescent current is defined. Note 10 indicates that one model of the family may not be available at the time of printing (but happens to be available now), and Note 11 is the definition of Absolute Max Ratings.
* Note-the " 4 seconds" soldering time is a new standard for plastic packages.
** Note-the wording of Note 11 has been revised-this is the best wording we can devise, and we will use it on all future datasheets.

\section*{APPLICATIONS}

Another important part of the data sheet is the applications section. It indicates the novel and conventional ways to use a device. Sometimes these applications are just little ideas to tweak a reader's mind. After looking at a couple of applications, one can invent other ideas that are useful. Some applications may be of no real interest or use.
In other cases, an application circuit may be the complete definition of the system's performance; it can be the test circuit in which the specification limits are defined, tested and guaranteed. But, in all other instances, the performance of a typical application circuit is not guaranteed, it is only typical. In many circumstances, the performance may depend on external components and their precision and matching. Some manufacturers have added a phrase to their data sheets:
"Applications for any circuits contained in this document are for illustration purposes only and the manufacturer makes no representation or warranty that such applications will be suitable for the use indicated without further testing or modification."
In the future, manufacturers may find it necessary to add disclaimers of this kind to avoid disappointing users with circuits that work well, much of the time, but cannot be easily guaranteed.
The applications section is also a good place to look for advice on quirks-potential drawbacks or little details that may not be so little when a user wants to know if a device will actually deliver the expected performance.
For example, if a buffer can drive heavy loads and can handle fast signals cleanly (at no load), the maker isn't doing anybody any favors if there is no mention that the distortion goes sky-high if the rated load is applied.

Another example is the application hint for the LF156 family: "Exceeding the negative common-mode limit on either input will cause a reversal of the phase to output and force the amplifier output to the corresponding high or low state. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur, since raising the input back within the common-mode range again puts the input stage and, thus the amplifier, in a normal operating mode."
That's the kind of information a manufacturer should really give to a data-sheet reader because no one could ever guess it.
Sometimes, a writer slips a quirk into a characteristic curve, but it's wiser to draw attention to it with a line of text. This is because it's better to make the user sad before one gets started, rather than when one goes into production. Conversely, if a user is going to spend more than 10 minutes using a new product, one ought to spend a full five minutes reading the entire data sheet.

\section*{FINE PRINT}

What other fine print can be found on a data sheet? Sometimes the front page may be marked "advance" or "preliminary." Then on the back page, the fine print may say something such as:
"This data sheet contains preliminary limits and design specifications. Supplemental information will be published at a later date. The manufacturer reserves the right to make changes in the products contained in this document in order to improve design or performance and to supply the best possible products. We also assume no responsibility for the use of any circuits described herein, convey no license under any patent or other right and make no representation that the circuits are free from patent infringement."
In fact, after a device is released to the marketplace in a preliminary status, the engineers love to make small improvements and upgrades in specifications and characteristics, and hate to degrade a specification from its first published value-but occasionally that is necessary.
Another item in the fine print is the manufacturer's telephone number. Usually it is best to refer questions to the local sales representative or field-applications engineer, because they may know the answer or they may be best able to put a questioner in touch with the right person at the factory.
Occasionally, the factory's applications engineers have all the information. Other times, they have to bring in product engineers, test engineers or marketing people. And sometimes the answer can't be generated quickly-data have to be gathered, opinions solidified or policies formulated before the manufacturer can answer the question. Still, the telephone number is the key to getting the factory to help.

\section*{ORIGINS OF DATA SHEETS}

Of course, historically, most data sheets for a class of products have been closely modeled on the data sheet of the forerunner of that class. The first data sheet was copied to make new versions.
That's the way it happened with the UA709 (the first monolithic op amp) and all its copies, as well as many other similar families of circuits.

Even today, an attempt is made to build on the good things learned from the past and add a few improvements when necessary. But, it's important to have real improvements, not just change for the sake of change.
So, while it's not easy to get the format and everything in it exactly right to please everybody, new data sheets are continually surfacing with new features, applications ideas, specifications and aids for the user. And, if the users complain loudly enough about misleading or inadequate data sheets, they can help lead the way to change data sheets. That's how many of today's improvements came aboutthrough customer demand.
Who writes data sheets? In some cases, a marketing person does the actual writing and engineers do the checking. In other companies, the engineer writes, while marketing people and other engineers check. Sometimes, a committee seems to be doing the writing. None of these ways is necessarily wrong.
For example, one approach might be: The original designer of the product writes the data sheet (inside his head) at the same time the product is designed. The concept here is, if one can't find the proper ingredients for a data sheet-good applications, convenient features for the user and nicely tested specifications as the part is being designed-then maybe it's not a very good product until all those ingredients are completed. Thus, the collection of raw materials for a good data sheet is an integral part of the design of a product. The actual assembly of these materials is an art which can take place later.

\section*{WHEN TO WRITE DATA SHEETS}

A new product becomes available. The applications engineers start evaluating their application circuits and the test engineers examine their production test equipment.
But how can the users evaluate the new device? They have to have a data sheet-which is still in the process of being written. Every week, as the data sheet writer tries to polish and refine the incipient data sheet, other engineers are reporting, "These spec limits and conditions have to be revised," and, "Those application circuits don't work like we thought they would; we'll have one running in a couple of days." The marketing people insist that the data sheet must be finalized and frozen right away so that they can start printing copies to go out with evaluation samples.
These trying conditions may explain why data sheets always seem to have been thrown together under panic conditions and why they have so many rough spots. Users should be aware of the conflicting requirements: Getting a data sheet "as completely as possible" and "as accurately as possible" is compromised if one wants to get the data sheet "as quickly as possible."
The reader should always question the manufacturer. What are the alternatives? By not asking the right question, a misunderstanding could arise; getting angry with the manufacturer is not to anyone's advantage.
Robert Pease has been staff scientist at National Semiconductor Corp., Santa Clara, Calif., for eleven years. He has designed numerous op amps, data converters, voltage regulators and analog-circuit functions.

National Semiconductor Corporation

\section*{Appendix G Obsolete Product Replacement Guide}

Some device types, individual temperature grades and package options have been discontinued. This guide is provided to help design engineers select and specify an appropriate alternative.
\begin{tabular}{|c|c|c|c|c|c|}
\hline NSC Part Number & Replacement & Note & NSC Part Number & Replacement & Note \\
\hline ADB1200 & ADC3711 & 2 & LM1821S & LM1823 & 2 \\
\hline DAC1200/1201 & DAC1265 & 2 & LM1822 & LM1823 & 3 \\
\hline LF352 & LM3631 & 2 & LM1828 & no replacement & \\
\hline LF13300 & ADC3711 & 2 & LM1848 & no replacement & \\
\hline LH0001 & LM4250 & 2 & LM1877N-1/N-2/N-3 & LM1877N-9 & 2 \\
\hline LH0005/LH0005A & LH0003 & 2 & LM2003 & no replacement & \\
\hline LH0037 & LH0036 & 3 & LM2808 & no replacement & \\
\hline LH0132 & LH0032 & 2 & LM2831 & LM1851 & 2 \\
\hline LH2011 & LM11 & 2 & LM3011 & no replacement & \\
\hline LH2108 & LM108 & 2 & LM3064 & no replacement & \\
\hline LH2201A & LM201A & 2 & LM3075 & no replacement & \\
\hline LH2208 & LM208 & 2 & TBA120V & no replacement & \\
\hline LH2208A & LM208A & 2 & TBA440C & LM1823 & 2 \\
\hline LH2308 & LM308 & 2 & TBA510 & no replacement & \\
\hline LH24250 & LM11 & 2 & TBA530 & no replacement & \\
\hline LM170/270/370 & LM13600N & 2 & TBA540 & no replacement & \\
\hline LM171/271/371 & no replacement & & TBA560C & no replacement & \\
\hline LM172/272/372 & no replacement & & TBA920 & no replacement & \\
\hline LM173/273/373 & no replacement & & TBA950-2 & no replacement & \\
\hline LM174/274/374 & no replacement & & TBA970 & no replacement & \\
\hline LM175/275/375 & no replacement & & TBA990 & no replacement & \\
\hline LM216/316 & LM11 & 2 & TDA440 & no replacement & \\
\hline LM388N-2/N-3 & LM388N-1 & 2 & TDA2522/23 & no replacement & \\
\hline LM377N & LM2877P & 3 & TDA2530 & no replacement & \\
\hline LM378N & LM2878P & 3 & TDA2530/31 & no replacement & \\
\hline LM379 & LM2879T & 3 & TDA2540/41 & no replacement & \\
\hline LM1014 & no replacement & & TDA2560 & no replacement & \\
\hline LM1017 & no replacement & & TDA2590 & no replacement & \\
\hline LM1019 & no replacement & & TDA3500 & no replacement & \\
\hline
\end{tabular}

Note 1: IMPROVED REPLACEMENT: Pin for Pin replacement with superior electrical specifications.
Note 2: FUNCTIONAL REPLACEMENT: Consult datasheet to determine suitability of the replacement for specific application.
Note 3: SIMILAR DEVICE with superior performance: Consult datasheet to determine suitability of the replacement for specific application.

National Semiconductor

\section*{Appendix H Products Not Recommended for New Designs}

The popular National Semiconductor Corporation monolithic IC's may have been designed into your systems. We believe that there are more cost-effective circuits manufactured by National Semiconductor Corporation that should be considered in your new designs. These recommendations are listed in this section. To eliminate the necessity to redesign proven equipment, we are continuing to make these products for use in existing designs for which they were uniquely suitable.
\begin{tabular}{|l|l|c|}
\hline NSC Part Number & \begin{tabular}{l}
Recommended \\
Replacement
\end{tabular} & Note \\
\hline LH2210 & LM210 & 2 \\
LH2301A & LM301A & 2 \\
LH2308A & LM308A & 2 \\
LH2310 & LM310 & 2 \\
LM103 & LM185 & 3 \\
LM113 & LM1851-2 & 1 \\
LM313 & LM3851-2 & 1 \\
LM377N & LM1877N-9 & 2 \\
LM377N & LM2877P & 3 \\
LM378N & LM2878P & 3 \\
LM391N-60 & LM391N-100 & 1 \\
LM391N-80 & LM391N-100 & 1 \\
LM709 & LF441 & 3 \\
LM710 & LM106 & 2 \\
LM725 & LM607 & 3 \\
LM748 & LF441 & 3 \\
\hline
\end{tabular}

\section*{Notes:}

Note 1: IMPROVED REPLACEMENT: Pin for Pin replacement with superior electrical specifications.
Note 2: FUNCTIONAL REPLACEMENT: Consult datasheet to determine suitability of the replacement for specific application.
Note 3: SIMILAR DEVICE with superior performance: Consult datasheet to determine suitability of the replacement for specific application.

NS Package D16D

NS Package D18A

NS Package D24D

H02A (REV C)
NS Package H02A

NS Package H03B

HO4D (REV D)
NS Package H04D

J08A (REV H)
NS Package J08A

NS Package J14A

NS Package J16A

NS Package J18A

J24A (REV HI
NS Package J24A

NS Package M14B

\section*{NS Package N08E}

NS Package N14A

NS Package N24A

ZO3A (REV D)
NS Package Z03A

National Semiconductor Corporation

\author{
Bookshelf of Technical Support Information \\ National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature. \\ This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book. \\ Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this bookshelf. \\ We are interested in your comments on our technical literature and your suggestions for improvement. \\ Please send them to: \\ Technical Communications Dept. M/S 23-200 \\ 2900 Semiconductor Drive \\ P.O. Box 58090 \\ Santa Clara, CA 95052-8090 \\ For a recorded update of this listing plus ordering information for these books from National's Literature Distribution operation, please call (408) 749-7378.
}

\author{
ALS/AS LOGIC DATABOOK—1987 \\ Introduction to Bipolar Logic •Advanced Low Power Schottky • Advanced Schottky
}

\title{
ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS—1987 \\ SSI/MSI Functions • Peripheral Functions •LSI/VLSI Functions • Design Guidelines • Packaging
}

\section*{DATA CONVERSION/ACQUISITION DATABOOK—1984}

Selection Guides • Active Filters • Amplifiers • Analog Switches • Analog-to-Digital Converters Analog-to-Digital Display (DVM) • Digital-to-Analog Converters • Sample and Hold • Sensors/Transducers Successive Approximation Registers/Comparators • Voltage References

\section*{HYBRID PRODUCTS DATABOOK—1982}

Operational Amplifiers • Buffers • Instrumentation Amplifiers • Sample \& Hold Amplifiers • Comparators
Non-Linear Functions • Precision Voltage Regulators and References • Analog Switches MOS Clock Drivers • Digital Drivers • A-D Converters • D-A Converters • Fiber-Optic Products Active Filters \& Telecommunication Products • Precision Networks • 883/RETS

\section*{INTERFACE DATABOOK-1986}

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral/Power Drivers • Display Controllers/Drivers Memory Support • Microprocessor Support • Level Translators/Buffers • Frequency Synthesis

\section*{INTERFACE/BIPOLAR LSI/BIPOLAR MEMORY/PROGRAMMABLE LOGIC DATABOOK-1983}

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral/Power Drivers Level Translators/Buffers • Display Controllers/Drivers • Memory Support • Dynamic Memory Support Microprocessor Support • Data Communications Support • Disk Support • Frequency Synthesis Interface Appendices • Bipolar PROMs • Bipolar and ECL RAMs • 2900 Family/Bipolar Microprocessor Programmable Logic

\section*{INTUITIVE IC CMOS EVOLUTION—1984}

Thomas M. Frederiksen's new book targets some of the most significant transitions in semiconductor technology since the change from germanium to silicon. Intuitive IC CMOS Evolution highlights the transition in the reduction in defect densities and the development of new circuit topologies. The author's latest book is a vital aid to engineers, and industry observers who need to stay abreast of the semiconductor industry.

\section*{INTUITIVE IC OP AMPS—1984}

Thomas M. Frederiksen's new book, Intuitive IC Op Amps, explores the many uses and applications of different IC op amps. Frederiksen's detailed book differs from others in the way he focuses on the intuitive groundwork in the basic functioning concepts of the op amp. Mr. Frederiksen's latest book is a vital aid to engineers, designers, and industry observers who need to stay abreast of the computer industry.

\section*{LINEAR APPLICATIONS HANDBOOK—1986}

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

\title{
LINEAR 1 DATABOOK-1988 \\ Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators • Instrumentation Amplifiers • Surface Mount
}

\section*{LINEAR 3 DATABOOK—1988}

Audio Circuits • Radio Circuits • Video Circuits • Motion Control • Special Functions • Surface Mount

\author{
LINEAR SUPPLEMENT DATABOOK—1984 \\ Amplifiers • Comparators • Voltage Regulators • Voltage References • Converters • Analog Switches Sample and Hold • Sensors • Filters • Building Blocks • Motor Controllers • Consumer Circuits Telecommunications Circuits • Speech • Special Analog Functions
}

\author{
LOGIC DATABOOK VOLUME I-1984 \\ CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • LSI/VLSI
}

\section*{LS/S/TTL DATABOOK—1987}

Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL • Low Power

\section*{MASS STORAGE HANDBOOK—1986}

Disk Interface Design Guide and User Manual • Winchester Disk Support • Winchester Disk Data Controller Floppy Disk Support • Drive Interface Support Circuits

\section*{MEMORY SUPPORT HANDBOOK—1986}

Dynamic Memory Control • Error Checking and Correction • Microprocessor Interface and Applications Memory Drivers and Support

\title{
MICROCOMMUNICATION ELEMENTS DATABOOK—1987
}

CPU • Peripherals • Evaluation Board • Logic Devices

\section*{NON-VOLATILE MEMORY DATABOOK—1987 \\ CMOS EPROMs • EEPROMs • Bipolar PROMs}

\section*{SERIES 32000 DATABOOK-1986}

Introduction • CPU-Central Processing Unit • Slave Processors • Peripherals • Data Communications and LAN's Disk Control and Interface • DRAM Interface • Development Tools • Software Support • Application Notes

\section*{RANDOM ACCESS MEMORY DATABOOK—1987}

Static RAMs • TTL RAMs • TTL FIFOs • ECL RAMs

\section*{RELIABILITY HANDBOOK—1986}

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510 The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

\section*{TELECOMMUNICATIONS-1987}

Line Card Components • Integrated Services Digital Network Components • Modems Analog Telephone Components • Application Notes

\section*{THE SWITCHED-CAPACITOR FILTER HANDBOOK—1985}

Introduction to Filters • National's Switched-Capacitor Filters • Designing with Switched-Capacitor Filters Application Circuits • Filter Design Program • Nomographs and Tables

\section*{TRANSISTOR DATABOOK—1982}

NPN Transistors • PNP Transistors • Junction Field Effect Transistors • Selection Guides • Pro Electron Series Consumer Series • NA/NB/NR Series • Process Characteristics Double-Diffused Epitaxial Transistors Process Characteristics Power Transistors • Process Characteristics JFETs • JFET Applications Notes

\section*{VOLTAGE REGULATOR HANDBOOK-1982}

Product Selection Procedures • Heat Flow \& Thermal Resistance • Selection of Commercial Heat Sink Custom Heat Sink Design • Applications Circuits and Descriptive Information • Power Supply Design Data Sheets

\section*{48-SERIES MICROPROCESSOR HANDBOOK—1980}

The 48-Series Microcomputers • The 48-Series Single-Chip System • The 48-Series Instruction Set Expanding the 48 -Series Microcomputers • Applications for the 48-Series • Development Support Analog I/O Components • Communications Components • Digital I/O Components • Memory Components Peripheral Control Components

National Semiconductor Corporation
2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090
Tel: (408) 721-5000
TWX: (910) 339-9240

\section*{SALES OFFICES}
(Continued)

\section*{INTERNATIONAL OFFICES}

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: (905) 524-9402
National Semicondutores
Do Brasil Ltda.
Av. Brig. Faria Lima, 830
8 Andar
01452 Sao Paulo, SP, Brasil
Tel: (55/11) 212-5066
Telex: 391-1131931 NSBR BR
National Semiconductor GmbH Industriestrasse 10
D-8080 Furstenfeldbruck
West Germany
Tel: 49-08141-103-0
Telex: 527649
National Semiconductor (UK) Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 ITR
United Kingdom
Tel: (02 34) 270027
Telex: 826209
National Semiconductor Benelux
Vorstlaan 100
B-1170 Brussels
Belgium
Tel: (02) 6725360
Telex: 61007

National Semiconductor (UK) Ltd.
1, Bianco Lunos Alle
DK-1868 Fredriksberg C
Denmark
Tel: (01) 213211
Telex: 15179
National Semiconductor
Expansion 10000
28, rue de la Redoute
F-92260 Fontenay-aux-Roses
France
Tel: (01) 46608140
Telex: 250956
National Semiconductor S.p.A.
Strada 7. Palazzo R/3
20089 Rozzano
Milanofiori
Italy
Tel: (02) 8242046/7/8/9
National Semiconductor AB

\section*{Box 2016}

Stensatravagen 13
S-12702 Skarholmen
Sweden
Tel: (08) 970190
Telex: 10731
National Semiconductor
Calle Agustin de Foxa, 27
28036 Madrid
Spain
Tel: (01) 733-2958
Telex: 46133

National Semiconductor
Switzerland
Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zurich
Tel: (01) 830-2727
Telex: 59000
National Semiconductor
Kauppakartanonkatu 7
SF-00930 Helsinki
Finland
Tel: (0) 338033
Telex: 126116
National Semiconductor Japan Ltd.
4-403 Ikebukuro, Toshima-ku
Tokyo 171, Japan
Tel: (03) 988-2131
Fax: 011-81-3-988-1700
National Semiconductor Hong Kong Ltd.
Southeast Asia Marketing
Austin Tower, 4th Floor
22-26A Austin Avenue
Tsimshatsui, Kowloon, H.K.
Tel: 852 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

National Semiconductor
(Australia) PTY, Ltd.
Bldg. F, 4th Floor,
MacQuarie Tech Centre
11-17 Khartoum Rd.
North Ryde, N.S.W. 2113
Sydney, Australia
Tel: 61-2-887-4455
Telex: AA27173
National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpoint
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P.O. Box.68-332 Taipei

7th Floor, Nan Shan Life Bldg.
302 Min Chuan East Road,
Taipei, Taiwan R.O.C.
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI
National Semiconductor (Far East)
Ltd.
Korea Office
Room 612.
Korea Fed. of Smail Bus. Bidg.
16-2, Yoido-Dong,
Youngdeungpo-Ku
Seoul, Korea
Tel: (02) 784-8051/3
Telex: K24942 NSAK```

[^0]: *Devices Not Covered In Last Publication

[^1]: *For more information on Power Amps, see the Amplifier section of the Linear Databook. For more High Power Amplifiers, refer to the Audio Amplifier section.

[^2]: Cavity Dual-In-Line Package (J) Order Number CD4016BMJ or CD4016BCJ

 See NS Package Number J14A
 Small Outline Package (M)
 Order Number CD4016BCM
 See NS Package Number M14A
 Molded Dual-In-Line Package (N)
 Order Number CD4016BMN or CD4016BCN
 See NS Package Number N14A

[^3]: Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
 Note 2: Unless otherwise specified all voltages are referenced to ground.
 Note 3: Power Dissipation temperature derating — plastic " N " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; ceramic " J " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
 Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistances (R_{ON}) occurs for HC at 4.5 V . Thus the 4.5 V values should be used when designing with
 the higher voltage and so the 5.5 V values should be used.
 Note 5: At supply voltages ($\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$) approaching 2 V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

[^4]: *Temperature ranges: " M " is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ambient; " 1 " is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; " C " is $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

[^5]: *Display Output= VMS Group + VLS Group

[^6]: * Analog channel inputs CH 0 thru CH 3 are logic outputs

[^7]: *Analog channel inputs CH 0 thru CH 4 are logic outputs

[^8]: FIGURE 3．Timing Diagram

[^9]: Requires no additional parts. Window comparisons can be accomplished by inputting the upper and lower window limits into DI on successive comparisons and observing the two outputs:
 Two high outputs \rightarrow input $>$ window
 Two low outputs \rightarrow input < window
 One low and one high \rightarrow input is within window

[^10]: See Ordering Information

[^11]: Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.
 Note 2: All voltages are measured with respect to ground, unless otherwise specified.
 Note 3: A parasitic zener diode exists internally from $A V_{C C}$ and $D V_{C C}$ to ground. This parasitic zener has a typical breakdown voltage of $7 V_{D C}$

[^12]: *Use stable components with low temperature coefficients. See Typical Applications section.
 ** $0.1 \mu \mathrm{~F}$ or $1 \mu \mathrm{~F}$, See "Principles of Operation."

[^13]: H = High leve
 L = Low level
 X = Don't care
 $\mathrm{NC}=$ No change

[^14]: *Devices may be ordered by using either order number.

[^15]: Note. B1-B8 have identical transfer characteristics. Bits are fully switched with less than $1 / 2$ LSB error, at less than $\pm 100 \mathrm{mV}$ from actual threshold. These switching points are guaranteed to lie between 0.8 and 2 V over the operating temperature range $\left(\mathrm{V}_{\mathrm{LC}}=0 \mathrm{~V}\right)$.

[^16]: ${ }^{*}$ Note. Devices may be ordered by using either order number

[^17]: Note. Devices may be ordered by either part number.

[^18]: "Wakefield type 201 or $1^{\prime \prime}$ disc of 0.020 " sheet brass, soldered to case, or similar.
 **TO-92 package glued and leads soldered to $1^{\prime \prime}$ square of $1 / 16^{\prime \prime}$ printed circuit board with 2 oz copper foil, or similar.

[^19]: * = 1% or 2% film resistor
 -Trim R_{B} for $V_{B}=3.525 \mathrm{~V}$
 -Trim R_{C} for $V_{C}=2.725 \mathrm{~V}$
 一Trim R_{A} for $V_{A}=0.085 \mathrm{~V}+40 \mathrm{mV} /{ }^{\circ} \mathrm{F} \times \mathrm{T}_{\text {AMBIENT }}$
 -Example, $\mathrm{V}_{\mathrm{A}}=3.285 \mathrm{~V}$ at $80^{\circ} \mathrm{F}$

[^20]: * Trims out initial zener tolerance. Set output to read C

[^21]: ${ }^{*} \mathrm{M}$ (Military) $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

[^22]: **Covered by U.S. Patent Number 3,571,630

[^23]: Note 6: Refer to RETS185H-2.5 for military specifications.

