FAST ${ }^{\circledR}$
 Advanced
 Schottky TTL Logic Databook

A Corporate Dedication to Quality and Reliability

National Semiconductor is an industry leader in the manufacture of high quality, high reliability integrated circuits. We have been the leading proponent of driving down IC defects and extending product lifetimes. From raw material through product design, manufacturing and shipping, our quality and reliability is second to none.
We are proud of our success . . . it sets a standard for others to achieve. Yet, our quest for perfection is ongoing so that you, our customer, can continue to rely on National Semiconductor Corporation to produce high quality products for your design systems.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

Wir fühlen uns zu Qualität und Zuverlässigkeit verpflichtet

National Semiconductor Corporation ist führend bei der Herstellung von integrierten Schaltungen hoher Qualität und hoher Zuverlässigkeit. National Semiconductor war schon immer Vorreiter, wenn es galt, die Zahl von IC Ausfällen zu verringern und die Lebensdauern von Produkten zu verbessern. Vom Rohmaterial über Entwurf und Herstellung bis zur Auslieferung, die Qualität und die Zuverlässigkeit der Produkte von National Semiconductor sind unübertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die für andere erstrebenswert sind. Auch ihre Ansprüche steigen ständig. Sie als unser Kunde können sich auch weiterhin auf National Semiconductor verlassen.

La Qualité et La Fiabilité:
 Une Vocation Commune Chez National Semiconductor Corporation

National Semiconductor Corporation est un des leaders industriels qui fabrique des circuits intégrés d'une très grande qualité et d'une fiabilité exceptionelle. National a été le premier à vouloir faire chuter le nombre de circuits intégrés défectueux et a augmenter la durée de vie des produits. Depuis les matières premières, en passant par la conception du produit sa fabrication et son expédition, partout la qualité et la fiabilité chez National sont sans équivalents.
Nous sommes fiers de notre succès et le standard ainsi défini devrait devenir l'objectif à atteindre par les autres sociétés. Et nous continuons à vouloir faire progresser notre recherche de la perfection; il en résulte que vous, qui êtes notre client, pouvez toujours faire confiance à National Semiconductor Corporation, en produisànt des systèmes d'une très grande qualité standard.

Un Impegno Societario di Qualità e Affidabilità

National Semiconductor Corporation è un'industria al vertice nella costruzione di circuiti integrati di altà qualità ed affidabilità. National è stata il principale promotore per l'abbattimento della difettosità dei circuiti integrati e per l'allungamento della vita dei prodotti. Dal materiale grezzo attraverso tutte le fasi di progettazione, costruzione e spedizione, la qualità e affidabilità National non è seconda a nessuno.

Noi siamo orgogliosi del nostro successo che fissa per gli altri un traguardo da raggiungere. Il nostro desiderio di perfezione è d'altra parte illimitato e pertanto tu, nostro cliente, puoi continuare ad affidarti a National Semiconductor Corporation per la produzione dei tuoi sistemi con elevati livelli di qualità.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

FAST DATABOOK

1988 Edition

Circuit Characteristics

Ratings, Specifications and Waveforms

Design Considerations

Advanced Schottky TTL Datasheets Ordering Information/ Physical Dimensions

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

Abuseable ${ }^{\text {TM }}$	Fairtech ${ }^{\text {TM }}$	MOLETM	SCXTM
Anadig ${ }^{\text {TM }}$	FAST®	MSTTM	SERIES/800TM
ANS-R-TRANTM	5-Star Service ${ }^{\text {TM }}$	Naked-8TM	Series 900 ${ }^{\text {TM }}$
APPSTM	GAL®	National ${ }^{\text {® }}$	Series 30007M
ASPECTTM	GENIXTM	National Semiconductor ${ }^{\text {® }}$	Series 32000®
Auto-Chem DeflasherTM	GNXTM	National Semiconductor	Shelf $ص$ Chek ${ }^{\text {TM }}$
ВСРТм	HAMRTM	Corp. ${ }^{\text {® }}$	SofChekTM
BI-FETTM	HandiScantm	NAX 800 ${ }^{\text {TM }}$	SPIRETM
BI-FET IITM	HEX 3000'm	Nitride Plus ${ }^{\text {TM }}$	STARTM
BI-LINETM	HPCTM	Nitride Plus OxideTM	Starlink ${ }^{\text {TM }}$
BIPLANTM	${ }^{3} \mathrm{~L}$ ©	NMLTM	STARPLEXTM
BLCTM	ICM ${ }^{\text {TM }}$	NOBUSTM	SuperChip ${ }^{\text {TM }}$
BLXTM	INFOCHEXTM	NSC800TM	SuperScript ${ }^{\text {TM }}$
Brite-LiteTM	Integral ISETM	NSCISETM	SYS32TM
BTLTM	Intelisplay ${ }^{\text {TM }}$	NSX-16TM	TapePak ${ }^{\text {® }}$
CheckTrackTM	ISETM	NS-XC-16TM	TDSTM
СІмт	ISE/06TM	NTERCOM ${ }^{\text {™ }}$	TeleGate ${ }^{\text {TM }}$
CIMBUSTM	ISE/08 ${ }^{\text {TM }}$	NURAMTM	The National Anthem ${ }^{\text {® }}$
CLASICTM	ISE/16TM	OXISSTM	TimeصChekTM
Clock $\sim^{\text {Chek }}{ }^{\text {TM }}$	ISE32TM	$\mathrm{P}^{2} \mathrm{CMOSTM}$	TINATM
СОМВОтм	ISOPLANARTM	PC Master TM	TLCTM
COMBO ITM	ISOPLANAR-ZTM	Perfect Watch ${ }^{\text {TM }}$	TrapezoidalTM
COMBO IITM	KeyScantm	PharmanChekTM	TRI-CODETM
COPSTM microcontrollers	LMCMOSTM	PLANTM	TRI-POLYTM
Datachecker ${ }^{\text {® }}$	M ${ }^{2}$ CMOSTM	PLANARTM	TRI-SAFETM
DENSPAKTM	Macrobus ${ }^{\text {TM }}$	Polycraft ${ }^{\text {m }}$	TRI-STATE ${ }^{\text {® }}$
DIBTM	Macrocomponent ${ }^{\text {TM }}$	POSilink ${ }^{\text {TM }}$	TURBOTRANSCEIVERTM
Digitalker ${ }^{\text {® }}$	MAXI-ROM ${ }^{\text {® }}$	POSitalker ${ }^{\text {TM }}$	VIPTM
DISCERNTM	Meat \sim Chek ${ }^{\text {TM }}$	Power + Control ${ }^{\text {TM }}$	VR32Tm
DISTILL ${ }^{\text {TM }}$	MenuMaster ${ }^{\text {TM }}$	POWERplanarTM	WATCHDOGTM
DNR ${ }^{\text {® }}$	MicrobusTM data bus	QUAD3000TM	XMOSTM
DPVM ${ }^{\text {TM }}$	MICRO-DACTM	QUIKLOOKTM	XPUTM
ELSTARTM	μ talkertM	RATTM	Z STARTM
E-Z-LINKTM	Microtalker ${ }^{\text {TM }}$	RTX16TM	883B/RETSTM
FACTTM	MICROWIRETM	SABRTM	883S/RETSTM
FAIRCADTM	MICROWIRE/PLUSTM	ScripthChekTM	

ETHERNET® is a registered trademark of Xerox Corporation.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000 TWX (910) 339-9240

[^0]Table of Contents

Fairchild Advanced Schottky TTL, FAST ${ }^{\circledR}$, is a family of TTL circuits that exhibits a combination of performance and efficiency unapproached by any other TTL family. Made with the proven Isoplanar process, 54F/74F circuits offer the switching speed and output drive capability of Schottky TTL, with superior noise margins and only one-fourth the power consumption.

Product Index and Selection Guide

Lists 54F/74F circuits currently available, in design or planned. The Selection Guide groups the circuits by function.

Section 1 Circuit Characteristics 1-1
Discusses FAST technology, circuit configurations and characteristics.

Section 2 Ratings, Specifications and Waveforms 2-1

Contains common ratings and specifications for FAST devices, as well as AC test load and waveforms.

Section 3 Design Considerations 3-1

Provides the designer with useful guidelines for dealing with transmission and other high speed design concerns.

Section 4 Data Sheets

Contains data sheets for currently available and pending new products.

Section 5 Ordering Information and Package Outlines, Field Sales Offices, Representatives and Distributor Locations
 5-1

Explains simplified purchasing code which identifies device type, package type and temperature range. Contains detailed physical dimension drawings for each package.

Product Status Definitions

Definition of Terms

Data Sheet Identification	Product Status	Definition
Advance Informatlon	Formative or In Design	This data sheet contains the design specifications for product development. Specifications may change in any manner without notice.
Prollminary	First Production	This data sheet contains preliminary data, and supplementary data will be published at a later date. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
No Identification Noted	Full Production	This data sheet contains final specifications. National Semiconductor Corporation reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

National Semiconductor Corporation reserves the right to make changes without further notice to any products herein to improve reliability, function or design. National does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.
Alpha-Numeric Index
29F52 8-Bit Registered Transceiver 4-611
29F53 8-Bit Registered Transceiver 4-611
29F68 Dynamic RAM Controller 4-617
29F524 Dual Pipeline Register (7 Deep) 4-628
29F525 Dual Pipeline Register (8 Deep) 4-628
54F/74F00 Quad 2-Input NAND Gate 4-6
54F/74F02 Quad 2-Input NOR Gate 4-9
54F/74F04 Hex Inverter 4-12
54F/74F08 Quad 2-Input AND Gate 4-15
54F/74F10 Triple 3-Input NAND Gate 4-18
54F/74F11 Triple 3-Input AND Gate 4-21
54F/74F13 Dual 4-Input NAND Schmitt Trigger 4-24
54F/74F14 Hex Inverter Schmitt Trigger 4-27
54F/74F20 Dual 4-Input NAND Gate 4-30
54F/74F27 Triple 3-Input NOR Gate 4-32
54F/74F30 8-Input NAND Gate 4-35
54F/74F32 Quad 2-Input OR Gate 4-38
54F/74F37 Quad 2-Input NAND Buffer 4-41
54F/74F38 Quad 2-Input NAND Buffer (Open Collector) 4-44
54F/74F40 Dual 4-Input NAND Buffer 4-47
54F/74F51 2-2-2-3 AND-OR-Invert Gate 4-50
54F/74F64 4-2-3-2-Input AND-OR-Invert Gate 4-53
54F/74F74 Dual D-Type Positive Edge-Triggered Flip-Flop 4-56
54F/74F86 Quad 2-Input Exclusive-OR Gate 4-60
54F/74F109 Dual JK Positive Edge-Triggered Flip-Flop 4-63
54F/74F112 Dual JK Negative Edge-Triggered Flip-Flop 4-67
54F/74F113 Dual JK Negative Edge-Triggered Flip-Flop 4-71
54F/74F114 Dual JK Negative Edge-Triggered Flip-Flop w/Common Clocks and Clears 4-75
54F/74F125 Quad Buffer (TRI-STATE) 4-79
54F/74F132 Quad 2-Input NAND Schmitt Trigger 4-82
54F/74F138 1-of-8 Decoder/Demultiplexer 4-85
54F/74F139 Dual 1-of-4 Decoder/Demultiplexer 4-89
54F/74F148 8-Line to 3-Line Priority Encoder 4-93
54F/74F151A 8-Input Multiplexer 4-97
54F/74F153 Dual 4-Input Multiplexer 4-101
54F/74F157A Quad 2-Input Multiplexer 4-105
54F/74F158A Quad 2-Input Multiplexer (Inverted) 4-109
54F/74F160A Synchronous Presettable BCD Decade Counter (Asynchronous Reset) 4-113
54F/74F161A Synchronous Presettable Binary Counter (Asynchronous Reset) 4-120
54F/74F162A Synchronous Presettable BCD Decade Counter (Synchronous Reset) 4-113
54F/74F163A Synchronous Presettable Binary Counter (Synchronous Reset) 4-120
54F/74F164 Serial-In, Parallel-Out Shift Register 4-126
54F/74F168 4-Stage Synchronous Bidirectional Counter 4-130
54F/74F169 4-Stage Synchronous Bidirectional Counter 4-130
54F/74F174 Hex D Flip-Flop w/Master Reset 4-136
54F/74F175 Quad D Flip-Flop 4-140
54F/74F181 4-Bit Arithmetic Logic Unit 4-144
54F/74F182 Carry Lookahead Generator 4-150
54F/74F189 64-Bit Random Access Memory w/TRI-STATE Outputs 4-155
54F/74F190 Up/Down Decade Counter w/Preset and Ripple Clock 4-159
54F/74F191 Up/Down Binary Counter w/Preset and Ripple Clock 4-164

Alpha-Numeric Index ${ }_{\text {(coninuea) }}$

54F/74F192 Up/Down Decade Counter w/Separate Up/Down Clocks 4-169
54F/74F193 Up/Down Binary Counter w/Separate Up/Down Clocks 4-174
54F/74F194 4-Bit Bidirectional Universal Shift Register 4-179
54F/74F219 64-Bit Random Access Memory w/TRI-STATE Outputs 4-183
54F/74F240 Octal Buffer/Line Driver w/TRI-STATE Outputs (Inverting) 4-187
54F/74F241 Octal Buffer/Line Driver w/TRI-STATE Outputs 4-187
54F/74F242 Quad Bus Transceiver w/TRI-STATE Outputs 4-191
54F/74F243 Quad Bus Transceiver w/TRI-STATE Outputs 4-192
54F/74F244 Octal Buffer/Line Driver w/TRI-STATE Outputs 4-187
54F/74F245 Octal Bidirectional Transceiver w/TRI-STATE Outputs 4-195
54F/74F251A 8-Input Multiplexer w/TRI-STATE Outputs 4-199
54F/74F253 Dual 4-Bit Multiplexer w/TRI-STATE Outputs 4-203
54F/74F256 Dual 4-Bit Addressable Latch 4-207
54F/74F257A Quad 2-Input Multiplexer w/TRI-STATE Outputs 4-209
54F/74F258A Quad 2-Input Multiplexer w/TRI-STATE Outputs (Inverting) 4-213
54F/74F259 8-Bit Addressable Latch 4-217
54F/74F269 8-Bit Bidirectional Binary Counter 4-219
54F/74F273 Octal D Flip-Flop 4-223
54F/74F280 9-Bit Parity Generator/Checker 4-225
54F/74F283 4-Bit Binary Full Adder w/Fast Carry 4-229
54F/74F298 Quad 2-Input Multiplexer with Storage 4-234
54F/74F299 8-Bit Universal Shift/Storage Register w/Common Parallel I/O Pins 4-235
54F/74F322 8-Bit Serial/Parallel Register w/Sign Extend 4-240
54F/74F323 8-Bit Universal Shift/Storage Register w/Synchronous Reset and Common I/O Pins 4-245
54F/74F350 4-Bit Shifter w/TRI-STATE Outputs 4-250
54F/74F352 Dual 4-Input Multiplexer 4-256
54F/74F353 Dual 4-Input Multiplexer w/TRI-STATE Outputs 4-260
54F/74F365 Hex Buffer/Driver w/TRI-STATE Outputs 4-264
54F/74F366 Hex Inverter/Buffer w/TRI-STATE Outputs 4-267
54F/74F368 Hex Inverter/Buffer w/TRI-STATE Outputs 4-267
54F/74F373 Octal Transparent Latch w/TRI-STATE Outputs 4-271
54F/74F374 Octal D-Type Flip-Flop w/TRI-STATE Outputs 4-275
54F/74F377 Octal D-Type Flip-Flop w/Clock Enable 4-279
54F/74F378 Parallel D Register with Enable 4-281
54F/74F379 Quad Parallel Register with Enable 4-285
54F/74F381 4-Bit Arithmetic Logic Unit 4-289
54F/74F382 4-Bit Arithmetic Logic Unit 4-295
54F/74F385 Quad Serial Adder/Subtracter 4-301
54F/74F395 4-Bit Cascadable Shift Register w/TRI-STATE Outputs 4-306
54F/74F398 Quad 2-Port Register 4-308
54F/74F399 Quad 2-Port Register 4-308
54F/74F401 Cyclic Redundancy Check Generator/Checker 4-313
54F/74F402 Serial Data Polynomial Generator/Checker 4-318
54F/74F403 16×4 First-In First-Out Buffer Memory 4-326
54F/74F407 Data Access Register 4-343
54F/74F410 Register Stack-16 x 4 RAM TRI-STATE Output Register 4-350
54F/74F412 Multi-Mode Buffered 8-Bit Latch w/TRI-STATE Outputs 4-354
54F/74F413 64×4 First-In First-Out Buffer Memory w/Parallel I/O 4-359
54F/74F420 Paralleled Check Bit/Syndrome Bit Generator 4-363
54F/74F432 Multi-Mode Buffered 8-Bit Latch w/TRI-STATE Output 4-368
54F/74F433 64×4 First-In First-Out Buffer Memory 4-374
Alpha-Numeric Index (coninuea)
54F/74F521 8-Bit Identity Comparator 4-388
54F/74F524 8-Bit Registered Comparator 4-392
54F/74F525 16-Bit Programmable Counter 4-399
54F/74F533 Octal Transparent Latch w/TRI-STATE Outputs 4-406
54F/74F534 Octal D Flip-Flop w/TRI-STATE Outputs 4-410
54F/74F537 1-of-10 Decoder w/TRI-STATE Outputs 4-414
54F/74F538 1-of-8 Decoder w/TRI-STATE Outputs 4-418
54F/74F539 Dual 1-of-4 Decoder w/TRI-STATE Outputs 4-422
54F/74F540 Octal Buffer/Line Driver w/TRI-STATE Outputs (Inverting) 4-426
54F/74F541 Octal Buffer/Line Driver w/TRI-STATE Outputs 4-426
54F/74F543 Octal Registered Transceiver 4-430
54F/74F544 Octal Registered Transceiver (Inverting in Both Directions) 4-435
54F/74F545 Octal Bidirectional Transceiver w/TRI-STATE Outputs 4-440
54F/74F547 Octal Decoder/Demultiplexer w/Address Latches and Acknowledge 4-443
54F/74F548 Octal Decoder/Demultiplexer w/Acknowledge 4-448
54F/74F550 Octal Registered Transceiver w/Status Flags 4-452
54F/74F551 Octal Registered Transceiver w/Status Flags 4-452
54F/74F552 Octal Registered Transceiver w/Parity and Flags 4-458
54F/74F563 Octal D-Type Latch w/TRI-STATE Outputs 4-464
54F/74F564 Octal D-Type Flip-Flop w/TRI-STATE Outputs 4-468
54F/74F568 4-Bit Bidirectional Decade Counter w/TRI-STATE Outputs 4-472
54F/74F569 4-Bit Bidirectional Binary Counter w/TRI-STATE Outputs 4-472
54F/74F573 Octal D-Type Latch w/TRI-STATE Outputs 4-483
54F/74F574 Octal D-Type Flip-Flop w/TRI-STATE Outputs 4-487
54F/74F579 8-Bit Bidirectional Binary Counter w/TRI-STATE Outputs 4-491
54F/74F582 4-Bit BCD Arithmetic Logic Unit 4-493
54F/74F583 4-Bit BCD Adder 4-497
54F/74F588 Octal Bidirectional Transceiver with IEEE-488 Termination Resistors and TRI-STATE Inputs/Outputs 4-501
54F/74F505 8-Bit Shift Register w/Output Latches 4-505
54F/74F597 8-Bit Shift Register 4-507
54F/74F598 8-Bit Shift Register 4-509
54F/74F620 Inverting Octal Bus Transceiver w/TRI-STATE Outputs 4-511
54F/74F623 Inverting Octal Bus Transceiver w/TRI-STATE Outputs 4-511
54F/74F632 32-Bit Parallel Error Detection and Correction Circuit 4-513
54F/74F646 Octal Transceiver/Register w/TRI-STATE Outputs 4-525
54F/74F648 Octal Transceiver/Register w/TRI-STATE Outputs 4-525
54F/74F651 Octal Transceiver/Register w/TRI-STATE Outputs (Inverting) 4-532
54F/74F652 Octal Transceiver/Register w/TRI-STATE Outputs 4-532
54F/74F657 Octal Bidirectional Transceiver with 8-Bit Parity Generator/Checker and TRI-STATE Outputs 4-538
54F/74F673A 16-Bit Serial-In, Serial/Parallel-Out Shift Register (Common Serial I/O Pin) 4-543
54F/74F674 16-Bit Serial/Parallel-In, Serial-Out Shift Register (Common Serial I/O Pin) 4-548
54F/74F675A 16-Bit Serial-In, Serial/Parallel-Out Shift Register 4-550
54F/74F676 16-Bit Serial/Parallel-In, Serial-Out Shift Register 4-554
54F/74F701 Register/Counter/Comparator 4-558
54F/74F702 Read-Back Transceiver 4-560
54F/74F707 400 MHz 8-Bit TTL-ECL Register 4-562
54F/74F710 400 MHz Single Supply TTL-ECL Shift Register 4-564
54F/74F779 8-Bit Bidirectional Binary Counter w/TRI-STATE Outputs 4-566
54F/74F821 10-Bit D-Type Flip-Flop 4-568
Alpha-Numeric Index (Coninueos)
54F/74F823 9-Bit D-Type Flip-Flop 4-572
54F/74F825 8-Bit D-Type Flip-Flop 4-576
54F/74F827 10-Bit Buffer/Line Driver 4-580
54F/74F828 10-Bit Buffer/Line Driver 4-580
54F/74F841 10-Bit Transparent Latch 4-585
54F/74F843 9-Bit Transparent Latch 4-589
54F/74F845 8-Bit Transparent Latch 4-593
54F/74F968 1 Megabit Dynamic RAM Controller 4-598
54F/74F978 Octal Flip-Flop w/Serial Scanner 4-610

FAST® Product Selection Guide

Gates

Function	Device	Inputs/ Gate	No. of Gates	Leads
NAND/NAND Buffer				
Quad 2-Input NAND	54F/74F00	2	4	14
Triple 3-Input NAND	54F/74F10	3	3	14
Dual 4-Input NAND Schmitt Trigger	54F/74F13	4	2	14
Dual 4-Input NAND	54F/74F20	4	2	14
8-Input NAND	54F/74F30	8	1	14
Quad 2-Input Positive NAND Buffer	54F/74F37	2	4	14
Quad 2-Input NAND Buffer (OC)	54F/74F38	2	4	14
Dual 4-Input Positive NAND Buffer	54F/74F40	4	2	14
Quad 2-Input Positive NAND Schmitt Trigger	54F/74F132	2	4	14
AND				
Quad 2-Input AND	54F/74F08	2	4	14
Triple 3-Input AND	54F/74F11	3	3	14
OR/NOR/Exclusive-OR				
Quad 2-Input NOR	54F/74F02	2	4	14
Triple 3-Input NOR	54F/74F27	3	3	14
Quad 2-Input OR	54F/74F32	2	4	14
Quad 2-Input Exclusive-OR	54F/74F86	2	4	14
Invert/AND-OR-Invert				
Hex Inverter	54F/74F04	1	6	14
Hex Schmitt Trigger Inverter	54F/74F14	1	6	14
Dual AND-OR-Invert	54F/74F51	3/3/2/2		14
AND-OR-Invert	54F/74F64	4/2/3/2		14

Dual Edge Triggered Flip Flops

Function	Device	Clock Inputs	Direct Set	Direct Clear	Leads
Dual D Positive	$54 F / 74 F 74$		Yes	Yes	14
Dual JK Positive	$54 F / 74 F 109$		Yes	Yes	16
Dual JK Negative	$54 F / 74 F 112$	\sim	Yes	Yes	16
Dual JK	$54 F / 74 F 113$	\sim	Yes		14
Dual JK Negative (Common Clocks \& Clears)	$54 F / 74 F 114$	\sim	Yes	Yes	14

Multiple Flip-Flops

Function	Device	Clock Inputs	Master Reset	Broadside Pinout	TRI-STATE ${ }^{\circledR}$ Outputs	Leads
Hex D Flip-Flop	54F/74F174	\checkmark	Yes			16
Quad D Flip-Flop	54F/74F175	\checkmark	Yes			16
Octal D Flip-Flop	54F/74F273	$\widetilde{ }$	Yes			20
Octal D Flip-Flop	54F/74F374	$\widetilde{ }$			Yes	20
Octal D Flip-Flop w/Clock Enable	54F/74F377	\checkmark				20
Parallel D Register w/Enable	54F/74F378	\sim				16
Parallel D Register w/Enable	54F/74F379	\checkmark				16
Octal D Flip-Flop	54F/74F534	$\widetilde{ }$			Yes	20
Octal D Flip-Flop	54F/74F564	$\widetilde{ }$		Yes	Yes	20
Octal D Flip-Flop	54F/74F574	\checkmark		Yes	Yes	20
10-Bit D Flip-Flop	54F/74F821	Γ		Yes	Yes	24
9-Bit D Flip-Flop	54F/74F823	\checkmark	Yes	Yes	Yes	24
8-Bit D Flip-Flop	54F/74F825	\sim	Yes	Yes	Yes	24
Octal Flip-Flop w/Serial Scanner	54F/74F978	Ω		Yes	Yes	24

Registers

Function	Device	Clock Inputs	Leads
Parallel D Register w/Enable	54F/74F378	Ω	16
Quad Parallel D Register w/Enable	54F/74F379	\sim	16
Quad 2-Port Register	54F/74F398	Ω	20
Quad 2-Port Register	54F/74F399	\checkmark	16
Serial Data Polynomial Generator/Checker	54F/74F402	-	16
Data Access Register	54F/74F407	\checkmark	24
Register Stack-16 $\times 4$ RAM TRI-STATE Output Register	54F/74F410	\checkmark	18
Register/Counter/Comparator	54F/74F701	\checkmark	24
Dual Pipeline Register	29F524	\sim	28
Dual Pipeline Register	29F525	Γ	28

Latches

Function	Device	Enable Inputs	Broadside Pinout	Inverting	TRI-STATE Outputs	Leads
Dual 4-Bit Addressable Latch	54F/74F256	1(L)				16
8-Bit Addressable Latch	54F/74F259	1(L)				16
Octal Latch	54F/74F373	$1(L) \& 1(H)$			Yes	20
Multimode Buffered 8-Bit Latch	54F/74F412				Yes	24
Multimode Buffered 8-Bit Latch	54F/74F432			Yes	Yes	24
Octal D Latch	54F/74F533	$1(\mathrm{~L}) \& 1(\mathrm{H})$		Yes	Yes	20
Octal D Latch	54F/74F563	$1(\mathrm{~L}) \& 1(\mathrm{H})$	Yes	Yes	Yes	20
Octal D Latch	54F/74F573	$1(L) \& 1(H)$	Yes		Yes	20
10-Bit D Latch	54F/74F841	$1(\mathrm{~L}) \& 1(\mathrm{H})$	Yes		Yes	24
9-Bit D Latch	54F/74F843	$1(\mathrm{~L}) \& 1(\mathrm{H})$	Yes		Yes	24
8-Bit D Latch	54F/74F845	$3(\mathrm{~L}) \& 1(\mathrm{H})$	Yes		Yes	24

Counters

Function	Device	Parallel Entry	Reset	Up/ Down	TRI-STATE Outputs	Leads
Presettable 4-Bit BCD Decade	54F/74F160A	S	A			16
Presettable 4-Bit Binary	54F/74F161A	S	A			16
Presettable 4-Bit BCD Decade	54F/74F162A	S	S			16
Presettable 4-Bit Binary	54F/74F163A	S	S			16
4-Bit BCD Decade	54F/74F168	S		Yes		16
4-Bit Binary	54F/74F169	S		Yes		16
4-Bit BCD Decade w/Preset \& Ripple Clock	54F/74F190	A		Yes		16
4-Bit Binary w/Preset \& Ripple Clock	54F/74F191	A				16
4-Bit BCD Decade w/Separate Up/Down Clocks	54F/74F192	A	A	Yes		16
4-Bit Binary w/Separate Up/Down Clocks	54F/74F193	A	A	Yes		16
8-Bit Binary	54F/74F269	S		Yes		24
16-Stage Programmable	54F/74F525		A			28
4-Bit BCD Decade	54F/74F568	S	S/A	Yes	Yes	20
4-Bit Binary	54F/74F569	S	S/A	Yes	Yes	20
8-Bit Binary	54F/74F579	S	S	Yes	Yes	20
Register/Counter/Comparator	54F/74F701	S		Yes	Yes	24
8-Bit Binary	54F/74F779	S		Yes	Yes	16

$\mathrm{S}=$ Synchronous
A $=$ Asynchronous

Shift Registers

Function	Device	No. of Bits	Serial Inputs	Parallel Inputs	TRI-STATE Outputs	Leads
Shift Right, Serial-In, Parallel-Out	$54 F / 74 F 164$	8	2			14
Bidirectional, Universal	$54 F / 74 F 194$	4	2	Yes		16
Universal Octal Shift/Storage w/Common I/O Pins	$54 F / 74 F 299$	8	2	Yes	Yes	20
Octal Serial/Parallel w/Sign Extend	$54 F / 74 F 322$	8	2	Yes	Yes	20
Universal Octal Shift/Storage w/Synch. Reset	$54 F / 74 F 323$	8	2	Yes	Yes	20
4-Bit Cascadable	$54 F / 74 F 395$	4	1	Yes	Yes	16
Octal w/Output Latches	$54 F / 74 F 595$	8	1		Yes	16
Octal w/Input Latches	$54 F / 74 F 597$	8	1	Yes		16
Octal w/Input Latches	$54 F / 74 F 598$	8	1	Yes	Yes	20
Serial-In, Serial/Parallel-Out (Common I/O Pin)	$54 F / 74 F 673 A$	16	1		Yes	24
Serial/Parallel-In, Serial-Out	$54 F / 74 F 674$	16	1	Yes	Yes	24
Serial-In, Serial/Parallel-Out	$54 F / 74 F 675 A$	16	1			24
Serial/Parallel-In, Serial-Out	$54 F / 74 F 676$	16	1	Yes		24

Buffers/Line Drivers

Function	Device	No. of Bits	Inverting	Noninverting	Broadside Pinout	Leads
Quad Buffer (TRI-STATE)	$54 F / 74 F 125$	4		Yes		
Octal Buffer/Line Driver (TRI-STATE)	54F/74F240	8	Yes		14	
Octal Buffer/Line Driver (TRI-STATE)	54F/74F241	8		Yes		20
Octal Buffer/Line Driver (TRI-STATE)	54F/74F244	8		Yes		20
Hex Buffer/Driver (TRI-STATE)	54F/74F365	6		Yes		20
Hex Inverter/Buffer (TRI-STATE)	54F/74F366	6	Yes		16	
Hex Inverter/Buffer (TRI-STATE)	54F/74F368	6	Yes		16	
Octal Buffer/Line Driver (TRI-STATE)	54F/74F540	8	Yes			16
Octal Buffer/Line Driver (TRI-STATE)	54F/74F541	8		Yes	Yes	20
10-Bit Buffer/Line Driver	54F/74F827	10		Yes	Yes	20
10-Bit Buffer/Line Driver	54F/74F828	10	Yes		24	

Transceivers/Registered Transceivers

Function	Device	Registered	Enable Inputs	Features	Leads
Quad Bus Transceiver	54F/74F242		$1(\mathrm{~L})$ \& $1(\mathrm{H})$		14
Quad Bus Transceiver	54F/74F243		$1(L) \& 1(H)$		14
Octal Bidirectional Transceiver	54F/74F245		1(L)	TRI-STATE Inputs	20
Octal Registered Transceiver	54F/74F543	Yes	6(L)		24
Octal Registered Transceiver	54F/74F544	Yes	6(L)	Inverting in Both Directions	24
Octal Bidirectional Transceiver	54F/74F545		1(L)	TRI-STATE Inputs	20
Octal Registered Transceiver	54F/74F550	Yes	4(L)	Status Flags	28
Octal Registered Transceiver	54F/74F551	Yes	4(L)	Status Flags, Inverting	28
Octal Registered Transceiver	54F/74F552	Yes	2(L)	Parity \& Flag	28
Octal Bidirectional Transceiver	54F/74F588		1(L)	GPIB Compatible	20
Octal Bus Transceiver	54F/74F620		2(H)	Inverting	20
Octal Bus Transceiver	54F/74F623		2(H)		20
Octal Bus Transceiver	54F/74F646	Yes	$1(\mathrm{~L}) \& 1(\mathrm{H})$		24
Octal Bus Transceiver	54F/74F648	Yes	$1(L) \& 1(H)$	Inverting	24
Octal Bus Transceiver	54F/74F651	Yes	$1(L) \& 1(H)$	Inverting/Noninverting	24
Octal Bus Transceiver	54F/74F652	Yes	$1(\mathrm{~L}) \& 1(\mathrm{H})$	Inverting (O.C.)	24
Octal Bidirectional Transceiver	54F/74F657		$1(L) \& 1(H)$	8-Bit Pairty Gen./Checker	24
Read-Back Transceiver	54F/74F702		4(L)	Bidirectional Control	24
Octal Registered Transceiver	29 F 52	Yes	4(L)		24
Octal Registered Transceiver	29 F 53	Yes	4(L)	Inverting	24

Multiplexers					
Function	Device	Enable Inputs	True Output	Complement Output	Leads
8-Input	54F/74F151A	1(L)	Yes	Yes	16
Dual 4-Input	54F/74F153	2(L)	Yes		16
Quad 2-Input	54F/74F157A	1(L)	Yes		16
Quad 2-Input (Inverting)	54F/74F158A	1(L)		Yes	16
8-Input (TRI-STATE)	54F/74F251A	1(L)	Yes	Yes	16
Dual 4-Input (TRI-STATE)	54F/74F253	2(L)	Yes		16
Quad 2-Input (TRI-STATE)	54F/74F257A	1(L)	Yes		16
Quad 2-Input (TRI-STATE, Inverting)	54F/74F258A	1(L)		Yes	16
Quad 2-Input w/Storage	54F/74F298		Yes		16
4-Input w/Shift (TRI-STATE)	54F/74F350	1(L)	Yes		16
Dual 4-Input	54F/74F352	2(L)		Yes	16
Dual 4-Input (TRI-STATE)	54F/74F353	2(L)		Yes	16
Quad 2-Port Register	54F/74F398		Yes	Yes	20
Quad 2-Port Register	54F/74F399		Yes		16

Decoders/Demultiplexers

Function	Device	Address Inputs	Enable	Output Enable	Outputs	Leads
1-of-8 Decoder/Demultiplexer	$54 F / 74 F 138$	3	$2(\mathrm{~L}) \& 1(\mathrm{H})$		$8(\mathrm{~L})$	16
Dual 1-of-4 Decoder/Demultiplexer	$54 F / 74 \mathrm{~F} 139$	$2 \& 2$	$1(\mathrm{~L}) \& 1(\mathrm{~L})$		$4(\mathrm{~L}) \& 4(\mathrm{~L})$	16
1-of-10 Decoder (TRI-STATE)	$54 F / 74 F 537$	4	$1(\mathrm{~L}) \& 1(\mathrm{H})$	$1(\mathrm{~L})$	$10(\mathrm{H})$	20
1-of-8 Decoder (TRI-STATE)	$54 F / 74 F 538$	3	$2(\mathrm{~L}) \& 2(\mathrm{H})$	$2(\mathrm{~L})$	$8(\mathrm{H})$	20
Dual 1-of-4 Decoder (TRI-STATE)	$54 \mathrm{~F} / 74539$	$2 \& 2$	$1(\mathrm{~L}) \& 1(\mathrm{~L})$	$1(\mathrm{~L}) \& 1(\mathrm{~L})$	$4(\mathrm{H}) \& 4(\mathrm{H})$	20
Octal Decoder/Demultiplexer w/Latches	$54 \mathrm{~F} / 74 \mathrm{~F} 547$	3	$1(\mathrm{~L}) \& 2(\mathrm{H})$		$8(\mathrm{~L})$	20
Octal Decoder/Demultiplexer w/Acknowledge	$54 \mathrm{~F} / 74 \mathrm{~F} 548$	3	$2(\mathrm{~L}) \& 2(\mathrm{H})$		$8(\mathrm{~L})$	20

Adders/Subtractors

runciion	Levice	Master Reset	Carry Lookahead	Leads
Binary Full Adder w/Fast Carry	$54 F / 74 F 283$		Yes	16
Quad Serial Adder/Subtractor	54F/74F385	Yes	Yes	20
4-Bit BCD Adder	$54 F / 74$ F583		16	
8-Bit Serial/Parallel Multiplexer	$54 F / 74 F 784$		20	
w/Adder Subtractor				

Comparators

Function	Device	Features	Leads
8-Bit Identity Comparator	$54 F / 74 F 521$	Expandable	20
8-Bit Comparator	$54 F / 74 F 524$	Expandable, Registered	20
Register/Counter/Comparator	54F/74F701	Expandable	24

Divider

Function	Device	Features	Leads
16-Stage Programmable Counter/Divider	$54 F / 74$ F525	Crystal Oscillator	28

ALUs

Function	Device	No. of Bits	Arithmetic Functions	Logic Functions	Features	Leads
Arithmetic Logic Unit	$54 F / 74 F 181$	4	16	16	Carry Generate/ Propagate Outputs Carry Generate/	24
Arithmetic Logic Unit	$54 F / 74 F 381$	4	3	3	Propagate Outputs Ripple Carry Expansion Lookahead \& Ripple Carry Expansion	20
Arithmetic Logic Unit	$54 \mathrm{~F} / 74 \mathrm{~F} 382$	4	3	3	24	
BCD Adder/Subtractor	$54 \mathrm{~F} / 74 \mathrm{~F} 582$	4	2			

ALU Support

Function	Device	No. of Bits	Features	Leads
Carry Lookahead Generator	$54 F / 74 F 182$	4	Carry Lookahead Generator for 4 ALUs	16
4-Bit Shifter (Specialized Multiplexer)	$54 F / 74 F 350$	4	Expandable Shifter	16
ALU/Function Generator	$54 F / 74 F 881$	$4 \& 4$		24

FIFOs

Function	Device	Input	Output	Leads
16×4 FIFO Buffer Memory	54 F/74F403	Serial/Parallel	Serial/Parallel	24
FIFO RAM Controller	$54 F / 74 F 411$			20
64×4 FIFO Buffer Memory	54 F/74F413	Parallel	Serial/Parallel	16
64×4 FIFO Buffer Memory	54 F/74F433	Serial/Parallel	Serial/Parallel	24

Memories

Function	Device	TRI-STATE Outputs	Leads
16×4 RAM	$54 F / 74 F 189$	Yes	16
16×4 RAM	$54 F / 74 F 219$	Yes	16
16×4 FIFO Buffer Memory	$54 F / 74 F 403$	Yes	24
64×4 FIFO Buffer Memory	$54 F / 74 F 413$		16
64×4 FIFO Buffer Memory	$54 F / 74 F 433$	Yes	24

Memory Support

Function	Device	Features	Leads
Data Access Register	54F/74F407	TRI-STATE Outputs	24
Register Stack-16 $\times 4$ RAM	54F/74F410	TRI-STATE Output Register	18
FIFO RAM Controller	54F/74F411		40
Parallel Check Bit/Syndrome Bit Generator	54F/74F420	TRI-STATE Outputs	48
32-Bit Error Detection \& Correction	54F/74F632	Latched, TRI-STATE Outputs	52
1 Megabit Dynamic RAM Controller	54F/74F968	TRI-STATE Outputs	52
Dynamic RAM Controller	29F68	TRI-STATE Outputs	48

Cyclic Redundancy Checker-Generator

Function	Device	Polynomial Length	Expandable	Leads
Cyclic Redundancy Check Generator/Checker	$54 F / 74 F 401$	16		14
Serial Data Polynomial Generator/Checker	$54 F / 74 F 402$	64	Yes	16

Parity Generator/Checker

Function	Device	Features	Leads
Parity Generator/Checker	$54 F / 74 F 280$	Odd/Even Outputs, 9-Bits In	14
Parallel Check Bit/Syndrome Bit Generator	$54 F / 74 F 420$		48

Error Detection and Correction

Function	Device	Leads
32 -Bit Error Detection and Correction	$54 \mathrm{~F} / 74 \mathrm{~F} 632$	52

Microprocessor Support

Function	Device	Leads
8-Line to 3-Line Priority Encoder	54F/74F148	16

TTL to ECL Translators

Function	Device	Complementary	Latched	Features
Hex TTL-ECL Translator	F100124	Yes		Enable Input
Hex ECL-TTL Translator	F100125	Yes		Common Mode Rejection = +1V
Octal ECL-TTL Transceiver	F100128		Yes	ECL Output Cut-Off State

[^1]
Section 1

Circuit Characteristics

Section 1 Contents

Fast Circuitry $1-4$
Output Characteristics $1-6$

TRI-STATE Outputs
Glossary 1-10
AC Switching Parameters... 10 .
Logic Symbols \& Terminology . 1-11

Circuit Characteristics

FAST ${ }^{\circledR}$ Technology

FAST (Fairchild Advanced Schottky TTL) circuits are made with the advanced Isoplanar II process, which produces transistors with very high, well-controlled switching speeds, extremely small parasitic capacitances and f_{T} in excess of 5 GHz . Isoplanar is an established National process, used for years in the manufacture of bipolar memories, CMOS, subnanosecond ECL and I3LTM (Isoplanar Integrated Injection Logic) LSI devices.
In the isoplanar process, components are isolated by a selectively grown thick oxide rather than the p^{+}isolation region used in the planar process. Since this oxide needs no separation from the base-collector regions, component and chip sizes are substantially reduced. The base and emitter ends terminate in the oxide wall; masks can thus overlap the device area into the isolation oxide. This overlap feature eliminates the extremely close tolerances normally required for base and emitter masking, and the standard photolithograhic processes can be used.
Figure $1-1$ shows the relative size of phase splitter transistors (Q2 in Figure 1-3) used in Schottky, Low Power Schottky and FAST circuits. The LS-TTL transistor is smaller than that of S-TTL because of process refinements, shal-
lower diffusions and smaller operating currents. The relative size of the FAST and FAST LSI transistors illustrate the reduction afforded by the Isoplanar process. This in turn reduces junction capacitances, while the use of oxide isolation reduces sidewall capacitance. The end result of these reductions is an increase in frequency response by a factor of three or more. Figure 1-2 shows the frequency response of two sizes of transistors made with the Isoplanar II process. Because they have modest, well-defined loads and thus can use smaller, faster transistors, internal gates of MSI devices are faster than SSI gates such as the 'F00 or 'F02. SSI gates, on the other hand, are designed to have high output drive capability and thus use larger transistors.
As is the case with other modern LSI processes, the shallower diffusions and thinner oxides make FAST devices more susceptible to damage from electrostatic discharge than are devices of earlier TTL families. Users should take the usual precautions when handling FAST devices: avoid placing them on non-conductive plastic surfaces or in plastic bags, make sure test equipment and jigs are grounded, individuals should be grounded before handling the devices, etc.

TL/F/9592-1

FAST Technology
(Continued)

TL/F/9592-2
FIGURE 1-2. Isoplanar Transistor Frequency Response

FAST Circuitry

The 2-input NAND gate, shown in Figure 1-3, has three stages of gain (Q1, Q2, Q3) instead of two stages as in other TTL families. This raises the input threshold voltage and increases the output drive. The higher threshold makes it possible to use pn diodes for the input AND function (D1 and D2) and still achieve an input threshold of 1.5 V .

The capacitance of these diodes is comparatively low, which results in improved AC noise immunity. The effect of the threshold adjustment can be seen in the voltage transfer characteristics of Figures $1-4,1-5$ and $1-6$. At $25^{\circ} \mathrm{C}$ (Figure 1-5) the FAST circuit threshold is nearly centered between the 0.8 V and 2.0 V limits specified for TTL circuits. This gives a better balance between the HIGH- and LOW-state noise margins The $+125^{\circ} \mathrm{C}$ characteristics (Figure 1-6) show that the FAST circuits threshold is comfortably above the 0.8 V specification, more so than in S-TTL or LS-TTL circuits. At $-55^{\circ} \mathrm{C}$, the FAST circuit threshold is still well below the 2.0V specification, as shown in Figure 1-4.

FAST circuits contain several speed-up diodes to help discharge internal capacitances. Referring again to Figure 1-3, when a HIGH-to-LOW transition occurs at the D1 input, for example, Schottky diode D3 acts as a low-resistance path to discharge the several parasitic capacitances connected to the base of Q2. This effect only comes into play, however, as the input signal falls below about 1.2V; D3 does not act as an entry path for negative spikes superimposed on a HIGH input level. When Q2 turns ON and its collector voltage falls, D7 provides a discharge path for capacitance at the base of Q6. Whereas D3, D4 and D7 enhance switching speed by helping to discharge internal nodes, D8 contributes to the ability of a FAST circuit to rapidly discharge load capacitance. Part of the charge stored in load capacitance passes through D8 and Q2 to increase the base current of Q3 and increase Q3's current sinking capability during the HIGH-to-LOW output voltage transition.

TL/F/9592-3
FIGURE 1-3. Basic FAST Gate Schematic

FAST Circuitry (Continued)

In addition to the 2K-Q4-3K squaring network, which is standard for Schottky-clamped TTL circuits, FAST circuits contain a network D9-D10-D11-Q7 whose purpose is to provide a momentary low impedance at the base of Q3 during an output LOW-to-HIGH transition. The rising voltage at the emitter of Q5 causes displacement current to flow through varactor diode D9 and momentarily turn ON Q7, which in turn pulls down the base of Q3 and absorbs the displacement current that flows through the collector-base capacitance (not shown) of Q3 when the output voltage rises. Without the D9-Q7 network, the displacement current through the collector-base capacitance acts as base current, tending to prolong the turn-off of Q3 and allow current to flow from Q6 to ground through Q3.

TL/F/9592-4
FIGURE 1-4. Transfer Functions at Low Temperature
The collector-base capacitance of Q3, although small, is effectively multiplied by the voltage gain of Q3. This phenomenon, first identified many years ago with vacuum tube triodes, is called the Miller effect. Thus the D9-Q7 network is familiarly called the 'Miller Killer' circuit and its use improves the output rise time and minimizes power consumption during repetitive switching at high frequencies. Diode D10 completes the discharge path for D9 through D7 when Q2 turns on. D11 limits how low Q7 pulls down the base of Q3 to a level adequate for the intended purpose, without sacrificing turn-on speed when a circuit is cycled rapidly.
Also shown in Figure 1-3 is a clamp diode, D12, at the output. This diode limits negative voltage excursions due to parasitic coupling in signal lines or transmission line effects.
The Schottky clamping diodes built into the transistors prevent saturation, thereby eliminating storage time as a factor in switching speed. Similarly, the speed-up diodes tend to minimize the impact of other variables on switching speed. The overall effect is to minimize variation in switching speed of FAST circuits with variations in supply voltage and ambient temperature (Figures $1-7$ and $1-8$). Propagation delay is specified not only under nominal supply voltage and temperature conditions, but also over the recommended operating range of V_{CC} and T_{A} for both military and commercial grade devices.

TL/F/9592-5
FIGURE 1-5. Transfer Functions at Room Temperature
The internal switching speed of a logic circuit is only one aspect of the circuit's suitability for high-speed operations at the system or subsystem level; the other aspect is the ability of the circuit to drive load capacitance. FAST circuit outputs are structured to sink at least 20 mA in the LOW state, the same as S-TTL. This capability plus the effect of the aforementioned feedback through D8 assures that the circuit can rapidly discharge capacitance. During a LOW-to-HIGH transition, the pull-up current is limited by the 45Ω resistor, versus 55Ω for S-TTL. Therefore, FAST circuits are inherently more capable than S-TTL of charging load capacitance.
Figure $1-9$ shows the effects of load capacitance on propagation delays of FAST, S-TTL and LS-TTL NAND gates. The curves show that FAST gates are not only faster than those of earlier families, but also are less affected by capacitance and exhibit less skew between the LOW-to-HIGH and HIGH-to-LOW delays. These improved characteristics offered by FAST circuits make it easier to predict system performance early in the design phase, before loading details are precisely known. The curves show that the skew between HIGH-to-LOW and LOW-to-HIGH delays for the FAST gate is only about 0.5 ns over a broad range of load capacitance, whereas the skew for the S-TTL gate is 1 ns or greater, depending on loading.

TL/F/9592-6
FIGURE 1-6. Transfer Functions at High Temperature

FAST Circuitry (Continued)

TL/F/9592-7
FIGURE 1-7. Propagation Delay versus $\mathbf{V}_{\mathbf{C C}}$

TL/F/9592-8
FIGURE 1-8. Propagation Delay versus Temperature

TL/F/9592-9
FIGURE 1-9. Propagation Delay versus Load Capacitance

Output Characteristics

Figure $1-10$ shows the current-voltage characteristics of a FAST gate with the pull-down transistor Q3 turned ON. These curves illustrate instantaneous conditions in discharging load capacitance during an output HIGH-to-LOW transmission. When the output voltage is at about 3.5 V , for example, the circuit can absorb charge from the load capacitance at a 500 mA rate at $+25^{\circ} \mathrm{C}$. From this level the rate decreases steadily down to about 100 mA at 1.5 V . In this region from 3.5 V to 1.5 V , part of the charge from the load capacitance is fed back through D8 (Figure 1-3) and Q2 to provide extra base current for Q 3 , boosting its current sinking capability and thus reducing the fall time. Below the 1.5 V level, Q3 continues to discharge the load capacitance, but without extra base current from D8. At about 0.5 V , the integral Schottky clamp diode from base to collector of Q3 starts conducting and prevents Q3 from going into deep saturation.

I_{OL} - OUTPUT LOW CURRENT - mA
TL/F/9592-10
FIGURE 1-10. Output LOW Characteristics- 'F00

IOL OUTPUT LOW CURRENT - mA
TL/F/9592-11
FIGURE 1-11. Output LOW Characteristics-'F00

Output Characteristics (Continued)

On a greatly expanded scale, the output LOW characteristics of a gate are shown in Figure 1-11. With no load, the output voltage is about 0.1 V , increasing with current on a slope of about 7.5Ω. When the load current increases beyond the current-sinking capability of Q3, the output voltage rises steeply. It can be seen that the worst-case specification of 0.5 V max at 20 mA load is easily met. Similar characteristics for a buffer shown in Figure 1-12, over a broader current range. The curves are well below the output LOW voltage specification of 0.55 V max at 48 mA over the military temperature range or 64 mA over the commercial temperature range.

TL/F/9592-12
FIGURE 1-12. Output LOW Characteristics-'F244

TL/F/9592-13
FIGURE 1-13. Output HIGH Characteristics- 'F00
The output HIGH characteristics of a FAST gate are shown in Figure 1-13. At low values of output current the voltage is approximately 3.5 V . This value is just the supply voltage minus the combined base-emitter voltages of the Darlington pull-up transistors Q5 and Q6 (Figure 1-3). For load currents above 16 mA or 18 mA , the voltage drop across the 45Ω Darlington collector resistor becomes appreciable and the Darlington saturates. For greater load currents the output voltage decreases with a slope of about 50Ω, which is largely due to the 45Ω resistor. The value of current where a characteristic intersects the horizontal axis is the short-
circuit output current los. This is guaranteed to be at least 60 mA for a FAST gate, compared to 40 mA for S-TTL. This parameter is an important indicator of the ability of an output to charge load capacitance. Thus the FAST specifications insure that an output can charge load capacitance faster, or force a higher LOW-to-HIGH voltage step into the dynamic impedance of a long interconnection.
The output HIGH characteristics of a buffer are shown in Figure 1-14. These are similar in shape to Figure 1-13 but at higher levels of current. The output HIGH voltage of a buffer is guaranteed at two different levels of load current. With a 3 mA load, V_{OH} is guaranteed to be at least 2.4 V for both military and commercial devices. V_{OH} is also guaranteed to be at least 2.0 V with a 12 mA load for military or 15 mA load for commercial devices. In addition, the short-circuit output current of a buffer is guaranteed to be at least 100 mA .
When an output is driving a long interconnection, the initial LOW-to-HIGH transition is somewhat less than the final, quiescent HIGH level because of the loading effect of the line impedance. The full HIGH voltage level is only reached after the reflection from the far end of the line returns to the driver. The initial LOW-to-HIGH voltage step that an output can force into a line is determined by drawing a load line on the graph containing the output HIGH characteristic and noting the voltage value where the load line intersects the characteristic. For example, if a FAST gate is driving a 100Ω line, a straight line from the lower left origin up to the point $5 \mathrm{~V}, 50 \mathrm{~mA}$ intersects the $-55^{\circ} \mathrm{C}$ characteristic curve at about 2.8 V . This indicates that the gate output voltage will rise to 2.8 V initially, and the 2.8 V signal, accompanied by 28 mA of current, will travel to the end of the line. If not terminated, the 28 mA is forced to return to the driver, whereupon it unloads the driver and the output voltage rises to the maximum value. Similarly, a 50Ω load line drawn on the buffer characteristic shows an intercept voltage of 2.5 V . In both cases, the initial voltage step is great enough to pass through the switching region of any inputs that might be located near the driver end of the line, and thue would not exhibit any exaggerated propagation delay due to the loading effect of the line impedance on the driver output. Thus the FAST output characteristics insure better system performance under adverse loading conditions.

TL/F/9592-14
FIGURE 1-14. Output HIGH Characteristics- 'F244

Input Characteristics

The input of a FAST circuit represents a small capacitance, typically 4 pF to 5 pF , in parallel with an $\mathrm{I}-\mathrm{V}$ characteristic that exhibits different slopes over different ranges of input voltage. Figure 1-15 shows the input characteristic of a FAST gate at three temperatures. In the upper right, the flat horizontal portion is the $\mathrm{V}_{\mathrm{IH}} \mathrm{I}_{\mathrm{IH}}$ characteristic. In this region, all of the current from the $10 \mathrm{k} \Omega$ input resistor (Figure 1-3) is flowing into the base of Q1 and the only current flowing in the input diode is the leakage current I_{IH}. When the input voltage decreases to about $1.7 \mathrm{~V}\left(+25^{\circ} \mathrm{C}\right)$, current starts to flow out of the input diode and the curve shows a knee. At this point some of the current from the $10 \mathrm{k} \Omega$ resistor is diverted from the base of Q1. When the input voltage declines to about 1.4 V the curve shows another knee; at this point, substantially all of the current from the $10 \mathrm{k} \Omega$ resistor flows out of the input diode. The portion of the curve between 1.4 V and 1.7 V input voltage is the active region, essentially corresponding to the FAST transfer function in Figure 1-5.

TL/F/9592-15
FIGURE 1-15. Input Characteristics- 'F00
Below 1.4V input, the characteristic has the slope of the $10 \mathrm{k} \Omega$ input resistor. When the input voltage declines to about -0.3 V , the Schottky clamping diode starts conducting and the current increases rapidly as the input voltage decreases further.
The input characteristics of a buffer, shown in Figure 1-16, differ from those of a gate in two respects. One is the location of the transition region along the horizontal axis. A buffer input has a hysteresis characteristic about 400 mV wide, such that the transition region shifts left or right accordingly as the input voltage transition is HIGH-to-LOW or LOW-toHIGH, respectively. The curves in Figure 1-16 apply to the HIGH-to-LOW input voltage transition. The other difference between buffer and gate characteristics is the slope of the characteristic follows this value, rather than the $10 \mathrm{k} \Omega$ slope of a gate input.

TL/F/9592-16
FIGURE 1-16. Input Characteristics- 'F244
The characteristics of an input Schottky clamp diode are shown in Figure 1-17, for much larger values of current than those of Figures $1-15$ and 1-16. The purpose of the clamp diode is to limit undershoot at the end of a line following a HIGH-to-LOW signal transition. For example, an output signal change from +3.5 V to +0.5 V into a 100Ω line propagates to the end of the line, accompanied by a 30 mA current change. If the line is terminated in a high impedance the 3 V signal change doubles, driving the terminal voltage down to -2.5 V . With the clamp diode, however, the negative excursion would be limited to about -0.7 V . The same HIGH-to-LOW signal change on a 50Ω line would be clamped at about -1.0 V . Figure $1-18$ shows the typical breakdown characteristics for a FAST input.

TL/F/9592-17
FIGURE 1-17. Input Characteristics- 'F00 or 'F244

TL/F/9592-18
FIGURE 1-18. Input Characteristics- 'F00 or 'F244

TRI-STATE® Outputs

A partial schematic of a circuit having a TRI-STATE output is shown in Figure 1-19. When the internal Output Enable (OE) signal is HIGH, the circuit operates in the normal fashion to provide HIGH or LOW output drive characteristics. When OE is LOW, however, the bases of Q1, Q2 and Q5 are pulled down. In this condition the output is a high imped-
ance. In this High Z condition, the output leakage is guaranteed not to exceed $50 \mu \mathrm{~A}$. In the case of a transceiver, each data pin is an input as well as an output and the leakage specification is increased to $70 \mu \mathrm{~A}$. In the High Z state, output capacitance averages about 5 pF for a 20 mA output and about 12 pF for a 64 mA output.

TL/F/9592-19
FIGURE 1-19. Typical TRI-STATE Input Control

Glossary

Currents-Positive current is defined as conventional current flow into a device. Negative current is defined as conventional current flow out of a device. All current limits are specifed as absolute values.
ICC Supply Current—The current flowing into the V_{CC} supply terminal of a circuit with the specified input conditions and the outputs open. When not specified, input conditions are chosen to guarantee worst-case operation.
$I_{I H}$ Input HIGH Current—The current flowing into an input when a specified HIGH voltage is applied.

IIL Input LOW Current-The current flowing out of an input when a specified LOW voltage is applied.
$\mathrm{IOH}_{\mathrm{OH}}$ Output HIGH Current-The current flowing out of the output when it is in the HIGH state. For a turned-off opencollector output with a specified HIGH output voltage applied, the I_{OH} is the leakage current.
IoL Output LOW Current-The current flowing into an output when it is in the LOW state.
Ios Output Short Circuit Current-The current flowing out of a HIGH-state output when that output is short circuited to ground (or other specified potential).
IOZH Output OFF Current HIGH-The current flowing into a disabled TRI-STATE output with a specified HIGH output voltage applied.
IozL Output OFF Current LOW-The current flowing out of a disabled TRI-STATE output with a specified LOW output voltage applied.
Voltages-All voltages are referenced to the ground pin. Negative voltage limits are specified as absolute values (i.e., -10.0 V is greater than -1.0 V).
$V_{C C}$ Supply Voltage—The range of power supply voltage over which the device is guaranteed to operate within the specified limits.
$V_{C D}$ (Max) Input Clamp Diode Voltage-The most negative voltage at an input when a specified current is forced out of that input terminal. This parameter guarantees the integrity of the input diode, intended to clamp negative ringing at the input terminal.
$\mathbf{V}_{\mathbf{I H}}$ Input HIGH Voltage-The range of input voltages that represents a logic HIGH in the system.
$\mathrm{V}_{\text {IH }}$ (Min) Minimum Input HIGH Voltage-The minimum allowed input HIGH in a logic system. This value represents the guaranteed input HIGH threshold for the device.
$V_{\text {IL }}$ Input LOW Voltage-The range of input voltages that represent a logic LOW in the system
\mathbf{V}_{IL} (Max) Maximum Input LOW Voltage-The maximum allowed input LOW in a system. This value represents the guaranteed input LOW threshold for the device.
\mathbf{V}_{OH} (Min) Output HIGH Voltage-The minimum voltage at an output terminal for the specified output current I_{OH} and at the minimum value of $V_{C C}$.
VOL (Max) Output LOW Voltage-The maximum voltage at an output terminal sinking the maximum specified load current lol.
VT+ Positive-Going Threshold Voltage-The input voltage of a variable threshold device (i.e., Schmitt Trigger) that is interpreted as a V_{IH} as the input transition rises from below VT- (Min).

VT - Negative-Going Threshold Voltage-The input voltage of a variable threshold device (i.e., Schmitt Trigger) that is interpreted as a $\mathrm{V}_{\text {IL }}$ as the input transition falls from above VT + (Max).

AC Switching Parameters

f_{t} Maximum Transistor Operating Frequency-The frequency at which the gain of the transistor has dropped by three decibels.
$f_{\text {max }}$ Toggle Frequency/Operating Frequency-The maximum rate at which clock pulses may be applied to a sequential circuit. Above this frequency the device may cease to function.
$t_{\text {PLH }}$ Propagation Delay Time-The time between the specified reference points, normally 1.5 V on the input and output voltage waveforms, with the output changing from the defined LOW level to the defined HIGH level.
$\mathbf{t}_{\text {PHL }}$ Propagation Delay Time-The time between the specified reference points, normally 1.5 V on the input and output voltage waveforms, with the output changing from the defined HIGH level to the defined LOW level.
t_{w} Pulse Width-The time between 1.5 V amplitude points on the leading and trailing edges of a pulse.
t_{h} Hold Time-The interval immediately following the active transition of the timing pulse (usually the clock pulse) of following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition. A negative hold time indicates that the correct logic level may be released prior to the active transition of the timing pulse and still be recognized.
$\mathbf{t}_{\mathbf{s}}$ Setup Time-The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative setup time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized.
$t_{\text {PHZ }}$ Output Disable Time (of a TRI-STATE Output) from HIGH Level-The time between the 1.5 V level on the input and a voltage 0.3 V below the steady state output HIGH level with the TRI-STATE output changing from the defined HIGH level to a high impedance (OFF) state.
$t_{\text {PLZ }}$ Output Disable Time (of a TRI-STATE Output) from LOW Level-The time between the 1.5 V level on the input and a voltage 0.3 V above the steady state output LOW level with the TRI-STATE output changing from the defined LOW level to a high impedance (OFF) state.
$t_{\text {pzH }}$ Output Enable Time (of a TRI-STATE Output) to a HIGH Level-The time between the 1.5 V levels of the input and output voltage waveforms with the TRI-STATE output changing from a high impedance (OFF) state to a HIGH level.
$t_{\text {tpzL }}$ Output Enable Time (of a TRI-STATE Output) to a LOW Level-The time between the 1.5 V levels of the input and output voltage waveforms with the TRI-STATE output changing from a high impedance (OFF) state to a LOW level.
$\mathbf{t}_{\text {rec }}$ Recovery Time-The time between the 1.5 V level on the trailing edge of an asynchronous input control pulse and the same level on a synchronous input (clock) pulse such that the device will respond to the synchronous input.

Logic Symbols and Terminology

The definitions of LOW and HIGH logic levels are: LOW- a voltage defined by V_{IL}; HIGH- a voltage defined by V_{IH}. A LOW condition represents logic ' 0 '; a HIGH condition, logic '1'.
The logic symbols used to represent the FAST devices follow MIL-STD-806B for logic symbols. Elements are represented by rectangular blocks with appropriate external AND/OR gates when necessary. A small circle at an external input means that the specific input is active-LOW; (it produces the desired function, in conjunction with other inputs, if its voltage is the lower of the two logic levels in the system). A circle at the output indicates that when the func-
tion designated is true, the output is LOW. Generally, inputs are at the top and left and outputs appear at the bottom and right of the logic symbol. An exception is the asynchronous Master Reset in some sequential circuits which is always at the left hand bottom corner.
Inputs and outputs are labeled with mnemonic letters as illustrated in Table 1-1. Note that an active LOW function labeled outside of the logic symbol is given a bar over the label, while the same function inside the symbol is labeled without the bar. When several inputs or outputs use the same letter, subscript numbers starting with zero are used in an order natural for device operation.

TABLE 1-1

Label	Meaning	Example
IX	General term for inputs to combinatorial circuits.	TL/F/9592-20
$\begin{aligned} & \mathrm{J}, \mathrm{~K} \\ & \mathrm{~S}, \mathrm{R} \\ & \mathrm{D} \end{aligned}$	Inputs to JK, SR and D flip-flops and latches.	TL/F/9592-21
A_{X}, S_{X}	Address or Select inputs, used to select an input, output, data route, junction, or memory location.	
LE	Enable, active LOW on all TTL/MSI. A latch can receive new data when its Enable input is in the active state.	

Logic Symbols and Terminology (Continued)		
Label	Meaning	Example
$\overline{\text { PE }}$ P	Parallel Enable, a control input used to synchronously load information in parallel into an otherwise autonomous circuit. Parallel data inputs to shift registers and counters.	TL/F/9592-24
$\overline{\mathrm{PL}}$	Parallel Load; similar to Parallel Enable except that $\overline{\mathrm{PL}}$ overrides the clock and forces parallel loading asynchronously.	TL/F/9592-25
$\overline{M R}$ $\overline{S R}$	Master Reset, synchronously resets all outputs to zero, overriding all other inputs. Synchronous Reset, resets all outputs to zero with active edge of clock.	TL/F/9592-26
CP CE, CEP, CET	Clock Pulse, genrally a HIGH-to-LOW-to-HIGH transition. An active HIGH clock (no circle) means outputs change on LOW-to-HIGH clock transition Clock Enable inputs for counters.	TL/F/9592-27
Z_{X}, O_{x}, F_{X}	General terms for outputs of combinatorial circuits	TL/F/9592-28

TABLE 1-1 (Continued)

\begin{tabular}{|c|c|c|c|}
\hline Label \& Meaning \& Example \&

\hline Q

TC \& | General term for latch and flip-flop outputs. If they pass through an enable gate before exiting the package, Q or $\overline{\mathrm{Q}}$ changes to O or $\overline{\mathrm{O}}$. |
| :--- |
| Terminal Count output (1111 for up binary counters, 1001 for up decimal counters, or 0000 for down counters). | \& \& TL/F/9592-29

\hline $\overline{O E}$ \& Output Enable, used to force TRI-STATE outputs into the high impedance state. \& \& TL/F/9592-30

\hline
\end{tabular}

This nomenclature is used throughout this book and may differ from nomenclature used on other data books, where outputs use alphabetic subscripts or use number sequences starting with one.

Handling Precautions for Semiconductor Components

The following standard handling precautions should be observed for oxide isolation, shallow junction processed parts, such as FAST or 100 k ECL:

1. All National devices are shipped in conducting foam or antistatic tubes. When they are removed for inspection or assembly, proper precautions should be used.
2. National devices, after removal from their shipping material, should be placed leads down on a grounded surface. Under no circumstances should they be placed in polystyrene foam or non-conducting plastic trays used for shipment and handling of conventional ICs.
3. Individuals and tools should be grounded before coming in contact with these devices.
4. Do not insert or remove devices in sockets with power applied. Ensure that power supply transients, such as occur during power turn-on or off, do not exceed maximum ratings.
5. After assembly on PC boards, ensure that static discharge cannot occur during handling, storage or maintenance. Boards may be stored with their connectors surrounded with conductive foam.

Section 2
 Ratings, Specifications and Waveforms

Section 2 Contents

Unit Loads 2-3
AC Loading and Waveforms 2-4
Absolute Maximum Ratings 2-6
Recommended Operating Conditions 2-6
Family DC Electrical Characteristics. 2-6

Ratings, Specifications and Waveforms

For convenience in system design, the input loading and fan-out characteristics of each circuit are specified in terms of unit loads.
One unit load in the HIGH state is defined as $20 \mu \mathrm{~A}$; thus both the input HIGH leakage current, I_{I}, and the output HIGH current-sourcing capability, loH, are normalized to $20 \mu \mathrm{~A}$. The specified I_{I} for a typical FAST® single load input is $20 \mu \mathrm{~A}$ or 1.0 U .L. The I_{OH} rating for a FAST output depends upon whether the device has a standard or TRI-STATE ${ }^{\circledR}$ output or if the device is a buffer/line driver. The $I_{O H}$ rating for a standard FAST device is 1.0 mA or 50 U.L., while TRI-STATE is 3.0 mA or 150 U.L. and line driver/ buffers specify l_{OH} of 12.0 mA or 600 U.L.
Similarly, one unit load in the LOW state is defined as 0.6 mA and both the input LOW current, ILL, and the output LOW current-sinking capability, lol, are normalized to 0.6 mA . The specified maximum IIL for a typical FAST single load input is 0.6 mA or 1.0 U.L. However, the lol rating differs among standard, TRI-STATE and buffer/line driver outputs. The IOL rating for a standard output is 20 mA or 33.3 U.L. FAST devices with TRI-STATE outputs specify loL at 24 mA or $40 \mathrm{U} . \mathrm{L}$. for commercial temperature range and 20 mA or 33.3 U.L. for military temperature range. The I_{OH} rating for a FAST buffer/line driver output is 64 mA or 106.6 U.L. for the commercial temperature range and 48 mA or $80 \mathrm{U} . \mathrm{L}$. over the military temperature range.
On the data sheets the input and output load factors are listed in the Input Loading/Fan-Out table. The tables from
the 54F/74F373 Transparent Latch and the 29F52 Registered Transceiver are reproduced below.
In the second column from the right, the 54F/74F373 input HIGH/LOW load factors are 1.0/1.0 with the first number representing I_{IH} and the second representing I_{IL}. The 29F52 has input HIGH/LOW load factors of 1.0/1.0 for the typical FAST single load inputs and 3.5/1.083 for the register inputs. For testing procurement purposes, these unit load specifications can easily be translated into actual test limits by multiplying the HIGH/LOW load factors by $20 \mu \mathrm{~A}$ and 0.6 mA respectively. The current limits are listed as well.

Also in this column are the output HIGH/LOW output load factors, with the first number representing l_{OH} and the second representing loL.These load factors can be translated to actual test limits by multiplying them by $20 \mu \mathrm{~A}$ and 0.6 mA respectively. These are shown in the far right column. The 54F/74F373 output HIGH/LOW drive factors are $150 / 40$ (33.3) which translate into an I_{OH} of 3.0 mA and $\mathrm{IOL}_{\mathrm{OL}}$ of 24 mA for commercial grade and 20 mA for military grade. The 29F52 A-Register outputs are TRI-STATE outputs with HIGH/LOW drive factors of 150/40 (33.3) indicating an I_{OH} of 3 mA and I_{OL} of 24 mA for commercial and 20 mA for military. The B-Register outputs specify unit load factors of 600/106.6 (80) translating into an $\mathrm{IOH}_{\mathrm{OH}}$ of 12 mA and $\mathrm{IOL}_{\mathrm{O}}$ of 64 mA for commercial and 48 mA for military.

Unit Loading/Fan Out 29F52: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A-Register Inputs	3.5/1.083	$70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{7}$	A-Register Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
	B-Register Inputs	3.5/1.083	$70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}$
	B-Register Outputs	600/106.6 (80)	- $12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA}$)
$\overline{\text { OEA }}$	Output Enable A-Register	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CPA	A-Register Clock	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { CEA }}$	A-Register Clock Enable	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { OEB }}$	Output Enable B-Register	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CPB	B-Register Clock	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { CEB }}$	B-Register Clock Enable	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$

Unit Loading/Fan Out 54F/74F373: See Section 2 for U.L. definitions

Pin Names	Description	29 F	
	U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{MA} /-0.6 \mathrm{~mA}$
LE	Latch Enable Input (Active HIGH$)$	$1.0 / 1.0$	$20 \mu \mathrm{MA}-0.6 \mathrm{~mA}$
OE	Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~mA}-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Latch Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

AC Loading and Waveforms

Figure $2-1$ shows the AC loading circuit used in characterizing and specifying propagation delays of all FAST devices, unless otherwise specified in the data sheet of a specific device. The use of this load, which differs somewhat from previous practice, provides more meaningful information and minimizes problems of instrumentation and customer correlation. In the past, $+25^{\circ} \mathrm{C}$ propagation delays for TTL devices were specified with a load of 15 pF to ground; this required great care in building test jigs to minimize stray capacitance, and implied the use of high impedance, high frequency scope probes. FAST circuits changed to 50 pF of capacitance allowing more leeway in stray capacitance and also loading the device during rising or falling output transitions. This more closely resembles the loading to be expected in average applications and thus gives the designer more useful delay figures. The net effect of the change in AC load is to increase the observed propagation delay by an average of about 1 ns .
The 500Ω resistor to ground, in Figure 2-1, acts as a ballast, to slightly load the totem-pole pull-up and limit the quiescent HIGH-state voltage to about +3.5 V . Otherwise, an output would rise quickly to about +3.5 V but then continue to rise very slowly to about +4.4 V . On the subsequent HIGH-toLOW transition the observed $\mathrm{t}_{\text {PHL }}$ would vary slightly with duty cycle, depending on how long the output voltage was allowed to rise before switching to the LOW state. Perhaps more importantly, the 500Ω resistor to ground can be a high frequency passive probe for a sampling scope, which costs much less than the equivalent high impedance probe. Alternatively, the 500Ω load to ground can simply be a 450Ω resistor feeding into a 50Ω coaxial cable leading to a sampling scope input connector, with the internal 50Ω termination of the scope completing the path to ground. Note that with this scheme there should be a matching cable from the device input pin to the other input of the sampling scope; this also serves as a 50Ω termination for the pulse generator that supplies the input signal.
Also shown in Figure 2-1 is a second 500Ω resistor from the device output to a switch. For most measurements this switch is open; it is closed for measuring a device with open-collector outputs and for measuring one set of the Enable/Disable parameters (LOW-to-OFF and OFF-to-LOW) of a TRI-STATE output. With the switch closed, the pair of 500Ω resistors and the +7.0 V supply establish a quiescent HIGH level of +3.5 V , which correlates with the HIGH level discussed in the preceding paragraph.
Figure 2-5 shows that the Disable times are measured at the point where the output voltage has risen or fallen by 0.3 V from the quiescent level (i.e., LOW for tpLz or HIGH for t_{PHZ}), compared to a $\Delta \mathrm{V}$ of 0.5 V used in previous practice. This change enhances the repeatability of measurements and gives the system designer more realistic delay times to
use in calculating minimum cycle times. Since the rising or falling waveform is RC-controlled, the first 0.3 V of change is more linear than the first 0.5 V and is less susceptible to external influences. More importantly, perhaps, from the system designer's point of view, a ΔV of 0.3 V is adequate to ensure that a device output has turned OFF; measuring to a $\Delta \mathrm{V}$ of 0.5 V merely exaggerates the apparent Disable time and thus penalizes system performance, since the designer must use the Enable and Disable times to devise worst-case timing signals to ensure that the output of one device is disabled before that of another device is enabled.
Figure 2-2 describes the input signal voltages recommended for use when testing FAST circuits. The AC input signal levels follow industry convention of $\mathrm{V}_{\text {IN }}$ switching 0 to 3 volts. DC low input levels are typically 0 to V_{IL}, and high input levels are typically V_{IH} to V_{CC}. Input thresholds are guaranteed during V_{OL} and V_{OH} tests. High level noise immunity is the difference between V_{OH} and V_{IH}. Low level noise immunity is the difference between V_{IL} and V_{OL}. Noise-free V_{IH} or V_{IL} levels should not induce a switch on the appropriate output of the FAST device. When testing in an automatic test environment, extreme caution should be taken to ensure that input levels plus noise do not go into the transition region.
Good high frequency wiring practices should be used in constructing test jigs. Leads on the load capacitor should be as short as possible to minimize ripples on the output waveform transitions and to minimize undershoot. Generous ground metal (preferably a ground plane) should be used for the same reasons. $A V_{C C}$ bypass capacitor should be provided at the test socket, also with minimum lead lengths. Input signals should have rise and fall times of 2.5 ns and signal swing of OV to +3.0 V . Rise and fall times $\leq 1 \mathrm{~ns}$ should be used for testing $f_{\max }$ or pulse width. A 1.0 MHz square wave is recommended for most propagation delay tests. The repetition rate must necessarily be increased for testing $f_{\text {max. }}$. A 50% duty cycle should always be used when testing $f_{\text {max }}$. Two pulse generators are usually required for testing such parameters as setup time, hold time, recovery time, etc.
Precautions should be taken to prevent damage to devices by electrostatic charge. Static charge tends to accumulate on insulated surfaces, such as synthetic fabrics or carpeting, plastic sheets, trays, foam, tubes or bags, and on ungrounded electrical tools or appliances. The problem is much worse in a dry atmosphere. In general, it is recommended that individuals take the precaution of touching a known ground before handling devices. To effectively avoid electrostatic damage to FAST devices it may be necessary for individuals to wear a grounded wrist strap when handling devices.

TL/F/9600-1
*Includes jig and probe capacitance
FIGURE 2-1. Test Load

TL/F/9600-2
FIGURE 2-2. Test Input Signal Levels

TL/F/9600-3
FIGURE 2-3. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

TL/F/9600-4
FIGURE 2-4. Propagation Delay, Pulse Width Waveforms

FIGURE 2-5. TRI-STATE Output HIGH and LOW Enable and Disable Times

FIGURE 2-6. Setup Time, Hold Time and Recovery Time Waveforms

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
$V_{c c}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

Recommended Operating Conditions

Free Air Ambient Temperature
Military
Commercial
Supply Voltage
Military
Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	54F/74F			Units	V_{cc}	Conditions
		Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$, Non $1 / \mathrm{O}$ Pins
V_{OH}		$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \\ & 2.0 \end{aligned}$			V	Min	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$, Standard or TRI-STATE Outputs $\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$, TRI-STATE or Buffer/Line Driver Outputs $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$, Buffer/Line Driver Outputs $\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$, Standard or TRI-STATE Outputs $\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$, TRI-STATE or Buffer/Line Driver Outputs $\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$, Buffer/Line Driver Outputs $\mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA}$, Standard or TRI-STATE Outputs $\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$, TRI-STATE or Buffer/Line Driver Outputs $\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$, Buffer/Line Driver Outputs
$V_{\text {OL }}$	Output LOW $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $54 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}$			$\begin{gathered} 0.5 \\ 0.55 \\ 0.5 \\ 0.5 \\ 0.55 \end{gathered}$	v	Min	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$, Standard or TRI-STATE Outputs $\mathrm{loL}=48 \mathrm{~mA}$, Buffer/Line Driver Outputs $\mathrm{IOL}^{2}=20 \mathrm{~mA}$, Standard Outputs IoL $=24 \mathrm{~mA}$, TRI-STATE Outputs $\mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$, Buffer/Line Driver Outputs
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$, Non I/O Pins
IIL	Input LOW Current			$\begin{gathered} -0.6 \\ -1.2 \\ n(-0.6) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$	Max Max Max	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}, 1.0 \text { U.L. Input } \\ & \mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}, 2.0 \text { U.L. Input } \\ & \mathrm{V}_{\text {it: }}=0.5 \mathrm{~V}, n \text { UI.I. Innut } \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$, Non I/O Pins
$\mathrm{I}_{\text {bVIT }}$	Input HIGH Current Breakdown Test (I/O)			1.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, 1 / \mathrm{O}$ Pins
$\mathrm{l}_{\mathrm{OzH}}$	Output Leakage Current			50	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=2.7 \mathrm{~V}$, TRI-STATE Outputs, Non 1/O
lozL	Output Leakage Current			-50	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=0.5 \mathrm{~V}$, TRI-STATE Outputs, Non I/O
${ }_{\text {lin }}+\mathrm{l}_{\text {OZH }}$	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 / \mathrm{O}}=2.7 \mathrm{~V}, 1 / \mathrm{OPins}$

DC Electrical Characteristics (Continued)							
Symbol	Parameter	54F/74F			Units	Vcc	Conditlons
		Min	Typ	Max			
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current			-650	$\mu \mathrm{A}$	Max	$V_{1 / O}=0.5 \mathrm{~V}, 1 / \mathrm{O}$ Pins
los	Output Short-Circuit Current	$\begin{array}{r} -60 \\ -100 \\ \hline \end{array}$		$\begin{aligned} & -150 \\ & -225 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Max Max	$V_{\text {OUT }}=O V$, Standard or TRI-STATE Outputs $V_{\text {OUT }}=0 V$, Buffer/Line Driver Outputs
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
$l_{z z}$	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0 V	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC, }}$, TRI-STATE Outputs
IOHC	Open Collector, Output OFF Leakage Test			250	$\mu \mathrm{A}$	Min	$V_{\text {OUT }}=V_{\text {CC }}$, O.C. Outputs
${ }^{\text {I CCH }}$	Power Supply Current				mA	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{HIGH}$
${ }^{1} \mathrm{CCL}$	Power Supply Current				mA	Max	$\mathrm{V}_{\text {OUT }}=$ LOW
${ }^{\text {ICCZ }}$	Power Supply Current				mA	Max	$\mathrm{V}_{\text {OUT }}=$ HIGHZ

Section 3
 Design Considerations

Section 3 Contents

Introduction 3-3
Threshold and Noise Margins 3-4
Test and Specification Improvements 3-5
Transmission Lines and Termination 3-5
Decoupling 3-14
Design Guidelines 3-15

Design Considerations

FAST® is a high-speed logic family that achieves speeds typically 30% faster than the Schottky family with a corresponding power reduction of approximately 75%. It is fabricated with an advanced oxide isolation technique, Isoplanar II, which produces transistors with very high, well-controlled switching speeds, extremely small parasitic capacitances and f_{T} in excess of 5 GHz .
Since the family is designed to be pin-compatible with other TTL families such as Schottky, Low Power Schottky and standard TTL, existing designs can be easily upgraded. FAST logic offers significant improvement over the Schottky family in addition to improved speed and power specifications. Other key advantages are higher input threshold levels (improving noise margins), reduced input loading, and increased output drive. The FAST family contains a full complement of circuits for more efficient design capabilities: small scale integration, medium scale integration and large scale integration.
Fairchild engineers had some specific design objectives in mind when they developed the FAST logic family. The primary objective was the improvement of the circuit speedpower performance versus earlier TTL families. Another important objective was increasing threshold levels to improve DC noise immunity. Other goals were maintaining or improving the output drive of Schottky for improved line driving capability, and reducing input loading for increasing the overall fanout out of the family. Output and input voltage levels, functions and pinouts were standardized to previous TTL families to maintain compatibility.
The primary design consideration was to improve speed while reducing power. The speed of any device is limited by the charge storage of the transistors. The time required to remove this charge is proportional to the capacitance and current available. Thus, to improve the speed, either the internal resistor values must be lowered to increase the available current and therefore remove the charge faster, such as in the Schottky family, or the capacitance must be reduced.
The speed-power curve shown in Figure 3-1a was used empirically to determine the optimum operating power level for the FAST family. Several internal gates programmed at a variety of power levels were produced on a wafer and the propagation delay of an internal gate for each power level was measured.
a.

FIGURE 3-1. Speed-Power Product
As can be seen from the curves, power levels significantly below 4 mW per gate exhibit a dramatic degradation in performance. Power levels significantly above 4 mW , however, appear to have passed the point of diminishing returns with only minor improvements in propagation delay resulting from increased power. It was therefore concluded that the FAST family could be biased at 4 mW achieving a 1.75 ns propagation delay.

Figure 3-1b compares the FAST logic family with previous TTL and ECL logic families. Each curve groups families with similar technologies. The first line, known as "gold doped," groups together the 7400 and the 74 H families into one technology grouping. These saturating logic families can be seen to have a relatively poor speed-power curve.
The second curve notes the Schottky, Low Power Schottky and 10k ECL families. They use non-gold doped, soft saturated (Baker clamped) or current steering logic in order to achieve their speed-power performance; however, they still employ the planar technology. The last curve, which shows the FAST family with its ECL counterpart, the 100k ECL family, employs the Isoplanar technology. With FAST Isoplanar technology, 3 ns propagation delays at only 4 mW power dissipation are achieved with SSI devices.

Threshold and Noise Margins

The noise margins most often cited for TTL obtained by subtracting the guaranteed maximum input HIGH level, V_{IH}, of a driven input from the guaranteed minimum output HIGH level, V_{OH}, of the driving source, and subtracting the guaranteed maximum output LOW level, V_{OL}, of the driver from
the guaranteed minimum input LOW level, V_{IL}, of a driven circuit. The guaranteed worst-case values of these parameters vary slightly among the various circuit families and are summarized in Table III-I. Note that although the 9000 Se ries $\mathrm{V}_{I H}$ and $\mathrm{V}_{\text {IL }}$ specifications have different limits at different temperatures, they are grouped with the 54/74 family in the table as a matter of convenience. Note also that the $V_{\text {OL }}$ limit listed for 74LS is 0.5 V , whereas these circuits are also specified at $04 . \mathrm{V}$ at a lower level of loL. Noise margins calculated in this manner are quite conservative, since it is assumed that both the driver output characteristics are worst-case and that V_{CC} is on the low side for the driver and on the high side for the receiver.
Figure 3-2 shows how load capacitance affects the propagation delay of Low Power Schottky, Schottky and FAST gates, flip-flops, registers and decoders, etc. As would be expected, Low Power Schottky TTL shows greater sensitivity since LS output drive capability is not as great as either Schottky or FAST. Significantly, FAST is less affected than Schottky by load capacity. Figure $3-2$ shows propagation delay versus load capacitance for buffers and line drivers since they are designed for greater output drive.

TABLE III-I. Parameter Limits

TTL Families		$\begin{gathered} \text { Military } \\ \left(-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right. \end{gathered}$				$\begin{gathered} \text { Commercial } \\ \left(0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right) \end{gathered}$				Units
		V_{IL}	$\mathrm{V}_{\text {IH }}$	V_{OL}.	V_{OH}	V_{IL}	V_{IH}	V_{OL}	$\mathrm{VOH}_{\mathrm{OH}}$	
TTL	Standard TTL, 9000, 54/74	0.8	2.0	0.4	2.4	0.8	2.0	0.4	2.4	V
FAST	54F/74F	0.8	2.0	0.5	2.4	0.8	2.0	0.5	2.5	V
S-TTL	Schottky TTL, 54S/74S, 93S	0.8	2.0	0.5	2.5	0.8	2.0	0.5	2.7	V
LS-TTL	Low Power Schottky TTL., 54LS/74LS	0.7	2.0	0.4	2.5	0.8	2.0	0.5	2.7	V

V_{OL} and V_{OH} are the voltages generated at the output. V_{IL} and V_{IH} are the voltages required at the input to generate the appropriate levels. The numbers given above are guaranteed worst-case values for standard outputs.

b. 'F240

TL/F/9607-4

FIGURE 3-2. Propagation Delay vs Load Capacitance

Threshold and Noise
 Margins (Continued)

Notice also that for Schottky, the HIGH-to-LOW output transition is more affected than its LOW-to-HIGH transition, while for FAST both transitions are equally affected. This indicates a better balance in the design of the FAST output, and minimizes pulse stretching and compressing.
Designers are cautioned that curves of this type do not apply when the load capacitance is distributed along an interconnection.

Test and Specification Improvements

Because the circuitry and technological improvements (feedback and speedup diodes and the Miller Killer circuitry) yield well-controlled AC parameters, the FAST family can be specified over extremes of external influences. FAST is the first TTL logic family which does not require derating estimates for worst-case design. This has been accomplished by specifying minimum and maximum propagation delays over the operating temperature and supply voltage ranges with 50 pF loading.
In order to achieve easier correlation with our customers' needs, a change in the actual AC test load was needed. Previously, most TTL families were measured with three serial diodes in parallel with the load capacitor. For the FAST logic family, a 50 pF capacitance in parallel with a 500Ω resistor is employed. This facilitates fabrication of low capacitance test jigs. It also provides better correlation with customers' measurements of propagation delay. Passive 500Ω scope probes, which are less expensive and easier to use than the high impedance FET input scope probes, can be employed. This facilitates measurement of the AC performance on automatic test equipment and yields more conservative AC figures than are achieved with the previous AC load technique.

Design Considerations

There are areas of concern which need to be addressed when designing with any high performance logic family. These topics include: transmission line concepts, printed circuit board layout, interfacing between technologies, open collector outputs, fanout, and unused inputs.
For additional information, please refer to National's FAST Applications Handbook.

Transmission Lines

Practical transmission lines, cables and strip lines used for TTL interconnections have a characteristic impedance between 30Ω and 150Ω. FAST is capable of driving a 50Ω line under worst-case conditions.

These considerations, applicable only when the round trip delay of the line is longer than the rise or fall time of the driving signal ($2 \mathrm{td}>\mathrm{tr}$), do not affect most TTL interconnections. Short interconnections do not behave like a resistive transmission line, but more like a capacitive load. Since the rise time of different TTL outputs is known, the longest interconnection that can be tolerated without causing transmission line effects can easily be calculated and is listed in Table III-II.

TABLE III-II. PC Board Interconnections

TTL Family	Rise Time	Fall Time	Max Interconnection Length
$54 / 74,54 / 74 \mathrm{LS}$	$6-9 \mathrm{~ns}$	$4-6 \mathrm{~ns}$	$18 \mathrm{in}.(45 \mathrm{~cm})$
$54 \mathrm{~S} / 74 \mathrm{~S}$	$4-6 \mathrm{~ns}$	$2-3 \mathrm{~ns}$	$9 \mathrm{in}.(22.5 \mathrm{~cm})$
FAST	$1.8-2.8 \mathrm{~ns}$	$1.6-2.6 \mathrm{~ns}$	$7.5 \mathrm{in}.(19 \mathrm{~cm})$

Assuming $1.7 \mathrm{~ns} /$ foot propagation speed, typical for epoxy fiberglass PC boards with $\epsilon_{\mathrm{r}}=4.7$.

Slightly longer interconnections show minimal transmission line effects; the longer the interconnections, the greater the chance that system performance may be degraded due to reflections and ringing.

Transmission Line Effects

The fast rise and fall times of TTL outputs (2.0 ns to 6.0 ns) produce transmission line effects even with relatively short ($<2 \mathrm{ft}$) interconnections. Consider one TTL device driving another and switching from the LOW to the HIGH state. If the propagation delay of the interconnection is long compared to the rise time of the signal, the arrangement behaves like a transmission line driven by a generator with a non-linear output impedance. Simple transmission line theory shows that the initial voltage step at the output just after the driver has switched is

$$
V_{\text {OUT }}=V_{E} \frac{Z_{O}}{Z_{O}+R_{O}}
$$

where Z_{O} is the characteristic impedance of the line, R_{O} is the output impedance of the driver, and V_{E} is the equivalent output voltage source in the driver, (i.e., V_{CC} minus the forward drop of the pull-up transistors).
Figure $3-3$ shows how the initial voltage step can be determined graphically by superimposing lines of constant impedance of the static input and output characteristics of TTL elements. The constant impedance lines are drawn from the intersection of the $\mathrm{V}_{\text {IN }}$ and V_{OL} characteristics which is the quiescent condition preceding a LOW-to-HIGH transition. After this transition the V_{OH} characteristic applies, and the intersection of a particular impedance line with the V_{OH} characteristic determines the initial voltage step. The V_{OH} characteristic shown in Figure $3-3$ has an R_{O} of about 80Ω and V_{E} of approximately 4.0 V , for calculation purposes.

Transmission Line Effects (Continued)

TL/F/9607-5
FIGURE 3-3. Initial Output Voltage of TTL Driving Transmission Line

This initial voltage step propagates down the line and reflects at the end, assuming the typical case where the line is open-ended or terminated in an impedance greater than its characteristic impedance Z_{O}. Arriving back at the source, this reflected wave increases $V_{\text {OUT }}$. If the total round-trip delay is larger than the rise time of the driving signal, there is a staircase response at the driver output and anywhere along the line. If one of the loads (gate inputs) is connected to the line close to the driver, the initial output voltage VOUT might not exceed V_{IH}. This input is then undetermined until after the round trip of the system. Figure $3-4$ shows the 'F00 driver output waveform for four different line impedances.
a.

b.

For Z_{O} of 25Ω and 50Ω, the initial voltage step is in the threshold region of a TTL input and the output voltage only rises above the guaranteed $2.0 \mathrm{~V} \mathrm{~V}_{\mathrm{IH}}$ level after a reflection returns from the end of the line. If $\mathrm{V}_{\text {OUT }}$ is increased to $>2.0 \mathrm{~V}$, by either increasing Z_{O} or decreasing R_{O}, additional delay does not occur. R_{O} is characteristic of the driver output configuration, varying between the different TTL speed categories. Z_{0} can be changed by varying the width of the conductor and its distance from ground. Table III-III lists the lowest transmission line impedance that can be driven by different TTL devices to insure an initial voltage step of 2.0 V .
c.

d.

FIGURE 3-4. TTL Driving Transmission Line
Note that the worst-case value, assuming a $+30 \%$ tolerance on the current limiting resistor and a -10% tolerance on V_{CC}, is 80% higher than the value for nominal conditions.

Transmission Line Effects (Continued)

TABLE III-III. Transmission Line Driving Capability

TTL Family or Device	Collector Resistor R Ω	Lowest Transmission Line Impedance Ω				
		Worst Case$(R+30 \%)$		Nominal	Best Case$(R-30 \%)$	
54/74	130	241.4	204.8	136.8	84.6	75.8
54S/74S	55	110.0	92.2	61.1	37.5	33.4
5440/7440	100	185.7	157.5	105.2	65.1	58.3
54S/74S40	25	50.0	41.9	27.7	17.0	15.2
54F/74F00	45	66.2	57.7	40.9	27.6	25.0
54F/74F258	25	36.76	32.0	22.7	15.3	13.9
54F/74F240	15	22.0	19.2	13.6	9.2	8.3
Supply Voltage ($\mathrm{V}_{C C}$)		4.50	4.75	5.00	5.25	5.50

A graphical method provides excellent insight into the effects of high-speed digital circuits driving interconnections acting as transmission lines. A load line is drawn for each input and output situation. Each load line starts at the previous quiescent point, determined where the previous load line intersects the appropriate characteristic. The magnitude of the slope of the load lines is identical and equal to the characteristics impedance of the line, but alternate load lines have opposite signs representing the change in direction of current flow. The points where the load lines intersect the input and output characteristics represent the voltage and current value at the input or output, respectively, for that reflection. The results, Figure 3-5, are shown with and without the input diode and illustrate how the input diode on TTL elements assists in eliminating spurious switching due to reflection.

Transmission Line Concepts

The interactions between wiring and circuitry in high-speed systems are more easily determined by treating the interconnections as transmissions lines. A brief review of basic concepts is presented and simplified methods of analysis
a. With Input Diode

are used to examine situations commonly encountered in digital systems. Since the principles and methods apply to any type of logic circuit, normalized pulse amplitudes are used in sample waveforms and calculations.

Simplifying Assumptions

For the great majority of interconnections in digital systems, the resistance of the conductors is much less than the input and output resistance of the circuits. Similarly, the insulating materials have very good dielectric properties. These circumstances allow such factors as attenuation, phase distortion and bandwidth limitations to be ignored. With these simplifications, interconnections can be dealt with in terms of characteristic impedance and propagation delay.

Characteristic Impedance

The two conductors that interconnect a pair of circuits have distributed series inductance and distributed capacitance between them, and thus constitute a transmission line. For any length in which these distributed parameters are constant, the pair of conductors have a characteristic imped-

b. Without Input Diode

FIGURE 3-5. Ringing Caused by Reflections

Characteristic Impedance (Continued)

ance Z_{Q}. Where quiescent conditions on the line are determined by the circuits and terminations, $Z \delta$ is the ratio of transient voltage to transient current passing by a point on the line when a signal change or other electrical disturbance occurs. The relationship between transient voltage, transient current, characteristic impedance, and the distributed parameters is expressed as follows:

$$
V / l=Z_{0}=\sqrt{L_{0} / C_{O}}
$$

where $L_{O}=$ inductance per unit length, and $C_{O}=$ capacitance per unit length. Z_{O} is in ohms, L_{o} in henries, and C_{O} in farads.

Propagation Velocity

Propagation velocity (v) and its reciprocal, delay per unit length δ, can also be expressed in terms of L_{0} and C_{O}. A consistent set of units is nanoseconds, microhenries and picofarads, with a common unit of length.

$$
v=1 / \sqrt{L_{O} C_{O}} \quad \delta=\sqrt{L_{O} C_{O}}
$$

These equations provide a convenient means of determining the L_{O} and C_{O} of a line when delay, length and impedance are known. For a length 1 and delay T, δ is the ratio $T / 1$. To determine L_{O} and C_{O}, combine these equations.

$$
\begin{aligned}
\mathrm{L}_{\mathrm{O}} & =\delta \mathrm{Z}_{\mathrm{O}} \\
\mathrm{C}_{\mathrm{O}} & =\delta / \mathrm{Z}_{\mathrm{O}}
\end{aligned}
$$

More formal treatments of transmission line effects are available from many sources.

Termination and Reflection

A transmission line with a terminating resistor is shown in Figure 3-6. As indicated, a positive step function voltage travels from left to right. To keep track of reflection polarities, it is convenient to consider the loweronductor as the voltage reference and to think in terms of ourtent flow in the top conductor only. The generator is assumed to have zero internal impedance. The initial current l_{1} is determined by V_{1} and Z_{O}.

TL/F/9607-12
LINE LENGTH $=1$
$D E L A Y=T=1 \delta$
FIGURE 3-6
If the terminating resistor matches the line impedance, the ratio of voltage to current traveling along the line is matched by the ratio of voltage to current which must, by Ohm's law, always prevail at R_{T}. From the viewpoint of the voltage step generator, no adjustment of output current is ever required; the situation is as though the transmission line never existed and R_{T} has been connected directly across the terminals of the generator.
From the R_{T} viewpoint, the only thing the line did was delay the arrival of the voltage step by the amount of time \mathbf{T}.

When R_{T} is not equal to Z_{O}, the initial current starting down the line is still determined by V_{1} and Z_{O} but the final steady state current, after all reflections have died out, is determined by V_{1} and R_{T} (ohmic resistance of the line is assumed to be negligible). The ratio of voltage to current in the initial wave is not equal to the ratio of voltage to current demanded by R_{T}. Therefore, at the instant the initial wave arrives at R_{T}, another voltage and current wave must be generated so that Ohm's law is satisfied at the line-load interface. This reflected wave, indicated by V_{r} and I_{r} in Figure $3-6$, starts to return toward the generator. Applying Kirchoff's laws to the end of the line at the instant the initial wave arrives results in the following:

$$
I_{i}+I_{r}=I_{T}=\text { current into } R_{T}
$$

Since only one voltage can exist at the end of the line at this instant of time, the following is true:

$$
V_{1}+V_{r}=V_{T}
$$

thus,

$$
I_{T}=V_{T} / R_{T}=\left(V_{1}+V_{r}\right) / R_{T}
$$

also,

$$
I_{1}=V_{1} / Z_{O} \text { and } I_{r}=-V_{r} / Z_{O}
$$

with the minus sign indicating that V_{r} is moving toward the generator.
Combining the foregoing relationships algebraically and solving for V_{r} yields a simplified expression in terms of V_{1}, Z_{O} and R_{T}.

$$
\begin{gathered}
\frac{V_{1}}{Z_{O}}-\frac{V_{r}}{Z_{O}}=\frac{V_{1}+V_{r}}{R_{T}}=\frac{V_{1}}{R_{T}}+\frac{V_{r}}{R_{T}} \\
V_{1}\left(\frac{1}{Z_{O}}-\frac{1}{R_{T}}\right)=V_{r}\left(\frac{1}{R_{T}}+\frac{1}{Z_{O}}\right) \\
V_{r}=V_{1}\left(\frac{R_{T}-Z_{O}}{R_{T}+Z_{O}}\right)=\rho_{L} V_{1}
\end{gathered}
$$

The term in parentheses is called the coefficient of reflection (ρ_{L}). With R_{T} ranging between zero (shorted line) and infinity (open line), the coefficient ranges between -1 and +1 respectively. The subscript L indicates that ρ_{L} refers to the coefficient at the load end of the line.
This last equation expresses the amount of voltage sent back down the line, and since

$$
V_{T}=V_{1}+V_{r}
$$

then

$$
V_{T}=V_{1}\left(1+\rho_{L}\right)
$$

V_{T} can also be determined from an expression which does not require the preliminary step of calculating ρ_{L}. Manipulating $\left(1+\rho_{L}\right)$ results in

$$
\begin{aligned}
1+\rho_{L} & =1+\left(R_{T}-Z_{O}\right) /\left(R_{T}+Z_{O}\right) \\
& =2\left(R_{T} /\left(R_{T}+Z_{O}\right)\right)
\end{aligned}
$$

Substituting, this gives

$$
V_{T}=2\left(R_{T} /\left(R_{T}+Z_{O}\right)\right) V_{1}
$$

The foregoing has the same form as a simple voltage divider involving a generator V_{1} with internal impedance, Z_{O}, driving a load R_{T}, except that the amplitude of V_{T} is doubled.
The arrow indicating the direction of V_{r} in Figure $3-6$ correctly indicates the V_{r} direction of travel, but the direction of I_{r} flow depends on the V_{r} polarity. If V_{r} is positive, I_{r} flows toward the generator, opposing l_{1}. This relationship between the polarity of V_{r} and the direction of I_{r} can be deduced by noting that if V_{r} is positive it is because R_{T} is greater than Z_{O}. In turn, this means that the initial current I_{r}

Termination and Reflection (Continued)

is larger than the final quiescent current, dictated by V_{1} and R_{T}. Hence I_{r} must oppose I_{1} to reduce the line current to the final quiescent value. Similar reasoning shows that if V_{r} is negative, I_{r} flows in the same direction as I_{1}.
It is somewhat easier to determine the effect of V_{r} on line conditions by thinking of it as an independent voltage generator in series with R_{T}. With this concept, the direction of I_{r} is immediately apparent; its magnitude, however, is the ratio of V_{r} to Z_{O}, i.e., R_{T} is already accounted for in the magnitude of V_{r}. The relationships between incident and reflected signals are represented in Figure 3.7 for both cases of mismatch between R_{T} and Z_{O},
The incident wave is shown in Figure 3-7a, before it has reached the end of the line. In Figure $3-7 b$, a positive V_{r} is returning to the generator. To the left of V_{r} the current is still I_{1}, flowing to the right, while to the right of V_{r} the net current in the line is the difference between I_{1} and Ir . In Figure 3-7c, the reflection coefficient is negative, producing a negative V_{r}. This, in turn, causes an increase in the amount of current flowing to the right behind the V_{r} wave.

a. Incident Wave

Source Impedance, Multiple Reflections

When a reflected voltage arrives back at the source (generator), the reflection coefficient at the source determines the response to V_{r}. The coefficient of reflection at the source is governed by Z_{O} and the source resistance R_{S}.

$$
\rho_{S}=\left(R_{S}-Z_{O}\right) /\left(R_{S}+Z_{O}\right)
$$

If the source impedance matches the line impedance, a reflected voltage arriving at the source is not reflected back toward the load end. Voltage and current on the line are stable with the following values.

$$
V_{T}=V_{i}+V_{r}
$$

If neither source impedance nor terminating impedance matches Z_{0}, multiple reflections occur; the voltage at each end of the line comes closer to the final steady state value with each succeeding reflection. An example of a line mismatched on both ends is shown in Figure 3-8. The source is a step function of $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ amplitude occurring at time to. The initial value of V_{1} starting down the line is 2.4 V due to the voltage divider action of Z_{O} and R_{S}. The time scale in the photograph shows that the line delay is approximately 6 ns . Since neither end of the line is terminated in its characteristic impedance, multiple reflections occur.

Source Impedance, Multiple Reflections (Continued)

TL/F/9607-16
FIGURE 3-8. Multiple Reflections Due to Mismatch at Load and Source
$P_{S}=\frac{(25-50) \Omega}{(25+50) \Omega}=-0.33$

$$
V_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-2 \cdot \mathrm{~V}_{\mathrm{BE}}=3.6 \mathrm{~V}
$$

$$
\text { initially, } V_{1}=\frac{Z_{O}}{Z_{O}+R_{S}} \cdot V_{O}=\frac{50 \Omega}{(50+25) \Omega}(3.6 \mathrm{~V})=2.4 \mathrm{~V}
$$

$$
\rho_{\mathrm{L}}=\frac{(300-50) \Omega}{(300+50) \Omega}=0.71
$$

TL/F/9607-17
$\mathrm{H}=20 \mathrm{~ns} / \mathrm{div}$.
$\mathrm{V}=1 \mathrm{~V} / \mathrm{div}$.

The amplitude and persistence of the ringing shown in Figure 3-8 become greater with increasing mismatch between the line impedance and source and load impedances. The difference in amplitude between the first two positive peaks observed at the open end is

$$
\begin{aligned}
V_{T}-V_{T}^{\prime} & =\left(1+\rho_{L}\right) V_{1}-\left(1+\rho_{L}\right) V_{1} \rho^{2} \rho^{2} S \\
& =\left(1+\rho_{L}\right) V_{1}\left(1-\rho^{2} \rho^{2} \rho^{2}\right)
\end{aligned}
$$

The factor ($1-\rho^{2} \mathrm{~S}$) is similar to the damping factor associated with lumped constant circuitry. It expresses the attenuation of successive positive or negative peaks of ringing.

Lattice Diagram

In the presence of multiple reflections, keeping track of the incremental waves on the line and the net voltage at the ends becomes a bookkeeping chore. A convenient and systematic method of indicating the conditions which combine magnitude, polarity and time utilizes a graphic construction called a lattice diagram. A lattice diagram for the line conditions of Figure 3-8 is shown in Figure 3-9.

TL/F/9607-18
FIGURE 3-9. Lattice Diagram for the Circult of FIgure 3-8

Lattice Diagram (Continued)

The vertical lines symbolize discontinuity points, in this case the ends of the line. A time scale is marked off on each line in increments of $2 T$, starting at to for V_{1} and T voltages traveling between the ends of the line; solid lines are used for positive voltages and dashed lines for transmission multipliers ρ and $(1+\rho)$ at each vertical line, and to tabulate the incremental and net voltages in columns alongside the vertical lines. Both the lattice diagram and the waveform photograph show that V_{1} and V_{T} asymptomatically approach 3.4 V , as they must with a 3.4 V source driving a lightly loaded line.

Shorted Line

The open-ended line in Figure 3-8 has a reflection coefficient of 0.71 and the successive reflections tend toward the steady state conditions of zero line current and a line voltage equal to the source voltage. In contrast, a shorted line has a reflection coefficient of -1 and successive reflections must cause the line conditions to approach the steady state conditions of zero voltage and a line current determined by the source voltage and resistance.
Shorted line conditions are shown in Figure 3-10a with the reflection coefficient at the source end of the line also negative. A negative coefficient at both ends of the line means that any voltage approaching either end of the line is reflected in the opposite polarity. Figure $3-10 b$ shows the response to an input step-function with a duration much longer than the line delay. The initial voltage starting down the line is about 2.4 V , which is inverted at the shorted end and returned toward the source as -2.4 V . Arriving back at the source end of the line, this voltage is multiplied by $\left(1+\rho_{S}\right)$, causing a -1.61 V net change in V_{1}. Concurrently, a reflected voltage of $+0.80 \mathrm{~V}\left(-2.4 \mathrm{~V}\right.$ times ρ_{S} of -0.33$)$ starts back toward the shorted end of the line. The voltage at V_{1} is reduced by 50% with each successive round trip of reflections, thus leading to the final condition of zero volts on the line.

When the duration of the input pulse is less than the delay of the line, the reflections observed at the source end of the line constitute a train of negative pulses, as shown in Figure $3-10 c$. The amplitude decreases by 50% with each successive occurrence as it did in Figure 3-10b.

Series Termination

Driving an open-ended line through a source resistance equal to the line impedance is called series termination. It is particularly useful when transmitting signals which originate on a PC board and travel through the back-plane to another board, with the attendant discontinuities, since reflections coming back to the source are absorbed and ringing thereby controlled. The amplitude of the initial signal sent down the line is only half of the generator voltage, while the voltage at the open end of the line is doubled to full amplitude $\left(1+\rho_{\mathrm{L}}=2\right)$. The reflected voltage arriving back at the source raises V_{1} to the full amplitude of the generator signal. Since the reflection coefficient at the source is zero, no further changes occur and the line voltage is equal to the generator voltage. Because the initial signal on the line is only half the normal signal swing, the loads must be connected at or near the end of the line to avoid receiving a 2 step input signal.
A TTL output driving a series-terminated line is severely limited in its fanout capabilities due to the IR drop associated with the collective $I_{\text {IL }}$ drops of the inputs being driven. For most TTL families other than FAST it should not be considered since either the input currents are so high (TTL, S, H) or the input threshold is very low (LS). In either case the noise margins are severely degraded to the point where the circuit becomes unusable. In FAST, however, the ILL of 0.6 mA , if sunk through a resistor of 25Ω used a series terminating resistor, will reduce the low level noise margin 15 mV for each standard FAST input driven.

Series Termination (Continued)
a. Reflection Coefficients for Shorted Line

b. Input Pulse Duration $>$ Line Delay
c. Input Pulse Duration < Line Delay

$V=1 V / \mathrm{div}$.
$H=20 \mathrm{~ns} /$ div.
FIGURE 3-10. Reflections of Long and Short Pulses on a Shorted Line

TABLE III-IV. Relative Dielectric Constants of Various Materials

Material	ϵ_{r}
Air	1.0
Polyethylene Foam	1.6
Cellular Polyethylene	1.8
Teflon	2.1
Polyethylene	2.3
Polystyrene	2.5
Nylon	3.0
Silicon Rubber	3.1
Polyvinylchloride (PVC)	3.5
Epoxy Resin	3.6
Delrin	3.7
Epoxy Glass	4.7
Mylar	5.0
Polyurethane	7.0

All the above information on impedance and propagation delays are for the circuit interconnect only. The actual impedance and propagation delays will differ from this by the loading effects of gate input and output capacitances, and by any connectors that may be in line. The effective impedance and propagation delay can be determined from the following formula:

$$
\begin{gathered}
Z_{O} \\
Z_{O^{\prime}}=\sqrt{1+\left(\frac{C_{L}}{C_{O}}\right)} \Omega \\
t_{P D}=\sqrt{L_{O} C_{O}} \quad \therefore t_{P D^{\prime}}=t_{P D} \sqrt{1+\left(\frac{C_{L}}{C_{O}}\right)}
\end{gathered}
$$

where C_{L} is the total of all additional loading.
The results of these formulas will frequently give effective impedances of less than half Z_{0}, and interconnect propagation delays greater than the driving device propagation delays, thus becoming the predominant delay.

Series Termination (Continued)

TL/F/9607-22
FIGURE 3-11. Unterminated
The maximum length for an unterminated line can be determined by

$$
I_{\max }=T_{r} / 2 t_{p d}
$$

and for FAST, $\mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}$, so $I_{\text {max }}=10$ inches for trace on GIO epoxy glass PC.
The voltage wave propagated down the transmission line (V step) is the full output drive of the device into $\mathrm{Z}_{\mathrm{O}}{ }^{\prime}$. Reflections will not be a problem if $I \leq I_{\max }$. Lines longer than $I_{\max }$ will be subject to ringing and reflections and will drive the inputs and outputs below ground.

TL/F/9607-23
FIGURE 3-12. Series-Terminated

Series termination has limited use in TTL interconnect schemes due to the voltage drop across RTs in the LOW state, reducing noise margins at the receiver. Series termination is the ideal termination for highly capacitive memory arrays whose DC loadings are minimal. RTs values of 10Ω to 50Ω are normally found in these applications.
Four possibilities for parallel termination exist:
A. Z_{O} to $V_{C C}$. This will consume current from $V_{C C}$ when output is LOW;
B. $Z_{0}{ }^{\prime}$ to GND. This will consume current from $V_{C C}$ when output is HIGH;
C. Thevenin equivalent termination. This will consume half the current of A and B from the output stage, but will have reduced noise margins, and consume current from $V_{C C}$ with outputs HIGH or LOW. If used on a TRI-STATE ${ }^{\oplus}$ bus, this will set the quiescent line voltage to half.
D. AC Termination. An RC termination to GND, $C=3 t r / Z_{O}$. This consumes no DC current with outputs in either state. If this is used on a TRI-STATE bus, then the quiescent voltage on the line can be established at $V_{C C}$ or GND by a high value pull up (down) resistor to the appropriate supply rail.

TL/F/9607-24
c. Thevenin Termination
$\mathbf{R T}=\mathbf{2} \mathbf{Z}_{\mathbf{o}}{ }^{\prime}$

TL/F/9607-26
b. RT to GND

$$
\mathbf{R} \mathbf{T}=\mathbf{Z}_{\mathbf{O}^{\prime}}
$$

TL/F/9607-25
d. AC Termination to GND $\mathbf{R}_{\mathbf{T}}+\mathbf{X}_{\mathbf{C T}}=\mathbf{Z}_{\mathbf{O}}{ }^{\prime}$

FIGURE 3-13. Parallel Terminated

e) 20
e) $2 \Omega V_{C C}$

Impedance

FIGURE 3-14. Typical Dynamic Impedance of Unbypassed Vcc Runs

This diagram shows several schemes for power and ground distribution on logic boards. Figure $3-14$ is a cross-section, with a, b, and c showing a 0.1 inch wide $V_{C C}$ bus and ground on the opposite side. Figure $3-14 d$ shows side-byside V_{CC} and ground strips, each 0.04 inch wide. Figure 3-14e shows a four layer board with embedded power and ground planes.
In Figure 3-14a, the dynamic impedance of $V_{C C}$ with respect to ground is 50Ω, even though the $V_{C C}$ trace width is generous and there is a complete ground plane. In Figure 3-14b, the ground plane stops just below the edge of the $V_{C C}$ bus and the dynamic impedance doubles to 100Ω. In Figure $3-14 c$, the ground bus is also 0.1 inch wide and runs along under the V_{CC} bus and exhibits a dynamic impedance of about 68л. In Figure 3-14d, the trace widths and spacing are such that the traces can run under a DIP, between two
rows of pins. The impedance of the power and ground planes in Figure 3-14e is typically less than 2Ω.
These typical dynamic impedances point out why a sudden current demand due to an IC output switching can cause a momentary reduction in V_{C}, unless a bypass capacitor is located near the IC.
Decoupling capacitors should be used on every PC card, at least one for every five to ten standard TTL packages, one for every five 'LS and 'S packages, one for every three FAST packages, and one for every one-shot (monostable), line driver and line receiver package. They should be good quality rf capacitors of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ with short leads. It is particularly important to place good if capacitors near sequential (bistable) devices. In addition, a larger capacitor (preferably a tantalum capacitor) of $2.0 \mu \mathrm{~F}$ to $20 \mu \mathrm{~F}$ should be included on each card.

FIGURE 3-15. Icc Drain Due to Line Driving

Decoupling (Continued)

This diagram illustrates the sudden demand for current from $V_{C C}$ when a buffer output forces a LOW-to-HIGH transition into the midpoint of a data bus. The sketch shows a wire-over-ground transmission line, but it could also be a twisted pair, flat cable or PC interconnect.
The buffer output effectively sees two 100Ω lines in parallel and thus a 50Ω load. For this value of load impedance, the buffer output will force an initial LOW-to-HIGH transition from 0.2 V to 2.7 V in about 3 ns . This net charge of 2.5 V into a 50 load causes an output-HIGH current change of 50 mA . If all eight outputs of an octal buffer switch simultaneously, in this application the current demand on $V_{C C}$ would be 0.4 A . Clearly, a nearby $\mathrm{V}_{C C}$ bypass capacitor is needed to accommodate this demand.

TL/F/9607-30
FIGURE 3-16. V ${ }_{\text {CC }}$ Bypass Capacitor for Octal Driver
Specify $V_{C C}$ Droop $=0.1 \mathrm{~V}$ max.
$C=\frac{0.4 \times 3 \times 10^{-9}}{0.1}=12 \times 10^{-9}=0.012 \mu \mathrm{~F}$
Select $C_{B} \geq 0.02 \mu \mathrm{~F}$
A $V_{C C}$ bus with bypass capacitors connected periodically along its length is shown above. Also shown is a current source representing the current demand of the buffer in the preceding application.
The equations illustrate an approximation method of estimating the size of a bypass capacitor based on the current demand, the drop in $V_{C C}$ that can be tolerated and the length of time that the capacitor must supply the charge. While the demand is known, the other two parameters must be chosen. A $V_{C C}$ droop of 0.1 V will not cause any appreciable change in performance, while a time duration of 3 ns is long enough for other nearby bypass capacitors to help supply charge. If the current demand continues over a long period of time, charge must be supplied by a very large capacitor on the board. This is the reason for the recommendation that a large capacitor be located where $V_{C C}$ comes onto a board. If the buffers are also located near the connector end of the board, the large capacitor helps supply charge sooner.

Design Guidelines

GROUND

A good ground system is essential for a PC card containing a large number of packages. The ground can either be a good ground bus, or better, a ground plane which, incorporated with the V_{CC} supply, forms a transmission line power system. Power transmission systems, which can be attached to a PC card to give an excellent power system without the cost of a multilayer PC card, are commercially available. Ground loops on or off PC cards are to be avoided unless they approximate a ground plane.
With the advent of FAST, with considerably faster edge rates and switching times, proper grounding practice has become of primary concern in printed circuit layout. Poor circuit grounding layout techniques may result in crosstalk and slowed switching rates. This reduces overall circuit performance and may necessitate costly redesign. Also when FAST chips are substituted for standard TTL-designed printed circuit boards, faster edge rates can cause noise problems. The source of these problems can be sorted into three categories:

1. $V_{C C}$ droop due to faster load capacitance charging;
2. Coupling via ground paths adjacent to both signal sources and loads; and
3. Crosstalk caused by parallel signal paths.
$V_{C C}$ droop can be remedied with better or more bypassing to ground. The rule here is to place $0.01 \mu \mathrm{~F}$ capacitors from $V_{C C}$ to ground for every three FAST circuits used, as near the IC as possible. The other two problems are not as easily corrected, because PC boards, may already be manufactured and utilized. In this case, simply replacing TTL circuits with FAST compatible circuits is not always as easy as it may seem, especially on two-sided boards. In this situation IC placement is critical at high speeds. Also when designing high density circuit layout, a ground-plane layer is imperative to provide both a sufficiently low inductance current return path and to provide electromagnetic and electrostatic shieiding linus prevenling noise problem 2 and reducing, by a large degree, noise problem 3.

TWO-SIDED PC BOARD LAYOUT

When considering the two-sided PC board, more than one ground trace is often found in a parallel or non-parallel configuration. For this illustration parallel traces tied together at one end are shown. This arrangement is referred to as a ground comb. The ground comb is placed on one side of the PC board while the signal traces are on the other side, thus the two-sided circuit board.

Design Guidelines (Continued)

FIGURE 3-18

Figure 3-18 illustrates how noise is generated even though there is no apparent means of crosstalk between the circuits. If package A has an output which drives package D input and package B output drives package C input, there is no apparent path for crosstalk since mutual signal traces
are remotely located. What is significant, and must be emphasized here, is that circuit packages A and B accept their ground link from the same trace. Hence, circuit A may weil couple noise to circuit B via the common or shared portion of the trace. This is especially true at high switching speeds.

FIGURE 3-19. Ground Trace Coupling

Design Guidelines (Continued)

Ground trace noise coupling is illustrated by a model circuit in Figure 3-19. With the ground comb configuration, the ground strips may be shown to contain distributed inductance, as is indeed the case. Referring to Figure 3-19 we can see that if we switch gate A from HIGH to LOW, the current for the transition is drawn from ground strip number two. Current flows in the direction indicated by the arrow to the common tie point. It can be seen that gate B shares ground strip number two with gate A from the point where gate B is grounded back to the common tie point. This length is represented by L1. When A switches states there is a current transient which occurs on the ground strip in the positive direction. This current spike is caused by the ground strip inductance and it is "felt" by gate B. If gate B is in a LOW state ($V_{O L}$) the spike will appear on the output since gate B 's V_{OL} level is with reference to ground. Thus if gate B 's ground reference rises momentarily V_{OL} will also rise. Consequently, if gate B is output to another gate (C in the illustration) problems may arise.

SUPPLY VOLTAGE AND TEMPERATURE

The normal supply voltage V_{CC} for all TTL circuits is +5.0 V . Commercial grade parts are guaranteed to perform with a $\pm 10 \%$ supply tolerance ($\pm 500 \mathrm{mV}$) over an ambient temperature range of $0^{\circ} \mathrm{C}$. Military grade parts are guaranteed to perform with $\pm 10 \%$ supply tolerance ($\pm 500 \mathrm{mV}$) over an ambient temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The actual junction temperature can be calculated by multiplying the power dissipation of the device with the thermal resistance of the package and adding it to the measured ambient temperature T_{A} or package (case) temperature T_{C}. For example, a device in ceramic DIP ($\theta \mathrm{JA} 100^{\circ} \mathrm{C} / \mathrm{W}$) dissipates typically 145 mW . At $+55^{\circ} \mathrm{C}$ ambient temperature, the junction temperature is

$$
T_{J}=(0.145 \times 100)+55^{\circ} \mathrm{C}
$$

Designers should note that localized temperatures can rise well above the general ambient in a system enclosure. On a large PC board mounted in a horizontal plane, for example, the local temperature surrounding an IC in the middle of the board can be quite high due to the heating effect of the
surrounding packages and the very poor natural convection. Low velocity forced air cooling is usually sufficient to alleviate such localized static air conditions.

INTERFACING

All TTL circuits are compatible, and any TTL output can drive a certain number of TTL inputs. There are only subtle differences in the worst-case noise immunity when low power, standard and Schottky TTL circuits are intermixed. Open-collector outputs, however, require a pull-up resistor to drive TTL inputs reliably.
While TTL is the dominating logic family, and many systems use TTL exclusively, there are cases where different semiconductor technologies are used in one system, either to improve the performance or to lower the cost, size and power dissipation. The following explains how TTL circuits can interface with ECL, CMOS and discrete transistors.
Interfacing TTL and ECL-Mixing ECL and TTL logic families offers the design engineer a new level of freedom and opens the entire VHF frequency spectrum to the advantages of digital measurement, control and logic operation.
The main advantages gained with ECL are high speed, flexibility, design versatility and transmission line compatibility. But application and interfacing cost problems have traditionally discouraged the use of ECL in many areas, particularly in low cost, less sophisticated systems.
The most practical interfacing method for smaller systems involves using a common supply of +5.0 V to +5.2 V . Care must be exercised with both logic families when using this technique to assure proper bypassing of the power supply to prevent any coupling of noise between circuit families. When larger systems are operated on a common supply, separate power buses to each logic family help prevent problems. Otherwise, good high frequency bypassing techniques are usually sufficient.
ECL devices have high input impedance with input pulldown resistors ($>20 \mathrm{k} \Omega$) to the negative supply. In the TTL to ECL interface circuits in Figure 3-20, it is assumed that the ECL devices have high input impedance.

FIGURE 3-20. TTL-to-ECL Conversion

Design Guidelines (Continued)

All circuits described operate with $\pm 5 \%$ ECL and $\pm 10 \%$ TTL supply variations, except those with ECL and TTL on a common supply. In those cases, the supply can be $\pm 10 \%$ with ECL. All resistors are $1 / 4 \mathrm{~W}, \pm 5 \%$ composition type.
TTL to ECL conversion is easily accomplished with resistors, which simultaneously attenuate the TTL signal swing, shift the signal levels, and provide low impedance for damping and immunity to stray noise pick-up. The resistors should be located as near as possible to the ECL circuit for optimum effect. The circuits in Figure 3-20 assume an unloaded TTL gate as the standard TTL source. ECL input impedance is predominantly capacitive (approximately 3 pF); the net RC time constant of this capacitance with the indicated resistors assures a net propagation delay governed primarily by the TTL signal.

FIGURE 3-21. ECL-to-TTL Conversion

When interfacing between high voltage swing TTL logic and low voltage swing ECL logic, the more difficult conversion is from ECL to TTL. This requires a voltage amplifier to build up the 0.8 V logic swing to a minimum of 2.5 V . The circuits shown in Figure 3-21 may be used to interface from ECL to TTL.
The higher speed converters usually have the lowest fanout: only one or two TTL gates. This fanout can be increased simply by adding a TTL. buffer gate to the output of the converter. Another option, where ultimate speed is required, is to use additional logic converters.
Interfacing FAST and CMOS-Due to their wide operating voltage range, CMOS devices will function outside of the standard $\pm 5 \mathrm{~V} \pm 10 \%$ supply levels. For our purposes, only the case where both the FAST and CMOS devices are connected to the same voltage source will be considered.
FAST outputs can sink at least 20 mA in the LOW state. This is more than adequate to drive CMOS inputs to a valid LOW level. Due to their output designs, though, FAST outputs are unable to pull CMOS inputs to above approximately 4.0 V . If the CMOS device does not have TTL-compatible input levels, the FAST output should be pulled with a resistor to V_{CC}. The value of this resistor will vary according to the system. Factors that affect the selection of the value are: edge rate- the smaller the resistor, the faster the edge rate; fanout-the smaller the resistor, the greater the fanout; and noise margins-the smaller the resistor, the greater the output HIGH noise margin and the smaller the output LOW noise margin. FAST outputs can directly drive TTL-compatible CMOS inputs, such as the inputs on ACT or HCT devices, without pull up registers.
Most CMOS outputs are capable of directly driving FAST inputs. Be aware, though, that TTL inputs have higher loading specifications than CMOS inputs. Care must be taken to insure that the CMOS outputs are not overloaded by the FAST input loading.
TTL Driving Transistors-Although high voltage, high current ICs are available, it is sometimes necessary to control greater currents or voltages than integrated circuits are capable of handling. When this condition arises, a discrete transistor with sufficient capacity can be driven from a TTL output. Discrete transistors are also used to shift voltages from TTL levels to logic levels for which a standard interface driver is not available.
The two circuits of Figure 3-22 show how TTL can drive npn transistors. The first circuit is the most efficient but requires an open-collector TTL output. The other circuit limits the output current from the TTL totem pole output through a series resistor.

FIGURE 3-22. TTL Driving npn Transistors

> TL/F/9607-39

FIGURE 3-23. pnp Transistor Shifting TTL Output

Shifting a TTL Output to Negative Levels-The circuit of Figure 3-23 uses a pnp transistor to shift the TTL output to a negative level. When the TTL output is HIGH, the transistor is cut off and the output voltage is $-V x$. When the TTL output is LOW, the transistor conducts and the output voltage is

$$
V_{\text {OUT }}=-V_{X}+R_{1} / R_{2}\left(V_{C C}-2.0 V\right)
$$

if the transicter is not saturatod, or slightly positivo if tho transistor is allowed to saturate.

High Voltage Drivers-A TTL output can be used to drive high voltage, low current loads through the simple, non-inverting circuits shown in Figure 3-24. This can be useful for driving gas discharge displays or small relays, where the TTL output can handle the current but not the voltage. Load current should not exceed $\mathrm{IOL}_{\mathrm{OL}}(-4 \mathrm{~mA})$.
a.

Transistors Driving TTL—It is sometimes difficult to drive the relatively low impedance and narrow voltage range of TTL inputs directly from external sources, particularly in a rough, electrically noisy environment. The circuits shown in Figure $3-25$ can handle input signal swings in excess of $\pm 100 \mathrm{~V}$ without harming the circuits. The second circuit has input RC filter that suppresses noise. Unambiguous TTL voltage levels are generated by the positive feedback (Schmitt trigger) connection.

Open Collector Outputs

A number of available circuits have no pull-up circuit on the outputs. Open collector outputs are used for interfacing or for wired-OR (actually wired-AND) functions. The latter is achieved by connecting open collector outputs together and adding an external pull-up resistor.
The value of the pull-up resistor is determined by considering the fanout of the OR tie and the number of devices in the OR tie. The pull-up resistor value is chosen from a range between maximum value (established to maintain the required V_{OH} with all the OR-tied outputs HIGH) and a minimum value (established so that the OR tie fanout is not exceeded when only one output is LOW).

Minimum and Maximum Pull-up Resistor Values

$$
\begin{aligned}
& R_{X(M I N)}=\left(\frac{V_{C C(M A X)}-V_{O L}}{I_{O L}-N_{2}(L O W) \cdot 1.6 \mathrm{~mA}}\right) \\
& R_{X(M A X)}=\left(\frac{V_{C C(M I N)}-V_{O H}}{N_{1} l_{O H}+N_{2}(H I G H) \cdot 40 \mu \mathrm{~A}}\right)
\end{aligned}
$$

where:

$$
\begin{aligned}
\mathrm{R}_{\mathrm{X}} & =\text { External pull-up resistor } \\
\mathrm{N}_{1} & =\text { Number of wired-OR outputs } \\
\mathrm{N}_{2} & =\text { Number of input unit loads being driven } \\
\mathrm{I}_{\mathrm{OH}} & =\mathrm{I}_{\mathrm{CEX}}=\text { Output HIGH leakage current } \\
\mathrm{I}_{\mathrm{OL}} & =\text { LOW level fanout current of driving element } \\
\mathrm{V}_{\mathrm{OL}} & =\text { Output LOW voltage level }(0.5 \mathrm{~V}) \\
\mathrm{V}_{\mathrm{OH}} & =\text { Output HIGH voltage level }(2.5 \mathrm{~V}) \\
\mathrm{V}_{\mathrm{CC}} & =\text { Power Supply Voltage }
\end{aligned}
$$

Example: four 'F524 gate outputs driving four other gates or MSI inputs.

$$
\begin{gathered}
\mathrm{R}_{\mathrm{X}(\mathrm{MIN})}=\left(\frac{5.5 \mathrm{~V}-0.5 \mathrm{~V}}{8.0 \mathrm{~mA}-2.4 \mathrm{~mA}}=\frac{5.0 \mathrm{~V}}{5.6 \mathrm{~mA}}\right)=893 \Omega \\
\mathrm{RXX}_{\mathrm{X}(\mathrm{MAX})}=\left(\frac{4.5 \mathrm{~V}-2.5 \mathrm{~V}}{4 \bullet 250 \mu \mathrm{~A}+2 \bullet 40 \mu \mathrm{~A}}=\frac{2.0 \mathrm{~V}}{1.08 \mathrm{~mA}}\right)=1852 \Omega
\end{gathered}
$$

where:

$$
\begin{aligned}
\mathrm{N}_{1} & =4 \\
\mathrm{~N}_{2}(\mathrm{HIGH}) & =4 \cdot 0.5 \mathrm{U} . \mathrm{L} .=2 \mathrm{U} . \mathrm{L} . \\
\mathrm{N}_{2}(\mathrm{LOW}) & =4 \cdot 0375 \mathrm{U} . \mathrm{L} .=1.5 \mathrm{U} . \mathrm{L} . \\
\mathrm{I}_{\mathrm{OH}} & =250 \mu \mathrm{~A} \\
\mathrm{I}_{\mathrm{OL}} & =8.0 \mathrm{~mA} \\
\mathrm{~V}_{\mathrm{OL}} & =0.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{OH}} & =2.5 \mathrm{~V}
\end{aligned}
$$

Any values of pull-up resistor between 893Ω and 1852Ω can be used. The lower values yield the fastest speeds while the higher values yield the lowest power dissipation.

Increasing Fanout

To increase fanout, inputs and outputs of gates on the same package may be paralleled to those in a single package to avoid large transient supply currents due to different switching times of the gates. This is not detrimental to the devices, but could cause logic problems if the gates are being used as clock drivers.

Unused Inputs

Theoretically, an unconnected input assumes the HIGH logic level, but practically speaking it is in an undefined logic state because it tends to act as an antenna for noise. Only a few hundred millivolts of noise may cause the unconnected input to go to the logic LOW state. On devices with memory (flip-flops, latches, registers, counters), it is particularly important to terminate unused inputs (MR, PE, PL, CP) properly since a noise spike on these inputs might change the contents of the memory. It is a poor design practice to leave unused inputs floating.
If the logic function calls for a LOW input, such as in NOR or OR gates, the input can be connected directly to ground. For a permanent HIGH signal, unused inputs can be tied directly to $V_{C C}$. An unused input may also be tied to a used input having the same logic function, such as NAND and AND gates, provided that the driver can handle the added $I_{I H}$. This practice is not recommended for diode-type inputs in a noisy environment, since each diode represents a small capacitor and two or more in parallel can act as an entry port for negative spikes superimposed on a HIGH level and cause momentary turn-off of Q2.

Section 4
 Advanced Schottky TTL Datasheets

Section 4 Contents
54F/74F00 Quad 2-Input NAND Gate . 4 .6

54F/74F02 Quad 2-Input NOR Gate .
54F/74F04 Hex Inverter. 4-12
54F/74F08 Quad 2-Input AND Gate . 4 .-15
54F/74F10 Triple 3-Input NAND Gate .
54F/74F11 Triple 3-Input AND Gate . 4-21
54F/74F13 Dual 4-Input NAND Schmitt Trigger 4-24
54F/74F14 Hex Inverter Schmitt Trigger. .
54F/74F20 Dual 4-Input NAND Gate . 4-30
54F/74F27 Triple 3-Input NOR Gate . 4-32
54F/74F30 8-Input NAND Gate . 4-35
54F/74F32 Quad 2-Input OR Gate. 4 . 38
54F/74F37 Quad 2-Input NAND Buffer . 4-41
54F/74F38 Quad 2-Input NAND Buffer (Open Collector) . 4-44
54F/74F40 Dual 4-Input NAND Buffer. $4-47$
54F/74F51 2-2-2-3 AND-OR-Invert Gate $4-50$
54F/74F64 4-2-3-2-Input AND-OR-Invert Gate . 4-53
54F/74F74 Dual D-Type Positive Edge-Triggered Flip-Flop . 4-56
54F/74F86 Quad 2-Input Exclusive-OR Gate .. . 4-60
54F/74F109 Dual JK Positive Edge-Triggered Flip-Flop . 4-63
54F/74F.112 Dual JK Negative Edge-Triggered Flip-Flop . 4-67
54F/74F113 Dual JK Negative Edge-Triggered Flip-Flop . 4-71
54F/74F114 Dual JK Negative Edge-Triggered Flip-Flop w/Common Clocks and Clears 4-75
54F/74F125 Quad Buffer (TRI-STATE) . 4-79
54F/74F132 Quad 2-Input NAND Schmitt Trigger . 4-82
54F/74F138 1-of-8 Decoder/Demultiplexer . 4-85
54F/74F139 Dual 1-of-4 Decoder/Demultiplexer .. 4-89
54F/74F148 8-Line to 3-Line Priority Encoder . 4-93
54F/74F151A 8-Input Multiplexer. 4 .97
54F/74F153 Dual 4-Input Multiplexer . 4-101
54F/74F157A Quad 2-Input Multiplexer . 4-105
54F/74F158A Quad 2-Input Multiplexer (Inverted) 4-109
54F/74F160A Synchronous Presettable BCD Decade Counter (Asynchronous Reset) 4-113
54F/74F162A Synchronous Presettable BCD Decade Counter (Synchronous Reset) 4-113
54F/74F161A Synchronous Presettable Binary Counter (Asynchronous Reset) 4-120
54F/74F163A Synchronous Presettable Binary Counter (Synchronous Reset) 4-120
54F/74F164 Serial-In, Parallel-Out Shift Register 4-126
54F/74F168 4-Stage Synchronous Bidirectional Counter 4-130
54F/74F169 4-Stage Synchronous Bidirectional Counter 4-130
54F/74F174 Hex D Flip-Flop w/Master Reset . 4-136
54F/74F175 Quad D Flip-Flop 4 .140
54F/74F181 4-Bit Arithmetic Logic Unit . 4-144
54F/74F182 Carry Lookahead Generator. 4-150
54F/74F189 64-Bit Random Access Memory w/TRI-STATE Outputs.......................... . . 4-155
54F/74F190 Up/Down Decade Counter w/Preset and Ripple Clock 4-159
54F/74F191 Up/Down Binary Counter w/Preset and Ripple Clock . 4-164
54F/74F192 Up/Down Decade Counter w/Separate Up/Down Clocks . 4-169
54F/74F193 Up/Down Binary Counter w/Separate Up/Down Clocks 4-174
Section 4 Contents (Continued)
54F/74F194 4-Bit Bidirectional Universal Shift Register 4-179
54F/74F219 64-Bit Random Access Memory w/TRI-STATE Outputs 4-183
54F/74F240 Octal Buffer/Line Driver w/TRI-STATE Outputs (Inverting) 4-187
54F/74F241 Octal Buffer/Line Driver w/TRI-STATE Outputs 4-187
54F/74F244 Octal Buffer/Line Driver w/TRI-STATE Outputs 4-187
54F/74F242 Quad Bus Transceiver w/TRI-STATE Outputs 4-191
54F/74F243 Quad Bus Transceiver w/TRI-STATE Output 4-192
54F/74F245 Octal Bidirectional Transceiver w/TRI-STATE Outputs 4-195
54F/74F251A 8-Input Multiplexer w/TRI-STATE Outputs 4-199
54F/74F253 Dual 4-Bit Multiplexer w/TRI-STATE Outputs 4-203
54F/74F256 Dual 4-Bit Addressable Latch 4-207
54F/74F257A Quad 2-Input Multiplexer w/TRI-STATE Outputs 4-209
54F/74F258A Quad 2-Input Multiplexer w/TRI-STATE Outputs (Inverting) 4-213
54F/74F259 8-Bit Addressable Latch 4-217
54F/74F269 8-Bit Bidirectional Binary Counter 4-219
54F/74F273 Octal D Flip-Flop 4-223
54F/74F280 9-Bit Parity Generator/Checker 4-225
54F/74F283 4-Bit Binary Full Adder w/Fast Carry 4-229
54F/74F298 Quad 2-Input Multiplexer with Storage 4-234
54F/74F299 8-Bit Universal Shift/Storage Register w/Common Parallel I/O Pins 4-235
54F/74F322 8-Bit Serial/Parallel Register w/Sign Extend 4-240
54F/74F323 8-Bit Universal Shift/Storage Register w/Synchronous Reset and Common I/O Pins 4-245
54F/74F350 4-Bit Shifter w/TRI-STATE Outputs 4-250
54F/74F352 Dual 4-Input Multiplexer 4-256
54F/74F353 Dual 4-Input Multiplexer w/TRI-STATE Outputs 4-260
54F/74F365 Hex Buffer/Driver w/TRI-STATE Outputs 4-264
54F/74F366 Hex Inverter/Buffer w/TRI-STATE Outputs 4-267
54F/74F368 Hex Inverter/Buffer w/TRI-STATE Outputs 4-267
54F/74F373 Octal Transparent Latch w/TRI-STATE Outputs 4-271
54F/74F374 Octal D-Type Flip-Flop w/TRI-STATE Outputs 4-275
54F/74F377 Octal D-Type Flip-Flop w/Clock Enable 4-279
54F/74F378 Parallel D Register with Enable 4-281
54F/74F379 Quad Parallel Register with Enable 4-285
54F/74F381 4-Bit Arithmetic Logic Unit 4-289
54F/74F382 4-Bit Arithmetic Logic Unit 4-295
54F/74F385 Quad Serial Adder/Subtracter 4-301
54F/74F395 4-Bit Cascadable Shift Register w/TRI-STATE Outputs 4-306
54F/74F398 Quad 2-Port Register 4-308
54F/74F399 Quad 2-Port Register 4-308
54F/74F401 Cyclic Redundancy Check Generator/Checker 4-313
54F/74F402 Serial Data Polynomial Generator/Checker 4-318
54F/74F403 16×4 First-In First-Out Buffer Memory 4-326
54F/74F407 Data Access Register 4-343
54F/74F410 Register Stack-16 $\times 4$ RAM TRI-STATE Output Register 4-350
54F/74F412 Multi-Mode Buffered 8-Bit Latch w/TRI-STATE Outputs 4-354
54F/74F413 64×4 First-In First-Out Buffer Memory w/Parallel I/O 4-359
54F/74F420 Paralleled Check Bit/Syndrome Bit Generator 4-363
54F/74F432 Multi-Mode Buffered 8-Bit Latch w/TRI-STATE Output 4-368
54F/74F433 64×4 First-In First-Out Buffer Memory 4-374
54F/74F521 8-Bit Identity Comparator 4-388
54F/74F524 8-Bit Registered Comparator 4-392
Section 4 Contents (Continued)
54F/74F525 16-Bit Programmable Counter 4-399
54F/74F533 Octal Transparent Latch w/TRI-STATE Outputs 4-406
54F/74F534 Octal D Flip-Flop w/TRI-STATE Outputs 4-410
54F/74F537 1-of-10 Decoder w/TRI-STATE Outputs 4-414
54F/74F538 1-of-8 Decoder w/TRI-STATE Outputs 4-418
54F/74F539 Dual 1-of-4 Decoder w/TRI-STATE Outputs 4-422
54F/74F540 Octal Buffer/Line Driver w/TRI-STATE Outputs (Inverting) 4-426
54F/74F541 Octal Buffer/Line Driver w/TRI-STATE Outputs 4-426
54F/74F543 Octal Registered Transceiver 4-430
54F/74F544 Octal Registered Transceiver (Inverting in Both Directions) 4-435
54F/74F545 Octal Bidirectional Transceiver w/TRI-STATE Outputs 4-440
54F/74F547 Octal Decoder/Demultiplexer w/Address Latches and Acknowledge 4-443
54F/74F548 Octal Decoder/Demultiplexer w/Acknowledge 4-448
54F/74F550 Octal Registered Transceiver w/Status Flags 4-452
54F/74F551 Octal Registered Transceiver w/Status Flags 4-452
54F/74F552 Octal Registered Transceiver w/Parity and Flags 4-458
54F/74F563 Octal D-Type Latch w/TRI-STATE Outputs 4-464
54F/74F564 Octal D-Type Flip-Flop w/TRI-STATE Outputs 4-468
54F/74F568 4-Bit Bidirectional Decade Counter w/TRI-STATE Outputs 4-472
54F/74F569 4-Bit Bidirectional Binary Counter w/TRI-STATE Outputs 4-472
54F/74F573 Octal D-Type Latch w/TRI-STATE Outputs 4-483
54F/74F574 Octal D-Type Flip-Flop w/TRI-STATE Outputs 4-487
54F/74F579 8-Bit Bidirectional Binary Counter w/TRI-STATE Outputs 4-491
54F/74F582 4-Bit BCD Arithmetic Logic Unit 4-493
54F/74F583 4-Bit BCD Adder 4-497
54F/74F588 Octal Bidirectional Transceiver with IEEE-488 Termination Resistors and TRI-STATE Inputs/Outputs 4-501
54F/74F595 8-Bit Shift Register w/Output Latches 4-505
54F/74F597 8-Bit Shift Register 4-507
54F/74F598 8-Bit Shift Register 4-509
54F/74F620 Inverting Octal Bus Transceiver w/TRI-STATE Outputs 4-511
54F/74F623 Inverting Octal Bus Transceiver w/TRI-STATE Outputs 4-511
54F/74F632 32-Bit Parallel Error Detection and Correction Circuit 4-513
54F/74F646 Octal Transceiver/Register w/TRI-STATE Outputs 4-525
54F/74F648 Octal Transceiver/Register w/TRI-STATE Outputs 4-525
54F/74F651 Octal Transceiver/Register w/TRI-STATE Outputs (Inverting) 4-532
54F/74F652 Octal Transceiver/Register w/TRI-STATE Outputs 4-532
54F/74F657 Octal Bidirectional Transceiver with 8-Bit Parity Generator/Checker and TRI-STATE Outputs 4-538
54F/74F673A 16-Bit Serial-In, Serial/Parallel-Out Shift Register (Common Serial I/O Pin) 4-543
54F/74F674 16-Bit Serial/Parallel-In, Serial-Out Shift Register (Common Serial I/O Pin) 4-548
54F/74F675A 16-Bit Serial-In, Serial/Parallel-Out Shift Register 4-550
54F/74F676 16-Bit Serial/Parallel-In, Serial-Out Shift Register 4-554
54F/74F701 Register/Counter/Comparator 4-558
54F/74F702 Read-Back Transceiver 4-560
54F/74F707 400 MHz 8 -Bit TTL-ECL Register 4-562
54F/74F710 400 MHz Single Supply TTL-ECL Shift Register 4-564
54F/74F779 8-Bit Bidirectional Binary Counter w/TRI-STATE Outputs 4-566
54F/74F821 10-Bit D-Type Flip-Flop 4-568
54F/74F823 9-Bit D-Type Flip-Flop 4-572
54F/74F825 8-Bit D-Type Flip-Flop 4-576
54F/74F827 10-Bit Buffer/Line Driver 4-580
Section 4 Contents (Continued)
54F/74F828 10-Bit Buffer/Line Driver 4-580
54F/74F841 10-Bit Transparent Latch 4-585
54F/74F843 9-Bit Transparent Latch 4-589
54F/74F845 8-Bit Transparent Latch 4-593
54F/74F968 1 Megabit Dynamic RAM Controller 4-598
54F/74F978 Octal Flip-Flop w/Serial Scanner 4-610
29F52 8-Bit Registered Transceiver 4-611
29F53 8-Bit Registered Transceiver 4-611
29F68 Dynamic RAM Controller 4-617
29F524 Dual Pipeline Register (7 Deep) 4-628
29F525 Dual Pipeline Register (8 Deep) 4-628

54F/74F00
 Quad 2-Input NAND Gate

Ordering Code: See Section 5

Logic Symbol

EEE/IEC

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

L/F/9454-1

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\begin{aligned} & A_{n}, B_{n} \\ & \overline{\mathrm{O}}_{\mathrm{n}} \end{aligned}$	Inputs Outputs	$\begin{aligned} & 1.0 / 1.0 \\ & 50 / 33.3 \end{aligned}$	$\begin{gathered} 20 \mu \mathrm{~A} /-0.6 \mathrm{~mA} \\ -1 \mathrm{~mA} / 20 \mathrm{~mA} \end{gathered}$

Absolute Maximum Ratings (Note 1)

If Milltary/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE® Output
Current Applied to Output in LOW State (Max)

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Recommended Operating Conditions
Free Air Ambient Temperature Military Commercial
Supply Voltage Military
Commercial

Note 1: Absolute maximur be damaged or have its useful these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathbf{V}_{\mathbf{C c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}-20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			1.9	2.8	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			6.8	10.2	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n}, B_{n} to \bar{O}_{n}	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.3 \\ & \hline \end{aligned}$	ns	2-3

54F/74F02

Quad 2-Input NOR Gate

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for LCC and PCC
$A_{1} N C \bar{o}_{1} N C B_{0}$ 8 7 6 64

14 15 困 178
$\overline{\mathrm{O}}_{3}$ NC A_{2} NC B_{2}

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	$54 \mathrm{~F} / 74 \mathrm{~F}$		
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{\mathrm{n}}$	Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

[^2]
Recommended Operating

 Conditions| Free Air Ambient Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Military | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Commercial | |
| Supply Voltage | |
| \quad Military | +4.5 V to +5.5 V |
| Commercial | +4.5 V to +5.5 V |

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 74F 10\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCH	Power Supply Current			3.7	5.6	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\mathrm{CCL}}$	Power Supply Current			8.7	13.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MiI} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {pHL }}$	Propagation Delay $A_{n}, B_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.3 \end{aligned}$	ns	2-3

54F/74F04
Hex Inverter

Ordering Code: See Section 5
Logic Symbol

Connection Diagrams

TL/F/9456-1
Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	$54 \mathrm{~F} / 74 \mathrm{~F}$		
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output I $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{\mathrm{n}}$	Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	$+4.5 \mathrm{to}+5.5 \mathrm{~V}$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathbf{V}_{\mathbf{C C}}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & \text { 74F 10\% VCC } \\ & \text { 74F 5\% } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}^{2}-20 \mathrm{~m} \mathrm{\lambda} \\ & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			2.8	4.2	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			10.2	15.3	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tpHL	Propagation Delay $A_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.3 \end{aligned}$	ns	2-3

National Semiconductor

54F/74F08

Quad 2-Input AND Gate

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC
B_{1} NC A_{1} NC O_{0}

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	U.L. HIGH/LOW	
	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
O_{n}	Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature

Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$) Standard Output TRI-STATE® Output
-0.5 V to V_{CC} -0.5 V to +5.5 V

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{lOL}_{\mathrm{O}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature
Military
Commercial
Supply Voltage
Military
Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
			Min		Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}=20 \mathrm{~mA} \\ & \mathrm{IOL}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
ILL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			5.5	8.3	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			8.6	12.9	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $A_{n}, B_{n} \text { to } O_{n}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 6.3 \end{aligned}$	ns	2-3

54F/74F10
Triple 3-Input NAND Gate

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9458-1

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
$\begin{aligned} & A_{n}, B_{n}, C_{n} \\ & \bar{O}_{n} \end{aligned}$	Inputs Outputs	$\begin{gathered} 1.0 / 1.0 \\ 50 / 33.3 \end{gathered}$	$\begin{gathered} 20 \mu \mathrm{~A} /-0.6 \mathrm{~mA} \\ -1 \mathrm{~mA} / 20 \mathrm{~mA} \end{gathered}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	-55
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\circledR}$ Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values be damaged or have its useful life impair these conditions is not implied.	beyond which the device may Functional operation under
Note 2. Either voltage limit or current	

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min		Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW! Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \text { VCC } \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{CL}}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCH	Power Supply Current			1.4	2.1	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {chel }}$	Power Supply Current			5.1	7.7	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation Delay $A_{n}, B_{n}, C_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.3 \end{aligned}$	ns	2-3

National Semiconductor

54F/74F11

Triple 3-Input AND Gate

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9459-1

Unit Isadingffan Out: Seo Section 2 for U.L. definitions

Pin Names	Description	U.L. HIGH/LOW	
	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
O_{n}	Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C c}$ Pin Potential to
Ground Pin
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
Input Voltage (Note 2)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

TRI-STATE Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{IIN}^{\prime}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & \text { 74F 10\% VCC } \\ & \text { 74F 5\% } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
${ }_{1 / 1}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			4.1	6.2	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {CCLL }}$	Power Supply Current			6.5	9.7	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MII} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay $A_{n}, B_{n}, C_{n} \text { to } O_{n}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 6.5 \end{aligned}$	ns	2-3

54F/74F13
 Dual 4-Input NAND Schmitt Trigger

General Description

The 'F13 contains two 4 -input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional NAND gates.

Each circuit contains a 4 -input Schmitt trigger followed by level shifting circuitry and a standard FAST® output structure. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive- and negative-going transitions. This hysteresis between the positive-going and neg-ative-going input threshold (typically 800 mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Ordering Code: see Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9460-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{loL}_{\mathrm{OL}}$
$\begin{aligned} & A_{n}, B_{n}, C_{n}, D_{n} \\ & \bar{O}_{n} \end{aligned}$	Inputs Outputs	$\begin{aligned} & 1.0 / 1.0 \\ & 50 / 33.3 \end{aligned}$	$\begin{gathered} 20 \mu \mathrm{~A} /-0.6 \mathrm{~mA} \\ -1 \mathrm{~mA} / 20 \mathrm{~mA} \end{gathered}$

Function Table

Inputs				Output
A	B	C	D	$\overline{\mathbf{O}}$
L	X	X	X	H
X	L	X	X	H $=$ HIGH Voltage Level
X	X	L	X	H
X	X	X	L	H
H	H	H Immaterial		

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\circledR}$ Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } V_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are valu be damaged or have its useful life impair these conditions is not implied.	beyond which the device may Functional operation under
Note 2: Either voltage limit or current	to protect inputs.

Storage Temperature
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } \mathrm{VCC} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under endions is not implied
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Commercial	
Supply Voltage	+4.5 V to +5.5 V
\quad Military	+4.5 V to +5.5 V
Commercial	

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Threshold		1.5		2.0	V	5.0	
V_{T-}	Negative-Going Threshold		0.7		1.1	V	5.0	
ΔV_{T}	Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)		0.4		-	V	5.0	
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
ILL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			4.5	8.5	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {c CCL }}$	Power Supply Current			7.0	10.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	5.0		10.5	3.0	16.0	4.5	12.0	ns	2-3
$\mathrm{t}_{\text {PHL }}$	$A_{n}, B_{n}, C_{n}, D_{n}$ to \bar{O}_{n}	9.5		17.5	8.5	22.0	9.5	18.5	ns	2-3

54F/74F14
 Hex Inverter Schmitt Trigger

General Description

The 'F14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.
Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL totempole output. The Schmitt trigger uses positive feed back to
effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for LCC and PCC
I_{2} NC \bar{o}_{1} NC I_{1}

TL/F/9461-2

Unit Loading/Fan Out: see Section 2 tor U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
	Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{\mathrm{n}}$	Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Function Table

Input	Output
A	$\overline{\mathrm{O}}$
L	H
H	L

[^3]Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to

> Ground Pin

Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE® Output
Current Applied to Output

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

in LOW State (Max)
Note 1. Absolute maximum ratings are vice the rated IOL (mA)
 these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	VCc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going	shold	1.5	1.7	2.0	V	5.0 V	
$\mathrm{V}_{\mathrm{T}-}$	Negative-Goin	eshold	0.7	0.9	1.1	V	5.0 V	
ΔV_{T}	Hysteresis (V	T-)	0.4	0.8		V	5.0 V	
$V_{C D}$	Input Clamp D	Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
VOL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
ILL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current				25	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current				25	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter							Units	Fig No
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$		$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A},}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{n} \rightarrow \bar{O}_{n}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	ns	2-3

54F/74F20

Dual 4-Input NAND Gate

Ordering Code: See Section 5

Logic Symbol
IEEE/IEC

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC
$D_{0} N C C_{0}$ NC NC

TL/F/9462-1

TL/F/9462-3
Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
$\begin{aligned} & A_{n}, B_{n}, C_{n}, D_{n} \\ & \bar{O}_{n} \end{aligned}$	Inputs Outputs	$\begin{aligned} & 1.0 / 1.0 \\ & 50 / 33.3 \end{aligned}$	$\begin{gathered} 20 \mu \mathrm{~A} /-0.6 \mathrm{~mA} \\ -1 \mathrm{~mA} / 20 \mathrm{~mA} \end{gathered}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output

$$
\begin{array}{lr}
\text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text {) } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{Cc}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{cc}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
ILL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current			0.9	1.4	mA	Max	$V_{0}=$ HIGH
${ }^{\text {CCLL }}$	Power Supply Current			3.4	5.1	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=\text { Mil } \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $A_{n}, B_{n}, C_{n}, D_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.3 \end{aligned}$	ns	2-3

54F/74F27

Triple 3-Input NOR Gate

Ordering Code: See Section 5

Logic Symbol

TL/F/9539-3

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9539-1

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $l_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\begin{aligned} & A_{n}, B_{n}, C_{n} \\ & \bar{O}_{n} \\ & \hline \end{aligned}$	Data Inputs Data Outputs	$\begin{aligned} & 1.0 / 1.0 \\ & 50 / 33.3 \end{aligned}$	$\begin{gathered} 20 \mu \mathrm{~A} /-0.6 \mathrm{~mA} \\ -1 \mathrm{~mA} / 20 \mathrm{~mA} \end{gathered}$

Function Table

Inputs			Output
$\mathbf{A}_{\boldsymbol{n}}$	$\mathbf{B}_{\boldsymbol{n}}$	$\mathbf{C}_{\boldsymbol{n}}$	$\overline{\mathbf{O}}_{\boldsymbol{n}}$
L	L	L	H
X	X	H	L
X	H	X	L
H	X	X	L

H = HIGH Voltage Level L= LOW Voltage Level $X=$ Immaterial

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature

Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE® Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	$+4.5 \mathrm{to}+5.5 \mathrm{~V}$

Current Applied to Output
in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & \text { 74F 10\% } \mathrm{VCC}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{array}{r} 2.5 \\ 2.5 \\ 2.7 \\ \hline \end{array}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{iN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			4.0	5.5	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			8.7	12.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	ns	2-3

54F/74F30
8-Input NAND Gate

Ordering Code: See Section 5 Logic Symbol

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 F / 74 F$	
		U.L. HIGH/I.OW	Input $I_{I H} / I_{\mathrm{IL}}$ Output $I_{\mathrm{C}: ~} / I_{\mathrm{CL}}$
	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}$	Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Function Table

Inputs								
A0	A1	A2	A3	A4	A5	A6	A7	Output
L	X	X	X	X	X	X	X	H
X	L	X	X	X	X	X	X	H
X	X	L	X	X	X	X	X	H
X	X	X	L	X	X	X	X	H
X	X	X	X	L	X	X	X	H
X	X	X	X	X	L	X	X	H
X	X	X	X	X	X	L	X	H
X	X	X	X	X	X	X	L	H
H	H	H	H	H	H	H	H	L

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Immaterial

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avaliability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE® Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Free Air Amber	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Commercial	
Supply Voltage	+4.5 V to +5.5 V
Military	+4.5 V to +5.5 V
Commercial	

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$V_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I_{IL}	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			0.5	1.5	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current				4.5	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MiI} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A},}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$	Propagation Delay $A_{n} \text { to } \bar{O}$	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	ns	2-3

54F/74F32

Quad 2-Input OR Gate

Ordering Code: See Section 5

Logic Symbol

IEEE/IEC

Connection Diagrams

Pin Assignment for LCC and PCC
B_{1} NC $A_{1} N C O_{0}$ 8 7 [6]

TL/F/9463-1

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	54F/74F		
		U.L. HIGH/LOW	Input $I_{I H} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
O_{n}	Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\oplus}$ Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
\\
-0.5 \mathrm{~V} \text { to } \mathrm{V} \mathrm{CC} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output
in LOW State (Max) twice the rated IOL (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
\quad Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{CL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
I_{IL}	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
l OS	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			6.1	9.2	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			10.3	15.5	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
${ }_{\text {tPLH }}$	Propagation Delay						3.0	6.6	ns	2-3
${ }_{\text {tPHL }}$	A_{n}, B_{n} to O_{n}	3.0	4.0	5.3	2.5	7.5	3.0	6.3		

National Semiconductor

54F/74F37
 Quad Two-Input NAND Buffer

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9464-1

Pin Assignment for LCC and PCC

TL/F/9464-2
Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
A_{n}, B_{n}	Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
\bar{O}_{n}	Outputs	600/106.6 (80)	-12 mA/64 mA (48 mA)

Function Table

Inputs		Output
A	B	$\overline{\mathbf{O}}$
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ HIGH Voltage Level L = LOW Voltage Level

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$V_{C C}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output $\quad-0.5 \mathrm{~V}$ to V_{CC}
TRI-STATE ${ }^{*}$ Output $\quad-0.5 \mathrm{~V}$ to +5.5 V
Current Applied to Output in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathbf{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC $74 F 5 \% V_{C C}$	$\begin{aligned} & 2.4 \\ & 2.0 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.0 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}=48 \mathrm{~mA} \\ & \mathrm{IOL}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-1.2	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-100		-225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			3.7	6.0	mA	Max	$V_{O}=\mathrm{HIGH}$
ICCL	Power Supply Current			28.0	33.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $A_{n}, B_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	ns	2-3

54F/74F38 Quad Two-Input NAND Buffer (Open Collector)

Ordering Code: See Section 5

Logic Symbol

IEEE/IEC

Connection Diagrams

Pin Assignment for LCC and PCC

TL/F/9465-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\begin{aligned} & A_{n}, B_{n} \\ & \bar{O}_{n} \end{aligned}$	Inputs Outputs	$\begin{gathered} 1.0 / 1.0 \\ O C^{*} / 106.6(80) \end{gathered}$	$\begin{gathered} 20 \mu \mathrm{~A} /-1.2 \mathrm{~mA} \\ \mathrm{OC}^{*} / 64 \mathrm{~mA}(48 \mathrm{~mA}) \end{gathered}$

$* \mathrm{OC}=$ Open Collector

Function Table

Inputs		Output
A	B	$\overline{\mathbf{O}}$
L	L	H
L	H	H
H	L	H
H	H	L

H = HIGH Voltage Level
L = LOW Voltage Level

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified contact the National Semico Distributors for availability and	devices are required, ductor Sales Office/ ecifications.
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE® Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } V_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{IOL}_{\text {(}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the be damaged or have its useful life impaired. Functional operation under these conditions is not implied.	
ote 2: Either voltage limit or current lim	fficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	54F/74F			Units	$\mathbf{V}_{\mathbf{c c}}$	Conditions
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OL}	Output LOW $54 \mathrm{~F} 10 \% \mathrm{VCC}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 10 \%$ VC			$\begin{aligned} & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
Iovi	Input HIGH Current Breakdown Test			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I_{LL}	Input LOW Current			-1.2	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
IOHC	Open Collector, Output OFF Leakage Test			250	$\mu \mathrm{A}$	Min	$V_{\text {OUT }}=V_{\text {CC }}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		2.1	7.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current		26.0	30.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tphL	Propagation Delay $A_{n}, B_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 6.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.7 \\ & 2.1 \end{aligned}$	$\begin{gathered} 12.5 \\ 5.0 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 5.5 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 5.5 \end{gathered}$	ns	2-3

54F/74F40
 Dual 4-Input NAND Buffer

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for LCC and PCC

TL/F/9466-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	545/74\%	
		U.L. HIGH/LOW	Input $I_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\begin{aligned} & A_{n}, B_{n}, C_{n}, D_{n} \\ & \bar{O}_{n} \end{aligned}$	Inputs Outputs	$\begin{gathered} 1.0 / 2.0 \\ 600 / 106.6(80) \end{gathered}$	$\begin{gathered} 20 \mu \mathrm{~A} /-1.2 \mathrm{~mA} \\ -12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA}) \end{gathered}$

Function Table

Inputs				Output
A	B	C	D	$\overline{\mathbf{O}}$
L	X	X	X	H
X	L	X	X	H
X	X	L	X	H
X	X	X	L	H
H	H	H	H	L

[^4]L = LOW Voltage Level
$X=$ Immaterial

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallablity and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$)
Standard Output

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } V_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.4 \\ & 2.0 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.0 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{IOH}^{2}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{c \mathrm{c}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{C}} \end{aligned}$			$\begin{aligned} & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}=48 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
I_{BV}	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-1.2	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-100		-225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			1.6	4.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
lCCL	Power Supply Current			13.0	17.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
${ }_{\text {tPLH }}$	Propagation Delay	2.0	3.0	6.0			1.5	7.0	ns	2-3
${ }^{\text {tpHL }}$	$A_{n}, B_{n}, C_{n}, D_{n}$ to \bar{O}_{n}	1.5	2.5	5.0			1.0	5.5	n	2

54F/74F51

2-2-2-3 AND-OR-Invert Gate

Ordering Code: See Section 5

Logic Symbol

IEEE/IEC

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9468-1

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\begin{aligned} & A_{n}, B_{n}, C_{n}, D_{n}, E_{n}, F_{n} \\ & \bar{O}_{n} \end{aligned}$	Inputs Outputs	$\begin{aligned} & 1.0 / 1.0 \\ & 50 / 33.3 \end{aligned}$	$\begin{gathered} 20 \mu \mathrm{~A} /-0.6 \mathrm{~mA} \\ -1 \mathrm{~mA} / 20 \mathrm{~mA} \end{gathered}$

Function Table for 3-Input Gates

Inputs						Output
A_{0}	$\mathrm{~B}_{0}$	C_{0}	D_{0}	E_{0}	$\mathrm{~F}_{0}$	
H	H	H	X	X	X	L
X	X	X	H	H	H	L
All other combinations						

Function Table for 2-Input Gates

Inputs				Output
A_{1}	$\mathrm{~B}_{1}$	C_{1}	D_{1}	
H	H	X	X	L
X	X	H	H	L
All other combinations				H

$H=H I G H$ Voltage Level
$L=$ LOW Voltage Level
$X=$ Immaterial

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC}
TRI-STATE ${ }^{\circledR}$ Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature
Military $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Commercial $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage
Military
+4.5 V to +5.5 V
Commercial

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% V V_{C}, 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	iviin	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			1.9	3.0	mA	Max	$V_{O}=$ HIGH
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			5.3	8.5	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathbf{T}_{\mathbf{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathbf{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathbf{T}_{A}, V_{C C}=\mathbf{M i l} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Comm} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $A_{n}, B_{n}, C_{n}, D_{n}, E_{n}, F_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 2.6 \end{aligned}$	6.0 4.0			$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	ns	2-3

54F/74F64
4-2-3-2-Input AND-OR-Invert Gate

Ordering Code: See Section 5

Logic Symbol
IEEE/IEC

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9467-1

TL/F/9467-3

Unit Lacading fFan Ou't: See Section 2 ior U.L. deiinitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / I_{\mathrm{OL}}$
	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}$	Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output

$$
-0.5 \mathrm{~V} \text { to } V_{C C}
$$ TRI-STATE® Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output

$$
\text { in LOW State (Max) } \quad \text { twice the rated } \operatorname{loL}(\mathrm{mA})
$$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\ & \text { 74F 10\% VCC } \\ & \text { 74F 5\% V } \mathrm{CC} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} \mathrm{I}_{\mathrm{OH}} & =-1 \mathrm{~mA} \\ \mathrm{IOH}_{\mathrm{OH}} & =-1 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}} & =-1 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{1 \mathrm{~N}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{C C}$
ICCH	Power Supply Current			1.9	2.8	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {ICCL }}$	Power Supply Current			3.1	4.7	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54 F		74F		Units	Fig No
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ C_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}, \mathrm{D}_{\mathrm{n}}$ to $\overline{\mathrm{O}}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	4.6 3.2	6.5 4.5	2.5 1.5	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	2.5 1.5	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	ns	2-3

54F/74F74

Dual D-Type Positive Edge-Triggered Flip-Flop

General Description

The 'F74 is a dual D-type flip-flop with Direct Clear and Set inputs and complementary ($Q, \overline{\mathrm{Q}}$) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input.

Asynchronous Inputs: LOW input to \bar{S}_{D} sets Q to HIGH level LOW input to \bar{C}_{D} sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and \bar{Q} HIGH

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC, and Flatpak

TL/F/9469-1

Pin Assignment for LCC and PCC

(14 15161718
$\bar{S}_{\mathrm{D} 2} \mathrm{NC} \mathrm{CP}_{2} \mathrm{NC} \mathrm{D}_{2}$

Unit Loading/Fan Out: See Section 2 tor U.L.definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{D}_{1}, \mathrm{D}_{2}$	Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{CP}_{1}, \mathrm{CP}_{2}$	Clock Pulse Inputs (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{C}}_{\text {D1 }}, \overline{\mathrm{C}}_{\mathrm{D} 2}$	Direct Clear Inputs (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\bar{S}_{\text {D1 }}, \bar{S}_{\text {D2 }}$	Direct Set Inputs (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\mathrm{Q}_{1}, \overline{\mathrm{Q}}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{2}$	Outputs	50/33.3	-1 mA/20 mA

Truth Table

Inputs				Outputs	
$\overline{\mathbf{S}}_{\mathbf{D}}$	$\overline{\mathbf{C}}_{\mathbf{D}}$	$\mathbf{C P}$	\mathbf{D}	\mathbf{Q}	$\overline{\mathbf{Q}}$
\mathbf{L}	H	X	X	H	L
H	L	X	X	L	H
L	L	X	X	H	H
H	H	\sim	h	H	L
H	H	-	I	L	H
H	H	L	X	Q_{0}	$\overline{\mathrm{Q}}_{\mathbf{0}}$

$H(h)=$ HIGH Voltage Level
L (l) = LOW Voltage Level
$X=$ Immaterial
$\mathrm{Q}_{0}=$ Previous $\mathrm{Q}(\overline{\mathrm{Q}})$ before LOW-to-HIGH Clock Transition
Lower case letters indicate the state of the referenced input or output one setup time prior to the LOW-to-HIGH clock transition.

Logic Diagram

TL/F/9469-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$V_{c c}$ Pin Potential to Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

TRI-STATE® Output
-0.5 V to +5.5 V
Current Applied to Output in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathbf{V}_{\mathbf{C C}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.8 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V} \\ & V_{I N}=0.5 \mathrm{~V} \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICC	Power Supply Current			10.5	16.0	mA	Max	

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			$\begin{aligned} & \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	125		80		100		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\text {PLH }} \\ & \mathrm{t}_{\mathrm{PH}} \\ & \hline \end{aligned}$	Propagation Delay $C P_{n}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 3.8 \\ & 4.4 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.3 \\ 6.2 \\ \hline \end{array}$	$\begin{aligned} & 6.8 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.4 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.8 \\ & 4.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.8 \\ & 9.2 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n} or $\overline{\mathrm{Q}}_{\mathrm{n}}$	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 7.0 \\ & \hline \end{aligned}$	6.1 9.0	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3.2 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 7.1 \\ 10.5 \\ \hline \end{gathered}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{n} to $C P_{n}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $D_{n} \text { to } C P_{n}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathbf{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP_{n} Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns	2-4
$t_{w}(L)$	$\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ Pulse Width LOW	4.0		4.0		4.0		ns	2-4
$t_{\text {rec }}$	Recovery Time $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to CP	2.0		3.0		2.0		ns	2-6

54F/74F86
 2-Input Exclusive-OR Gate

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

TL/F/9470-1

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	$54 \mathrm{~F} / 74 \mathrm{~F}$		
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
O_{n}	Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specifled devices are required, contact the Natlonal Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\text {® }}$ Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to } \mathrm{V} \mathrm{CC} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output

$$
\text { in LOW State (Max) } \quad \text { twice the rated IOL }(\mathrm{mA})
$$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{Cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & \text { 74F 10\% VCC } \\ & \text { 74F 5\% VCC } \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~m} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% V_{C C} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{ICL}^{2}=20 \mathrm{~mA} \\ & \mathrm{IOL}=20 \mathrm{~mA} \end{aligned}$
IH	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			12	18	mA	Max	$V_{\text {O }}=\mathrm{HIGH}$
ICCL	Power Supply Current			18	28	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	3.0	4.0	5.5	2.5	7.0	3.0	6.5		
$\mathrm{t}_{\text {PHL }}$	$A_{n}, B_{n} \text { to } O_{n}$ (Other Input LOW)	3.0	4.2	5.5	3.0	7.0	3.0	6.5	ns	2-3
tpLH	Propagation Delay	3.5	5.3	7.0	3.5	8.5	3.5	8.0		
$\mathrm{t}_{\text {PHL }}$	A_{n}, B_{n} to O_{n} (Other Input HIGH)	3.0	4.7	6.5	3.0	8.0	3.0	7.5	ns	2-3

54F/74F109
 Dual JK Positive Edge-Triggered Flip-Flop

General Description

The 'F109 consists of two high-speed, completely independent transition clocked $J \bar{K}$ flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The JK design allows operation as a D flip-flop (refer to 'F74 data sheet) by connecting the J and $\overline{\mathrm{K}}$ inputs.

Asynchronous Inputs:
LOW input to S_{D} sets Q to HIGH level LOW input to C_{D} sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and $\overline{\mathrm{Q}}$ HIGH

Ordering Code: See Section 5
Logic Symbols

Connection Diagrams

Pin Assignment for LCC and PCC
$Q_{1} \bar{S}_{11} N C C_{1} \bar{K}_{1}$
[8] B $_{6}$ [4]

TL/F/9471-2

IEEE/IEC

TL/F/9471-6

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \overline{\mathrm{~K}}_{1}, \bar{K}_{2}$	Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{CP}_{1}, \mathrm{CP}_{2}$	Clock Pulse Inputs (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$	Direct Clear Inputs (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\bar{S}_{\text {D1 }}, \bar{S}_{\text {D } 2}$	Direct Set Inputs (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$	Outputs	50/33.3	-1 mA/20 mA

Truth Table

Inputs					Outputs	
$\bar{S}_{\text {D }}$	$\bar{C}_{\text {D }}$	CP	J	$\overline{\mathbf{K}}$	Q	$\overline{\mathbf{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H	H
H	H	\checkmark	1.	1	L	H
H	H	\checkmark	h	1		
H	H	\checkmark	1	h	Q_{0}	\bar{Q}_{0}
H	H	\checkmark	h	h	H	L
H	H	L	X	X	Q_{0}	\bar{Q}_{0}

[^5]Logic Diagram (One Half Shown)

TL/F/9471-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

$$
\begin{array}{lr}
\text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text {) } & \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { TRI-STATE® Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.8 \\ \hline \end{array}$	mA mA	Max Max	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V}\left(\mathrm{~J}_{n}, \overline{\mathrm{~K}}_{n}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\overline{\mathrm{C}}_{\mathrm{Dn}}, \overline{\mathrm{~S}}_{\mathrm{Dn}}\right) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICC	Power Supply Current			11.7	17.0	mA	Max	$\mathrm{CP}=0 \mathrm{~V}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	125		70		90		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P_{n} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	$\begin{aligned} & 3.8 \\ & 4.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 4.4 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.8 \\ & 4.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.2 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3.2 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.5 \end{gathered}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{MiI}$		$\mathrm{T}_{\mathbf{A}}, \mathbf{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW J_{n} or \bar{K}_{n} to $C P_{n}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW J_{n} or \bar{K}_{n} to $C P_{n}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \\ & \hline \end{aligned}$	CP_{n} Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 4.0 \\ 5.0 \\ \hline \end{array}$		$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-4
$t_{w}(L)$	$\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ Pulse Width, LOW	4.0		4.0		4.0		ns	2-4
$\mathrm{trec}^{\text {rem }}$	Recovery Time $\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ to CP	2.0		2.0		2.0		ns	2-6

National Semiconductor

54F/74F112
 Dual JK Negative Edge-Triggered Flip-Flop

General Description

The 'F112 contains two independent, high-speed JK flipflops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on $\overline{\mathrm{S}}_{\mathrm{D}}$ or $\overline{\mathrm{C}}_{\mathrm{D}}$ prevents clocking and forces Q or $\overline{\mathrm{Q}}$ HIGH, respectively. Simultaneous LOW signals on \bar{S}_{D} and $\overline{\mathrm{C}}_{\mathrm{D}}$ force both Q and $\overline{\mathrm{Q}}$ HIGH.

Asynchronous Inputs:
LOW input to \bar{S}_{D} sets Q to HIGH level LOW input to $\overline{\mathrm{C}}_{\mathrm{D}}$ sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on $\overline{\mathrm{C}}_{D}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and $\overline{\mathrm{Q}} \mathrm{HIGH}$

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9472-1

Pin Assignment for LCC

14 15161718
$J_{2} \quad \mathrm{~K}_{2} \quad \mathrm{NC} \overline{\mathrm{CP}}_{2} \overline{\mathrm{C}}_{\mathrm{D} 2}$
TL/F/9472-2

Unit Loading／Fan Out：See Section 2 for U．L．definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U．L． HIGH／LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$	
		$1.0 / 1.0$	$20 \mu \mathrm{AA} /-0.6 \mathrm{~mA}$	
$\mathrm{~J}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$	Data Inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$	
$\overline{\mathrm{CP}}_{1}, \overline{\mathrm{CP}}_{2}$	Clock Pulse Inputs（Active Falling Edge）	$1.0 / 5.0$	$20 \mu \mathrm{~A} /-3.0 \mathrm{~mA}$	
$\overline{\mathrm{C}}_{\mathrm{D} 1}, \overline{\mathrm{C}}_{\mathrm{D} 2}$	Direct Clear Inputs（Active LOW）	$1.0 / 5.0$	$20 \mu \mathrm{~A} /-3.0 \mathrm{~mA}$	
$\overline{\mathrm{~S}}_{\mathrm{D} 1}, \overline{\mathrm{~S}}_{\mathrm{D} 2}$				
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$	Direct Set Inputs（Active LOW）	Outputs	$50 / 33.3$	

Truth Table

Inputs					Outputs	
$\bar{S}_{\text {D }}$	$\bar{C}_{\text {D }}$	$\overline{\text { CP }}$	J	K	Q	$\overline{\mathbf{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H	H
H	H	\checkmark	h	h	\bar{Q}_{0}	Q_{0}
H	H	\checkmark	1	h	L	H
H	H	\checkmark	h	1	H	L
H	H	\checkmark	1	1	Q_{0}	\bar{Q}_{0}

$H(h)=$ HIGH Voltage Level
L（I）＝LOW Voltage Level $X=$ Immaterial
$ح=$ HIGH－to－LOW Clock Transition
$Q_{0}\left(\bar{Q}_{0}\right)=$ Before HIGH－to－LOW Transition of Clock
Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH－to－LOW clock transition．

Logic Diagram（One Half Shown）

TL／F／9472－5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays．

Absolute Maximum Ratings（Note 1） If Milltary／Aerospace specified devices are required， contact the Natlonal Semiconductor Sales Office／ Distributors for availability and specifications．
 Storage Temperature
 Ambient Temperature under Bias
 Junction Temperature under Bias
 $V_{C C}$ Pin Potential to
 Ground Pin
 Input Voltage（Note 2）
 Input Current（Note 2）
 Voltage Applied to Output in HIGH State（with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ）
 Standard Output
 TRI－STATE ${ }^{\text {© }}$ Output
 Current Applied to Output in LOW State（Max）
 $$
\begin{array}{r} -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\ \\ -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\ -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\ -30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \end{array}
$$
 Note 1：Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
 Note 2：Either voltage limit or current limit is sufficient to protect inputs．

Recommended Operating

 ConditionsFree Air Ambient Temperature Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial
Supply Voltage
Military
Commercial

DC Electrical Characteristics

Symbol	Parameter		54F／74F			Units	$V_{c c}$	Conditions
			Min		Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				－1．2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	54F 10\％VCC 74F 10\％VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\％VCC 74F 10\％VCC			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -2.4 \\ & -3.0 \end{aligned}$	mA	Max	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V}\left(\mathrm{~J}_{n}, K_{n}\right) \\ & V_{I N}=0.5 \mathrm{~V}\left(\overline{C P_{n}}\right) \\ & V_{I N}=0.5 \mathrm{~V}\left(\overline{\mathrm{C}}_{\mathrm{Dn}}, \overline{\mathrm{~S}}_{\mathrm{Dn}}\right) \end{aligned}$
los	Output Short－Circuit Current		－60		－150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCH	Power Supply Current			12	19	mA	Max	$V_{0}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			12	19	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Clock Frequency	85	105				80		MHz	2-1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{C P}_{n} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{C}}_{\mathrm{Dn}}, \overline{\mathrm{S}}_{\mathrm{Dn}}$ to $\bar{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$			$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW J_{n} or K_{n} to $\overline{C P}_{n}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$				$\begin{aligned} & 5.0 \\ & 3.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{gathered} t_{h}(H) \\ t_{h}(\mathrm{~L}) \\ \hline \end{gathered}$	Hold Time, HIGH or LOW J_{n} or K_{n} to $\overline{\mathrm{CP}}_{n}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{array}{r} \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ \hline \end{array}$	$\overline{\mathrm{CP}}$ Pulse Width HIGH or LOW	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$				$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-4
$t_{\text {w }}(\mathrm{L})$	Pulse Width, LOW $\bar{C}_{D n}$ or $\bar{S}_{D n}$	4.5				5.0		ns	2-4
$\mathrm{trec}^{\text {rem }}$	Recovery Time $\bar{S}_{D n}, \overline{\mathrm{C}}_{\mathrm{Dn}}$ to $\overline{\mathrm{CP}}$	4.0				5.0		ns	2-6

54F／74F113
 Dual JK Negative Edge－Triggered Flip－Flop

General Description

The＇F113 offers individual J，K，Set and Clock inputs．When the clock goes HIGH the inputs are enabled and data may be entered．The logic level of the J and K inputs may be changed when the clock pulse is HIGH and the flip－flop will perform according to the Truth Table as long as minimum setup and hold times are observed．Input data is transferred to the outputs on the falling edge of the clock pulse．

Asynchronous input： LOW input to \bar{S}_{D} sets Q to HIGH level Set is independent of clock

Ordering Code：See Section 5

Logic Symbols

IEEE／IEC

Connection Diagrams

TL／F／9473－2

Unit Loading／Fan Out：See Section 2 for U．L．definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U．L． HIGH／LOW	Input $I_{I H} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
		$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\mathrm{~J}_{1}, \mathrm{~J}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$	Data Inputs	$1.0 / 4.0$	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$	
$\mathrm{CP}_{1}, \overline{\mathrm{CP}}_{2}$	Clock Pulse Inputs（Acitve Falling Edge）	$1.0 / 5.0$	$20 \mu \mathrm{~A} /-3.0 \mathrm{~mA}$	
$\overline{\mathrm{~S}}_{\mathrm{D} 1}, \overline{\mathrm{~S}}_{\mathrm{D} 2}$	Direct Set Inputs（Active LOW）	$-\overline{\mathrm{Q}}_{2}$	Outputs	
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \mathrm{Q}_{2}$	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$		

Truth Table

Inputs			Outputs		
$\overline{\mathbf{S}}_{\mathbf{D}}$	$\overline{\mathbf{C P}}$	\mathbf{J}	\mathbf{K}	\mathbf{Q}	$\overline{\mathbf{Q}}$
\mathbf{L}	X	X	X	H	L
H	-	h	h	\bar{Q}_{0}	Q_{0}
H	-	I	h	L	H
H	-	h	I	H	L
H	-	I	I	Q_{0}	$\overline{\mathrm{Q}}_{0}$

$H(h)=$ HIGH Voltage Level
L(I) = LOW Voltage level
X = HIGH-to-LOW Clock Transition
$X=$ Immaterial
$\mathrm{Q}_{0}\left(\overline{\mathrm{Q}}_{0}\right)=$ Before HIGH-to-LOW Transition of
Clock
Lower case letters indicate the state of the referenced input or output prior to the HIGH-to-LOW clock transition.

Logic Diagram (One Half Shown)

TL/F/9473-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

$$
\text { in HIGH State (with } V_{C C}=0 \mathrm{~V} \text {) }
$$

Standard Output
TRI-STATE ${ }^{\oplus}$ Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -2.4 \\ & -3.0 \end{aligned}$	mA	Max	$\begin{aligned} & V_{\text {IN }}=0.5 \mathrm{~V}\left(J_{n}, K_{n}\right) \\ & V_{I N}=0.5 \mathrm{~V}\left(\overline{C P}_{n}\right) \\ & V_{\text {IN }}=0.5 \mathrm{~V}\left(\bar{S}_{\mathrm{Dn}}\right) \end{aligned}$
IOZH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICC	Power Supply Current			12	19	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	85	105				80		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{C P}_{n}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\bar{S}_{D n}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW J_{n} or K_{n} to $\overline{C P}_{n}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$				$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW J_{n} or K_{n} to $\overline{C P}_{n}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	$\overline{\mathrm{CP}}_{\mathrm{n}}$ Pulse Width HIGH or LOW	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$				$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-4
$t_{w}(L)$	$\bar{S}_{\text {Dn }}$ Pulse Width, LOW	4.5				5.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	$\begin{aligned} & \overline{\mathrm{S}}_{\mathrm{Dn} \text { to } \overline{\mathrm{CP}}_{\mathrm{n}}}^{\text {Recovery Time }} \end{aligned}$	4.0				5.0		ns	2-6

National Semiconductor

54F/74F114

Dual JK Negative Edge-Triggered Flip-Flop with Common Clocks and Clears

General Description

The 'F114 contains two high-speed JK flip-flops with common Clock and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on $\overline{\mathrm{S}}_{\mathrm{D}}$ or $\overline{\mathrm{C}}_{\mathrm{D}}$ prevents clocking and forces Q or \bar{Q} HIGH, respectively. Simultaneous LOW signals on \bar{S}_{D} and $\overline{\mathrm{C}}_{\mathrm{D}}$ force both Q and $\overline{\mathrm{Q}} \mathrm{HIGH}$.

Asynchronous Inputs:
LOW input to \bar{S}_{D} sets Q to HIGH level LOW input to $\overline{\mathrm{C}}_{\mathrm{D}}$ sets Q to LOW level Clear and Set are independent of Clock Simultaneous LOW on $\overline{\mathrm{C}}_{\mathrm{D}}$ and $\overline{\mathrm{S}}_{\mathrm{D}}$ makes both Q and \bar{Q} HIGH

Ordering Code: See Section 5

Logic Symbols

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9474-2

Unit Loading／Fan Out：See Section 2 for U．L．definitions

Pin Names	Description	54F／74F	
		U．L． HIGH／LOW	$\begin{aligned} & \text { Input } \mathrm{I}_{\mathrm{IH}} / \mathrm{l}_{\mathrm{IL}} \\ & \text { Output } \mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}} \end{aligned}$
$J_{1}, J_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$	Data Inputs	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{C P}$	Clock Pulse Input（Active Falling Edge）	1．0／8．0	$20 \mu \mathrm{~A} /-4.8 \mathrm{~mA}$
\bar{C}_{D}	Direct Clear Input（Active LOW）	1．0／10．0	$20 \mu \mathrm{~A} /-6.0 \mathrm{~mA}$
$\bar{S}_{\text {D1 }}, \bar{S}_{\text {D } 2}$	Direct Set Inputs（Active LOW）	1．0／5．0	$20 \mu \mathrm{~A} /-3.0 \mathrm{~mA}$
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \overline{\mathrm{Q}}_{1}, \overline{\mathrm{Q}}_{2}$	Outputs	50／33．3	－1 mA／20 mA

Truth Table

Inputs					Outputs	
$\bar{S}_{\mathbf{D}}$	$\bar{C}_{\text {D }}$	$\overline{C P}$	J	K	Q	$\overline{\mathbf{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H	H
H	H	\cdots	h	h	\bar{Q}_{0}	Q_{0}
H	H	7	1	h	L	H
H	H	\checkmark	h	1	H	L
H	H	2	1	1	Q_{0}	\bar{Q}_{0}

H $=$ HIGH Voltage Level
L＝LOW Voltage Level
$\mathrm{X}=$ immaterial
$\chi=$ HIGH－to－LOW Clock Transition
$Q_{0}\left(\bar{Q}_{0}\right)=$ Before HIGH－to－LOW Transition of Clock
Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH－to－LOW clock transition．
Logic Diagram（one half shown）

TL／F／9474－4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays．

```
Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required,
contact the National Semiconductor Sales Office/
Distributors for avallability and specifications.
```

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

$$
\begin{array}{lr}
\text { in } \mathrm{HIGH} \text { State (} \text { with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text {) } & \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { TRI-STATE }{ }^{\oplus} \text { Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

maxime are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{VCC}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	inin	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{lOL}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$I_{\text {IH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -3.0 \\ -8.0 \\ -10.0 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{\mathbb{I N}}=0.5 \mathrm{~V}\left(J_{n}, K_{n}\right) \\ & V_{I N}=0.5 \mathrm{~V}\left(\overline{\mathrm{~S}}_{\mathrm{Dn}}\right) \\ & \mathrm{V}_{\mathbb{I N}}=0.5 \mathrm{~V}(\overline{\mathrm{P}}) \\ & \mathrm{V}_{\mathbb{I N}}=0.5 \mathrm{~V}\left(\bar{C}_{D n}\right) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			12.0	19.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			12.0	19.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathbf{C C}}=\mathrm{Mil} \\ \mathbf{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	75	95				70		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{C P} \text { to } Q_{n} \text { or } \bar{Q}_{n}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\bar{C}_{D n}$ or $\bar{S}_{D n}$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathbf{T}_{\mathbf{A}}, \mathbf{V}_{\mathbf{C c}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW J_{n} or K_{n} to $\overline{C P}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$				$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW J_{n} or K_{n} to $\overline{C P}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & t_{w}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	$\overline{\mathrm{CP}}$ Pulse Width HIGH or LOW	$\begin{array}{r} 4.5 \\ 4.5 \\ \hline \end{array}$				$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\mathrm{C}}_{\mathrm{Dn}}$ or $\overline{\mathrm{S}}_{\mathrm{Dn}}$ Pulse Width, LOW	4.5				5.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{S}}_{\mathrm{Dn}}, \overline{\mathrm{C}}_{\mathrm{Dn}}$, to $\overline{\mathrm{CP}}$	4.0				5.0		ns	2-6

54F/74F125

Quad Buffer (TRI-STATE ${ }^{\circledR}$)

Features

- High impedance base inputs for reduced loading

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{loL}_{\mathrm{OL}}$
\bar{A}_{n}, B_{n}	Inputs	1.0/0.033	$20 \mu \mathrm{~A} /-20 \mu \mathrm{~A}$
O_{n}	Outputs	600/106.6 (80)	- $12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$

Function Table

Inputs		Output
C	$\overline{\mathbf{A}}$	\mathbf{O}
L	L	L
L	H	H
H	X	Z

[^6]TL/F/9475-2

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max) twice the rated $\mathrm{IOL}(\mathrm{mA})$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			MIn	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\ & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{CC} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.0 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.0 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
Vol.	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$
I_{LL}	Input LOW Current				-20.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-100		-225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lzz	Buss Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{C C}$
ICCH	Power Supply Current			18.5	24.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			31.7	40.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCz	Power Supply Current			27.6	35.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=\text { Mil } \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \text { tpZH }^{t_{\text {PZL }}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns	2-5
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {tpLZ }} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$	ns	2-5

54F/74F132

Quad 2-Input NAND Schmitt Trigger

General Description

The 'F132 contains four 2-input NAND gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional NAND gates.

Each circuit contains a 2-input Schmitt trigger followed by level shifting circuitry and a standard FAST® output structure. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and neg-ative-going input threshold (typically 800 mV) is determined by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

Ordering Code: See Section 5

Logic Symbol

IEEE/IEC

Connection Diagrams

Pin Assignment for

 DIP, SOIC and Flatpak

TL/F/9477-1

Pin Assignment for LCC and PCC
$B_{1} N C A_{1} N C \bar{o}_{0}$
87654

(14) 15 161718
$A_{3} N C \bar{O}_{2} N C B_{2}$
TL/F/9477-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	U4F/74F HIGH/LOW	
	Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{\mathrm{n}}$	Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Function Table		
Inputs		Outputs
A	B	$\overline{\mathbf{O}}$
L	L	H
L	H	H
H	L	H
H	H	L

H $=$ HIGH Voltage Level
$L=$ LOW Voltage Level

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature

Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Voltage (Note 2)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE® Output

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

Current Applied to Output in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	$+4.5 \mathrm{to}+5.5 \mathrm{~V}$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\mathrm{T}+}$	Positive-going	hold	1.5		2.0	V	5.0	
$\mathrm{V}_{\mathrm{T}-}$	Negative-goin	shold	0.7		1.1	V	5.0	
ΔV_{T}	Hysteresis (V_{T}	$\mathrm{V}_{T^{-}}$)	0.4			V	5.0	
$V_{C D}$	Input Clamp D	Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage		$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CH}}=-1 \mathrm{~mA} \end{aligned}$
VOL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
${ }^{\text {CCH }}$	Power Supply Current				12.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {CCL }}$	Power Supply Current				19.5	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Conifigrations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $A_{n}, B_{n} \text { to } \bar{O}_{n}$			$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$					ns	2-3

54F/74F138

1-of-8 Decoder/Demultiplexer

General Description

The ' F 138 is a high-speed $1-\mathrm{of}-8$ decoder/demultiplexer. This device is ideally suited for high-speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three 'F138 devices or a 1-0f-32 decoder using four 'F138 devices and one inverter.

Features

- Demultiplexing capability
- Multiple input enable for easy expansion
- Active LOW mutually exclusive outputs

Ordering Code: See Section 5

Logic Symbols

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Descriptlon		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\overline{\mathrm{E}}_{1}, \overline{\mathrm{E}}_{2}$	Enable Inputs (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
E_{3}	Enable Input (Active HIGH)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Outputs (Active LOW)	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	

TL/F/9478-2

Functional Description

The 'F138 high-speed 1-of-8 decoder/demultiplexer accepts three binary weighted inputs (A_{0}, A_{1}, A_{2}) and, when enabled, provides eight mutually exclusive active LOW outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}\right)$. The ' F 138 features three Enable inputs, two active LOW (\bar{E}_{1}, \bar{E}_{2}) and one active HIGH (E_{3}). All outputs will be HIGH unless \bar{E}_{1} and \bar{E}_{2} are LOW and E_{3} is HIGH. This multiple enable function allows easy parallel expansion
of the device to a 1 -of-32 (5 lines to 32 lines) decoder with just four 'F138 devices and one inverter (See Figure 1). The ' F 138 can be used as an 8 -output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

Truth Table

Inputs						Outputs							
E_{1}	\bar{E}_{2}	E_{3}	A_{0}	A_{1}	A_{2}	\bar{O}_{0}	\bar{O}_{1}	\bar{O}_{2}	$\overline{\mathrm{O}}_{3}$	$\overline{\mathbf{O}}_{4}$	\bar{O}_{5}	$\overline{\mathbf{O}}_{6}$	\bar{O}_{7}
H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	X	X	H	H	H	H	H	H	H	H
L	L	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	H	L	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	L	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

Logic Diagram

TL/F/9478-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin

Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\oplus}$ Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Military | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| \quad Commercial | |
| Supply Voltage | +4.5 V to +5.5 V |
| Military | +4.5 V to +5.5 V |

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{array}{r} 2.5 \\ 2.5 \\ 2.7 \\ \hline \end{array}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% V CC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	Y	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCH	Power Supply Current			13	20	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			13	20	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $A_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ tpHL	Propagation Delay \bar{E}_{1} or \bar{E}_{2} to $\overline{\mathrm{O}}_{n}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		$\begin{gathered} 11.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns	2-4
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $E_{3} \text { to } \bar{O}_{n}$		6.2 5.6				$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \\ & \hline \end{aligned}$	ns	2-4

TL/F/9478-5
FIGURE 1. Expansion to 1-of-32 Decoding

54F/74F139

Dual 1-of-4 Decoder/Demultiplexer

General Description

The ' F 139 is a high-speed, dual 1 -of-4 decoder/demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutually exclusive active LOW outputs. Each decoder has an active LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the 'F139 can be used as a function generator providing all four minterms of two variables.

Features

- Multifunction capability
- Two completely independent 1-of-4 decoders
- Active LOW mutually exclusive outputs

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

Connection Diagrams
Pin Assignment DIP, SOIC and Flatpak

Pin Assignment

TL/F/9479-2

Unit Loading/Fan Out: See Section 2 tor U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}$	Enable Inputs (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$	Outputs (Active LOW)	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 'F139 is a high-speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each of which accepts two binary weighted inputs ($\mathrm{A}_{0}-\mathrm{A}_{1}$) and provides four mutually exclusive active LOW Outputs $\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right)$. Each decoder has an active LOW enable (\bar{E}). When \bar{E} is HIGH all outputs are forced HIGH. The enable can be used
as the data input for a 4-output demultiplexer application. Each half of the 'F139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Figure 1, and thereby reducing the number of packages required in a logic network.

FIGURE 1. Gate Functions (each half)

Logic Diagram

TL/F/9479-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Storage Temperature
Ambient Temperature under Bias

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

$$
\begin{array}{lr}
\text { in HIGH State (with } V_{C C}=0 \mathrm{~V} \text {) } \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { TRI-STATE } \odot \text { Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Free Air Ambien	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Commercial	
Supply Voltage	+4.5 V to +5.5 V
Military	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{Cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$54 \mathrm{~F} 10 \%$ VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	Y	M.in	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICC	Power Supply Current			13	20	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{0} or A_{1} to \bar{O}_{n}	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay \bar{E}_{1} to \bar{O}_{n}	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns	2-3

National Semiconductor

54F/74F148

8-Line to 3-Line Priority Encoder

General Description

The 'F148 provides three bits of binary coded output representing the position of the highest order active input, along with an output indicating the presence of any active input. It is easily expanded via input and output enables to provide priority encoding over many bits.

Features

- Encodes eight data lines in priority
- Provides 3-bit binary priority code
- Input enable capability
- Signals when data is present on any input
- Cascadable for priority encoding of n bits

Ordering Code: See Section 5

Logic Symbols

Pin Assignment for LCC and PCC

TL/F/9480-2

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Unit Loading/Fan Out: See Section 2 for U.L. detinitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $l_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
\bar{I}_{0}	Priority Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{1}_{1}-\bar{T}_{7}$	Priority Inputs (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
El	Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { EO }}$	Enable Output (Active LOW)	50/33.3	-1 mA/20 mA
GS	Group Signal Output (Active LOW)	50/33.3	-1 mA/20 mA
$\bar{A}_{0}-\bar{A}_{2}$	Address Outputs (Active LOW)	50/33.3	-1 mA/20 mA

Functional Description

The 'F148 8-input priority encoder accepts data from eight active LOW inputs ($\bar{I}_{0}-\bar{I}_{7}$) and provides a binary representation on the three active LOW outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line 7 having the highest priority. A HIGH on the Enable Input (EI) will force all outputs to the inactive (HIGH) state and allow new data to settle without producing erroneous information at the outputs.

A Group Signal output ($\overline{\mathrm{GS}}$) and Enable Output ($\overline{\mathrm{EO}}$) are provided along with the three priority data outputs ($\overline{\mathrm{A}}_{2}, \overline{\mathrm{~A}}_{1}$, \bar{A}_{0}). $\overline{\mathrm{GS}}$ is active LOW when any input is LOW: this indicates when any input is active. $\overline{E O}$ is active LOW when all inputs are HIGH. Using the Enable Output along with the Enable Input allows cascading for priority encoding on any number of input signals. Both EO and $\overline{G S}$ are in the inactive HIGH state when the Enable Input is HIGH.

Truth Table

Inputs									Outputs				
E1	i_{0}	\bar{I}_{1}	\bar{I}_{2}	\bar{I}_{3}	I_{4}	\bar{I}_{5}	I_{6}	I_{7}	GS	\bar{A}_{0}	\bar{A}_{1}	\bar{A}_{2}	$\overline{\text { EO }}$
H	X	X	X	X	X	X	X	X	H	H	H	H	H
L	H	H	H	H	H	H	H	H	H	H	H	H	L
L	X	X	\times	X	X	X	X	L	L	L	L	L	H
L	X	x	x	X	x	X	L	H	L	H	L	L	H
L	X	x	X	X	\times	L	H	H	L	L	H	L	H
L	X	X	X	X	L	H	H	H	L	H	H	L	H
L	X	X	X	L	H	H	H	H	L	L	L	H	H
L	X	X	- L	H	H	H	H	H	L	H	L	H	H
L	X	L	H	H	H	H	H	H	L	L	H	H	H
L	L	H	H	H	H	H	H	H	L	H	H	H	H

$H=$ HIGH Voltage Level
= LOW Voltage Level
$X=$ Immaterial

Logic Diagram

TL/F/9480-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\circledR}$ Output
Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating Conditions
Free Air Ambient Temperature

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Note 1: Absolute maximum ratings are values be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F		Units	$V_{\text {cc }}$	Conditions
			Min	Typ Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0		V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 F 10 \%$ VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$		V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I/L	Input LOW Current			$\begin{aligned} & -0.6 \\ & -1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Max	$\begin{array}{ll} V_{\mathbb{I N}}=0.5 \mathrm{~V} & \left(\bar{l}_{0}, \overline{\mathrm{E}}\right) \\ \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V} & \left(\overline{\mathrm{I}}_{1}-\bar{I}_{7}\right) \end{array}$
los	Output Short-Circuit Current		-60	-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current			250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			35	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			35	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

TL/F/9480-5
AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{T}_{n} to \bar{A}_{n}	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \\ \hline \end{gathered}$			$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay I_{n} to EO	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.5 \\ 8.5 \\ \hline \end{array}$	ns	2-3
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay I_{n} to $\overline{\mathrm{GS}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 6.0 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay El to \bar{A}_{n}	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.5 \\ 9.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay El to GS	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	ns	2-3
${ }^{\text {t }}$ PLH ${ }^{\text {tpHL }}$	Propagation Delay El to EO	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 7.0 \\ 10.5 \end{gathered}$			$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	ns	2-3

54F/74F151A

8-Input Multiplexer

General Description

The 'F151A is a high-speed 8 -input digital multiplexer. It provides in one package the ability to select one line of data from up to eight sources. The 'F151A can be used as a
universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

Connection Diagrams
Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

(14) 16 困 18
$\mathrm{S}_{0} 7 \mathrm{NC} \mathrm{I}_{6} \mathrm{I}_{5}$
TL/F/9481-2

TL/F/9481-5
Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$	
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Select Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\overline{\mathrm{E}}$	Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
Z	Data Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	
\bar{Z}	Inverted Data Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	

Functional Description

The ' F 151 A is a logic implementation of a single pole, 8 -position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Enable input ($\overline{\mathrm{E}}$) is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is:

$$
\begin{aligned}
Z= & \bar{E} \cdot\left(I_{0} \bar{S}_{2} \bar{S}_{1} \bar{S}_{0}+I_{1} \bar{S}_{2} \bar{S}_{1} S_{0}+I_{2} \bar{S}_{2} S_{1} \bar{S}_{0}+\right. \\
& I_{3} \bar{S}_{2} S_{1} S_{0}+I_{4} S_{2} \bar{S}_{1} \bar{S}_{0}+I_{5} S_{2} \bar{S}_{1} S_{0}+ \\
& \left.I_{6} S_{2} S_{1} \bar{S}_{0}+I_{7} S_{2} S_{1} S_{0}\right)
\end{aligned}
$$

The 'F151A provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the ' F 151 A can provide any logic function of four variables and its negation.

Truth Table

Inputs				Outputs	
\bar{E}	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	S_{0}	$\overline{\mathbf{Z}}$	\mathbf{Z}
H	X	X	X	H	L
L	L	L	L	I_{0}	I_{0}
L	L	L	H	I_{1}	I_{1}
L	L	H	L	I_{2}	I_{2}
L	L	H	H	I_{3}	I_{3}
L	H	L	L	I_{4}	I_{4}
L	H	L	H	I_{5}	I_{5}
L	H	H	L	I_{6}	I_{6}
L	H	H	H	I_{7}	I_{7}

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

Logic Diagram

TL/F/9481-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE® Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voitage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	Y	M.in	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
l CC	Power Supply Current			13.5	21.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay S_{n} to $\overline{\mathrm{Z}}$	$\begin{aligned} & 4.0 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay S_{n} to Z	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.2 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{E}}$ to $\overline{\mathrm{Z}}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	ns	2-3
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation Delay E to Z	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.5 \end{gathered}$	ns	2-3
tpLH tpHL	Propagation Delay I_{n} to \bar{Z}	$\begin{aligned} & 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$				$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	ns	2-3
${ }^{\text {tpLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay I_{n} to Z		4.8 5.5	6.5 7.0	2.5 3.5	8.5 9.0	2.5 3.7		ns	2-3

54F/74F153

Dual 4-Input Multiplexer

General Description

The 'F153 is a high-speed dual 4-input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The
two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the 'F153 can generate any two functions of three variables.

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

TL/F/9482-5

Connection Diagrams

Pin Asslgnment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

${ }_{1 b} \mathrm{l}_{2 b} \mathrm{NC}_{13 b} \mathrm{~S}_{0}$
TL/F/9482-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\mathrm{J}_{\mathrm{H}}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{O}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{l}_{0} \mathrm{a}^{-1} 3 \mathrm{a}$	Side A Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$10{ }^{-13 b}$	Side B Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Common Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{E}_{\text {a }}$	Side A Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
\bar{E}_{b}	Side B Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
Z_{a}	Side A Output	50/33.3	-1 mA/20 mA
Z_{b}	Side B Output	50/33.3	-1 mA/20 mA

Functional Description

The 'F153 is a dual 4 -input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4 -input multiplexer circuits have individual active LOW Enables ($\bar{E}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) which can be used to strobe the outputs independently. When the Enables (\bar{E}_{a}, \bar{E}_{b}) are HIGH, the corresponding outputs (Z_{a}, Z_{b}) are forced LOW. The 'F153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are as follows:

Truth Table

Select Inputs		Inputs (a or b)					Output
S_{0}	S_{1}	E	I_{0}	I_{1}	I_{2}	I_{3}	Z
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	x	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	,
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

[^7]
Logic Diagram

TL/F/9482-4

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{*}$ Output
Current Applied to Output in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C c}}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{1 \mathrm{~N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \text { 54F 10\% } V_{C C} \\ & \text { 74F 10\% VCC } \\ & \text { 74F 5\% } V_{C C} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
IBVI	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$1 / 2$	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCL	Power Supply Current			12	20	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MiI} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay S_{n} to Z_{n}	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 7.0 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay \bar{E}_{n} to Z_{n}	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 4.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay I_{n} to Z_{n}	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.1 \end{aligned}$	7.0 6.5	2.5 2.5	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	ns	2-3

54F/74F157A

Quad 2-Input Multiplexer

General Description

The 'F157A is a high-speed quad 2-input multiplexer. Four bits of data from two sources can be selected using the common Select and Enable inputs. The four outputs present
the selected data in the true (non-inverted) form. The 'F157A can also be used to generate any four of the 16 different functions to two variables.

Ordering Code: See Section 5

Logic Symbols

Pin Assignment for DIP, SOIC and Flatpak

Connection Diagrams

Pin Assignment for LCC and PCC

TL/F/9483-2

Unit Loading/Fan Out: See Section 2 tor U.L.definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{I}_{0}-10 \mathrm{l}$	Source 0 Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$l_{1 a}{ }^{-1} 1{ }^{\text {d }}$	Source 1 Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}$	Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
S	Select Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$Z_{a}-Z_{d}$	Outputs	50/33.3	-1 mA/20 mA

Functional Description

The 'F157A is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input ($\overline{\mathrm{E}}$) is active LOW. When \bar{E} is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The 'F157A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:

$$
Z_{n}=\bar{E} \bullet\left(I_{1 n} S+I_{O_{n}} \bar{S}\right)
$$

A common use of the 'F157A is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'F157A can generate any four of the

16 different functions of two variables with one variable common. This is useful for implementing highly irregular logic.

Truth Table

Inputs				Output
\bar{E}	\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Z
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

Logic Diagram

TL/F/9483-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\circledR}$ Output
Current Applied to Output in LOW State (Max)

Recommended Operating

 ConditionsFree Air Ambient Temperature

Supply Voltage
Military Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{IIN}^{\prime}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V} \mathrm{CC} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & !_{\mathrm{CL}}=20 \mathrm{~mA} \end{aligned}$
I_{IH}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
$I_{1 L}$	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			15	23	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			15	23	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay S to Z_{n}	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.0 \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E} to Z_{n}	$\begin{aligned} & 5.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay I_{n} to Z_{n}	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	6.0 5.5	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	ns	2-3

54F/74F158A
 Quad 2-Input Multiplexer

General Description

The 'F158A is a high speed quad 2 -input multiplexer. It selects four bits of data from two sources using the common Select and Enable inputs. The four outputs present the selected data in the inverted form. The 'F158A can also generate any four of the 16 different functions of two variables.

Ordering Code: See Section 5

Logic Symbols

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
$\mathrm{I}_{0}-1 \mathrm{lod}$	Source 0 Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{l}_{1 \mathrm{a}^{-1} \mathrm{l}_{1 \mathrm{~d}}}$	Source 1 Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}$	Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
S	Select Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{Z}_{\mathrm{a}}-\bar{Z}_{\text {d }}$	Inverted Outputs	50/33.3	-1 mA/20 mA

Connection Diagrams

Pln Assignment for LCC and PCC
$I_{1 b} b_{b} N C \bar{z}_{a} l_{\mathrm{la}}$

TL/F/9484-2

Functional Description

The 'F158A quad 2-input multiplexer selects four bits of data from two sources under the control of a common Se lect input (S) and presents the data in inverted form at the four outputs. The Enable input (\bar{E}) is active LOW. When \bar{E} is HIGH, all of the outputs ($\overline{\mathrm{Z}}$) are forced HIGH regardless of all other inputs. The 'F158A is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. A common use of the 'F158A is the moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A less obvious use is as a function generator. The 'F158A can generate four functions of two variables with one variable common. This is useful for implementing gating functions.

Truth Table

Inputs				Outputs
\bar{E}	S	I_{0}	I_{1}	\bar{Z}
H	X	X	X	H
L	L	L	X	H
L	L	H	X	L
L	H	X	L	H
L	H	X	H	L

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$\bar{Z}_{n}=\bar{E} \times\left(I_{1 n} S+I_{0 n} \bar{S}\right)$

Logic Diagram

TL/F/9484-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature

Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE® Output
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
VOL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
IH	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICC	Power Supply Current			10	15	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S to \bar{Z}_{n}	$\begin{array}{r} 3.0 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 5.5 \\ 4.5 \\ \hline \end{array}$	$\begin{array}{r} 8.5 \\ 6.5 \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.5 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E} to \bar{Z}_{n}	$\begin{array}{r} 2.5 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 4.5 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 6.5 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $I_{n} \text { to } \bar{Z}_{n}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.0 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 5.9 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \\ & \hline \end{aligned}$	8.5 5.0	$\begin{array}{r} 2.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 4.5 \\ & \hline \end{aligned}$	ns	2-3

54F/74F160A • 54F/74F162A
 Synchronous Presettable BCD Decade Counter

General Description

The ' F 160 A and ' F 162 A are high-speed synchronous decade counters operating in the BCD (8421) sequence. They are synchronously presettable for applications in programmable dividers. There are two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The 'F160A has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The 'F162A has a Synchronous Reset input that overrides counting and parallel load-
ing and allows all outputs to be simultaneously reset on the rising edge of the clock. The 'F160A and 'F162A are high speed versions of the 'F160 and 'F162.

Features

- Synchronous counting and loading
- High-speed synchronous expansion
- Typical count rate of 120 MHz

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak
'F160A

TL/F/9485-1
'F162A

Pin Assignment for LCC and PLCC
'F160A

TL/F/9485-2
'F162A

Logic Symbols

'F162A

TL/F/9485-8

TL/F/9485-6
'F162A

TL/F/9485-7
Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
CEP	Count Enable Parallel Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CET	Count Enable Trickle Input	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$ ('F160A)	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{S R}$ ('F162A)	Synchronous Reset Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
PE	Parallel Enable Input (Active Low)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-Flop Outputs	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
TC	Terminal Count Output	50/33.3	-1 mA/20 mA

Functional Description

The 'F160A and 'F162A count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the ('F160A) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('F160A), synchronous reset ('F162A), parallel load, count-up and hold. Five control inputs-Master Reset (MR, 'F160A), Synchronous Reset (SR, 'F162A), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on $\overline{\mathrm{SR}}$ overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on $\overline{\mathrm{PE}}$ overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{P E}$ and $\overline{M R}$ ('F160A) or $\overline{\mathrm{SR}}$ ('F162A) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The 'F160A and 'F162A use D-type edge-triggered flip-flops and changing the $\overline{\mathrm{SR}}, \overline{\mathrm{PE}}, \mathrm{CEP}$ and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.
The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 9 . To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 'F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the 'F160A and 'F162A decade counters, the TC output is fully decoded and can only be HIGH in state 9 . If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the State Diagram.
Logic Equations:

$$
\begin{aligned}
& \text { Count Enable }=C E P \times C E T \times \overline{P E} \\
& T C=Q_{0} \times \bar{Q}_{1} \times \bar{Q}_{2} \times Q_{3} \times C E T
\end{aligned}
$$

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{C C}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max)
twice the rated lol (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect Inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{O}}=-1 \mathrm{~m} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	Max Max	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V}\left(\mathrm{CP}, \mathrm{CEP}, \mathrm{P}_{\mathrm{n}}, \overline{\mathrm{MR}}(\text { ' } \mathrm{F} 160 \mathrm{~A})\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\mathrm{CET}, \overline{\mathrm{SR}}(\mathrm{~F} 162 \mathrm{~A}), \overline{\mathrm{PE}}) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICC	Power Supply Current			37	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$

Symbol	Parameter	74F			54F		74F		Units	FigNo
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \\ & C_{L}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Count Frequency	100	120		75		90		MHz	2-1
$\begin{aligned} & \mathbf{t}_{\mathrm{PLLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, Count CP to Q_{n} ($\overline{P E}$ Input HIGH)	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{gathered} 7.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{array}{r} 3.5 \\ 3.5 \\ \hline \end{array}$	$\begin{gathered} 9.0 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 11.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, Load CP to Q_{n} ($\overline{P E}$ Input LOW)	$\begin{array}{r} 4.0 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.0 \\ 4.0 \\ \hline \end{array}$	$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to TC	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$	$\begin{array}{r} 14.0 \\ 14.0 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 15.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 15.0 \\ 15.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CET to TC	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	ns	2-3
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to Q_{n} ('F160A)	5.5	9.0	12.0	5.5	14.0	5.5	13.0	ns	2-3
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to TC ('F160A)	4.5	8.0	10.5	4.5	12.5	4.5	11.5	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms									
Symbol	Parameter	$\begin{gathered} 74 \mathrm{~F} \\ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		54F				Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
				$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{MiI}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW P_{n} to CP ('F160A)	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW P_{n} to CP ('F162A)	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$		$\begin{aligned} & 13.5 \\ & 10.5 \end{aligned}$		$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\text { PE }}$ or $\overline{\mathrm{SR}}$ to CP	$\begin{gathered} 2.0 \\ 0 \end{gathered}$		$\begin{gathered} 2.0 \\ 0 \end{gathered}$		$\begin{gathered} 2.0 \\ 0 \end{gathered}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW CEP or CET to CP	$\begin{array}{r} 11.0 \\ 5.0 \\ \hline \end{array}$		$\begin{array}{r} 13.0 \\ 6.0 \\ \hline \end{array}$		$\begin{gathered} 11.5 \\ 5.0 \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW CEP or CET to CP	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Clock Pulse Width (Load) HIGH or LOW	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-4
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock Pulse Width (Count) HIGH or LOW	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$		ns	2-4
$t_{w}(L)$	$\overline{\text { MR Pulse Width, LOW }}$ ('F160A)	5.0		5.0		5.0			
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{M R}$ to CP ('F160A)	6.0		6.0		6.0		ns	2-6

54F/74F161A • 54F/74F163A
 Synchronous Presettable Binary Counter

General Description

The 'F161A and 'F163A are high-speed synchronous modu-$10-16$ binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multi-stage counters. The 'F161A has an asynchronous Master-Reset input that overrides all other inputs and forces the outputs LOW. The 'F163A has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock. The 'F161A and 'F163A are high-speed versions of the 'F161 and 'F163.

Features

- Synchronous counting and loading
- High-speed synchronous expansion
- Typical count frequency of 120 MHz

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment
for DIP, SOIC and Flatpak 'F161A

Pin Assignment for DIP, SOIC and Flatpak 'F163A

TL/F/9486-2

Pin Assignment for LCC and PCC 'F163A $\mathrm{P}_{3} \mathrm{P}_{2}$ NC $\mathrm{P}_{1} \mathrm{P}_{0}$图7囷54

Logic Symbols

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Plames	Descriphion	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
CEP	Count Enable Parallel Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CET	Count Enable Trickle Input	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{M R}$ ('F161A)	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{SR}}$ ('F163A)	Synchronous Reset Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
PE	Parallel Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$Q_{0}-Q_{3}$	Flip-Flop Outputs	50/33.3	-1 mA/20 mA
TC	Terminal Count Output	50/33.3	-1 mA/20 mA

Functional Description

The 'F161A and 'F163A count in modulo-16 binary sequence. From state $15(\mathrm{HHHH})$ they increment to state 0 (LLLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 'F161A) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('F161A), synchronous reset ('F163A), parallel load, count-up and hold. Five control inputs-Master Reset (MR, ' F 161 A), Synchronous Reset ($\overline{\mathrm{SR}}$, ' F 163 A), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on $\overline{\mathrm{MR}}$ overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on $\overline{\mathrm{SR}}$ overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on $\overline{\mathrm{PE}}$ overrides counting and allows information on the Parallel Data $\left(\mathrm{P}_{\mathrm{n}}\right)$ inputs to be loaded into the

Mode Select Table

${ }^{*} \overline{\mathbf{S R}}$	$\overline{\text { PE }}$	CET	CEP	Action on the Rising Clock Edge (
L	X	X	X	Reset (Clear)
H	L	X	X	Load ($P_{n} \rightarrow$ Q $_{n}$)
H	H	H	H	Count (Increment)
H	H	L	X	No Change (Hold)
H	H	X	L	No Change (Hold)

*For 'F163A only
$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$X=$ Immaterial
flip-flops on the next rising edge of CP . With $\overline{\mathrm{PE}}$ and $\overline{\mathrm{MR}}$ ('F161A) or SR ('F163A) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.
The 'F161A and 'F163A use D-type edge triggered flip-flops and changing the $\overline{\mathrm{SR}}, \overline{\mathrm{PE}, \mathrm{CEP}}$ and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.
The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in state 15. To implement synchronous multi-stage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the 'F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers.
Logic Equations: Count Enable $=\mathrm{CEP} \cdot \mathrm{CET} \cdot \overline{\mathrm{PE}}$

$$
\mathrm{TC}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet \mathrm{CET}
$$

State Diagram

Block Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specifled devices are required, contact the Natlonal Semiconductor Sales Office/ Distributors for availabillty and specifications.
Storage Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Ambient Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC}
TRI-STATE® Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\mathrm{IOH}=-1 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\mathrm{IOL}=20 \mathrm{~mA}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Max Max	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V}\left(C E P, C P, \overline{M R}, P_{0}-P_{3}\right) \\ & V_{I N}=0.5 \mathrm{~V}(C E T, \overline{P E}, \overline{S R}) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lcc	Power Supply Current			37	55	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \mathrm{Flg} \\ & \mathrm{No} \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MII} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Count Frequency	100	120		75		90		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q_{n} ($\overline{\mathrm{PE}}$ Input HIGH)	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 7.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 8.5 \\ 11.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q_{n} ($\overline{\mathrm{PE}}$ Input LOW)	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.0 \\ 6.0 \\ \hline \end{array}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.0 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to TC	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 15.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CET to TC	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	2-3
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{n} ('F161A)	5.5	9.0	12.0	5.5	14.0	5.5	13.0	ns	2-3
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to TC ('F161A)	4.5	8.0	10.5	4.5	12.5	4.5	11.5	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {CC }}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW P_{n} to CP	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP	$\begin{array}{r} 11.0 \\ 8.5 \\ \hline \end{array}$		$\begin{array}{r} 13.5 \\ 10.5 \\ \hline \end{array}$		$\begin{gathered} 11.5 \\ 9.5 \\ \hline \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP	$\begin{gathered} 2.0 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} 3.6 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} 2.0 \\ 0 \\ \hline \end{gathered}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW CEP or CET to CP	$\begin{array}{r} 11.0 \\ 5.0 \\ \hline \end{array}$		$\begin{array}{r} 13.0 \\ 6.0 \\ \hline \end{array}$		$\begin{gathered} 11.5 \\ 5.0 \\ \hline \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW CEP or CET to CP	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock Pulse Width (Load) HIGH or LOW	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-4
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Clock Pulse Width (Count) HIGH or LOW	$\begin{array}{r} 4.0 \\ 6.0 \\ \hline \end{array}$		$\begin{aligned} & 5.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns	2-4
$t_{w}(L)$	$\overline{M R}$ Pulse Width, LOW ('F161A)	5.0		5.0		5.0		ns	2-4
$t_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP ('F161A)	6.0		6.0		6.0		ns	2-6

54F/74F164
 Serial-In, Parallel-Out Shift Register

General Description

The 'F164 is a high-speed 8 -bit serial-in/parallel-out shift register. Serial data is entered through a 2 -input AND gate synchronous with the LOW-to-HIGH transition of the clock. The device features an asynchronous Master Reset which clears the register, setting all outputs LOW independent of the clock.

Features

- Typical shift frequency of 90 MHz
- Asynchronous Master Reset
- Gated serial data input
- Fully synchronous data transfers

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. $\mathrm{HIGH} / \mathrm{LOW}$	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	

Functional Description

The 'F164 is an edge-triggered 8 -bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active HIGH Enable for data entry through the other input. An unused input must be tied HIGH.
Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into Q_{0} the logical AND of the two data inputs $(A \cdot B)$ that existed before the rising clock edge. A LOW level on the Master Reset ($\overline{\mathrm{MR}}$) input overrides all other inputs and clears the register asynchronously, forcing all Q outputs LOW.

Mode Select Table

Operating Mode	Inputs			Outputs		
	$\overline{\text { MR }}$	\mathbf{A}	\mathbf{B}	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}-\mathrm{Q}_{7}$	
Reset (Clear)	L	X	X	L	$\mathrm{L}-\mathrm{L}$	
Shift	H	I	I	L	$\mathrm{q}_{0}-\mathrm{q}_{6}$	
	H	I	h	L	$\mathrm{q}_{0}-\mathrm{q}_{6}$	
	H	h	I	L	$\mathrm{q}_{0}-\mathrm{q}_{6}$	
	H	h	h	H	$\mathrm{q}_{0}-\mathrm{q}_{6}$	

$H(h)=$ HIGH Voltage Levels
$L(I)=$ LOW Voltage Levels
$X=$ Immaterial
$q_{n}=$ Lower case letters indicate the state of the referenced input or output one setup time prior to the LOW-to-HIGH clock transition.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required,
contact the National Semiconductor Sales Office/
Dlstributors for avallability and specifications.
```

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2) Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\oplus}$ Output
Current Applied to Output
in LOW State (Max) twice the rated IOL (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{c c}$	Conditions
			MIn	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathbb{N}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	54F 10\% VCC 74F 10\% VCC $74 F 5 \% V_{C C}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$V_{1 N}=7.0 \mathrm{~V}$
1 lL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {cex }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICC	Power Supply Current			35	55	mA	Max	$\begin{aligned} & \mathrm{CP}=\mathrm{HIGH} \\ & \overline{M R}=\mathrm{GND}, \mathrm{~A}, \mathrm{~B}=\mathrm{GND} \end{aligned}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Clock Frequency	80	90		50		80		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$		$\begin{aligned} & 11.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns	2-3
$t_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to Q_{n}	5.5	10.5	13.0	5.5	16.0	5.5	14.0	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{Cc}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW A or B to CP	$\begin{array}{r} 7.0 \\ 7.0 \\ \hline \end{array}$		$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW A or B to CP	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR Pulse Width, LOW }}$	7.0		7.0		7.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	7.0		7.0		7.0		ns	2-6

54F/74F168•54F/74F169

 4-Stage Synchronous Bidirectional Counters
General Description

The 'F168 and 'F169 are fully synchronous 4 -stage up/ down counters. The ' $F 168$ is a BCD decade counter; the ' F 169 is a modulo-16 binary counter. Both feature a preset capability for programmable operation, carry lookahead for easy cascading and a U / \bar{D} input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the clock.

Features

- Asynchronous counting and loading
- Built-in lookahead carry capability
- Presettable for programmable operation

Ordering Code: See Section 5

Logic Symbols

'F169

Connection Diagrams
Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9488-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\overline{\text { CEP }}$	Count Enable Parallel Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { CET }}$	Count Enable Trickle Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{PE}}$	Parallel Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
U/D	Up-Down Count Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-Flop Outputs	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\text { TC }}$	Terminal Count Output (Active LOW)	50/33.3	-1 mA/20 mA

Functional Description

The 'F168 and 'F169 use edge-triggered J-K type flip-flops and have no constraints on changing the control or data input signals in either state of the clock. The only requirement is that the various inputs attain the desired state at least a setup time before the rising edge of the clock and remain valid for the recommended hold time thereafter. The parallel load operation takes precedence over other operations, as indicated in the Mode Select Table. When PE is LOW, the data on the $\mathrm{P}_{0}-\mathrm{P}_{3}$ inputs enters the flip-flops on the next rising edge of the clock. In order for counting to occur, both $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ must be LOW and $\overline{\text { PE must be }}$ HIGH; the U/D input then determines the direction of counting. The Terminal Count ($\overline{\mathrm{TC}}$) output is normally HIGH and goes LOW, provided that CET is LOW, when a counter reaches zero in the Count Down mode or reaches 9 (15 for
the 'F169) in the Count Up mode. The TC output state is not a function of the Count Enable Parallel (CEP) input level. The $\overline{\text { TC }}$ output of the 'F168 decade counter can also be LOW in the illegal states 11,13 , and 15 , which can occur when power is turned on or via parallel loading. If an illegal state occurs, the 'F168 will return to the legitimate sequence within two counts. Since the $\overline{T C}$ signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on TC. For this reason the use of $\overline{\mathrm{TC}}$ as a clock signal is not recommended (see logic equations below).

1) Count Enable $=\overline{\mathrm{CEP}} \cdot \overline{\mathrm{CET}} \bullet \overline{\mathrm{PE}}$
2) Up: ('F168): $\overline{T C}=\mathrm{Q}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \mathrm{Q}_{3} \bullet(\mathrm{Up}) \bullet \overline{\mathrm{CET}}$
('F169): $\overline{T C}=Q_{0} \bullet Q_{1} \bullet Q_{2} \bullet Q_{3} \bullet(U p) \cdot \overline{C E T}$
3) Down: $\overline{T C}=\bar{Q}_{0} \bullet \bar{Q}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \overline{\mathrm{Q}}_{3} \bullet($ Down $) \cdot \overline{\mathrm{CET}}$

Logic Diagram

'F168

TL/F/9488-4
Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Logic Diagram (Continued)

TL/F/9488-5
Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Mode Select Table					$\begin{aligned} & \mathrm{H}=\mathrm{H} \text { IGH Voltage Level } \\ & \mathrm{L}=\text { LOW Voltage Level } \\ & \mathrm{X}=\text { Immaterial } \end{aligned}$
$\overline{\text { PE }}$	$\overline{\text { CEP }}$	CET	U/D	Action on Rising Clock Edge	
L	X	X	X	Load ($\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$)	
H	L	L	H	Count Up (Increment)	
H	L	L	L	Count Down (Decrement)	
H	H	X	X	No Change (Hold)	
H	X	H	X	No Change (Hold)	

State Diagrams

TL/F/9488-6

TL/F/9488-7

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\circledR}$ Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
upply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output
in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{IH}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BV},}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {L }}$	Input LOW Current				$\begin{aligned} & -0.6 \\ & -1.2 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}(\text { except } \overline{\mathrm{CET}}) \\ & \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}(\overline{\mathrm{CET}}) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCL	Power Supply Current			35	52	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

'F168

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Count Frequency	100	115				90		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q_{n} (프 HIGH or LOW)	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 11.5 \end{gathered}$			$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 13.0 \\ \hline \end{gathered}$	ns	2-3
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to TC	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 11.0 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.5 \end{aligned}$	ns	2-3
${ }^{\text {tpLH }}$ tpHL.	Propagation Delay $\overline{\text { CET }}$ to $\overline{T C}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	ns	2-3
t_{PLH} $t_{\text {PHL }}$	Propagation Delay U/ $\overline{\mathrm{D}}$ to $\overline{\mathrm{T}}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 12.5 \end{gathered}$	$\begin{aligned} & 11.0 \\ & 16.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 18.0 \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\text {cc }}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\text {cc }}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$				$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW CEP or CET to CP	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$				$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{P E}$ to CP	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\text { PE to }} \mathrm{CP}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW U/D to CP	$\begin{aligned} & 11.0 \\ & 16.5 \\ & \hline \end{aligned}$				$\begin{aligned} & 12.5 \\ & 18.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW U/D to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$				$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		ns	2-4

'F169

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M i I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Count Frequency	90			60		70		MHz	2-1
$t_{\text {PLH }}$ ${ }^{\text {tPHL }}$	Propagation Delay CP to Q_{n} ($\overline{\text { PE HIGH }}$ or LOW)	$\begin{array}{r} 3.0 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 13.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{T C}$	$\begin{array}{r} 5.5 \\ 4.0 \\ \hline \end{array}$	$\begin{array}{r} 12.0 \\ 8.5 \\ \hline \end{array}$	$\begin{array}{r} 15.5 \\ 12.5 \\ \hline \end{array}$	$\begin{aligned} & 5.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{gathered} 6.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 12.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7.0 \\ 12.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{U} / \overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 12.0 \end{aligned}$	3.5 4.0	$\begin{aligned} & 16.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.0 \\ & \hline \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter			54 F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{aligned} & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 8.0 \\ 8.0 \\ \hline \end{array}$		$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$		ne	2-5
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{gathered} 0 \\ 0.5 \end{gathered}$		$\begin{gathered} 0 \\ 1.0 \end{gathered}$		$\begin{gathered} 0 \\ 0.5 \end{gathered}$			
$\begin{aligned} & \mathbf{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathbf{t}_{\mathbf{s}}(\mathrm{L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{P E}$ to $C P$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$		$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{P E}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} 1.0 \\ 0 \\ \hline \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW U/D̄ to CP	$\begin{gathered} 11.0 \\ 7.0 \\ \hline \end{gathered}$		$\begin{array}{r} 14.0 \\ 12.0 \\ \hline \end{array}$		$\begin{gathered} 12.5 \\ 8.5 \\ \hline \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW U / \bar{D} to $C P$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 9.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 8.0 \\ & \hline \end{aligned}$		ns	2-4

54F/74F174 Hex D Flip-Flop with Master Reset

General Description

The 'F174 is a high-speed hex D flip-flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the D inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops.

Features

- Edge-triggered D-type inputs

■ Buffered positive edge-triggered clock

- Asynchronous common reset

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

\section*{| $\overline{M R}-1$ | | 16 | $-V_{C C}$ |
| ---: | ---: | ---: | ---: |
| $Q_{0}-1$ | | 15 | $-Q_{5}$ |
| $D_{0}-3$ | 14 | $-D_{5}$ | |
| $D_{1}-4$ | 13 | $-D_{4}$ | |
| $Q_{1}-1$ | 12 | $-Q_{4}$ | |
| $D_{2}-6$ | 11 | $-D_{3}$ | |
| $Q_{2}-7$ | 10 | $-Q_{3}$ | |
| $G N D-8$ | 9 | | |}

TL/F/9489-1

Pin Assignment for LCC and PCC
$D_{2} Q_{1}$ NC $D_{1} D_{0}$

TL/F/9489-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{I H} / I_{\mathrm{IL}}$ Output $I_{O H} / I_{\mathrm{OL}}$	
		$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\mathrm{D}_{0}-\mathrm{D}_{5}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\overline{M R}$	Master Reset Input (Active LOW)	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	
$\mathrm{Q}_{0}-\mathrm{Q}_{5}$	Outputs			

Functional Description

The ' $F 174$ consists of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (쓱) are common to all flip-flops. Each D input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset ($\overline{\mathrm{MR}}$) will force all outputs LOW independent of Clock or Data inputs. The 'F174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Truth Table

Inputs			Outputs
$\overline{M R}$	$\mathbf{C P}$	$\mathrm{D}_{\mathbf{n}}$	$\mathbf{Q}_{\mathbf{n}}$
L	X	X	L
H	Γ	H	H
H	Γ	L	L

$$
\begin{aligned}
& H=\text { HIGH Voltage Level } \\
& L=\text { LOW Voltage Level } \\
& X=\text { Immaterial } \\
& \\
& =\text { LOW-to-HIGH Clock Transition }
\end{aligned}
$$

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availablity and specifications.

Storage Temperature

Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$V_{C C}$ Pin Potential to Ground Pin $\quad-0.5 \mathrm{~V}$ to +7.0 V
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC} TRI-STATE ${ }^{\oplus}$ Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max) twice the rated $I_{O L}(m A)$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Military	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Commercial	
Supply Voltage	+4.5 V to +5.5 V
\quad Military	+4.5 V to +5.5 V
Commercial	

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA} \\ & \mathrm{IOL}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {r }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCH	Power Supply Current			30	45	mA	Max	$\begin{aligned} & C P=\sqrt{M} \\ & \mathrm{D}_{\mathrm{n}}=\overline{\mathrm{MR}}=\mathrm{HIGH} \end{aligned}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			30	45	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Clock Frequency	80			70		80		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $C P$ to Q_{n}	3.5 4.0	5.5 7.0	8.0 10.0	3.0 4.0	10.0 12.0		$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns	2-3
${ }_{\text {tPHL }}$	Propagation Delay $\overline{M R}$ to Q_{n}	5.0	10.0	14.0	5.0	16.0	5.0	15.0	ns	2-3

AC Operating Requirements: See Section 2 tor Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{n} to CP	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{\text { MR Pulse Width, LOW }}$	5.0		6.5		5.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{M R}$ to CP	5.0		6.0		5.0			2-6

54F/74F175 Quad D Flip-Flop

General Description

The 'F175 is a high-speed quad D flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is stored during the LOW-to-HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs, LOW.

Features

- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- Asynchronous common reset
- True and complement output

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9490-1

Pin Assignment for LCC and PCC
$\bar{a}_{1} D_{1} N C D_{0} \bar{o}_{0}$

TL/F/9490-2

TL/F/9490-3
Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{I H} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	True Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\bar{Q}_{0}-\bar{Q}_{3}$	Complement Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 'F175 consists of four edge-triggered D flip-flops with individual D inputs and Q and \bar{Q} outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual D inputs on the LOW-to-HIGH clock (CP) transition, causing individual Q and $\overline{\mathrm{Q}}$ outputs to follow. A LOW input on the Master Reset ($\overline{M R}$) will force all Q outputs LOW and \bar{Q} outputs HIGH independent of Clock or Data inputs. The 'F175 is useful for general logic applications where a common Master Reset and Clock are acceptable.

Truth Table

Inputs			Outputs	
$\overline{M R}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$	$\overline{\mathbf{Q}}_{\mathbf{n}}$
L	X	X	L	H
H	-	H	H	L
H	\sim	L	L	H

$H=H I G H$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$\Omega=$ LOW-to-HIGH Clock Transition

Logic Diagram

TL/F/9490-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE ${ }^{\circledR}$ Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
\\
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output

Recommended Operating Conditions

Free Air Ambient Temperature

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Supply Voltage Military
in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathbf{V}_{\mathbf{c c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\ & \text { 74F 10\% } \mathrm{V}_{\mathrm{CC}} \\ & \text { 74F 5\% } \mathrm{VCC}^{2} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}=20 \mathrm{~mA} \\ & \mathrm{lOL}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
1 l	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
${ }^{\text {ICC }}$	Power Supply Current			22.5	34.0	mA	Max	$\begin{aligned} & \mathrm{CP}=\widetilde{\sim} \\ & \mathrm{D}_{\mathrm{n}}=\overline{\mathrm{MR}}=\mathrm{HIGH} \end{aligned}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{aligned} & T_{A}, V_{C C}=M i I \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	140		80		100		MHz	2-1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $C P$ to Q_{n} or \bar{Q}_{n}	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	ns	2-3
${ }^{\text {tPHL }}$	Propagation Delay $\overline{M R}$ to Q_{n}	4.5	9.0	11.5	4.5	15.0	4.5	13.0	ns	2-3
$t_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{MR}}$ to \bar{Q}_{n}	4.0	6.5	8.0	4.0	10.0	4.0	9.0	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{n} to CP	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D_{n} to CP	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 4.0 \\ 5.0 \\ \hline \end{array}$		$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-4
$t_{w}(\mathrm{~L})$	$\overline{\text { MR }}$ Pulse Width, LOW	5.0		5.0		5.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	5.0		5.0		5.0		ns	2-6

54F/74F181

4-Bit Arithmetic Logic Unit

General Description

The 'F181 is a 4-bit Arithmetic logic Unit (ALU) which can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations. It is 40% faster than the Schottky ALU and only consumes 30% as much power.

Features

- Full lookahead for high-speed arithmetic operation on long words

Ordering Code: See Section 5

Logic Symbols

Active-HIGH Operands

Active-LOW Operands

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9491-1

Pin Assignment for LCC and PCC
$\bar{F}_{0} M C_{n} N C S_{0} S_{1} S_{2}$

$C_{n+4} \bar{G} \bar{B}_{3}$ NC $\bar{A}_{3} \bar{B}_{2} \bar{A}_{2}$
TL/F/9491-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\bar{A}_{0}-\bar{A}_{3}$	A Operand Inputs (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\bar{B}_{0}-\bar{B}_{3}$	B Operand Inputs (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Function Select Inputs	1.0/4.0	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$
M	Mode Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
C_{n}	Carry Input	1.0/5.0	$20 \mu \mathrm{~A} /-3.0 \mathrm{~mA}$
$\bar{F}_{0}-\bar{F}_{3}$	Function Outputs (Active LOW)	50/33.3	-1 mA/20 mA
$\mathrm{A}=\mathrm{B}$	Comparator Output	OC*/33.3	*/20 mA
$\overline{\mathrm{G}}$	Carry Generate Output (Active LOW)	50/33.3	- $1 \mathrm{~mA} / 20 \mathrm{~mA}$
\bar{P}	Carry Propagate Output (Active LOW)	50/33.3	-1 mA/20 mA
$\mathrm{C}_{\mathrm{n}+4}$	Carry Output	50/33.3	-1 mA/20 mA

*OC-Open Collector

Functional Description

The 'F181 is a 4-bit high-speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on Active HIGH or Active LOW operands. The Function Table lists these operations.
When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $C_{n}+4$ output, or for carry lookahead between packages using the signals \bar{P} (Carry Propagate) and \bar{G} (Carry Generate). In the Add mode, $\overline{\mathrm{P}}$ indicates that $\overline{\mathrm{F}}$ is 15 or more, while \bar{G} indicates that \bar{F} is 16 or more. In the Subtract mode $\overline{\mathrm{P}}$ indicates that \bar{F} is zero or less, while \bar{G} indicates that \bar{F} is less than zero. \bar{P} and \bar{G} are not affected by carry in. When speed requirements are not stringent, the 'F181 can be used in a simple Ripple Carry mode by connecting the Carry output ($\mathrm{C}_{\mathrm{n}}+4$) signal to the Carry input $\left(\mathrm{C}_{n}\right)$ of the next unit. For high speed operation the device is used in conjunction with a carry lookahead circuit. One carry lookahead package is required for
each group of four 'F181 devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths.
The $A=B$ output from the device goes HIGH when all four \bar{F} outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the Subtract mode. The $A=B$ output is open collector and can be wired AND with other $A=B$ outputs to give a comparison for more than four bits. The $A=B$ signal can also be used with the C_{n+4} signal to indicate $A>B$ and $A<B$.
The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry cut moano Eoriowir, thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated, this device can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$V_{C c}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\circledR}$ Output
.5V to VCC

Current Applied to Output
in LOW State (Max) twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	$+4.5 \mathrm{to}+5.5 \mathrm{~V}$

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

$$
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~m} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	M M	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
I_{IH}	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
$1 / 2$	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.8 \\ -2.4 \\ -3.0 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V}\left(\mathrm{M}_{1}\right. \\ & \mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}\left(\overline{\mathrm{~A}}_{0}, \overline{\mathrm{~A}}_{1}, \overline{\mathrm{~A}}_{3}, \overline{\mathrm{~B}}_{0}, \overline{\mathrm{~B}}_{1}, \overline{\mathrm{~B}}_{3}\right) \\ & \mathrm{V}_{\mathbb{I N}}=0.5 \mathrm{~V}\left(\mathrm{~S}_{n}, \overline{\mathrm{~A}}_{2}, \overline{\mathrm{~B}}_{2}\right) \\ & \mathrm{V}_{\mathbb{I N}}=0.5 \mathrm{~V}\left(\mathrm{C}_{n}\right) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=O V\left(\bar{F}_{n}, \bar{G}, \bar{P}, C_{n+4}\right)$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{O}=V_{C C}\left(\bar{F}_{n}, \bar{G}, \bar{P}, C_{n+4}\right)$
1 OHC	Open Collector, Output OFF Leakage Test				250	$\mu \mathrm{A}$	Min	$V_{O}=V_{C C}(A=B)$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current			43	65.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			43	65.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

Table 5-2 'F181 Operation Tables							
	S_{0}	S_{1}	S_{2}	S_{3}	Logic $(\mathbf{M}=\mathrm{H})$	Arithmetic $\text { (} M=L, C_{0}=\text { Inactive) }$	Arithmetic ($\mathrm{M}=\mathrm{L}, \mathrm{C}_{0}=$ Active)
a. All Input Data Inverted	L H L H	L L H H L L H H L. L H H L L H H	L L L L H H H H L L L L H H H H	L H	$\begin{gathered} \bar{A} \\ \bar{A} \cdot \bar{B} \\ \bar{A}+B \\ \text { Logic "1" " } \\ \overline{A+B} \\ \bar{B} \\ \overline{A \oplus B} \\ A+\bar{B} \\ \bar{A} \bullet B \\ A \oplus B \\ B \\ A+B \\ \text { Logic "0" } \\ A \bullet \bar{B} \\ A \bullet B \\ A \\ \hline \end{gathered}$	A minus 1 $A \cdot B$ minus 1 $A \bullet \bar{B}$ minus 1 minus 1 (2s comp.) A plus $(A+\bar{B})$ $A \bullet B$ plus $(A+\bar{B})$ A minus B minus 1 $A+\bar{B}$ A plus $(A+B)$ A plus B $A \cdot \bar{B}$ plus $(A+B)$ $A+B$ A plus $A(2 \times A)$ A plus A•B A plus $A \bullet \bar{B}$ A	$\begin{gathered} A \\ A \bullet B \\ A \bullet B \\ Z \text { ero } \end{gathered}$ A plus $(A+\bar{B})$ plus t $A \cdot B$ plus $(A+\bar{B})$ plus 1 A minus B $A+\bar{B}$ plus 1 A plus ($A+B$ plus 1 A plus B plus 1 $A \cdot \bar{B}$ plus $(A+B)$ plus 1 $A+B$ plus 1 A plus $A(2 \times A)$ plus 1 A plus $\mathrm{A} \bullet$ B plus 1 A plus $A \bullet \bar{B}$ plus 1 A plus 1
b. All Input Data True	$\begin{aligned} & \mathrm{L} \\ & H \\ & L \\ & H \end{aligned}$	L L H H L L H H L L H H L L H H	L L L L H H H H L L L L H H H H	L L L L L L L L L H H H H H H H H H	$\frac{\bar{A}}{\overline{A+B}} \begin{gathered} \bar{A} \bullet B \end{gathered}$ Logic " 0 " $\bar{A} \bullet \bar{B}$ \bar{B} $A \oplus B$ $A \bullet \bar{B}$ $\bar{A}+B$ $\overline{A \oplus B}$ B $A \cdot B$ Logic "1" $\begin{aligned} & A+\bar{B} \\ & A+B \end{aligned}$ A	$\begin{gathered} A \\ A+B \\ A+\bar{B} \\ \text { minus } 1(2 s \text { comp.) } \\ A \text { plus }(A \bullet \bar{B}) \\ A \bullet \bar{B} \text { plus }(A+B) \\ A \text { minus } B \text { minus } 1 \\ A \bullet \bar{B} \text { minus } 1 \\ A \text { plus } A \bullet B \\ A \text { plus } B \\ A \bullet B \text { plus }(A+\bar{B}) \\ A \bullet B \text { minus } 1 \\ A \text { plus } A(2 \times A) \\ A \text { plus }(A+B) \\ A \text { plus }(A+\bar{B}) \\ A \text { minus } 1 \\ \hline \end{gathered}$	A plus 1 $A+B$ plus 1 $\mathrm{A}+\overline{\mathrm{B}}$ plus 1 Zero A plus $A \bullet \bar{B}$ plus 1 $A \cdot B$ plus $(A+B)$ plus 1 A minus B $A \bullet \bar{B}$ A plus $A \cdot B$ plus 1 A plus B plus 1 $A \cdot B$ plus $(A+\bar{B})$ plus 1 $A \bullet B$ A plus $A(2 \times A)$ plus 1 A plus $(A+B)$ plus 1 A plus $(A+\bar{B})$ plus 1 A
c. A Input Data Inverted; B Input Data True	L H L H	L L H H L L H H L L H H L L H H	$\begin{aligned} & L \\ & L \\ & L \\ & L \\ & H \\ & H \\ & H \\ & H \\ & L \\ & L \\ & L \\ & L \\ & H \\ & H \\ & H \\ & H \end{aligned}$	L H	$\begin{gathered} \bar{A} \\ \bar{A}+B \\ \bar{A} \bullet \bar{B} \\ \text { Logic "1" } \\ \bar{A} \bullet B \\ B \\ A \oplus B \\ A+B \\ \hline \overline{A+B} \\ \bar{A} \oplus \bar{B} \\ \bar{B} \\ A+\bar{B} \\ \text { Logic " } 0 \text { " } \\ A \bullet B \\ A \bullet \bar{B} \\ A \\ \hline \end{gathered}$	A minus 1 $A \bullet \bar{B}$ minus 1 $A \bullet B$ minus 1 minus 1 (2 s comp.) A plus $(A+B)$ $A \cdot \vec{B}$ plus $(A+B)$ A plus B $A+B$ A plus $(A+\bar{B})$ A minus B minus 1 $A \cdot B$ plus $(A+\bar{B})$ $A+\bar{B}$ A plus $A(2 \times A)$ A plus $A \cdot \bar{B}$ A plus $A \cdot B$ A	A $A \cdot B$ $A \cdot B$ Zero A plus $(A+B)$ plus 1 $A \cdot \bar{B}$ plus $(A+B)$ plus 1 A plus B plus 1 $A+B$ plus 1 A plus $(A+\bar{B})$ plus 1 A minus B $A \bullet B$ plus $(A+\bar{B})$ plus 1 $A+\bar{B}$ plus 1 A plus $A(2 \times A)$ plus 1 A plus $A \bullet \bar{B}$ plus 1 A plus A - B plus 1 A plus 1
d. A Input Data True; B Input Date Inverted	L H L H	L L H H H L L H H L L L H H L L H H	L L L L H H H H L L L L H H H H	L H	$\begin{gathered} \overline{\bar{A}} \\ \frac{\bar{A} \bullet B}{\bar{A}+B} \end{gathered}$ Logic " 0 " $\bar{A}+B$ 8 $\overline{A \oplus B}$ $A \bullet B$ $\bar{A} \bullet \bar{B}$ $A \oplus B$ \bar{B} $A \cdot \bar{B}$ Logic "1" $\begin{aligned} & A+B \\ & A+\bar{B} \end{aligned}$ A	$\begin{gathered} A \\ A+\bar{B} \\ A+B \\ \text { minus } 1(2 s \text { comp.) } \\ A \text { plus } A \bullet B \\ A \bullet B \text { plus }(A+\bar{B}) \\ A \text { plus } B \\ A \bullet B \text { minus } 1 \\ A \text { plus } A \bullet \bar{B} \\ A \text { minus } B \text { minus } 1 \\ A \bullet \bar{B} \text { plus }(A+B) \\ A \bullet \bar{B} \text { minus } 1 \\ A \text { plus } A(2 \times A) \\ A \text { plus }(A+\bar{B}) \\ A \text { plus }(A+B) \\ A \text { minus } 1 \\ \hline \end{gathered}$	A plus 1 $A+\bar{B}$ plus 1 $A+B$ plus 1 Zero A plus $\mathrm{A} \bullet \mathrm{B}$ plus 1 $A \cdot \bar{B}$ plus $(A+B)$ plus 1 A plus B plus 1 $A \bullet B$ A plus $A \bullet B$ plus 1 A minus B $A \bullet \bar{B}$ plus $(A+B)$ plus 1 $A \cdot \bar{B}$ A plus $A(2 \times A)$ plus 1 A plus $(A+\bar{B})$ plus 1 A plus $(A+B)$ plus 1 A

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter		74F			54F		74F		Units	Fig No
			$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\text { Mil } \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
	Path	Mode	Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay C_{n} to C_{n+4}		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay \bar{A} or \bar{B} to C_{n+4}	Sum	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.4 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 16.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{A} or \bar{B} to C_{n+4}	Dif	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay C_{n} to $\overline{\mathrm{F}}$	Any	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$		$\begin{aligned} & 16.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ or $\overline{\mathrm{G}}$	Sum	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{A}}$ or $\overline{\mathrm{B}}$ to $\overline{\mathrm{G}}$	Dif	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$		$\begin{aligned} & 11.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \end{gathered}$	ns	2-3
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{A} or \bar{B} to \bar{P}	Sum	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay \bar{A} or \bar{B} to \bar{P}	Dif	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{A}_{i} or \bar{B}_{i} to \bar{F}_{i}	Sum	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$					$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{A}_{i} or \bar{B}_{i} to \bar{F}_{i}	Dif	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$					$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 12.0 \\ 12.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Any \bar{A} or \bar{B} to Any \bar{F}	Sum	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		10.5 10.0			$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Any \bar{A} or \bar{B} to Any \bar{F}	Dif	$\begin{aligned} & 4.5 \\ & 3.5 \\ & \hline \end{aligned}$	9.4 9.4		3.5 3.0			$\begin{aligned} & 13.0 \\ & 13.0 \\ & \hline \end{aligned}$	11 s	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{A} or \bar{B} to \bar{F}	Logic	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	6.0 6.0	9.0 10.0	3.5 3.0 8	14.5 15.5	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	ns	2-3
t_{PLH} $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{A} or \bar{B} to $A=B$	Dif	$\begin{array}{r} 11.0 \\ 6.0 \\ \hline \end{array}$	$\begin{gathered} 18.5 \\ 9.8 \end{gathered}$	27.0 12.5	8.0 5.5	35.0 21.0	$\begin{array}{r} 11.0 \\ 6.0 \\ \hline \end{array}$	$\begin{aligned} & 29.0 \\ & 13.5 \end{aligned}$	ns	2-3

54F/74F182
Carry Lookahead Generator

General Description

The 'F182 is a high-speed carry lookahead generator. It is generally used with the 'F181 or 'F381 4-bit arithmetic logic units to provide high-speed lookahead over word lengths of more than four bits.

Features

- Provides lookahead carries across a group of four ALUs
■ Multi-level lookahead high-speed arithmetic operation over long word lengths

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
C_{n}	Carry Input	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{2}$	Carry Generate Inputs (Active LOW)	1.0/14.0	$20 \mu \mathrm{~A} /-8.4 \mathrm{~mA}$
$\overline{\mathrm{G}}_{1}$	Carry Generate Input (Active LOW)	1.0/16.0	$20 \mu \mathrm{~A} /-9.6 \mathrm{~mA}$
$\overline{\mathrm{G}}_{3}$	Carry Generate Input (Active LOW)	1.0/8.0	$20 \mu \mathrm{~A} /-4.8 \mathrm{~mA}$
\bar{P}_{0}, \bar{P}_{1}	Carry Propagate Inputs (Active LOW)	1.0/8.0	$20 \mu \mathrm{~A} /-4.8 \mathrm{~mA}$
$\overline{\mathrm{P}}_{2}$	Carry Propagate Input (Active LOW)	1.0/6.0	$20 \mu \mathrm{~A} /-3.6 \mathrm{~mA}$
\bar{P}_{3}	Carry Propagate Input (Active LOW)	1.0/4.0	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$
$C_{n+x}-C_{n+z}$	Carry Outputs	50/33.3	-1 mA/20 mA
$\overline{\mathrm{G}}$	Carry Generate Output (Active LOW)	50/33.3	-1 mA/20 mA
$\overline{\mathrm{P}}$	Carry Propagate Output (Active LOW)	50/33.3	-1 mA/20 mA

Functional Description

The 'F182 carry lookahead generator accepts up to four pairs of Active LOW Carry Propagate ($\bar{P}_{0}-\bar{P}_{3}$) and Carry Generate ($\bar{G}_{0}-\bar{G}_{3}$) signals and an Active HIGH Carry input $\left(\mathrm{C}_{n}\right)$ and provides anticipated Active HIGH carries ($\mathrm{C}_{n}+x$, C_{n+y}, C_{n+z}) across four groups of binary adders. The 'F182 also has Active LOW Carry Propagate ($\overline{\mathrm{P}}$) and Carry Generate (\bar{G}) outputs which may be used for further levels of lookahead. The logic equations provided at the outputs are:
$C_{n+x}=G_{0}+P_{0} C_{n}$
$C_{n+y}=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{n}$
$C_{n+z}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{n}$
$\mathrm{G} \quad=\overline{G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}}$
$\mathrm{P} \quad=\overline{\mathrm{P}_{2} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}}$

Also, the 'F182 can be used with binary ALUs in an active LOW or active HIGH input operand mode. The connections (Figure 1) to and from the ALU to the carry lookahead generator are identical in both cases. Carries are rippled between lookahead blocks. The critical speed path follows the circled numbers. There are several possible arrangements for the carry interconnects, but all achieve about the same speed. A 28-bit ALU is formed by dropping the last ' F 181 or 'F381.

Truth Table

Inputs									Outputs				
C_{n}	$\overline{\mathbf{G}}_{0}$	\bar{P}_{0}	$\overline{\mathbf{G}}_{1}$		$\overline{\mathbf{G}}_{2}$	\bar{P}_{2}	$\overline{\mathbf{G}}_{3}$	$\overline{\mathbf{P}}_{3}$	$\mathrm{C}_{\mathrm{n}+\mathrm{x}}$	$\mathrm{C}_{\mathrm{n}+\mathrm{y}}$	$\mathrm{C}_{\mathrm{n}+\mathrm{z}}$	$\overline{\mathbf{G}}$	$\overline{\mathbf{P}}$
X	H	H							L				
L	H	X							L				
X	L	X							H				
H	X	L							H				
X	X	X	H	H						L			
X	H	H	H	X						L			
L	H	X	H	X						L			
X	X	X	L	X						H			
X	L	X	X	L						H			
H	X	L	X	L						H			
X	X	X	X	X	H	H					L		
X	X	X	H	H	H	X					L		
X	H	H	H	X	H	X					L		
L	H	X	H	X	H	x					1		
X	X	X	X	X	L	X					H		
X	X	X	L	X	X	L					H		
X	L	X	X	L	X	L					H		
H	X	L	X	L	X	L					H		
	X		X	X	X	X	H	H				H	
	X		X	X	H	H		X				H	
	X		H	H	H	X	H	x				H	
	H		H	X	H	X	H	\times				H	
	X		X	X	X	X	L	X				L	
	X		X	X	L	X	X	L				L	
	X		L	X	x	L	X	L				L	
	L		X	L	X	L	X	L				L	
		H		X		x		x					H
		X		H		X		X					H
		X		X		H		X					H
		X		X		X		H					H
		L		L		L		L					L

Logic Diagram

TL/F/9492-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

FIGURE 1. 32 -Bit ALU with Rippled Carry between 16-Bit Lookahead ALUs
*ALUs may be either 'F181 or 'F381

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\text {® }}$ Output
Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$

Recommended Operating

 ConditionsFree Air Ambient Temperature Military Commercial
Supply Voltage Military
Commercial

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V OH	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$		$\begin{array}{r} 2.5 \\ 2.5 \\ 2.7 \\ \hline \end{array}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
VOL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CL}}=20 \mathrm{~mA} \end{aligned}$
${ }_{1} H_{H}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{aligned} & -1.2 \\ & -2.4 \\ & -3.6 \\ & -4.8 \\ & -8.4 \\ & -9.6 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}\left(\mathrm{C}_{n}\right) \\ & \mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}\left(\overline{\mathrm{P}}_{3}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\overline{\mathrm{P}}_{2}\right) \\ & \mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}\left(\overline{\mathrm{G}}_{3}, \bar{P}_{0}, \overline{\mathrm{P}}_{1}\right) \\ & \mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}\left(\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{2}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\overline{\mathrm{G}}_{1}\right) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCH	Power Supply Current			18.4	28.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
I CCL	Power Supply Current			23.5	36.0	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C_{n} \text { to } C_{n+x}, C_{n+y}, C_{n+z}$	$\begin{array}{r} 3.0 \\ 3.0 \\ \hline \end{array}$	$\begin{aligned} & 6.6 \\ & 6.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \\ \hline \end{gathered}$	ns	2-3
tpLH $t_{\text {tphL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \bar{P}_{0}, \bar{P}_{1}, \text { or } \bar{P}_{2} \text { to } \\ & C_{n+x}, C_{n+y} \text {, or } C_{n+z} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{G}}_{0}, \overline{\mathrm{G}}_{1}$, or $\overline{\mathrm{G}}_{2}$ to C_{n+x}, C_{n+y}, or C_{n+z}	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{P}_{1}, \bar{P}_{2}, or \bar{P}_{3} to \bar{G}	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.9 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 9.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{G}_{n} to \bar{G}	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.3 \\ & 5.7 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 8.5 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLL}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay \bar{P}_{n} to \bar{P}	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 4.1 \end{aligned}$			$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	ns	2-3

National Semiconductor

54F/74F189 64-Bit Random Access Memory with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F189 is a high-speed 64-bit RAM organized as a 16 word by 4 -bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are TRISTATE and are in the high impedance state whenever the Chip Select ($\overline{\mathrm{CS}}$) input is HIGH. The outputs are active only in the Read mode and the output data is the complement of the stored data.

Features

- TRI-STATE outputs for data bus applications
- Buffered inputs minimize loading
- Address decoding on-chip
- Diode clamped inputs minimize ringing

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9493-2

Pin Assignment for LCC and PCC

TL/F/9493-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Address inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
WE	Write Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$	Inverted Data Outputs	150/40 (33.3)	$-3.0 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Function Table			
Inputs		Operation	Condition of Outputs
CS	$\overline{\text { WE }}$		
L	L	Write	High Impedance
L	H	Read	Complement of Stored Data
H	X	Inhibit	High Impedance

H = HIGH Voltage Level
 L = LOW Voltage Level
 $X=$ Immaterial

Block Diagram

TL/F/9493-5

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the Natlonal Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to

Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
Current Applied to Output in LOW State (Max)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{C C}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

twice the rated lol (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
upply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$v_{c c}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.5 2.4 2.5 2.4 2.7 2.7			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
VOL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{I N}=0.5 V(\text { except } \overline{C S}) \\ & V_{I N}=0.5 V(\overline{C S}) \end{aligned}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
I_{zz}	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}$
I CCz	Power Supply Current			37	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} { }^{*} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Access Time, HIGH or LOW $A_{n} \text { to } \bar{O}_{n}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$			9.0 8.0	32.0 23.0	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 27.0 \\ & 20.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \text { tpZH } \\ & \mathrm{t}_{\mathrm{tPZL}} \\ & \hline \end{aligned}$	Access Time, HIGH or LOW $\overline{\mathrm{CS}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 13.0 \\ \hline \end{gathered}$		$\begin{aligned} & 10.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 14.0 \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Disable Time, HIGH or LOW $\overline{\mathrm{CS}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$		$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$		$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	ns	2-5
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \\ & \hline \end{aligned}$	Write Recovery Time, HIGH or LOW $\overline{W E}$ to \bar{O}_{n}	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{array}{r} 15.0 \\ 11.0 \\ \hline \end{array}$	$\begin{aligned} & 28.0 \\ & 15.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 37.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 16.5 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Disable Time, HIGH or LOW $\overline{W E}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$	4.0 5.0		10.0 13.0	3.5 5.0	12.0 15.0		$\begin{aligned} & 11.0 \\ & 14.0 \end{aligned}$	ns	2-5

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{aligned} & T_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		${ }^{*} \mathrm{~T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW A_{n} to $\overline{W E}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW A_{n} to $\overline{W E}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{n} to $\overline{W E}$	$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$		$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW D_{n} to $\overline{W E}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\mathrm{t}_{\text {s }}(\mathrm{L})$	Setup Time, LOW $\overline{C S}$ to $\overline{W E}$	0		0		0		ns	2-6
$t_{n}(L)$	Hold Time, LOW $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$	6.0		7.5		6.0			
$t_{w}(\mathrm{~L})$	WE Pulse Width, LOW	6.0		7.5		6.0		ns	2-4

${ }^{\circ} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

General Description

The 'F190 is a reversible BCD (8421) decade counter featuring synchronous counting and asynchronous presetting. The preset feature allows the ' F 190 to be used in programmable dividers. The Count Enable input, the Terminal Count output and the Ripple Clock output make possible a variety of methods of implementing multistage counters. In the counting modes, state changes are initiated by the rising edge of the clock.

Features

- High-speed- 125 MHz typical count frequency
- Synchronous counting
- Asynchronous parallel load
- Cascadable

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

TL/F/9494-4

Connection Diagrams

Pin Assignment for LCC and PCC

TL/F/9494-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\overline{C E}$	Count Enable Input (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { PL }}$	Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
\bar{U} / D	Up/Down Count Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-Flop Outputs	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{RC}}$	Ripple Clock Output (Active LOW)	50/33.3	-1 mA/20 mA
TC	Terminal Count Output (Active HIGH)	50/33.3	-1 mA/20 mA

Functional Description

The ' F 190 is a synchronous up/down BCD decade counter containing four edge-triggered flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations. It has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load ($\overline{\mathrm{PL}})$ input is LOW, information present on the Parallel Data inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table. A HIGH signal on the CE input inhibits counting. When $\overline{\mathrm{CE}}$ is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \bar{U} / D input signal, as indicated in the Mode Select Table, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{U}} / \mathrm{D}$ can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.
$\overline{\mathrm{RC}}$ Truth Table

Inputs			Output
$\overline{\text { CE }}$	TC*	CP	$\overline{\mathbf{R C}}$
L	H	工r	U
H	X	X	H
X	L	X	H

*TC is generated internally
$H=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\Gamma=$ LOW-to-HIGH Clock Transition
U = LOW Pulse

State Diagram

COUNT UP \longrightarrow COUNT DOWN. -

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\text {® }}$ Output
Current Applied to Output in LOW State (Max)

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

Recommended Operating

 ConditionsFree Air Ambient Temperature

Commercial
Supply Voltage Military Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Note 1: Absoluto maximum ratings are be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V ${ }_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{C}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.8 \end{array}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \text { except } \overline{\mathrm{CE}} \\ & \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \overline{\mathrm{CE}} \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCL	Power Supply Current			38	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	FigNo
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	125		75		90		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{gathered} 7.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 13.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 12.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{array}{r} \mathbf{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay CP to TC	$\begin{array}{r} 6.0 \\ 5.0 \\ \hline \end{array}$	$\begin{gathered} 10.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 13.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.0 \\ 12.0 \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{R C}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.5 \\ 8.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CE}}$ to $\overline{\mathrm{RC}}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$		
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	$\begin{aligned} & \text { Propagation Delay } \\ & \bar{U} / D \text { to } \overline{R C} \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 18.0 \\ & 12.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 22.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 13.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay U/D to TC	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 6.5 \\ \hline \end{array}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 13.5 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.0 \\ 11.0 \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay P_{n} to Q_{n}	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 4.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 13.0 \\ \hline \end{gathered}$	3.0 6.0	$\begin{gathered} 9.0 \\ 16.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 14.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{FL}}$ to Q_{n}	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \\ & \hline \end{aligned}$	5.0 5.5	$\begin{array}{r} 13.0 \\ 14.5 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.0 \\ 13.0 \\ \hline \end{array}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{Cc}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $P_{n} \text { to } \overline{P L}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW P_{n} to $\overline{P L}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			
$\mathrm{t}_{\text {s }}(\mathrm{L})$	Setup Time, LOW $\overline{C E}$ to $C P$	10.0		10.5		10.0		ns	2-6
$t_{\text {r }}(\mathrm{L})$	Hold Time, LOW $\overline{\mathrm{CE}}$ to CP	0		0		0			
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW U/D to CP	$\begin{aligned} & 12.0 \\ & 12.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 12.0 \\ 12.0 \\ \hline \end{array}$		$\begin{aligned} & 12.0 \\ & 12.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW \bar{U} / D to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$t_{w}(L)$	PL Pulse Width, LOW	6.0		8.5		6.0		ns	2-4
$t_{w}(L)$	CP Pulse Width, LOW	5.0		7.0		5.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\text { PL }}$ to CP	6.0		7.5		6.0		ns	2-6

54F/74F191
 Up/Down Binary Counter with Preset and Ripple Clock

General Description

The 'F191 is a reversible modulo-16 binary counter featuring synchronous counting and asynchronous presetting. The preset feature allows the 'F191 to be used in programmable dividers. The Count Enable input, the Terminal Count output and Ripple Clock output make possible a variety of methods of implementing multistage counters. In the counting modes, state changes are initiated by the rising edge of the clock.

Features

- High-Speed-125 MHz typical count frequency

■ Synchronous counting

- Asynchronous parallel load
- Cascadable

Ordering Code: See Section 5

Logic Symbols

TL/F/9495-1

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\overline{C E}$	Count Enable Input (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
PL	Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
U/D	Up/Down Count Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$Q_{0}-Q_{3}$	Flip-Flop Outputs	50/33.3	-1 mA/20 mA
$\overline{\mathrm{RC}}$	Ripple Clock Output (Active LOW)	50/33.3	-1 mA/20 mA
TC	Terminal Count Output (Active HIGH)	50/33.3	-1 mA/20 mA

Functional Description

The 'F191 is a synchronous up/down 4-bit binary counter. It contains four edge-triggered flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations.
Each circuit has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load ($\overline{\mathrm{PL}}$) input is LOW, information present on the Parallel Data inputs ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.
A HIGH signal on the $\overline{C E}$ input inhibits counting. When $\overline{C E}$ is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the \bar{U} / D input signal, as indicated in the Mode Select Table. $\overline{\mathrm{CE}}$ and $\overline{\mathrm{U}} / \mathrm{D}$ can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.
Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally LOW and goes HIGH when a circuit reaches zero in the countdown mode or reaches 15 in the count-up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until U/D is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes.
The TC signal is also used internally to enable the Ripple Clock ($\overline{\mathrm{RC}}$) output. The $\overline{\mathrm{RC}}$ output is normally HIGH. When $\overline{C E}$ is LOW and TC is HIGH, the $\overline{R C}$ output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multistage counters, as indicated in Figures 1 and 2. In Figure 1, each $\overline{\mathrm{RC}}$ output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signal on $\overline{C E}$ inhibits the $\overline{\mathrm{FC}}$ oulput puise, as indicated in the $\overline{\mathrm{RC}}$ Truth Table. A disadvantage of this configuration, in some applications, is the timing skew between state changes in the first and last stages. This represents the cumulative delay of the clock as it ripples through the preceding stages.

A method of causing state changes to occur simultaneously in all stages is shown in Figure 2. All clock inputs are driven in parallel and the $\overline{\mathrm{RC}}$ outputs propagate the carry/borrow signals in ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the neg-ative-going edge of the carry/borrow signal to ripple through to the last stage before the clock goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the $\overline{\mathrm{RC}}$ output of any device goes HIGH shortly after its CP input goes HIGH.
The configuration shown in Figure 3 avoids ripple delays and their associated restrictions. The $\overline{\mathrm{CE}}$ input for a given stage is formed by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of Figures 1 and 2 doesn't apply, because the TC output of a given stage is not affected by its own $\overline{\mathrm{CE}}$.

Mode Select Table

Inputs				Mode
$\overline{\text { PL }}$	$\overline{\text { CE }}$	$\overline{\text { UI/D }}$	CP	
H	L	L	-	Count Up
H	L	H	-	Count Down
L	X	X	X	Preset (Asyn.)
H	H	X	X	No Change (Hold)

$\overline{\mathrm{RC}}$ Truth Table

Inputs			Output
$\overline{\text { CE }}$	TC	CP	$\overline{\text { RC }}$
L	H	Ur	T-
H	X	X	H
X	L	X	H

[^8]
Logic Diagram

TL/F/9495-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

TL/F/9495-6
FIGURE 1. n-Stage Counter Using Ripple Clock

FIGURE 2. Synchronous n-Stage Counter Using Ripple Carry/Borrow

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE ${ }^{\oplus}$ Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Military | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Commercial | |
| Supply Voltage | +4.5 V to +5.5 V |
| Military | +4.5 V to +5.5 V |
| Commercial | |

Current Applied to Output

$$
\text { in LOW State (Max) twice the rated } \mathrm{I}_{\mathrm{OL}}(\mathrm{~mA})
$$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{VCC}^{2} \end{aligned}$	$\begin{array}{r} 2.5 \\ 2.5 \\ 2.7 \end{array}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC $74 \mathrm{~F} 10 \%$ VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CL}}=20 \mathrm{~mA} \end{aligned}$
$l_{\text {IH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -1.8 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\text { except } \overline{\mathrm{CE}}) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{CE}}) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICC	Power Supply Current			38	55	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Conifigurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, V_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Count Frequency	100	125		75		90		MHz	2-1
${ }^{\text {tpLH }}$ ${ }^{\text {tphL }}$	Propagation Delay CP to Q_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.5 \end{aligned}$	$\begin{gathered} 7.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 13.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 12.0 \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to TC	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 13.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 13.5 \\ & \hline \end{aligned}$		$\begin{array}{r} 14.0 \\ 12.0 \\ \hline \end{array}$		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to $\overline{R C}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.5 \\ 8.0 \\ \hline \end{array}$	ns	2-3
${ }^{\text {tpLH }}$ ${ }^{\mathrm{t}_{\mathrm{PHL}}}$	Propagation Delay $\overline{\mathrm{CE}}$ to $\overline{\mathrm{RC}}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$		
$t_{\text {PLH }}$ ${ }^{\text {t }} \mathrm{PHL}$	Propagation Delay \bar{U} / D to $\overline{R C}$	$\begin{aligned} & 7.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 18.0 \\ & 12.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 22.0 \\ 14.0 \\ \hline \end{array}$	$\begin{array}{r} 7.0 \\ 5.5 \\ \hline \end{array}$	$\begin{array}{r} 20.0 \\ 13.0 \\ \hline \end{array}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay U/D to TC	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	10.0 10.0	4.0 4.0	13.5 12.5	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $P_{n} \text { to } Q_{n}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 4.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 13.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 16.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 14.0 \\ \hline \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{PL}}$ to Q_{n}	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.0 \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{cc}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $P_{n} \text { to } \overline{P L}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW P_{n} to $\overline{P L}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			
$\mathrm{t}_{\mathbf{s}}(\mathrm{L})$	Setup Time LOW $\overline{C E}$ to CP	10.0		10.5		10.0		ns	2-6
$t_{\text {h }}(\mathrm{L})$	Hold Time LOW $\overline{\mathrm{CE}}$ to CP	0		0		0			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW \bar{U} / D to CP	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW \bar{U} / D to $C P$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$t_{w}(L)$	$\overline{\text { PL Pulse Width LOW }}$	6.0		8.5		6.0		ns	2-4
$t_{w}(L)$	CP Pulse Width LOW	5.0		7.0		5.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{PL}}$ to CP	6.0		7.5		6.0		ns	2-6

54F／74F192

Up／Down Decade Counter with Separate Up／Down Clocks

General Description

The＇F192 is an up／down BCD decade（8421）counter．Sep－ arate Count Up and Count Down Clocks are used，and in either counting mode the circuits operate synchronously． The outputs change state synchronously with the LOW－to－ HIGH transitions on the clock inputs．

Separate Terminal Count Up and Terminal Count Down out－ puts are used as the clocks for a subsequent stage without extra logic，thus simplifying multistage counter designs．Indi－ vidual preset inputs allow the circuit to be used as a pro－ grammable counter．Both the Parallel Load（ $\overline{\mathrm{PL}}$ ）and the Master Reset（MR）inputs asynchronously override the clocks．

Ordering Code：See Section 5

Logic Symbols

Connection Diagrams

TL／F／のイロร－2

Unit Loading／Fan Out：See Section 2 for U．L．definitions

Pin Names	Description	54F／74F	
		U．L． HIGH／LOW	Input $I_{I H} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
CPu	Count Up Clock Input（Active Rising Edge）	1．0／3．0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
${ }_{C P}$	Count Down Clock Input（Active Rising Edge）	1．0／3．0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
MR	Asynchronous Master Reset Input（Active HIGH）	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { PL }}$	Asynchronous Parallel Load Input（Active LOW）	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$Q_{0}-Q_{3}$	Flip－Flop Outputs	50／33．3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{TC}}_{D}$	Terminal Count Down（Borrow）Output（Active LOW）	50／33．3	－1 mA／20 mA
$\overline{T C}$	Terminal Count Up（Carry）Output（Active LOW）	50／33．3	－1 mA／20 mA

Functional Description

The 'F192 is an asynchronously presettable decade counter. It contains four edge-triggered flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.
A LOW-to-HIGH transition on the CP input to each flip-flop causes the output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH, as indicated in the Function Table. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW.
The Terminal Count Up ($\overline{T C}_{U}$) and Terminal Count Down ($\overline{T C}_{D}$) outputs are normally HIGH. When the circuit has reached the maximum count state 9, the next HIGH-to-LOW transition of the Count Up Clock will cause $\overline{T C}_{U}$ to go LOW. $\overline{\mathrm{TC}}_{U}$ will stay LOW until CPu goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the $\overline{T C}_{D}$ output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

$$
\begin{gathered}
\overline{\mathrm{TC}}_{U}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{3} \bullet \overline{\mathrm{CP}}_{\mathrm{U}} \\
\overline{\mathrm{TC}}_{\mathrm{D}}=\overline{\mathrm{Q}}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \overline{\mathrm{Q}}_{3} \bullet \overline{\mathrm{CP}}_{\mathrm{D}}
\end{gathered}
$$

The ' F 192 has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data input ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both clock inputs, and latch each Q output in the LOW state. If one of the clock inputs is LOW during and after a reset or
load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

Function Table

MR	$\overline{\text { PL }}$	$\mathbf{C P}_{\mathbf{U}}$	$\mathbf{C P}_{\mathbf{D}}$	Mode
H	X	X	X	Reset (Asyn.)
L	L	X	X	Preset (Asyn.)
L	H	H	H	No Change
L	H	-	H	Count Up
L	H	H	-	Count Down

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\Omega=$ LOW-to-HIGH Clock Transition

State Diagram

TL/F/9496-4

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output -0.5 V to V_{CC} TRI-STATE® Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature
Military
Commercial
Supply Voltage
Military
Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{C}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -1.8 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \text { Except } \mathrm{CP}_{\mathrm{u}}, C P_{\mathrm{D}} \\ & \mathrm{~V}_{\mathrm{IN}}=0.5 \mathrm{~V}, \mathrm{CP}_{\mathrm{u}}, C P_{\mathrm{D}} \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			38	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{aligned} & \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	125		75		90		MHz	2-1
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CPu or CP_{D} to $\overline{\mathrm{TC}}_{\mathrm{U}}$ or $\overline{\mathrm{TC}}_{\mathrm{D}}$	$\begin{aligned} & 4.0 \\ & 3.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \\ \hline \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CPu or CPD to Q_{n}	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.5 \end{aligned}$			$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 13.5 \end{gathered}$	ns	2-3
$t_{\text {pLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $P_{n} \text { to } Q_{n}$	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 4.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 14.5 \end{gathered}$			3.0 6.0	$\begin{gathered} 8.0 \\ 15.5 \end{gathered}$	ns	2-3
$t_{P L H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{PL}}$ to Q_{n}	$\begin{array}{r} 5.0 \\ 5.5 \\ \hline \end{array}$	$\begin{gathered} 8.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{array}{r} 11.0 \\ 13.0 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 15.0 \\ & \hline \end{aligned}$	5.0 5.5	$\begin{aligned} & 12.0 \\ & 14.0 \end{aligned}$	ns	2-3
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to Q_{n}	6.5	11.0	14.5	6.5	16.0	6.5	15.5		
$t_{\text {PLH }}$	Propagation Delay MR to $\overline{T C}_{U}$	6.0	10.5	13.5	6.0	15.0	6.0	14.5	ns	2-3
${ }_{\text {tPHL }}$	Propagation Delay MR to $\overline{T C}_{D}$	7.0	11.5	14.5	7.0	16.0	7.0	15.5		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{PL}}$ to $\overline{T C}_{U}$ or $\overline{\mathrm{TC}}_{D}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 11.5 \end{aligned}$			18.5 17.5	7.0 7.0	$\begin{aligned} & 16.5 \\ & 15.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay P_{n} to $\overline{T C}_{U}$ or $\overline{T C}_{D}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	11.5 11.0	14.5 14.0	7.0 6.5	16.5 16.5	7.0	$\begin{aligned} & 15.5 \\ & 15.0 \\ & \hline \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symivai	Farameter	74F		54F		74F		Units	$\begin{aligned} & \mathrm{Fig} \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{G} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW P_{n} to $\overline{P L}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW P_{n} to $\overline{P L}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			
$t_{w}(L)$	$\overline{\text { PL Pulse Width, LOW }}$	6.0		7.5		6.0		ns	2-4
$t_{w}(\mathrm{~L})$	CP_{U} or CP_{D} Pulse Width, LOW	5.0		7.0		5.0		ns	2-4
$t_{w}(L)$	CP_{u} or CP_{D} Pulse Width, LOW (Change of Direction)	10.0		12.0		10.0		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	$\overline{\text { MR Pulse Width, HIGH }}$	6.0		6.0		6.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\text { PL }}$ to CP_{U} or CP_{D}	6.0		8.0		6.0		ns	2-6
$\mathrm{trec}^{\text {rec }}$	Recovery Time MR to CPu or CPD	4.0		4.5		4.0		ns	2-6

54F/74F 193 Up/Down Binary Counter with Separate Up/Down Clocks

General Description

The 'F193 is an up/down modulo-16 binary counter. Separate Count Up and Count Down Clocks are used, and in either counting mode the circuits operate synchronously. The outputs change state synchronously with the LOW-toHIGH transitions on the clock inputs. Separate Terminal Count Up and Terminal Count Down outputs are provided
that are used as the clocks for subsequent stages without extra logic, thus simplifying multi-stage counter designs. Individual preset inputs allow the circuit to be used as a programmable counter. Both the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Reset (MR) inputs asynchronously override the clocks.

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9497-2

Pin Assignment for LCC and PCC

$$
\mathrm{Q}_{2} C P_{u} N C C P_{D} Q_{0}
$$

$$
88 \text { 园 } 5
$$

TL/F/9497-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
CP	Count Up Clock Input (Active Rising Edge)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
CP_{D}	Count Down Clock Input (Active Rising Edge)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
MR	Asynchronous Master Reset Input (Active HIGH)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { PL }}$	Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$Q_{0}-Q_{3}$	Flip-Flop Outputs	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{T C}_{D}$	Terminal Count Down (Borrow) Output (Active LOW)	50/33.3	-1 mA/20 mA
$\overline{T C}_{U}$	Terminal Count Up (Carry) Output (Active LOW)	50/33.3	-1 mA/20 mA

Functional Description

The 'F193 is a 4-bit binary synchronous up/down (reversible) counter. It contains four edge-triggered flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.
A LOW-to-HIGH transition on the CP input to each flip-flop causes the output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH, as indicated in the Function Table.
The Terminal Count Up ($\overline{\mathrm{TC}}_{\mathrm{U}}$) and Terminal Count Down ($\overline{T C}_{D}$) outputs are normally HIGH . When the circuit has reached the maximum count state 15, the next HIGH-toLOW transition of the Count Up Clock will cause TC ${ }_{\mathrm{T}}$ to go LOW. $\overline{T C}_{U}$ will stay LOW until CP_{U} goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the $\overline{\mathrm{TC}}_{\mathrm{D}}$ output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.

$$
\begin{aligned}
& \overline{\mathrm{TC}}_{\mathrm{U}}=\mathrm{Q}_{0} \bullet \mathrm{Q}_{1} \bullet \mathrm{Q}_{2} \bullet \mathrm{Q}_{3} \bullet \overline{\mathrm{CP}}_{\mathrm{U}} \\
& \overline{\mathrm{TC}}_{\mathrm{D}}=\overline{\mathrm{Q}}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \overline{\mathrm{Q}}_{3} \bullet \overline{\mathrm{CP}}_{\mathrm{D}}
\end{aligned}
$$

The 'F193 has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load ($\overline{\mathrm{PL}}$) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data input ($\mathrm{P}_{0}-\mathrm{P}_{3}$) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both clock inputs, and latch each Q output in the LOW state.

If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

Function Table					
MR	$\overline{\text { PL }}$	$\mathbf{C P}_{\mathbf{U}}$	$\mathbf{C P} \mathbf{D}$	Mode	
H	X	X	X	Reset (Asyn.)	
L	L	X	X	Preset (Asyn.)	
L	H	H	H	No Change	
L	H	R	H	Count Up	
L	H	H	-	Count Down	

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathcal{\sim}=$ LOW-to-HIGH Clock Transition

State Diagram

Logic Diagram

TL/F/9497-6
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{C C}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Either voltage limit or current limit is sufficient to protect inputs.

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Count Frequency	100	125		75		90		MHz	2-1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CPu or CPD $\overline{\mathrm{TC}}_{U}$ or $\overline{\mathrm{TC}}_{D}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CPu or CPD to Q_{n}	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 12.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 13.5 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $P_{n} \text { to } Q_{n}$	$\begin{array}{r} 3.0 \\ 6.0 \\ \hline \end{array}$	$\begin{gathered} 4.5 \\ 11.0 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 14.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 16.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 15.5 \\ \hline \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\text { PL }}$ to Q_{n}	$\begin{array}{r} 5.0 \\ 5.5 \\ \hline \end{array}$	$\begin{gathered} 8.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{array}{r} 11.0 \\ 13.0 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.0 \\ & 14.0 \\ & \hline \end{aligned}$	ns	2-3
${ }_{\text {tPHL }}$	Propagation Delay $M R$ to Q_{n}	5.5	11.0	14.5	5.0	16.0	5.5	15.5		
tpLH	Propagation Delay MR to $\overline{T C}_{U}$	6.0	10.5	13.5	5.0	15.0	6.0	14.5	ns	2-3
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to $\overline{T C}_{D}$	6.0	11.5	14.5	6.0	16.0	6.0	15.5		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{FL}}$ to $\overline{\mathrm{TC}}_{U}$ or $\overline{\mathrm{TC}}_{D}$	$\begin{array}{r} 7.0 \\ 7.0 \\ \hline \end{array}$	$\begin{array}{r} 12.0 \\ 11.5 \\ \hline \end{array}$	$\begin{aligned} & 15.5 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 6.0 \\ \hline \end{array}$	$\begin{array}{r} 18.5 \\ 17.5 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 15.5 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay P_{n} to $\overline{T C}_{U}$ or $\overline{T C}_{D}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 16.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 15.0 \\ & \hline \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{MII}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	4.5		6.0		5.0		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	P_{n} to $\overline{P L}$	4.5		6.0		5.0			
$t_{n}(\mathrm{H})$	Hold Time, HIGH or LOW	2.0		2.0		2.0			
$t_{n}(L)$	P_{n} to $\overline{P L}$	2.0		2.0		2.0			
$t_{w}(L)$	PL Pulse Width, LOW	6.0		7.5		6.0		ns	2-4
$t_{w}(L)$	CPu or CPD Pulse Width, LOW	5.0		7.0		5.0		ns	2-4
$t_{w}(L)$	CPu or CPD Pulse Width, LOW (Change of Direction)	10.0		12.0		10.0		ns	2-4
$t_{w}(\mathrm{H})$	MR Pulse Width, HIGH	6.0		6.0		6.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time FL to $C P_{U}$ or $C P_{D}$	6.0		8.0		6.0		ns	2-6
$t_{\text {rec }}$	Recovery Time MR to CP_{U} or CP_{D}	4.0		4.5		4.0		ns	2-6

54F/74F194
 4-Bit Bidirectional Universal Shift Register

General Description

The 'F194 is a high-speed 4-bit bidirectional universal shift register. As a high-speed, multifunctional, sequential building block, it is useful in a wide variety of applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial, and parallel-parallel data register transfers. The 'F194 is similar in operation to the 'F195 universal shift register, with added features of shift left without external connections and hold (do nothing) modes of operation.

Features

- Typical shift frequency of 150 MHz
- Asynchronous master reset
- Hold (do nothing) mode
- Fully synchronous serial or parallel data transfers

Ordering Code: See Section 5

Logic Symbols

TL/F/9498-3

Connection Diagrams

TL/F/9498-2

Functional Description

The 'F194 contains four edge-triggered D flip-flops and the necessary interstage logic to synchronously perform shift right, shift left, parallel load and hold operations. Signals applied to the Select $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}\right)$ inputs determine the type of operation, as shown in the Mode Select Table. Signals on the Select, Parallel data ($\mathrm{P}_{0}-\mathrm{P}_{3}$) and Serial data (D_{SR}, D_{SL})
inputs can change when the clock is in either state, provided only that the recommended setup and hold times, with respect to the clock rising edge, are observed. A LOW signal on Master Reset ($\overline{\mathrm{MR}}$) overrides all other inputs and forces the outputs LOW.

Mode Select Table

Operating Mode	Inputs						Outputs			
	$\overline{M R}$	S_{1}	S_{0}	$\mathrm{D}_{\text {SR }}$	$\mathrm{D}_{\text {SL }}$	P_{n}	Q_{0}	Q_{1}	Q_{2}	\mathbf{Q}_{3}
Reset	L	X	X	X	X	X	L	L	L	L
Hold	H	1	1	X	X	X	90	q_{1}	q_{2}	q_{3}
Shift Left	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & h \\ & h \end{aligned}$	I	$\begin{aligned} & x \\ & X \end{aligned}$	$\begin{aligned} & \text { l } \\ & \mathrm{h} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{q}_{3} \\ & \mathrm{q}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$
Shift Right	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	1	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{l} \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{0} \\ & \mathrm{q}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{q}_{2} \\ \mathrm{q}_{2} \end{array}$
Parallel Load	H	h	h	X	X	P_{n}	p_{0}	p_{1}	P_{2}	P_{3}

H $(\mathrm{h})=$ High Voltage Level
L (I) = Low Voltage Level
$\mathrm{p}_{\mathrm{n}}\left(\mathrm{q}_{\mathrm{n}}\right)=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the LOW-to-HIGH clock transition.
$X=$ Immaterial

Logic Diagram

TL/F/9498-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the Natlonal Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Ambient Temperature under Bias

Voltage Applied to Output

$$
\begin{array}{lr}
\text { in HIGH State (with } \left.V_{C C}=0 \mathrm{~V}\right) & \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { TRI-STATE }{ }^{\oplus} \text { Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$V_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 74F 10\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Vcltaga	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% V_{C C} \\ & \hline \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{IH}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I_{1}	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICC	Power Supply Current			33	46	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Shift Frequency	105	150		90		90		MHz	2-1
$t_{\text {PLH }}$ $t_{\text {PH }}$	Propagation Delay CP to Q_{n}	3.5	5.2	7.0	3.0 3.0	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	3.5	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns	2-3
tPHL	CP to Q_{n}				3.0		3.5			
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to Q_{n}	4.5	8.6	12.0	4.5	14.5	4.5	14.0	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW P_{n} or $D_{S R}$ or $D_{S L}$ to CP	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW P_{n} or $D_{S R}$ or $D_{S L}$ to CP	$\begin{gathered} 1.0 \\ 0 \\ \hline \end{gathered}$		$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW S_{n} to CP	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$		$\begin{gathered} 10.5 \\ 8.0 \end{gathered}$		$\begin{gathered} 11.0 \\ 8.0 \end{gathered}$		ns	2-6
$\begin{aligned} & t_{n}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW S_{n} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$t_{w}(\mathrm{H})$	CP Pulse Width, HIGH	5.0		5.5		5.5		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse Width, LOW	5.0		5.0		5.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	9.0		9.0		11.0		ns	2-6

54F/74F219

64-Bit Random Access Memory with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F219 is a high-speed 64-bit RAM organized as a 16 -word by 4 -bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are TRI-STATE and are in the high-impedance state whenever the Chip Select ($\overline{\mathrm{CS}}$) input is HIGH. The outputs are active only in the Read mode. This device is similar to the ' F 189 but features non-inverting, rather than inverting, data outputs.

Features

- TRI-STATE outputs for data bus applications
- Buffered inputs minimize loading
- Address decoding on-chip
- Diode clamped inputs minimize ringing

Ordering Code: See Section 5

Logic Symbol

TL/F/9500-1

Connection Diagrams
Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9500-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$	
	Address Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$	
$\overline{\mathrm{WE}}$	Write Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\mathrm{O}_{0}-\mathrm{O}_{3}$	TRI-STATE Data Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$	

Function Table

Inputs		Operation	Condition of Outputs
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$		
L	L	Write	High Impedance
L	H	Read	True Stored Data H
X	Inhibit	High Impedance	

H = HIGH Voltage Level
 $\mathrm{L}=$ LOW Voltage Level
 $X=$ Immaterial

Block Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC}
TRI-STATE Output

Current Applied to Output
in LOW State (Max) twice the rated $\mathrm{IOL}_{\mathrm{OL}}$ (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{\mathbb{I N}}=0.5 \mathrm{~V}\left(A_{n}, \overline{\mathrm{WE}}, \mathrm{D}_{n}\right) \\ & \mathrm{V}_{\mathbb{I N}}=0.5 \mathrm{~V}(\overline{\mathrm{CS}}) \end{aligned}$
IozH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICC	Power Supply Current			37	55	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ \mathbf{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Access Time, HIGH or LOW $A_{n} \text { to } O_{n}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 26.0 \\ & 19.0 \\ & \hline \end{aligned}$	9.0 8.0	$\begin{array}{r} 32.0 \\ 23.0 \\ \hline \end{array}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	$\begin{array}{r} 27.0 \\ 20.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Access Time, HIGH or LOW $\overline{\mathrm{CS}}$ to O_{n}	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 13.0 \\ \hline \end{gathered}$		$\begin{array}{r} 10.5 \\ 15.0 \\ \hline \end{array}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 14.0 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \text { tphZ } \\ & \text { tplZ }^{2} \end{aligned}$	Disable Time, HIGH or LOW $\overline{\mathrm{CS}}$ to O_{n}	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 8.0 \end{aligned}$		$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Write Recovery Time HIGH or LOW, $\overline{\text { WE }}$ to O_{n}	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{array}{r} 20.0 \\ 11.0 \\ \hline \end{array}$	$\begin{array}{r} 28.0 \\ 15.5 \\ \hline \end{array}$	6.5	$\begin{aligned} & 37.5 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{array}{r} 29.0 \\ 16.5 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable Time, HIGH or LOW $\overline{W E}$ to O_{n}	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	7.0 9.0	$\begin{array}{r} 10.0 \\ 13.0 \end{array}$	3.5 5.0	$\begin{array}{r} 12.0 \\ 15.0 \end{array}$	4.0 5.0	$\begin{aligned} & 11.0 \\ & 14.0 \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW A_{n} to $\overline{W E}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	2-6
$\begin{aligned} & \operatorname{th}_{\mathrm{h}}(\mathrm{H}) \\ & \operatorname{th}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW A_{n} to $\overline{W E}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{n} to $\overline{W E}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$		$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D_{n} to $\overline{W E}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Setup Time, LOW $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$	0		0		0		ns	2-6
$t_{\text {f }}(\mathrm{L})$	Hold Time, LOW $\overline{\mathrm{CS}}$ to $\overline{\mathrm{WE}}$	6.0		7.5		6.0			
$\mathrm{t}_{\text {w }}(\mathrm{L})$	WE Pulse Width, LOW	6.0		7.5		6.0		ns	2-4

Ordering Code：See Section 5

Connection Diagrams

Pin Assignment for LCC and PCC

TL／F／9501－2
＇F240
Pin Assignment for DIP，SOIC and Flatpak

TL／F／9501－1
＇ㄷ291

TL／F／9501－4

TL／F／9501－3
＇F244

TL／F／9501－6

Logic Symbols

IEEE／IEC
＇F241

IEEE／IEC
＇F244

Unit Loading／Fan Out：See Section 2 for U．L．definitions

Pin Names	Description	54F／74F	
		U．L． HIGH／LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	TRI－STATE Output Enable Input（Active LOW）	1．0／1．667	$20 \mu \mathrm{~A} /-1 \mathrm{~mA}$
OE_{2}	TRI－STATE Output Enable Input（Active HIGH）	1．0／1．667	$20 \mu \mathrm{~A} /-1 \mathrm{~mA}$
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Inputs（＇F240）	1．0／1．667＊	$20 \mu \mathrm{~A} /-1 \mathrm{~mA}$
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Inputs（＇F241，＇F244）	1．0／2．667＊	$20 \mu \mathrm{~A} /-1.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}, \mathrm{O}_{0}-\mathrm{O}_{7}$	Outputs	150／106．6（80）	－12 mA／64 mA（48 mA）

＂Worst－case＇F240 enabled；＇F241，＇F244 disabled

Truth Tables

${ }^{\prime} \overline{\mathbf{O E}}_{\mathbf{1}}$	$\mathrm{D}_{\mathbf{1 n}}$	$\mathbf{O}_{\mathbf{1 n}}$	$\overline{\mathbf{O E}}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{2 n}}$	$\mathbf{O}_{\mathbf{2 n}}$
H	X	\mathbf{Z}	H	X	Z
L	H	H	L	H	H
L	L	L	L	L	L

＇F241

$\overline{\mathbf{O E}}_{\mathbf{1}}$	$\mathrm{D}_{1 \mathbf{n}}$	$\mathbf{O}_{\mathbf{1 n}}$	$\mathbf{O E}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{2 n}}$	$\mathbf{O}_{\mathbf{2 n}}$
H	X	Z	L	X	Z
L	H	H	H	H	H
L	L	L	H	L	L

$\overline{O E}_{\mathbf{1}}$	$\mathrm{D}_{\mathbf{1 n}}$	$\mathbf{O}_{1 \mathbf{n}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{D}_{\mathbf{2 n}}$	$\mathbf{O}_{\mathbf{2 n}}$
H	X	Z	H	X	Z
L	H	H	L	H	H
L	L	L	L	L	L

H＝HIGH Voltage Level
L＝LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to

Ground Pin

Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
Current Applied to Output in LOW State (Max)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
-0.5 V to V_{CC}
-0.5 V to +5.5 V
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 5\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.4 \\ & 2.0 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.0 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
I BVI	Input High Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -1.0 \\ -1.6 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}, \mathrm{OE}_{2}, \mathrm{D}_{n}\right. \text { ('F240)) } \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{D}_{\mathrm{n}}(\text { ('F241, 'F244)) }\right. \end{aligned}$
l	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-100		-225	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current ('F240)			19	29	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current ('F240)			50	75	mA	Max	$V_{O}=$ LOW
ICCZ	Power Supply Current ('F240)			42	63	mA	Max	$\mathrm{V}_{0}=$ HIGH Z
ICCH	Power Supply Current ('F241, 'F244)			40	60	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current ('F241, 'F244)			60	90	mA	Max	$V_{O}=L O W$
ICCz	Power Supply Current('F241, 'F244)			60	90	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGHZ}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output ('F240)	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.1 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.7 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time ('F240)	$\begin{aligned} & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.7 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 6.5 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 5.7 \\ 10.0 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time ('F240)	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.3 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 6.5 \\ 12.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.3 \\ 9.5 \\ \hline \end{array}$		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output ('F241, 'F244)	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time ('F241, 'F244)	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.3 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.7 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.7 \\ & 8.0 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time ('F241, 'F244)	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		

54F／74F242
 Quad Bus Transceiver with TRl－STATE® Ouîputs

General Description

The＇F242 is a quad bus transmitter／receiver designed for 4 －line asynchronous 2－way data communications between data busses．

Features

－2－way asynchronous data bus communication a Input clamp diodes limit high－speed termination effects

Logic Symbol
IEEE／IEC

Connection Diagrams

Pin Assignment for DIP，SOIC and Flatpak

TL／F／9578－2

Truth Table

Inputs		Inputs／Outputs	
\bar{E}_{1}	E_{2}	A_{n}	$R_{: ~}$
L	L	Input	$B=\bar{A}$
L	H	N／A	N／A
H	L	Z	Z
H	H	$A=\bar{B}$	Input

[^9]
54F/74F243

Quad Bus Transceiver with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F243 is a quad bus transmitter/receiver designed for 4 -line asynchronous 2 -way data communications between data busses.

Features

- 2.Way asynchronous data bus communication
- Input clamp diodes limit high-speed termination effects

Ordering Code: See Section 5

Logic Symbol

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
	Enable Input (Active LOW)	$1.0 / 1.67$	$20 \mu \mathrm{~A} /-1 \mathrm{~mA}$
E_{2}	Enable Input (Active HIGH)	$1.0 / 1.67$	$20 \mu \mathrm{~A} /-1 \mathrm{~mA}$
$\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$	Inputs	$3.5 / 2.67$	$70 \mu \mathrm{~A} /-1.6 \mathrm{~mA}$
	Outputs	$600 / 106.6(80)$	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$

Truth Table

Inputs		Inputs/Outputs	
$\bar{E}_{\mathbf{1}}$	$\mathrm{E}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{n}}$	$\mathbf{B}_{\mathbf{n}}$
L	L	Input	$\mathrm{B}=\mathrm{A}$
L	H	N / A	N / A
H	L	Z	Z
H	H	$\mathrm{A}=\mathrm{B}$	Input

H = HIGH Voltage Level
L = LOW Voltage Level
Z = High Impedance
N/A = Not Allowed

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C C}}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH 54F $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage 54F $10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$		$\begin{aligned} & 2.4 \\ & 2.0 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.0 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OI}}=-15 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.55 \\ & 0.55 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\left(\bar{E}_{1}, \mathrm{E}_{2}\right)$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)				1.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)$
$\mathrm{IIL}^{\text {L }}$	Input LOW Current				-1.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\bar{E}_{1}, \mathrm{E}_{2}\right)$
$\mathrm{IIH}+\mathrm{IOZH}$	Output Leakage Current				70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current				-1.6	mA	Max	$V_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)$
los	Output Short-Circuit Current		-100		-225	mA	Max	$V_{\text {OUT }}=0 V\left(A_{n}, B_{n}\right)$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			64	80	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			64	90	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
I CCz	Power Supply Current			71	90	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay A_{n} to B_{n}, B_{n} to A_{n}	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time \bar{E}_{1} to B_{n}, E_{2} to A_{n}	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 4.3 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 7.5 \end{aligned}$		$\begin{gathered} 8.0 \\ 10.5 \end{gathered}$		$\begin{aligned} & 6.7 \\ & 8.5 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathbf{t}_{\mathrm{PHZ}} \\ & \mathbf{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time E_{1} to B_{n}, E_{2} to A_{n}	2.0 2.0	4.5 4.5	6.0 6.0	1.5 2.0	7.5 8.5	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		

54F/74F245

Octal Bidirectional Transceiver with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F245 contains eight non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA (20 mA Mil) at the A ports and $64 \mathrm{~mA}(48 \mathrm{~mA} \mathrm{Mil})$ at the B ports. The Transmit/Receive ($T / \overline{\mathrm{R}}$) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A ports to B ports; Receive (active LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a High Z condition.

Features

\square Non-inverting buffers

- Bidirectional data path
- A outputs sink 24 mA (20 mA Mil)
- B outputs sink 64 mA (48 mA Mil)

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

TL/F/9503-3

IEEE/IEC

TL/F/9503-4

TL/F/9503-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\text {IH }} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\overline{O E}$	Output Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
T/ \bar{R}	Transmit/Receive Input	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Side A Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	TRI-STATE Outputs	150/40(38.3)	-3 mA/24 mA (20 mA)
$\mathrm{B}_{0}-\mathrm{B}_{7}$	Side B Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	TRI-STATE Outputs	600/106.6(80)	-12 mA/64 mA (48 mA)

Truth Table

Inputs		Output
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathrm{R}}$	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	High Z State

[^10]
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
V_{CC} Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$ TRI-STATE Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 5\% VCC	$\begin{aligned} & 2.4 \\ & 2.0 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.0 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{IOH}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\ & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{VCC} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{gathered} 0.5 \\ 0.55 \\ 0.5 \\ 0.55 \\ \hline \end{gathered}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\mathrm{Bn}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}(\overline{\mathrm{OE}, \mathrm{T} / \overline{\mathrm{R}})}$
IBVIT	Input HIGH Current Breakdown Test (I/O)				1.0	mA	Max	$\mathrm{V}_{1} \mathrm{~N}=5.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {IL }}$	Input LOW Current				-1.2	mA	Max	$V_{\text {IN }}=0.5 \mathrm{~V}(\mathrm{~T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}})$
$\mathrm{IIH}+\mathrm{I}_{\text {OZH }}$	Output Leakage Current				70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)$
$\mathrm{I}_{\mathrm{IL}}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current				-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)$
los	Output Short-Circuit Current		$\begin{gathered} -60 \\ -100 \\ \hline \end{gathered}$		$\begin{array}{r} -150 \\ -225 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{\text {OUT }}=0 V\left(A_{n}\right) \\ & V_{\text {OUT }}=0 V\left(B_{n}\right) \end{aligned}$
$\mathrm{I}_{\text {CEX }}$	Output High Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{C C}\left(A_{n}, B_{n}\right)$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(A_{n}, \mathrm{~B}_{n}\right)$
1 CCH	Power Supply Current			70	90	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			95	120	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
I CCZ	Power Supply Current			85	110	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathbf{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C} \\ \mathbf{V}_{\mathbf{C C}}=+5.0 \mathrm{~V} \\ \mathbf{C}_{\mathbf{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.2 \end{aligned}$			$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.0 \\ 9.0 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$		

54F/74F251A 8-Input Multiplexer with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F251A is a high-speed 8 -input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Features

- Multifunctional capability

■ On-chip select logic decoding

- Inverting and non-inverting TRI-STATE outputs

Ordering Code: See Section 5

Logic Symbols

TL/F/9504-3

Connection Diagrams

TL/F/9504-5
Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { OE }}$	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Multiplexer Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
Z	TRI-STATE Multiplexer Output	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\overline{\mathrm{z}}$	Complementary TRI-STATE Multiplexer Output	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

This device is a logical implementation of a single-pole, 8position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Output Enable input (OE) is active LOW. When it is activated, the logic function provided at the output is:

$$
\begin{aligned}
& \mathrm{Z}=\overline{\mathrm{OE}} \bullet\left(\mathrm{I}_{0} \bullet \overline{\mathrm{~S}}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{1} \bullet \mathrm{~S}_{0} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{2}+\right. \\
& I_{2} \bullet{ }^{\bullet} \bar{S}_{0} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{2}+\mathrm{I}_{3} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \overline{\mathrm{~S}}_{2}+ \\
& \mathrm{I}_{4} \bullet \bar{S}_{0} \bullet \bar{S}_{1} \bullet \mathrm{~S}_{2}+1_{5} \bullet \mathrm{~S}_{0} \bullet \bar{S}_{1} \bullet \mathrm{~S}_{2}+ \\
& \left.\mathrm{I}_{6} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}+\mathrm{I}_{7} \bullet \mathrm{~S}_{0} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{2}\right)
\end{aligned}
$$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the
maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltages.

Truth Table

Inputs					Outputs	
$\overline{\mathbf{O E}}$	$\mathbf{S}_{\mathbf{2}}$	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{0}}$	$\overline{\mathbf{Z}}$	\mathbf{Z}	
H	X	X	X	Z	Z	
L	L	L	L	\bar{I}_{0}	I_{0}	
L	L	L	H	\bar{I}_{1}	I_{1}	
L	L	H	L	\bar{I}_{2}	I_{2}	
L	L	H	H	\bar{I}_{3}	I_{3}	
L	H	L	L	\bar{I}_{4}	I_{4}	
L	H	L	H	\bar{I}_{5}	I_{5}	
L	H	H	L	\bar{I}_{6}	I_{6}	
L	H	H	H	\bar{I}_{7}	I_{7}	

[^11]
Logic Diagram

TL/F/9504-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for avallabillty and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to

Ground Pin

input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

+4.5 V to +5.5 V
Commercial
+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.1 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}=20 \mathrm{~mA} \\ & \mathrm{IOL}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCL	Power Supply Current			15	22	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCz	Power Supply Current			16	24	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54 F		74F		Units	Fig No
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{MiI} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to $\overline{\mathrm{Z}}$	$\begin{array}{r} 3.5 \\ 3.2 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.2 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to Z	$\begin{array}{r} 4.5 \\ 4.0 \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ 6.0 \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay I_{n} to \bar{Z}	$\begin{array}{r} 3.0 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay I_{n} to Z	$\begin{array}{r} 3.5 \\ 3.5 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{Z}}$	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 4.3 \\ & 4.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 6.5 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{Z}}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$		
$\begin{aligned} & \mathbf{t}_{\mathrm{PZH}} \\ & \mathbf{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time OE to Z	$\begin{array}{r} 3.5 \\ 3.5 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	3.0 3.5	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PL}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to Z	$\begin{array}{r} 2.0 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 3.8 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & \hline \end{aligned}$	2.0 1.5	$\begin{array}{r} 5.5 \\ 5.5 \\ \hline \end{array}$	2.0 1.5	$\begin{array}{r} 5.5 \\ 4.5 \\ \hline \end{array}$		

54F／74F253

Dual 4－Input Multiplexer with TRI－STATE ${ }^{\circledR}$ Outputs

General Description

The＇F253 is a dual 4 －input multiplexer with TRI－STATE® outputs．It can select two bits of data from four sources using common select inputs．The output may be individually switched to a high impedance state with a HIGH on the respective Output Enable（ $\overline{\mathrm{OE}}$ ）inputs，allowing the outputs to interface directly with bus oriented systems．

Features

－Multifunction capability
－Non－inverting TRI－STATE outputs

Ordering Code：See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP，SOIC and Flatpak

TL／F／9505－1

Pin Assignment for LCC and PCC

TLIF゙ノYロUb－2

Unit Loading／Fan Out：See Section 2 for U．L．definitions

Pin Names	Description	54F／74F	
		U．L． HIGH／LOW	Input $l_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$10 \mathrm{a}-\mathrm{l}_{3}$	Side A Data Inputs	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$10 b^{-1} 3 \mathrm{~b}$	Side B Data inputs	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}-\mathrm{S}_{1}$	Common Select Inputs	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
OE_{a}	Side A Output Enable Input（Active LOW）	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E}_{\text {b }}$	Side B Output Enable Input（Active LOW）	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
Z_{a}, Z_{b}	TRI－STATE Outputs	150／40（33．3）	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

This device contains two identical 4-input multiplexers with TRI-STATE outputs. They select two bits from four sources selected by common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4-input multiplexers have individual Output Enable ($\overline{\mathrm{OE}}_{\mathrm{a}}, \overline{\mathrm{OE}}_{\mathrm{b}}$) inputs which, when HIGH, force the outputs to a high impedance (High Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below:

$$
\begin{gathered}
\mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{OE}}_{\mathrm{a}} \cdot\left(\mathrm{l}_{0 \mathrm{a}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{ab}} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
\mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{OE}}_{\mathrm{b}} \cdot\left(\mathrm{l}_{\mathrm{lbb}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{ab}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{1} \cdot \mathrm{~S}_{0}\right) \\
\left.\mathrm{I}_{2 \mathrm{~b}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{\mathrm{bb}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right)
\end{gathered}
$$

If the outputs of TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to TRISTATE devices whose outputs are tied together are designed so that there is no overlap.

Truth Table

Select Inputs			Data Inputs	Output Enable	Output		
S_{0}	$\mathrm{~S}_{1}$	I_{0}	I_{1}	$\mathrm{I}_{\mathbf{2}}$	I_{3}	OE	$\overline{\mathrm{Z}}$
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
H	L	X	L	X	X	L	L
H	L	X	H	X	X	L	H
L	H	X	X	L	X	L	L
L	H	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

> Address inputs S_{0} and S_{1} are common to both sections.
> $H=H 1 G H$ Voltage Level
> $\mathrm{L}=$ LOW Voltage Level
> $\mathrm{X}=$ Immaterial
> $\mathrm{Z}=$ High Impedance

Logic Diagram

TL/F/9505-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$)
Standard Output TRI-STATE Output

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } V_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { an }
\end{array}
$$

Current Applied to Output in LOW State (Max)
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military
Commercial
Supply Voltage
Military
Commercial
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
+4.5 V to +5.5 V
+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{c c}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=2.7 \mathrm{~V}$
lozi	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		$\begin{gathered} -60 \\ -100 \\ \hline \end{gathered}$		$\begin{array}{r} -150 \\ -225 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{\text {OUT }}=O V \\ & V_{\text {OUT }}=O V \end{aligned}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			11.5	16	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			16	23	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
I CCZ	Power Supply Current			16	23	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGHZ}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			$54 F$		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $S_{n} \text { to } Z_{n}$	$\begin{aligned} & 4.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{array}{r} 3.5 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 15.0 \\ 11.0 \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{n} \text { to } Z_{n}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 6.0 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$		

National Semiconductor

54F/74F256
 Dual 4-Bit Addressable Latch

General Description

The 'F256 dual addressable latch has four distinct modes of operation which are selectable by controlling the Clear and Enable inputs (see Function Table). In the addressable latch mode, data at the Data (D) inputs is written into the addressed latches. The addressed latches will follow the Data input with all unaddressed latches remaining in their previous states.
In the memory mode, all latches remain in their previous states and are unaffected by the Data or Address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held HIGH (inactive) while the address lines are changing. In the dual 1-of-4 decoding or demultiplexing mode ($\overline{\mathrm{MR}}=\overline{\mathrm{E}}=\mathrm{LOW}$), addressed outputs will follow the level of the D inputs with all other outputs LOW. In the clear mode, all outputs are LOW and unaffected by the Address and Data inputs.

Features

- Combines dual demultiplexer and 8-bit latch
- Serial-to-parallel capability
- Output from each storage bit available
- Random (addressable) data entry
- Easily expandable
- Common clear input

■ Useful as dual 1-of-4 active HIGH decoder

Logic Symbols

Connection Diagrams

Mode Select-Function Table									
Operating Mode	Inputs					Outputs			
	$\overline{\text { MR }}$	\bar{E}	D	A_{0}	A_{1}	Q_{0}	Q_{1}	Q_{2}	Q_{3}
Master Reset	L	H	X	X	X	L	L	L	L
Demultiplex	L	L	d	L	L	$Q=d$	L	L	L
(Active HIGH	L	L	d	H	L	L	$Q=d$	L	L
Decoder	L	L	d	L	H	L	L	$Q=d$	L
when $\mathrm{D}=\mathrm{H}$)	L	L	d	H	H	L	L	L	$Q=d$
Store (Do Nothing)	H	H	X	X	X	90	q_{1}	q_{2}	व3
	H	L	d	L	L	$Q=d$	q_{1}	q_{2}	q3
Addressable	H	L	d	H	L	90	Q $=\mathrm{d}$	q_{2}	q_{3}
Latch	H	L	d	L	H	90	q_{1}	$Q=d$	q_{3}
	H	L	d	H	H	90	q_{1}	q_{2}	$Q=d$

$H=H I G H$ Voltage Level Steady State
$L=$ LOW Voltage Level Steady State
$X=$ Immaterial
$d=$ HIGH or LOW Data one setup time prior to the LOW-to-HIGH Enable transition
$q=$ Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.
Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

National Semiconductor

54F/74F257A

Quad 2-Input Multiplexer with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F257A is a quad 2-input multiplexer with TRI-STATE outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable ($\overline{\mathrm{OE} \text {) input, allowing }}$ the outputs to interface directly with bus-oriented systems.

Features

- Multiplexer expansion by tying outputs together
- Non-inverting TRI-STATE outputs
- Input clamp diodes limit high-speed termination effects

Ordering Code: See Section 5

Logic Symbols

TL/F/9507-5

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

$$
I_{1 b} b_{b} N C E_{a} I_{1 a}
$$

TL/F/9507-2

Unit Loading/Fan Out:
See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
S	Common Data Select Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E}$	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{l}_{0}-10 \mathrm{l}$	Data Inputs from Source 0	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$l_{1 a}-l_{1 d}$	Data Inputs from Source 1	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$Z_{a}-Z_{\text {d }}$	TRI-STATE Multiplexer Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F257A is a quad 2-input multiplexer with TRI-STATE outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the $\mathrm{I}_{0 x}$ inputs are selected and when Select is HIGH, the $l_{1 x}$ inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form. The device is the logic implementation of a 4 -pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equation for the outputs is shown below:

$$
Z_{\mathrm{n}}=\overline{O E} \bullet\left(I_{\mathrm{n}} \bullet S+I_{o n} \bullet \bar{S}\right)
$$

When the Output Enable input ($\overline{\mathrm{OE}}$) is HIGH, the outputs are forced to a high impedance OFF state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure the Output Enable signals to TRI-STATE devices whose outputs are tied together are designed so there is no overlap.

Truth Table

Output Enable	Select Input	Data Inputs		Output
$\overline{\mathrm{OE}}$	S	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Z
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance

Logic Diagram

TL/F/9507-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specifi contact the National Semic Distributors for availability an	vices are required, ctor Sales Office/ cifications.
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	wice the rated $\mathrm{IOL}^{(m A)}$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under	
Note 2: Either voltage limit or current limit is sufficient to protect inputs.	

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
VOH	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $54 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 5 \% \mathrm{VCC}$ $74 \mathrm{~F} 5 \% \mathrm{VCC}$		$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
ILL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
IOZH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {I CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			9.0	15	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {CCLL }}$	Power Supply Current			14.5	22	mA	Max	$V_{O}=$ LOW
I CCz	Power Supply Current			15	23	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay I_{n} to Z_{n}	$\begin{array}{r} 2.5 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay S to Z_{n}	$\begin{array}{r} 4.0 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 10.1 \\ 6.5 \\ \hline \end{array}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 7.0 \\ 8.0 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.3 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		

National Semiconductor

54F/74F258A

Quad 2-Input Multiplexer with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F258A is a quad 2 -input multiplexer with TRI-STATE outputs. Four bits of data from two sources can be selected using a common data select input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable ($\overline{\mathrm{OE}})$ input, allowing the outputs to interface directly with bus-oriented systems.

Features

- Multiplexer expansion by tying outputs together
- Inverting TRI-STATE outputs

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

TL/F/9508-2

Unit Loading/Fan Out: See Section 2 tor U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
S	Common Data Select Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{l}_{0 \mathrm{a}-10 \mathrm{l}}$	Data Inputs from Source 0	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{l}_{1 \mathrm{a}-\mathrm{l}_{1 \mathrm{~d}}}$	Data Inputs from Source 1	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{Z_{a}}-\bar{Z}_{d}$	TRI-STATE Inverting Data Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F258A is a quad 2 -input multiplexer with TRI-STATE outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the $I_{0 x}$ inputs are selected and when Select is HIGH, the $l_{1 x}$ inputs are selected. The data on the selected inputs appears at the outputs in inverted form. The 'F258A is the logic implementation of a 4 -pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equation for the outputs is shown below:

$$
\bar{Z}_{n}=\overline{O E} \bullet\left(I_{1 n} \bullet S+I_{O n} \bullet \bar{S}\right)
$$

Truth Table

Output Enable	Select Input	Data Inputs		Output
$\overline{\mathrm{OE}}$	S	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Z
H	X	X	X	Z
L	H	X	L	H
L	H	X	H	L
L	L	L	X	H
L	L	H	X	L

Logic Diagram

TL/F/9508-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C c}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$ be be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature
Military
Commercial
Supply Voltage
Military
Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC $74 F 5 \%$ VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}--1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
Iozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			6.2	9.5	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			15.1	23	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCz	Power Supply Current			11.3	17	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, V_{\mathrm{CC}}=\mathrm{Mil} \\ C_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay I_{n} to \bar{Z}_{n}	$\begin{aligned} & 2.5 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.3 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 1.0 \\ \hline \end{array}$	$\begin{aligned} & 7.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay S to \bar{Z}_{n}	$\begin{array}{r} 3.0 \\ 2.5 \\ \hline \end{array}$		$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{P} \mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$		$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.5 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 7.0 \\ 8.5 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 7.0 \\ \hline \end{array}$		

National

54F/74F259 8-Bit Addressable Latch

General Description

The 'F259 is a high-speed 8-bit addressable latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and also a 1-of-8 decoder and demultiplexer with active HIGH outputs. The device also incorporates an active LOW Common Clear for resetting all latches, as well as an active LOW Enable. It is functionally identical to the 9334 and 93L34 8-bit addresssable latch.

Features

- Serial-to-serial conversion
- Eight bits of storage with output of each bit available
- Random (addressable) data entry
- Active high demultiplexing or decoding capability
- Common clear

Logic Symbols

Connection Diagrams

Pin Assignment for
DIP, SOIC and Flatpak
$A_{0}-1$
$A_{1}-2$
$A_{2}=3$
$Q_{0}-4$
$Q_{1}-5$

TL/F/9509-3

TL/F/9509-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

54F/74F269
 8-Bit Bidirectional Binary Counter

General Description

The 'F269 is a fully synchronous 8 -stage up/down counter featuring a preset capability for programmable operation, carry lookahead for easy cascading and a U/D input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

Features

- Synchronous counting and loading
- Built-in lookahead carry capability
- Count frequency 100 MHz
- Supply current 113 mA typ
- 300 mil slimline package

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

> Pin Assignment for DIP, SOIC and Flatpak

\section*{| $U / \bar{D}-1$ | 24 | $-\overline{P E}$ |
| ---: | :--- | :--- |
| $Q_{0}-2$ | 23 | $-P_{0}$ |
| $Q_{1}-3$ | 22 | $-P_{1}$ |
| $Q_{2}-4$ | 21 | $-P_{2}$ |
| $Q_{3}-5$ | 20 | $-P_{3}$ |
| $Q_{4}-6$ | 19 | $-V_{C C}$ |
| $C N D-7$ | 18 | $-P_{4}$ |
| $Q_{5}-8$ | 17 | $-P_{5}$ |
| $Q_{6}-19$ | 16 | $-P_{6}$ |
| $Q_{7}-10$ | 15 | $-P_{7}$ |
| $C P=11$ | 14 | $-\overline{C C}$ |
| $\overline{C E P}-12$ | 13 | $-\overline{C E T}$ |}

TL/F/9510-2

Function Table

$\overline{\text { PE }}$	CEP	CET	U/D	CP	Function
L	X	X	X	\bigcirc	Parallel Load All Flip-Flops
H	H	X	x	\checkmark	Hold
H	X	H	X	\sim	Hold ($\overline{\text { TC Held HIGH) }}$
H	L	L	H	5	Count Up
H	L	L	L	\sim	Count Down

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\Omega=$ Transition LOW-to-HIGH

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
		Parallel Data Inputs	$1.0 / 1.0$
$\mathrm{P}_{0}-\mathrm{P}_{7}$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$		
PE	Paralle Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{U} / \overline{\mathrm{D}}$	Up-Down Count Control Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CEP}}$	Count Enable Parallel Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CET}}$	Count Enable Trickle Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{TC}}$	Terminal Count Output (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{Q}_{0}-\mathrm{Q}_{7}$	Flip-Flop Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Logic Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
$$

$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$ TRI-STATE® Output

Current Applied to Output in LOW State (Max) twice the rated $\mathrm{IOL}_{\mathrm{OL}}$ (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature
Military $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Commercial
Supply Voltage
Military $\quad+4.5 \mathrm{~V}$ to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
			Min		Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{C}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}-20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			104	125	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			113	135	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100					85		MHz	2-1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to Q_{n} (Count-Up)	$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 8.0 \\ 10.5 \\ \hline \end{gathered}$			$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay U/ $\overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 11.0 \\ \hline \end{array}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{gathered} 9.0 \\ 10.5 \\ \hline \end{gathered}$			$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to TC	$\begin{aligned} & 4.5 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CP to Qn (Count-Down)	$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to Q_{n} (Load)	$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{ts}_{s}(\mathrm{H})$	Setup Time, HIGH or LOW	3.5						ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Data to CP	3.0				3.0			
$t_{h}(\mathrm{H})$	Hold Time, HIGH or LOW	1.0				2.0			
$t_{\text {h }}(\mathrm{L})$	Data to CP	1.0				1.0			
$\mathrm{t}_{s}(\mathrm{H})$	Setup Time, HIGH or LOW	5.5				6.5		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	$\overline{\text { PE }}$ to CP	5.5				6.5			
$t_{n}(\mathrm{H})$	Hold Time, HIGH or LOW	0				0			
$\mathrm{th}_{\text {(}}(\mathrm{L})$	$\overline{\text { PE to CP }}$	0				0			
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	6.0				6.5		ns	2-6
$\mathrm{t}_{5}(\mathrm{~L})$	CET or CEP to CP	8.0				9.0			
$t_{h}(\mathrm{H})$	Hold Time, HIGH or LOW	0				0			
$\mathrm{th}_{\mathrm{h}}(\mathrm{L})$	$\overline{\mathrm{CET}}$ or $\overline{\mathrm{CEP}}$ to CP	0				0			
$t_{w}(\mathrm{H})$	Clock Pulse Width, HIGH or LOW	3.5				3.5		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$		3.5				4.0			
$\mathrm{t}_{5}(\mathrm{H})$	Setup Time, HIGH or LOW	8.0				9.5		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	U/ $\overline{\mathrm{D}}$ to CP	6.0				7.0			
$\mathrm{th}_{\text {(}}(\mathrm{H})$	Hold Time, HIGH or LOW	0.0				0.0		ns	2-6
$t_{n}(\mathrm{~L})$	U/D to CP	0.0				0.0			

54F/74F273

Octal D Flip-Flop

General Description

The 'F273 has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset ($\overline{\mathrm{MR}}$) inputs load and reset (clear) all flip-flops simultaneously.
The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.
All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the $\overline{M R}$ input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Features

- Ideal buffer for MOS microprocessor or memory
- Eight edge-triggered D flip-flops
- Buffered common clock
- Buffered, asynchronous Master Reset

■ See 'F377 for clock enable version

- See 'F377 for transparent latch version
- See 'F374 for TRI-STATE ${ }^{\text {® }}$ version

Logic Symbols

Connection Diagrams

Pin Assignment for LCC and PCC
$\mathrm{D}_{3} \mathrm{D}_{2} \mathrm{Q}_{2} \mathrm{a}_{1} \mathrm{D}_{1}$

TL/F/9511-2
Mode Select-Function Table

Operating Mode	Inputs			Output
	$\overline{\text { MR }}$	CP	D_{n}	Q_{n}
Reset (Clear)	L	X	X	L
Load ' 1 '	H	-	h	H
Load ' 0 '	H	-	I	L

$H=$ HIGH Voltage Level steady state
$h=$ HIGH Voltage Level one setup time prior to the LOW-to-HIGH clock transition
$\mathrm{L}=$ LOW Voltage Level steady state
I = LOW Voltage Level one setup time prior to the LOW-to-HIGH clock transition
$\mathrm{X}=$ Immaterial
$\mathcal{\sim}=$ LOW-to-HIGH clock transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

54F/74F280

9-Bit Parity Generator/Checker

General Description

The ' F 280 is a high-speed parity generator/checker that accepts nine bits of input data and detects whether an even or an odd number of these inputs is HIGH. If an even number
of inputs is HIGH, the Sum Even output is HIGH. If an odd number is HIGH, the Sum Even output is LOW. The Sum Odd output is the complement of the Sum Even output.

Ordering Code: See Section 5

Logic Symbols

TL/F/9512-3
IEEE/IEC

Connection Diagrams

Pin Assignment for LCC and PCC

TL/F/9512-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

PIn Names	Description	$54 F / 74 F$	
		U.L. HIGH/LOW	Input $I_{\mathbf{I H}} / I_{\mathrm{IL}}$ Output $I_{O H} / I_{\mathrm{OL}}$
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{HA} /-0.6 \mathrm{~mA}$
Σ_{O}	Odd Parity Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
Σ_{E}	Even Parity Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Truth Table

Number of HIGH Inputs $\mathbf{I}_{\mathbf{0}}-\mathrm{I}_{\mathbf{8}}$	Outputs	
	Σ Even	Σ Odd
$0,2,4,6,8$	H	L
$1,3,5,7,9$	L	H

H = HIGH Voltage Level
L = LOW Voltage Level
Logic Diagram

TL/F/9512-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE® Output
Current Applied to Output in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Supply Voltage
Commercial

$$
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathbf{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~m} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{C}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			25	38	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, V_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
${ }_{\text {tPLH }}$	Propagation Delay	6.5	10.0	15.0	6.5	20.0	6.5	16.0	ns	2-3
$\mathrm{t}_{\text {PHL }}$	I_{n} to $\Sigma_{\text {E }}$	6.5	11.0	16.0	6.5	21.0	6.5	17.0		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	6.0	10.0	15.0	6.0	20.0	6.0	16.0	ns	2-3
${ }_{\text {tPHL }}$	I_{n} to Σ_{0}	6.5	11.0	16.0	6.5	21.0	6.5	17.0		

General Description

The 'F283 high-speed 4-bit binary full adder with internal carry lookahead accepts two 4-bit binary words ($\mathrm{A}_{0}-\mathrm{A}_{3}$, $B_{0}-B_{3}$) and a Carry input (C_{0}). It generates the binary Sum
outputs $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$ and the Carry output $\left(\mathrm{C}_{4}\right)$ from the most significant bit. The 'F283 will operate with either active HIGH or active LOW operands (positive or negative logic).

Ordering Code: See Section 5

Logic Symbols

TL/F/9513~1

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9513-2

Pin Assignment for LCC and PCC

TL/F/9513-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / I_{\mathrm{OL}}$
	A Operand Inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	B Operand Inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
C_{0}	Carry Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{3}$	Sum Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
C_{4}	Carry Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 'F283 adds two 4-bit binary words (A plus B) plus the incoming Carry (C_{0}). The binary sum appears on the Sum ($\mathrm{S}_{0}-\mathrm{S}_{3}$) and outgoing carry $\left(\mathrm{C}_{4}\right)$ outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two.

$$
\begin{gathered}
2^{0}\left(A_{0}+B_{0}+C_{0}\right)+2^{1}\left(A_{1}+B_{1}\right) \\
+2^{2}\left(A_{2}+B_{2}\right)+2^{3}\left(A_{3}+B_{3}\right) \\
=S_{0}+2 S_{1}+4 S_{2}+8 S_{3}+16 C_{4} \\
\text { Where }(+)=\text { plus }
\end{gathered}
$$

Interchanging inputs of equal weight does not affect the operation. Thus $\mathrm{C}_{0}, \mathrm{~A}_{0}, \mathrm{~B}_{0}$ can be arbitrarily assigned to pins 5, 6 and 7 for DIPS, and 7, 8 and 9 for chip carrier packages. Due to the symmetry of the binary add function, the 'F283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). See Figure 1. Note that if C_{0} is not used it must be tied LOW for active HIGH logic or tied HIGH for active LOW logic.
Due to pin limitations, the intermediate carries of the 'F283 are not brought out for use as inputs or outputs. However,
other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure 2 shows how to make a 3-bit adder. Tying the operand inputs of the fourth adder ($\mathrm{A}_{3}, \mathrm{~B}_{3}$) LOW makes S_{3} dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure 3 shows a way of dividing the 'F283 into a 2 -bit and a 1-bit adder. The third stage adder $\left(A_{2}, B_{2}, S_{2}\right)$ is used merely as a means of getting a carry (C_{10}) signal into the fourth stage (via A_{2} and B_{2}) and bringing out the carry from the second stage on S_{2}. Note that as long as A_{2} and B_{2} are the same, whether HIGH or LOW, they do not influence S_{2}. Similarly, when A_{2} and B_{2} are the same the carry into the third stage does not influence the carry out of the third stage. Figure 4 shows a method of implementing a 5 -input encoder, where the inputs are equally weighted. The outputs $\mathrm{S}_{0}, \mathrm{~S}_{1}$ and S_{2} present a binary number equal to the number of inputs $I_{1}-I_{5}$ that are true. Figure 5 shows one method of implementing a 5 -input majority gate. When three or more of the inputs $I_{1}-I_{5}$ are true, the output M_{5} is true.

	C_{0}	A_{0}	A_{1}	A_{2}	A_{3}	B_{0}	B_{1}	B_{2}	B_{3}	S_{0}	S_{1}	S_{2}	S_{3}	C_{4}
Logic Levels	L	L	H	L	H	H	L	L	H	H	H	L	L	H
Active HIGH	0	0	1	0	1	1	0	0	1	1	1	0	0	1
Active LOW	1	1	0	1	0	0	1	1	0	0	0	1	1	0

Active HIGH: $0+10+9=3+16$ Active LOW: $1+5+6=12+0$
FIGURE 1. Active HIGH versus Active LOW Interpretation

FIGURE 2. 3-BIt Adder

TL/F/9513-6
FIGURE 3. 2-Bit and 1-Bit Adders

TL/F/9513-8
FIGURE 5. 5-Input Majority Gate

Logic Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output

$$
\begin{array}{lr}
\text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text {) } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min		Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{C}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V} \mathrm{C} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{\mathbb{I N}}=0.5 \mathrm{~V}\left(\mathrm{C}_{\mathrm{O}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
1 CEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			36	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			36	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations										
Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
${ }_{\text {tPLH }}$	Propagation Delay	3.5	7.0	9.5	3.5	14.0	3.5	11.0	ns	2-3
tPHL	C_{0} to S_{n}	3.0	7.0	9.5	3.0	14.0	3.0	11.0		
${ }_{\text {tpLH }}$	Propagation Delay	3.0	7.0	9.5	3.0	17.0	3.0	13.0	ns	2-3
tPHL	A_{n} or B_{n} to S_{n}	3.0	7.0	9.5	3.0	14.0	3.0	11.5		
${ }_{\text {tplH }}$	Propagation Delay	3.0	5.7	7.5	3.0	10.5	3.0	8.5	ns	2-3
$\mathrm{t}_{\mathrm{PHL}}$	C_{0} to C_{4}	3.0	5.4	7.0	2.5	10.0	3.0	8.0		
${ }_{\text {tplh }}$	Propagation Delay	3.0	5.7	7.5	3.0	10.5	3.0	8.5	ns	2-3
${ }_{\text {tPHL }}$	A_{n} or B_{n} to C_{4}	2.5	5.3	7.0	2.5	10.0	2.5	8.0		

National Semiconductor

54F/74F298

Quad 2-Input Multiplexer with Storage

General Description

This device is a high-speed multiplexer with storage. It selects four bits of data from two sources (Ports) under the control of a common Select input (S). The selected data is transferred to the 4-bit output register synchronous with the HIGH-to-LOW transition of the Clock input ($\overline{\mathrm{CP}}$). The

4-bit register is fully edge triggered. The Data inputs (I_{0} and l_{1}) and Select input (S) must be stable only one setup time prior to the HIGH-to-LOW transition of the clock for predictable operation.

Logic Symbols

Logic Diagram

TL/F/9514-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

54F/74F299 Octal Universal Shift/Storage Register with Common Parallel I/O Pins

General Description

The 'F299 is an 8-bit universal shift/storage register with TRI-STATE ${ }^{\circledR}$ outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs, $Q_{0}-Q_{7}$, are provided to allow easy serial cascading. A separate active LOW Master Reset is used to reset the register.

Features

- Common parallel I/O for reduced pin count
- Additional serial inputs and outputs for expansion
- Four operating modes: shift left, shift right, load and store
- TRI-STATE outputs for bus-oriented applications

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC
$\mathrm{Q}_{0} 1 / O_{0} 1 / \mathrm{O}_{2} 1 / \mathrm{O}_{4} 1 / \mathrm{O}_{6}$ [87 7 6

TL/F/9515-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
DS_{0}	Serial Data Input for Right Shift	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
DS 7	Serial Data Input for Left Shift	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Select Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	TRI-STATE Output Enable Inputs (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$1 / O_{0}-1 / O_{7}$	Parallel Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	TRI-STATE Parallel Outputs	150/40(33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
Q_{0}, Q_{7}	Serial Outputs	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 'F299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1}, as shown in the Mode Select Table. All flip-flop outputs are brought out through TRI-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.
A LOW signal on $\overline{M R}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of $C P$, are observed.

A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the TRISTATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The TRI-STATE outputs are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

H $=$ HIGH Voltage Level
$\mathrm{L}=\mathrm{LOW}$ Voltage Level
$X=$ Immaterial
$\widetilde{\Omega}=$ LOW-to-HIGH Clock Transition

Logic Diagram

TL/F/9515-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{aligned}
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

-30 mA to +5.0 mA

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{C C}=0 \mathrm{~V}$) Standard Output
-0.5 V to V_{CC} TRI-STATE Output -0.5 V to +5.5 V
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F		Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
			Min Typ	Max			
V_{IH}	Input HIGH Voltage		2.0		V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{IIN}^{\prime}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{array}{\|l} 2.5 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.7 \\ 2.7 \\ \hline \end{array}$		V	Min	
V_{OL}	Output LOW Voltage	$5410 \% V_{C C}$ $7410 \% V_{C C}$ $7410 \% V_{C C}$		$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}^{2}=20 \mathrm{~mA} \\ & \mathrm{OL}=20 \mathrm{~mA}\left(\mathrm{Q}_{0}, \mathrm{Q}_{7}\right) \\ & \mathrm{OL}=24 \mathrm{~mA}\left(1 / \mathrm{O}_{n}\right) \end{aligned}$
I_{H}	Input HIGH Current			20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\left(\frac{\mathrm{CP}, \mathrm{DS}_{0}, \mathrm{DS}_{7}, \mathrm{~S}_{0}, \mathrm{~S}_{1},}{\left.\mathrm{MR}, \mathrm{OE}_{1}, \mathrm{OE}_{2}\right)}\right.$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			100	$\mu \mathrm{A}$	Max	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\left(\mathrm{CP}, \mathrm{DS}_{0}, \mathrm{DS}_{7}, \mathrm{~S}_{0}, \mathrm{~S}_{1},\right. \\ \left.\overline{\mathrm{MR}}, \mathrm{OE}_{1}, \mathrm{OE}_{2}\right) \end{gathered}$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)			1.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(1 / \mathrm{O}_{n}\right)$
IIL	Input LOW Current			$\begin{aligned} & \hline-0.6 \\ & -1.2 \\ & \hline \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(C P, D S_{0}, D S_{7}, \overline{\mathrm{MR}}, \overline{O E}_{1}, \overline{O E}_{2}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~S}_{0}, \mathrm{~S}_{1}\right) \end{aligned}$
$\begin{array}{\|l\|} \mathrm{l}_{\mathrm{IH}}+ \\ \mathrm{l}_{\mathrm{OZH}} \\ \hline \end{array}$	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 / \mathrm{O}}=2.7 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
$\begin{aligned} & \mathrm{l}_{\mathrm{IL}+}+ \\ & \mathrm{I}_{\mathrm{OZL}} \\ & \hline \end{aligned}$	Output Leakage Current			-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 / \mathrm{O}}=0.5 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
los	Output Short-Circuit Current		-60	-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current			250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current		68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH
ICCL	Power Supply Current		68	95	mA	Max	$V_{O}=$ LOW
${ }^{\text {ICCZ }}$	Power Supply Current		68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Input Frequency	70	100				70		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C P$ to Q_{0} or Q_{7}	$\begin{aligned} & 4.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $1 / O_{n}$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$			$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \\ & \hline \end{aligned}$		
$t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{0} or Q_{7}	4.5	7.5	9.5			4.5	10.5	ns	2-3
${ }^{\text {tPHL }}$	Propagation Delay $\overline{M R}$ to $/ / O_{n}$	6.5	11.0	14.0			6.5	15.0		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$			$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	FigNo
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$				$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $1 / O_{n}, \mathrm{DS}_{0}$ or DS_{7} to CP	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$				$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $1 / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}$ or DS_{7} to CP	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$				$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$				$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse Width, LOW	7.0				7.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	7.0				7.0		ns	2-6

54F/74F322
 Octal Serial/Parallel Register with Sign Extend

General Description

The 'F322 is an 8-bit shift register with provision for either serial or parallel loading and with TRI-STATE® parallel outputs plus a bi-state serial output. Parallel data inputs and parallel outputs are multiplexed to minimize pin count. State changes are initiated by the rising edge of the clock. Four synchronous modes of operation are possible: hold (store), shift right with serial entry, shift right with sign extend and parallel load. An asynchronous Master Reset (MR) input overrides clocked operation and clears the register.

Features

- Multiplexed parallel I/O ports
- Separate serial input and output
- Sign extend function
- TRI-STATE outputs for bus applications

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9516-2

TL/F/9516-1

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
$\overline{\mathrm{RE}}$	Register Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
S / \bar{P}	Serial (HIGH) or Parallel (LOW) Mode Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{S E}$	Sign Extend Input (Active LOW)	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
S	Serial Data Select Input	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{D}_{0}, \mathrm{D}_{1}$	Serial Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{M R}$	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
Q_{0}	Bi-State Serial Output	50/33.3	-1 mA/-20 mA
$1 / O_{0}-1 / O_{7}$	Multiplexed Parallel Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	TRI-STATE Parallel Data Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F322 contains eight D-type edge triggered flip-flops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A LOW signal on $\overline{\text { RE enables shift- }}$ ing or parallel loading, while a HIGH signal enables the hold mode. A HIGH signal on $S / \overline{\mathrm{P}}$ enables shift right, while a LOW signal disables the TRI-STATE output buffers and enables parallel loading. In the shift right mode a HIGH signal
on $\overline{S E}$ enables serial entry from either D_{0} or D_{1}, as determined by the S input. A LOW signal on $\overline{S E}$ enables shift right but Q_{7} reloads its contents, thus performing the sign extend function required for the 'F384 Twos Complement Multiplier. A HIGH signal on $\overline{O E}$ disables the TRI-STATE output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed.

Mode Select Table

Mode	Inputs							Outputs								Q_{0}
	$\overline{\text { MR }}$	$\overline{\mathrm{RE}}$	S/ \bar{P}	$\overline{\text { SE }}$	S	$\overline{\mathrm{OE}}{ }^{*}$	CP	$1 / \mathrm{O}_{7}$	$1 / \mathrm{O}_{6}$	$1 / \mathrm{O}_{5}$	$1 / \mathrm{O}_{4}$	$1 / \mathrm{O}_{3}$	$1 / \mathrm{O}_{2}$	$1 / O_{1}$	$1 / O_{0}$	
Clear	L	X	X	X	X	L	X	L	L	L	L	L	L	L	L	L
	L	X	X	X	X	H	X	Z	Z	2	Z	Z	Z	Z	z	L
Parallel Load	H	L	L	X	X	X	\checkmark	17	I_{6}	I_{5}	1_{4}	I_{3}	12	I_{1}	10	10
Shift	H	L	H	H	L	L	\sim	D_{0}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{1}
Right	H	L	H	H	H	L	\sim	D_{1}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{1}
Sign Extend	H	L	H	L	X	L	\checkmark	O_{7}	O_{7}	O_{6}	O_{5}	O_{4}	O_{3}	O_{2}	O_{1}	O_{1}
Hold	H	H	X	X	X	L	\sim	NC								

-When the $\overline{\mathrm{OE}}$ input is HIGH all I/O O_{n} terminals are at the high impedance state; sequential operation or clearing of the register is not affected.
Note 1: $1_{7}-l_{0}=$ The level of the steady-state input at the respective I/O terminal is loaded into the flip-flop while the flip-flop outputs (except Q_{0}) are isolated from the I/O terminal.
Note 2: $D_{0}, D_{1}=$ The level of the steady-state inputs to the serial multiplexer input.
Note 3: $\mathrm{O}_{7}-\mathrm{O}_{0}=$ The level of the respective Q_{n} flip-flop prior to the last Clock LOW-to-HIGH transition.
H = HIGH Voltage Level
L = LOW Voltage Level
$\mathbf{Z}=$ High Impedance Output State
$\widetilde{\sim}=$ LOW-to-HIGH Transition
$\mathrm{NC}=$ No Change

TL/F/9516-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

Note 1: Absolute maximum ratings are value be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F $10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{0}, \mathrm{I} / \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(1 / \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{0}, \mathrm{I} / \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(/ \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{0}, \mathrm{I} / \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(1 / \mathrm{O}_{n}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & I_{\mathrm{OL}}=20 \mathrm{~mA}\left(Q_{0}, I / O_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{Q}_{0}\right) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{I} / \mathrm{O}_{n}\right) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$ (Non-1/O Inputs)
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)				1.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{I} / \mathrm{O}_{\mathrm{n}}\right)$
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -1.2 \\ & -1.8 \\ & \hline \end{aligned}$	mA mA mA	Max Max Max	$\begin{aligned} & V_{I N}=0.5 V\left(\overline{R E}, S / \bar{P}, D_{n}, C P, \overline{M R}, \overline{O E}\right) \\ & V_{I N}=0.5 V(S) \\ & V_{I N}=0.5 V(\overline{S E}) \end{aligned}$
$\begin{aligned} & \mathrm{l}_{\mathrm{IH}}+ \\ & \mathrm{l}_{\mathrm{OZH}} \\ & \hline \end{aligned}$	Output Leakage Current				70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 / O}=2.7 \mathrm{~V}\left(1 / \mathrm{O}_{n}\right)$
$\begin{aligned} & \mathrm{I}_{\mathrm{IL}}+ \\ & \mathrm{I}_{\mathrm{OZL}} \\ & \hline \end{aligned}$	Output Leakage Current				-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 / \mathrm{O}}=0.5 \mathrm{~V}\left(1 / \mathrm{O}_{n}\right)$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {cex }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{I}_{z z}$	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}$
ICC	Power Supply Current			60	90	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{C \mathrm{C}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	70	90		50		70		MHz	2-1
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay CP to $1 / O_{n}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} 7.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 12.0 \\ \hline \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to Q_{0}	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$		
$t_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to $/ / O_{n}$	6.0	10.0	13.0	6.0	15.0	6.0	14.0	ns	2-3
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{M R}$ to Q_{0}	5.5	7.5	12.0	5.5	14.0	5.5	13.0	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E}$ to I / O_{n}	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{O E}$ to $1 / O_{n}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time S / \bar{P} to $/ / O_{n}$	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.5 \\ & 14.0 \\ & \hline \end{aligned}$		13.5 17.0		$\begin{array}{r} 11.5 \\ 15.0 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time S / \bar{P} to $/ / O_{n}$	$\begin{aligned} & 5.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 12.0 \\ \hline \end{gathered}$	$\begin{aligned} & 11.5 \\ & 15.5 \\ & \hline \end{aligned}$	5.0 6.0	$\begin{aligned} & 16.5 \\ & 19.5 \end{aligned}$		$\begin{aligned} & 12.5 \\ & 16.5 \\ & \hline \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathrm{Com}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{RE}}$ to CP	$\begin{gathered} \hline 6.0 \\ 14.0 \\ \hline \end{gathered}$		$\begin{aligned} & \hline 14.0 \\ & 18.0 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 7.0 \\ 16.0 \\ \hline \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{RE}}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{0}, D_{1} or I / O_{n} to CP	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\mathrm{D}_{0}, \mathrm{D}_{1}$ or $1 / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW SE to CP	$\begin{aligned} & 7.0 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$		$\begin{aligned} & 8.0 \\ & 3.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{n}(H) \\ & t_{n}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\text { SE }}$ to CP	$\begin{aligned} & 2.0 \\ & 0.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S / \bar{P} to $C P$	$\begin{aligned} & 11.0 \\ & 13.5 \\ & \hline \end{aligned}$		$\begin{array}{r} 13.0 \\ 21.0 \\ \hline \end{array}$		$\begin{aligned} & 12.0 \\ & 15.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S to CP	$\begin{aligned} & 6.5 \\ & 9.0 \\ & \hline \end{aligned}$		$\begin{gathered} 8.5 \\ 11.0 \end{gathered}$		$\begin{gathered} 7.5 \\ 10.0 \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW S or S / \bar{P} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} 1.0 \\ 0 \\ \hline \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width, HIGH or LOW	7.0		8.0		7.0		ns	2-4
$t_{w}(\mathrm{~L})$	$\overline{M R}$ Pulse Width, LOW	5.5		7.5		6.5			2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	8.0		12.0		8.0		ns	2-6

54F/74F323 Octal Universal Shift/Storage Register with Synchronous Reset and Common I/O Pins

General Description

The 'F323 is an 8-bit universal shift/storage register with TRI-STATE ${ }^{\circledR}$ outputs. Its function is similar to the 'F299 with the exception of Synchronous Reset. Parallel load inputs and flip-flop outputs are multiplexed to minimize pin count. Separate serial inputs and outputs are provided for Q_{0} and Q_{7} to allow easy cascading. Four operation modes are possible: hold (store), shift left, shift right and parallel load.

Features

- Common parallel I/O for reduced pin count
- Additional serial inputs and outputs for expansion

■ Four operating modes: shift left, shift right, load and store

- TRI-STATE outputs for bus-oriented applications

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC
$\mathrm{O}_{0} \mathrm{VO}_{0} \mathrm{VO}_{2} \mathrm{VO}_{4} \mathrm{VO}_{6}$
[8] [7] [5] [4]

TL/F/9517-3

TL/F/9517-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
DS_{0}	Serial Data Input for Right Shift	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
DS 7	Serial Data Input for Left Shift	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Select Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
SR	Synchronous Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E}_{1}, \overline{O E}_{2}$	TRI-STATE Output Enable Inputs (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	Multiplexed Parallel Data Inputs	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	TRI-STATE Parallel Data Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial Outputs	50/33.3	-1 mA/20 mA

Functional Description

The 'F323 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1} as shown in the Mode Select Table. All flip-flop outputs are brought out through TRI-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.
A LOW signal on $\overline{S R}$ overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All
other state changes are also initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed. A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the TRISTATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, load, hold and reset operations can still occur. The TRI-STATE buffers are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

Inputs				Response
$\overline{\mathbf{S R}}$	S_{1}	S_{0}	CP	
L	X	X	\checkmark	Synchronous Reset; $Q_{0}-Q_{7}=$ LOW
H	H	H	\bigcirc	Parallel Load; $1 / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	H	Ω	Shift Right; $\mathrm{DS}_{0} \rightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc.
H	H	L	\checkmark	Shift Left; $\mathrm{DS}_{7} \rightarrow \mathrm{Q}_{7}, \mathrm{Q}_{7} \rightarrow \mathrm{Q}_{6}$, etc.
H	L	L	X	Hold

$H=H$ HGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Immaterial
$\Omega=$ LOW-to-HIGH transition

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to

Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$

Recommended Operating

 ConditionsFree Air Ambient Temperature Military
Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Supply Voltage Military

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{array}{ll} \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} & \left(\mathrm{Q}_{0}, \mathrm{Q}_{7}\right) \\ \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} & \left(1 / \mathrm{O}_{n}\right) \\ \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} & \left(\mathrm{Q}_{0}, \mathrm{Q}_{7}\right) \\ \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} & \left(I / \mathrm{O}_{n}\right) \\ \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} & \left(\mathrm{Q}_{0}, \mathrm{Q}_{7}\right) \\ \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA} & \left(1 / \mathrm{O}_{\mathrm{n}}\right) \\ \hline \end{array}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage \qquad	54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{array}{ll} \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} & \left(1 / \mathrm{O}_{n}, Q_{0}, Q_{7}\right) \\ \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} & \left(\mathrm{Q}_{0}, \mathrm{Q}_{7}\right) \\ \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} & \left(1 / \mathrm{O}_{n}\right) \\ \hline \end{array}$
${ }^{\text {IH }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
I BVIT	Input HIGH Current Breakdown Test (I/O)				1.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
ILL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \operatorname{Max} \\ \text { Max } \\ \hline \end{array}$	$\begin{array}{ll} V_{I N}=0.5 V & \left(C P, D S_{0}, D S_{7}, \overline{S R}, \overline{O E}_{1}, \overline{O E}_{2}\right) \\ V_{I N}=0.5 V & \left(S_{0}, S_{1}\right) \end{array}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
$\underline{\mathrm{Izz}}$	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			68	95	mA	Max	$V_{O}=$ LOW
ICCz	Power Supply Current			68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Conitiguraions

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Input Frequency	70	100				70		MHz	2-1
$t_{\text {PLH }}$ tpHL	Propagation Delay $C P$ to Q_{0} or Q_{7}	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	ns	2-3
$\mathrm{t}_{\mathrm{PLL}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to $1 / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$			$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$				$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $1 / O_{n}, D S_{0}, D S_{7}$ to CP	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}, \mathrm{DS}_{7}$ to CP	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{S R}$ to CP	$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$				$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$				$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		ns	2-4

54F/74F350

4-Bit Shifter with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F350 is a specialized multiplexer that accepts a 4-bit word and shifts it $0,1,2$ or 3 places, as determined by two Select ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) inputs. For expansion to longer words, three linking inputs are provided for lower-order bits; thus two packages can shift an 8 -bit word, four packages a 16 -bit word, etc. Shifting by more than three places is accomplished by paralleling the TRI-STATE outputs of different packages and using the Output Enable ($\overline{\mathrm{OE}}$) inputs as a third Select level. With appropriate interconnections, the 'F350 can perform zero-backfill, sign-extend or end-around (barrel) shift functions.

Features

- Linking inputs for word expansion
- TRI-STATE outputs for extending shift range

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9518-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\text {IH }} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{lOL}_{\mathrm{OL}}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{l}_{-3-l_{3}}$	Data Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$	TRI-STATE Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F350 is operationally equivalent to a 4 -input multiplexer with the inputs connected so that the select code causes successive one-bit shifts of the data word. This internal connection makes it possible to perform shifts of $0,1,2$ or 3 places on words of any length.
A 4-bit data word is introduced at the I_{n} inputs and is shifted according to the code applied to the select inputs $\mathrm{S}_{0}, \mathrm{~S}_{1}$. Outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ are TRI-STATE, controlled by an active LOW output enable ($\overline{O E}$). When $\overline{O E}$ is LOW, data outputs will follow selected data inputs; when HIGH, the data outputs will be forced to the high impedance state. This feature allows shifters to be cascaded on the same output lines or
to a common bus. The shift function can be logical, with zeros pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.

Logic Equations

$$
\begin{aligned}
& \mathrm{O}_{0}=\bar{S}_{0} \bar{S}_{1} I_{0}+\mathrm{S}_{0} \bar{S}_{1} I_{-1}+\bar{S}_{0} \mathrm{~S}_{1} I_{-2}+\mathrm{S}_{0} \mathrm{~S}_{1} I_{-3} \\
& \mathrm{O}_{1}=\bar{S}_{0} \bar{S}_{1} I_{1}+\mathrm{S}_{0} \mathrm{~S}_{1} 1_{0}+\bar{S}_{0} \mathrm{~S}_{1} I_{-1}+\mathrm{S}_{0} \mathrm{~S}_{1} I_{-2} \\
& \mathrm{O}_{2}=\bar{S}_{0} \bar{S}_{1} I_{2}+\mathrm{S}_{0} \mathrm{~S}_{1} 1_{1}+\bar{S}_{0} \mathrm{~S}_{1} I_{0}+\mathrm{S}_{0} \mathrm{~S}_{1} l_{-1} \\
& \mathrm{O}_{3}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} I_{3}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} I_{2}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} I_{1}+\mathrm{S}_{0} \mathrm{~S}_{1} I_{0}
\end{aligned}
$$

Truth Table

Inputs			Outputs			
$\overline{\mathbf{O E}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{0}}$	$\mathrm{O}_{\mathbf{0}}$	O_{1}	$\mathrm{O}_{\mathbf{2}}$	O_{3}
H	X	X	Z	Z	Z	Z
L	L	L	I_{0}	$\mathrm{I}_{\mathbf{1}}$	I_{2}	I_{3}
L	L	H	I_{-1}	I_{0}	I_{1}	I_{2}
L	H	L	I_{-2}	I_{-1}	I_{0}	I_{1}
L	H	H	I_{-3}	I_{-2}	I_{-1}	I_{0}

H = HIGH Voltage Level
L - LOW Votago LOVol
$X=$ Immaterial
$Z=$ High Impedance

Logic Diagram

TL/F/9518-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Applications

16-Bit Shift-Up 0 to 3 Places, Zero Backfill

Functlon Table

$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Shift Function
L	L	No Shift
L	H	Shift 1 Place
H	L	Shift 2 Places
H	H	Shift 3 Places

8-Bit End Around Shift 0 to 7 Places

Applications (Continued)

Function Table

$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	Shift Function
L	L	L	No Shift
L	L	H	Shift End Around 1
L	H	L	Shift End Around 2
L	H	H	Shift End Around 3
H	L	L	Shift End Around 4
H	L	H	Shift End Around 5
H	H	L	Shift End Around 6
H	H	H	Shift End Around 7

13-Bit Twos Complement Scaler

Function Table

S_{1}	S_{0}	Scale
L	$L \div 8$	$1 / 8$
L	$H \div 4$	$1 / 4$
H	$L \div 2$	$1 / 2$
H	H No Change	1

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$ in LOW State (Max)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C C}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 F 10 \% V_{C C}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 10\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-1.2	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			34	42	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {ICCL }}$	Power Supply Current			40	57	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCz	Power Supply Current			40	57	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $I_{n} \text { to } O_{n}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{\mathrm{n}} \text { to } \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.8 \\ 6.5 \\ \hline \end{array}$	$\begin{array}{r} 10.0 \\ 8.5 \\ \hline \end{array}$			$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{array}{r} 2.5 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$	ns	-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{array}{r} 3.9 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \\ & \hline \end{aligned}$	ns	2-5

54F/74F352
 Dual 4-Input Multiplexer

General Description

The 'F352 is a very high-speed dual 4-input multiplexer with common Select inputs and individual Enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the inverted (complementary) form. The 'F352 is the functional equivalent of the 'F153 except with inverted outputs.

Features

- Inverted version of 'F153
- Separate enables for each multiplexer
- Input clamp diode limits high speed termination effects

Ordering Code: See Section 5

Logic Symbols

TL/F/9519-5
Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
$\mathrm{l}_{0}-\mathrm{l}_{3 a}$	Side A Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$10 \mathrm{~b}-\mathrm{l}_{3 \mathrm{~b}}$	Side B Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}-\mathrm{S}_{1}$	Common Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{E}_{\text {a }}$	Side A Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
E_{b}	Side B Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{Z}_{\mathrm{a}}, \overline{\mathrm{Z}}_{\mathrm{b}}$	Multiplexer Outputs (Inverted)	50/33.3	-1 mA/20 mA

Functional Description

The 'F352 is a dual 4-input multiplexer. It selects two bits of data from up to four sources under the control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4 -input multiplexer circuits have individual active LOW Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}}$) which can be used to strobe the outputs independently. When the Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) are HIGH, the corresponding outputs ($\overline{\mathrm{Z}}_{\mathrm{a}}, \overline{\mathrm{Z}}_{\mathrm{b}}$) are forced HIGH.
The logic equations for the outputs are shown below:

$$
\begin{aligned}
& \bar{Z}_{\mathrm{a}}=\overline{\mathrm{E}}_{\mathrm{a}} \cdot\left(\mathrm{l}_{0 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\right. \\
& \left.\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right) \\
& \bar{Z}_{\mathrm{b}}=\bar{E}_{\mathrm{b}} \bullet\left(\mathrm{l}_{0 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{\mathrm{tb}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\right. \\
& \left.\mathrm{I}_{2 b} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}+\mathrm{I}_{3 \mathrm{~b}} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)
\end{aligned}
$$

The 'F352 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is as a function generator. The 'F352 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

Truth Table

| Select
 Inputs | | Inputs (a or b) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Output

H $=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial

Logic Diagram

TL/F/9519-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE® Output
Current Applied to Output in LOW State (Max)

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

Note 1: Absolute maximum rating are values bend wich be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C C}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$V_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} \mathrm{IOL}=20 \mathrm{~mA} \\ \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			9.3	14	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			13.3	20	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & +5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay S_{n} to \bar{Z}_{n}	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$		$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	ns	2-3
${ }^{\text {tpLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E}_{n} to \bar{Z}_{n}	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns	2-3
tpLH tphL	Propagation Delay I_{n} to \bar{Z}_{n}	$\begin{aligned} & 2.0 \\ & 1.3 \end{aligned}$		7.0 4.0		9.0 5.0		$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	ns	2-3

54F/74F353

Dual 4-Input Multiplexer with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F353 is a dual 4-input multiplexer with TRI-STATE outputs. It can select two bits of data from four sources using common Select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable ($\overline{\mathrm{OE}}$) inputs, allowing the outputs to interface directly with bus-oriented systems.

Features

- Inverted version of 'F253
- Multifunction capability
- Separate enables for each multiplexer

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9520-1

Pin Assignment for LCC and PCC

TL/F/9520-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{l}_{0 \mathrm{a}-13 \mathrm{l}}$	Side A Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{0 \mathrm{~b}}-13 \mathrm{bb}$	Side B Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Common Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{\mathrm{a}}$	Side A Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{\mathrm{b}}$	Side B Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{Z}_{a}, \bar{Z}_{\text {b }}$	TRI-STATE Outputs (Inverted)	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F353 contains two identical 4 -input multiplexers with TRI-STATE outputs. They select two bits from four sources selected by common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The 4-input multiplexers have individual Output Enable ($\overline{\mathrm{OE}}_{\mathrm{a}}, \overline{\mathrm{OE}}_{\mathrm{b}}$) inputs which, when HIGH, force the outputs to a high impedance (High Z) state. The logic equations for the outputs are shown below:

$$
\begin{aligned}
& \bar{Z}_{\mathrm{a}}=\overline{\mathrm{O}}_{\mathrm{a}} \bullet\left(\mathrm{l}_{0} \bullet \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{a}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+\right. \\
& \left.\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right) \\
& \bar{Z}_{b}=\overline{\mathrm{O}}_{\mathrm{b}} \bullet \mathrm{l}_{0 b} \bullet \overline{\mathrm{~S}}_{1} \bullet \overline{\mathrm{~S}}_{0}+\mathrm{I}_{1 \mathrm{~b}} \bullet \overline{\mathrm{~S}}_{1} \bullet \mathrm{~S}_{0}+ \\
& \left.l_{2 b} \bullet \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}+\mathrm{I}_{3 b} \bullet \mathrm{~S}_{1} \bullet \mathrm{~S}_{0}\right)
\end{aligned}
$$

If the outputs of TRI-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to TRISTATE devices whose outputs are tied together are designed so that there is no overlap.

Truth Table

Select Inputs		Data Inputs				Output Enable	Output
S_{0}	S_{1}	I_{0}	l_{1}	I_{2}	I_{3}	$\overline{\mathrm{OE}}$	$\overline{\mathbf{z}}$
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	H
L	L	H	X	X	X	L	L
H	L	X	L	X	X	L	H
H	L	X	H	X	x	L	L
L	H	X	X	L	X	L	H
L	H	X	X	H	X	L	L
H	H	X	X	X	L	L	H
H	H	X	X	X	H	L	L

Address inputs S_{0} and S_{1} are common to both sections.
$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Logic Diagram

TL/F/9520-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{c c}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
Current Applied to Output in LOW State (Max)

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
$$

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

be 1 : Abore may these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC 74F 10\% VCC 74F 5\% V VC $74 \mathrm{~F} 5 \% V_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
1 lL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
IOZH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			9.3	14	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
1 CCL	Power Supply Current			13.3	20	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
Iccz	Power Supply Current			15.0	23	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay S_{n} to \bar{Z}_{n}	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay I_{n} to \bar{Z}_{n}	$\begin{aligned} & 3.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{pLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$		

54F/74F365
 Hex Buffer/Driver with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F365 is a hex buffer and line driver designed to be employed as a memory and address driver, clock driver and bus-oriented transmitter/receiver.

Features

- TRI-STATE buffer outputs
- Outputs sink 64 mA

■ Bus-oriented

Ordering Code: See Section 5
Logic Symbol

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9522-2

Unit Loading/Fan Out: See Secion 2 tor U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\text {IH }} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\overline{O E}_{1}, \overline{O E}_{2}$	Output Enable Input (Active LOW)	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
I_{n}	Inputs	1.0/0.033	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
O_{n}	Outputs	600/106.6 (80)	-12 mA/64 mA (48 mA)

Function Table

Inputs			Output
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	I	O
L	L	L	L
L	L	H	H
X	H	X	Z
H	X	X	Z

L = LOW Voltage Level
H = HIGH Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to

Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{CC}	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $54 \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$		$\begin{aligned} & 2.4 \\ & 2.0 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.0 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{array}{r} 0.55 \\ 0.55 \\ \hline \end{array}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \\ & \hline \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
$\mathrm{l}_{\mathrm{OZH}}$	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-100		-225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
I_{Zz}	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			25	35	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			44	62	mA	Max	$V_{O}=$ LOW
ICCZ	Power Supply Current			35	48	mA	Max	$V_{O}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, V_{C C}=\mathrm{Mil} \\ C_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $I_{n} \text { to } O_{n}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.5 \end{gathered}$	ns	2-5
$t_{\text {PHZ }}$ tpLz	Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	2-5

54F/74F366•54F/74F368
 Hex Inverter Buffer with TRI-STATE ${ }^{\circledR}$ Outputs

Features

- TRI-STATE buffer outputs sink 64 mA

■ High-speed

- Bus-oriented
- High impedance npn base inputs for reduced loading

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment
for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9521-1
'F368

TL/F/9521-3

Logic Symbols

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$	
	Output Enable Input (Active LOW)	$1.0 / 0.033$	$20 \mu \mathrm{~A} /-20 \mu \mathrm{~A}$	
I_{n}	Input	$1.0 / 0.033$	$20 \mu \mathrm{~A} /-20 \mu \mathrm{~A}$	
$\mathrm{O}_{\mathrm{n}}, \overline{\mathrm{O}}_{\mathrm{n}}$	Outputs	$600 / 106.6(80)$	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$	

Function Tables
'F366

Inputs			Output
$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	I	$\overline{\mathrm{O}}$
L	L	L	H
L	L	H	L
X	H	X	Z
H	X	X	Z

'F368

Inputs		Output
$\overline{O E}$	I	$\overline{\mathbf{O}}$
L	L	H
L	H	L
H	X	Z

L = LOW Voltage Level $H=H I G H$ Voltage Level $X=$ Immaterial $Z=$ High Impedance

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output

$$
\text { in HIGH State (with } V_{C C}=0 \mathrm{~V} \text {) }
$$

Note 1: Absolute maximum ratings are values beyd which (mA)

Recommended Operating Conditions
Free Air Ambient Temperature Military Commercial
Supply Voltage Military Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$ be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.55 \\ & 0.55 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
ILL	Input LOW Current				-20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
IozH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
$\mathrm{l}_{\text {OZL }}$	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-100		-225	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current			20	25	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			49	62	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
$\mathrm{I}_{\mathrm{CCZ}}$	Power Supply Current			35	48	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay	$\begin{aligned} & 2.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \\ & \hline \end{aligned}$	Enable Time ('F366)	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{gathered} 10.0 \\ 9.5 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{tPH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time ('F368)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.6 \end{aligned}$	$\begin{array}{r} 7.5 \\ 8.5 \\ \hline \end{array}$			$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 4.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.5 \\ 6.5 \\ \hline \end{array}$			$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns	2-5

54F/74F373
 Octal Transparent Latch with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F373 consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable $(\overline{\mathrm{OE}})$ is LOW. When $\overline{\mathrm{OE}}$ is HIGH the bus output is in the high impedance state.

Features

- Eight latches in a single package
- TRI-STATE outputs for bus interfacing

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

TL/F/9523-3

TL/F/9523-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
	U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
LE	Latch Enable Input (Active HIGH)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{M} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Latch Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F373 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable $(\overline{O E})$ input. When $\overline{O E}$ is LOW, the buffers are in the bi-state mode. When $\overline{O E}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Truth Table

Inputs			Output
$L E$	$\overline{\mathbf{O E}}$	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{O}_{\boldsymbol{n}}$
H	L	H	H
H	L	L	L
L	L	X	O_{n} (no change)
X	H	X	Z

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance State

Logic Diagram

[^12]Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Ambient Temperature under Bias Junction Temperature under Bias

Input Current (Note 2)

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$V_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC $74 F 5 \% V_{C C}$ 74F 5\% VCC	$\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
ILL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
Iccz	Power Supply Current			38	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LE to O_{n}	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.2 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 15.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.0 \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.6 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	ns	2-5
$\mathrm{t}_{\mathrm{PHZ}}$ $t_{P L Z}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	ns	2-5

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{aligned} & \mathbf{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	2.0		2.0		2.0		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	D_{n} to LE	2.0		2.0		2.0			
$t_{h}(\mathrm{H})$	Hold Time, HIGH or LOW	3.0		3.0		3.0			
$t_{\text {h }}(\mathrm{L})$	D_{n} to LE	3.0		4.0		3.0			
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE Pulse Width, HIGH	6.0		6.0		6.0		ns	2-4

54F/74F374

Octal D-Type Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F374 is a high-speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) are common to all flip-flops.

Features

- Edge-triggered D-type inputs
- Buffered positive edge-triggered clock
- TRI-STATE outputs for bus-oriented applications

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9524-2

Pin Assignment for LCC and PCC

TL/F/9524-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / I_{\mathrm{OL}}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	TRI-STATE Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F374 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flipflops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affected the state of the flip-flops.

Truth Table

Inputs			Internal	Output
	Register	$\mathbf{O}_{\mathbf{n}}$		
H	$\mathbf{C P}$	$\overline{\mathbf{O E}}$		H
L	-	L	H	H
X	X	L	L	L

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance
$\Omega=$ LOW-to-HIGH Clock Transition

Logic Diagram

TL/F/9524-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$V_{C C}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

TRI-STATE Output
-0.5 V to +5.5 V
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{VCC}$ Voltage $54 \mathrm{~F} 10 \% \mathrm{VCC}_{\mathrm{C}}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 5 \% \mathrm{VCC}$ $74 \mathrm{~F} 5 \% \mathrm{VCC}_{\mathrm{CC}}$		$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
IOZH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
IOZL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
$\mathrm{I}_{\mathrm{CCZ}}$	Power Supply Current			55	86	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	140		60		70		MHz	2-1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to O_{n}	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 9.0 \\ 5.8 \\ \hline \end{array}$	$\begin{array}{r} 11.5 \\ 7.5 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.5 \\ 8.5 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		547		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{5}(\mathrm{H})$	Setup Time, HIGH or LOW	2.0		2.5		2.0		ns	2-6
$\mathrm{t}_{5}(\mathrm{~L})$	D_{n} to CP	2.0		2.0		2.0			
$\mathrm{t}_{\mathrm{h}}(\mathrm{H})$	Hold Time, HIGH or LOW$D_{n} \text { to } C P$	2.0		2.0		2.0			
$\mathrm{t}_{\mathrm{n}}(\mathrm{L})$		2.0		2.5		2.0			
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	CP Pulse Width HIGH or LOW	7.06.0		$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$		7.0		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$						7.0			

54F/74F377

Octal D Flip-Flop with Clock Enable

General Description

The 'F377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously, when the Clock Enable ($\overline{\mathrm{CE}}$) is LOW.
The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. The CE input must be stable only one setup time prior to the LOW-to-HIGH clock transition for predictable operation.

Features

- Ideal for addressable register applications
- Clock enable for address and data synchronization applications
- Eight edge-triggered D flip-flops
- Buffered common clock
- See 'F273 for master reset version
- See 'F373 for transparent latch version
- See 'F374 for TRI-STATE® version

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9525-2

TL/F/9525-3

Mode Select-Function Table				
Operating Mode	Inputs			Output
	CP	$\overline{C E}$	D_{n}	$\mathbf{Q}_{\boldsymbol{n}}$
Load "1"	\checkmark	1	h	H
Load "0"	Γ	1	1	L
Hold (Do Nothing)	$\underset{x}{ }$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	No Change No Change

H $=$ HIGH Voltage Level
$h=$ HIGH Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition
L = LOW Voltage Level
I = LOW Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition
$X=$ Immaterial
$\mathcal{J}=$ LOW-to-HIGH Clock Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

54F/74F378 Parallel D Register with Enable

General Description

The 'F378 is a 6-bit register with a buffered common Enable. This device is similar to the ' F 174 , but with common Enable rather than common Master Reset.

Features

- 6-bit high-speed parallel register
- Positive edge-triggered D-type inputs
- Fully buffered common clock and enable inputs
- Input clamp diodes limit high-speed termination effects
- Full TTL and CMOS compatible

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

TL/F/9526-4

Connection Diagrams

TL/F/9526-3

Unit Loading/Fan Out: See Section 2 tor U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\overline{\mathrm{E}}$	Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{5}$	Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$Q_{0}-Q_{5}$	Outputs	50/33.3	-1 mA/20 mA

Functional Description

The 'F378 consists of six edge-triggered D-type flip-flops with individual D inputs and Q inputs. The Clock (CP) and Enable ($\overline{\mathrm{E}}$) inputs are common to all flip-flops.
When the \bar{E} input is LOW, new data is entered into the register on the LOW-to-HIGH transition of the CP input. When the \bar{E} input is HIGH the register will retain the present data independent of the CP input.

Truth Table

Inputs			
$\overline{\mathbf{E}}$	$\mathbf{C P}$	$\mathbf{D}_{\mathbf{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$
H	Γ	X	No Change
L	Ω	H	H
L	Γ	L	L

[^13]
Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin

Input Voltage (Note 2)
Input Current (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\circledR}$ Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial
Supply Voltage
Military

Commercial

DC Electrical Characteristics

Symbol	Parameter			54F/74F			Units	Vcc	Conditions
				Min	Typ	Max			
V_{IH}	Input HIGH Voltage			2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage					0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage					-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10 \% V_{C C} \\ & 10 \% V_{C C} \\ & 5 \% V_{C C} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V ${ }_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10 \% V_{C C} \\ & 10 \% V_{C C} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current					20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test					100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
1 IL	Input LOW Current					-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current			-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {ICEX }}$	Output HIGH Leakage Current					250	mA	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCL	Power Supply Current				30	45	mA	Max	$V_{O}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			$54 F$		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MiI} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Input Frequency	80	100		70		80		MHz	2-1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $C P$ to Q_{n}	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	3.0 3.5	10.0	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathrm{cc}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{array}{r} 4.0 \\ 4.0 \\ \hline \end{array}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW \bar{E} to CP	$\begin{gathered} 4.0 \\ 10.0 \\ \hline \end{gathered}$		$\begin{gathered} 4.5 \\ 13.0 \\ \hline \end{gathered}$		$\begin{gathered} 4.0 \\ 10.0 \\ \hline \end{gathered}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{E}}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$		ns	2-4

54F/74F379

Quad Parallel Register with Enable

General Description

The 'F379 is a 4-bit register with buffered common Enable. This device is similar to the ' $F 175$ but features the common Enable rather than common Master Reset.

Features

- Edge triggered D-type inputs
- Buffered positive edge-triggered clock
- Buffered common enable input
- True and complement outputs

Ordering Code: See Section 5

Logic Symbols

Unit Loading/Fan Out:
See Section 2 for U.L. definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
		Enable Input (Active LOW)	$1.0 / 1.0$	
E	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$			
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Flip-Flop Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	
$\bar{Q}_{0}-\bar{Q}_{3}$	Complement Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	

Pin Assignment for LCC and PCC
$\overline{\mathrm{a}}_{1} \mathrm{D}_{1}$ NC $\mathrm{D}_{0} \overline{\mathrm{Q}}_{0}$

TL/F/9527-2

Functional Description

The 'F379 consists of four edge-triggered D-Type flip-flops with individual D inputs and Q and \bar{Q} outputs. The Clock (CP) and Enable ($\overline{\mathrm{E}}$) inputs are common to all flip-flops. When the \bar{E} is input HIGH, the register will retain the present data independent of the $C P$ input. The D_{n} and \bar{E} inputs can change when the clock is in either state, provided that the recommended setup and hold times are observed.

Truth Table

Inputs			Outputs	
\bar{E}	CP	$\mathbf{D}_{\boldsymbol{n}}$	$\mathbf{Q}_{\boldsymbol{n}}$	$\overline{\mathbf{Q}}_{\boldsymbol{n}}$
H	-	X	NC	NC
L	-	H	H	L
L	-	L	L	H

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
NC $=$ LOW-to-HIGH Transition
No Change

Logic Diagram

TL/F/9527-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the Natlonal Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Junction Temperature under Bias
$V_{C c}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

Commercial
+4.5 V to +5.5 V

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC}
TRI-STATE ${ }^{\circledR}$ Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter			54F/74F			Units	Vcc	Conditions
				Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage					0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage					-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
VOH	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10 \% V_{C C} \\ & 10 \% V_{C C} \\ & 5 \% V_{C C} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} \\ & 74 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10 \% V_{C C} \\ & 10 \% V_{C C} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	A A in	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current					20	$\mu \mathrm{A}$	Max	$V_{\text {IN }}=2.7 \mathrm{~V}$
${ }^{\text {I }} \mathrm{BVI}$	Input HIGH Current Breakdown Test					100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current					-0.6	mA	Max	$V_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current			-60		-150	mA	Max	$V_{\text {OUT }}=0 V$
ICEX	Output HIGH Leakage Current					250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCL	Power Supply Current				28	40	mA	Max	$V_{O}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MiI} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	140		75		100		MHz	2-1
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $C P$ to Q_{n}, \bar{Q}_{n}	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	5.0 6.5	6.5 8.5	3.0 4.0	8.5 10.0	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{c c}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{5}(\mathrm{H})$	Setup Time, HIGH or LOW	3.0		4.0			3.0	ns	2-6
$\mathrm{t}_{\mathbf{s}}(\mathrm{L})$	D_{n} to CP	3.0		4.0			3.0		
$\mathrm{th}_{\text {(}}(\mathrm{H})$	Hold Time, HIGH or LOW	1.0		2.0			1.0		
$t_{\text {h }}(L)$	D_{n} to CP	1.0		2.0			1.0		
$\mathrm{t}_{\text {s }}(\mathrm{H})$	Setup Time, HIGH or LOW $\overline{\mathrm{E}}$ to CP	6.0		8.0			6.0	ns	2-6
$\mathrm{t}_{\text {s }}(\mathrm{L})$		6.0		8.0			6.0		
$t_{\text {h }}(\mathrm{H})$	Hold Time, HIGH or LOW \bar{E} to CP	0		0			0		
$t_{n}(L)$		0		0			0		
$t_{w}(\mathrm{H})$	CP Pulse Width	4.0		5.0			4.0	ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	HIGH or LOW	5.0		7.0			5.0		

54F/74F381

4-Bit Arithmetic Logic Unit

General Description

The 'F381 performs three arithmetic and three logic operations on two 4-bit words, A and B. Two additional select input codes force the function outputs LOW or HIGH. Carry propagate and generate outputs are provided for use with the 'F182 carry lookahead generator for high-speed expansion to longer word lengths. For ripple expansion, refer to the 'F382 ALU data sheet.

Features

- Low input loading minimizes drive requirements
- Performs six arithmetic and logic functions
- Selectable LOW (clear) and HIGH (preset) functions
- Carry generate and propagate outputs for use with carry lookahead generator

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A Operand Inputs	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{3}$	B Operand Inputs	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Function Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
C_{n}	Carry Input	1.0/4.0	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$
$\overline{\mathrm{G}}$	Carry Generate Output (Active LOW)	50/33.3	-1 mA/20 mA
$\overline{\mathrm{P}}$	Carry Propagate Output (Active LOW)	50/33.3	-1 mA/20 mA
$\mathrm{F}_{0}-\mathrm{F}_{3}$	Function Outputs	50/33.3	-1 mA/20 mA

Functional Description

Signals applied to the Select inputs $S_{0}-S_{2}$ determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Truth Table. The circuit performs the arithmetic functions for either active HIGH or active LOW operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a carry (HIGH for active

Function Select Table

Select			Operation
S_{0}	S_{1}	S_{2}	
L	L	L	Clear
H	L	L	B Minus A
L	H	L	A Minus B
H	H	L	A Plus B
L	L	H	$A \oplus B$
H	L	H	$A+B$
L	H	H	AB
H	H	H	Preset

HIGH operands, LOW for active LOW operands) into the C_{n} input of the least significant package.
The Carry Generate ($\overline{\mathrm{G}}$) and Carry Propagate ($\overline{\mathrm{P}}$) outputs supply input signals to the 'F182 carry lookahead generator for expansion to longer word length, as shown in Figure 1. Note that an 'F382 ALU is used for the most significant package. Typical delays for Figure 1 are given in Figure 2.

FIGURE 2. 16-Bit Delay Tabulation

Path Segment	Toward F	Output $C_{n}+4$, OVR
A_{i} or B_{i} to \bar{P}	7.2 ns	7.2 ns
\bar{P}_{i} to $C_{n}+j$ ('F182)	6.2 ns	6.2 ns
C_{n} to F	8.1 ns	-
C_{n} or $\mathrm{C}_{\mathrm{n}}+4$, OVR	-	8.0 ns
Total Delay	21.5 ns	21.4 ns

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level

TL/F/9528-4
FIGURE 1. 16-Bit Lookahead Carry ALU Expansion

Logic Diagram

TL/F/9528-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Function	Inputs						Outputs					
	S_{0}	S_{1}	S_{2}	c_{n}	A_{n}	B_{n}	F_{0}	F_{1}	F_{2}	F_{3}	$\overline{\mathbf{G}}$	$\overline{\text { P }}$
CLEAR	L	L	L	X	x	x	L	L	L	L	L	L
B M inus A	H	L	L	L	L	L	H	H	H	H	H	L
				L	L	H	L	H	H	H	L	L
				L	H	L	L	L	L	L	H	H
				L	H	H	H	H	H	H	H	L
				H	L	L	L	L	L	L	H	L
				H	L	H	H	H	H	H	L	L
				H	H	L	H	L	L	L	H	H
				H	H	H	L	L	L	L	H	L
A Minus B	L	H	L	L	L	L	H	H	H	H	H	L
				L	L	H	L	L	L	L	H	H
				L	H	L	L	H	H	H	L	L
					H	H	H	H	H	H	H	L
				H	L	L	L	L	L	L	H	L
				H	L	H	H	L	L	L	H	H
				H	H	L	H	H	H	H	L	L
				H	H	H	L	L	L	L	H	L
A Plus B	H	H	L	L	L	L	L	L	L	1	H	H
				L	L	H	H	H	H	H	H	L
				L	H	L	H	H	H	H	H	L
				L	H	H	L	H	H	H	L	L
				H	L	L	H	L	L	L	H	H
				H	L	H	L	L.	L	L	H	L
				H	H	L	L	L	L	L	H	L
				H	H	H	H	H	H	H	L	L
$A \oplus B$	L	L	H	X	L	L	L	L	L	L	H	H
				x	L	H	H	H	H	H	H	H
				x	H	L	H	H	H	H	H	L
				x	H	H	L	L	L	L	L	L
$A+B$	H	L	H	x	L	L	L	L	L	L	H	H
				x	L	H	H	H	H	H	H	H
				x	H	L	H	H	H	H	H	H
				X	H	H	H	H	H	H	H	L
$A B$	L	H	H	x	L	L	L	L	L	L	L	L
				x	L	H	L	L	L	L	H	H
				x	H	L	L	L	L	L	L	L
				X	H	H	H	H	H	H	H	L
PRESET	H	H	H	X	L	L	H	H	H	H	H	H
				x	L	H	H	H	H	H	H	H
				x	H	L	H	H	H	H	H	H
				x	H	H	H	H	H	H	H	L

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE ${ }^{\oplus}$ Output

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Current Applied to Output in LOW State (Max) twice the rated $\mathrm{lOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{1 H}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
ILL	Input LOW Current				$\begin{array}{r} -0.6 \\ -2.4 \\ \hline \end{array}$	mA mA	$\begin{aligned} & \text { Max } \\ & \text { Max } \end{aligned}$	$\begin{aligned} & V_{I N}=0.5 V\left(S_{n}\right) \\ & V_{I N}=0.5 V\left(A_{n}, B_{n}, C_{n}\right) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
${ }^{\text {ICEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICC	Power Supply Current			59	89	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MII} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay C_{n} to F_{i}	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.1 \\ & 5.7 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \\ \hline \end{gathered}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 13.0 \\ 9.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Any A or B to Any F	$\begin{aligned} & 4.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.4 \\ 8.2 \end{gathered}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{i} to F_{i}	$\begin{aligned} & 4.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.3 \\ & 8.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.5 \\ & 15.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 21.5 \\ 16.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{i} or B_{i} to \bar{G}	$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{i} or B_{i} to \bar{P}	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.2 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 9.5 \\ \hline \end{gathered}$			$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 10.5 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{i} to \bar{G} or \bar{P}	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 7.8 \\ 10.2 \end{gathered}$	$\begin{aligned} & 12.0 \\ & 13.5 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.5 \end{aligned}$	ns	2-3

54F/74F382

4-Bit Arithmetic Logic Unit

General Description

The 'F382 performs three arithmetic and three logic operations on two 4-bit words, A and B. Two additional Select input codes force the Function outputs LOW or HIGH. An Overflow output is provided for convenience in twos complement arithmetic. A Carry output is provided for ripple expansion. For high-speed expansion using a Carry Lookahead Generator, refer to the 'F381 data sheet.

Features

- Performs six arithmetic and logic functions
- Selectable LOW (clear) and HIGH (preset) functions
- LOW input loading minimizes drive requirements
- Carry output for ripple expansion
- Overflow output for twos complement arithmetic

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for LCC and PCC

TL/F/9529-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{I H} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
	A Operand Inputs	$1.0 / 3.0$	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\mathrm{~B}_{0}-\mathrm{B}_{3}$	B Operand Inputs	$1.0 / 3.0$	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
$\mathrm{~S}_{0}-\mathrm{S}_{2}$	Function Select Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
C_{n}	Carry Input	$1.0 / 4.0$	$20 \mu \mathrm{~A} /-2.4 \mathrm{~mA}$
$\mathrm{C}_{n}+4$	Carry Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
OVR	Overflow Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\mathrm{~F}_{0}-\mathrm{F}_{3}$	Function Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

Signals applied to the Select inputs $\mathrm{S}_{0}-\mathrm{S}_{2}$ determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Truth Table. The circuit performs the arithmetic functions for either active HIGH or active LOW operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a carry (HIGH for active HIGH operands, LOW for active LOW operands) into the C_{n} input of the least significant package. Ripple expansion is illustrated in Figure 1. The overflow output OVR is the Exclu-sive-OR of $\mathrm{C}_{n}+3$ and $\mathrm{C}_{n}+4$; a HIGH signal on OVR indicates overflow in twos complement operation. Typical delays for Figure 1 are given in Figure 2.

Function Select Table

Select			Operation
$\mathbf{S}_{\mathbf{0}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	
L	L	L	Clear
H	L	L	B Minus A
L	H	L	A Minus B
H	H	L	A Plus B
L	L	H	A \oplus B
H	L	H	A + B
L	H	H	AB
H	H	H	Preset

$H=H I G H$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level

TL/F/9529-5
FIGURE 1. 16-Bit Ripply Carry ALU Expansion

Path Segment	Toward F	Output $C_{n}+4$, OVR
A_{i} or B_{i} to $\mathrm{C}_{\mathrm{n}}+4$	6.5 ns	6.5 ns
C_{n} to $\mathrm{C}_{\mathrm{n}}+4$	6.3 ns	6.3 ns
C_{n} to $\mathrm{C}_{\mathrm{n}}+4$	6.3 ns	6.3 ns
C_{n} to F	8.1 ns	-
C_{n} to $\mathrm{C}_{\mathrm{n}}+4$, OVR	-	8.0 ns
Total Delay	27.2 ns	27.1 ns

FIGURE 2. 16-Bit Delay Tabulation

H = HIGH Voltage Level
$x=$ LOW Voitage Level

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$) Standard Output TRI-STATE ${ }^{\text {® }}$ Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
\\
-0.5 \mathrm{~V} \text { to } \mathrm{V} \mathrm{CC} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 t to +5.5 V

Current Applied to Output
in LOW State (Max) twice the rated IOL (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics over Operating Temperature Range unless otherwise specified

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltane	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{mi} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.8 \\ -2.4 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~S}_{0}-\mathrm{S}_{2}\right) \\ & \mathrm{V}_{\mathbb{I N}}=0.5 \mathrm{~V}\left(\mathrm{~A}_{0}-\mathrm{A}_{3}, \mathrm{~B}_{0}-\mathrm{B}_{3}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{C}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}+4\right) \end{aligned}$
IOZH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
IOZL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
$I_{C C}$	Power Supply Current			54	81	mA	Max	

AC Electrical Characteristics: See Section 2 for U.L. definitions

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay C_{n} to F_{i}	$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.1 \\ & 5.7 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 8.0 \\ \hline \end{gathered}$			$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 13.0 \\ 9.0 \\ \hline \end{gathered}$	ns	2-4
$\begin{aligned} & t_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Any A or B to Any F	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.4 \\ 8.2 \\ \hline \end{array}$	$\begin{aligned} & 15.0 \\ & 11.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns	2-4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{i} to F_{i}	$\begin{aligned} & 6.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.0 \\ 8.2 \\ \hline \end{array}$	$\begin{aligned} & 20.5 \\ & 15.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 21.5 \\ 17.5 \\ \hline \end{array}$	ns	2-4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{i} or B_{i} to $\mathrm{C}_{\mathrm{n}}+4$	$\begin{array}{r} 3.5 \\ 3.5 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.5 \\ & \hline \end{aligned}$	ns	2-4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{i} to OVR or $\mathrm{C}_{\mathrm{n}}+4$	$\begin{array}{r} 7.0 \\ 5.0 \\ \hline \end{array}$	$\begin{gathered} 12.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{array}{r} 16.5 \\ 12.0 \\ \hline \end{array}$			$\begin{aligned} & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 17.5 \\ 14.5 \\ \hline \end{array}$	ns	2-4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $C_{n} \text { to } C_{n+4}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	ns	2-4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH} L} \\ & \hline \end{aligned}$	Propagation Delay C_{n} to OVR	$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.0 \\ 10.0 \\ \hline \end{array}$			$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns	2-4
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{i} or B_{i} to OVR	$\begin{aligned} & 7.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{aligned} & 15.5 \\ & 10.5 \end{aligned}$			$\begin{aligned} & 7.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 11.5 \\ & \hline \end{aligned}$	ns	2-4

54F/74F385
 Quad Serial Adder/Subtractor

General Description

The 'F385 contains four serial adder/subtractors with common clock and clear inputs, but independent operand and mode select inputs. Each adder/subtractor contains a sum flip-flop and a carry-save flip-flop for synchronous operations. Each circuit performs either A plus B or A minus B in twos complement notation, but can also be used for magni-tude-only or ones complement operation. The 'F385 is designed for use with the 'F384 and 'F784 serial multipliers in implementing digital filters or butterfly networks in fast Fourier transforms.

Features

- Four independent adder/subtractors
- Twos complement arithmetic

■ Synchronous operation

- Common clear and clock

■ Ones complement or magnitude-only capability

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{A}_{1}-\mathrm{A}_{4}$	A Operand Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{B}_{1}-\mathrm{B}_{4}$	B Operand Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{1}-\mathrm{S}_{4}$	Function Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$F_{1}-F_{4}$	Sum or Difference Outputs	50/33.3	-1 mA/20 mA

Functional Description

Each adder contains two edge-triggered flip-flops to store the sum and carry, as shown in the Logic Diagram. Flip-flop state changes occur on the rising edge of the Clock Pulse (CP) input signal. The Select (S) input should be LOW for the Add (A plus B) mode and HIGH for the Subtract (A minus B) mode. A LOW signal on the asynchronous Master Reset ($\overline{\mathrm{MR}}$) input clears the sum flip-flop and resets the carry flip-flop to zero in the Add mode or presets it to one in the Subtract mode.

In the Subtract mode, the B operand is internally complemented. Presetting the carry flip-flop to one completes the twos complement transformation by adding one to "A plus $\overline{\mathrm{B}}$ " during the first (LSB) operation after $\overline{\mathrm{MR}}$ is released. For ones complement subtraction, the carry flip-flop can be set to zero by making S LOW during the reset, then making S HIGH after the reset but before the next clock.

Truth Table

Inputs*				Internal Carry		Output*	Function
$\overline{M R}$	S	A	B	C	C_{1}	F	
L	L	X	X	L	L	L	Clear
L	H	X	X	H	H	L	
H	L	L	L	L	L	L	
H	L	L	L	H	L	H	
H	L	L	H	L	L	H	
H	L	L	H	H	H	L	Add
H	L	H	L	L	L	H	Add
H	L	H	L	H	H	L	
H	L	H	H	L	H	L	
H	L	H	H	H	H	H	
H	H	L	L	L	L	H	
H	H	L	L	H	H	L	
H	H	L	H	L	L	L	
H	H	L	H	H	L	H	Subtract
H	H	H	L	L	H	L	Subtract
H	H	H	L	H	H	H	
H	H	H	H	L	L	H	
H	H	H	H	H	H	L	

[^14]
Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.
Storage Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Ambient Temperature under Bias
Junction Temperature under Bias
V_{Cc} Pin Potential to Ground Pin

Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC}
TRI-STATE® Output
-0.5 V to +5.5 V
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{lOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Military | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Commercial | |
| Supply Voltage | +4.5 V to +5.5 V |
| Military | +4.5 V to +5.5 V |
| Commercial | |

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathbf{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{IOL}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			68	92*	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			68	92*	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	70	100		65		70		MHz	2-1
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to F_{n}	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	ns	2-3
${ }^{\text {tPHL }}$	Propagation Delay $\bar{M} \bar{R}$ to F_{n}	5.5	9.0	12.0	5.0	14.0	5.5	13.0	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathbf{V}_{C C}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	15.0		17.5		15.0		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	A_{n} to CP	15.0		17.5		15.0			
$t_{h}(\mathrm{H})$	Hold Time, HIGH or LOW	0		0		0			
$t_{n}(\mathrm{~L})$	A_{n} to CP	0		0		0			
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	15.0		17.5		15.0		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	B_{n} or S_{n} to CP	15.0		17.5		15.0			
$t_{h}(\mathrm{H})$	Hold Time, HIGH or LOW	0		0		0			
$t_{n}(\mathrm{~L})$	B_{n} or S_{n} to CP	0		0		0			
$t_{w}(\mathrm{H})$	CP Pulse Width	6.0		7.0		6.0		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	HIGH or LOW	6.0		7.0		6.0			
\dagger_{7} (L)	$\overline{M R}$ Width, LOW!	6.0		6.5		0.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	8.5		10.0		9.5		ns	2-6

54F/74F395

4-Bit Cascadable Shift Register with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F395 is a 4-bit Shift Register with serial and parallel synchronous operating modes and four 3-state buffer outputs. The shifting and loading operations are controlled by the state of the Parallel Enable (PE) input. When PE is HIGH, data is loaded from the Parallel Data inputs $\left(D_{0}-D_{3}\right)$ into the register synchronous with the HIGH-to-LOW transition of the Clock input ($\overline{\mathrm{CP}})$. When PE is LOW, the data at the Serial Data input $\left(D_{s}\right)$ is loaded into the Q_{0} flip-flop, and the data in the register is shifted one bit to the right in the direction $\left(Q_{0}-Q_{1}-Q_{2}-Q_{3}\right)$ synchronous with the negative clock transition. The PE and Data inputs are fully edge-triggered and must be stable only one setup prior to the HIGH-to-LOW transition of the clock.
The Master Reset ($\overline{\mathrm{MR}}$) is an asynchronous Active LOW input. When LOW, the $\overline{M R}$ overrides the clock and all other inputs and clears the register.
The TRI-STATE output buffers are designed to drive heavily loaded TRI-STATE buses or large capacitive loads. The Ac-
tive LOW Output Enable ($\overline{\mathrm{OE}}$) controls all four TRI-STATE buffers independent of the register operation. The data in the register appears at the outputs when $\overline{O E}$ is LOW. The outputs are in the high impedance (OFF) state, which means they will neither drive nor load the bus when $\overline{O E}$ is HIGH. The output from the last stage is brought out separately. This output $\left(Q_{s}\right)$ is tied to the Serial Data input $\left(D_{s}\right)$ of the next device for serial expansion applications. The Q_{s} output is not affected by the TRI-STATE buffer operation.

Features

■ 4-Bit parallel load shift register

- Independent TRI-STATE buffer outputs
- Separate Q_{S} output for serial expansion
- Asynchronous master reset

Logic Symbols

TL/F/9532-3

TL/F/9532-5

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9532-1

Pin Assignment for LCC and PCC
$D_{3} D_{2} N C D_{1} D_{0}$ 8 7 [654

TL/F/9532-2

Mode Select-Function Tables

Register Operating Modes	Inputs					Outputs			
	$\overline{\text { MR }}$	$\overline{\mathbf{C P}}$	PE	$\mathrm{D}_{\mathbf{s}}$	D_{n}	Q_{0}	Q_{1}	\mathbf{Q}_{2}	Q_{3}
Reset (clear)	L	X	X	X	X	L	L	L	L
Shift Right	$\begin{aligned} & H \\ & H \end{aligned}$	2	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{q}_{0} \\ & \mathrm{q}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{1} \\ & \mathrm{q}_{1} \end{aligned}$	$\begin{aligned} & \mathrm{q}_{2} \\ & \mathrm{q}_{2} \end{aligned}$
Parallel Load	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	2	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & L \\ & H \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$

TRI-STATE Buffer Operating Modes	Inputs		Outputs	
	$\overline{\mathbf{O E}}$	$\mathbf{Q}_{\mathbf{n}}$ (Register)	$\mathbf{Q}_{\mathbf{0}}, \mathbf{Q}_{\mathbf{1}}, \mathbf{Q}_{\mathbf{2}}, \mathbf{Q}_{\mathbf{3}}$	$\mathbf{Q}_{\mathbf{s}}$
Read	L	L	L	L
	L	H	H	H
Disable Buffers	H	L	Z	L
	H	H	Z	H

H = HIGH Voltage Level
L. = LOW Voltage Level
$\mathrm{q}_{\mathrm{n}}=$ Lower case letters indicate the state of the referenced output one setup time prior to the HIGH-to-LOW Clock Transition
$x=$ Immaterial
$Z=$ High Impedance
$工=$ HIGH-to-LOW transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

General Description

The 'F398 and 'F399 are the logical equivalents of a quad 2-input multiplexer feeding into four edge-triggered flipflops. A common Select input determines which of the two 4-bit words is accepted. The selected data enters the flipflops on the rising edge of the clock. The 'F399 is the 16-pin version of the 'F398, with only the Q outputs of the flip-flops available.

Features

- Select inputs from two data sources
- Fully positive edge-triggered operation
- Both true and complement outputs-'F398

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment for LCC and PCC

TL/F/9533-5
Pin Assignment for DIP, SOIC and Flatpak

TL/F/9533-6
'F399

Logic Symbols

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{O}} / \mathrm{IOL}_{\mathrm{OL}}$
S	Common Select Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{0 \mathrm{a}}-1 \mathrm{lod}$	Data Inputs from Source 0	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{l}_{1 \mathrm{a}}-\mathrm{l}_{1 \mathrm{~d}}$	Data Inputs from Source 1	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{Q}_{\mathrm{a}}-\mathrm{Q}_{\mathrm{d}}$	Register True Outputs	50/33.3	-1 mA/20 mA
$\bar{Q}_{a}-\bar{Q}_{d}$	Register Complementary Outputs ('F398)	50/33.3	-1 mA/20 mA

Functional Description

The 'F398 and 'F399 are high-speed quad 2-port registers. They select four bits of data from either of two sources (Ports) under control of a common Select input (S). The selected data is transferred to a 4-bit output register synchronous with the LOW-to-HIGH transition of the Clock input (CP). The 4-bit D-type output register is fully edge-triggered. The Data inputs ($I_{0 x}, I_{1 x}$) and Select input (S) must be stable only a setup time prior to and hold time after the LOW-to-HIGH transition of the Clock input for predictable operation. The ' F 398 has both Q and $\overline{\mathrm{Q}}$ outputs.

Function Table

Inputs			Outputs	
\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Q	$\overline{\mathrm{Q}}^{*}$
I	I	X	L	H
I	h	X	H	L
h	X	I	L	H
h	X	h	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
$h=$ HIGH Voltage Level one setup time prior to the LOW-to-HIGH clock transition
I = LOW Voltage Level one setup time prior to the LOW-to-HIGH clock transition
$X=$ Immaterial
*'F398 only

Logic Diagram

TL/F/9533-9

"'F398 Only

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Voltage (Note 2)

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$) Standard Output
-0.5 V to V_{CC} TRI-STATE® Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}$ (mA)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~m} \end{aligned}$
VoL	Output LOW Yoltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \text { VCC } \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & !_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current ('F398)			25	38	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current ('F398)			25	38	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current ('F399)			22	34	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current ('F399)			22	34	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ C_{L}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Input Clock Frequency	100	140		80		100		MHz	2-1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $C P$ to Q or \bar{Q}	$\begin{gathered} 3.0^{*} \\ 3.0 \end{gathered}$	$\begin{aligned} & 5.7 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	3.0 3.0	$\begin{gathered} 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \end{gathered}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\text {cc }}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $I_{n} \text { to } C P$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $I_{n} \text { to } C P$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 1.5 \\ 1.5 \\ \hline \end{array}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S to CP ('F398)	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S to CP ('F399)	$\begin{aligned} & 7.5 \\ & 7.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW S to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 7.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-4

National Semiconductor

54F/74F401

CRC Generator/Checker

General Description

The 'F401 Cycle Redundancy Check (CRC) Generator/ Checker provides an advanced tool for implementing the most widely used error detection scheme in serial digital data handling systems. A 3 -bit control input selects one-ofeight generator polynomials. The list of polynomials includes CRC-16 and CRC-CCITT as well as their reciprocals (reverse polynomials). Automatic right justification is incorporated for polynomials of degree less than 16. Separate clear and preset inputs are provided for floppy disk and other applications. The Error output indicates whether or not a transmission error has occurred. Another control input inhibits feedback during check word transmission. The 'F401 is fully compatible with all TTL families.

Features

- Eight selectable polynomials
- Error indicator
- Separate preset and clear controls
- Automatic right justification
- Fully compatible with all TTL logic families
- 14-pin package
- 9401 equivalent
- Typical applications:

Floppy and other disk storage systems Digital cassette and cartridge systems Data communication systems

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Polynomial Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
D	Data Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CP}}$	Clock Input (Operates on HIGH-to-LOW Transition)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CWE	Check Word Enable Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{P}}$	Preset (Active LOW) Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
MR	Master Reset (Active HIGH) Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
Q	Data Output	50/33.3	-1 mA/20 mA
ER	Error Output	50/33.3	-1 mA/20 mA

Functional Description

The 'F401 is a 16 -bit programmable device which operates on serial data streams and provides a means of detecting transmission errors. Cyclic encoding and decoding schemes for error detection are based on polynomial manipulation in modulo arithmetic. For encoding, the data stream (message polynomial) is divided by a selected polynomial. This division results in a remainder which is appended to the message as check bits. For error checking, the bit stream containing both data and check bits is divided by the same selected polynomial. If there are no detectable errors, this division results in a zero remainder. Although it is possible to choose many generating polynomials of a given degree, standards exist that specify a small number of useful polynomials. The 'F401 implements the polynomials listed in Table I by applying the appropriate logic levels to the select pins S_{0}, S_{1} and S_{2}.
The 'F401 consists of a 16-bit register, a Read Only Memory (ROM) and associated control circuitry as shown in the block diagram. The polynomial control code presented at inputs S_{0}, S_{1} and S_{2} is decoded by the ROM, selecting the desired polynomial by establishing shift mode operation on the register with Exclusive OR gates at appropriate inputs. To generate the check bits, the data stream is entered via the Data inputs (D), using the HIGH-to-LOW transition of the

Clock input ($\overline{\mathrm{CP}}$). This data is gated with the most significant output (Q) of the register, and controls the Exclusive OR gates (Figure 1). The Check Word Enable (CWE) must be held HIGH while the data is being entered. After the last data bit is entered, the CWE is brought LOW and the check bits are shifted out of the register and appended to the data bits using external gating (Figure 2).
To check an incoming message for errors, both the data and check bits are entered through the Dinput with the CWE input held HIGH. The 'F401 is not in the data path, but only monitors the message. The Error Output becomes valid after the last check bit has been entered into the 'F401 by a HIGH-to-LOW transition of $\overline{\mathrm{CP}}$. If no detectable errors have occurred during the data transmission, the resultant internal register bits are all LOW and the Error Output (ER) is LOW. If a detectable error has occurred, ER is HIGH.
A HIGH on the Master Reset input (MR) asynchronously clears the register. A LOW on the Preset input $(\overline{\mathrm{P}})$ asynchronously sets the entire register if the control code inputs specify a 16 -bit polynomial; in the case of 12 - or 8 -bit check polynomials only the most significant 12 or 8 register bits are set and the remaining bits are cleared.

TABLE I

Select Code			Polynomial	Remarks
S_{2}	S_{1}	S_{0}		
L	L	L	$x^{16}+x^{15}+x^{2}+1$	CRC-16
L	L	H	$\mathrm{X}^{16}+\mathrm{X}^{14}+\mathrm{X}^{16}+1$	CRC-16 REVERSE
L	H	L	$\mathrm{X}^{16}+\mathrm{X}^{15}+\mathrm{X}^{13}+\mathrm{X}^{7}+\mathrm{X}^{4}+\mathrm{X}^{2}+\mathrm{X}^{1}+1$	
L	H	H	$x^{12}+x^{11}+x^{3}+x^{2}+x^{1}+1$	CRC-12
H	L	L	$\mathrm{X}^{8}+\mathrm{X}^{7}+\mathrm{X}^{5}+\mathrm{X}^{4}+\mathrm{X}+1$	
H	L	H	$\mathrm{X}^{8}+1$	LRC-8
H	H	L	$\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1$	CRC-CCITT
H	H	H	$\mathrm{X}^{16}+\mathrm{X}^{11}+\mathrm{X}^{4}+1$	CRC-CCITT REVERSE

Block Diagram

TL/F/9534-6
FIGURE 1. Equivalent Circult for $\mathrm{X}^{16}+\mathrm{X}^{15}+\mathrm{X}^{2}+\mathbf{1}$

FIGURE 2. Check Word Generation
Note 1: Check word Enable is HIGH while data is being clocked, LOW while transmission of check bits.
Note 2: 'F401 must be reset or preset before each computation.
Note 3: CHC check bits are generated and appended to data bits.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE © Output
Current Applied to Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military
Commercial
Supply Voltage Military Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

in LOW State (Max)
Note 1: Absolute maximum ratings are value be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	54F/74F			Units	$\mathbf{V}_{\text {cc }}$	Conditlons
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{VCC}_{\mathrm{CC}}$ Voltage $74 \mathrm{~F} 10 \% \mathrm{VCC}_{\mathrm{CC}}$ $74 \mathrm{~F} \mathrm{5} \mathrm{\%} \mathrm{VCC}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{O}}=-1 \mathrm{~mA} \end{aligned}$
VOL	Output LOW $54 \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{VCC}$ Voltage $74 \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{VCC}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \hline \end{aligned}$
${ }^{\mathrm{IH}}$	Input HIGH Current			20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
112	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current			250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current		70	105	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Conifigurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, V_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100					85		MHz	2-1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{C P}$ to Q	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 11.5 \\ & 10.0 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 11.0 \end{aligned}$	ns	2-3
$t_{\text {PHL }}$	Propagation Delay MR to Q	3.0		7.5			3.0	8.0	ns	2-3
${ }_{\text {tplH }}$	Propagation Delay $\overline{\mathrm{P}}$ to Q	3.0		8.5			3.0	9.5	ns	2-3
$t_{\text {PHL }}$	Propagation Delay MR to ER	3.5		11.0			3.5	12.0	ns	2-3
$t_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{P}}$ to ER	3.0		8.5			3.0	10.0	ns	2-3
$t_{\text {PLH }}$ ${ }^{\text {t }}{ }^{\text {PHL }}$	Propagation Delay $\overline{\mathrm{CP}}$ to ER	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 13.0 \\ & 11.5 \\ & \hline \end{aligned}$			5.0 4.5	$\begin{aligned} & 14.5 \\ & 12.5 \\ & \hline \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	FigNo
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Set-up Time, HIGH or LOW $\mathrm{D} \text { to } \overline{\mathrm{CP}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$				$\begin{array}{r} 5.5 \\ 5.5 \\ \hline \end{array}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{f}}(\mathrm{~L} .) \\ & \hline \end{aligned}$	Set-up Time, HIGH or LOW CWE to $\overline{C P}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D and CWE to $\overline{C P}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			
$t_{w}(\mathrm{~L})$	$\overline{\text { P Pulse Width, LOW }}$	7.0				8.0		ns	2-4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock Pulse Width, HIGH or LOW	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	MR Pulse Width, HIGH	5.0				5.5		ns	2-4
$\mathrm{trec}^{\text {c }}$	Recovery Time MR to $\overline{\mathrm{CP}}$	4.0				4.5		ns	2-6
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{P}}$ to $\overline{\mathrm{CP}}$	2.0				2.0		ns	2-6

54F/74F402 Serial Data Polynomial Generator/Checker

General Description

The 'F402 expandable Serial Data Polynomial generator/ checker is an expandable version of the 'F401. It provides an advanced tool for the implementation of the most widely used error detection scheme in serial digital handling systems. A 4-bit control input selects one-of-six generator polynomials. The list of polynomials includes CRC-16, CRCCCITT and Ethernet ${ }^{\oplus}$, as well as three other standard polynomials (56th order, $48^{\text {th }}$ order, $32^{\text {nd }}$ order). Individual clear and preset inputs are provided for floppy disk and other applications. The Error output indicates whether or not a transmission error has occurred. The CWG Control input inhibits feedback during check word transmission. The 'F402 is compatible with FAST® devices and with all TTL families.

Features

- Guaranteed 30 MHz data rate
- Six selectable polynomials
- Other polynomials available
- Separate preset and clear controls
- Expandable
- Automatic right justification
- Error output open collector
- Typical applications: Floppy and other disk storage systems Digital cassette and cartridge systems Data communication systems

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9535-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Polynomial Select Inputs	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
CWG	Check Word Generate Input	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
D/CW	Serial Data/Check Word	285(100)/13.3(6.7)	$-5.7 \mathrm{~mA}(-2 \mathrm{~mA}) / 8 \mathrm{~mA}(4 \mathrm{~mA})$
D	Data Input	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{E R}$	Error Output	*/26.7(13.3)	*/16 mA (8 mA)
RO	Register Output	285(100)/13.3(6.7)	-5.7 mA $(-2 \mathrm{~mA}) / 8 \mathrm{~mA}(4 \mathrm{~mA})$
CP	Clock Pulse	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
SEI	Serial Expansion Input	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
RFB	Register Feedback	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
MR	Master Reset	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{P}}$	Preset	1.0/0.67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$

*Open Collector

Functional Description

The 'F402 Serial Data Polynomial Generator/Checker is an expandable 16-bit programmable device which operates on serial data streams and provides a means of detecting transmission errors. Cyclic encoding and decoding schemes for error detection are based on polynomial manipulation in modulo arithmetic. For encoding, the data stream (message polynomial) is divided by a selected polynomial. This division results in a remainder (or residue) which is appended to the message as check bits. For error checking, the bit stream containing both data and check bits is divided by the same selected polynomial. If there are no detectable errors, this division results in a zero remainder. Although it is possible to choose many generating polynomials of a given degree, standards exist that specify a small number of useful polynomials. The 'F402 implements the polynomials listed in Table I by applying the appropriate logic levels to the select pins S_{0}, S_{1}, S_{2} and S_{3}.
The 'F402 consists of a 16 -bit register, a Read Only Memory (ROM) and associated control circuitry as shown in the Block Diagram. The polynomial control code presented at inputs S_{0}, S_{1}, S_{2} and S_{3} is decoded by the ROM, selecting the desired polynomial or part of a polynomial by establishing shift mode operation on the register with Exclusive OR (XOR) gates at appropriate inputs. To generate the check bits, the data stream is entered via the Data Inputs (D), using the LOW-to-HIGH transition of the Clock Input (CP). This data is gated with the most significant Register Output (RO) via the Register Feedback Input (RFB), and controls the

XOR gates. The Check Word Generate (CWG) must be held HIGH while the data is being entered. After the last data bit is entered, the CWG is brought LOW and the check bits are shifted out of the register(s) and appended to the data bits (no external gating is needed).
To check an incoming message for errors, both the data and check bits are entered through the D Input with the CWG Input held HIGH. The Error Output becomes valid after the last check bit has been entered into the 'F402 by a LOW-to-HIGH transition of CP, with the exception of the Ethernet polynomial (see Applications paragraph). If no detectable errors have occurred during the data transmission, the resultant internal register bits are all LOW and the Error Output ($\overline{\mathrm{ER}}$) is HIGH. If a detectable error has occurred, $\overline{\mathrm{ER}}$ is LOW. ER remains valid until the next LOW-to-HIGH transition of CP or until the device has been preset or reset.
A HIGH on the iviaster Resel Input (ivii) asynchronously clears the entire register. A LOW on the Preset Input ($\overline{\mathrm{P}}$) asynchronously sets the entire register with the exception of:
1 The Ethernet residue selection, in which the registers containing the non-zero residue are cleared;
2 The 56th order polynomial, in which the 8 least significant register bits of the least significant device are cleared; and,
3 Register $\mathrm{S}=0$, in which all bits are cleared.

TABLE I

Hex	Select Code				Polynomial	Remarks
	S_{3}	\mathbf{S}_{2}	S_{1}	S_{0}		
0	L	L	L	L	0	$\mathrm{S}=0$
C	H	H	L	L	$\mathrm{X}^{32}+\mathrm{X}^{26}+\mathrm{X}^{23}+\mathrm{X}^{22}+\mathrm{X}^{16}+$	Ethernet
D	H	H	L	H	$X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X^{2}+1$	Polynomial
E	H	H	H	L	$\mathrm{x}^{32}+\mathrm{x}^{31}+\mathrm{x}^{27}+\mathrm{x}^{26}+\mathrm{x}^{25}+\mathrm{x}^{19}+\mathrm{x}^{16}+$	Ethernet
F	H	H	H	H	$\mathrm{X}^{15}+\mathrm{X}^{13}+\mathrm{X}^{12}+\mathrm{X}^{11}+\mathrm{X}^{9}+\mathrm{X}^{7}+\mathrm{X}^{6}+\mathrm{X}^{5}+\mathrm{X}^{4}+\mathrm{X}^{2}+\mathrm{X}+1$	Residue
7	L	H	H	H	$x^{16}+x^{15}+x^{2}+1$	CRC-16
B	H	L	H	H	$x^{16}+x^{12}+x^{5}+1$	CRC-CCITT
3	L	L	H	H	$x^{56}+x^{55}+x^{49}+x^{45}+x^{41}+$	
2	L	L	H	L	$x^{39}+x^{38}+x^{37}+x^{36}+x^{31}+$	56th
4	L	H	L	L	$\mathrm{X}^{22}+\mathrm{X}^{19}+\mathrm{X}^{17}+\mathrm{X}^{16}+\mathrm{X}^{15}+\mathrm{X}^{14}+\mathrm{X}^{12}+\mathrm{X}^{11}+\mathrm{X}^{9}+$	Order
8	H	L	L	L	$\mathrm{X}^{5}+\mathrm{x}+1$	
5	L	H	L	H	$\mathrm{X}^{48}+\mathrm{x}^{36}+\mathrm{x}^{35}+$	
9	H	L	L	H	$\mathrm{X}^{23}+\mathrm{X}^{21}+$	48th Order
1	L	L	L	H	$\mathrm{X}^{15}+\mathrm{X}^{13}+\mathrm{x}^{8}+\mathrm{x}^{2}+1$	
6	L	H	H	L	$x^{32}+x^{23}+x^{21}+$	32nd
A	H	L	H	L	$\mathrm{X}^{11}+\mathrm{X}^{2}+1$	Order

Block Diagram

TL/F/9535-5

TABLE II

Select Code	$\mathbf{P}_{\mathbf{3}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Polynomial
0	0	0	0	0	1	0	0	$\mathrm{~S}=0$
C	1	1	1	1	1	0	1	Ethernet
D	1	1	1	1	1	0	1	Polynomial
E	0	0	0	0	0	0	0	Ethernet
F	0	0	0	0	0	1	0	Residue
7	1	1	1	1	1	0	0	CRC-16
B	1	1	1	1	1	0	0	CRC-CCITT
3	1	1	1	1	1	0	0	
2	1	1	1	1	1	0	0	56th
4	1	1	1	1	1	0	0	Order
8	0	0	1	1	1	0	0	
5	1	1	1	1	1	0	0	48th
9	1	1	1	1	1	0	0	Order
1	1	1	1	1	1	0	0	
6	1	1	1	1	1	0	0	32nd
A	1	1	1	1	1	0	0	Order

Applications

In addition to polynomial selection there are four other capabilities provided for in the 'F402 ROM. The first is set or clear selectability. The sixteen internal registers have the capability to be either set or cleared when $\overline{\mathrm{P}}$ is brought LOW. This set or clear capability is done in four groups of 4 (see Table II, $P_{0}-P_{3}$). The second ROM capability $\left(C_{0}\right)$ is in determining the polarity of the check word. As is the case with the Ethernet polynomial the check word can be inverted when it is appended to the data stream or as is the case with the other polynomials, the residue is appended with no inversion. Thirdly, the ROM contains a bit (C_{1}) which is used to select the RFB input instead of the SEI input to be fed into the LSB. This is used when the polynomial selected is actually a residue (least significant) stored in the ROM which indicates whether the selected location is a polynomial or a residue. If the latter, then it inhibits the RFB input.
As mentioned previously, upon a successful data transmission, the CRC register has a zero residue. There is an exception to this, however, with respect to the Ethernet polynomial. This polynomial, upon a successful data transmission, has a non-zero residue in the CRC register (C7 04 DD 7B) ${ }_{16}$. In order to provide a no-error indication, two ROM locations have been preloaded with the residue so that by selecting these locations and clocking the device one additional time, after the last check bit has been entered, will result in zeroing the CRC register. In this manner a no-error indication is achieved.
With the present mix of polynomials, the largest is 56 th order requiring four devices while the smallest is 16 th order requiring just one device. In order to accommodate multiplexing between high order polynomials (X 16th order) and lower order polynomials, a location of all zeros is provided. This allows the user to choose a lower order polynomial even if the system is configured for a higher order one.

The 'F402 expandable CRC generator checker contains 6 popular CRC polynomials, 2-16th Order, 2-32nd Order, 1 $48^{\text {th }}$ Order and $1-56^{\text {th }}$ Order. The application diagram shows the 'F402 connected for a 56th Order polynomial. Also shown are the input patterns for other polynomials. When the 'F402 is used with a gated clock, disabling the clock in a HIGH state will ensure no erroneous clocking occurs when the clock is re-enabled. Preset and Master Reset are asynchronous inputs presetting the register to S or clearing to 1 s respectively (note Ethernet residue and 56 th Order select code 8, LSB, are exceptions to this).
To generate a CRC, the pattern for the selected polynomial is appliind to tho S inputs, tho regictor is prosoct or cloarod as required, clock is enabled, CWG is set HIGH, data is applied to D input, output data is on D/CW. When the last data bit has been entered, CWG is set LOW and the register is clocked for n bits (where n is the order of the polynomial). The clock may now be stopped if desired (holding CWG LOW and clocking the register will output zeros from D/CW after the residue has been shifted out).
To check a CRC, the pattern for the selected polynomial is applied to the S inputs, the register is preset or cleared as required, clock is enabled, CWG is set HIGH, the data stream including the CRC is applied to D input. When the last bit of the CRC has been entered, the ER output is checked: $\mathrm{HIGH}=$ error free data, LOW = corrupt data. The clock may now be stopped if desired.
To implement polynomials of lower order than $56^{\text {th }}$, select the number of packages required for the order of polynomial and apply the pattern for the selected polynomial to the S inputs (0000 on S inputs disables the package from the feedback chain).

TL/F/9535-6

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias
Junction Temperature under Bias
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

-30 mA to +5.0 mA
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE ${ }^{\text {® }}$ Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.
DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC $74 F 5 \% V_{C C}$	$\begin{aligned} & 2.4 \\ & 2.4 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}(\mathrm{RO}, \mathrm{D} / \mathrm{CW}) \\ & \mathrm{I}_{\mathrm{OH}}=-5.7 \mathrm{~mA}(\mathrm{RO}, \mathrm{D} / \mathrm{CW}) \\ & \mathrm{I}_{\mathrm{OH}}=-5.7 \mathrm{~mA}(\mathrm{RO}, \mathrm{D} / \mathrm{CW}) \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}(\mathrm{D} / \mathrm{CW}, \mathrm{RO}) \\ & \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}(\overline{\mathrm{ER}}) \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}(\overline{\mathrm{ER}}) \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}(\mathrm{D} / \mathrm{CW}, \mathrm{RO}) \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.4	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-20		-130	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ (D/CW, RO)
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}(\mathrm{RO}, \mathrm{D} / \mathrm{CW})$
IOHC	Open Collector, Output OFF Leakage Test				250	$\mu \mathrm{A}$	Min	$V_{\text {OUT }}=V_{\text {CC }}(\overline{E R})$
ICC	Power Supply Current			110	165	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	30	45		30		30		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to D/CW	$\begin{gathered} 8.5 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 15.0 \\ & 18.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 19.0 \\ 23.0 \\ \hline \end{array}$	$\begin{aligned} & 7.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 26.5 \\ 26.5 \\ \hline \end{array}$	$\begin{aligned} & 7.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 21.0 \\ 25.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to RO	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 17.0 \\ 18.0 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 26.0 \\ 22.5 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 19.0 \\ 20.0 \\ \hline \end{array}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to ER	$\begin{array}{r} 15.5 \\ 8.5 \\ \hline \end{array}$	$\begin{aligned} & 26.0 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 33.0 \\ 18.5 \\ \hline \end{array}$	$\begin{gathered} 14.0 \\ 7.5 \end{gathered}$	$\begin{array}{r} 38.5 \\ 23.5 \\ \hline \end{array}$	$\begin{gathered} 14.0 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 35.0 \\ & 20.5 \end{aligned}$	ns	2-3
$\begin{array}{r} \mathrm{t}_{\mathrm{PLH}} \\ \mathrm{t}_{\mathrm{PHL}} \\ \hline \end{array}$	Propagation Delay $\overline{\mathrm{P}}$ to D/CW	$\begin{array}{r} 11.0 \\ 11.5 \\ \hline \end{array}$	$\begin{array}{r} 18.5 \\ 19.5 \\ \hline \end{array}$	$\begin{array}{r} 23.5 \\ 24.5 \\ \hline \end{array}$	$\begin{array}{r} 10.0 \\ 10.5 \\ \hline \end{array}$	$\begin{array}{r} 31.0 \\ 32.0 \\ \hline \end{array}$	$\begin{aligned} & 10.0 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 25.5 \\ 26.5 \\ \hline \end{array}$	ns	2-3
${ }_{\text {tPLH }}$	Propagation Delay $\overline{\mathrm{P}}$ to RO	9.5	16.0	20.5	8.5	31.5	8.5	22.5	ns	2-3
${ }_{\text {tPLH }}$	Propagation Delay $\overline{\mathrm{P}}$ to $\overline{\mathrm{ER}}$	10.0	17.0	21.5	9.0	26.0	9.0	23.5	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay MR to D/CW	$\begin{array}{r} 10.5 \\ 11.0 \\ \hline \end{array}$	$\begin{array}{r} 18.0 \\ 19.0 \\ \hline \end{array}$	$\begin{array}{r} 23.0 \\ 24.0 \\ \hline \end{array}$	$\begin{gathered} 9.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{array}{r} 29.0 \\ 28.5 \\ \hline \end{array}$	$\begin{gathered} 9.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{array}{r} 25.5 \\ 26.0 \\ \hline \end{array}$	ns	2-3
${ }_{\text {tPHL }}$	Propagation Delay MR to RO	9.0	15.5	19.5	8.0	23.5	8.0	21.5	ns	2-3
$t_{\text {PLH }}$	Propagation Delay MR to $\overline{E R}$	16.5	28.0	35.5	14.5	39.0	14.5	37.5	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D to D/CW	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.5 \\ 12.0 \\ \hline \end{array}$	$\begin{aligned} & 13.5 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 5.0 \\ 6.5 \\ \hline \end{array}$	$\begin{array}{r} 19.5 \\ 20.0 \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 18.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CWG to D/CW	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 21.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 17.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay S_{n} to D/CW	$\begin{gathered} 11.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 19.5 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 20.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	$\begin{array}{r} 29.0 \\ 25.0 \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ 8.5 \\ \hline \end{gathered}$	$\begin{array}{r} 26.5 \\ 22.0 \\ \hline \end{array}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW SEl to CP	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW SEl to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW RFB to CP	$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 14.0 \\ & 14.0 \end{aligned}$		$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW RFB to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $S_{1} \text { to } C P$	$\begin{aligned} & 13.5 \\ & 13.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 16.0 \\ 15.5 \\ \hline \end{array}$		$\begin{aligned} & 15.0 \\ & 14.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW S_{1} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D to CP	$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 11.5 \\ 11.5 \\ \hline \end{array}$		$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW D to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW CWG to CP	$\begin{aligned} & 7.0 \\ & 5.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.0 \\ & 6.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW CWG to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Clock Pulse Width HIGH or LOW	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		ns	2-4
$t_{w}(\mathrm{H})$	MR Pulse Width, HIGH	4.0		7.0		4.5		ns	2-4
$t_{w}(\mathrm{~L})$	$\stackrel{\rightharpoonup}{P}$ Pulse Width, LOW	4.0		5.0		4.5		ns	2-4
$t_{\text {rec }}$	Recovery Time MR to CP	3.0		4.0		3.5		ns	2-6
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{P}}$ to CP	5.0		6.5		6.0			

54F/74F403 First-In First-Out (FIFO) Buffer Memory

General Description

The 'F403 is an expandable fall-through type high-speed First-In First-Out (FIFO) Buffer Memory optimized for highspeed disk or tape controllers and communication buffer applications. It is organized as 16 -words by 4 -bits and may be expanded to any number of words or any number of bits in multiples of four. Data may be entered or extracted asynchronously in serial or parallel, allowing economical implementation of buffer memories.
The 'F403 has TRI-STATE® outputs which provide added versatility and is fully compatible with all TTL families.

Features

- Serial or parallel input
- Serial or parallel output
- Expandable without external logic
- TRI-STATE outputs
- Fully compatible with all TTL families
- Slim 24-pin package
- 9403 replacement

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment for LCC and PCC

TL/F/9536-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel Data Inputs	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
D_{S}	Serial Data Input	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
PL	Parallel Load Input	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
CPSI	Serial Input Clock	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\text { IES }}$	Serial Input Enable	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
TTS	Trancfer to Stack Input	1.0/0.657	$20 \mu \mathrm{~A} / 400 \mu \hat{A}$
$\overline{\text { OES }}$	Serial Output Enable	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
TOS	Transfer Out Serial	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
TOP	Transfer Out Parallel	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{M R}$	Master Reset	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output Enable	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\text { CPSO }}$	Serial Output Clock	1.0/0.667	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$Q_{0}-Q_{3}$	Parallel Data Outputs	285/26.7	$5.7 \mathrm{~mA} / 16 \mathrm{~mA}$
Q_{S}	Serial Data Output	285/26.7	$5.7 \mathrm{~mA} / 16 \mathrm{~mA}$
IRF	Input Register Full	20/13.3	$-400 \mu \mathrm{~A} / 8 \mathrm{~mA}$
ORE	Output Register Empty	20/13.3	$-400 \mu \mathrm{~A} / 8 \mathrm{~mA}$

TL/F/9536-4

Functional Description

As shown in the block diagram the 'F403 consists of three sections:

1. An Input Register with parallel and serial data inputs as well as control inputs and outputs for input handshaking and expansion.
2. A 4-bit wide, 14 -word deep fall-through stack with selfcontained control logic.
3. An Output Register with parallel and serial data outputs as well as control inputs and outputs for output handshaking and expansion.
Since these three sections operate asynchronously and almost independently, they will be described separately below.

INPUT REGISTER (DATA ENTRY)

The Input Register can receive data in either bit-serial or in 4.bit parallel form. It stores this data until it is sent to the fallthrough stack and generates the necessary status and control signals.
Figure 1 is a conceptual logic diagram of the input section. As described later, this 5 -bit register is initialized by setting
the F_{3} flip-flop and resetting the other flip-flops. The \bar{Q} output of the last flip-flop (FC) is brought out as the 'Input Register Full' output (IRF). After initialization this output is HIGH.
Parallel Entry-A HIGH on the PL input loads the $D_{0}-D_{3}$ inputs into the $\mathrm{F}_{0}-\mathrm{F}_{3}$ flip-flops and sets the FC flip-flop. This forces the IRF output LOW indicating that the input register is full. During parallel entry, the CPSI input must be LOW. If parallel expansion is not being implemented, IES must be LOW to establish row mastership (see Expansion section).
Serial Entry-Data on the D_{S} input is serially entered into the $F_{3}, F_{2}, F_{1}, F_{0}$, FC shift register on each HIGH-to-LOW transition of the CPSI clock input, provided IES and PL are LOW.
After the fourth clock transition, the four data bits are located in the four flip-flops, $\mathrm{F}_{0}-\mathrm{F}_{3}$. The FC flip-flop is set, forcing the IRF output LOW and internally inhibiting CPSI clock pulses from affecting the register, Figure 2 illustrates the final positions in a ' F 403 resulting from a 64 -bit serial bit train. B_{0} is the first bit, B_{63} the last bit.

Functional Description (Continued)

TL/F/9536-5
FIGURE 1. Conceptual Input Section

TL/F/9536-6
FIGURE 2. Final Positions In a 'F403 Resulting from a 64-Bit Serial Train
Transfer to the Stack-The outputs of Flip-Flops $\mathrm{F}_{0}-\mathrm{F}_{3}$ feed the stack. A LOW level on the TTS input initiates a 'fall-
through' action. If the top location of the stack is empty, data is loaded into the stack and the input register is re-initialized. Note that this initialization is postponed until PL is LOW again. Thus, automatic FIFO action is achieved by connecting the $\overline{\mathrm{IRF}}$ output to the TTS input.
An RS Flip-Flop (the Request Initialization Flip-Flop shown in Figure 10) in the control section records the fact that data has been transferred to the stack. This prevents multiple entry of the same word into the stack despite the fact the IRF and TTS may still be LOW. The Request Initialization Flip-Flop is not cleared until PL goes LOW. Once in the stack, data falls through the stack automatically, pausing only when it is necessary to wait for an empty next location. In the 'F403 as in most modern FIFO designs, the $\overline{\mathrm{MR}}$ input only initializes the stack control section and does not clear the data.

OUTPUT REGISTER (DATA EXTRACTION)

The Output Register receives 4 -bit data words from the bottom stack location, stores it and outputs data on a TRISTATE 4-bit parallel data bus or on a TRI-STATE serial data bus. The output section generates and receives the necessary status and control signals. Figure 3 is a conceptual logic diagram of the output section.

Functional Description (Continued)

TL/F/9536-7
FIGURE 3. Conceptual Output Section

Parallel Data Extraction-When the FIFO is empty after a LOW pulse is applied to $\overline{M R}$, the Output Register Empty ($\overline{O R E}$) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided the 'Transfer Out Parallel' (TOP) input is HIGH. As a result of the data transfer ORE goes HIGH, indicating valid data on the data outputs (provided the TRI-STATE buffer is enabled). TOP can now be used to clock out the next word. When TOP goes LOW, ORE will go LOW indicating that the output data has been extracted, but the data itself remains on the output bus until the next HIGH level at TOP permits the transfer of the next word (if available) into the Output Register. During parallel data extraction CPSO should be LOW. TOS should be grounded for single slice operation or connected to the appropriate $\overline{O R E}$ for expanded operation (see Expansion section).
TOP is not edge triggered. Therefore, if TOP goes HIGH before data is available from the stack, but data does become available before TOP goes LOW again, that data will be transferred into the Output Register. However, internal
control circuitry prevents the same data from being transferred twice. If TOP goes HIGH and returns to LOW before data is available from the stack, $\overline{O R E}$ remains LOW indicating that there is no valid data at the outputs.
Serial Data Extraction-When the FIFO is empty after a LOW pulse is applied to $\overline{M R}$, the Output Register Empty ($\overline{\text { ORE }}$) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the Output Register provided TOS is LOW and TOP is HIGH. As a result of the data transfer ORE goes HIGH indicating valid data in the register. The TRI-STATE Serial Data Output, Q_{S}, is automatically enabled and puts the first data bit on the output bus. Data is serially shifted out on the HIGH-to-LOW transition of CPSO. To prevent false shifting, CPSO should be LOW when the new word is being loaded into the Output Register. The fourth transition empties the shift register, forces ORE output LOW and disables the serial output, Q_{S} (refer to Figure 3). For serial operation the ORE output may be tied to the TOS input, requesting a new word from the stack as soon as the previous one has been shifted out.

Functional Description (Continued)

EXPANSION

Vertical Expansion-The 'F403 may be vertically expanded to store more words without external parts. The interconnection is necessary to form a 46 -word by 4 -bit FIFO are shown in Figure 4. Using the same technique, and FIFO of
$(15 n+1)$-words by 4 -bits can be constructed, where n is the number of devices. Note that expansion does not sacrifice any of the 'F403's flexibility for serial/parallel input and output.

FIGURE 4. A Vertical Expansion Scheme

Functional Description (Continued)
Horizontal and Vertical Expansion-The 'F403 can be expanded in both the horizontal and vertical directions without any external parts and without sacrificing any of its FIFO's flexibility for serial/parallel input and output. The interconnections necessary to form a 31 -word by 16 -bit FIFO are shown in Figure 6. Using the same technique, any FIFO of ($15 m+1$)-words by ($4 n$)-bits can be constructed, where m is the number of devices in a column and n is the number of devices in a row. Figures 7 and 8 show the timing diagrams for serial data entry and extraction for the 31 -word by 16 -bit FIFO shown in Figure 6. The final position of data after serial insertion of 496 bits into the FIFO array of Figure 6 is shown in Figure 9.
Interlocking Circuitry-Most conventional FIFO designs provide status signals analogous to IFF and $\overline{\mathrm{ORE}}$. However, when these devices are operated in arrays, variations in unit to unit operating speed require external gating to assure all devices have completed an operation. The 'F403 incorporates simple but effective 'master/slave' interlocking circuitry to eliminate the need for external gating.
In the 'F403 array of Figure 6 devices 1 and 5 are defined as 'row masters' and the other devices are slaves to the mas. ter in their row. No slave in a given row will initialize its Input Register until it has received LOW on its IES input from a row master or a slave of higher priority.
In a similar fashion, the ORE outputs of slaves will not go HIGH until their $\overline{\mathrm{OES}}$ inputs have gone HIGH. This interlock-
ing scheme ensures that new input data may be accepted by the array when the $\overline{\mathrm{RF}}$ output of the final slave in that row goes HIGH and that output data for the array may be extracted when the $\overline{O R E}$ of the final slave in the output row goes HIGH.
The row master is established by connecting its IES input to ground while a slave receives its IES input from the IRF output of the next higher priority device. When an array of 'F403 FIFOs is initialized with a LOW on the $\overline{M R}$ inputs of all devices, the IRF outputs of all devices will be HIGH. Thus, only the row master receives a LOW on the IES input during initialization. Figure 10 is a conceptual logic diagram of the internal circuitry which determines master/slave operation. Whenever MR and IES are LOW, the Master Latch is set. Whenever TTS goes LOW the Request Initialization FlipFlop will be set. If the Master Latch is HIGH, the Input Register will be immediately initialized and the Request Initialization Flip-Flop reset. If the Master Latch is reset, the Input Register is not initialized until IES goes LOW. In array operation, activating the TTS initiates a ripple input register initialization from the row master to the last slave.
A similar operation takes place for the output register. Either a TOS or TOP input initiates a load-from-stack operation and sets the ORE Request Flip-Flop. If the Master Latch is set, the last Output Register Flip-Flop is set and ORE goes HIGH. If the Master Latch is reset, the ORE output will be LOW until an OES input is received.

TL/F/9536-9
FIGURE 5. A Horizontal Expansion Scheme

Functional Description (Continued)

FIGURE 6. A 31×16 FIFO Array

TL/F/9536-11
FIGURE 7. Serial Data Entry for Array of Figure 6

TL/F/9536-12
FIGURE 8. Serial Data Extraction for Array of Figure 6

Functional Description (Continued)

TL/F/9536-13
FIGURE 9. Final Position of a 496-Bit Serial Input

TL/F/9536-14
FIGURE 10. Conceptual Diagram, Interlocking Circuitry

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to

Ground Pin

Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathbf{V}_{\mathbf{c c}}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.5	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{VCC}_{\mathrm{CC}}$ Voltage $54 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{VCC}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{VCC}$		$\begin{aligned} & 2.4 \\ & 2.4 \\ & 2.5 \\ & 2.5 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	
V_{OL}	Output LOW Voltage	54F 10\% VCC $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}(\overline{\mathrm{IRF}}, \overline{\mathrm{ORE}}) \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{s}}\right) \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}(\overline{\mathrm{RF}}, \overline{\mathrm{ORE}}) \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{s}}\right) \end{aligned}$
I_{IH}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{1 / 2}$	Input LOW Current				-0.4	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
Iozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {Out }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-20		-130	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
${ }^{\text {CCCL }}$	Power Supply Current				170	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$		$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Max	Min	Max	Min	Max		
${ }^{\text {tPHL }}$	Propagation Delay, Negative-Going $\overline{\text { CPSI }}$ to $\overline{\mathrm{RF}}$ Output	1.5	17.0	1.5	18.0	1.5	18.0	ns	403-a, b
$t_{\text {PLH }}$	Propagation Delay, Negative-Going TTS to IRF	1.5	34.0	1.5	39.0	1.5	38.0		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay, Negative-Going $\overline{\text { CPSO }}$ to QS Output	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 21.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 21.0 \end{aligned}$	ns	403-c, d
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Positive-Going TOP to Outputs $Q_{0}-Q_{3}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 30.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 32.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 32.0 \end{aligned}$	nsd	403-ө
${ }^{\text {tPHL }}$	Propagation Delay, Negative-Going $\overline{\text { CPSO }}$ to $\overline{\text { ORE }}$	1.5	25.0	1.5	29.0	1.5	28.0	ns	403-c, d
${ }_{\text {tPHL }}$	Propagation Delay, Negative-Going TOP to ORE	1.5	26.0	1.5	28.0	1.5	28.0	ns	403-e
${ }^{\text {tPLH }}$	Propagation Delay, Positive-Going TOP to ORE	1.5	48.0	1.5	51.0	1.5	51.0		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Negative-Going $\overline{\mathrm{TOS}}$ to Positive Going $\overline{\mathrm{ORE}}$	1.5	45.0	1.5	52.0	1.5	50.0	ns	403-c, d
${ }_{\text {tPHL }}$	Propagation Delay, Positive-Going PL to Negative-Going IRF	1.5	22.0	1.5	23.0	1.5	23.0	ns	403-g, h
$t_{\text {PLH }}$	Propagation Delay, Negative-Going PL to Positive-Going IRF	1.5	28.0	1.5	33.0	1.5	31.0		

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations (Continued)

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Max	Min	Max	Min	Max		
${ }_{\text {PLLH }}$	Propagation Delay, Positive-Going $\overline{\text { OES }}$ to $\overline{\text { ORE }}$	1.5	38.0	1.5	44.0	1.5	44.0	ns	
${ }_{\text {tplH }}$	Propagation Delay, Positive-Going IES to Positive-Going IRF	1.5	25.0	1.5	29.0	1.5	27.0	ns	403-h
${ }_{\text {tpLH }}$	Propagation Delay, $\overline{M R}$ to $\overline{\text { IRF }}$	1.5	26.0	1.5	31.0	1.5	29.0	ns	
tpHL	Propagation Delay, $\overline{\mathrm{MR}}$ to $\overline{\text { ORE }}$	1.5	28.0	1.5	31.0	1.5	31.0	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Propagation Delay, $\overline{O E} \text { to } Q_{0}, Q_{1}, Q_{2}, Q_{3}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.0 \end{aligned}$	ns	
$\begin{aligned} & \text { tphZ } \\ & t_{\text {pLLZ }} \end{aligned}$	Propagation Delay, $\overline{O E} \text { to } Q_{0}, Q_{1}, Q_{2}, Q_{3}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 24.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	Propagation Delay, Negative-Going $\overline{O E S}$ to Q_{S}	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Propagation Delay, Negative-Going $\overline{O E S}$ to Q_{S}	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Turn On Time } \\ & \text { TOS to } Q_{s} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 39.0 \\ 39.0 \end{array}$	ns	
$\mathrm{t}_{\text {DFT }}$	Fall Through Time		245		280		265	ns	403-f
$t_{\text {AP }}$	Parallel Appearance Time, $\overline{\text { ORE }}$ to $Q_{0}-Q_{3}$	-20.0	-2.0	-20.0	-2.0	-20.0	-2.0	ns	
$t_{\text {AS }}$	Serial Appearance Time, $\overline{O R E}$ to Q_{S}	-20.0	5.0	-20.0	5.0	-20.0	5.0		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{cc}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Set-up Time HIGH or LOW D_{s} to Negative CPSI	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$		ns	403-a, b
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D_{s} to $\overline{\mathrm{CPS}}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Set-up Time, LOW $\overline{\text { TTS }}$ to $\overline{\text { RF }}$ Serial or Parallel Mode	0		0		0		ns	$\begin{gathered} 403-\mathrm{a}, \mathrm{~b}, \\ g, h \end{gathered}$
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	Set-up Time, LOW Negative-Going $\overline{\text { PRE }}$ to Negative-Going $\overline{\text { TOS }}$	0		0		0		ns	403-c, d
$\mathrm{t}_{\mathbf{s}}(\mathrm{L})$	Set-up Time, LOW Negative-Going IES to CPSI	7.0		8.0		8.0		ns	403-b
$\mathrm{t}_{\text {s }}(\mathrm{L})$	Set-up Time, LOW Negative-Going TTS to $\overline{\text { CPSI }}$	22.0		23.0		23.0		ns	403-b
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Set-up Time, HIGH or LOW Parallel Inputs to PL	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	403-a, b
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW Parallel Inputs to PL	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \\ & \hline \end{aligned}$	$\overline{\text { CPSI }}$ Pulse Width HIGH or LOW	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$		$\begin{gathered} \hline 10.0 \\ 6.0 \\ \hline \end{gathered}$		$\begin{gathered} 10.0 \\ 6.0 \\ \hline \end{gathered}$		ns	
$t_{w}(\mathrm{H})$	PL Pulse Width, HIGH	7.0		9.0		9.0		ns	403-g, h
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	TTS Pulse Width, LOW Serial or Parallel Mode	7.0		9.0		9.0		ns	$\begin{gathered} 403-a, b, \\ c, d \end{gathered}$
$t_{w}(L)$	$\overline{M R}$ Pulse Width, LOW	7.0		9.0		9.0		ns	403-f
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	TOP Pulse Width HIGH or LOW	$\begin{gathered} 12.0 \\ 7.0 \\ \hline \end{gathered}$		$\begin{gathered} 14.0 \\ 7.0 \end{gathered}$		$\begin{gathered} 14.0 \\ 7.0 \end{gathered}$		ns	403-ө
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	CPSO Pulse Width HIGH or LOW	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$		$\begin{array}{r} 13.0 \\ 7.0 \\ \hline \end{array}$		$\begin{gathered} 12.0 \\ 7.0 \\ \hline \end{gathered}$		ns	403-c, d
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to Any Input	8.0		9.0		9.0		ns	403-f

Timing Waveforms

TL/F/9536-15
Conditions: stack not full, IES, PL LOW
FIGURE 403-a. Serial Input, Unexpanded or Master Operation

TL/F/9536-16
Conditions: stack not full, IES HIGH when initiated, PL LOW
FIGURE 403-b. Serial Input, Expanded Slave Operation

TL/F/9536-17
Conditions: data in stack, TOP HIGH, IES LOW when initiated, OES LOW
FIGURE 403-c. Serial Output, Unexpanded or Master Operation

Timing Waveforms (Continued)

Conditions: data in stack, TOP HIGH, IES HIGH when initiated
FIGURE 403-d. Serial Output, Slave Operation

Conditions: IES LOW when initiated, $\overline{O E}, \overline{C P S O}$ LOW; data available in stack
FIGURE 403-e. Parallel Output, 4-Bit Word or Master in Parallel Expansion

Conditions: $\overline{T T S}$ connected to $\overline{\operatorname{RFF}}, \overline{T O S}$ connected to $\overline{\mathrm{ORE}}, \overline{\overline{I E S}}, \overline{\mathrm{OES}}, \overline{\mathrm{OE}}, \overline{\mathrm{CPSO}}$ LOW, TOP HIGH
FIGURE 403-f. Fall Through Time

Timing Waveforms (Continued)

TL/F/9536-21
Conditions: stack not full, $\overline{\text { IES }}$ LOW when initialized
FIGURE 403-g. Parallel Load Mode, 4-Bit Word (Unexpanded) or Master in Parallel Expansion

TL/F/9536-22
Conditions: stack not full, device initialized (Note 1) with IES HIGH
FIGURE 403-h. Parallel Load, Slave Mode
Note 1: Initialization requires a master reset to occur after power has been applied.
Note 2: TTS normally connected to IRF.
Note 3: If stack is full, $\overline{\mathrm{TFF}}$ will stay LOW.

54F／74F407 Data Access Register

General Description

The＇F407 Data Access Register（DAR）performs memory address arithmetic for RAM resident stack applications．It contains three 4－bit registers intended for Program Counter （ R_{0} ），Stack Pointer（ R_{1} ），and Operand Address $\left(\mathrm{R}_{2}\right)$ ．The ＇F407 implements 16 instructions which allow either pre－or post－decrement／increment and register－to－register transfer in a single clock cycle．It is expandable in 4－bit increments and can operate at a 30 MHz microinstruction rate on a 16 －bit word．The TRI－STATE ${ }^{(}$outputs are provided for bus－ oriented applications．The＇F407 is fully compatible with all TTL families．

Features

－High－speed－greater than a 30 MHz microinstruction rate
－Three 4－bit registers
－ 16 instructions for register manipulation
－Two separate output ports，one transparent
－Relative addressing capability
－TRI－STATE Outputs
－Optional pre－or post－arithmetic
－Expandable in multiples of four bits
－24－pin slim package
－ 9407 replacement

Ordering Code：See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment for DIP，SOIC and Flatpak

Pin Assignment for LCC and PCC
$x_{1} x_{0}$ CPNCE $\mathrm{EO}_{x} I_{3} \mathrm{I}_{2}$回回回》自䖝

TL／F／9537－2

TL／F／9537－1
Unit Loading／Fan Out：See Section 2 for U．L．definitions

Pin Names	Description	54F／74F	
		U．L． HIGH／LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}^{2}$
$\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$	Data Inputs（Active LOW）	1．0／0．67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\mathrm{I}_{0}^{-1}{ }^{-1}$	Instruction Word Inputs	1．0／0．67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{Cl}}$	Carry Input（Active LOW）	1．0／0．67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{CO}}$	Carry Output（Active LOW）	20／13．3（0．67）	$0.4 \mathrm{~mA} / 8 \mathrm{~mA}(4 \mathrm{~mA})$
CP	Clock Input（L－H Edge－Triggered）	1．0／0．67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
EX	Execute Input（Active LOW）	1．0／0．67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{EO}} \mathrm{X}$	Address Output Enable Input（Active LOW）	1．0／0．67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
EO_{0}	Data Output Enable Input（Active LOW）	1．0／0．67	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\mathrm{x}_{0}-\mathrm{x}_{3}$	Address Outputs	284 （100）／26．7（13．3）	$-5.7 \mathrm{~mA}(2 \mathrm{~mA}) / 16 \mathrm{~mA}(8 \mathrm{~mA})$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$	Data Outputs（Active LOW）	284 （100）／26．7（13．3）	$-5.7 \mathrm{~mA}(2 \mathrm{~mA}) / 16 \mathrm{~mA}(8 \mathrm{~mA})$

Functional Description

The 'F407 contains a 4-bit slice of three Registers ($\mathrm{R}_{0}-\mathrm{R}_{2}$), a 4-bit Adder, a TRI-STATE Address Output Buffer ($\mathrm{X}_{0}-\mathrm{X}_{3}$) and a separate Output Register with TRI-STATE buffers ($\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}$), allowing output of the register contents on the data bus (refer to the Block Diagram). The DAR performs sixteen instructions, selected by $\mathrm{I}_{0}-\mathrm{I}_{3}$, as listed in the Function Table.
The 'F407 operates on a single clock. CP and EX are inputs to a 2-input, active LOW AND gate. For normal operation EX is brought LOW while CP is HIGH. A microcycle starts as the clock goes HIGH. Data inputs $\overline{\mathrm{D}}_{0}-\overline{\mathrm{D}}_{3}$ are applied to the Adder as one of the operands. Three of the four instruction lines $\left(l_{1}-I_{2}-I_{3}\right)$ select which of the three registers, if any, is to be used as the other operand. The LOW-to-HIGH CP transition writes the result from the Adder into a register ($R_{0}-R_{2}$) and into the output register provided EX is LOW. If
the I_{0} instruction input is HIGH, the multiplexer routes the result from the Adder to the TRI-STATE Buffer controlling the address bus ($X_{0}-X_{3}$), independent of $\overline{E X}$ and $C P$. The ' F 407 is organized as a 4-bit register slice. The active LOW $\overline{\mathrm{Cl}}$ and $\overline{\mathrm{CO}}$ lines allow ripple-carry expansion over longer word lengths.
In a typical application, the register utilization in the DAR may be as follows: R_{0} is the Program Counter (PC), R_{1} is the Stack Pointer (SP) for memory resident stacks and R_{2} contains the operand address. For an instruction Fetch, PC can be gated on the X -Bus while it is being incremented (i.e., D-Bus $=1$). If the fetched instruction calls for an effective address for execution, which is displaced from the PC, the displacement can be added to the PC and loaded into R_{2} during the next microcycle.

Function Table

Instruction				Combinatorial Function Available on the X-Bus	Sequential Function Occurring on the Next Rising CP Edge
I_{3}	I_{2}	I_{1}	I_{0}		
L	L	L	L	R_{0}	
L	L	L	H	R_{0} Plus D Plus Cl	R_{0} Plus D Plus CI $\rightarrow \mathrm{R}_{0}$ and 0-Register
L	L	H	L	R_{0}	R_{0} Plus D Plus $\mathrm{CI} \rightarrow \mathrm{R}_{1}$ and 0-Register
L	L	H	H	R_{0} Plus D Plus Cl	R_{0} Plus D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-Register
L	H	L	L	R_{0}	R_{0} Plus D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-Register
L	H	L	H	R_{0} Plus D Plus Cl	R_{0} Plus D Plus CI $\rightarrow \mathrm{R}_{2}$ and 0-Register
L	H	H	L	R_{1}	R_{1} Plus D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-Register
L	H	H	H	R_{1} Plus D Plus Cl	R_{1} Plus D Plus $\mathrm{Cl} \longrightarrow \mathrm{R}_{1}$ and 0-Register
H	L	L	L	R_{2}	
H	L	L	H	D Plus Cl	DPlus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-Register
H	L	H	L	R_{0}	
H	L	H	H	D Plus Cl	D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{0}$ and 0-Register
H	H	L	L	R_{2}	R_{2} Plus D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-Register
H	H	L	H	R_{2} Plus D Plus Cl	R_{2} Plus D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{2}$ and 0-Register
H	H	H	L	R_{1}	
H	H	H	H	D Plus Cl	D Plus $\mathrm{Cl} \rightarrow \mathrm{R}_{1}$ and 0-Register

$H=$ HIGH Voltage Level
L = LOW Voltage Level

TL/F/9537-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Timing Diagrams

$\overline{\mathbf{E O}}_{\mathbf{0}}=$ LOW

FIGURE 407-c

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
Current Applied to Output in LOW State (Max)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	$+4.5 \mathrm{to}+5.5 \mathrm{~V}$

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$V_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$V_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.5	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.4 \\ & 2.4 \\ & 2.4 \\ & 2.4 \\ & 2.4 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}(\overline{\mathrm{CO}}) \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}(\overline{\mathrm{CO}}) \\ & \mathrm{I}_{\mathrm{OH}}=-5.7 \mathrm{~mA}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}(\overline{\mathrm{CO}}) \\ & \mathrm{I}_{\mathrm{OH}}=-5.7 \mathrm{~mA}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}(\overline{\mathrm{CO}}) \\ & \mathrm{IOL}_{\mathrm{OL}}=8 \mathrm{~mA}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right) \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}(\overline{\mathrm{CO})} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{3}\right) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.4	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\bar{O}_{3}\right)$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{X}_{0}-\mathrm{X}_{3}, \overline{\mathrm{O}}_{0}-\bar{O}_{3}\right)$
los	Output Short-Circuit Current		-30		-100	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICC	Power Supply Current			90	145	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} T_{A} & =+25^{\circ} \mathrm{C} \\ V_{C C} & =+5.0 \mathrm{~V} \\ C_{L} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ tpHL	Propagation Delay CP to \bar{O}_{n} (Note 1)	$\begin{aligned} & 8.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 7.5 \\ \hline \end{gathered}$	$\begin{array}{r} 21.0 \\ 13.0 \\ \hline \end{array}$	$\begin{array}{r} 7.0 \\ 4.0 \\ \hline \end{array}$	$\begin{array}{r} 24.0 \\ 15.0 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 25.0 \\ 15.0 \\ \hline \end{array}$	ns	407-c
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, I_{0} LOW $x_{1}-l_{3} \text { to } x_{0}-x_{3}$	$\begin{aligned} & 9.0 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 20.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 21.0 \\ 25.0 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.0 \\ 22.0 \\ \hline \end{array}$	ns	407-a
$t_{\text {PLH }}$ tpHL	Propagation Delay, Io HIGH $I_{1}-I_{3} \text { to } x_{0}-x_{3}$	$\begin{aligned} & 16.5 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.5 \\ & 17.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 33.0 \\ 25.0 \\ \hline \end{array}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 50.0 \\ 35.0 \\ \hline \end{array}$	$\begin{aligned} & 14.5 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 36.0 \\ 27.0 \\ \hline \end{array}$	ns	407-a
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, l_{0} LOW CP to X_{n}	$\begin{gathered} 9.0 \\ 11.5 \\ \hline \end{gathered}$	$\begin{aligned} & 13.5 \\ & 18.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 21.0 \\ 24.0 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{array}{r} 24.0 \\ 28.0 \\ \hline \end{array}$	$\begin{gathered} 8.0 \\ 10.5 \\ \hline \end{gathered}$	$\begin{array}{r} 22.5 \\ 26.0 \\ \hline \end{array}$	ns	407-b
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, $\mathrm{I}_{0} \mathrm{HIGH}$ CP to X_{n}	$\begin{array}{r} 18.0 \\ 12.5 \\ \hline \end{array}$	$\begin{array}{r} 26.5 \\ 20.0 \\ \hline \end{array}$	$\begin{array}{r} 35.0 \\ 28.5 \\ \hline \end{array}$	$\begin{array}{r} 16.0 \\ 11.5 \\ \hline \end{array}$	$\begin{array}{r} 43.0 \\ 36.5 \\ \hline \end{array}$	$\begin{aligned} & 16.0 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 37.0 \\ 31.0 \\ \hline \end{array}$	ns	407-b
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{D}_{n} to X_{n}	$\begin{array}{r} 10.5 \\ 6.0 \\ \hline \end{array}$	$\begin{gathered} 15.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 23.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 29.0 \\ 20.5 \\ \hline \end{array}$	$\begin{aligned} & 9.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 25.0 \\ 15.5 \\ \hline \end{array}$	ns	407-d
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Cl to X_{n}	$\begin{aligned} & 7.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 16.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 22.0 \\ 14.0 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.5 \\ & \hline \end{aligned}$	ns	407-e
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay l_{0} to X_{n}	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 11.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 19.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 13.0 \\ 15.5 \\ \hline \end{array}$	ns	407-b
$t_{\text {PLH }}$ ${ }^{\text {t }}$ PHL	Propagation Delay CP to $\overline{\mathrm{CO}}$	$\begin{array}{r} 11.0 \\ 11.5 \\ \hline \end{array}$	$\begin{array}{r} 19.0 \\ 18.5 \\ \hline \end{array}$	$\begin{array}{r} 24.0 \\ 27.0 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 33.0 \\ 38.0 \\ \hline \end{array}$	$\begin{aligned} & 11.0 \\ & 11.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 26.0 \\ 29.0 \\ \hline \end{array}$	ns	407-a
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{Cl}}$ to $\overline{\mathrm{CO}}$	$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 12.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.0 \\ 4.0 \\ \hline \end{array}$	$\begin{gathered} 9.5 \\ 13.0 \\ \hline \end{gathered}$	ns	407-e
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{D}_{n} to $\overline{C O}$	$\begin{aligned} & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 12.0 \\ \hline \end{gathered}$	ns	407-d
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay $1_{1}-i_{3} \text { to } \overline{\mathrm{CO}}$	$\begin{aligned} & 10.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.0 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 22.0 \\ 23.0 \\ \hline \end{array}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 23.0 \\ 32.5 \\ \hline \end{array}$	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{array}{r} 23.5 \\ 25.0 \\ \hline \end{array}$	ns	407-a
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{E O}_{0} \text { to } \bar{O}_{n} \text { or } \overline{E O}_{x} \text { to } X_{n}$	$\begin{aligned} & 7.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 14.5 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 26.0 \\ 16.0 \\ \hline \end{array}$	$\begin{array}{r} 5.5 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 17.0 \\ & 16.5 \\ & \hline \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Disable Time } \\ & \overline{\mathrm{EO}}_{0} \text { to } \overline{\mathrm{O}}_{n} \text { or } \overline{\mathrm{EO}}_{x} \text { to } X_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 4.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 14.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 18.0 \\ \hline \end{gathered}$	$\begin{aligned} & 1.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 15.5 \\ \hline \end{gathered}$	ns	

Note 1: The internal clock is generated from CP and EX. The internal Clock is HIGH if EX or CP is HIGH, LOW if EX and CP are LOW.

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{VCC}_{C C} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
t_{cw}	Clock Period	32.0	26.0		36.0		36.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $I_{1}-I_{3}$ to Negative-Going CP	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		ns	407-c
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $I_{1}-I_{3}$ to Positive-Going CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{D}}_{\mathrm{n}}$ or $\overline{\mathrm{C}}_{1}$ to Negative-Going CP	$\begin{array}{r} 16.5 \\ 16.5 \\ \hline \end{array}$			$\begin{array}{r} 18.5 \\ 18.5 \\ \hline \end{array}$		$\begin{array}{r} 18.5 \\ 18.5 \\ \hline \end{array}$		ns	407-c
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{D}}_{\mathrm{n}}$ or $\overline{\mathrm{Cl}}$ to Negative-Going Clock	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{Cl}}$ to Positive-Going CP	$\begin{aligned} & 13.0 \\ & 13.0 \\ & \hline \end{aligned}$			$\begin{array}{r} 14.5 \\ 14.5 \\ \hline \end{array}$		$\begin{array}{r} 14.5 \\ 14.5 \\ \hline \end{array}$		ns	407-c
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{Cl}}$ to Positive-Going CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width HIGH or LOW						$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$		ns	407-c

54F/74F410 Register Stack-16 x 4 RAM TRI-STATE ${ }^{\circledR}$ Output Register

General Description

The 'F410 is a register-oriented high-speed 64-bit Read/ Write Memory organized as 16 -words by 4 -bits. An edgetriggered 4-bit output register allows new input data to be written while previous data is held. TRI-STATE outputs are provided for maximum versatility. The ' $F 410$ is fully compatible with all TTL families.

Features

■ Edge-triggered output register

- Typical access time of 35 ns
- TRI-STATE outputs
- Optimized for register stack operation
- 18-pin package
- 9410 replacement

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for LCC

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Address Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CS}}$	Chip Select Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
OE	Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{W E}$	Write Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Input (Outputs Change on		
$Q_{0}-Q_{3}$	LOW-to-HIGH Transition) TRIATE Outputs	$1.0 / 2.0$ $150 / 40$ (33.3)	-3mA/24 mA (20 mA)

Functional Description

Write Operation-When the three control inputs, Write Enable ($\overline{\mathrm{WE}}$), Chip Select ($\overline{\mathrm{CS}}$), and Clock (CP), are LOW the information on the data inputs $\left(D_{0}-D_{3}\right)$ is written into the memory location selected by the address inputs $\left(A_{0}-A_{3}\right)$. If the input data changes while $\overline{W E}, \overline{C S}$, and CP are LOW, the contents of the selected memory location follow these changes, provided setup and hold time criteria are met.

Read Operation-Whenever $\overline{C S}$ is LOW and CP goes from LOW-to-HIGH, the contents of the memory location selected by the address inputs ($\mathrm{A}_{0}-\mathrm{A}_{3}$) are edge-triggered into the Output Register.
The ($\overline{O E}$) input controls the output buffers. When $\overline{O E}$ is HIGH the four outputs $\left(Q_{0}-Q_{3}\right)$ are in a high impedance or OFF state; when OE is LOW, the outputs are determined by the state of the Output Register.

Block Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military
Commercial
Supply Voltage
Military
Commercial
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
+4.5 V to +5.5 V
+4.5 V to +5.5 V atings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{c c}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
VoL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}$
$I_{\text {IL }}$	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(A_{n}, D_{n}, \overline{\mathrm{OE}}, \overline{\mathrm{WE}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{CS}}, \mathrm{CP}) \end{aligned}$
lozH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozi.	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{I} z \mathrm{Z}$	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			47	70	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			47	70	mA	Max	$V_{0}=$ LOW
Iccz	Power Supply Current			47	70	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGHZ}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{MII} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com}^{2} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 10.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{\mathrm{OE}}$ to Q	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \\ 3.0 \\ \hline \end{array}$	$\begin{aligned} & 10.5 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time $\overline{O E}$ to Q	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	ns	

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		

READ MODE

$t_{s}(H)$	Setup Time, HIGH or LOW	15.0	23	17.0		
$t_{s}(L)$	A_{n} to CP	15.0	23	17.0		
$t_{h}(H)$	Hold Time, HIGH or LOW	0	0	0	ns	$2-6$
$t_{h}(L)$	A_{n} to CP	0	0	0		

WRITE MODE
$\left.\begin{array}{l|l|l|l|l|l|l}\hline t_{s}(H) & \text { Setup Time, HIGH or LOW } & 0 & 0 & 0 \\ t_{s}(L)\end{array}\right)$

Note: Military temperature range for this device is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

54F/74F412
 Multi-Mode Buffered Latch with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F412 is an 8-bit latch with TRI-STATE output buffers. Also included is a status flip-flop for providing device-busy or request-interrupt commands. Separate Mode and Select inputs allow data to be stored with the outputs enabled or disabled. The device can also operate in a fully transparent mode. The 'F412 is the functional equivalent of the Intel 8212.

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

TL/F/9540-4

TL/F/9540-1

Features

- TRI-STATE outputs
- Status flip-flop for interrupt commands
- Asynchronous or latched receiver modes
- 300 mil 24 -pin slim package

Unit Loading／Fan Out：See Section 2 for U．L．definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U．L． HIGH／LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
	Latch Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CLR	Clear	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
STB	Strobe	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
INT	Interrupt	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
M	Mode Control Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{~S}_{1}, \mathrm{~S}_{2}$	Select Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$

Functional Description

This high－performance eight－bit parallel expandable buffer register incorporates package and mode selection inputs and an edge－triggered status flip－flop designed specifically for implementing bus－organized input／output ports．The TRI－STATE data outputs can be connected to a common data bus and controlled from the appropriate select inputs to receive or transmit data．An integral status flip－flop pro－ vides busy or request interrupt commands．
The eight data latches are fully transparent when the inter－ nal gate enable，G，input is HIGH and the outputs are en－ abled．Latch transparency is selected by the mode control （M），select（ \bar{S}_{1} and S_{2} ），and the strobe（STB）inputs and during transparency each data output $\left(O_{n}\right)$ follows its re－ spective data input（ D_{n} ）．This mode of operation can be terminated by clearing，de－selecting，or holding the data latches．

An input mode or an output mode is selectable from the M input．In the input mode，$M=L$ ，the eight data latch inputs are enabled when the strobe is HIGH regardless of device selection．If selected during an input mode，the outputs will follow the data inputs．When the strobe input is taken LOW， the latches will store the most－recently setup data．
In the output mode，$M=H$ ，the output buffers are enabled regardless of any other control input．During the output mode the content of the register is under control of the se－ lect（ \bar{S}_{1} and S_{2} ）inputs．

Data Latches Function Table

Function	$\overline{\text { CLR }}$	M	\bar{S}_{1}	S_{2}	STB	Data In	Data Out
Clear	L	H	H	X	X	X	L
	L	L	L	H	L	X	L
De－Select	X	L	X	L	X	X	Z
	X	L	H	X	X	X	Z
Hold	H	H	H	L	X	X	Q_{0}
	H	L	L	H	L	X	Q_{0}
Data Bus	H	H	L	H	X	L	L
	H	H	L	H	X	H	H
Data Bus	H	L	L	H	H	L	L
	H	L	L	H	H	H	H

Status Flip－Flop Function Table

$\overline{\text { CLR }}$	$\overline{\mathbf{S}}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	STB	$\overline{\text { INT }}$
L	H	X	X	H
L	X	L	X	H
H	X	X	-	L
H	L	H	X	L

H＝HIGH Voltage Level
L＝LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance
$\Omega=$ LOW－to－HIGH Clock Transition

TL/F/9540-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings（Note 1）

If Military／Aerospace specified devices are required， contact the Natlonal Semiconductor Sales Office／ Distributors for availability and specifications．

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage（Note 2）
Input Current（Note 2）

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output
in HIGH State（with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ）
Standard Output
TRI－STATE Output
Current Applied to Output in LOW State（Max）

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military
Commercial
Supply Voltage Military Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Note 1：Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired．Functional operation under these conditions is not implied．
Note 2：Either voltage limit or current limit is sufficient to protect inputs．

DC Electrical Characteristics

Symbol	Parameter		54F／74F			Units	V_{Cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				－1．2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\％VCC 74F 10\％VCC 74F 10\％VCC 74F 5\％VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.5 2.4 2.5 2.4 2.7 2.7			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}(\overline{\mathrm{INT}}) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}(\overline{\mathrm{NT}}) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}(\overline{\mathrm{INT}}) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{VCC} \\ & \text { 74F 10\% V } \mathrm{CC}^{2} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l} \mathrm{OL}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				－0．6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				－50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short－Circuit Current		－60		－150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{C C}$
ICCH	Power Supply Current			33	50	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			40	60	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
I CCz	Power Supply Current			40	60	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\bar{S}_{1}, \mathrm{~S}_{2}$ or STB to O_{n}	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.5 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 17.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay \bar{S}_{1} or S_{2} to $\overline{\mathrm{NT}}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 10.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 11.5 \end{aligned}$	ns	2-3
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{C L R}$ to O_{n}	7.5	12.5	16.0	5.5	18.5	6.5	17.5	ns	2-3
${ }_{\text {t }}$	Propagation Delay STB to INT	6.5	11.0	14.0	5.5	17.5	5.5	15.0	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Access Time, HIGH or LOW \bar{S}_{1} to O_{n}	$\begin{aligned} & 8.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.0 \\ & 18.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 5.5 \\ \hline \end{array}$	$\begin{array}{r} 19.0 \\ 15.0 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time, HIGH or LOW $\overline{\mathrm{S}}_{1} \text { to } \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 4.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{array}{r} 10.5 \\ 14.0 \\ \hline \end{array}$	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 17.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 15.0 \\ & \hline \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Access Time, HIGH or LOW $\mathrm{S}_{2} \text { to } \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 7.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{array}{r} 16.0 \\ 11.5 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 18.5 \\ 15.5 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 17.5 \\ 12.5 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time, HIGH or LOW $\mathrm{S}_{2} \text { to } \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 12.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 14.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.5 \\ 13.0 \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Access Time, HIGH or LOW M to O_{n}	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{array}{r} 12.0 \\ 12.0 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Disable Time, HIGH or LOW M to O_{n}	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \\ & \hline \end{aligned}$		

AC Operating Requirements: See Section 2 for Wavetorms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A},}, \mathrm{V}_{\mathrm{CC}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{n} to $\overline{\mathrm{S}}_{1}, \mathrm{~S}_{2}$ or STB	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time $D_{n} \text { to } \bar{S}_{1}, S_{2} \text { or STB }$	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	$\overline{\mathrm{S}}_{1}, \mathrm{~S}_{2}$ or STB Pulse Width, HIGH or LOW	8.0 8.0		$\begin{array}{r} 11.0 \\ 11.0 \\ \hline \end{array}$		$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	CLR Pulse Width, LOW	8.0		11.5		9.0		ns	2-4

54F/74F4 13

64 x 4 First-In First-Out Buffer Memory with Parallel I/O

General Description

The 'F413 is an expandable fall-through type high-speed First-In First-Out (FIFO) buffer memory organized as 64 words by four bits. The 4-bit input and output registers record and transmit, respectively, asynchronous data in parallel form. Control pins on the input and output allow for handshaking and expansion. The 4 -bit wide, 62 -bit deep fallthrough stack has self-contained control logic.

Features

- Separate input and output clocks
- Parallel input and output
- Expandable without external logic
- 15 MHz data rate
- Supply current 160 mA max

Ordering Code: See Section 5

Logic Symbol

TL/F/9541-1

Connection Diagrams

Pin Assignment for LCC and PCC

TL/F/9541-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / I_{\mathrm{OL}}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Data Inputs	$1.0 / 0.667$	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$	Data Outputs	$50 / 13.3$	$-1 \mathrm{~mA} / 8 \mathrm{~mA}$
IR	Input Ready	$1.0 / 0.667$	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
SI	Shift In	$1.0 / 0.667$	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
SO	Shift Out	$1.0 / 0.667$	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
OR	Output Ready	$1.0 / 0.667$	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset	$1.0 / 0.667$	$20 \mu \mathrm{~A} /-0.4 \mathrm{~mA}$

Functional Description

Data Input-Data is entered into the FIFO on $D_{0}-D_{3}$ inputs. To enter data the Input Ready (IR) should be HIGH, indicating that the first location is ready to accept data. Data then present at the four data inputs is entered into the first location when the Shift $\ln (\mathrm{SI})$ is brought HIGH. An SI HIGH signal causes the IR to go LOW. Data remains at the first location until SI is brought LOW. When SI is brought LOW and the FIFO is not full, IR will go HIGH, indicating that more room is available. Simultaneously, data will propagate to the second location and continue shifting until it reaches the output stage or a full location. If the memory is full, IR will remain LOW.
Data Transfer-Once data is entered into the second cell, the transfer of any full cell to the adjacent (downstream) empty cell is automatic, activated by an on-chip control. Thus data will stack up at the end of the device while empty locations will "bubble" to the front. The tpT parameter defines the time required for the first data to travel from input to the output of a previously empty device.

Data Output-Data is read from the $\mathrm{O}_{0}-\mathrm{O}_{3}$ outputs. When data is shifted to the output stage, Output Ready (OR) goes HIGH, indicating the presence of valid data. When the OR is HIGH, data may be shifted out by bringing the Shift Out (SO) HIGH. A HIGH signal at SO causes the OR to go LOW. Valid data is maintained while the SO is HIGH. When SO is brought LOW, the upstream data, provided that stage has valid data, is shifted to the output stage. When new valid data is shifted to the output stage, OR goes HIGH. If the FIFO is emptied, OR stays LOW, and $\mathrm{O}_{0}-\mathrm{O}_{3}$ remains as before, i.e., data does not change if FIFO is empty.
Input Ready and Output Ready may also be used as status signals indicating that the FIFO is completely full (Input Ready stays LOW for at least $t_{\text {PT }}$) or completely empty (Output Ready stays LOW for at least tpT).

Block Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$ Input Voltage (Note 2)

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$ Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output

$$
\begin{array}{lr}
\text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text {) } & \\
\text { Standard Output } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
\text { TRI-STATE }{ }^{\text {O }} \text { Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{Cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.5	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.4 \\ & 2.4 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{IOH}_{\mathrm{O}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$54 \mathrm{~F} 10 \% V_{C C}$ 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-20		-130	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			115	160	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	FigNo
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=\text { Com } \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Shift In Rate	10			8.0		10		MHz	2-1
$f_{\text {max }}$	Shift Out Rate	10			8.0		10		MHz	2-1
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Shift In to IR	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 44.0 \\ & 31.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 37.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 48.0 \\ & 35.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Shift Out to OR	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{array}{r} 52.0 \\ 31.0 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 57.0 \\ 37.0 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 55.0 \\ 35.0 \\ \hline \end{array}$	ns	2-3
$t_{\text {tpL }}$ tphL	Propagation Delay Output Data Delay	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 46.0 \\ & 34.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 52.0 \\ & 39.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 50.0 \\ & 37.0 \end{aligned}$	ns	2-3
$t_{\text {PL }}$	Propagation Delay Master Reset to IR	1.5		27.0	1.5	33.0	1.5	31.0	ns	2-3
$t_{\text {PLH }}$	Propagation Delay Master Reset to OR	1.5		30.0	1.5	34.0	1.5	32.0	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $D_{n} \text { to } S I$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{Sl}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Shift In Pulse Width HIGH or LOW	$\begin{gathered} 5.0 \\ 10.0 \\ \hline \end{gathered}$		$\begin{gathered} 5.0 \\ 10.0 \\ \hline \end{gathered}$		$\begin{gathered} 5.0 \\ 10.0 \\ \hline \end{gathered}$		ns	2-4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Shift Out Pulse Width HIGH or LOW	$\begin{gathered} 7.5 \\ 10.0 \\ \hline \end{gathered}$		$\begin{gathered} 8.5 \\ 10.0 \\ \hline \end{gathered}$		$\begin{gathered} 7.5 \\ 10.0 \\ \hline \end{gathered}$			
$t_{w}(\mathrm{H})$	Input Ready Pulse Width, HIGH	7.5		8.5		7.5		ns	2-4
$t_{w}(\mathrm{~L})$	Output Ready Pulse Width, LOW	5.0		5.0		5.0		ns	2-4
$t_{w}(\mathrm{~L})$	Master Reset Pulse Width, LOW	10.0		10.0		10.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	Recovery Time, MR to SI	32.0		35.0		35.0		ns	2-6
${ }_{\text {tPT }}$	Data Throughput Time		0.9		1.0		1.0	$\mu \mathrm{S}$	

54F/74F420
 Parallel Check Bit/Syndrome Bit Generator

General Description

The 'F420 is a parallel check bit/syndrome bit generator. The 'F420 utilizes a modified hamming code to generate 7 check bits from a 32-bit dataword, in 15 ns , when operated in the check bit generate mode. When operated in the syndrome generate mode, the check bits and data bits
read from memory are utilized in a parity summer to generate syndrome bits upon error detection. The maximum error count detectable is 2. A single error detect can occur in 18 ns ; a double error detect in 22 ns . The syndrome bit generation can be output in 15 ns (maximum).

Ordering Code: See Section 5

Logic Diagram

Connection Diagrams

Pin Assignment for LCC and PCC
$\mathrm{D}_{8} \mathrm{O}_{7} \mathrm{O}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{CNONCV}_{\mathrm{CC}} \mathrm{O}_{3} \mathrm{O}_{2} \mathrm{D}_{1} \mathrm{D}_{0} \mathrm{C}_{6}$

Pin Assignment for DIP and Flatpak

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{O}} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{C}_{0}-\mathrm{C}_{6}$	Check Bit/Syndrome Bus Inputs/ Outputs	$\begin{gathered} 3.5 / 1.083 \\ 150 / 40(33.3) \end{gathered}$	$\begin{gathered} 70 \mu \mathrm{~A} /-0.65 \mathrm{~mA} \\ -3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA}) \end{gathered}$
$\mathrm{D}_{0}-\mathrm{D}_{31}$	Data Bit Bus	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CB	Check Bit Control	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
DEF	Double Error Flag	50/33.3	-1 mA/20 mA
SEF	Single Error Flag	50/33.3	-1 mA/20 mA
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Control	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$

Function Table							
Memory Cycle	Function	Control		Check Bit	$\begin{gathered} \text { CB Control } \\ 1 / 0 \\ \hline \end{gathered}$	Error Flags	
		S_{1}	S_{0}			SEF	DEF
Write	Generate Check Bits	L	L	Output Check	L	H	H
Read	Read \& Flag	H	L	Input	H		
Read	Latch Check Bits	H	H	Inputs	H		
Read	Output Syndrome Bits	H	H	Output Syndrome Bits	L		
Diagnostics	Input Diagnostic	H	H	Latched Check	H		
Diagnostics	Input Diagnostic	L	H	Outputs High-Z	L		
	Data Word			Check Bits			
Diagnostics	Input Diagnostic Data Word	H	H	Output Syndrome Bits	L		

Block Diagram

TL/F/9542-4

```
Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
```

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Voltage (Note 2)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$)
Standard Output
TRI-STATE ${ }^{\circledR}$ Output

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output
in LOW State (Max)
twice the rated loL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F		Units	V_{cc}	Conditions
			Min	Typ Max			
V_{IH}	Input HIGH Voltage		2.0		V		Recognized as a HIGH Signal
$V_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}, \mathrm{D}_{\mathrm{n}}, \mathrm{CB}, \mathrm{S}_{0}, \mathrm{~S}_{1}$
V OH	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$		V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}(\text { All Outputs }) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}(\text { All Outputs }) \\ & \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}(\text { All Outputs }) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\text {CC }}$ 74F 10\% VCC 74F 10\% VCC		$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{CL}}=20 \mathrm{~mA}(\mathrm{All} \text { Outputs) } \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}(\mathrm{DEF}, \mathrm{SEF}) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right) \end{aligned}$
I_{H}	Input HIGH Current			20	$\mu \mathrm{A}$	Max	$V_{I N}=2.7 \mathrm{~V}\left(\mathrm{D}_{\mathrm{n}}, \mathrm{CB}, \mathrm{S}_{0}, \mathrm{~S}_{1}\right)$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\left(\mathrm{D}_{\mathrm{n}}, \mathrm{CB}, \mathrm{S}_{0}, S_{1}\right)$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)			1.0	mA	Max	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$
I_{IL}	Input LOW Current			-0.6	mA	Max	$V_{\text {IN }}=0.5 V\left(D_{n}, C B, S_{0}, S_{1}\right)$
$\mathrm{IIH}^{+}+\mathrm{I}_{\mathrm{OZH}}$	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current			-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{C}_{0}-\mathrm{C}_{6}\right)$
los	Output Short-Circuit Current		-60	-150	mA	Max	$\mathrm{V}_{\text {OUT }}=$ OV
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			130	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			130	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Current			130	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=M i I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay D_{n} to C_{n}	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 20.0 \\ & 17.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 19.0 \end{aligned}$	ns	420-a, b
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} / C_{n} \text { to SEF }$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 20.0 \\ & 16.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 18.0 \end{aligned}$	ns	420-b
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} / C_{n} to DEF	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 24.0 \\ 21.0 \\ \hline \end{array}$			$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.0 \\ & 22.0 \\ & \hline \end{aligned}$	ns	420-b
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay S1 to C_{n}	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 18.0 \\ & 13.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 14.0 \\ & \hline \end{aligned}$	ns	420-a, b
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay S1 to SEF/DEF	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$		$\begin{gathered} 14.0 \\ 9.0 \end{gathered}$			$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	ns	420-b
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL }^{2} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 12.0 \\ & 11.0 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns	
$\mathrm{t}_{\mathrm{PHZ}}$ tplz	Output Disable Time	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \hline \end{aligned}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW C_{n} to S_{0}	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$				$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-6
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW C_{n} to S_{0}	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-6
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	Clock Pulse Width LOW	8.0				8.0		ns	2-4

Timing Waveforms

FIGURE 420-a.

54F/74F432
 Multi-Mode Buffered Latch with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F432 is an 8-bit latch with TRI-STATE output buffers and control and device selection logic. Also included is a status flip-flop for providing device-busy or request-interrupt commands. Separate Mode and Select inputs allow data to be stored with the outputs enabled or disabled. The device can also operate in a fully transparent mode.
The 'F432 is the functional equivalent of the Intel 8212, but with inverting outputs.

Features

- TRI-STATE inverting outputs
- Status flip-flop for interrupt commands
- Asynchronous or latched receiver modes
- Data to output propagation delay typically 8.5 ns

■ Supply current 43 mA typ

- 24-pin slim package

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9543-3

Unit Loading／Fan Out：See Section 2 tor U．L．definitions

Pin Names	Description	54F／74F	
		U．L． HIGH／LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Latch Outputs	150／40（33．3）	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\overline{\mathrm{S}}_{1},-\overline{\mathrm{S}}_{2}$ ，	Select Inputs	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
M	Mode Control Input	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
STB	Strobe	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
INT	Interrupt	50／33．3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\text { CLR }}$	Clear	1．0／1．0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$

Functional Description

This high－performance eight－bit parallel expandable buffer register incorporates package and mode selection inputs and an edge－triggered status flip－flop designed specifically for implementing bus－organized input／output ports．The TRI－STATE data outputs can be connected to a common data bus and controlled from the appropriate select inputs to receive or transmit data．An integral status flip－flop pro－ vides busy or request interrupt commands．
The eight data latches are fully transparent when the inter－ nal gate enable，G，input is HIGH and the outputs are en－ abled．Latch transparency is selected by the mode control (M) ，select（ $\overline{\mathrm{S}}_{1}$ and S_{2} ），and the strobe（STB）inputs and during transparency each data output（ $\overline{\mathrm{O}}_{n}$ ）follows its re－ spective data input $\left(D_{n}\right)$ ．This mode of operation can be
terminated by clearing，de－selecting，or holding the data latches．See Data Latches Function Table．
An input mode or an output mode is selectable from this single input line．In the input mode，$M=L$ ，the eight data latch inputs are enabled when the strobe is HIGH regard－ less of device selection．If selected during an input mode， the outputs will follow the data inputs．When the strobe input is taken LOW the latches will store the most recently setup data．
In the output mode，$M=H$ ，the output buffers are enabled regardless of any other control input．During the output mode the content of the register is under control of the se－ lect（ \bar{S}_{1} and S_{2} ）inputs．See Data Latches Function Table．

Data Latches Function Table

Function	$\overline{\text { CLR }}$	M	\bar{S}_{1}	S_{2}	STB	Data In	Data Out
Clear	L	H	H	X	X	X	H
	L	L	L	H	L	X	H
De－select	X	L	X	L	X	X	Z
	\times	L	4	\times	久	\cdots	2
Hold	H	H	H	L	X	X	\bar{Q}_{0}
	H	L	L	H	L	X	\bar{Q}_{0}
Data Bus	H	H	L	H	X	L	H
	H	H	L	H	X	H	L
Data Bus	H	L	L	H	H	L	H
	H	L	L	H	H	H	L

$H=$ HIGH Voltage Level
L＝LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance
Status Flip－Flop Function Table

CLR	$\overline{\mathbf{S}}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	STB	INT
L	H	X	X	H
L	X	L	X	H
H	X	X	-	L
H	L	H	X	L

H $=$ HIGH Voltage Level
L＝LOW Voltage Level
$X=$ Immaterial
$\Omega=$ LOW－to－HIGH Transition

TL/F/9543-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Ambient Temperature under Bias

Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military Commercial
Supply Voltage Military Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

Note 1: Absolute maximum ratings are value號 be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{IIN}^{\text {}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)				1.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
IOZH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
$\mathrm{l} z \mathrm{z}$	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current.			50	65	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			50	65	mA	Max	$V_{0}=$ LOW
I CCZ	Power Supply Current			50	65	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics:
See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{C C}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $D_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \end{gathered}$			$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\bar{S}_{1}, \mathrm{~S}_{2} \text { or STB to } \overline{\mathrm{O}}_{n}$	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 16.0 \end{aligned}$			$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 18.0 \end{aligned}$	ns	2-3
${ }_{\text {tPHL }}$	Propagation Delay $\overline{\mathrm{CLR}}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$	7.0	15.0	18.5			6.0	20.5	ns	2-3
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay STB to INT	6.0	11.5	14.5			5.0	16.0	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{S}_{1} to $\overline{\mathrm{INT}}$	$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 12.0 \end{gathered}$			$\begin{aligned} & 3.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 13.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay S_{2} to INT	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ tpHL	Propagation Delay M to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 14.0 \end{aligned}$			$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 15.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\mathrm{M} \text { to } \overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 13.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 14.5 \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable Time $\mathrm{M} \text { to } \overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.5 \end{aligned}$	$\begin{gathered} 9.5 \\ 12.0 \\ \hline \end{gathered}$			$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 13.0 \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{\mathrm{S}}_{1}, \mathrm{~S}_{2}$ to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{array}{r} 18.0 \\ 15.0 \\ \hline \end{array}$				$\begin{array}{r} 20.0 \\ 17.0 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable Time $\overline{\mathrm{S}}_{1}, \mathrm{~S}_{2} \text { to } \overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 11.0 \\ & 15.5 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 17.5 \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	$\begin{gathered} 74 \mathrm{~F} \\ \hline \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\frac{54 F}{T_{A}, V_{C C}=M i l}$		$\frac{74 F}{T_{A}, V_{C C}=C o m}$		Units	FlgNo
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW \bar{S}_{1} to D_{n}	0				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW \bar{S}_{1} to D_{n}	$\begin{array}{r} 11.0 \\ 8.5 \\ \hline \end{array}$				$\begin{array}{r} 12.5 \\ 9.5 \\ \hline \end{array}$			
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $S_{2} \text { to } D_{n}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW S_{2} to D_{n}	$\begin{aligned} & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW STB to D_{n}	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW STB to D_{n}	$\begin{array}{r} 13.0 \\ 10.0 \\ \hline \end{array}$				$\begin{aligned} & 13.0 \\ & 10.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	STB Pulse Width HIGH or LOW	$\begin{array}{r} 5.0 \\ 5.0 \\ \hline \end{array}$				$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		ns	2-4
$t_{w}(\mathrm{~L})$	$\overline{\text { CLR Pulse Width, LOW }}$	10.0				10.0		ns	2-4
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	\bar{S}_{1} Pulse Width HIGH or LOW	$\begin{aligned} & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 9.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns	2-4
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \end{aligned}$	S_{2} Pulse Width HIGH or LOW	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$				$\begin{aligned} & 7.0 \\ & 9.0 \\ & \hline \end{aligned}$		ns	2-4

54F/74F433

First-In First-Out (FIFO) Buffer Memory

General Description

The 'F433 is an expandable fall-through type high-speed first-in first-out (FIFO) buffer memory that is optimized for high-speed disk or tape controller and communication buffer applications. It is organized as 64 words by 4 bits and may be expanded to any number of words or any number of bits in multiples of four. Data may be entered or extracted asynchronously in serial or parallel, allowing economical implementation of buffer memories.
The 'F433 has TRI-STATE ${ }^{\circledR}$ outputs that provide added versatility, and is fully compatible with all TTL families.

Features

- Serial or parallel input
- Serial or parallel output
- Expandable without additional logic
- TRI-STATE outputs
- Fully compatible with all TTL families
- Slim 24-pin package
- 9423 replacement

Ordering Code: See Section 5

Logic Symbol

TL/F/9544-1

Connection Diagrams
Pin Assignment for DIP, SOIC and Flatpak

TL/F/9544-2
Pin Assignment for LCC and PCC

(19) 20 21 22 23 24 25
$\overline{C P S O} \overline{O E} Q_{3} N C Q_{2} Q_{1} Q_{0}$

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $l_{I H} / I_{I L}$ Output $\mathrm{l}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
PL	Parallel Load Input	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
CPSI	Serial Input Clock	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
IES	Serial Input Enable	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
TTS	Transfer to Stack Input	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
MR	Master Reset	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
OES	Serial Output Enable	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
TOP	Transfer Out Parallel	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
TOS	Transfer Out Serial	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{\text { CPSO }}$	Serial Output Clock	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\overline{O E}$	Output Enable	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\mathrm{D}_{0}-\mathrm{D}_{3}$	Parallel Data Inputs	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
Ds	Serial Data Input	1.0/0.66	$20 \mu \mathrm{~A} / 400 \mu \mathrm{~A}$
$\mathrm{Q}_{0}-\mathrm{Q}_{3}$	Parallel Data Outputs	285/10	$5.7 \mathrm{~mA} / 16 \mathrm{~mA}$
Q_{S}	Serial Data Output	285/10	$5.7 \mu \mathrm{~A} / 16 \mathrm{~mA}$
IRF	Input Register Full	20/5	$400 \mu \mathrm{~A} / 8 \mathrm{~mA}$
ORE	Output Register Empty	20/5	$400 \mu \mathrm{~A} / 8 \mathrm{~mA}$

Functional Description

As shown in the block diagram, the 'F433 consists of three sections:

1. An Input Register with parallel and serial data inputs, as well as control inputs and outputs for input handshaking and expansion.
2. A 4-bit-wide, 62 -word-deep fall-through stack with selfcontained control logic.
3. An Output Register with parallel and serial data outputs, as well as control inputs and outputs for output handshaking and expansion.
These three sections operate asynchronously and are virtually independent of one another.
Input Register (Data Entry)
The Input Register can receive data in either bit-serial or 4-bit parallel form. It stores this data until it is sent to the fallthrough stack, and also generates the necessary status and control signals.
This 5-bit register (see Figure 1) is initialized by setting flipflop F_{3} and resetting the other flip-flops. The \bar{Q}-output of the last flip-flop (FC) is brought out as the Input Register Full (IRF) signal. After initialization, this output is HIGH.
Parallel Entry-A HIGH on the Parallel Load (PL) input loads the $D_{0}-D_{3}$ inputs into the $F_{0}-F_{3}$ flip-flops and sets the FC flip-flop. This forces the TRF output LOW, indicating that the input register is full. During parallel entry, the Serial Input Clock ($\overline{\mathrm{CPSI}})$ input must be LOW.
Serial Entry-Data on the Serial Data (D_{S}) input is serially entered into the shift register ($F_{3}, F_{2}, F_{1}, F_{0}, F C$) on each HIGH-to-LOW transition of the CPSI input when the Serial Input Enable (IES) signal is LOW. During serial entry, the PL input should be LOW.

After the fourth clock transition, the four data bits are located in flip-flops $\mathrm{F}_{0}-\mathrm{F}_{3}$. The FC flip-flop is set, forcing the IRF output LOW and internally inhibiting CPSI pulses from affecting the register. Figure 2 illustrates the final positions in an 'F433 resulting from a 256 -bit serial bit train (B_{0} is the first bit, B_{255} the last).

Block Diagram

Functional Description (Continued)

TL/F/9544-5
FIGURE 1. Conceptual Input Section

FIGURE 2. Final Positions In an 'F433 Resulting from a 256-Bit Serial Train
Fall-Through Stack—The outputs of flip-flops $\mathrm{F}_{0}-\mathrm{F}_{3}$ feed the stack. A LOW level on the Transfer to Stack (TTS) input initiates a fall-through action; if the top location of the stack is empty, data is loaded into the stack and the input register is reinitialized. (Note that this initialization is delayed until PL is LOW). Thus, automatic FIFO action is achieved by connecting the $\overline{\text { IRF }}$ output to the TTS input.
An RS-type flip-flop (the initialization flip-flop) in the control section records the fact that data has been transferred to the stack. This prevents multiple entry of the same word into the stack even though $\overline{\mathrm{RF}}$ and TTS may still be LOW; the initialization flip-flop is not cleared until PL goes LOW.

Once in the stack, data falls through automatically, pausing only when it is necessary to wait for an empty next location. In the ' F 433 , the master reset ($\overline{\mathrm{MR}}$) input only initializes the stack control section and does not clear the data.

Output Register

The Output Register (see Figure 3) receives 4-bit data words from the bottom stack location, stores them, and outputs data on a TRI-STATE, 4-bit parallel data bus or on a TRI-STATE serial data bus. The output section generates and receives the necessary status and control signals.
Parallel Extraction-When the FIFO is empty after a LOW pulse is applied to the MR input, the Output Register Empty (ORE) output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the output register, if the Transfer Out Parallel (TOP) input is HIGH. As a result of the data transfer, $\overline{\text { ORE }}$ goes HIGH, indicating valid data on the data outputs (provided that the TRI-STATE buffer is enabled). The TOP input can then be used to clock out the next word.
When TOP goes LOW, $\overline{\text { ORE }}$ also goes LOW, indicating that the output data has been extracted; however, the data itself remains on the output bus until a HIGH level on TOP permits the transfer of the next word (if available) into the output register. During parallel data extraction, the serial output clock (CPSO) line should be LOW. The Transfer Out Serial (TOS) line should be grounded for single-slice operation or connected to the appropriate ORE line for expanded operation (refer to the 'Expansion' section).
The TOP signal is not edge-triggered. Therefore, if TOP goes HIGH before data is available from the stack but data becomes available before TOP again goes LOW, that data is transferred into the output register. However, internal

Functional Description (Continued)

control circuitry prevents the same data from being transferred twice. If TOP goes HIGH and returns to LOW before data is available from the stack, ORE remains LOW, indicating that there is no valid data at the outputs.
Serial Extraction-When the FIFO is empty after a LOW is applied to the MR input, the ORE output is LOW. After data has been entered into the FIFO and has fallen through to the bottom stack location, it is transferred into the output register, if the TOS input is LOW and TOP is HIGH. As a result of the data transfer, $\overline{\text { ORE goes HIGH, indicating that }}$ valid data is in the register.
The TRI-STATE Serial Data Output $\left(Q_{S}\right)$ is automatically enabled and puts the first data bit on the output bus. Data is serially shifted out on the HIGH-to-LOW transition of CPSO. To prevent false shifting, $\overline{\text { CPSO }}$ should be LOW when the
new word is being loaded into the output register. The fourth transition empties the shift register, forces ORE LOW, and disables the serial output, Q_{S}. For serial operation, the ORE output may be tied to the TOS input, requesting a new word from the stack as soon as the previous one has been shifted out.

Expansion

Vertical Expansion-The 'F433 may be vertically expanded, without external components, to store more words. The interconnections necessary to form a 190 -word by 4 -bit FIFO are shown in Figure 4. Using the same technique, any FIFO of $(63 n+1)$-words by 4 -bits can be configured, where n is the number of devices. Note that expansion does not sacrifice any of the 'F433 flexibility for serial/parallel input and output.

FIGURE 3. Conceptual Output Section

Functional Description (Continued)

FIGURE 4. A Vertical Expansion Scheme

Functional Description (Continued)

Horizontal Expansion-The 'F433 can be horizontally expanded, without external logic, to store long words (in multiples of 4 -bits). The interconnections necessary to form a $64-$ word by 12 -bit FIFO are shown in Figure 5. Using the same technique, any FIFO of 64 -words by $4 n$-bits can be constructed, where \mathbf{n} is the number of devices.
The right-most (most significant) device is connected to the $\overline{T T S}$ inputs of all devices. Similarly, the $\overline{\text { ORE output of the }}$ most significant device is connected to the TOS inputs of all devices. As in the vertical expansion scheme, horizontal expansion does not sacrifice any of the 'F433 flexibility for serial/parallel input and output.
It should be noted that the horizontal expansion scheme shown in Figure 5 exacts a penalty in speed.
Horizontal and Vertical Expansion-The 'F433 can be expanded in both the horizontal and vertical directions without any external components and without sacrificing any of its FIFO flexibility for serial/parallel input and output. The interconnections necessary to form a 127 -word by 16 -bit FIFO are shown in Figure 6. Using the same technique, any FIFO of $(63 m+1)$-words by $4 n$-bits can be configured, where m is the number of devices in a column and n is the number of devices in a row. Figures 7 and 8 illustrate the timing diagrams for serial data entry and extraction for the FIFO shown in Figure 6. Figure 9 illustrates the final positions of bits in an expanded 'F433 FIFO resulting from a 2032-bit serial bit train.
Interlocking Circuitry-Most conventional FIFO designs provide status signal analogous to $\overline{\mathrm{IRF}}$ and $\overline{\mathrm{ORE}}$. However, when these devices are operated in arrays, variations in unit-to-unit operating speed require external gating to ensure that all devices have completed an operation. The 'F433 incorporates simple but effective 'master/slave' interlocking circuitry to eliminate the need for external gating.

In the 'F433 array of Figure 6, devices 1 and 5 are the row masters; the other devices are slaves to the master in their rows. No slave in a given row initializes its input register until it has received a LOW on its IES input from a row master or a slave of higher priority.
Similarly, the ORE outputs of slaves do not go HIGH until their inputs have gone HIGH. This interlocking scheme ensures that new input data may be accepted by the array when the $\overline{\mathrm{RF}}$ output of the final slave in that row goes HIGH and that output data for the array may be extracted when the $\overrightarrow{O R E}$ output of the final slave in the output row goes HIGH.
The row master is established by connecting its IES input to ground, while a slave receives its $\overline{\operatorname{IES}}$ input from the $\overline{\mathrm{RF}}$ output of the next-higher priority device. When an array of 'F433 FIFOs is initialized with a HIGH on the MR inputs of all devices, the $\overline{\mathrm{RF}}$ outputs of all devices are HIGH. Thus, only the row master receives a LOW on the $\overline{\mathrm{ES}}$ input during initialization.
Figure 10 is a conceptual logic diagram of the internal circuitry that determines master/slave operation. When $\overline{M R}$ and IES are LOW, the master latch is set. When TTS goes LOW, the initialization flip-flop is set. If the master latch is HIGH, the input register is immediately initialized and the initialization flip-flop reset. If the master latch is reset, the input register is not initialized until IES goes LOW. In array operation, activating $\overline{T T S}$ initiates a ripple input register initialization from the row master to the last slave.
A similar operation takes place for the output register. Either a $\overline{T O S}$ or TOP input initiates a load-from-stack operation and sets the $\overline{O R E}$ request flip-flop. If the master latch is set, the last output register flip-flop is set and the ORE line goes HIGH. If the master latch is reset, the $\overline{\text { ORE output is LOW }}$ until a Serial Output Enable ($\overline{\mathrm{OES}}$) input is received.

TL/F/9544-9
FIGURE 5. A Horizontal Expansion Scheme

Functional Description (Continued)

TL/F/9544-10
FIGURE 6. A 127×16 FIFO Array

FIGURE 7. Serlal Data Entry for Array of FIgure 6

Functional Description (Continued)

TL/F/9544-12
FIGURE 8. Serial Data Extraction for Array of Figure 6

TL/F/9544-13
FIGURE 9. Final Position of a 2032-Bit Serial Input

TL/F/9544-14
FIGURE 10. Conceptual Diagram, Interlocking Circuitry

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature

Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output

$$
\begin{aligned}
& \text { in HIGH State (with } \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text {) } \\
& \text { Standard Output } \\
& \text { TRI-STATE Output }
\end{aligned}
$$

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{O}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.5	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.4 \\ & 2.4 \\ & 2.4 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}(\overline{\mathrm{ORE}}, \overline{\mathrm{IRF}}) \\ & \mathrm{I}_{\mathrm{OH}}=5.7 \mathrm{~mA}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{s}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}(\overline{\mathrm{ORE}, \overline{\mathrm{IRF}})} \\ & \mathrm{I}_{\mathrm{OH}}=5.7 \mathrm{~mA}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{s}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=400 \mu \mathrm{~A}(\overline{\mathrm{ORE}, \overline{\mathrm{IRF}})} \\ & \mathrm{I}_{\mathrm{OH}}=5.7 \mathrm{~mA}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{s}}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}(\overline{\mathrm{ORE}, \overline{\mathrm{IRF}})} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{s}}\right) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.4	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{S}\right)$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{Q}_{\mathrm{S}}\right)$
los	Output Short-Circuit Current		-20		-130	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{C C}$
Icc	Power Supply Current			150	215	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\text { Com } \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Negative-Going CPSI to IRF Output		17.0			2.0	18.0	ns	433-a,b
${ }_{\text {tPLH }}$	Propagation Delay, Negative-Going $\overline{\text { TTS }}$ to $\overline{\text { IRF }}$	9.0	34.0			8.0	38.0		
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, NegativeGoing $\overline{\text { CPSO }}$ to Q_{S} Output	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 20.0 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 21.0 \end{aligned}$	ns	433-c,d
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay, PositiveGoing TOP to $Q_{0}-Q_{3}$ Outputs	$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 30.0 \end{aligned}$			$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 32.0 \end{aligned}$	ns	433-e
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, Negative-Going $\overline{\text { CPSO }}$ to $\overline{\text { ORE }}$	7.0	25.0			6.0	28.0	ns	433-c,d
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay, Negative-Going TOP to $\overline{\text { ORE }}$	6.0	26.0			6.0	28.0	ns	433-e
$t_{\text {PLH }}$	Propagation Delay, Positive-Going TOP to $\overline{\mathrm{ORE}}$	13.0	48.0			12.0	51.0		
$t_{\text {PLH }}$	Propagation Delay, Negative-Going $\overline{\mathrm{TOS}}$ to Positive-Going $\overline{\mathrm{ORE}}$	13.0	45.0			12.0	50.0	ns	433-c,d
${ }_{\text {tPHL }}$	Propagation Delay, PositiveGoing PL to Negative-Going IRF		22.0			4.0	23.0	ns	433-g,h
${ }_{\text {tpLH }}$	Propagation Delay, NegativeGoing PL to Positive-Going IRF	7.0	31.0			6.0	35.0		
$t_{\text {PLH }}$	Propagation Delay, Positive-Going $\overline{\mathrm{OES}}$ to $\overline{\mathrm{ORE}}$	9.0	38.0			8.0	44.0	ns	
$t_{\text {PLH }}$	Propagation Delay Positive-ITF Going IES to Positive-Going	5.0	25.0			5.0	27.0	ns	433-h
$\mathrm{t}_{\text {PHL }}$	Propagation Delay MR to $\overline{\text { ORE }}$		28.0			7.0	31.0	ns	
$t_{\text {PLH }}$	Propagation Delay MR to IRF		27.0			5.0	30.0	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 14.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.0 \end{aligned}$	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLz}} \end{aligned}$	Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 23.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 30.0 \end{aligned}$		
$t_{P Z H}$ $t_{\text {PZL }}$	Enable Time Negative-Going $\overline{O E S}$ to Q_{S}	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	ns	
$\begin{aligned} & \text { tphz } \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Disable Time Negative-Going $\overline{O E S}$ to Q_{S}	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Enable Time } \\ & \text { TOS to } Q_{S} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 35.0 \\ & 35.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 42.0 \\ & 39.0 \end{aligned}$	ns	
$t_{\text {DFT }}$	Fall-Through Time	0.2	0.9			0.2	1.0	ns	433-f
$t_{\text {AP }}$	Parallel Appearance Time $\overline{\mathrm{ORE}}$ to $\mathrm{Q}_{0}-\mathrm{Q}_{3}$	-20.0	-2.0			-20.0	-2.0	ns	
$t_{\text {AS }}$	Serial Appearance Time $\overline{\text { ORE }}$ to Q_{S}	-20.0	5.0			-20.0	5.0		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{S} to Negative $\overline{\mathrm{CPSI}}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns	433-a,b
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D_{S} to $\overline{\mathrm{CPSI}}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$			
$\mathrm{t}_{\text {s }}(\mathrm{L})$	Setup Time, LOW TTS to $\overline{\text { IRF, Serial or Parallel Mode }}$	0.0				0.0		ns	433-a,b,g,h
$\mathrm{t}_{\text {s }}(\mathrm{L})$	Setup Time, LOW Negative-Going $\overline{\text { ORE }}$ to Negative-Going $\overline{T O S}$	0.0				0.0		ns	433-c,d
$\mathrm{t}_{\text {s }}(\mathrm{L})$	Setup Time, LOW NegativeGoing IIES to $\overline{\text { CPSI }}$	8.0				9.0		ns	433-b
$\mathrm{t}_{\text {s }}(\mathrm{L})$	Setup Time, LOW NegativeGoing TTS to $\overline{\text { CPSI }}$	30.0				33.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW Parallel Inputs to PL	$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$		ns	433-a,b
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW Parallel Inputs to PL	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	$\overline{\text { CPSI }}$ Pulse Width HIGH or LOW	$\begin{array}{r} 10.0 \\ 5.0 \\ \hline \end{array}$				$\begin{gathered} 11.0 \\ 6.0 \\ \hline \end{gathered}$		ns	
$t_{w}(\mathrm{H})$	PL Pulse Width, HIGH	7.0				9.0		ns	433-g,h
$t_{w}(\mathrm{~L})$	TTS Pulse Width, LOW Serial or Parallel Mode	7.0				9.0		ns	433-a,b,c,d
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse Width, LOW	7.0				9.0		ns	433-f
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \\ & \hline \end{aligned}$	TOP Pulse Width HIGH or LOW	$\begin{gathered} 14.0 \\ 7.0 \\ \hline \end{gathered}$				$\begin{gathered} 16.0 \\ 7.0 \\ \hline \end{gathered}$		ns	433-e
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	C̄PSO Pulse Width HIGH or LOW	$\begin{gathered} 14.0 \\ 7.0 \end{gathered}$				$\begin{gathered} 16.0 \\ 7.0 \end{gathered}$		ns	433-c,d
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to Any Input	8.0				15.0		ns	433-f

Timing Waveforms

TL/F/9544-15
Conditions: Stack not full, IES, PL LOW
FIGURE 433-a. Serial Input, Unexpanded or Master Operation

TL/F/9544-16
Conditions: Stack not full, $\overline{\text { IES }}$ HIGH when initiated, PL LOW
FIGURE 433-b. Serial Input, Expanded Slave Oneration

Conditions: Data in stack, TOP HIGH, $\overline{\text { ES }}$ LOW when initiated, $\overline{\text { OES }}$ LOW
TL/F/9544-17
FIGURE 433-c. Serial Output, Unexpanded or Master Operation

Timing Waveforms (Continued)

FIGURE 433-d. Serial Output, Slave Operation

TL/F/9544-19
Conditions: IES LOW when initiated, $\overline{O E}, \overline{C P S O}$ LOW; data available in stack
FIGURE 433-e. Parallel Output, 4-Bit Word or Master in Parallel Expansion

Conditions: $\overline{T T S}$ connected to $\overline{\text { RFF }}, \overline{T O S}$ connected to $\overline{\text { ORE, }} \overline{\mathrm{IES}}, \overline{\mathrm{OES}}, \overline{\mathrm{OE}}, \overline{\mathrm{CPSO}}$ LOW, TOP HIGH FIGURE 433-f. Fall Through Time

Timing Waveforms (Continued)

Conditions: Stack not full, $\overline{\text { IES }}$ LOW when initialized
FIGURE 433-g. Parallel Load Mode, 4-Bit Word (Unexpanded) or Master in Parallel Expansion

Conditions: Stack not full, device initialized (Note 1) with $\overline{\text { IES HIGH }}$
TL/F/9544-22
FIGURE 433-h. Parallel Load, Slave Mode
Note 1: Initialization requires a master reset to occur after power has been applied.
Note 2: TTS normally connected to IRF.
Note 3: If stack is full, IRF will stay LOW.

54F/74F521
 8-Bit Identity Comparator

General Description

The 'F521 is an expandable 8-bit comparator. It compares two words of up to eight bits each and provides a LOW output when the two words match bit for bit. The expansion input $\bar{I}_{A=B}$ also serves as an active LOW enable input.

Features

- Compares two 8 -bit words in 6.5 ns typ
- Expandable to any word length
- 20-pin package

Ordering Code: See Section 5

Logic Symbols

TL/F/9545-1
IEEE/IEC

Connection Diagrams
Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

(14) 1051018 $B_{5} A_{6} B_{6} A_{7} B_{7}$

TL/F/9545-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	Word A Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{7}$	Word B Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{A}=\mathrm{B}}$	Expansion or Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{\mathrm{A}=\mathrm{B}}$	Identity Output (Active LOW)	50/33.3	-1 mA/20 mA

Truth Table

Inputs		Output
$\bar{I}_{\mathbf{A}}=\mathbf{B}$	\mathbf{A}, \mathbf{B}	$\overline{\mathbf{O}}_{\mathbf{A}}=\mathbf{B}$
L	$\mathrm{A}=\mathrm{B}^{*}$	L
L	$\mathrm{~A} \neq \mathrm{B}$	H
H	$\mathrm{A}=\mathrm{B}^{*}$	H
H	$\mathrm{A} \neq \mathrm{B}$	H

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$\cdot A_{0}=B_{0}, A_{1}=B_{1}, A_{2}=B_{2}$, etc.

Logic Diagram

TL/F/9545-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $V_{C C}=0 \mathrm{~V}$) Standard Output TRI-STATE® Output
Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

$$
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			21	32	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations										
Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n} or B_{n} to $\bar{O}_{A=B}$	$\begin{array}{r} 3.0 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\bar{I}_{A=B}$ to $\bar{O}_{A=B}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 13.5 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} 7.5 \\ 10.0 \end{gathered}$	ns	2-3

Applications

Ripple Expansion

TL/F/9545-6
Parallel Expansion

TL/F/9545-7

54F/74F524
 8-Bit Registered Comparator

General Description

The 'F524 is an 8-bit bidirectional register with parallel input and output plus serial input and output progressing from LSB to MSB. All data inputs, serial and parallel, are loaded by the rising edge of the input clock. The device functions are controlled by two control lines ($\mathrm{S}_{0}, \mathrm{~S}_{1}$) to execute shift, load, hold and read out.
An 8 -bit comparator examines the data stored in the registers and on the data bus. Three true-HIGH, open-collector outputs representing 'register equal to bus', 'register greater than bus' and 'register less than bus' are provided. These outputs can be disabled to the OFF state by the use of Status Enable (드). A mode control has also been provided
to allow twos complement as well as magnitude compare. Linking inputs are provided for expansion to longer words.

Features

I 8-Bit bidirectional register with bus-oriented input-output

- Independent serial input-output to register
- Register bus comparator with 'equal to', 'greater than' and 'less than' outputs
- Cascadable in groups of eight bits
- Open-collector comparator outputs for AND-wired expansion
- Twos complement or magnitude compare

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for
DIP, SOIC and Flatpak

Pln Assignment for LCC and PCC

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
	Mode Select Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
C / SI	Status Priority or Serial Data Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
SE	Status Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
M	Compare Mode Select Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Parallel Data Inputs or	$3.5 / 1.083$	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$	
	TRI-STATE ParalleI Data Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$	
C / SO	Status Priority or Serial Data Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$	
LT	Register Less Than Bus Output	$\mathrm{OC} / 33.3$	$* / 20 \mathrm{~mA}$	
EQ	Register Equal Bus Output	$\mathrm{OC}^{*} / 33.3$	$* / 20 \mathrm{~mA}$	
GT	Register Greater Than Bus Output	$\mathrm{OC} / 33.3$	$* / 20 \mathrm{~mA}$	

*OC = Open Collector

Functional Description

The 'F524 contains eight D-type flip-flops connected as a shift register with provision for either parallel or serial loading. Parallel data may be read from or loaded into the registers via the data bus $1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$. Serial data is entered from the C/SI input and may be shifted into the register and out through the C/SO output. Both parallel and serial data entry occur on the rising edge of the input clock (CP). The operation of the shift register is controlled by two signals S_{0} and S_{1} according to the Select Truth Table. The TRI-STATE parallel output buffers are enabled only in the Read mode.
One port of an 8 -bit comparator is attached to the data bus while the other port is tied to the outputs of the internal register. Three active-OFF, open-collector outputs indicate whether the contents held in the shift register are 'greater than', (GT), 'less than' (LT), or 'equal to' (EQ) the data on the input bus. A HIGH signal on the Status Enable (SE) input disables these outputs to the OFF state. A mode control input (M) allows selection between a straightforward magnitude compare or a comparison between twos complement numbers.
For 'greater than' or 'less than' detection, the C/SI input must be held HIGH, as indicated in the Status Truth Table. The internal logic is arranged such that a LOW signal on the C/SI input disables the 'greater than' and 'less than' outputs. The C/SO output will be forced HIGH if the 'equal to' status condition exists, otherwise C/SO will be held LOW. These facilities enable the 'F524 to be cascaded for word length greater than eight bits.
Word length expansion (in groups of eight bits) can be achieved by connecting the C/SO output of the more significant byte to the C / SI input of the next less significant byte and also to its own SE input (see Figure 1). The C/SI input of the most significant device is held HIGH while the $\overline{\text { SE }}$ input of the least significant device is held LOW. The corresponding status outputs are AND-wired together. In the case of twos complement number compare, only the Mode input to the most significant device should be HIGH. The Mode inputs to all other cascaded devices are held LOW.

Suppose that an inequality condition is detected in the most significant device. Assuming that the byte stored in the register is greater than the byte on the data bus, the EQ and LT outputs will be pulled LOW and the GT output will float HIGH. Also the C/SO output of the most significant device will be forced LOW, disabling the subsequent devices but enabling its own status outputs. The correct status condition is thus indicated. The same applies if the registered byte is less than the data byte, only in this case the EQ and GT outputs go LOW and LT output floats HIGH.
If an equality condition is detected in the most significant device, its C/SO output is forced HIGH. This enables the next less significant device and also disables its own status outputs. In this way, the status output priority is handed down to the next less significant device which now effectively becomes the most significant byte. The worst case propagation delay for a compare operation involving ' n ' cascaded ' F 524 s will be when an equality condition is detected in all but the least significant byte. In this case, the status priority has to ripple all the way down the chain before the correct status output is established. Typically, this will take $35+6(n-2)$ ns.

Select Truth Table

\mathbf{S}_{0}	\mathbf{S}_{1}	Operation
L	L	Hold-Retains Data in Shift Register Read-Read Contents in Register onto Data Bus, Data Remains in
H	H	Register Unaffected by Clock
H	H	Shift-Allows Serial Shifting on Next Rising Clock Edge Load-Load Data on Bus into Register

Functional Description (Continued)
Number Representation Select Table

\boldsymbol{M}	Operation
\mathbf{L}	Magnitude Compare
H	Twos Complement Compare

Status Truth Table
(Hold Mode)

Inputs				Outputs			
$\overline{\text { SE }}$	C/SI	Data Comparison	EQ	GT	LT	C/SO	
H	H	X	H	H	H	1	
H	L	X	H	H	H	L	
L	L	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}>1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	L	H	H	L	
L	L	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}=1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	H	H	H	L	
	L	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}<1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	L	H	H	L	
L	L						
L	H	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}>1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	L	H	L	L	
L	H	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}=1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	H	L	L	H	
L	H	$\mathrm{O}_{\mathrm{A}}-\mathrm{O}_{\mathrm{H}}<1 / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	L	L	H	L	

$1=$ HIGH if data are equal, otherwise LOW
H = HIGH Voltage Level
$\mathrm{L}=$ LOW Votlage Level
$X=$ Immaterial

TL/F/9546-6
FIGURE 1. Cascading 'F524s for Comparing Longer Words

Block Diagram

TL/F/9546-5
Notes:

1. TRI-STATE Output
2. Open-Collector Output

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$ TRI-STATE Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output
in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{C}}$ $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$ $\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$ $\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$ $\mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(I / \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(I / \mathrm{O}_{n}\right) \\ & \mathrm{IOL}^{2}=24 \mathrm{~mA}(\mathrm{LT}, \mathrm{GT}, \mathrm{EQ}, \mathrm{C} / \mathrm{SO}) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$I_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)				1.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
$\mathrm{IIH}+\mathrm{I}_{\text {OZH }}$	Output Leakage Current				70	$\mu \mathrm{A}$	Max	$V_{1 / O}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {LL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current				-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 / \mathrm{O}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
IOHC	Open Collector, Output OFF Leakage Test				250	$\mu \mathrm{A}$	Min	$V_{\text {OUT }}=V_{\text {CC }}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current			128	180	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			128	180	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
Iccz	Power Supply Current			128	180	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations										
	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
Symbol		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Shift Frequency	50	75				50		MHz	2-1
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $1 / O_{n}$ to EQ	$\begin{aligned} & 9.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{gathered} 16.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{array}{r} 20.0 \\ 12.0 \\ \hline \end{array}$			$\begin{aligned} & 9.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.0 \\ & 13.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay I/On to GT	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.0 \\ & 16.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 20.0 \\ & 17.5 \\ & \hline \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $1 / \mathrm{O}_{n}$ to LT	$\begin{aligned} & 7.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 14.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 7.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 15.0 \end{aligned}$		
$t_{\text {PL }}$ $t_{\text {PHL }}$	Propagation Delay I/O O_{n} to C / SO	$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.2 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.5 \\ & 16.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.5 \\ 17.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to EQ	$\begin{gathered} 10.0 \\ 4.0 \\ \hline \end{gathered}$	$\begin{array}{r} 20.0 \\ 8.5 \\ \hline \end{array}$	$\begin{aligned} & \hline 25.0 \\ & 16.5 \\ & \hline \end{aligned}$			$\begin{gathered} \hline 10.0 \\ 4.0 \\ \hline \end{gathered}$	$\begin{aligned} & 26.0 \\ & 17.5 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to GT	$\begin{array}{r} 10.0 \\ 8.5 \\ \hline \end{array}$	$\begin{aligned} & 16.5 \\ & 17.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 21.0 \\ 22.0 \\ \hline \end{array}$			$\begin{gathered} \hline 10.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{array}{r} 22.0 \\ 23.0 \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to LT	$\begin{aligned} & 9.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.0 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 25.0 \\ 17.0 \\ \hline \end{array}$			$\begin{aligned} & 9.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 26.0 \\ 18.0 \\ \hline \end{array}$		
${ }_{\text {tplH }}$	Propagation Delay CP to C/SO (Load)	8.5	16.5	21.0			8.5	22.0	ns	2-3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to C/SO (Serial Shift)	$\begin{aligned} & 5.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{array}{r} 13.0 \\ 11.5 \\ \hline \end{array}$			$\begin{aligned} & 5.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.0 \\ & 12.5 \\ & \hline \end{aligned}$		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay C/Si to GT	$\begin{aligned} & 9.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 15.0 \\ 6.5 \end{gathered}$	$\begin{gathered} 19.0 \\ 8.5 \end{gathered}$			$\begin{aligned} & 9.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 20.0 \\ 9.5 \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay C/SI to LT	$\begin{aligned} & 8.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 15.5 \\ 6.5 \\ \hline \end{gathered}$	$\begin{gathered} 20.0 \\ 8.5 \\ \hline \end{gathered}$			$\begin{aligned} & 8.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 21.0 \\ 9.5 \\ \hline \end{gathered}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to C/SO	$\begin{aligned} & 6.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 18.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 6.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.5 \\ & 19.0 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{SE}}$ to EQ	$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 8.0 \\ \hline \end{gathered}$			$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay SE to GT	$\begin{aligned} & 6.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.5 \\ 6.0 \\ \hline \end{array}$	$\begin{gathered} \hline 16.0 \\ 8.0 \\ \hline \end{gathered}$			$\begin{aligned} & 6.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 17.0 \\ 9.0 \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay SE to LT	$\begin{aligned} & 5.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.5 \\ 6.0 \\ \hline \end{array}$	$\begin{gathered} 13.5 \\ 8.0 \\ \hline \end{gathered}$			$\begin{aligned} & 5.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 14.5 \\ 9.0 \\ \hline \end{gathered}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay C/SI to C/SO	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.5 \\ 8.5 \\ \hline \end{array}$	$\begin{aligned} & 11.0 \\ & 11.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.0 \\ 12.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay M to GT	$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 15.0 \\ 12.0 \\ \hline \end{array}$	$\begin{array}{r} 19.5 \\ 15.5 \\ \hline \end{array}$			$\begin{aligned} & 8.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.5 \\ 16.5 \\ \hline \end{array}$	ns	2-3
${ }^{\text {tpLH }}$ $t_{\text {PHL }}$	Propagation Delay M to LT	$\begin{aligned} & 8.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 17.0 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 22.0 \\ & 12.0 \end{aligned}$			$\begin{aligned} & 8.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 23.0 \\ 13.0 \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to EQ	$\begin{array}{r} 15.0 \\ 9.0 \\ \hline \end{array}$	$\begin{aligned} & 25.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33.0 \\ & 19.0 \\ & \hline \end{aligned}$			$\begin{gathered} 15.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{array}{r} 35.0 \\ 20.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to GT	$\begin{array}{r} 10.5 \\ 10.5 \\ \hline \end{array}$	$\begin{aligned} & 18.0 \\ & 18.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.0 \\ & 23.0 \\ & \hline \end{aligned}$			$\begin{array}{r} 10.5 \\ 10.5 \\ \hline \end{array}$	$\begin{array}{r} 24.0 \\ 24.0 \\ \hline \end{array}$		
$t_{\text {PLH }}$ tpHL	Propagation Delay $\mathrm{S}_{0}, \mathrm{~S}_{1}$ to LT	$\begin{array}{r} 13.0 \\ 12.0 \\ \hline \end{array}$	$\begin{array}{r} 22.0 \\ 19.0 \\ \hline \end{array}$	$\begin{array}{r} 28.0 \\ 24.0 \\ \hline \end{array}$			$\begin{array}{r} 13.0 \\ 12.0 \\ \hline \end{array}$	$\begin{array}{r} 30.0 \\ 25.0 \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{tPH}} \\ & \mathrm{t}_{\mathrm{pLLL}} \\ & \hline \end{aligned}$	Output Enable Time $S_{0}, S_{1} \text { to } I / O_{n}$	$\begin{array}{r} 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{array}{r} 10.0 \\ 11.0 \\ \hline \end{array}$	$\begin{aligned} & 13.0 \\ & 15.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.0 \\ 16.0 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{tpLZ}} \end{aligned}$	Output Disable Time S_{0}, S_{1} to $/ / O_{n}$	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.6 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.5 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 13.5 \\ & \hline \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $1 / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $1 / O_{n}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$				$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW C / SI to CP	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW C/SI to CP	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$t_{w}(\mathrm{H})$	Clock Pulse Width, HIGH	5.0				5.0		ns	2-4

54F/74F525
 Programmable Counter

General Description

The 'F525 is a multi-function 28 -pin device. It consists of a 16-bit count-down counter, logic to control the counter, logic to control the state of the outputs and a PLA to decode the particular function selected by the user. The list of highspeed timing applications include:

Features

- Baud rate generator
- Digitally programmed monostable
- Variable system frequency generator
- Digital filter variable sampling rate
- 16-bit data path
- External trigger

■ Extremely accurate one shot w/pulse widths from 50 ns to 3.27 ms @CP $=40 \mathrm{MHz}$

Ordering Code: See Section 5

Logic Symbol

Connection Diagrams

Pin Assignment DIP, SOIC and Flatpak

TL/F/9547-2

Pin Assignment for LCC and PCC
$D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1}$

[19 20 21 22 [23 24 25
$\mathrm{D}_{10} \mathrm{D}_{11} \mathrm{D}_{12} \mathrm{D}_{13} \mathrm{D}_{14} \mathrm{D}_{15} \mathrm{M}_{0}$

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
Q	Ouput (Primarily indicates when the counter has reached zero)	50/33.3	-1 mA/20 mA
Q/2	Output (Divides Q by 2)	50/33.3	-1 mA/20 mA
$M_{0}-M_{2}$	Status Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { MR }}$	Master Reset	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{15}$	Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
WE	Write Enable Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
XTR	External Trigger Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
XTAL	Crystal Output	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$

Functional Description

The multi-function aspect of the device consists of eight different modes of operation. An explanation of the operation of the device in each of the modes follows. However, there is one operation that is independent of the selected mode: the loading of data. Data is latched into a set of data latches when WE is brought from a LOW to a HIGH state. The latches are transparent when WE is held LOW.

Operation Notes:

1. Device should be reset before operation.
2. The XTR input acts as a select line for the clock. /
3. With XTR low, the clock goes into the counter.
4. With XTR high, the clock loads the counter.
5. In mode 4 and 5, during counting, the counter cannot be reloaded. XTR high freezes the count.
6. Mode 7 is the only auto-reload mode, all other modes require and XTR pulse to begin.
7. Loading 0 into the latches idles the device.

MODE O: Interval Timer with Level Output

While XTR is HIGH, the data in the data latches is loaded into the counter upon the next positive edge of CP . The negative edge of XTR enables the count-down to begin with the next positive edge of CP. When the count reaches zero, Q, normally LOW, is brought HIGH and Q/2 toggles state. Taking XTR HIGH at any time enables the data in the data latches to be loaded into the counter on the rising edge of CP and clears Q. See Figure 1.
MODE 1: Interval Timer with Inverted Level Output
The operation is exactly the same as in Mode 0 except that Q is normally HIGH and goes LOW when the count reaches zero. Q/2 toggles on the negative-edge of Q. See Figure 1.

MODE 2: Interval Timer with Pulse Output

While XTR is HIGH, the data in the data latches is loaded into the counter upon the next positive edge of CP. The negative edge of XTR enables the count-down to begin with the next positive edge of CP. When the count reaches
zero, Q, normally LOW, is brought HIGH for a single period of CP. Q/2 toggles state on the positive edge of Q. Taking XTR HIGH at any time causes the data in the data latches to be loaded into the counter on the rising edge of CP and clears Q. See Figure 2.
MODE 3: Interval Timer with Inverted Pulse Output
The operation is exactly the same as in Mode 2 except that Q is normally HIGH and goes LOW for a single period of CP. $Q / 2$ toggles on the negative edge of Q. See Figure 2.

Function Table

$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{0}}$	Function
0	0	0	Mode 0
0	0	1	Mode 1
0	1	0	Mode 2
0	1	1	Mode 3
1	0	0	Mode 4
1	0	1	Mode 5
1	1	0	Mode 6
1	1	1	Mode 7

MODE 4: Interval Timer, Pulse Output with Count Hold While XTR is HIGH, the data in the data latches is loaded into the counter upon the next positive edge of CP. The negative edge of XTR enables the count-down to begin with the next positive edge of CP. When the count reaches zero, Q, normally low, is brought HIGH for a single period of CP. Q/2 toggles state on the positive edge of Q. Taking XTR HIGH before the counters reach zero, stops the count-down from the point where it was held. Data cannot be reloaded into the counter until a count of zero is reached. See Figure 3.

MODE 5: Interval Timer, Inverted Pulse Output with Count Hold
The operation is exactly the same as Mode 4 except that Q is normally HIGH and goes LOW for a single period of CP. $Q / 2$ toggles on the negative-edge of Q. See Figure 3.

Functional Description (Continued)
MODE 6: Retriggerable Synchronous One-Shot
When XTR is HIGH, the data in the data latches is loaded into the counter upon the positive edge of CP. The negative edge of XTR enables the count-down to begin with the next positive edge of CP, wehre Q, normally LOW, is then brought HIGH and the counter is decremented when the count reaches zero, Q is brought LOW, and Q/2 is toggled. Bringing XTR HIGH during the count-down will allow the data in the data latches to be loaded into the counter with the next positive edge of CP, but will not affect Q . See Figure 4. NOTE that the pulse width of Q will be $\mathrm{N}-1$ clock cycles, where N is the number loaded into the counter. $N=1$ should not be used as this may cause unpredictable results.

MODE 7: Frequency Generator

When XTR is HIGH, the data in the data latches is loaded into the counter upon the positive edge of CP . The negative edge of XTR enables the count-down to begin with the next positive edge of CP. When the count reaches zero, Q, normally LOW, is brought HIGH for a single period of CP and Q/2 is toggled. The same clock edge that brings Q HIGH, also loads the data in the data latches into the counter. The counter will start to count on the next positive edge of CP. This mode will run continuously after an initial XTR until stopped by MR. Taking XTR HIGH at any time causes the data in the data latches to be loaded into the counter and Q output to be cleared with the next positive edge of CP. See Figure 5.

Block Diagram

Timing Diagrams

(1) With XTR HIGH, the rising edge of CP loads data from the latches to the counter.
(2) With XTR LOW, the rising edge of CP begins count-down cycle.
(3) When the count reaches zero, Q goes HIGH, and Q/2 toggles state.
(1)The next occurrence of XTR clears Q .

FIGURE 1. MODE 0 and MODE 1 (Inverse Output of Mode 0)
$\bar{M}_{n}=000,001$

(1) With XTR HIGH, the rising edge of CP loads data from the latches to the counter.
(3) With XTR LOW, the rising edge of CP begins the count-down cycle.
(3) When the count reaches zero, Q goes HIGH for one period of CP, and $\mathrm{Q} / 2$ toggles state.

FIGURE 2. MODE 2 and MODE 3 (Inverse Output of Mode 2)
$\bar{M}_{\mathrm{n}}=\mathbf{0 1 0 , 0 1 1}$

FIGURE 3. MODE 4 and MODE 5

$$
\bar{M}_{n}=100,101
$$

© With XTR HIGH, the rising edge of CP loads data from the latches into the counter.
(2) With XTR LOW, the rising edge of CP begins the count-down.
(3) With XTR HIGH, during count-down, the rising edge of CP does nothing.
(0) When the count reaches zero, Q goes HIGH for one clock cycle and $Q / 2$ toggles state.

Note: Once the count reaches zero, the counter can be reloaded with XTR HIGH.

Timing Diagrams (Continued)

TL/F/9547-8
FIGURE 4. MODE 6

$$
\bar{M}_{n}=110
$$

(1) With XTR HIGH, the rising edge of CP loads data from the latches to the counter.
(2) With XTR LOW, the rising edge of CP begins the count, and Q goes HIGH.
(3) When the count reaches zero, Q goes LOW, and Q/2 toggles state. Bringing XTR HIGH before count reaches zero will reload the counter, but not affect Q.

Notes:

Loading $N=0$ halts counter; loading $N=1$ will result in undefined operation.
Pulse width $=(2 / C P) *(N-1)$

FIGURE 5. MODE 7
$\bar{M}_{n}=111$
(1) With XTR HIGH, the rising edge of CP , loads data from the latches to the counter.
(2) On the falling edge of XTR, the rising edge of CP begins count-down.
(3) When count reaches zero, Q goes HIGH for one period of $C P$, and $Q / 2$ toggles on the Q rising edge. (1) On the rising edge of $C P$ on which Q goes LOW, the counters are reloaded.
(2) Count-down begins again.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Voltage (Note 2)

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$ TRI-STATE® Output

Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{C C} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
ICCH	Power Supply Current			106	160	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			106	160	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Conigurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MiI} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Clock Frequency	50	60				40		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q	$\begin{aligned} & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 16.0 \\ 12.0 \\ \hline \end{array}$	$\begin{aligned} & 20.5 \\ & 15.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.5 \\ & 17.5 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to Q/2	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 15.5 \\ & 15.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.0 \\ 20.0 \\ \hline \end{array}$			$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 22.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay XTR to Q	$\begin{aligned} & 8.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.0 \\ 10.5 \\ \hline \end{array}$	$\begin{aligned} & 15.5 \\ & 13.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 7.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.5 \\ & 15.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q	$\begin{gathered} 11.5 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 16.5 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 21.0 \\ & 16.0 \\ & \hline \end{aligned}$			$\begin{gathered} 10.5 \\ 8.0 \\ \hline \end{gathered}$	$\begin{array}{r} 23.0 \\ 18.0 \\ \hline \end{array}$	ns	2-3
$\mathrm{t}_{\mathrm{PLL}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MRto Q/2	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.0 \\ 10.5 \\ \hline \end{array}$	$\begin{aligned} & 17.5 \\ & 13.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 7.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.5 \\ & 15.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay M_{n} to Q	$\begin{array}{r} 10.0 \\ 10.5 \\ \hline \end{array}$	$\begin{aligned} & 15.0 \\ & 17.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 19.0 \\ 21.5 \\ \hline \end{array}$			$\begin{aligned} & 9.0 \\ & 9.5 \end{aligned}$	$\begin{array}{r} 21.0 \\ 23.5 \\ \hline \end{array}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW D_{n} to $\overline{N E}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$				$\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D_{n} to $\overline{W E}$	$\begin{gathered} 0 \\ 2.0 \end{gathered}$				$\begin{gathered} 0 \\ 2.5 \end{gathered}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{CP}$	$\begin{gathered} \hline 9.0 \\ 10.5 \\ \hline \end{gathered}$				$\begin{aligned} & 10.0 \\ & 12.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW XTR to CP	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$				$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$		ns	2-6
$t_{h}(\mathrm{H})$	Hold Time, HIGH or LOW XTR to CP	0				0		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW Mode to CP	$\begin{array}{r} 33.5 \\ 33.5 \end{array}$				$\begin{aligned} & 35.5 \\ & 35.5 \end{aligned}$		ns	2-6
$t_{w}(\mathrm{H})$	XTR Pulse Width, HIGH	11.5				13.0		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	$\overline{M R}$ Pulse Width, LOW	7.0				8.0		ns	2-4
$t_{w}(L)$	WE Pulse Width, LOW	4.5				5.0		ns	2-4
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP Pulse Width HIGH or LOW	$\begin{aligned} & 3.5 \\ & 9.5 \\ & \hline \end{aligned}$				$\begin{gathered} 4.0 \\ 10.5 \\ \hline \end{gathered}$		ns	2-4
$t_{\text {rec }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP	5.0				6.0		ns	2-6
$\mathrm{t}_{\text {rec }}$	Recovery Time Mode to CP	30.0				32.0		ns	2-6

54F/74F533
 Octal Transparent Latch with TRI-STATE® Outputs

General Description

The 'F533 consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable $(\overline{\mathrm{OE}})$ is LOW. When $\overline{\mathrm{OE}}$ is HIGH the bus output is in the high impedance state. The 'F533 is the same as the 'F373, except that the outputs are inverted.

Features

- Eight latches in a single package
- TRI-STATE outputs for bus interfacing
- Inverted version of the 'F373

Ordering Code: see Section 5

Logic Symbols

JEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

14 151617118
$\mathrm{D}_{5} \overline{\mathrm{O}}_{5} \overline{\mathrm{O}}_{6} \mathrm{D}_{6} \mathrm{D}_{7}$
TL/F/9548-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description		$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$	
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
LE	Latch Enable Input (Active HIGH)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$	
$\overline{\mathrm{OE}}$	Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{MA} /-0.6 \mathrm{~mA}$	
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Complementary TRI-STATE Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$	

Function Table

Inputs			Output
LE	$\overline{\text { OE }}$	D	$\overline{\mathbf{O}}$
H	L	H	L
H	L	L	H
L	L	X	$\overline{\mathrm{O}}_{0}$
X	H	X	Z

$H=$ HIGH Voltage Level
$L=$ LOW Voltage Level
$X=1$ mmaterial

Functional Description

The 'F533 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D in-
puts a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are in the bi-state mode. When $\overline{O E}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

TL/F/9548-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 Conditions| Free Air Ambient Temperature | |
| :--- | ---: |
| Military | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| \quad Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Supply Voltage | |
| \quad Military | +4.5 V to +5.5 V |
| Commercial | +4.5 V to +5.5 V |

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH 54F $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage 54F $10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{CC}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{VCC}$		$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
$\mathrm{l} z \mathrm{z}$	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
lccz	Power Supply Current			41	61	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MiI} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay D_{n} to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.0 \end{gathered}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LE to \bar{O}_{n}	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 4.7 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \\ \hline \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.0 \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 5.6 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 8.5 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns	2-5

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{cc}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D_{n} to LE	3.0 3.0		$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		ns	2-6
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE Pulse Width, HIGH	6.0		6.0		6.0		ns	2-4

54F/74F534
 Octal D-Type Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F534 is a high speed, low-power octal D-type flip-flop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) are common to all flip-flops. The 'F534 is the same as the 'F374 except that the outputs are inverted.

Features

- Edge-triggered D-type inputs

■ Buffered positive edge-triggered clock

- TRI-STATE outputs for bus-oriented applications

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9549-2

Pin Assignment for LCC and PCC

$\mathrm{D}_{5} \overline{\mathrm{O}}_{5} \overline{\mathrm{o}}_{6} \mathrm{D}_{6} \mathrm{D}_{7}$
TL/F/9549-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
${ }^{\text {CP }}$	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E}$	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Complementary TRI-STATE Outputs	150/40(33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F534 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE complementary outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{O E}$ input does not affect the state of the flip-flops.

Function Table

Inputs			Output
$\mathbf{C P}$	OE	D	$\overline{\mathbf{O}}$
\sim	L	H	L
\sim	L	L	H
L	L	X	$\overline{\mathrm{O}}_{0}$
X	H	X	Z

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\widetilde{\sigma}=$ LOW-to-HIGH Clock Transition
$Z=$ High Impedance
$\overline{\mathrm{O}}_{0}=$ Value stored from previous clock cycle

Logic Diagram

TL/F/9549-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC}
TRI-STATE Output
-0.5 V to +5.5 V
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature	
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F $10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
IOZL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
I_{zz}	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
Iccz	Power Supply Current			55	86	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGHZ}$

AC Electrical Characteristics: Soe Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Clock Frequency	100			60		70		MHz	2-1
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay CP to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$		$\begin{aligned} & 10.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.0 \\ 5.8 \\ \hline \end{array}$	$\begin{gathered} 11.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{array}{r} 14.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLz}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	8.0 7.5		$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & V_{C C}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{cc}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D_{n} to CP	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	CP Pulse Width HIGH or LOW	7.0 6.0						ns	2-4

National
Semiconductor

54F/74F537

1-of-10 Decoder with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F537 is one-of-ten decoder/demultiplexer with four active HIGH BCD inputs and ten mutually exclusive outputs. A polarity control input determines whether the outputs are active LOW or active HIGH. The 'F537 has TRI-STATE outputs, and a HIGH signal on the Output Enable ($\overline{\mathrm{OE}}$) input forces all outputs to the high impedance state. Two input
enables, active $\mathrm{HIGH} \mathrm{E}_{2}$ and active LOW $\overline{\mathrm{E}}_{1}$, are available for demultiplexing data to the selected output in either noninverted or inverted form. Input codes greater than BCD nine cause all outputs to go to the inactive state (i.e., same polarity as the P input).

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for LCC and PCC
$O_{5} A_{1} A_{0} \overline{O E} P$
图76囷

(14) 151611718
$E_{2} E_{1} A_{2} A_{3} O_{4}$
TL/F/9550-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}^{\prime} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Address Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
\bar{E}_{1}	Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
E_{2}	Enable Input (Active HIGH)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E}$	Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
P	Polarity Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{9}$	TRI-STATE Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Truth Table

Function	Inputs									Outputs							
	$\overline{O E}$	\bar{E}_{1}	E_{2}	A_{3}	A_{2}	A_{1}	A_{0}	O_{0}	0_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	O_{9}
High Impedance	H	X	X	X	X	X	X	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
Disable	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & H \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \end{aligned}$			Outputs Equal P Input										
Active HIGH Output $(P=L)$	L	L	H	L	L	L	L	H	L	L	L	L	L	L	L	L	L
	L	L	H	L	L	L	H	L	H	L	L	L	L	L	L	L	L
	L	L	H	L	L	H	L	L	L	H	L	L	L	L	L	L	L
	L	L	H	L	L	H	H	L	L	L	H	L	L	L	L	L	L
	L	L	H	L	H	L	L	L	L	L	L	H	L	L	L	L	L
	L	L	H	L	H	L	H	L	L	L	L	L	H	L	L	L	L
	L	L	H	L	H	H	L	L	L	L	L	L	L	H	L	L	L
	L	L	H	L	H	H	H	L	L	L	L	L	L	L	H	L	L
	L	L	H	H	L	L	L	L	L	L	L	L	L	L	L	H	L
	L	L	H	H	L	L	H	L	L	L	L	L	L	L	L	L	H
	L	L	H	H	X	H	X	L	L	L	L	L	L	L	L	L	L
	L	L	H	H	H	X	X	L	L	L	L	L	L	L	L	L	L
Active LOW Output $(\mathrm{P}=\mathrm{H})$	L	L	H	L	L	L	L	L	H	H	H	H	H	H	H	H	H
	L	L	H	L	L	L	H	H	L	H	H	H	H	H	H	H	H
	L	L	H	L	L	H	L	H	H	L	H	H	H	H	H	H	H
	L	L	H	L	L	H	H	H	H	H	L	H	H	H	H	H	H
	L	L	H	L	H	L	L	H	H	H	H	L	H	H	H	H	H
	L	L	H	L	H	L	H	H	H	H	H	H	L	H	H	H	H
	L	L	H	L	H	H	L	H	H	H	H	H	H	L	H	H	H
	L	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H
	L	L	H	H	L	L	L	H	H	H	H	H	H	H	H	L	H
	L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	L
	L	L	H	H	X	H	X	H	H	H	H	H	H	H	H	H	H
	L	L	H	H	H	X	X	H	H	H	H	H	H	H	H	H	H

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature
Military
Commercial
Supply Voltage
Military
Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
\\
\\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathbf{V}_{\mathbf{c c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{IIN}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F $10 \% V_{C C}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC $74 F 5 \% V_{C C}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
$\mathrm{I}_{1 /}$	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current				56	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCz	Power Supply Current			44	66	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $A_{n} \text { to } O_{n}$	$\begin{aligned} & 6.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.0 \\ 7.5 \\ \hline \end{array}$	$\begin{aligned} & 16.0 \\ & 11.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 6.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{1} to O_{n}	$\begin{array}{r} 5.0 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{gathered} 14.5 \\ 9.0 \\ \hline \end{gathered}$			$\begin{aligned} & 5.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.5 \\ & 10.0 \\ & \hline \end{aligned}$		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay E_{2} to O_{n}	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 16.0 \\ & 14.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.0 \\ & 15.0 \\ & \hline \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{P} \text { to } \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.0 \\ & 17.0 \\ & \hline \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E}$ to O_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 13.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.5 \\ 14.0 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$			2.0 3.0	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$		

National Semiconductor

54F/74F538

1-of-8 Decoder with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F538 decoder/demultiplexer accepts three Address ($A_{0}-A_{2}$) input signals and decodes them to select one of eight mutually exclusive outputs. A polarity control input (P) determines whether the outputs are active LOW or active HIGH. A HIGH Signal on either of the active LOW Output Enable ($\overline{\mathrm{OE}}$) inputs forces all outputs to the high impedance state. Two active HIGH and two active LOW input enables are available for easy expansion to 1 -of 32 decoding with
four packages, or for data demultiplexing to 1 -of- 8 or 1-of16 destinations.

Features

- Output polarity control
m Data demultiplexing capability
- Multiple enables for expansion
- TRI-STATE outputs

Ordering Code: See Section 5

Logic Symbols

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{2}$	Address Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
\bar{E}_{1}, \bar{E}_{2}	Enable Inputs (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
E_{3}, E_{4}	Enable Inputs (Active HIGH)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
P	Polarity Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	Output Enable Inputs (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9551-3

Truth Table

Function	Inputs									Outputs							
	$\overline{O E}_{1}$	$\overline{\mathrm{OE}}_{2}$	E_{1}	E_{2}	E_{3}	E_{4}	A_{2}	A_{1}	A_{0}	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	07
High	H	X	x	X	X	X	X	X	X	Z	Z	Z	Z	Z	Z	Z	Z
Impedance	X	H	X	X	X	X	X	X	X	Z	Z	Z	Z	Z	Z	Z	Z
Disable	L	L	H	X	X	X	x	X	X	Outputs Equal P Input							
	L	L	X	H	X	X	X	X	X								
	L	L	X	X	L	X	X	X	X								
	L	L	X	X	X	L	X	X	X								
Active HIGH Output $(P=L)$	L	L	L	L	H	H	L	L	L	H	L	L	L	L	L	L	L
	L	L	L	L	H	H	L	L	H	L	H	L	L	L	L	L	L
	L	L	L.	L	H	H	L	H	L	L	L	H	L	L	L	L	L
	L	L	L	L	H	H	L	H	H	L	L	L	H	L	L	L	L
	L	L	L	L	H	H	H	L	L	L	L	L	L	H	L	L	L.
	L	L	L	L	H	H	H	L	H	L	L	L	L	L	H	L	L
	L	L	L	L	H	H	H	H	L	L	L	L	L	L	L	H	L
	L	L	L	L	H	H	H	H	H	L	L	L	L	L	L	L	H
Active LOW Output $(P=H)$	L	L	L	L	H	H	L	L	L	L	H	H	H	H	H	H	H
	L	L	L	L	H	H	L	L	H	H	L	H	H	H	H	H	H
	L	L	L	L	H	H	L	H	L	H	H	L	H	H	H	H	H
	L	L	L	L	H	H	L	H	H	H	H	H	L	H	H	H	H
	L	L	L	L	H	H	H	L	L	H	H	H	H	L	H	H	H
	L	L	L	L	H	H	H	L	H	H	H	H	H	H	L	H	H
	L	L	L	L	H	H	H	H	L	H	H	H	H	H	H	L	H
	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L

H $=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Logic Diagram

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specifi contact the National Semi Distributors for availability an	vices are required, ctor Sales Office/ cifications.
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output	$\begin{array}{r} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{array}$
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{IOL}_{\text {(}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under	
Note 2: Either voltage limit or current limit is sufficient to protect inp	

Recommended Operating Conditions

Free Air Ambient Temperature
Military
Commercial

Supply Voltage Military
Commercial

$$
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\
+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
$$

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$V_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$V_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
VOL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{ILL}^{\text {L }}$	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl.	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			31	45	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			37	56	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCz	Power Supply Current			37	56	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $A_{n} \text { to } O_{n}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{aligned} & 16.0 \\ & 11.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E}_{1} or \bar{E}_{2} to O_{n}	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{gathered} 15.0 \\ 9.0 \end{gathered}$			$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 10.0 \\ & \hline \end{aligned}$		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay E_{3} or E_{4} to O_{n}	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.0 \\ 10.0 \\ \hline \end{array}$	$\begin{array}{r} 16.0 \\ 14.0 \\ \hline \end{array}$			$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 17.0 \\ 15.0 \\ \hline \end{array}$	ns	2-3
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay P to O_{n}	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 16.0 \end{aligned}$			$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 17.0 \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ to O_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 10.0 \\ & 13.0 \end{aligned}$				$\begin{aligned} & 11.0 \\ & 14.0 \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ to O_{n}	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	4.0 5.0	6.0 8.0				$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$		

54F/74F539

Dual 1-of-4 Decoder with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F539 contains two independent decoders. Each accepts two Address (A_{0}, A_{1}) input signals and decodes them to select one of four mutually exclusive outputs. A polarity control input (P) determines whether the outputs are active HIGH ($P=\mathrm{L}$) or active LOW $(P=H)$. An active LOW
input Enable (\bar{E}) is available for data demultiplexing; data is routed to the selected output in non-inverted form in the active LOW mode or in inverted form in the active HIGH mode. A HIGH signal on the active LOW Output Enable ($\overline{\mathrm{OE}}$) input forces the TRI-STATE outputs to the high impedance state.

Ordering Code: See Section 5

Logic Symbols

TL/F/9552-1

IEEE/IEC

Connection Diagrams
Pin Assignment for DIP, SOIC and Flatpak

TL/F/9552-2

Pin Assignment for LCC and PCC

TL/F/9552-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	$\begin{gathered} \text { Input } \mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}} \\ \text { Output } \mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}} \end{gathered}$
$\mathrm{A}_{0 \mathrm{a}}-\mathrm{A}_{1 \mathrm{a}}$	Side A Address Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{A}_{0 \mathrm{~b}}-\mathrm{A}_{1 \mathrm{~b}}$	Side B Address Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{E}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$	Enable Inputs (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E}_{a}, \overline{O E}_{b}$	Output Enable Inputs (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{Pa}_{\mathrm{a}}, \mathrm{P}_{\mathrm{b}}$	Polarity Control Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0 \mathrm{a}}-\mathrm{O}_{3 \mathrm{a}}$	Side A TRI-STATE Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\mathrm{O}_{0 \mathrm{~b}}-\mathrm{O}_{3 \mathrm{~b}}$	Side B TRI-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)

Truth Table (each half)

Function	Inputs				Outputs			
	$\overline{O E}$	E	A_{1}	A_{0}	O_{0}	O_{1}	O_{2}	O_{3}
High Impedance	H	X	X	X	Z	Z	Z	Z
Disable	L	H	X	X	$\mathrm{O}_{\mathrm{n}}=\mathrm{P}$			
Active HIGH	L	L	L	L	H	L	L	L
Output	L	L	L	H	L	H	L	L
($\mathrm{P}=\mathrm{L}$)	L	L	H	L	L	L	H	L
	L	L	H	H	L	L	L	H
Active LOW	L	L	L	L	L	H	H	H
Output	L	L	L	H	H	L	H	H
($\mathrm{P}=\mathrm{H}$)	L	L	H	L	H	H	L	H
	L	L	H	H	H	H	H	L

H $=$ HIGH Voltage Level $L=$ LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Logic Diagram (one hall shown)

TL/F/9552-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature under Bias

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$V_{C C}$ Pin Potential to
Ground Pin
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$

Input Voltage (Note 2)
Input Current (Note 2)
-0.5 V to +7.0 V

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } V_{\mathrm{CC}}
$$

TRI-STATE Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max) twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{lOL}=20 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
${ }^{1}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
I_{IL}	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			28	45	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			40	60	mA	Max	$V_{O}=$ LOW
ICCZ	Power Supply Current			40	60	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $A_{n} \text { to } O_{n}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 14.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 12.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 13.0 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay E to O_{n}	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 7.5 \end{gathered}$	$\begin{gathered} 16.0 \\ 9.5 \end{gathered}$			$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 10.5 \end{aligned}$	ns	2-3
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay P to O_{n}	$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 16.5 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 17.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{array}{r} 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 10.5 \\ & 13.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 14.0 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$			$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.5 \end{aligned}$		

54F／74F540 • 54F／74F541
 Octal Buffer／Line Driver with TRI－STATE ${ }^{\circledR}$ Outputs

General Description

The＇F540 and＇F541 are similar in function to the＇F240 and ＇F244 respectively，except that the inputs and outputs are on opposite sides of the package（see Connection Dia－ grams）．This pinout arrangement makes these devices es－ pecially useful as output ports for microprocessors，allowing ease of layout and greater PC board density．

Features

－TRI－STATE outputs drive bus lines
－Inputs and outputs opposite side of package，allowing easier interface to microprocessors

Ordering Code：See Section 5

Connection Diagrams

TL／F／9553－2
TL／F／9553－1
＇F541

TL／F／9553－5

TL／F／9553－4
Unit Loading／Fan Out：See Section 2 for U．L．definitions

Pin Names	Description	54F／74F	
		U．L． HIGH／LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}^{2}$
$\begin{aligned} & \overline{O E}_{1}, \overline{O E}_{2} \\ & I_{n} \\ & \mathrm{O}_{\mathrm{n}}, \bar{O}_{\mathrm{n}} \\ & \hline \end{aligned}$	TRI－STATE Output Enable Input（Active LOW） Inputs Outputs	$\begin{gathered} 1.0 / 1.0 \\ 1.0 / 1.0 \\ 600 / 106.6(80) \\ \hline \end{gathered}$	$\begin{gathered} 20 \mu \mathrm{~A} /-0.6 \mathrm{~mA} \\ 20 \mu \mathrm{~A} /-0.6 \mathrm{~mA} \\ -12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA}) \\ \hline \end{gathered}$

Truth Table

Inputs			Outputs	
$\overline{\mathrm{OE}}_{1}$	$\overline{\mathrm{OE}}_{2}$	I	'F540	'F541
L	L	H	L	H
H	X	X	Z	Z
X	H	X	Z	Z
L	L	L	H	L

$H=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance

Logic Diagrams

Absolute Maximum Ratings (Note 1)
 If Milltary/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.
 Storage Temperature
 Ambient Temperature under Bias
 Junction Temperature under Bias
 $V_{C C}$ Pin Potential to
 Ground Pin
 Input Voltage (Note 2)
 Input Current (Note 2)
 Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
 Standard Output TRI-STATE Output
 Current Applied to Output in LOW State (Max)
 $$
\begin{array}{r} -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\ -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\ -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\ -30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \end{array}
$$
 twice the rated $\mathrm{lOL}_{\mathrm{O}}(\mathrm{mA})$
 Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life Impaired. Functional operation under these conditions is not implied.
 Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military Commercial
Supply Voltage Military Commercial
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
+4.5 V to +5.5 V
+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.4 \\ & 2.0 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.0 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA} \end{aligned}$
VOL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{array}{r} 0.55 \\ 0.55 \\ \hline \end{array}$	V	Min	$\begin{aligned} & \mathrm{IOL}=48 \mathrm{~mA} \\ & \mathrm{IOL}_{\mathrm{OL}}=64 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
l OZH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-100		-225	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{C C}$
ICCH	Power Supply Current ('F540)			11	20	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current ('F540)			53	75	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
1 CCZ	Power Supply Current ('F540)			31	45	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z$
ICCH	Power Supply Current ('F541)			26	35	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current ('F541)			55	75	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
lCCZ	Power Supply Current ('F541)			31	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	FigNo
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Data to Output ('F540)	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time ('F540)	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.9 \\ 5.8 \\ \hline \end{array}$	$\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	ns	2-5
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$	Output Disable Time ('F540)	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.4 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 6.0 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 7.5 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.5 \\ 6.0 \\ \hline \end{array}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay Data to Output ('F541)	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \\ & \hline \end{aligned}$	Output Enable Time ('F541)	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time ('F541)	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$		

54F/74F543
 Octal Registered Transceiver

General Description

The 'F543 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow. The A outputs are guaranteed to sink 24 mA (20 mA Mil) while the B outputs are rated for $64 \mathrm{~mA}(48 \mathrm{~mA}$ Mil).

Features

- 8-bit octal transceiver
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- A outputs sink 24 mA (20 mA Mil)
- B outputs sink $64 \mathrm{~mA}(48 \mathrm{~mA}$ Mil)
- 300 mil slim package

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $l_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
OEAB	A-to-B Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E B A}$	B-to-A Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CEAB	A-to-B Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{C E B A}$	B-to-A Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\text { LEAB }}$	A-to-B Latch Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { LEBA }}$	B-to-A Latch Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A-to-B Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
	B-to-A TRI-STATE ${ }^{\text {® }}$ Outputs	150/40 (33.8)	-3 mA/24 mA (20 mA)
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B-to-A Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
	A-to-B TRI-STATE Outputs	600/106.6 (80)	-12 mA/64 mA (48 mA)

Functional Description

The 'F543 contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable ($\overline{\mathrm{CEAB}}$) input must be LOW in order to enter data from $A_{0}-A_{7}$ or take data from $B_{0}-B_{7}$, as indicated in the Data I/O Control Table. With CEAB LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{C E A B}$ and $\overline{O E A B}$ both LOW, the TRI-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{C E B A}, \overline{L E B A}$ and $\overline{O E B A}$ inputs.

Data I/O Control Table

Inputs			Latch Status	Output Buffers
$\overline{\text { CEAB }}$	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$		
H	X	X	Latched	High Z
X	H	X	Latched	-
L	L	X	Transparent	-
X	X	H	-	High Z
L	X	L	-	Driving

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
A-to-B data flow shown; B-to-A flow control is the same, except using CEBA, $\overline{L E B A}$ and $\overline{O E B A}$

TL/F/9554-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the Natlonal Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambiesnt Temperature under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Voltage (Note 2)

$$
\begin{aligned}
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Input Current (Note 2)

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$ TRI-STATE Output

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output in LOW State (Max)
twice the rated O_{OL} (mA) these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
\quad Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{Cc}	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$V_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} \mathrm{5} \mathrm{\%} \mathrm{VCC}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ 		$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \\ & 2.0 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(A_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(A_{n}\left(B_{n}\right)\right. \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(A_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(A_{n}, B_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(B_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(A_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(A_{n}, B_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC $54 \mathrm{~F} 10 \%$ VCC 74F 10\% VCC 74F 10\% VCC			$\begin{gathered} 0.5 \\ 0.55 \\ 0.5 \\ 0.55 \\ \hline \end{gathered}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\mathrm{Bn}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{An}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64\left(\mathrm{Bn}_{n}\right) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\begin{aligned} & V_{I N}=7.0 \mathrm{~V}(\overline{\mathrm{OEAB}}, \overline{\mathrm{OEBA}}, \\ & \overline{\mathrm{LEAB}}, \overline{\mathrm{LEBA}}, \overline{\mathrm{CEAB}}, \overline{\mathrm{CEBA}}) \end{aligned}$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)				1.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right)$
I/L	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \end{array}$	mA	Max	$\begin{aligned} & V_{I N}=0.5 V(\overline{O E A B}, \overline{O E B A}) \\ & V_{I N}=0.5 V(\overline{\mathrm{CEAB}}, \overline{\mathrm{CEBA}}) \end{aligned}$
$\mathrm{IIH}+\mathrm{I}_{\text {OZH }}$	Output Leakage Current				70	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)$
$\mathrm{III.}^{+} \mathrm{l}$ OZL	Output Leakage Current				-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)$
los	Output Short-Circuit Current		$\begin{gathered} -60 \\ -100 \\ \hline \end{gathered}$		$\begin{array}{r} -150 \\ -225 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{\text {OUT }}=O V\left(A_{n}\right) \\ & V_{\text {OUT }}=O V\left(B_{n}\right) \end{aligned}$

DC Electrical Characteristics (Continued)

Symbol	Parameter	54F/74F			Units	Vcc	Conditions
		Min	Typ	Max			
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			250	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(A_{n}, B_{n}\right)$
lzz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(A_{n}, \mathrm{~B}_{n}\right)$
ICCH	Power Supply Current		67	100	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current		83	125	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Current		83	125	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay Transparent Mode A_{n} to B_{n} or B_{n} to A_{n}	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.5 \end{aligned}$			3.0 3.0	$\begin{aligned} & 8.5 \\ & 7.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay LEBA to A_{n}	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 8.5 \\ 8.5 \\ \hline \end{array}$	$\begin{array}{r} 11.0 \\ 11.0 \\ \hline \end{array}$			$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.5 \\ 12.5 \\ \hline \end{array}$	ns	2-3
$t_{\text {PLH }}$ ${ }^{\text {tpHL }}$	Propagation Delay $\overline{\text { LEAB }}$ to B_{n}	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$			$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OEBA}}$ or $\overline{\mathrm{OEAB}}$ to A_{n} or B_{n} $\overline{C E B A}$ or $\overline{C E A B}$ to A_{n} or B_{n}	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$			$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	Output Disable Time $\overline{O E B A}$ or $\overline{O E A B}$ to A_{n} or B_{n} $\overline{C E B A}$ or $\overline{C E A B}$ to A_{n} or B_{n}	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\text {cc }}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	3.0				3.5		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	A_{n} or B_{n} to $\overline{\text { LEBA }}$ or $\overline{L E A B}$	3.0				3.5			
$t_{\text {h }}(\mathrm{H})$	Hold Time, HIGH or LOW	3.0				3.5			
$t_{\text {h }}(L)$	A_{n} or B_{n} to LEBA or $\overline{L E A B}$	3.0				3.5			
$t_{w}(L)$	Latch Enable, B to A Pulse Width, LOW	8.0				9.0		ns	2-4

54F／74F544

Octal Registered Transceiver

General Description

The＇F544 octal transceiver contains two sets of D－type latches for temporary storage of data flowing in either direc－ tion．Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow．The A outputs are guaranteed to sink 24 mA （ 20 mA Mil）while the B outputs are rated for $64 \mathrm{~mA}(48 \mathrm{~mA}$ Mil）．The＇F544 inverts data in both directions．

Features

－8－bit octal transceiver
－Back－to－back registers for storage
－Separate controls for data flow in each direction
－A outputs sink 24 mA （ 20 mA Mil），B outputs sink 64 mA （ 48 mA Mil）
－ 300 mil slim PDIP

Ordering Code：See Section 5

Logic Symbols

IEEE／IEC

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $\mathrm{I}_{\text {IH }} / \mathrm{I}_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
OEAB	A-to-B Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { OEBA }}$	B-to-A Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CEAB	A-to-B Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\text { CEBA }}$	B-to-A Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\text { LEAB }}$	A-to-B Latch Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { LEBA }}$	B-to-A Latch Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\bar{A}_{0}-\bar{A}_{7}$	A-to-B Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
	B-to-A TRI-STATE Outputs	150/40(33.3)	-3 mA/24 mA (20 mA)
$\bar{B}_{0}-\bar{B}_{7}$	B-to-A Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
	A-to-B TRI-STATE Outputs	600/106.6(80)	-12 mA/64 mA (48 mA)

Functional Description

The 'F544 contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable ($\overline{C E A B}$) input must be LOW in order to enter data from $\bar{A}_{0}-\bar{A}_{7}$ or take data from $\overline{\mathrm{B}}_{0}-\overline{\mathrm{B}}_{7}$, as indicated in the Data I/O Control Table. With $\overline{C E A B}$ LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With CEAB and OEAB both LOW, the TRI-STATE ${ }^{\text {® }}$ B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{C E B A}$, $\overline{\text { LEBA }}$ and $\overline{O E B A}$ inputs.

Data I/O Control Table

Inputs			Latch Status	Output Buffers
$\overline{\text { CEAB }}$	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$		
H	X	X	Latched	High Z
X	H	X	Latched	-
L	L	X	Transparent	-
X	X	H	-	High Z
L	X	L	-	Driving

$H=H I G H$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
A-to-B data flow shown; B-to-A flow control is the same, except using CEBA, LEBA and DEBA

Logic Diagram

TL/F/9555-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Junction Temperature under Bias
V_{CC} Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2) be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC}
TRI-STATE Output -0.5 V to +5.5 V

Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$

Recommended Operating Conditions

Free Air Ambient Temperature
Military $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Commercial $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage

Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\begin{aligned} & \mathbb{I}_{\mathbb{N}}=-18 \mathrm{~mA}, \\ & \text { (except } \overline{\mathrm{A}}_{n}, \overline{\mathrm{~B}}_{n} \text {) } \end{aligned}$
V OH	Output HIGH Voltage	54F $10 \% V_{C C}$ $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \\ & 2.0 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & I_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\bar{A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\bar{A}_{n}, \overline{\mathrm{~B}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\overline{\mathrm{~B}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{~A}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\bar{A}_{n}, \overline{\mathrm{~B}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\overline{\mathrm{~B}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{~A}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\overline{\mathrm{~A}}_{n}, \overline{\mathrm{~B}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{BA}\left(\overline{\mathrm{~B}}_{n}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{gathered} 0.5 \\ 0.55 \\ 0.5 \\ 0.55 \\ \hline \end{gathered}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\overline{\mathrm{~A}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\bar{B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\overline{\mathrm{~A}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\overline{\mathrm{~B}}_{n}\right) \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ (except $\left.\bar{A}_{n}, \bar{B}_{n}\right)$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ (except $\left.\overline{\mathrm{A}}_{n}, \overline{\mathrm{~B}}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)				1.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\bar{A}_{n}, \bar{B}_{n}\right)$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V}(\overline{\mathrm{OEAB}}, \overline{\mathrm{OEBA}}) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{CEAB}}, \overline{\mathrm{CEBA}}) \end{aligned}$
$\mathrm{IIH}^{+} \mathrm{I}_{\text {OZH }}$	Output Leakage Current				70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\overline{\mathrm{~A}}_{n}, \overline{\mathrm{~B}}_{n}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current				-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\bar{A}_{n}, \overline{\mathrm{~B}}_{n}\right)$
los	Output Short-Circuit Current		$\begin{gathered} -60 \\ -100 \\ \hline \end{gathered}$		$\begin{aligned} & -150 \\ & -225 \end{aligned}$	mA	Max	$\begin{aligned} & V_{\text {OUT }}=0 V\left(\bar{A}_{n}\right) \\ & V_{\text {OUT }}=0 V\left(\bar{B}_{n}\right) \end{aligned}$
$l_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}\left(\bar{A}_{n}, \bar{B}_{n}\right)$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}\left(\bar{A}_{n}, \bar{B}_{n}\right)$
ICCH	Power Supply Current			70	105	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			85	130	mA	Max	$V_{O}=$ LOW
ICCZ	Power Supply Current			83	125	mA	Max	$V_{O}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$	Propagation Delay	3.0	7.0	9.5	3.0	12.0	3.0	10.5		
$\mathrm{t}_{\text {PHL }}$	Transparent Mode \bar{A}_{n} to \bar{B}_{n} or \bar{B}_{n} to \bar{A}_{n}	3.0	5.0	6.5	2.5	8.5	3.0	7.5	ns	2-3
t_{PLH} $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\text { LEBA }}$ to \bar{A}_{n}	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \end{gathered}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ t_{PHL}	Propagation Delay $\overline{\text { LEAB }}$ to \bar{B}_{n}	$\begin{aligned} & 6.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 7.0 \\ \hline \end{gathered}$	$\begin{gathered} 13.0 \\ 9.5 \\ \hline \end{gathered}$		$\begin{array}{r} 18.0 \\ 11.5 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OEBA}}$ or $\overline{\mathrm{OEAB}}$ to \bar{A}_{n} or $\overline{\mathrm{B}}_{n}$ $\overline{\mathrm{CEBA}}$ or $\overline{\mathrm{CEAB}}$ to \bar{A}_{n} or $\overline{\mathrm{B}}_{n}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \end{gathered}$	3.0 4.0	$\begin{aligned} & 11.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OEBA}}$ or $\overline{\mathrm{OEAB}}$ to $\overline{\mathrm{A}}_{n}$ or $\overline{\mathrm{B}}_{n}$ $\overline{\mathrm{CEBA}}$ or $\overline{\mathrm{CEAB}}$ to \bar{A}_{n} or \bar{B}_{n}	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$		8.0 7.5	2.0 2.0	10.0 9.5	2.5 2.5	9.0 8.5		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter							Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathbf{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	3.0		3.0		3.0		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	\bar{A}_{n} or \bar{B}_{n} to $\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$	3.0		3.0		3.0			
$t_{n}(\mathrm{H})$	Hold Time, HIGH or LOW	3.0		3.0		3.0			
$t_{n}(\mathrm{~L})$		3.0		3.0		3.0			
$t_{w}(L)$	Latch Enable, B to A Pulse Width, LOW	6.0		9.0		7.5		ns	2-4

54F/74F545 Octal Bidirectional Transceiver with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F545 is an 8-bit, TRI-STATE, high-speed transceiver. It provides bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with $24 \mathrm{~mA}(20 \mathrm{~mA}$ Mil) bus drive capability on the A ports and 64 mA (48 mA Mil) bus drive capability on the B ports.
One input, Transmit/Receive (T/伿) determines the direction of logic signals through the bidirectional transceiver. Transmit enables data from A ports to B ports; Receive enables data from B ports to A ports. The Output Enable input disables both A and B ports by placing them in a TRI-STATE condition.

Features

- Higher drive than 8304
- 8-bit bidirectional data flow reduces system package count
■ TRI-STATE inputs/outputs for interfacing with bus-oriented systems
- 24 mA (20 mA Mil) and 64 mA (48 mA Mil) bus drive capability on A and B ports, respectively
- Transmit/Receive and Output Enable simplify control logic

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Truth Table

Inputs		Outputs
$\overline{O E}$	$T / \overline{\mathbf{R}}$	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	High Z

Pin Assignment for LCC and PCC
$A_{7} A_{6} A_{5} A_{4} A_{3}$

14 15161118
$B_{5} B_{4} B_{3} \quad B_{2} \quad B_{1}$
TL/F/9556-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output I IOH $/ \mathrm{I}_{\mathrm{OL}}$
	Output Enable Input (Active LOW)	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{~T} / \overline{\mathrm{R}}$	Transmit/Receive Input	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	Side A TRI-STATE Inputs or	$3.5 / 1.083$	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
	TRI-STATE Outputs		
$\mathrm{B}_{0}-\mathrm{B}_{7}$	Side B TRI-STATE Inputs or	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
	TRI-STATE Outputs	$3.5 / 1.083$	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
		$600 / 106.6(80)$	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias
$V_{C c}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}$) Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{C C}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Note 1: Absolute maximum ratings are values boyond which the be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Cönditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}(\overline{O E}, \mathrm{~T} / \overline{\mathrm{R}})$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC $54 \mathrm{~F} 10 \%$ VCC 74F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 10 \%$ VCC 74F 5\% VCC $74 F 5 \% V_{\text {CC }}$ $74 F 5 \% V_{C C}$	2.5 2.4 2.0 2.5 2.4 2.0 2.7 2.7 2.0			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \\ & \mathrm{IOH}^{2}=-1 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{IOH}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \left.\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~m}\right) \end{aligned}$
VOL	Output LOW Voltage	$54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $54 \mathrm{~F} 10 \%$ VCC 74F 10\% VCC 74F 10\% VCC			$\begin{gathered} \hline 0.5 \\ 0.55 \\ 0.5 \\ 0.55 \\ \hline \end{gathered}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(A_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(B_{n}\right) \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}(\overline{\mathrm{OE}, \mathrm{T} / \overline{\mathrm{R}})}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}(\overline{\mathrm{OE},} \mathrm{T} / \overline{\mathrm{A}})$
l BVIT	Input HIGH Current Breakdown Test (I/O)				1.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {IL }}$	Input LOW Current				-1.2	mA	Max	$\mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}(\overline{\mathrm{OE},} \mathrm{T} / \overline{\mathrm{R}})$
$\mathrm{I}_{\mathrm{iH}}+\mathrm{IOZH}$	Output Leakage Current				70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{l}_{\text {OZL }}$	Output Leakage Current				-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)$
los	Output Short-Circuit Current		$\begin{array}{r} -60 \\ -100 \\ \hline \end{array}$		$\begin{aligned} & -150 \\ & -225 \\ & \hline \end{aligned}$	mA	Max	$\begin{aligned} & V_{\text {OUT }}=O V\left(A_{n}\right) \\ & V_{\text {OUT }}=O V\left(B_{n}\right) \end{aligned}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{C C}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			70	90	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			95	120	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Current			85	110	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{C C}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 7.0 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	ns	2-5
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$		

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Octal Decoder/Demultiplexer with Address Latches and Acknowledge

General Description

The 'F547 is a 3-to-8 line address decoder with latches for adress storage. Designed primarily to simplify multiple chip OW and two active HIGH Enable to conserve address space. Also included is an active LOW Acknowledge output that responds to either a Read or Write input signal when the Enables are active.

Ordering Code: See Section 5

Logic Symbols

Features

- 3-to-8 line address decoder
- Address storage latches
- Multiple enables for address extension

Open collector acknowledge output

Unit Loading/Fan Out: See Section 2 tor U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$A_{0}-A_{2}$	Address Select Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\stackrel{E}{E}_{1}$	Chip Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
E_{2}, E_{3}	Chip Enable Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
LE	Latch Enable Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{RD}}$	Read Acknowledge Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { WR }}$	Write Acknowledge Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { ACK }}$	Open Collector Acknowledge Output (Active LOW)	*OC/33.3	* $\mathrm{OC} / 20 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Decoded Outputs (Active LOW)	50/33.3	-1 mA/20 mA

*OC = Open Collector

Functional Description

When enabled, the 'F547 accepts the $A_{0}-A_{2}$ Address inputs and decodes them to select one of eight active LOW, mutually exclusive outputs, as shown in the Decoder Truth Table. With LE HIGH, the Address latches are transparent and the output selection changes each time the $\mathrm{A}_{0}-\mathrm{A}_{2}$ address changes. When LE is LOW, the latches store the last valid address preceding the HIGH-to-LOW transition of the LE input signal. For applications in which the separation of latch enable and chip enable functions is not required, LE and \bar{E}_{1} can be tied together, such that when HIGH the outputs are OFF and the latches are transparent, and when LOW the latches are storing and the selected output is enabled.
The open collector Acknowledge ($\overline{\mathrm{ACK}}$) output is normally HIGH (i.e., OFF) and goes LOW when $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} are all active and either the Read ($\overline{\mathrm{RD}}$) or Write ($\overline{\mathrm{WR}) \text {) input is LOW, }}$ as indicated in the Acknowledge Truth Table.

Acknowledge Truth Table

Inputs					Output
$\bar{E}_{\mathbf{1}}$	$\mathrm{E}_{\mathbf{2}}$	$\mathbf{E}_{\mathbf{3}}$	$\overline{\mathbf{R D}}$	$\overline{\mathrm{WR}}$	$\overline{\mathbf{A C K}}$
H	X	X	X	X	H
X	L	X	X	X	H
X	X	L	X	X	H
L	H	H	H	H	H
L	H	H	L	X	L
L	H	H	X	L	L

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
Latch Status Table

Input LE	Latch Status
H	Transparent
L	Storing

Output Status Table

Inputs			Decoder Outputs
\bar{E}_{1}	E_{2}	E_{3}	
L	H	H	$\overline{\mathrm{O}}_{n}=\mathrm{LOW} \dagger$
H	X	X	$\mathrm{O}_{0}-\mathrm{O}_{7}=\mathrm{HIGH}$
X	L	X	$\mathrm{O}_{0}-\mathrm{O}_{7}=\mathrm{HIGH}$
X	X	L	$\mathrm{O}_{0}-\mathrm{O}_{7}=\mathrm{HIGH}$

†See Decoder Truth Table

Decoder Truth Table*

Inputs			Outputs							
$\mathbf{A}_{\mathbf{2}}$	\mathbf{A}_{1}	$\mathbf{A}_{\mathbf{0}}$	$\overline{\mathbf{O}}_{\mathbf{0}}$	$\overline{\mathbf{O}}_{\mathbf{1}}$	$\overline{\mathrm{O}}_{\mathbf{2}}$	$\overline{\mathrm{O}}_{\mathbf{3}}$	$\overline{\mathbf{O}}_{\mathbf{4}}$	$\overline{\mathbf{O}}_{\mathbf{5}}$	$\overline{\mathbf{O}}_{\mathbf{6}}$	$\overline{\mathrm{O}}_{\mathbf{7}}$
L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	H	H	H	H	H	H
L	H	L	H	H	L	H	H	H	H	H
L	H	H	H	H	H	L	H	H	H	H
H	L	L	H	H	H	H	L	H	H	H
H	L	H	H	H	H	H	H	L	H	H
H	H	L	H	H	H	H	H	H	L	H
H	H	H	H	H	H	H	H	H	H	L

*Assuming E_{1}, LOW; E_{2} and E_{3}, HIGH

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			\checkmark		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{ACK}}, \overline{\mathrm{O}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{ACK}}, \overline{\mathrm{O}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{ACK}}, \overline{\mathrm{O}}_{n}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\overline{\mathrm{ACK}}, \overline{\mathrm{O}}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\overline{\mathrm{ACK}}, \overline{\mathrm{O}}_{n}\right) \end{aligned}$
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BV} /}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
ILL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\overline{\mathrm{O}}_{n}\right)$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Min	$V_{\text {OUT }}=V_{\text {CC }}\left(\bar{O}_{n}\right)$
lOHC	Open Collector, Output OFF Leakage Test				250	$\mu \mathrm{A}$	Min	$V_{\text {OUT }}=V_{\text {CC }}(\overline{\text { ACK }})$
lc	Power Supply Current			17	30	mA	Max	

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $A_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 12.0 \end{gathered}$	3.0 5.0	$\begin{aligned} & 10.5 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 13.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{1} to $\overline{\mathrm{O}}_{n}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$		$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.5 \\ 9.5 \\ \hline \end{array}$	ns	2-3
$\mathrm{t}_{\mathrm{PL}} \mathrm{H}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LE to \bar{O}_{n}	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 7.5 \\ 14.5 \end{gathered}$	$\begin{aligned} & 10.0 \\ & 14.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 15.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay E_{2} or E_{3} to \bar{O}_{n}	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.0 \\ 11.0 \\ \hline \end{array}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\bar{E}_{1}, \overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to $\overline{\mathrm{ACK}}$	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$		$\begin{array}{r} 16.0 \\ 11.0 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$	$\begin{array}{r} 14.0 \\ 10.5 \\ \hline \end{array}$	ns	2-3
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay E_{2} or E_{3} to $\overline{\mathrm{ACK}}$	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 12.0 \end{aligned}$		$\begin{aligned} & 18.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \end{aligned}$	ns	2-3

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW $A_{n} \text { to } L E$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW A_{n} to LE	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$			
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE Pulse Width, HIGH	6.0		6.0		6.0		ns	2-4

National Semiconductor

54F/74F548
 Octal Decoder/Demultiplexer with Acknowledge

General Description

The 'F548 is a 3 -to-8 line address decoder with four Enable inputs. Two of the Enables are Active LOW and two are Active HIGH for maximum addressing versatility. Also provided is an Active LOW Acknowledge output that responds to either a Read or Write input signal when the Enables are active.

Features

- 3-to-8 line address decoder
- Multiple enables for address extension
- Open collector acknowledge output
- Active LOW decoder outputs

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$A_{0}-A_{2}$	Output Select Address Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
\bar{E}_{1}, \bar{E}_{2}	Chip Enable Inputs (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{E}_{3}, \mathrm{E}_{4}$	Chip Enable Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{RD}}$	Read Acknowledge Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{WR}}$	Write Acknowledge Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { ACK }}$	Open Collector Acknowledge Output (Active LOW)	OC*/33.3	*/20 mA
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	Decoded Outputs (Active LOW)	50/33.3	-1 mA/20 mA

[^15]
Functional Description

When enabled, the 'F548 accepts the $A_{0}-A_{2}$ Address inputs and decodes them to select one of eight active LOW, mutually exclusive outputs, as shown in the Decoder Truth Table. When one or more Enables is inactive, all decoder outputs are HIGH. Thus, the 'F548 can be used as a demultiplexer by applying data to one of the Enables.
The open collector Acknowledge ($\overline{\mathrm{ACK}}$) output is normally HIGH (i.e., OFF) and goes LOW when the Enables are all active and either the Read ($\overline{\mathrm{RD}}$) or Write ($\overline{\mathrm{WR}}$) input is LOW, as indicated in the Acknowledge Truth Table.

Inputs						Output
\bar{E}_{1}	E_{2}	E_{3}	E_{4}	$\overline{\mathrm{RD}}$	WR	$\overline{\text { ACK }}$
H	X	X	X	X	X	H
X	H	X	X	X	X	H
X	X	L	X	X	X	H
X	X	X	L	x	X	H
L	L	H	H	H	H	H
L	L	H	H	L	X	L
L	L	H	H	X	L	L

H = HIGH Voltage Level
$L=$ LOW Voltage Level
$X=$ Immaterial

Decoder Truth Table

Inputs							Outputs							
\bar{E}_{1}	\bar{E}_{2}	E_{3}	E_{4}	A_{2}	A_{1}	A_{0}	\bar{O}_{0}	\square_{1}	\bar{O}_{2}	\bar{O}_{3}	\bar{O}_{4}	$\overline{\mathrm{O}}_{5}$	$\overline{\mathbf{O}}_{6}$	O_{7}
H	X	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	X	H	H	H	H	H	H	H	H
X	X	L	X	x	X	X	H	H	H	H	H	H	H	H
X	X	X	L	x	X	X	H	H	H	H	H	H	H	H
L	L	H	H	L	L	L	L	H	H	H	H	H	H	H
L	L	H	H	L	L	H	H	L	H	H	H	H	H	H
L	L	H	H	L	H	L	H	H	L	H	H	H	H	H
L	L	H	H	L	H	H	H	H	H	L	H	H	H	H
L	L	H	H	H	L	L	H	H	H	H	L	H	H	H
L	L	H	H	H	L	H	H	H	H	H	H	L	H	H
L	L	H	H	H	H	L	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	L

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, contact the Natlonal Semiconductor Sales Office/
Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$ TRI-STATE® Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

$$
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
$$

Current Applied to Output

$$
\text { in LOW State }(\mathrm{Max}) \quad \text { twice the rated } \mathrm{IOL}^{(\mathrm{mA})}
$$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}\right)$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
IOHC	Open Collector, Output OFF Leakage Test				250	$\mu \mathrm{A}$	Min	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}(\overline{\mathrm{ACK}})$
ICCH	Power Supply Current			14	21	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A_{n} to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 10.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{E}_{1} or \bar{E}_{2} to $\overline{\mathrm{O}}_{n}$	$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \\ & \hline \end{aligned}$		$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \\ & \hline \end{aligned}$	ns	2-3
t_{PLH} t_{PHL}	Propagation Delay E_{3} or E_{4} to $\overline{\mathrm{O}}_{\mathrm{n}}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 12.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns	2-3
$t_{\text {PLLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay \bar{E}_{1} or \bar{E}_{2} to $\overline{A C K}$	$\begin{aligned} & 6.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 11.0 \\ 7.5 \end{gathered}$	$\begin{gathered} 12.5 \\ 9.5 \\ \hline \end{gathered}$		$\begin{array}{r} 16.5 \\ 11.0 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.5 \\ & \hline \end{aligned}$	ns	2-3
tpLH t_{PHL}	Propagation Delay E_{3} or E_{4} to $\overline{\mathrm{ACK}}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 14.0 \\ & 10.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 13.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ to $\overline{\mathrm{ACK}}$	$\begin{aligned} & 5.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 5.0 \end{gathered}$	$\begin{gathered} 12.0 \\ 8.0 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 16.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & 5.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.5 \end{gathered}$	ns	2-3

54F/74F550 • 54F/74F551
 Octal Registered Transceiver with Status Flags

General Description

The 'F550 and 'F551 octal transceivers each contain two 8bit registers for temporary storage of data flowing in either direction. Each register has its own clock pulse and clock enable inputs, as well as a flag flip-flop that is set automatically as the register is loaded. Each flag flip-flop is provided with a clear input, and each register has a separate output enable control for its TRI-STATE ${ }^{\circledR}$ buffers. The separate clocks, flags and enables provide considerable flexibility as I/O ports for demand-response data transfer. The 'F550 is non-inverting; the 'F551 inverts data in both directions.

Features

- 8-bit bidirectional I/O port with handshake
- Back-to-back registers for storage
- Register status flag flip-flops
- Separate edge-detecting clears for flags
- Inverting and non-inverting versions

■ B outputs sink 64 mA (48 mA Mil)

Ordering Code: See Section 5

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak 'F550

'F551

IEEE/IEC

Pin Assignment for LCC and PCC 'F550

TL/F/9559-2
'F551

TL/F/9559-9

Connection Diagrams (Continued)

'F550

TL/F/9559-10
'F551

TL/F/9559-11

Logic Symbols

'F551

TL/F/9559-7

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}$
CPA	A-to-B Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CPB	B-to-A Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CEA	A-to-B Clock Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { CEB }}$	B-to-A Clock Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
OEA	A Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { OEB }}$	B Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CFAB	A-to-B Flag Clear Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CFBA	B-to-A Flag Clear Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A-to-B Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	TRI-STATE B-to-A Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B-to-A Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	TRI-STATE A-to-B Outputs	600/106.6 (80)	-12 mA/64 mA (48 mA)
FAB	A-to-B Status Flag Output (Active HIGH)	50/33.3	-1 mA/20 mA
FBA	B-to-A Status Flag Output (Active HIGH)	50/33.3	-1 mA/20 mA

Functional Description

Data applied to the A inputs is entered and stored on the rising edge of the A Clock Pulse (CPA), provided that the A Clock Enable (CEA) is LOW; simultaneously, the status flipflop is set and the A-to-B flag (FAB) output goes HIGH. Data thus entered from the A inputs is present at the inputs to the B output buffers, but only appears on the B I/O pins when the B Output Enable ($\overline{O E B}$) signal is made LOW. After the B output data is assimilated, the receiving system clears the A-to-B flag flip-flop by applying a LOW-to-HIGH tran-
sition to the CFAB input. Optionally, the $\overline{O E B}$ and CFAB pins can be tied together and operated by one function from the receiving system.
Data flow from B-to-A proceeds in the same manner described for A-to-B flow. Inputs $\overline{C E B}$ and CPB enter the B input data and set the B-to-A flag (FBA) output HIGH. A LOW signal on OEA enables the A output buffers and a LOW-to-HIGH transition on CFBA clears the FBA flag.

Logic Diagrams

TL/F/9559-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Logic Diagrams (Continued)

TL/F/9559-12
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE Output

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

-0.5 V to V_{CC} -0.5 V to +5.5 V
Current Applied to Output
in LOW State (Max)

Recommended Operating Conditions

Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$V_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 10\% VCC	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \\ & 2.0 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{0}-\mathrm{A}_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{0}-\mathrm{A}_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~B}_{0}-\mathrm{B}_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{0}-A_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{0}-\mathrm{A}_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~B}_{0}-\mathrm{B}_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{0}-\mathrm{A}_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{0}-\mathrm{A}_{7}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~B}_{0}-\mathrm{B}_{7}\right) \end{aligned}$
V_{OL}	Output Low Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{gathered} 0.5 \\ 0.55 \\ 0.5 \\ 0.55 \\ \hline \end{gathered}$	V	Min	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA}\left(\mathrm{~A}_{0}-\mathrm{A}_{7}\right) \\ & \mathrm{IOL}=48 \mathrm{~mA}\left(\mathrm{~B}_{0}-\mathrm{B}_{7}\right) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{~A}_{0}-\mathrm{A}_{7}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~B}_{0}-\mathrm{B}_{7}\right) \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ (Non I/O Inputs)
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ (Non I/O Inputs)
ILL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ (Non I/O Inputs)
$\mathrm{IIH}+\mathrm{I}_{\mathrm{OZH}}$	Output Leakage Current				70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current				-650	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}\right)$
l OS	Output Short-Circuit Current		$\begin{gathered} -60 \\ -100 \\ \hline \end{gathered}$		$\begin{array}{r} -150 \\ -225 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	Max Max	$\begin{aligned} & V_{\text {OUT }}=0 V\left(A_{0}-A_{7}\right) \\ & V_{\text {OUT }}=0 V\left(B_{0}-B_{7}\right) \end{aligned}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCH	Power Supply Current			84	140	mA	Max	$V_{0}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CCL }}$	Power Supply Current			105	140	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICCZ	Power Supply Current			102	140	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\text { Mil } \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay CPA or CPB to B_{n} or A_{n}	$\begin{array}{r} 3.0 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 5.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \\ \hline \end{gathered}$	ns	2-3
$t_{\text {PLH }}$	Propagation Delay CPA or CPB to FBA or FAB	3.5	6.0	8.0			3.0	9.0	ns	2-3
$t_{\text {PHL }}$	Propagation Delay CFAB or CFBA to FAB or FBA	5.0	9.0	11.5			4.5	13.0	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E A}$ or $\overline{O E B}$ to A_{n} or B_{n}	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{O E A}$ or $\overline{O E B}$ to A_{n} or B_{n}	$\begin{array}{r} 3.0 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{gathered} 10.0 \\ 8.5 \\ \hline \end{gathered}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW A_{n}, B_{n} to CPA, CPB	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$				$\begin{array}{r} 4.5 \\ 4.5 \\ \hline \end{array}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW A_{n}, B_{n} to CPA, CPB	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$				$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{CEA}}, \overline{\mathrm{CEB}}$ to CPA, CPB	$\begin{array}{r} 1.0 \\ 4.0 \\ \hline \end{array}$				$\begin{aligned} & 1.5 \\ & 4.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{CEA}}, \overline{\mathrm{CEB}}$ to CPA, CPB	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Pulse Width, HIGH or LOW CPA or CPB	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$		ns	2-4
$t_{w}(\mathrm{H})$	Pulse Width, HIGH CFAB or CFBA	3.0				3.5		ns	2-4
${ }^{\text {trec }}$	Recovery Time CFAB, CFBA to CPA, CPB	9.0				10.0		ns	2-6

54F/74F552 Octal Registered Transceiver with Parity and Flags

General Description

The 'F552 octal transceiver contains two 8-bit registers for temporary storage of data flowing in either direction. Each register has its own clock pulse and clock enable input as well as a flag flip-flop that is set automatically as the register is loaded. The flag output will be reset when the output enable returns to HIGH after reading the output port. Each register has a separate output enable control for its TRISTATE® buffer. The separate Clocks, Flags, and Enables provide considerable flexibility as I/O ports for demand-response data transfer. When data is transferred from the Aport to the B-port, a parity bit is generated. On the
other hand, when data is transferred from the B-port to the A-port, the parity of input data on $B_{0}-B_{7}$ is checked.

Features

E 8-Bit bidirectional I/O Port with handshake

- Register status flag flip-flops
- Separate clock enable and output enable
- Parity generation and parity check
- B-outputs sink 64 mA
- TRI-STATE outputs

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9561-3

Unit Loading/Fan Out: See Section 2 for U.L.definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$A_{0}-A_{7}$	A-to-B Port Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	B-to-A TRI-STATE	150/40 (33.3)	-3mA/24 mA (20 mA)
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B-to-A Transceiver Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	A-to-B TRI-STATE Output	600/106.6 (80)	- $12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$
FR	B Port Flag Output	50/33.3	- $1 \mathrm{~mA} / 20 \mathrm{~mA}$
FS	A Port Flag Output	50/33.3	-1 mA/20 mA
PARITY	Parity Bit Transceiver Input or Output	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
		600/106.6 (50)	- $12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$
ERROR	Parity Check Output (Active LOW)	50/33.3	-1 mA/20 mA
$\overline{C E R}$	R Registers Clock Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { CES }}$	S Registers Clock Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CPR	R Registers Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CPS	S Registers Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
OEBR	B Port and PARITY Output Enable (Active LOW) and Clear FR Input (Active Rising Edge)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
OEAS	A Port Output Enable (Active LOW) and Clear FS Input (Active Rising Edge)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$

Functional Description

Data applied to the A-inputs are entered and stored in the R register on the rising edge of the CPR Clock Pulse, provided that the Clock Enable (CER) is LOW; simultaneously, the status flip-flop is set and the flag (FR) output goes HIGH. As the Clock Enable ($\overline{\mathrm{CER}}$) returns to HIGH, the data will be held in the R register. These data entered from the A -inputs will appear at the B-port 1/O pins after the Output Enable ($\overline{O E B R}$) has gone LOW. When $\overline{O E B R}$ is LOW, a parity bit appears at the PARITY pin, which will be set HIGH when there is an even number of 1 s or all 0 s at the Q outputs of the R register. After the data is assimilated, the receiving system clears the flag FR by changing the signal at the $\overline{C E E R}$ pin from LOW to $\|\mathrm{Cl}\|$.
Data flow from B-to-A proceeds in the same manner described for A-to-B flow. A LOW at the CES pin and a LOW-to-HIGH transition at CPS pin enters the B-input data and the parity-input data into the S registers and the parity register respectively and set the flag output FS to HIGH. A LOW signal at the $\overline{O E A S}$ pin enables the A-port I/O pins and a LOW-to-HIGH transition of the OEAS signal clears the FS flag. When OEAS is LOW, the parity check output ERROR will be HIGH if there is an odd number of 1 s at the Q outputs of the S registers and the parity register. The flag FS can be cleared by a LOW-to-HIGH transition of the OEAS signal.

Register Function Table

(Applies to R or S Register)

Inputs				
\mathbf{D}	CP	$\overline{\mathbf{C E}}$	Internal \mathbf{Q}	Function
X	X	H	NC	Hold Data
L	-	L	L	Load Data
H	K	L	H	Keep Old Data

[^16]| $\overline{\mathbf{O E}}$ | Internal
 \mathbf{Q} | A or B
 Outputs | Function |
| :---: | :---: | :---: | :---: |
| H | X | Z | Disable Output |
| L | L | L | Enable Output |
| L | H | H | Enable Output |

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
Z $=$ High Impedance
Flag Fip-riop Function Tabic
(Applies to R or S Flag Flip-Flop)

Inputs			Flag Output	Function
$\overline{C E}$	CP	$\overline{\mathbf{O E}}$		
H	X	\dagger	NC	Hold Flag
L	Ω	\dagger	H	Set Flag
X	X	Ω	L	Clear Flag

H = HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathcal{J}=$ LOW-to-HIGH Transition
$\dagger=$ Not LOW-to-HIGH Transition
$N C=$ No Change

Functional Description

Parity Generation Function

$\overline{\text { OEBR }}$	Number of HIGHs in the Q Outputs of the R Register	Parity Output
H	X	Z
L	$0,2,4,6,8$	H
L	$1,3,5,7$	L

H = HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Parity Check Function

OEAS	Number of HIGHs in the Q Outputs of the S Register	Parity Input	ERROR Output
H	X	X	H
L	$0,2,4,6,8$	L	L
L	$1,3,5,7$	L	H
L	$0,2,4,6,8$	H	H
L	$1,3,5,7$	H	L

H = HIGH Voltage Level
$L=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial

Block Diagram

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
TRI-STATE Output
Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\mathrm{C}}+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

-0.5 V to V_{CC}
-0.5 V to +5.5 V
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.
DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V} \mathbf{c c}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{IIN}^{\prime}=-18 \mathrm{~mA}(\overline{\mathrm{CER}}, \overline{\mathrm{CES}}, \mathrm{CPR}, \mathrm{CPS}, \overline{\text { OEBR}}, \overline{\text { OEAS }})$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC $54 F 10 \%$ VCC 74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 5\% VCC $74 F 5 \%$ VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \\ & 2.0 \\ & \hline \end{aligned}$			V	Min	
V_{OL}	Output LOW Voltage	$54 F 10 \% V_{C C}$ 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 10\% VCC			$\begin{gathered} \hline 0.5 \\ 0.55 \\ 0.5 \\ 0.5 \\ 0.55 \\ \hline \end{gathered}$	V	Min	$\begin{aligned} & 1 \mathrm{OL}=20 \mathrm{~mA}\left(\text { FR, FS, ERROR, } A_{n}\right) \\ & \mathrm{lOL}=48 \mathrm{~mA}\left(\mathrm{~B}_{n}, \text { PARITY }\right) \\ & \mathrm{loL}=20 \mathrm{~mA}(\mathrm{FR}, \mathrm{FS}, \text { ERROR }) \\ & \mathrm{lOL}=24 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{lOL}=64 \mathrm{~mA}\left(\mathrm{~B}_{n}, \text { PARITY }\right) \\ & \hline \end{aligned}$
$\mathrm{IIH}^{\text {r }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ ($\left.\overline{\mathrm{CER}}, \overline{\mathrm{CES}}, \mathrm{CPR}, \mathrm{CPS}, \overline{\mathrm{OEBR}}, \overline{\mathrm{OEAS}}\right)$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$V_{\text {IN }}=7.0 \mathrm{~V}$ ($\left.\overline{\mathrm{CER}}, \overline{\mathrm{CES}}, \mathrm{CPR}, \mathrm{CPS}, \overline{\mathrm{OEBR}}, \overline{\text { OEAS }}\right)$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)				1.0	mA	Max	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, PARITY $)$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}(\overline{\mathrm{CER}}, \overline{\mathrm{CES}, \mathrm{CPR}, \mathrm{CPS})} \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{OEBR}}, \overline{\mathrm{OEAS}}) \end{aligned}$
$\mathrm{I}_{\mathrm{IH}}+\mathrm{I}_{\mathrm{OZH}}$	Output Leakage Current				70	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right.$, PARITY $)$
IIL $+\mathrm{I}_{\text {OZL }}$	Output Leakage Current				-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right.$, PARITY $)$
los	Output ShortCircuit Current		$\begin{gathered} -60 \\ -100 \\ \hline \end{gathered}$		$\begin{array}{r} -150 \\ -225 \\ \hline \end{array}$	mA	Max	$V_{\text {OUT }}=O V\left(F R, F S\right.$, ERROR, $\left.A_{n}\right)$ $V_{\text {OUT }}=0 V\left(B_{n}\right.$, PARITY)
$l_{\text {cex }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}\left(\right.$ (FR, FS, ERROR, A_{n}, B_{n}, PARITY)
lzz	Buss Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{C C}\left(A_{n}, B_{n}\right.$, PARITY $)$
${ }^{\mathrm{ICCH}}$	Power Supply Current			100	150	mA	Max	$V_{0}=\mathrm{HIGH}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			100	150	mA	Max	$V_{0}=$ LOW
ICCz	Power Supply Current			110	165	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics:
See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CPS or CPR to A_{n} or B_{n}	$\begin{array}{r} 3.5 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 6.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 10.5 \\ \hline \end{gathered}$	ns	2-3
${ }_{\text {tPLH }}$	Propagation Delay CPS or CPR to FS or FR	3.0	5.5	7.5			2.5	8.5	ns	2-3
${ }_{\text {tPHL }}$	Propagation Delay OEAS to FS	3.5	6.0	8.0			3.0	9.0	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CPS to Parity	$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 14.0 \\ 14.5 \\ \hline \end{array}$	$\begin{array}{r} 18.0 \\ 18.5 \\ \hline \end{array}$			$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 20.0 \\ 20.5 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CPR to ERROR	$\begin{aligned} & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 13.5 \\ 13.0 \\ \hline \end{array}$	$\begin{aligned} & 17.5 \\ & 16.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 7.0 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.5 \\ & 18.5 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay OEAS to ERROR	$\begin{aligned} & 3.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 3.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{\mathrm{OEAS}}$ or $\overline{O E B R}$ to B_{n} or A_{n}	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Disable Time $\overline{\text { OEAS }}$ or $\overline{O E B R}$ to B_{n} or A_{n}	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$		
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Enable Time $\overline{O E B R}$ to Parity	$\begin{aligned} & 3.0 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.5 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Disable Time $\overline{O E B R}$ to Parity	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 7.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW A_{n} or B_{n} or Parity to CPS or CPR	$\begin{aligned} & 7.5 \\ & 4.5 \end{aligned}$				$\begin{aligned} & 8.5 \\ & 5.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \end{aligned}$	Hold Time, HIGH or LOW A_{n} or B_{n} or Parity to CPS or CPR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup, Time HIGH or LOW $\overline{\mathrm{CES}}$ or $\overline{\mathrm{CER}}$ to CPS or CPR	$\begin{gathered} 6.0 \\ 10.0 \end{gathered}$				$\begin{gathered} 7.0 \\ 11.5 \\ \hline \end{gathered}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{CES}}$ or $\overline{\mathrm{CER}}$ to CPS or CPR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \end{aligned}$	Pulse Width, HIGH or LOW CPS or CPR	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$				$\begin{aligned} & 4.5 \\ & 7.0 \\ & \hline \end{aligned}$		ns	2-4

54F/74F563
 Octal D-Type Latch with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F563 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (OE) inputs.
This device is functionally identical to the 'F573, but has inverted outputs.

Features

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors

■ Functionally identical to 'F573

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

[14 15 161718
$\bar{o}_{5} \bar{o}_{4} \bar{o}_{3} \bar{o}_{2} \bar{o}_{1}$
TL/F/9562-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
LE	Latch Enable Input (Active HIGH)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E}$	TRI-STATE Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	TRI-STATE Latch Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F563 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}}$) input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are in the bi-state mode. When $\overline{O E}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Inputs			Internal	Output	Function
$\overline{\mathbf{O E}}$	LE	D	Q	O	
H	X	X	X	Z	High Z
H	H	L	H	Z	High Z
H	H	H	L	Z	High Z
H	L	X	NC	Z	Latched
L	H	L	H	H	Transparent
L	H	H	L	L	Transparent
L	L	X	NC	NC	Latched

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance
NC $=$ No Change

Logic Diagram

TL/F/9562-4

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to

Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$v_{\text {cc }}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ 74F 5\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
IOZH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
IozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
$\mathrm{I}_{\mathrm{CCL}}$	Power Supply Current			40	61	mA	Max	$V_{O}=$ LOW
ICCz	Power Supply Current			40	61	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{MiI} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $D_{n} \text { to } \bar{O}_{n}$	$\begin{aligned} & 3.5 \\ & 2.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 3.0 \\ 2.0 \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay LE to \bar{O}_{n}	$\begin{aligned} & 4.5 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 9.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.0 \\ 2.5 \\ \hline \end{array}$	$\begin{gathered} 11.0 \\ 7.5 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 7.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{pZH}} \\ & \mathrm{t}_{\mathrm{p} Z \mathrm{~L}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 7.5 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.0 \\ 2.5 \\ \hline \end{array}$	$\begin{gathered} 9.5 \\ 10.0 \\ \hline \end{gathered}$	$\begin{array}{r} 2.0 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 9.0 \\ & 9.5 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{array}{r} 5.5 \\ 5.5 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \\ & \hline \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	Fig No
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW D_{n} to LE	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$		ns	2-6
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE Pulse Width, HIGH	4.0		4.0		4.0		ns	2-4

54F/74F564

Octal D-Type Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F564 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\mathrm{OE}}$). The information presented to the D inputs is sorted in the flip-flops on the LOW-to-HIGH Clock (CP) transition.
This device is functionally identical to the 'F574, but has inverted outputs.

Features

■ Inputs and outputs on opposite sides of package allow easy interface with microprocessors

- Useful as input or output port for microprocessors
- Functionally identical to 'F574
- TRI-STATE outputs for bus-oriented applications

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC
$D_{6} D_{5} D_{4} D_{3} D_{2}$ 8 7 65

1415161718 $\overline{\mathrm{O}}_{5} \overline{\mathrm{o}}_{4} \overline{\mathrm{o}}_{3} \overline{\mathrm{o}}_{2} \overline{\mathrm{o}}_{1}$

TL/F/9563-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / I_{\mathrm{OL}}$
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	TRI-STATE Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{O}}_{0}-\overline{\mathrm{O}}_{7}$	TRI-STATE Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 'F564 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flipflops are available at the outputs. When $\overline{O E}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Function Table

Inputs		Internal	Outputs	Function	
$\overline{\text { OE }}$	CP	D	Q		
H	H	L	NC	Z	Hold
H	H	H	NC	Z	Hold
H	-	L	H	Z	Load
H	H	L	Z	Load	
L	L	L	H	H	Data Available
L	H	H	L	L	Data Available
L	H	L	NC	NC	No Change in Data
L	H	H	NC	NC	No Change in Data

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance
$\int=$ LOW-to-HIGH Transition
$\mathrm{NC}=$ No Change

Logic Diagram

TL/F/9563-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avaliability and specifications.
Storage Temperature

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Commercial
Supply Voltage
Military

Commercial

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{C c}}$	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F\% 10\% VCC $74 F \% 10 \% V_{C C}$ $74 F \% 5 \% V_{C C}$ $74 F \% 5 \% V_{C C}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V OL	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{IOL}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
I_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
Izz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}$
ICCz	Power Supply Current			55	86	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100			60		70		MHz	2-1
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to \bar{O}_{n}	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $D_{n} \text { to } C P$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$		$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$		$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width HIGH or LOW	5.0 5.0						ns	2-4

54F/74F568 • 54F/74F569

4-Bit Bidirectional Counters with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F568 and 'F569 are fully synchronous, reversible counters with TRI-STATE outputs. The 'F568 is a BCD decade counter; the 'F569 is a binary counter. They feature preset capability for programmable operation, carry lookahead for easy cascading, and a U/D input to control the direction of counting. For maximum flexibility there are both synchronous and master asynchronous reset inputs as well as both Clocked Carry ($\overline{\mathrm{CC}}$) and Terminal Count ($\overline{\mathrm{TC}}$) outputs. All state changes except Master Reset are initiated by the rising edge of the clock. A HIGH signal on the Output Enable
($\overline{\mathrm{OE})}$ input forces the output buffers into the high impedance state but does not prevent counting, resetting or parailel loading.

Features

- Synchronous counting and loading

■ Lookahead carry capability for easy cascading

- Preset capability for programmable operation
- TRI-STATE outputs for bus organized systems

Ordering Code: See Section 5

Logic Symbols

TL/F/9565-1

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC $\overline{M R} \overline{C P} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1}$

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{\text {IH }} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{P}_{0}-\mathrm{P}_{3}$	Parallel Data Inputs	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CEP}}$	Count Enable Parallel Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { CET }}$	Count Enable Trickle Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{P E}$	Parallel Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
U/ \bar{D}	Up/Down Count Control Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E}$	Output Enable Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\text { SR }}$	Synchronous Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$	TRI-STATE Parallel Data Outputs	150/40(33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
TC	Terminal Count Output (Active LOW)	50/33.3	- $1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{C C}$	Clocked Carry Output (Active LOW)	50/33.3	-1 mA/20 mA

Functional Description

The 'F568 counts modulo-10 in the BCD (8421) sequence. From state $9(\mathrm{HLLH})$ it will increment to 0 (LLLL) in the Up mode; in Down mode it will decrement from 0 to 9 . The 'F569 counts in the modulo-16 binary sequence. From state 15 it will increment to state 0 in the Up mode; in the Down mode it will decrement from 0 to 15 . The clock inputs of all flip-flops are driven in parallel through a clock buffer. All state changes (except due to Master Reset) occurs synchronously with the LOW-to-HIGH transition of the Clock Pulse (CP) input signal.
The circuits have five fundamental modes of operation, in order of precedence: asynchronous reset, synchronous reset, parallel load, count and hold. Five control inputs-Master Reset ($\overline{\mathrm{MR}}$), Synchronous Reset ($\overline{\mathrm{RR}}$), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel ($\overline{\mathrm{CEP}}$) and Count Enable Trickle $\overline{\mathrm{CET}}$)—plus the Up/Down (U/ $\overline{\mathrm{D}}$) input, determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces the flip-flop Q outputs LOW. A LOW signal on $\overline{S R}$ overrides counting and parallel loading and allows the Q outputs to go LOW on the next rising edge of CP. A LOW signal on $\overline{\mathrm{PE}}$ overrides counting and allows information on the Parallel Data $\left(P_{n}\right)$ inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{M R}, \overline{S R}$ and $\overline{P E}$ HIGH, $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ permit counting when both are LOW. Conversely, a HIGH signal on either $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ inhibits counting.
The 'F568 and 'F569 use edge-triggered flip-flops and changing the $\overline{\mathrm{SR}}, \overline{\mathrm{PE}}, \overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ or U/ $\overline{\mathrm{D}}$ inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of $C P$, are observed.
Two types of outputs are provided as overflow/underflow indicators. The Terminal Count ($\overline{\mathrm{TC}}$) output is normally HIGH and goes LOW providing $\overline{\mathrm{CET}}$ is LOW, when the
counter reaches zero in the Down mode, or reaches maximum (9 for the 'F568, 15 for the 'F569) in the Up mode. TC will then remain LOW until a state change occurs, whether by counting or presetting, or until U / \bar{D} or $\overline{\mathrm{CET}}$ is changed. To implement synchronous multistage counters, the connections between the $\overline{\mathrm{TC}}$ output and the $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ inputs can provide either slow or fast carry propagation.
Figure 1 shows the connections for simple ripple carry, in which the clock period must be longer than the CP to $\overline{\mathrm{TC}}$ delay of the first stage, plus the cumulative $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$ delays of the intermediate stages, plus the CET to CP setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure 2 are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle takes 10 ('F568) or 16 ('F569) clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limits the clock period is the CP to $\overline{\mathrm{TC}}$ delay of the first stage plus the CEP to CP setup time of the last stage. The $\overline{\mathrm{TC}}$ output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters. For such applications, the Clocked Carry ($\overline{\mathrm{CC}}$) output is provided. The $\overline{\mathrm{CC}}$ output is normally HIGH. When $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$, and $\overline{T C}$ are LOW, the $\overline{\mathrm{CC}}$ output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again, as shown in the $\overline{\mathrm{CC}}$ Truth Table. When the Output Enable ($\overline{\mathrm{OE}}$) is LOW, the parallel data outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ are active and follow the flip-flop Q outputs. A HIGH signal on $\overline{\mathrm{OE}}$ forces $\mathrm{O}_{0}-\mathrm{O}_{3}$ to the High Z state but does not prevent counting, loading or resetting.

Logic Equations

Count Enable $=\overline{\mathrm{CEP}} \cdot \overline{\mathrm{CET}} \cdot \mathrm{PE}$
Up ('F568): $\overline{\mathrm{TC}}=\mathrm{Q}_{0} \bullet \overline{\mathrm{Q}}_{1} \bullet \overline{\mathrm{Q}}_{2} \bullet \mathrm{Q}_{3} \bullet(\mathrm{Up}) \bullet \overline{\mathrm{CET}}$
('F569): $\overline{T C}=Q_{0} \cdot Q_{1} \bullet Q_{2} \bullet Q_{3} \bullet(U p) \cdot \overline{C E T}$
Down (Both): $\overline{T C}=\bar{Q}_{0} \bullet \bar{Q}_{1} \bullet \bar{Q}_{2} \bullet \bar{Q}_{3} \bullet($ Down $) \bullet \overline{C E T}$

$\overline{\mathbf{C C}}$ Truth Table

Inputs						Output
$\overline{\mathbf{S R}}$	$\overline{\text { PE }}$	$\overline{\mathbf{C E P}}$	$\overline{\text { CET }}$	$\overline{\text { TC }}$	CP	$\overline{\mathbf{C C}}$
L	X	X	X	X	X	H
X	L	X	x	x	x	H
X	X	H	X	X	X	H
X	X	X	H	X	X	H
X	X	X	X	H	X	H
H	H	L	L	L	凹	-

* $\overline{\mathrm{TC}}$ is generated internally

H = HIGH Voltage Level
$\mathrm{L}=\mathrm{LOW}$ Voltage Level
$\mathrm{X}=$ Immaterial
$\Psi=$ HIGH-to-LOW-to-HIGH Clock Transition
Mode Select Table

Inputs						
Operating Mode						
$\overline{\text { MR }}$	$\overline{\mathbf{S R}}$	$\overline{\text { PE }}$	$\overline{\mathbf{C E P}}$	CET	U/D	
L	X	X	X	X	X	Asynchronous Reset
H	L	X	X	X	X	Synchronous Reset
H	H	L	X	X	X	Parallel Load
H	H	H	H	X	X	Hold
H	H	H	X	H	X	Hold
H	H	H	L	L	H	Count Up
H	H	H	L	L	L	Count Down

H=HIGH Voltage Level
L=LOW Voltage Level
$X=$ Immaterial

TL/F/9565-5
FIGURE 1: Multistage Counter with Ripple Carry

FIGURE 2: Multistage Counter with Lookahead Carry

State Diagrams

TL/F/9565-8

Recommended Operating

 ConditionsFree Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V
Military	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{cc}	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} \mathrm{5} \mathrm{\%} \mathrm{~V} \mathrm{VCC}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$		$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{O}_{n}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
IH_{H}	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BV} /}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$	Max Max	$\begin{aligned} & V_{I N}=0.5 \mathrm{~V}\left(P_{\mathrm{n}}, \overline{\mathrm{CEP}}, \mathrm{CP}, \mathrm{U} / \overline{\mathrm{D}}, \overline{\mathrm{OE}}, \overline{\mathrm{MR}}, \overline{\mathrm{SR}}\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{PE}}, \overline{\mathrm{CET}}) \end{aligned}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{O}_{\mathrm{n}}\right)$
lozl.	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{O}_{n}\right)$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\overline{\mathrm{TC}}, \overline{\mathrm{CC}}, \mathrm{O}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}\left(\overline{T C}, \overline{\mathrm{CC}}, \mathrm{O}_{\mathrm{n}}\right)$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0 V	$V_{\text {OUT }}=V_{\text {CC }}\left(O_{n}\right)$
ICCH	Power Supply Current			45	67	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current			45	67	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
1 CCZ	Power Supply Current			45	67	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

'F568
AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Unlts	Fig No
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{A}, \mathrm{~V}_{C C}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	100	115				90		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to O_{n} ($\overline{\mathrm{PE}}$ HIGH or LOW)	$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 11.5 \\ \hline \end{gathered}$			$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 13.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{T C}$	$\begin{aligned} & 5.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{array}{r} 15.5 \\ 11.0 \\ \hline \end{array}$			$\begin{aligned} & 5.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 17.5 \\ 12.5 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & t_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CET}}$ to $\overline{T C}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 8.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay U / \bar{D} to $\overline{T C}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 12.5 \end{gathered}$	$\begin{aligned} & 11.0 \\ & 16.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 18.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathbf{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to $\overline{C C}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ to $\overline{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} 6.5 \\ 11.0 \end{gathered}$			$\begin{aligned} & 2.5 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 7.5 \\ 12.5 \\ \hline \end{gathered}$	ns	2-3
$t_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to O_{n}	5.0	10.0	13.0			5.0	14.5	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to O_{n}	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time $\overline{O E}$ to O_{n}	$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$		

'F568
AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \hline \end{gathered}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW P_{n} to CP	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 6.0 \\ & 6.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{PE}}$ to CP	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\text { PE to CP }}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW U/D to CP	$\begin{array}{r} 11.0 \\ 16.0 \\ \hline \end{array}$				$\begin{array}{r} 12.5 \\ 17.5 \\ \hline \end{array}$		ns	2-6
$\begin{aligned} & t_{n}(H) \\ & t_{h}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW U/D to CP	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 9.5 \\ & 8.5 \\ & \hline \end{aligned}$				$\begin{gathered} 10.5 \\ 9.5 \\ \hline \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(\mathrm{~L}) \\ & \hline \end{aligned}$	CP Pulse Width, HIGH or LOW	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$				$\begin{aligned} & 4.5 \\ & 6.5 \\ & \hline \end{aligned}$		ns	2-4
$t_{w}(L)$	$\overline{\text { MR Pulse Width, LOW }}$	4.5				5.0		ns	2-4
$\mathrm{t}_{\text {rec }}$	$\overline{\text { MR Recovery Time }}$	6.0				7.0		ns	2-6

'F569

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \hline \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 \mathrm{pF} \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency	90					70		MHz	2-1
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to O_{n} ($\overline{\mathrm{PE}} \mathrm{HIGH}$ or LOW)	$\begin{array}{r} 3.0 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 11.5 \\ \hline \end{gathered}$			$\begin{aligned} & 3.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{gathered} 9.5 \\ 13.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay CP to TC	$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 12.5 \end{aligned}$			$\begin{aligned} & 5.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 13.0 \end{aligned}$	ns	2-3
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{CET}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 6.5 \\ 11.0 \\ \hline \end{gathered}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 7.0 \\ 12.0 \\ \hline \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay U/ $\overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{array}{r} 11.5 \\ 12.0 \\ \hline \end{array}$			$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 13.0 \end{aligned}$	ns	2-3
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay CP to $\overline{C C}$	$\begin{array}{r} 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 5.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns	2-3
t_{PL} $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ to $\overline{\mathrm{CC}}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 8.5 \end{aligned}$	$\begin{gathered} 6.5 \\ 11.0 \end{gathered}$			$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 7.5 \\ 12.5 \end{gathered}$	ns	2-3
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\overline{\mathrm{MR}}$ to O_{n}	5.0	10.0	13.0			5.0	14.5	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \\ & \hline \end{aligned}$	Output Enable Time $\overline{O E}$ to O_{n}	$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \end{aligned}$	Output Disable Time $\overline{O E}$ to O_{n}	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$				$\begin{aligned} & 8.0 \\ & 7.0 \end{aligned}$		

'F569
AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	$\begin{gathered} 74 \mathrm{~F} \\ \hline \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
				$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathrm{cc}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & t_{s}(H) \\ & t_{s}(L) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$				$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $P_{n} \text { to } C P$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$				$\begin{aligned} & 3.5 \\ & 3.5 \\ & \hline \end{aligned}$			
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{CEP}}$ or $\overline{\mathrm{CET}}$ to CP	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$				$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW CEP or CET to CP	$\begin{gathered} 0 \\ 0.5 \end{gathered}$				$\begin{gathered} 0 \\ 0.5 \end{gathered}$			
$\begin{aligned} & \mathrm{t}_{\mathbf{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{P E}$ to $C P$	$\begin{array}{r} 8.0 \\ 8.0 \\ \hline \end{array}$				$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$		ns	2-6
$\begin{aligned} & t_{h}(\mathrm{H}) \\ & t_{h}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW PE to CP	$\begin{gathered} 1.0 \\ 0 \\ \hline \end{gathered}$				$\begin{gathered} 1.0 \\ 0 \end{gathered}$			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW U/D to CP	$\begin{gathered} 11.0 \\ 7.0 \\ \hline \end{gathered}$				$\begin{gathered} 12.5 \\ 8.5 \\ \hline \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW U/D to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		ns	2-6
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{gathered} 10.5 \\ 8.5 \\ \hline \end{gathered}$				$\begin{gathered} 11.0 \\ 9.5 \end{gathered}$		ns	2-6
$\begin{aligned} & t_{h}(H) \\ & t_{h}(L) \\ & \hline \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{SR}}$ to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \end{aligned}$			
$\begin{aligned} & t_{w}(H) \\ & t_{w}(L) \\ & \hline \end{aligned}$	CP Pulse Width, HIGH or LOW	$\begin{array}{r} 4.0 \\ 7.0 \\ \hline \end{array}$				$\begin{aligned} & 4.5 \\ & 8.0 \\ & \hline \end{aligned}$		ns	2-4
$t_{w}(L)$	$\overline{\text { MR Pulse Width, LOW }}$	4.5				6.0		ns	2-4
$t_{\text {rec }}$	$\overline{M R}$ Recovery Time	7.0				8.0		ns	2-6

54F/74F573
 Octal D-Type Latch with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F573 is a high speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable ($\overline{O E}$) inputs.
This device is functionally identical to the 'F373 but has different pinouts.

Features

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'F373
- TRI-STATE outputs for bus interfacing

Ordering Code: See Section 5 Logic Symbol

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC and PCC

TL/F/9566-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / I_{\mathrm{OL}}$
	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
LE	Latch Enable Input (Active HIGH$)$	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
OE	TRI-STATE Output Enable Input	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{7}$	(Active LOW)	TRI-STATE Latch Outputs	$150 / 40(33.3)$

Functional Description

The 'F573 contains eight D-type latches with 3-state output buffers. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3state buffers are controlled by the Output Enable ($\overline{\mathrm{OE}})$ input. When $\overline{O E}$ is LOW, the buffers are in the bi-state mode. When $\overline{O E}$ is HIGH the buffers are in the high impedance mode but this does not interfer with entering new data into the latches.

Function Table

	Inputs		Outputs
$\overline{\mathbf{O E}}$	LE	D	\mathbf{O}
L	H	H	H
L	H	L	L
L	L	X	O_{0}
H	X	X	Z

$H=$ HIGH Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{O}_{0}=$ Value stored from previous clock cycle

Logic Diagram

TL/F/9566-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)	
If Military/Aerospace specified contact the National Semic Distributors for availabillty and	vices are required, ctor Sales Office/ cifications.
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
$V_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V
Input Voltage (Note 2)	-0.5 V to +7.0 V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output	$\begin{gathered} -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{gathered}$
Current Applied to Output in LOW State (Max)	wice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under	
Note 2: Either voltage limit or current limit is sufficient to protect inputs.	

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	V_{CC}	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V OH	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{VCC}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
VOL	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{IOL}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
IOZH	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozL	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=0 \mathrm{~V}$
Icex	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
I_{zz}	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}$
${ }_{\text {ICCL }}$	Power Supply Current			35	55	mA	Max	$V_{O}=$ LOW
ICCz	Power Supply Current			35	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics

Symbol	Parameter	74F			54F		74F		Units	FigNo
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M i l \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $\mathrm{D}_{\mathrm{n}} \text { to } \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	ns	2-3
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay LE to O_{n}	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.2 \end{aligned}$	$\begin{gathered} 11.0 \\ 7.0 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 7.0 \end{gathered}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.5 \\ & \hline \end{aligned}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$		

AC Operating Requirements

Symbol	Parameter	74F		54F		74F		Units	FigNo
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}$		$\mathbf{T}_{\mathbf{A}}, \mathbf{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	2.0		2.0		2.0		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{~L})$	D_{n} to LE	2.0		2.0		2.0			
$t_{h}(\mathrm{H})$	Hold Time, HIGH or LOW	3.0		3.0		3.0			
$t_{\text {h }}(L)$	D_{n} to LE	3.5		4.0		3.5			
$t_{w}(\mathrm{H})$	LE Pulse Width, HIGH	4.0		4.0		4.0		ns	2-4

54F/74F574

Octal D-Type Flip-Flop with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable ($\overline{\mathrm{OE}}$). The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.
This device is functionally identical to the 'F374 except for the pinouts.

Features

- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 'F374
- TRI-STATE outputs for bus-oriented applications

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	$54 \mathrm{~F} / 74 \mathrm{~F}$	
		U.L. HIGH/LOW	Input $I_{\mathrm{IH}} / I_{\mathrm{IL}}$ Output $I_{\mathrm{OH}} / I_{\mathrm{OL}}$
		$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
CP	Clock Pulse Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}$	TRI-STATE Output Enable Input (Active LOW)	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\mathrm{O}_{0}-\mathrm{O}_{7}$	TRI-STATE Outputs		

Functional Description
The 'F574 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flipflops are available at the outputs. When OE is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Function Table

Inputs		Internal	Outputs	Function	
$\overline{\mathbf{O E}}$	CP	D	Q	O	
H	H	L	NC	Z	Hold
H	H	H	NC	Z	Hold
H	-	L	L	Z	Load
H	H	H	Z	Load	
L	L	L	L	L	Data Available
L	S	H	H	H	Data Available
L	H	L	NC	NC	No Change in Data
L	H	H	NC	NC	No Change in Data

$H=H I G H$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$Z=$ High Impedance
ת $=$ LOW-to-HIGH Transition
NC $=$ No Change

Logic Diagram

TL/F/9567-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to
Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$) Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating

 ConditionsFree Air Ambient Temperature Military
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Commercial
Supply Voltage Military Commercial
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
+4.5 V to +5.5 V
+4.5 V to +5.5 V

Note 1: Absolute maximum rating are valus be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$V_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $54 \mathrm{~F} 10 \% \mathrm{CC}_{\mathrm{C}}$ $74 \mathrm{~F} 10 \% \mathrm{VCC}$ $74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{CC}_{\mathrm{CC}}$ $74 \mathrm{~F} 5 \% \mathrm{VCC}$		$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
V_{OL}	Output LOW Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA} \\ & \mathrm{IOL}=24 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
I/L	Input LOW Current				-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
lozh	Output Leakage Current				50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current				-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Icex	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
lzz	Bus Drainage Test				500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
lccz	Power Supply Current			55	86	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} \mathrm{Z}$

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Flg } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{MiI} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$f_{\text {max }}$	Maximum Clock Frequency	100			60		70		MHz	2-1
$t_{\text {PLH }}$ tpHL	Propagation Delay CP to O_{n}	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{array}{r} 8.5 \\ 8.5 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \text { tpZH } \\ & t_{\text {tpZL }} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 10.0 \\ \hline \end{array}$	ns	2-5
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.3 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \\ & \hline \end{aligned}$		

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} & T_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{MiI}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Set-up Time, HIGH or LOW	2.5		3.0		2.5		ns	2-6
$\mathrm{t}_{\mathrm{s}}(\mathrm{L})$	D_{n} to CP	2.0		2.5		2.0			
$t_{h}(\mathrm{H})$	Hold Time, HIGH or LOW$D_{n} \text { to } C P$	2.0		2.0		2.0			
$\mathrm{th}^{(L)}$		2.0		2.0		2.0			
$t_{w}(\mathrm{H})$	CP Pulse Width HIGH or LOW	5.05.0		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns	2-4
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$									

ADVANCED INFORMATION

54F/74F579
 8-Bit Bidirectional Binary Counter with TRI-STATE ${ }^{\circledR}$ Outputs

General Description

The 'F579 is a fully synchronous 8-stage up/down counter with multiplexed TRI-STATE I/O ports for bus-oriented applications. It features a preset capability for programmable operation, carry lookahead for easy cascading and a U/D input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the rising edge of the clock.

Features

- Multiplexed TRI-STATE I/O ports
- Built-in lookahead carry capability
- Count frequency 100 MHz typ
- Supply current 75 mA typ

Logic Symbols

IEEE/IEC

TL/F/9568-4

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9568-2

Pin Assignment for LCC and PCC
$1 / O_{2} / O_{1} 1 / O_{0} \propto \overline{\mathrm{wR}}$ 죠뭄

TL/F/9568-3

TL/F/9568-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

54F/74F582

4-Bit BCD Arithmetic Logic Unit

General Description

The 'F582 is a 24 -pin expandable Arithmetic Logic Unit (ALU) that performs two arithmetic operations (A plus B, A minus B), compare (A equals B), and binary to BCD conversion. In addition to a ripple carry output, carry Propagate (P) and Generate (G) outputs are provided for use with the 'F182 carry lookahead generator for high-speed expansion to higher decades. It is functionally equivalent to the 82 S 82 .

Features

- Performs four BCD functions
- $\overline{\mathrm{P}}$ and $\overline{\mathrm{G}}$ outputs for high-speed expansion
- Add/subtract delay 22 ns max
- Lookahead delay 15.5 ns max
- Supply current 80 mA max

■ 24-Lead 300 mil slim package

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

IEEE/IEC

TL/F/9569-5

TL/F/9569-2

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	$\begin{gathered} \text { Input } \mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}} \\ \text { Output } \mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}} \end{gathered}$
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A Operand Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
B_{0}	B Operand Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
B_{1}	B Operand Input	1.0/5.0	$20 \mu \mathrm{~A} /-3 \mathrm{~mA}$
B_{2}	B Operand Input	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$
B_{3}	B Operand Input	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{F}_{0}-\mathrm{F}_{3}$	Functional Outputs	50/33.3	-1 mA/20 mA
$A=B$	Comparator Output	OC*/33.3	*/20 mA
$\overline{\mathrm{P}}$	Carry Propagate Output	50/33.3	-1 mA/20 mA
$\overline{\mathrm{G}}$	Carry Generate Output	50/33.3	-1 mA/20 mA
C/ \bar{B}	Carry/Borrow Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
	Carry/Borrow Output	50/33.3	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
$\overline{\mathrm{A}} / \mathrm{S}$	Add/Subtract	1.0/3.0	$20 \mu \mathrm{~A} /-1.8 \mathrm{~mA}$

-OC-Open Collector

Functional Description

The 'F582 Binary Coded Decimal (BCD) Arithmetic Logic Unit (ALU) is a 24 -pin expandable unit that performs addition, subtraction, comparison of two numbers, and binary to BCD conversion.
The 'F582's input and output logic includes a Carry/ $\overline{\text { Borrow }}$ which is generated internally in the lookahead mode, allowing BCD arithmetic to be computed directly. For more than one BCD decade, the Carry/ $\overline{\text { Borrow }}$ term may ripple between 'F582s.
When \bar{A} / S is LOW, $B C D$ addition is performed ($A+B+$ $C / \bar{B}=F$). If the sum is greater than 9 , binary to $B C D$ conversion results at the output.
When \bar{A} / S is HIGH, subtraction is performed. If the C / \bar{B} is LOW, then the subtraction is accomplished by internally
computing the 9s complement addition of two BCD numbers ($\mathrm{A}-\mathrm{B}-1=\mathrm{F}$). When $\mathrm{C} / \overline{\mathrm{B}}$ is HIGH, the difference of the two numbers is figured as $A-B=F$. For A greater than or equal to B, the $B C D$ difference appears at the output F in its true form. If A is less than B and C / \bar{B} is HIGH, the difference appears at the output as the 10s complement of the true form. If A is less than B and C / \bar{B} is LOW, the 9s complement of the true form appears at the output F. As long as A is less than B, and Active LOW borrow is also generated.
The 'F582 also performs binary to BCD conversion. For inputs between 10 and 15, binary to BCD conversion occurs by grounding the B inputs and applying the binary number to the other set of inputs. This will generate a carry term to the next decade.

Logic Diagram

TL/F/9569-4

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.
Storage Temperature

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
$$

Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin

Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$

TRI-STATE ${ }^{\circledR}$ Output
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating

 Conditions| Free Air Ambient Temperature | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Military | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Commercial | |
| Supply Voltage | +4.5 V to +5.5 V |
| Military | +4.5 V to +5.5 V |

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	$\mathrm{V}_{\mathbf{c c}}$	Conditions
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~F}_{\mathrm{n}}, \overline{\mathrm{P}}, \overline{\mathrm{G}}, \mathrm{C} / \bar{B}_{\mathrm{n}}+4\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~F}_{\mathrm{n}}, \overline{\mathrm{P}}, \overline{\mathrm{G}}, \mathrm{C} / \overline{\mathrm{B}}_{\mathrm{n}}+4\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~F}_{\mathrm{n}}, \overline{\mathrm{P}}, \overline{\mathrm{G}}, \mathrm{C} / \overline{\mathrm{B}}_{\mathrm{n}}+4\right) \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC $74 \mathrm{~F} 10 \%$ VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{CL}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{IIH}^{\text {H}}$	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{aligned} & -0.6 \\ & -1.2 \\ & -1.8 \\ & -3.0 \\ & \hline \end{aligned}$	mA	Max	$\begin{aligned} & V_{I N}=0.5 V\left(B_{0}, C / \bar{B}\right) \\ & V_{I N}=0.5 V\left(A_{n}, B_{3}\right) \\ & V_{I N}=0.5 V\left(\bar{A} / \mathrm{S}, \mathrm{~B}_{2}\right) \\ & V_{I N}=0.5 V\left(B_{1}\right) \end{aligned}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{\text {OUT }}=O V\left(F_{n}, \bar{P}, \bar{G}, C / \bar{B}_{n}+4\right)$
$I_{\text {CEX }}$	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
${ }^{1} \mathrm{OHC}$	Open Collector, Output OFF Leakage Test				250	$\mu \mathrm{A}$	Min	$V_{\text {OUT }}=V_{\text {CC }}(A=B)$
ICC	Power Supply Current			50	80	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Operating Requirements: See Section 2 for Waveforms

Symbol	Parameter	74F		54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} T_{A}=+25^{\circ} \mathrm{C} \\ V_{C C}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M I I}$		$\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{Cc}}=\mathbf{C o m}$			
		Min	Max	Min	Max	Min	Max		
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay A_{n} or B_{n} to F_{n}	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 29.0 \\ 22.0 \\ \hline \end{array}$			$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{r} 31.0 \\ 23.0 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \text { tPLH } \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay $A_{n} \text { or } B_{n} \text { to } C / \bar{B}_{n+4}$	$\begin{array}{r} 4.0 \\ 4.0 \\ \hline \end{array}$	$\begin{aligned} & 21.5 \\ & 16.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 24.0 \\ 17.5 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay C / \bar{B}_{n} to C / \bar{B}_{n+4}	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $A_{n} \text { or } B_{n} \text { to } A=B$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{array}{r} \hline 35.0 \\ 25.0 \\ \hline \end{array}$			$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 28.5 \\ 24.5 \\ \hline \end{array}$	ns	2-3
$\begin{aligned} & \mathbf{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n} or B_{n} to $\overline{\mathrm{G}}$ or $\overline{\mathrm{P}}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 15.5 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 16.5 \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay \bar{A} / S to F_{n}	$\begin{aligned} & 2.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 18.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 34.0 \\ & 19.5 \end{aligned}$	ns	2-3
${ }^{\text {tpLH }}$ tpHL	Propagation Delay C / \bar{B} to F_{n}	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 14.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 15.5 \end{aligned}$	ns	2-3

7 National Semiconductor
 54F/74F583 4-Bit BCD Adder

General Description

The 'F583 high-speed 4-bit, BCD full adder with internal carry lookahead accepts two 4-bit decimal numbers ($\mathrm{A}_{0}-\mathrm{A}_{3}$, $B_{0}-B_{3}$) and a Carry Input (C_{n}). It generates the decimal sum outputs $\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$, and a Carry Output $\left(\mathrm{C}_{n+4}\right)$ if the sum is greater than 9 . The 'F583 is the functional equivalent of the $82 S 83$.

Features

- Adds two decimal numbers
- Full internal lookahead
- Fast ripple carry for economical expansion
- Sum output delay time 16.5 ns max
- Ripple carry delay time 8.5 ns max
- Input to ripple delay time 14.0 ns max
- Supply current 60 mA max

Ordering Code: See Section 5

Logic Symbols

Connection Diagrams

Unit Loading/Fan Out: Sea Section 2tor U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{A}_{0}-\mathrm{A}_{3}$	A Operand Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{B}_{0}-\mathrm{B}_{3}$	B Operand Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
C_{n}	Carry Input	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Sum Outputs	50/33.3	-1 mA/20 mA
$\mathrm{C}_{\mathrm{n}+4}$	Carry Output	50/33.3	-1 mA/20 mA

Functional Description

The 'F583 4-bit binary coded (BCD) full adder performs the addition of two decimal numbers ($\left.A_{0}-A_{3}, B_{0}-B_{3}\right)$. The lookahead generates the BCD carry terms internally, allowing the 'F583 to then do BCD addition correctly. For BCD numbers 0 through 9 at A and B inputs, the $B C D$ sum forms at the output. In the addition of two BCD numbers totalling a number greater than 9 , a valid BCD number and a carry will result.

For input values larger than 9 , the number is converted from binary to $B C D$. Binary to $B C D$ conversion occurs by grounding one set of inputs, A_{n} or B_{n}, and applying any 4-bit binary number to the other set of inputs. If the input is between 0 and 9 , a BCD number occurs at the output. If the binary input falls between 10 and 15, a carry term is generated. Both the carry term and the sum are the BCD equivalent of the binary input. Converting binary numbers greater than 16 may be achieved through cascading 'F583s.

Logic Diagram

TL/F/9570-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias

$$
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
$$

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Typ	Max			
$\mathrm{V}_{\text {iH }}$	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage				-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 74 \mathrm{~F} \% \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~m} \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 74F 10\% VCC			$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \end{aligned}$
IIH	Input HIGH Current				20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test				100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
IIL	Input LOW Current				$\begin{array}{r} -0.6 \\ -1.2 \\ \hline \end{array}$	mA	Max	$\begin{array}{ll} V_{\mathbb{I N}}=0.5 V & \left(C_{n}\right) \\ V_{\mathbb{I N}}=0.5 V & \left(A_{n}, B_{n}\right) \end{array}$
los	Output Short-Circuit Current		-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
ICEX	Output HIGH Leakage Current				250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}$
ICCL	Power Supply Current			40	60	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\ C_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} T_{A}, V_{C C}=\mathrm{Mil} \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \\ & \hline \end{aligned}$	Propagation Delay A_{n} or B_{n} to S_{n}	$\begin{aligned} & \hline 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 13.0 \\ & 11.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 16.5 \\ & 14.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 15.0 \end{aligned}$	ns	2-3
$t_{P L H}$ $t_{\text {PHL }}$	Propagation Delay $C_{n} \text { to } C_{n+4}$	$\begin{array}{r} 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 6.5 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 10.5 \\ 8.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.5 \\ & \hline \end{aligned}$	ns	2-3
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation Delay A_{n} or B_{n} to C_{n+4}	$\begin{array}{r} 4.0 \\ 4.0 \\ \hline \end{array}$	$\begin{array}{r} 11.0 \\ 8.0 \\ \hline \end{array}$	$\begin{aligned} & 14.0 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 19.5 \\ 13.5 \\ \hline \end{array}$	$\begin{aligned} & 4.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.5 \\ & \hline \end{aligned}$	ns	2-3

National Semiconductor

54F/74F588

Octal Bidirectional Transceiver with TRI-STATE® Inputs/Outputs and IEEE-488 Termination Resistors

General Description

The 'F588 contains eight non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus-oriented applications. The B ports have termination resistors as specified in the IEEE-488 specifications. Current sinking capability is $24 \mathrm{~mA}(20 \mathrm{~mA}$ mil) at the A ports and 64 mA (48 mA mil) at the B ports. The Transmit/Receive ($T / \overline{\mathrm{R}}$) input determines the direction of data flow through the bidirectional transceiver. Transmit (active HIGH) enables data from A ports to B ports; Receive (active LOW) enables
data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a high impedance condition.

Features

■ Non-inverting buffers

- Bidirectional data path
- B outputs sink $64 \mathrm{~mA}(48 \mathrm{~mA}$ mil), source 12 mA

Ordering Code: See Section 5

Logic Symbols

IEEE/IEC

Connection Diagrams

Pin Assignment for DIP, SOIC and Flatpak

PIn Assignment for LCC and PCC

TL/F/9571-4

Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pin Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I H} / I_{I L}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\overline{O E}$	Output Enable Input (Active LOW)	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
T/ $\overline{\mathrm{R}}$	Transmit/Receive Control Input	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{A}_{0}-\mathrm{A}_{7}$	A Port Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	TRI-STATE Outputs	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$B_{0}-B_{7}$	B Port Inputs or	*T/5.33	*T/3.2 mA
	TRI-STATE Outputs	600/106.6 (80)	-12 mA/64 mA (48 mA)

*T $=$ Resistive Termination per IEEE-488 Standard

Truth Table

Inputs		Outputs
$\overline{\mathrm{OE}}$	$\mathrm{T} / \overline{\mathrm{R}}$	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	High Impedance

Logic Diagram

TL/F/9571-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

B Port Input Characteristic with T/信 LOW

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avalability and specifications.

Storage Temperature
Ambient Temperature under Bias

$$
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
$$

Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
-0.5 V to +7.0 V
Input Voltage (Note 2)
Input Current (Note 2)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

$$
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
$$

Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
-0.5 V to V_{CC}
TRI-STATE Output
-0.5 V to +5.5 V
Current Applied to Output in LOW State (Max)
twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature

Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	
Military	+4.5 V to +5.5 V
Commercial	+4.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter		54F/74F		Units	$V_{\text {cc }}$	Conditions
			Min	Typ Max			
V_{IH}	Input HIGH Voltage		2.0		V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$V_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}(\overline{\mathrm{OE}, \mathrm{T}} / \overline{\mathrm{R}})$
V_{OH}	Output HIGH Voltage	54F 10\% VCC 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC $74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.5 \\ & 2.4 \\ & 2.0 \\ & 2.7 \\ & 2.7 \\ & 2.0 \\ & \hline \end{aligned}$		V	Min	$\begin{aligned} & I_{O H}=-1 \mathrm{~mA}\left(A_{n}\right) \\ & I_{O H}=-3 \mathrm{~mA}\left(A_{n}, B_{n}\right) \\ & I_{O H}=-12 \mathrm{~mA}\left(B_{n}\right) \\ & I_{O H}=-1 \mathrm{~mA}\left(A_{n}\right) \\ & I_{\mathrm{OH}}=-3 \mathrm{~mA}\left(A_{n}, B_{n}\right) \\ & I_{O H}=-12 \mathrm{~mA}\left(B_{n}\right) \\ & I_{O H}=-1 \mathrm{~mA}\left(A_{n}\right) \\ & I_{O H}=-3 \mathrm{~mA}\left(A_{n}, B_{n}\right) \\ & I_{O H}=-15 \mathrm{~mA}\left(B_{n}\right) \end{aligned}$
V_{OL}	Output LOW Voltage	54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC		$\begin{gathered} 0.5 \\ 0.55 \\ 0.5 \\ 0.55 \end{gathered}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(A_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(B_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(A_{n}\right) \\ & \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(B_{n}\right) \end{aligned}$
I_{H}	Input HIGH Current			20	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}(\overline{\mathrm{O}} \mathrm{E}, \mathrm{T} / \overline{\mathrm{R}})$
$\begin{aligned} & \mathrm{I}_{\mathrm{H}}+ \\ & \mathrm{I}_{\mathrm{OZH}} \end{aligned}$	I_{H} IEEE-488		700	2.5	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.75 \\ & 5.25 \end{aligned}$	$\begin{aligned} & V_{I N}=5.0 \mathrm{~V}\left(B_{n}\right) \\ & V_{I N}=5.5 \mathrm{~V}\left(B_{n}\right) \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{LL}}+ \\ & \mathrm{l}_{\mathrm{OZL}} \end{aligned}$	$\begin{aligned} & \text { ILL } \\ & \text { IEEE-488 } \end{aligned}$		-1.3	-3.2	mA	$\begin{aligned} & 4.75 \\ & 5.25 \end{aligned}$	$\begin{aligned} & V_{I N}=0.4 V\left(B_{n}\right) \\ & V_{I N}=0.4 V\left(B_{n}\right) \end{aligned}$
V_{NL}	No Load Voltage		2.5	3.7	V	$\begin{aligned} & 4.75 \\ & 5.25 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathbb{N}}=0 V\left(B_{n}\right) \\ & \mathrm{I}_{\mathbb{N}}=0 V\left(B_{n}\right) \end{aligned}$
$\mathrm{I}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			100	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}(\overline{\mathrm{O}} \mathrm{E}, \mathrm{T} / \overline{\mathrm{R}})$
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown Test (I/O)			1.0	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{n}\right)$
$\mathrm{I}_{\text {IL }}$	Input LOW Current			-1.2	mA	Max	$\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{O}} \mathrm{E}, \mathrm{T} / \overline{\mathrm{R}})$
$\mathrm{I}_{\mathrm{H}}+\mathrm{l}_{\mathrm{OZH}}$	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{n}\right)$

DC Electrical Characteristics (Continued)

Symbol	Parameter	54F/74F			Units	V_{cc}	Conditions
		Min	Typ	Max			
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current			-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right)$
los	Output Short-Circuit Current	$\begin{gathered} -60 \\ -100 \\ \hline \end{gathered}$		$\begin{aligned} & -150 \\ & -225 \end{aligned}$	mA	Max	$\begin{aligned} & V_{\text {OUT }}=0 V\left(A_{n}\right) \\ & V_{\text {OUT }}=0 V\left(B_{n}\right) \end{aligned}$
ICEX	Output HIGH Leakage Current			250	$\mu \mathrm{A}$	Max	$V_{\text {OUT }}=V_{\text {CC }}\left(A_{n}\right)$
lzz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$V_{\text {OUT }}=V_{\text {CC }}\left(A_{n}, B_{n}\right)$
ICCH	Power Supply Current		67	100	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
ICCL	Power Supply Current		90	135	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
ICcz	Power Supply Current		83	125	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations

Symbol	Parameter	74F			54F		74F		Units	$\begin{aligned} & \text { Fig } \\ & \text { No } \end{aligned}$
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} T_{A}, V_{C C}=M I I \\ C_{L}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} T_{A}, V_{C C}=C o m \\ C_{L}=50 p F \end{gathered}$			
		Min	Typ	Max	Min	Max	Min	Max		
$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay A to B or B to A	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.5 \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	ns	2-3
$\begin{aligned} & t_{\text {pZH }} \\ & t_{\text {pZL }} \\ & \hline \end{aligned}$	Output Enable Time T / \bar{R} or $\overline{O E}$ to A or B	$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.0 \\ & \hline \end{aligned}$			$\begin{aligned} & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \\ \hline \end{gathered}$	ns	2-5
$\begin{aligned} & \text { tphz } \\ & t_{\text {tpLZ }} \\ & \hline \end{aligned}$	Output Disable Time T / \bar{R} or $\overline{O E}$ to A or B	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$			2.5 2.5	$\begin{aligned} & 8.0 \\ & 8.0 \\ & \hline \end{aligned}$		

54F/74F595

8-Bit Shift Register with Output Latches

General Description

The 'F595 contains an 8-bit serial-in, parallel-out shift register feeding an 8 -bit D-type storage register. Separate clocks are provided for the shift register and the storage register. The shift register has a direct overriding clear. The storage register has parallel TRI-STATE ${ }^{*}$ outputs. Serial input and serial output pins are available for cascading.
The clocks are positive edge-triggered for both the shift register and storage register. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

Features

- 8 -bit serial-in, parallel-out shift
- Register with storage
- High impedance NPN base input for reduced loading ($20 \mu \mathrm{~A}$ in HIGH and LOW states)
- TRI-STATE outputs
- Shift register has direct overriding clear

Connection Diagram

Pin Assignment .. for DIP, SOIC and Flatpak

Functional Block Diagram

54F/74F597

8-Bit Shift Register

General Description

The 'F597 consists of an 8 -bit storage register feeding a parallel-in, serial-out 8 -bit shift register. The storage register and shift register have separate positive-edge triggered clocks. The shift register also has direct load (from storage) and clear inputs.

Features

- High impedance NPN base inputs for reduced loading ($20 \mu \mathrm{~A}$ in HIGH and LOW states)
- 8-bit parallel storage register inputs
- Shift register has direct overriding load and clear
- Guaranteed shift frequency
- Separate clocks for storage and shift registers

Logic Symbols

TL/F/9573-1
IEEE/IEC

Connection Diagram

Pin Assignment for DIP, SOIC and Flatpak

TL/F/9573-2

TL/F/9573-3
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

54F/74F598 Shift Register

General Description

The 'F598 comes in a 20-pin package and consists of an 8 -bit storage latch feeding a parallel-in, serial-out 8 -bit shift register. Both the storage register and shift register have positive-edge triggered clocks. The shift register also has direct load (from storage) and reset inputs. The 'F598 has TRI-STATE ${ }^{\circledR}$ I/O ports that provide parallel shift register outputs and also has multiplexed serial data inputs.

Features

- 8-bit parallel storage register inputs
- Shift register has direct overriding load and reset
- Guaranteed shift frequency DC to 120 MHz

■ Separate clocks for storage and shift registers

Logic Symbols

IEEE/IEC

TL/F/9574-2
TL/F/9574-5

Connection Diagram

Pin Assignment for DIP, SOIC and Flatpak

$1 / O_{0}-1$	20	$-V_{C C}$
$1 / O_{1}-2$	19	$-S$
$1 / O_{2}-1$	18	$-D S_{0}$
$1 / O_{3}-4$	17	$-D S_{1}$
$1 / O_{4}-5$	16	$-\overline{O E}$
$1 / O_{5}-6$	15	$-S T C P$
$1 / O_{6}-7$	14	$-\overline{S H C P E N}$
$1 / O_{7}-8$	13	$-\overline{S H C P}$
$\overline{P L}-9$	12	$-\overline{M R}$
$C N D-10$	11	$-Q$

54F/74F620 • 54F/74F623 Inverting Octal Bus Transceiver with TRI-STATE® ${ }^{\circledR}$ Outputs

General Description

The 'F623 is an octal transceiver featuring non-inverting TRI-STATE bus compatible outputs in both send and receive directions. The outputs are capable of sinking 64 mA and sourcing up to 15 mA , providing very good capacitive drive characteristics. The 'F620 is an inverting version of the 'F623.
These octal bus transceivers are designed for asynchronous two-way data flow between data buses. The control function implementation allows for maximum flexibility in timing.
These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs ($\bar{G} B A$ and GAB).

The dual-enable configuration gives the 'F620 and 'F623 the capability to store data by simultaneous enabling of $\bar{G} B A$ and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of the bus lines are at high impedance, both sets of bus lines (sixteen in all) will remain at their last states.

Features

- Octal bidirectional bus interface
- TRI-STATE buffer outputs sink 64 mA
- 15 mA source current
- 'F620 inverting option of 'F623

The enable inputs can be used to disable the device so that the buses are effectively isolated.

Logic Symbols

IEEE/IEC
'F623

Connection Diagrams
Pin Assignment for DIP, SOIC and Flatpak

Pin Assignment for LCC
$A_{7} A_{6} A_{5} A_{4} A_{3}$
8 7 76 5

1415161718
$\begin{array}{lllll}B_{5} & B_{4} & B_{3} & B_{2} & B_{1}\end{array}$
TL/F/9577-2

Function Table

Enable Inputs		Operation	
$\overline{\text { GBA }}$	GAB	'F620	'F623
L	L	\bar{B} Data to A Bus	B Data to A Bus
H	H	\bar{A} Data to B Bus	A Data to B Bus
H	L	Z	Z
L	H	\bar{B} Data to A Bus, A Data to B Bus	B Data to A Bus, \bar{A}

H = HIGH Voltage Level
L = LOW Voltage Level
Z = High Impedance

Logic Diagram

'F620

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
'F623

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

54F/74F632

32-Bit Parallel Error Detection and Correction Circuit

General Description

The 'F632 device is a 32-bit parallel error detection and correction circuit (EDAC) in a 52 -pin or 68 -pin package. The EDAC uses a modified Hamming code to generate a 7 -bit check word from a 32 -bit data word. This check word is stored along with the data word during the memory write cycle. During the memory read cycle, the 39 -bit words from memory are processed by the EDAC to determine if errors have occurred in memory.
Single-bit errors in the 32-bit data word are flagged and corrected.
Single-bit errors in the 7-bit check word are flagged, and the CPU sends the EDAC through the correction cycle even though the 32-bit data word is not in error. The correction cycle will simply pass along the original 32 -bit data word in this case and produce error syndrome bits to pinpoint the error-generating location.
Dual-bit errors are flagged but not corrected. These errors may occur in any two bits of the 39-bit word from memory (two errors in the 32-bit data word, two errors in the 7-bit

Abstract

check word, or one error in each word). The gross-error condition of all LOWs or all HIGHs from memory will be detected. Otherwise, errors in three or more bits of the 39bit word are beyond the capabilities of these devices to detect. Read-modify-write (byte-control) operations can be performed by using output latch enable, LEDBO, and the individual $\overline{\mathrm{OEB}}_{0}$ through $\overline{\mathrm{OEB}}_{3}$ byte control pins. Diagnostics are performed on the EDACs by controls and internal paths that allow the user to read the contents of the Data Bit and Check Bit input latches. These will determine if the failure occurred in memory or in the EDAC.

\section*{Features} - Detects and corrects single-bit errors - Detects and flags dual-bit errors - Built-in diagnostic capability - Fast write and read cycle processing times - Byte-write capability

Ordering Code: See Section 5

Logic Symbol

TL/F/9579-1
Unit Loading/Fan Out: See Section 2 for U.L. definitions

Pln Names	Description	54F/74F	
		U.L. HIGH/LOW	Input $I_{I_{H}} / I_{\text {IL }}$ Output $\mathrm{IOH}_{\mathrm{OH}} / \mathrm{IOL}_{\mathrm{OL}}$
$\mathrm{CB}_{0}-\mathrm{CB}_{6}$	Check Word Bit, Input or TRI-STATE ${ }^{\text {® }}$ Output	$\begin{gathered} 3.5 / 1.083 \\ 150 / 40(33.3) \end{gathered}$	$\begin{gathered} 70 \mu \mathrm{~A} /-650 \mu \mathrm{~A} \\ -3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA}) \end{gathered}$
$D B_{0}-\mathrm{DB}_{31}$	Data Word Bit, Input	3.5/1.083	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
	or TRI-STATE Output	150/40 (33.3)	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\overline{\mathrm{OEB}}_{0}-\overline{\mathrm{OEB}}_{3}$	Output Enable Data Bits	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
LEDBO	Output Latch Enable Data Bit	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{O E C B}$	Output Enable Check Bit	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select Pins	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
ERR	Single Error Flag	50/33.3	-1 mA/ 20 mA
MERR	Multiple Error Flag	50/33.3	-1 mA/20 mA

Connection Diagrams

Pin Assignment for Side Brazed DIP

Pin Assignment for LCC and PCC 52-Pin

TL/F/9579-3

Pin Assignment for LCC and PCC 68-Pin

TL/F/9579-8
NC-No internal connection

Functional Description

MEMORY WRITE CYCLE DETAILS

During a memory write cycle, the check bits (CB_{0} through CB_{6}) are generated internally in the EDAC by seven 16 -input parity generators using the 32-bit data word as defined in Table II. These seven check bits are stored in memory along with the original 32 -bit data word. This 32-bit word will later be used in the memory read cycle for error detection and correction.

ERROR DETECTION AND CORRECTION DETAILS

During a memory read cycle, the 7 -bit check word is retrieved along with the actual data. In order to be able to determine whether the data from memory is acceptable to use as presented to the bus, the error flags must be tested to determine if they are at the HIGH level.

The first case in Table III represents the normal, no-error conditions. The EDAC presents HIGHs on both flags. The next two cases of single-bit errors give a HIGH on MERR and a LOW on ERR, which is the signal for a correctable error, and the EDAC should be sent through the correction cycle. The last three cases of double-bit errors will cause the EDAC to signal LOWs on both ERR and MERR, which is the interrupt indication for the CPU.
Error detection is accomplished as the 7 -bit check word and the 32-bit data word from memory are applied to internal parity generators/checkers. If the parity of all seven groupings of data and check bits is correct, it is assumed that no error has occurred and both error flags will be HIGH.

TABLE I. Write Control Function

Memory Cycle	EDAC Function	Control		Data I/O	$\begin{aligned} & \text { DB Control } \\ & \overline{\mathrm{OEB}}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & \text { DB Output } \\ & \text { Latch } \\ & \text { LEDBO } \end{aligned}$	Check I/O	CBControl OECB	Error Flags	
		S_{1}	S_{0}						ERR	$\overline{\text { MERR }}$
Write	Generate Check Word	L	L	Input	H	X	Output Check Bit*	L	H	H

*See Table II for details of check bit generation.
TABLE II. Parity Algorithm

Check Word Bit	32-Bit Data Word																															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CB_{0}	X		X	X		X					X		X	X	x			X			X		X	X	X	x		X				x
CB_{1}				X		X		X		X		X		X	X	X				X		x		x		x		x		x	\times	x
CB_{2}	X		X			X	X		X			X	X			x	x		x			X	X		X			X	X			x
CB_{3}			x	X	X				X	x	x				x	x			x	x	X				X	x	x				x	x
CB_{1}	X	x							X	x	x	X	X	X			x	x							x	x	x	X	X	x		
CB_{5}	X	x	x	x	x	x	x	x									X	x	x	x	x	X	X	x								
CB_{6}	X	X	X	X	x	X	X	X																	X	X	X	X	\times	X	X	x

The seven check bits are parity bits derived from the matrix of data bits as indicated by X for each bit.
TABLE III. Error Function

Total Number of Errors		Error Flags		Data Correction
32-Bit Data Word	7-Bit Check Word	$\overline{\text { ERR }}$	$\overline{\text { MERR }}$	
0	0	H	H	Not Applicable
1	0	H	Correction	
0	1	L	Correction	
1	1	L	Interrupt	
2	0	L	Interrupt	
0	2	L	L	Interrupt

[^17]
Functional Description (Continued)

If the parity of one or more of the check groups is incorrect, an error has occurred and the proper error flag or flags will be set LOW. Any single error in the 32-bit data word will change the state of either three or five bits of the 7 -bit check word. Any single error in the 7 -bit check word changes the state of only that one bit. In either case, the single error flag (ERR) will be set LOW while the dual error flag (MERR) will remain HIGH.
Any 2-bit error will change the state of an even number of check bits. The 2 -bit error is not correctable since the parity tree can only identify single-bit errors. Both error flags are set LOW when any 2-bit error is detected.
Three or more simultaneous bit errors can cause the EDAC to believe that no error, a correctable error, or an uncorrectable error has occurred and will produce erroneous results in all three cases. It should be noted that the gross-error conditions of all LOWs and all HIGHs will be detected.
As the corrected word is made available on the data I/O port (DB_{0} through DB_{31}), the check word I/O port $\left(\mathrm{CB}_{0}\right.$ through CB_{6}) presents a 7 -bit syndrome error code. This syndrome error code can be used to locate the bad memory chip. See Table V for syndrome decoding.

READ-MODIFY-WRITE (BYTE CONTROL) OPERATIONS

The 'F632 device is capable of byte-write operations. The 39-bit word from memory must first be latched into the Data Bit and Check Bit input latches. This is easily accomplished by switching from the read and flag mode ($\mathrm{S}_{1}=\mathrm{H}, \mathrm{S}_{0}=\mathrm{L}$) to the latch input mode $\left(S_{1}=H, S_{0}=H\right)$. The EDAC will then make any corrections, if necessary, to the data word and place it at the input of the output data latch. This data word must then be latched into the output data latch by taking LEDBO from a LOW to a HIGH.

Byte control can now be employed on the data word through the $\overline{\mathrm{OEB}}_{0}$ through $\overline{\mathrm{OEB}}_{3}$ controls. $\overline{\mathrm{OEB}}_{0}$ controls $\mathrm{DB}_{0}-\mathrm{DB}_{7}$ (byte 0), $\overline{\mathrm{OEB}}_{1}$ controls $\mathrm{DB}_{8}-\mathrm{DB}_{15}$ (byte 1), $\overline{\mathrm{OEB}}_{2}$ controls $\mathrm{DB}_{16}-\mathrm{DB}_{23}$ (byte 2), and OEB_{3} controls $\mathrm{DB}_{24}-\mathrm{DB}_{31}$ (byte 3). Placing a HIGH on the byte control will disable the output and the user can modify the byte. If a LOW is placed on the byte control, then the original byte is allowed to pass onto the data bus unchanged. If the original data word is altered through byte control, a new check word must be generated before it is written back into memory. This is easily accomplished by taking controls S_{1} and S_{0} LOW. Table VI lists the read-modify-write functions.

DIAGNOSTIC OPERATIONS

The 'F632 is capable of diagnostics that allow the user to determine whether the EDAC or the memory is failing. The diagnostic function tables will help the user to see the possibilities for diagnostic control. In the diagnostic mode $\left(S_{1}=L, S_{0}=H\right)$, the check word is latched into the input latch while the data input latch remains transparent. This lets the user apply various data words against a fixed known check word. If the user applies a diagnostic data word with an error in any bit location, the ERR flag should be LOW. If a diagnostic data word with two errors in any bit location is applied, the MERR flag should be LOW. After the check word is latched into the input latch, it can be verified by taking $\overline{O E C B}$ LOW. This outputs the latched check word. The diagnostic data word can be latched into the output data latch and verified. By changing from the diagnostic $\operatorname{mode}\left(S_{1}=L, S_{0}=H\right)$ to the correction mode $\left(S_{1}=H, S_{0}\right.$ $=H$), the user can verify that the EDAC will correct the diagnostic data word. Also, the syndrome bits can be produced to verify that the EDAC pinpoints the error location. Table VII lists the diagnostic functions.

TABLE IV. Read, Flag and Correct Function

Memory Cycle	EDAC Function			Data I/O	$\begin{aligned} & \text { DB Control } \\ & \overline{O E B}_{n} \end{aligned}$	$\begin{aligned} & \text { DB Output } \\ & \text { Latch } \\ & \text { LEDBO } \end{aligned}$	Check I/O		$\begin{aligned} & \text { Error Flags } \\ & \overline{\text { ERR }} \overline{\text { MERR }} \end{aligned}$
Read	Read \& Flag	H	L	Input	H	X	Input	H	Enabled (Note 1)
Read	Latch Input Data \& Check Bits	H	H	Latched Input Data	H	L	Latched Input Check Word	H	Enabled (Note 1)
Read	Output Corrected Data \& Syndrome Bits	H	H	Output Corrected Data Word	L	X	Output Syndrome Bits (Note 2)	L	Enabled (Note 1)

Note 1: See Table III for error description.
Note 2: See Table V for error location.

Functional Description (Continued)
TABLE V. Syndrome Decoding

Syndrome Bits							Error
6	5	4	3	2	1	0	
L	L	L	L	L	L	L	unc
L	L	L	L	L	L	H	2-Bit
L	L	L	L	L	H	L	2-Bit
L	L	L	L	L	H	H	unc
L	L	L	L	H	L	L	2-Bit
L	L	L	L	H	L	H	unc
L	L	L	L	H	H	L	unc
L	L	L	L	H	H	H	2-Bit
L	L	L	H	L	L	L	2-Bit
L	L	L	H	L	L	H	unc
L	L	L	H	L	H	L	DB_{31}
L	L	L	H	L	H	H	2-Bit
L	L	L	H	H	L	L	unc
L	L	L	H	H	L	H	2-Bit
L	L	L	H	H	H	L	2-Bit
L	L	L	H	H	H	H	DB_{30} (Note 1)
L	L	H	L	L	L	L	2-Bit
L	L	H	L	L	L	H	unc
L	L	H	L	L	H	L	DB_{29}
L	L	H	L	L	H	H	2-Bit
L	L	H	L	H	L	L	DB_{28}
L	L	H	L	H	L	H	2-Bit
L	L	H	L	H	H	L	2-Bit
L	L	H	L	H	H	H	DB_{27}
L	L	H	H	L	L	L	DB_{26}
L	L	H	H	L	L	H	2-Bit
L	L	H	H	L	H	L	2-Bit
L	L	H	H	L	H	H	DB_{25}
L	L	H	H	H	L	L	2-Bit
L.	L	H	H	H	L	H	DB_{24}
L	L	H	H	H	H	L	unc
L	L	H	H	H	H	H	2-Bit

Syndrome Blts							Error
6	5	4	3	2	1	0	
L	H	L	L	L	L	L	2-Bit
L	H	L	L	L	L	H	unc
L	H	L	L	L	H	L	DB_{7}
L	H	L	L	L	H	H	2-Bit
L	H	L	L	H	L	L	DB_{6}
L	H	L	L	H	L	H	2-Bit
L	H	L	L	H	H	L	2-Bit
L	H	L	L	H	H	H	DB_{5}
L	H	L	H	L	L	L	DB_{4}
L	H	L	H	L	L	H	2-Bit
L	H	L	H	L	H	L	2-Bit
L	H	L	H	L	H	H	DB_{3}
L	H	L	H	H	L	L	2-Bit
L	H	L	H	H	L	H	DB_{2}
L	H	L	H	H	H	L	unc
L	H	L	H	H	H	H	2-Bit
L	H	H	L	L	L	L	DB_{0}
L	H	H	L	L	L	H	2-Bit
L	H	H	L	L	H	L	2-Bit
L	H	H	L	L	H	H	unc
L	H	H	L	H	L	L	2-Bit
L	H	H	L	H	L	H	DB_{1}
L	H	H	L	H	H	L	unc
L	H	H	L	H	H	H	2-Bit
L	H	H	H	L	L	L	2-Bit
L	H	H	H	L	L	H	unc
L	H	H	H	L	H	L	unc
L	H	H	H	L	H	H	2-Bit
L	H	H	H	H	L	L	unc
L	H	H	H	H	L	H	2-bit
L	H	H	H	H	H	L	2-bit
L	H	H	H	H	H	H	CB_{6}

$\mathrm{CBX}_{\mathrm{X}}=$ Etrror in check bit X
$D B_{Y}=$ Error in data bit Y
2-Bit $=$ Double-bit error
unc = Uncorrectable multi-bit error
Note: 2-bit and unc condition will cause both ERR and MERR to be LOW Note 1: Syndrome bits for all LOWs. MERR and ERR LOW for all LOWs, only ERR LOW for DB_{30} error.
Note 2: Syndrome bits for all HIGHs.

Functional Description (Continued)
TABLE V. Syndrome Decoding (Continued)

Syndrome Bits							Error
6	5	4	3	2	1	0	
H	L	L	L	L	L	L	2-Bit
H	L	L	L	L	L	H	unc
H	L	L	L	L	H	L	unc
H	L	L	L	L	H	H	2-Bit
H	L	L	L	H	L	L	unc
H	L	L	L	H	L	H	2-Bit
H	L	L	L	H	H	L	2-Bit
H	L	L	L	H	H	H	unc
H	L	L	H	L	L	L	unc
H	L	L	H	L	L	H	2-Bit
H	L	L	H	L	H	L	2-Bit
H	L	L	H	L	H	H	DB_{15}
H	L	L	H	H	L	L	2-Bit
H	L	L	H	H	L	H	unc
H	L	L	H	H	H	L	DB_{14}
H	L	L	H	H	H	H	2-Bit
H	L	H	L	L	L	L	unc
H	L	H	L	L	L	H	2-Bit
H	L	H	L	L	H	L	2-Bit
H	L	H	L	L	H	H	DB_{13}
H	L	H	L	H	L	L	2-Bit
H	L	H	L	H	L	H	DB_{12}
H	L	H	L	H	H	L	DB_{11}
H	L	H	L	H	H	H	2-Bit
H	L	H	H	L	L	L	2-Bit
H	L	H	H	L	L	H	DB_{10}
H	L	H	H	L	H	L	DB_{9}
H	L	H	H	L	H	H	2-Bit
H	L	H	H	H	L	L	DB_{8}
H	L	H	H	H	L	H	2-Bit
H	L	H	H	H	H	L	2-Bit
H	L	H	H	H	H	H	CB_{5}

Syndrome Bits							Error
6	5	4	3	2	1	0	
H	H	L	L	L	L	L	unc
H	H	L	L	L	L	H	2-Bit
H	H	L	L	L	H	L	2-Bit
H	H	L	L	L	H	H	DB_{23}
H	H	L	L	H	L	L	2-Bit
H	H	L	L	H	L	H	DB_{22}
H	H	L	L	H	H	L	DB_{21}
H	H	L	L	H	H	H	2-Bit
H	H	L	H	L	L	L	2-Bit
H	H	L	H	L	L	H	DB_{20}
H	H	L	H	L	H	L	DB_{19}
H	H	L	H	L	H	H	2-Bit
H	H	L	H	H	L	L	DB_{18}
H	H	L	H	H	L	H	2-Bit
H	H	L	H	H	H	L	2-Bit
H	H	L	H	H	H	H	CB_{4}
H	H	H	L	L	L	L	2-Bit (Note 2)
H	H	H	L	L	L	H	DB_{16}
H	H	H	L	L	H	L	unc
H	H	H	L	L	H	H	2-Bit
H	H	H	L	H	L	L	DB_{17}
H	H	H	L	H	L	H	2-Bit
H	H	H	L	H	H	L	2-Bit
H	H	H	L	H	H	H	CB_{3}
H	H	H	H	L	L	L	unc
H	H	H	H	L	L	H	2-Bit
H	H	H	H	L	H	L	2-Bit
H	H	H	H	L	H	H	CB_{2}
H	H	H	H	H	L	L	2-Bit
H	H	H	H	H	L	H	CB_{1}
H	H	H	H	H	H	L	CB_{0}
H	H	H	H	H	H	H	None

$C B_{X}=$ Error in check bit X
$D B_{Y}=$ Error in data bit Y
2 -Bit $=$ Double-bit error
unc $=$ Uncorrectable multi-bit error
Note: 2-bit and unc condition will cause both ERR and MERR to be LOW Note 1: Syndrome bits for all LOWs. MERR and ERR LOW for all LOWs, only ERR LOW for DB_{30} error.
Note 2: Syndrome bits for all HIGHs.

Functional Description (Continued)
TABLE VI. Read-Modify-Write Function

Memory Cycle	EDAC Function	Control		BYTEn*	OEBn*	$\begin{aligned} & \text { DB Output } \\ & \text { Latch } \\ & \text { LEDBO } \end{aligned}$	Check I/O		Error Flags	
Read	Read \& Flag	H	L	Input	H	X	Input	H	Enabled	
Read	Latch Input Data \& Check Bits	H	H	Latched Input Data	H	L	Latched Input Check Word	H	Enabled	
Read	Latch Corrected Data Word into Output Latch	H	H	Latched Output Data Word	H	H	High Z	H	Enabled	
							Output Syndrome Bits	L		
Modify/ Write	Modify Appropriate Byte or Bytes \& Generate New Check Word	L	L	Input Modified BYTE 0	H	H	Output Check Word	L	H	H
				Output Unchanged BYTE 0	L					

${ }^{*} \mathrm{OEB}_{0}$ controls $\mathrm{DB}_{0}-\mathrm{DB}_{7}\left(\mathrm{EYTE}_{0}\right) ; \overline{\mathrm{OEB}}_{1}$ controls $\mathrm{DB}_{8}-\mathrm{DB}_{15}$ (BYTE_{1}); OEB_{2} controls $\mathrm{DB}_{16}-\mathrm{DB}_{23}\left(\mathrm{BYTE}_{2}\right)$; OEB_{3} controls $\mathrm{DB}_{24}-\mathrm{DB}_{31}\left(\mathrm{BYTE}_{3}\right)$.
TABLE VII. Dlagnostic Function

EDAC Function	Control		Data I/O	DB Byte Control $\overline{O E B}_{n}$	$\begin{aligned} & \text { DB Output } \\ & \text { Latch } \\ & \hline \text { LEDBO } \\ & \hline \end{aligned}$	Check I/O		$\frac{\text { Error Flags }}{\text { ERR }}$ MERR
Read \& Flag	H	L	Input Correct Data Word	H	X	Input Correct Check Bits	H	H
Latch Input Check Word while Data Input Latch Remains Transparent	L	H	Input Diagnostic Data Word*	H	L	Latched Input Check Bits	H	Enabled
Latch Diagnostic Data Word into Output Latch	L	H	Input Diagnostic Data Word*	H	H	Output Latched Check Bits	L	Enabled
						High Z	H	
Latch Diagnostic Data Word into Input Latch	H	H	Latched Input Diagnostic Data Word	H	H	Output Syndrome Bits	L	Enabled
						High Z	H	
Output Diagnostic Syndrome Bits	H	H	Output Diagnostic Data Word	L	H	Output Syndrome Bits	L	Enabled
						High Z	H	
Output Corrected Diagnostic Data Word \& Output Syndrome Bits	H	H	Output Corrected Diagnostic Data Word	L	L	Output Syndrome Bits	L	Enabled
						High 2	H	

[^18]

TL/F/9579-4
Timing Waveforms


```
Timing Waveforms (Continued)

Read, Correct and Modify Mode


TL/F/8579-6
Dlagnostlc Mode


Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

\section*{Storage Temperature}

Ambient Temperature under Bias
\[
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\]

Junction Temperature under Bias
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(-55^{\circ} \mathrm{C}\) to \(+175^{\circ} \mathrm{C}\)
\(V_{C C}\) Pin Potential to Ground Pin
-0.5 V to +7.0 V
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) ) Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max) twice the rated \(\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{Recommended Operating Conditions}

Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{2}{|r|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{cc}}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ Max & & & \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC \(74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}\) & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.5 \\
& 2.4 \\
& 2.7 \\
& 2.7 \\
& \hline
\end{aligned}
\] & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{\mathrm{ERR}}, \overline{M E R R}, \mathrm{DB}_{n}, \mathrm{CB}_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{DB}_{n}, \overline{C B_{n}}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{E R R}, \overline{M E R R}, \mathrm{DB}_{n}, \mathrm{CB}_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{DB}_{n}, C B_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\overline{E R R}, \overline{M E R R}, \mathrm{DB}_{n}, \mathrm{CB}_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{DB}_{n}, \mathrm{CB}_{n}\right)
\end{aligned}
\] \\
\hline V OL & Output LOW Voltage & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\overline{\mathrm{ERR}}, \overline{\mathrm{MERR}}, \mathrm{DB}_{n}, \mathrm{CB}_{n}\right) \\
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}(\overline{\mathrm{ERR}}, \overline{\mathrm{MERR}}) \\
& \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{DB}_{n}, \mathrm{CB}_{n}\right)
\end{aligned}
\] \\
\hline \(\mathrm{IIH}^{\text {H}}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{1 \mathrm{~N}}=2.7 \mathrm{~V}\left(\mathrm{~S}_{0}, \mathrm{~S}_{1}, \overline{\mathrm{OEB}}_{\mathrm{n}}, \overline{\mathrm{OECB}}, \overline{\text { LEDBO}}\right)\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\left(\mathrm{~S}_{0}, \mathrm{~S}_{1}, \overline{\mathrm{OEB}}_{\mathrm{n}}, \overline{\mathrm{OECB}}, \overline{\text { LEDBO}}\right)\) \\
\hline \(\mathrm{I}_{\text {BVIT }}\) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Input HIGH Current \\
Breakdown Test (I/O)
\end{tabular}} & & 1.0 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{CB}_{\mathrm{n}}, \mathrm{DB}_{n}\right)\) \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & -0.6 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~S}_{0}, \mathrm{~S}_{1}, \overline{\mathrm{OEB}}_{\mathrm{n}}, \overline{\mathrm{OECB}}, \overline{\text { LEDBO}}\right)\) \\
\hline \(\mathrm{I}_{\text {IH }}+\mathrm{l}_{\text {OZH }}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & 70 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{1 / \mathrm{O}}=2.7 \mathrm{~V}\left(\mathrm{CB}_{\mathrm{n}}, \mathrm{DB}_{\mathrm{n}}\right)\) \\
\hline \(\mathrm{IIL}+\mathrm{I}_{\text {OZL }}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & -650 & \(\mu \mathrm{A}\) & Max & \(V_{1 / O}=0.5 V\left(\mathrm{CB}_{\mathrm{n}}, \mathrm{DB}_{\mathrm{n}}\right)\) \\
\hline lozh & \multicolumn{2}{|l|}{Output Leakage Current} & & 70 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{1 / \mathrm{O}}=2.7 \mathrm{~V}\left(\mathrm{CB}_{\mathrm{n}}, \mathrm{DB}_{\mathrm{n}}\right)\) \\
\hline lozL & \multicolumn{2}{|l|}{Output Leakage Current} & & -650 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{1 / \mathrm{O}}=0.5 \mathrm{~V}\left(\mathrm{CB}_{\mathrm{n}}, \mathrm{DB}_{\mathrm{n}}\right)\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -60 & -150 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline \(I_{\text {CEX }}\) & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline IzZ & \multicolumn{2}{|l|}{Bus Drainage Test} & & 500 & \(\mu \mathrm{A}\) & 0.0V & \(V_{\text {OUT }}=V_{C C}\left(C B_{n}, D B_{n}\right)\) \\
\hline ICC & \multicolumn{2}{|l|}{Power Supply Current} & & 340 & mA & Max & \(T_{A}=0^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\) \\
\hline ICC & \multicolumn{2}{|l|}{Power Supply Current} & & 325 & mA & Max & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{Fig. No.} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \[
\mathrm{t}_{\mathrm{PLH}}
\]
\[
\mathrm{t}_{\mathrm{pHL}}
\] & Propagation Delay DB or CB to ERR & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 14.0 \\
& 10.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 27.0 \\
& 18.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
31.0 \\
20.0 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PH}} \\
& \hline
\end{aligned}
\] & Propagation Delay DB to ERR & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 21.0 \\
& 14.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 27.0 \\
& 18.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
31.0 \\
20.0 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \[
t_{P L H}
\]
\[
t_{\mathrm{PHL}}
\] & Propagation Delay DB or CB to MERR & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 17.0 \\
& 16.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
27.0 \\
27.0 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
31.0 \\
31.0 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay DB to MERR & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 23.0 \\
& 19.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 27.0 \\
& 27.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
31.0 \\
31.0 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLLH}} \\
& \mathrm{t}_{\mathrm{PHL}}
\end{aligned}
\] & Propagation Delay \(\mathrm{S}_{0}\) and \(\mathrm{S}_{1}\), LOW, to DB & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 12.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 16.0 \\
& 16.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
20.0 \\
20.0 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Propagation Delay } \\
& S_{1} \text { to } C B
\end{aligned}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10.5 \\
9.0 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
14.0 \\
14.0 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
15.0 \\
15.0 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \(\mathrm{t}_{\text {PLH }}\) & Propagation Delay \(\mathrm{S}_{0}\) or \(\mathrm{S}_{1}\) to ERR or \(\overline{M E R R}\) & 2.0 & 11.5 & 13.0 & & & 2.0 & 14.0 & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay DB to CB & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 16.0 \\
& 18.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
23.0 \\
23.0 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 25.0 \\
& 25.0 \\
& \hline
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay LEDBO to DB & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11.0 \\
11.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13.0 \\
13.0 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 14.0 \\
& 14.0 \\
& \hline
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{O E B}_{n}\) to DB & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10.0 \\
10.0 \\
\hline
\end{gathered}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLZ}}
\end{aligned}
\] & Output Disable Time \(\overline{O E B}_{n}\) to \(D B\) & \[
\begin{aligned}
& 10 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10.0 \\
10.0 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \text { tpZH }^{\text {tpll }}
\end{aligned}
\] & Output Enable Time \(\overline{O E C B}\) to CB & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLLZ}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(\overline{O E C B}\) to \(C B\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& V_{C C}=+5.0 \mathrm{~V}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M i l}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \(\mathrm{t}_{\text {s }}\) & Setup Time, HIGH or LOW DB/CB before \(\mathrm{S}_{0} \mathrm{HIGH}\left(\mathrm{S}_{1} \mathrm{HIGH}\right)\) & 3.0 & & & & 3.0 & & ns & 2-6 \\
\hline \(\mathrm{t}_{\mathrm{s}}(\mathrm{H})\) & \begin{tabular}{l}
Setup Time, HIGH \\
\(\mathrm{S}_{0}\) HIGH before LEDBO HIGH
\end{tabular} & 12.0 & & & & 14.0 & & ns & 2-6 \\
\hline \(\mathrm{t}_{\mathrm{s}}(\mathrm{H})\) & \begin{tabular}{l}
Setup Time, HIGH \\
LEDBO HIGH before \(\mathrm{S}_{0}\) or \(\mathrm{S}_{1}\) LOW
\end{tabular} & 0 & & & & 0 & & ns & 2-6 \\
\hline \(\mathrm{t}_{\mathbf{s}}(\mathrm{H})\) & Setup Time, HIGH
LEDBO HIGH before \(\mathrm{S}_{1}\) HIGH & 0 & & & & 0 & & ns & 2-6 \\
\hline \(\mathrm{t}_{\text {s }}\) & Setup Time, HIGH or LOW Diagnostic DB before \(\mathrm{S}_{1}\) HIGH & 0 & & & & 0 & & ns & 2-6 \\
\hline \(\mathrm{t}_{\mathrm{s}}\) & Setup Time, HIGH or LOW Diagnostic CB before \(\mathrm{S}_{1}\) LOW or \(\mathrm{S}_{0}\) HIGH & 3.0 & & & & 3.0 & & ns & 2-6 \\
\hline \(\mathrm{t}_{\mathrm{s}}\) & Setup Time, HIGH or LOW Diagnostic DB before LEDBO HIGH ( \(\mathrm{S}_{1}\) LOW, \(\mathrm{S}_{0}\) HIGH) & 8.0 & & & & 8.0 & & ns & 2-6 \\
\hline \(t_{\text {H }}(L)\) & Hold Time, LOW \(\mathrm{S}_{0}\) LOW after \(\mathrm{S}_{1}\) HIGH & 8.0 & & & & 8.0 & & ns & 2-6 \\
\hline \(t_{h}\) & Hold Time, HIGH or LOW DB and CB Hold after \(\mathrm{S}_{0}\) HIGH & 8.0 & & & & 8.0 & & ns & 2-6 \\
\hline \(t_{n}\) & Hold Time, HIGH or LOW DB Hold after \(\mathrm{S}_{1}\) HIGH & 8.0 & & & & 8.0 & & ns & 2-6 \\
\hline \(t_{h}\) & Hold Time, HIGH or LOW CB Hold after \(\mathrm{S}_{1}\) LOW or \(\mathrm{S}_{0}\) HIGH & 5.0 & & & & 5.0 & & ns & 2-6 \\
\hline \(\mathrm{th}^{\text {b }}\) & Hold Time, HIGH or LOW Diagnostic DB after LEDBO HIGH ( \(\mathrm{S}_{1}\) LOW, \(\mathrm{S}_{0} \mathrm{HIGH}\) ) & 0 & & & & 0 & & ns & 2-6 \\
\hline \(\mathrm{t}_{\mathrm{w}}(\mathrm{L})^{*}\) & LEDBO Pulse Width & 8.0 & & & & 8.0 & & ns & 2-4 \\
\hline \(\mathrm{t}_{\text {corr }}{ }^{\text {* }}\) & Correction Time & & 25.0 & & & & 28.0 & ns & \\
\hline
\end{tabular}
*Note: These parameters are guaranteed by characterization or other tests performed.

\section*{7 National Semiconductor}

\section*{54F/74F646 • 54F/74F648 Octal Transceiver/Register with TRI-STATE \({ }^{\circledR}\) Outputs}

\section*{General Description}

These devices consist of bus transceiver circuits with TRISTATE or open-collector outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to a high logic level. Control \(\overline{\mathrm{G}}\) and direction pins are provided to control the transceiver function. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls can multiplex stored and real-time (transparent mode) data. The direction control determines which bus will receive data when the enable control \(\bar{G}\) is Active LOW. In the isolation mode (control \(\bar{G}\) HIGH), A data may be stored in the B register and/or B data may be stored in the A register.

\section*{Features}
\(\square\) Independent registers for \(A\) and \(B\) buses
- Multiplexed real-time and stored data

■ Choice of true and inverting ('F648) data paths
- TRI-STATE outputs
- 300 mil slim DIP

Ordering Code: See Section 5

\section*{Logic Symbols}


TL/F/9580-1

IEEE/IEC
F646


F648

 9909\%0\%9

TL/F/9580-7
IEEE/IEC
F648


\section*{Connection Diagrams}

Pin Assignment for DIP, SOIC and Flatpak F646


TL/F/9580-2

Pin Assignment for DIP, SOIC and Flatpak F648
\begin{tabular}{|c|c|}
\hline & \\
\hline CPAB-1 & 24 \\
\hline SAB-2 & 23 \\
\hline DR-3 & 22 \\
\hline \(\bar{A}_{0}-4\) & 21 \\
\hline \(\bar{A}_{1}-5\) & 20 \\
\hline \(\bar{A}_{2}-6\) & 19 \\
\hline \(\bar{A}_{3}-7\) & 18 \\
\hline \(\bar{A}_{4}-8\) & 17 \\
\hline \(\bar{A}_{5}-9\) & 16 \\
\hline \(\bar{A}_{6}-10\) & 15 \\
\hline \(\bar{A}_{7}-11\) & 14 \\
\hline GND- 12 & 13 \\
\hline
\end{tabular}

TL/F/9580-8


Pin Assignment for LCC and PCC F648 \(\bar{A}_{5} \bar{A}_{4} \bar{A}_{3} \mathrm{NC} \overline{\mathrm{A}}_{2} \bar{A}_{1} \bar{A}_{0}\)



\section*{Unit Loading/Fan Out: See Section 2 for U.L. definitions}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F/74F} \\
\hline & & U.L. HIGH/LOW & Input \(I_{I_{H}} / I_{\text {IL }}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}\) \\
\hline \(A_{0}-A_{7}\) & Data Register A Inputs/ TRI-STATE Outputs & \[
\begin{array}{|c|}
3.5 / 1.083 \\
600 / 106.6(80)
\end{array}
\] & \[
\begin{gathered}
70 \mu \mathrm{~A} /-650 \mathrm{~mA} \\
-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})
\end{gathered}
\] \\
\hline \(\mathrm{B}_{0}-\mathrm{B}_{7}\) & Data Register B Inputs/ TRI-STATE Outputs & \[
\begin{array}{|c|}
3.5 / 1.083 \\
600 / 106.6(80)
\end{array}
\] & \[
\begin{gathered}
70 \mu \mathrm{~A} /-650 \mathrm{~mA} \\
-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})
\end{gathered}
\] \\
\hline CPAB, CPBA & Clock Pulse Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline SAB, SBA & Select Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\mathrm{G}}\) & Output Enable Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline DIR & Direction Control Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline
\end{tabular}

Function Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Inputs} & \multicolumn{2}{|c|}{Data 1/0*} & \multirow{2}{*}{Function} \\
\hline \(\overline{\mathbf{G}}\) & DIR & CPAB & CPBA & SAB & SBA & \(\mathrm{A}_{0}-\mathrm{A}_{7}\) & \(B_{0}-B_{7}\) & \\
\hline H & \(X\) & HorL & HorL & \(X\) & \(X\) & \multirow{3}{*}{Input} & \multirow{3}{*}{Input} & Isolation \\
\hline H & X & \(\checkmark\) & X & X & X & & & Clock \(A_{n}\) Data into A Register \\
\hline H & X & X & \(\checkmark\) & X & X & & & Clock \(\mathrm{B}_{\mathrm{n}}\) Data into B Register \\
\hline L & H & X & X & L & X & \multirow{4}{*}{Input} & \multirow{4}{*}{Output} & \(A_{n}\) to \(B_{n}\)-Real Time (Transparent Mode) \\
\hline L & H & \(\sim\) & X & L & X & & & Clock \(A_{n}\) Data into A Register \\
\hline L & H & HorL & X & H & X & & & A Register to \(\mathrm{B}_{\mathrm{n}}\) (Stored Mode) \\
\hline L & H & \(\checkmark\) & X & H & X & & & Clock \(A_{n}\) Data into \(A\) Register and Ouptut to \(B_{n}\) \\
\hline L & L & X & X & X & L & \multirow{4}{*}{Output} & \multirow{4}{*}{Input} & \(B_{n}\) to \(A_{n}\)-Real Time (Transparent Mode) \\
\hline L & L & X & \(\widetilde{ }\) & X & L & & & Clock \(B_{n}\) Data into \(B\) Register \\
\hline L & L & X & HorL & X & H & & & \(B\) Register to \(\mathrm{A}_{\mathrm{n}}\) (Stored Mode) \\
\hline L & L & X & \(\Omega\) & X & H & & & Clock \(\mathrm{B}_{\mathrm{n}}\) Data into B Register and Output to \(\mathrm{A}_{n}\) \\
\hline
\end{tabular}
*The data output functions may be enabled or disabled by various signals at the \(\bar{G}\) and DIR Inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock inputs.
H = HIGH Voltage Level
L = LOW Voltage Level
\(X=\) Irrelevant
\(\Omega=\) LOW-to-HIGH Transition

Logic Diagrams (Continued)


TL/F/9580-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

\section*{Logic Diagrams (Continued)}


TL/F/9580-6
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

\section*{Absolute Maximum Ratings (Note 1)}

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\(V_{C C}\) Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) ) Standard Output TRI-STATE Output
Current Applied to Output in LOW State (Max)
\[
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
\]
\[
-0.5 \mathrm{~V} \text { to } V_{C C}
\]
\[
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\]
twice the rated \(\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})\)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{2}{|r|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{cc}}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ Max & & & \\
\hline \(\mathrm{V}_{\text {IH }}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}\) (Non I/O Pins) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & \begin{tabular}{l}
Output HIGH \\
Voltage
\end{tabular} & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 5 \% \mathrm{VCC}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 2.0
\end{aligned}
\] & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \begin{tabular}{l}
54F 10\% VCC \\
74F 10\% VCC
\end{tabular} & & \[
\begin{aligned}
& 0.55 \\
& 0.55 \\
& \hline
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right) \\
& \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~A}_{n}, B_{n}\right)
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\) (Non I/O Pins) \\
\hline \(\mathrm{I}_{\mathrm{BV} /}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\) (Non I/O Pins) \\
\hline \(\mathrm{I}_{\text {BVIT }}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test (I/O)} & & 1.0 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)\) \\
\hline \(\mathrm{I}_{1}\) & \multicolumn{2}{|l|}{Input LOW Current} & & -0.6 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\) (Non I/O Pins) \\
\hline \(\mathrm{I}_{\mathrm{H}}+\mathrm{I}_{\text {OZH }}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & 70 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)\) \\
\hline \(\mathrm{I}_{\mathrm{LL}}+\mathrm{I}_{\text {OZL }}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & -650 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -100 & -225 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\text {CEX }}\) & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline Izz & \multicolumn{2}{|l|}{Bus Drainage Test} & & 500 & \(\mu \mathrm{A}\) & 0.0 V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline ICCH & \multicolumn{2}{|l|}{Power Supply Current} & & 135 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}\) \\
\hline \(\mathrm{I}_{\mathrm{CCL}}\) & \multicolumn{2}{|l|}{Power Supply Current} & & 150 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) LOW \\
\hline ICCz & \multicolumn{2}{|l|}{Power Supply Current} & & 150 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z\) \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Flg } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}=+25^{\circ} \mathrm{C} \\
V_{C C}=+5.0 \mathrm{~V} \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 p F
\end{gathered}
\]} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \(\mathrm{f}_{\text {max }}\) & Maximum Clock Frequency & 90 & & 75 & & 90 & & MHz & 2-1 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\({ }^{\text {tpHL }}\)
\end{tabular} & Propagation Delay Clock to Bus & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 9.0
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay Bus to Bus ('F646) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 6.5
\end{aligned}
\] & \[
\begin{array}{r}
1.0 \\
1.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.0 \\
& \hline
\end{aligned}
\] & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\({ }^{\text {tpHL }}\)
\end{tabular} & Propagation Delay Bus to Bus ('F648) & \[
\begin{aligned}
& 2.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 7.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{gathered}
10.0 \\
9.0
\end{gathered}
\] & \[
\begin{aligned}
& 2.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.0
\end{aligned}
\] & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay SBA or SAB to A or B & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 11.0 \\
& 10.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.0
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}}
\end{aligned}
\] & Enable Time \(\overline{\mathrm{OE}}\) to A or B & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{gathered}
8.5 \\
12.0
\end{gathered}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 13.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{gathered}
9.0 \\
12.5
\end{gathered}
\] & ns & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLZ}} \\
& \hline
\end{aligned}
\] & Disable Time \(\overline{O E}\) to \(A\) or \(B\) & & \[
\begin{aligned}
& 7.5 \\
& 9.0
\end{aligned}
\] & & \[
\begin{gathered}
9.0 \\
11.0 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& 8.5 \\
& 9.5
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \text { tpZH }^{\text {tpZL }} \\
& \hline
\end{aligned}
\] & Enable Time DIR to A or B & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{array}{r}
14.0 \\
13.0 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 16.0 \\
& 15.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 15.0 \\
& 14.0
\end{aligned}
\] & ns & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLZ}} \\
& \hline
\end{aligned}
\] & Disable Time DIR to \(A\) or \(B\) & 1.0
2.0 & 9.0
11.0 & & 10.0
12.0 & & \[
\begin{gathered}
9.5 \\
11.5
\end{gathered}
\] & ns & 2-5 \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Mil}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L})
\end{aligned}
\] & Setup Time, HIGH or LOW Bus to Clock & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{h}(\mathrm{H}) \\
& t_{h}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW Bus to Clock & \[
\begin{array}{r}
2.0 \\
2.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
2.5 \\
2.5 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Clock Pulse Width HIGH or LOW & & & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & ns & 2-4 \\
\hline
\end{tabular}

\section*{54F／74F651 • 54F／74F652 \\ Transceivers／Registers}

\section*{General Description}

These devices consist of bus transceiver circuits with D－type flip－flops，and control circuitry arranged for multi－ plexed transmission of data directly from the input bus or from internal registers．Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to HIGH logic level．Output Enable pins（OEAB，OEBA）are provided to control the transceiver function．

\section*{Features}
－Independent registers for \(A\) and \(B\) buses
－Multiplexed real－time and stored data
－Choice of non－inverting and inverting data paths
—＇F651 inverting
—＇F652 non－inverting

Ordering Code：See Section 5

\section*{Logic Symbols}


\section*{Connection Diagrams}

Pin Assignment DIP，SOIC and Flatpak


TL／F／9581－3
Pin Assignment for LCC and PCC
\(A_{5} A_{4} A_{3} N C A_{2} A_{1} A_{0}\)
困回回目困 5


TL／F／9581－4

Unit Loading/Fan Out: See Section 2 for U.L. definitions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F/74F} \\
\hline & & U.L. HIGH/LOW & Input \(I_{I_{H}} / I_{\text {IL }}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}\) \\
\hline \(A_{0}-A_{7}, B_{0}-B_{7}\) & A and B Inputs/ & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline & TRI-STATE® Outputs & 600/106.6 (80) & \(-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})\) \\
\hline CPAB, CPBA & Clock Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline SAB, SBA & Select Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline OEAB, \(\overline{O E B A}\) & Output Enable Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline
\end{tabular}

\section*{Logic Diagrams}
'F651


TL/F/9581-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Logic Diagrams (Continued)


TL/F/9581-12
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

\section*{Functional Description}

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both. The select (SAB, SBA) controls can multiplex stored and real-time.
The examples in Figure 1 demonstrate the four fundamental bus-management functions that can be performed with the Octal bus transceivers and receivers.
Data on the A or B data bus, or both can be stored in the internal D flip-flop by LOW to HIGH transitions at the appro-
priate Clock Inputs (CPAB, CPBA) regardless of the Select or Output Enable Inputs. When SAB and SBA are in the real time transfer mode, it is also possible to store data without using the internal \(D\) flip-flops by simultaneously enabling OEAB and OEBA. In this configuration each Output reinforces its Input. Thus when all other data sources to the two sets of bus lines are in at HIGH impedance, each set of bus lines will remain at its last state.


\section*{Absolute Maximum Ratings (Note 1)}

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\[
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\]
\[
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\]
\[
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\]
\(V_{C C}\) Pin Potential to Ground Pin
-0.5 V to +7.0 V
-0.5 V to +7.0 V
Input Voltage (Note 2)
Input Current (Note 2)
\[
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\]

Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) )
Standard Output
\[
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
\]

TRI-STATE Output
\[
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\]

Current Applied to Output in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{Recommended Operating Conditions}

Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{Cc}}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(V_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}\) (Non I/O Pins) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & \multicolumn{2}{|l|}{\begin{tabular}{ll} 
Output HIGH & \begin{tabular}{ll}
\(54 \mathrm{~F} 10 \%\) VCC \\
Voltage & \(74 \mathrm{~F} 10 \%\) VCC \\
\(74 F 5 \% ~ V C C\)
\end{tabular} \\
&
\end{tabular}} & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & \begin{tabular}{l}
Output LOW \\
Voltage
\end{tabular} & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.55 \\
& 0.55
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\
& \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)
\end{aligned}
\] \\
\hline \(\mathrm{I}_{1}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & & 5.0 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\) (Non I/O Pins) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 10 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}\) \\
\hline IBVIT & \multicolumn{2}{|l|}{\begin{tabular}{l}
Input HIGH Current \\
Breakdown Test (I/O)
\end{tabular}} & & & 1.0 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{\mathrm{n}}\right)\) \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & & -0.6 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\) (Non I/O Pins) \\
\hline \(\mathrm{IIH}^{\text {+ }} \mathrm{l} \mathrm{IOZH}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & & 70 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)\) \\
\hline \(\mathrm{I}_{\text {LL }}+\mathrm{l}_{\text {OZL }}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & & -650 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & \(-100\) & & -225 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline ICEX & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline Izz & \multicolumn{2}{|l|}{Bus Drainage Test} & & & 500 & \(\mu \mathrm{A}\) & 0.0 V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline ICCH & \multicolumn{2}{|l|}{Power Supply Current} & & 105 & 135 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}\) \\
\hline ICCL & \multicolumn{2}{|l|}{Power Supply Current} & & 118 & 150 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) LOW \\
\hline I CCZ & \multicolumn{2}{|l|}{Power Supply Current} & & 115 & 150 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z\) \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Flg } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& V_{C C}=+5.0 \mathrm{~V} \\
& C_{L}=50 \mathrm{pF} \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M I I \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 p F
\end{gathered}
\]} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \(\mathrm{f}_{\text {max }}\) & Max. Clock Frequency & 90 & & & & 90 & & MHz & 2-1 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(t_{\text {PHL }}\)
\end{tabular} & Propagation Delay Clock to Bus & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 9.0
\end{aligned}
\] & ns & 2-3 \\
\hline \[
t_{\text {PLH }}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay Bus to Bus ('F651) & \[
\begin{aligned}
& 2.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 7.5
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.0
\end{aligned}
\] & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
tpHL
\end{tabular} & Propagation Delay Bus to Bus ('F652) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 6.5
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.0
\end{aligned}
\] & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay SBA or SAB to A or B & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 8.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.0
\end{aligned}
\] & ns & 2-3 \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & & & & & & & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{MII}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZZL}} \\
& \hline
\end{aligned}
\] & Enable Time *OEBA to A & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
12.0 \\
\hline
\end{gathered}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10.0 \\
12.5 \\
\hline
\end{array}
\] & \multirow{3}{*}{ns} & \multirow{3}{*}{2-5} \\
\hline \[
\begin{aligned}
& \mathbf{t}_{\mathrm{PHZ}} \\
& \mathbf{t}_{\mathrm{pLZ}} \\
& \hline
\end{aligned}
\] & Disable Time *OEBA to A & \[
\begin{aligned}
& 1.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 8.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 9.0 \\
& \hline
\end{aligned}
\] & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{pZL}}
\end{aligned}
\] & Enable Time OEAB to B & \[
\begin{aligned}
& 2.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
13.0 \\
\hline
\end{gathered}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10.0 \\
14.0 \\
\hline
\end{array}
\] & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{P} \mathrm{~L}} \\
& \hline
\end{aligned}
\] & Disable Time OEAB to B & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
9.0 \\
10.5 \\
\hline
\end{gathered}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 11.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW, Bus to Clock & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(L) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW, Bus to Clock & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{w}(H) \\
& t_{w}(L) \\
& \hline
\end{aligned}
\] & Clock Pulse Width HIGH or LOW & \[
\begin{array}{r}
5.0 \\
5.0 \\
\hline
\end{array}
\] & & & & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & ns & 2-4 \\
\hline
\end{tabular}

\section*{54F／74F657 Octal Bidirectional Transceiver with 8－Bit Parity Generator／Checker and TRI－STATE \({ }^{\circledR}\) Outputs}

\section*{General Description}

The＇F657 contains eight non－inverting buffers with TRI－STATE® outputs and an 8－bit parity generator／checker． It is intended for bus－oriented applications．The buffers have a guaranteed current sinking capability of 24 mA （ 20 mA mil） at the \(A\) port and \(64 \mathrm{~mA}(48 \mathrm{~mA} \mathrm{mil})\) at the B port．

\section*{Features}
－ 300 Mil 24－pin slimline DIP
－Combines＇F245 and＇F280A functions in one package
－TRI－STATE outputs
－B Outputs sink 64 mA （ 48 mA mil）
－ 12 mA source current，B side
－Input diodes for termination effects

Ordering Code：See Section 5

\section*{Logic Symbols}


TL／F／9584－1

\section*{Connection Diagrams}


Pin Assignment for LCC and PLCC \(B_{5} \mathrm{~B}_{6} \mathrm{~B}_{7}\) NC PARERR ODD／EVEN困回回团回回

 \(B_{0} \overline{O E T} T / \bar{R} C A_{0} A_{1} A_{2}\) TL／F／9584－3

Unit Loading/Fan Out: See Section 2 for U.L. definitions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F/74F} \\
\hline & & U.L. HIGH/LOW & Input \(I_{\text {IH }} / I_{\text {IL }}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}\) \\
\hline \(A_{0}-A_{7}\) & \begin{tabular}{l}
Data Inputs/ \\
TRI-STATE Outputs
\end{tabular} & \[
\begin{gathered}
4.5 / 0.15 \\
150 / 40(33.3)
\end{gathered}
\] & \[
\begin{gathered}
90 \mu \mathrm{~A} /-90 \mu \mathrm{~A} \\
-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})
\end{gathered}
\] \\
\hline \(\mathrm{B}_{0}-\mathrm{B}_{7}\) & Data Inputs/ & 3.5/0.117 & \(70 \mu \mathrm{~A} /-70 \mu \mathrm{~A}\) \\
\hline & TRI-STATE Outputs & 600/106.6 (80) & - \(12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})\) \\
\hline T/R & Transmit/Receive Input & 2.0/0.067 & \(40 \mu \mathrm{~A} /-40 \mu \mathrm{~A}\) \\
\hline OE & Enable Input & 2.0/0.067 & \(40 \mu \mathrm{~A} /-40 \mu \mathrm{~A}\) \\
\hline PARITY & Parity Input/ & 3.5/0.117 & \(70 \mu \mathrm{~A} /-70 \mu \mathrm{~A}\) \\
\hline & TRI-STATE Output & 600/106.6 (80) & -12 mA/64 mA (48 mA) \\
\hline ODD/EVEN & ODD/EVEN Parity Input & 1.0/0.033 & \(20 \mu \mathrm{~A} /-20 \mu \mathrm{~A}\) \\
\hline ERROR & Error Output & 600/106.6 (80) & -12 mA/64 mA (48 mA) \\
\hline
\end{tabular}

\section*{Functional Description}

The Transmit/Receive (T/信) input determines the direction of the data flow through the bidirectional transceivers. Transmit (active HIGH) enables data from the A port to the \(B\) port; Receive (active LOW) enables data from the \(B\) port to the A port.
The Output Enable ( \(\overline{\mathrm{OE}}\) ) input disables the parity and ERROR outputs and both the A and B ports by placing them in a HIGH-Z condition when the Output Enable input is HIGH.
When transmitting ( \(T / \overline{\mathrm{R}} \mathrm{HIGH}\) ), the parity generator detects whether an even or odd number of bits on the A port are HIGH and compares these with the condition of the pari-
ty select (ODD/EVEN). If the Parity Select is HIGH and an even number of A inputs are HIGH, the Parity output is HIGH.
In receiving mode (T/冨 LOW), the parity select and number of HIGH inputs on port B are compared to the condition of the Parity input. If an even number of bits on the \(B\) port are HIGH, the parity select is HIGH, and the PARITY input is HIGH , then ERROR will be HIGH to indicate no error. If an odd number of bits on the B port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, the ERROR will be LOW indicating an error.
\(\mathrm{H}=\mathrm{HIGH}\) Voltage Level
\(\mathrm{L}=\) LOW Voltage Level
\(\mathrm{X}=\) Immateria!
\(\mathrm{Z}=\) High Impedance

Function Table
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Inputs } & \multirow{2}{*}{ Outputs } \\
\hline\(\overline{\mathbf{O E}}\) & \(\mathbf{T} / \overline{\mathbf{R}}\) & \\
\hline L & L & Bus B Data to Bus A \\
L & H & Bus A Data to Bus B \\
H & X & High-Z State \\
\hline
\end{tabular}

Functional Block Diagram


2 GROUND PINS
1 VCC PIN
TL/F/8584-4

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\(V_{C C}\) Pin Potential to

\section*{Ground Pin}

Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) ) Standard Output TRI-STATE Output
\[
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
\]

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{cc}}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & \begin{tabular}{l}
\(54 F 10 \% V_{C C}\) \\
54F 10\% VCC \\
\(54 F 10 \%\) VCC \\
74F 10\% VCC \\
74F 10\% VCC \\
\(74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}\) \\
74F 5\% VCC \\
74F 5\% VCC \\
\(74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}\)
\end{tabular} & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.0 \\
& 2.5 \\
& 2.4 \\
& 2.0 \\
& 2.7 \\
& 2.7 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & & V & Min &  \\
\hline \(\mathrm{V}_{\text {OL }}\) & Output LOW Voltage & 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC & & & \[
\begin{gathered}
\hline 0.5 \\
0.55 \\
0.5 \\
0.55 \\
\hline
\end{gathered}
\] & V & Min & \[
\begin{aligned}
& \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\
& \mathrm{IOL}=48 \mathrm{~mA}\left(\mathrm{~B}_{n}, \text { Parity, ERROR }\right) \\
& \mathrm{IOL}_{\mathrm{OL}}=24 \mathrm{~mA}\left(A_{n}\right) \\
& \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(B_{n} \text { Parity, ERROR }\right)
\end{aligned}
\] \\
\hline IIH & \multicolumn{2}{|l|}{Input HIGH Current} & & & \[
\begin{aligned}
& 20 \\
& 40
\end{aligned}
\] & \(\mu \mathrm{A}\) & Max & \[
\begin{aligned}
& \mathrm{V}_{\mathbb{N}}=2.7 \mathrm{~V}(\mathrm{ODD/} \mathrm{\overline{EVEN})} \\
& \mathrm{V}_{\mathrm{IN}} 2.7 \mathrm{~V}(\mathrm{~T} / \mathrm{H}, \mathrm{UE})
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & \(V_{C C}=0\) & \(\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}(\mathrm{~T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}, \mathrm{ODD} / \overline{\mathrm{EVEN}})}\) \\
\hline \(\mathrm{I}_{\text {BVIT }}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test (I/O)} & & & \[
\begin{aligned}
& 1.0 \\
& 2.0
\end{aligned}
\] & mA & Max & \[
\begin{aligned}
& \mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V}\left(\text { Parity }, \mathrm{B}_{n}\right) \\
& \mathrm{V}_{\mathbb{N}}=5.5\left(\mathrm{~A}_{n}\right)
\end{aligned}
\] \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & & \[
\begin{array}{r}
-20 \\
-40 \\
\hline
\end{array}
\] & \(\mu \mathrm{A}\) & Max & \[
\begin{aligned}
& V_{I N}=0.5 \mathrm{~V}(\mathrm{ODD} / \overline{\mathrm{EVEN}}) \\
& \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\mathrm{~T} / \overline{\mathrm{R}}, \overline{\mathrm{OE}})
\end{aligned}
\] \\
\hline lozh & \multicolumn{2}{|l|}{Output Leakage Current} & & & 50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}(\overline{\text { ERROR }})\) \\
\hline lozL & \multicolumn{2}{|l|}{Output Leakage Current} & & & -50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) (ERROR \()\) \\
\hline \(\mathrm{IIH}+\mathrm{I}_{\text {OZH }}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & & \[
\begin{aligned}
& 70 \\
& 90
\end{aligned}
\] & \(\mu \mathrm{A}\) & Max & \[
\begin{aligned}
& V_{1 / O}=2.7 \mathrm{~V}\left(B_{n}, \text { Parity }\right) \\
& V_{1 / O}=2.7 \mathrm{~V}\left(A_{n}\right)
\end{aligned}
\] \\
\hline ILL + lozL & \multicolumn{2}{|l|}{Output Leakage Current} & & & \[
\begin{array}{r}
-70 \\
-90 \\
\hline
\end{array}
\] & \(\mu \mathrm{A}\) & Max & \[
\begin{aligned}
& V_{1 / O}=0.5 \mathrm{~V}\left(\mathrm{~B}_{\mathrm{n}}, \text { Parity }\right) \\
& \mathrm{V}_{1 / O}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right)
\end{aligned}
\] \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & \[
\begin{array}{r}
-60 \\
-100 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& -150 \\
& -225
\end{aligned}
\] & mA & Max & \[
\begin{aligned}
& V_{\text {OUT }}=O V\left(A_{n}\right) \\
& V_{\text {OUT }}=0 V\left(B_{n}, \text { Parity, } \overline{\text { ERROR }}\right)
\end{aligned}
\] \\
\hline ICEX & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & \[
\begin{aligned}
& 250 \\
& 1.0 \\
& 2.0
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
mA \\
mA
\end{tabular} & \begin{tabular}{l}
Max \\
Max \\
Max
\end{tabular} & \[
\begin{aligned}
& V_{\text {OUT }}=V_{C C}(\overline{\text { ERROR }}) \\
& V_{\text {OUT }}=V_{C C}\left(B_{n}, \text { Parity }\right) \\
& V_{\text {OUT }}=V_{C C}\left(A_{n}\right) \\
& \hline
\end{aligned}
\] \\
\hline \(\mathrm{l} z \mathrm{z}\) & \multicolumn{2}{|l|}{Bus Drainage Test} & & & 500 & \(\mu \mathrm{A}\) & 0.0 V & \(\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}\left(A_{n}, \mathrm{~B}_{n}\right.\), Parity, , ERROR ) \\
\hline \({ }^{\mathrm{I} C \mathrm{CH}}\) & \multicolumn{2}{|l|}{Power Supply Current} & & 101 & 125 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}\) \\
\hline \(\mathrm{I}_{\mathrm{CCL}}\) & \multicolumn{2}{|l|}{Power Supply Current} & & 112 & 150 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) LOW \\
\hline ICCZ & \multicolumn{2}{|l|}{Power Supply Current} & & 109 & 145 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z\) \\
\hline
\end{tabular}

AC Electrical Characteristics:
See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{Fig No} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay \(A_{n}\) to \(B_{n}, B_{n}\) to \(A_{n}\) & \[
\begin{aligned}
& 2.5 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 4 . .9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 7.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 8.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}}
\end{aligned}
\] & \begin{tabular}{l}
Propagation Delay \\
\(A_{n}\) to Parity
\end{tabular} & \[
\begin{aligned}
& 6.5 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.1 \\
& 10.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 14.0 \\
& 15.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
18.0 \\
20.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
16.0 \\
16.5 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay ODD/EVEN to PARITY & \[
\begin{aligned}
& 4.5 \\
& 4.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.8 \\
& 8.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11.0 \\
12.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
14.0 \\
16.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \\
& 13.5 \\
& \hline
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay ODD/EVEN to ERROR & \[
\begin{array}{r}
4.5 \\
4.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 7.5 \\
& 8.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11.0 \\
12.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4.0 \\
4.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14.0 \\
16.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
13.0 \\
13.5 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}}
\end{aligned}
\] & Propagation Delay \(\mathrm{B}_{\mathrm{n}}\) to ERROR & \[
\begin{aligned}
& \hline 8.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
14.0 \\
15.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20.5 \\
21.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 27.0 \\
& 28.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
23.0 \\
23.5 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay PARITY to ERROR & \[
\begin{aligned}
& 7.0 \\
& 7.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.8 \\
& 11.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
15.5 \\
16.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 6.0 \\
& 6.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 20.0 \\
& 22.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 7.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
17.0 \\
18.5 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZLL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{O E}\) to \(A_{n} / B_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
10.0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 11.0 \\
& 13.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
11.0 \\
\hline
\end{gathered}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PL}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(\overline{O E}\) to \(A_{n} / B_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
4.5 \\
4.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8.0 \\
& 7.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 8.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{\mathrm{OE}}\) to ERROR (Note 1) & \[
\begin{array}{r}
3.0 \\
4.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5.0 \\
& 7.7 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
10.0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 11.0 \\
& 13.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
11.0 \\
\hline
\end{gathered}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLZ}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(\overline{\mathrm{OE}}\) to \(\overline{\mathrm{ERROR}}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 4.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 7.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 8.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output 8Enable Time OE to PARITY & \[
\begin{aligned}
& 3.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 7.7 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
10.0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11.0 \\
13.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
11.0 \\
\hline
\end{gathered}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PL}} \mathrm{Z}
\end{aligned}
\] & Output Disable Time \(\overline{O E}\) to PARITY & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 4.6 \\
& 5.1
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 7.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 8.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.0
\end{aligned}
\] & ns & 2-5 \\
\hline
\end{tabular}

Note 1: These delay times reflect the TRI-STATE recovery time only and not the signal time through the buffers or the parity check circuity. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers ( \(B\) to \(A\) ), through the parity check circuitry (same as \(A\) to PARITY), and to the ERROR output after the ERROR pin has been enabled (Output Enable times). VALID data at the ERROR pin \(\geq\) (A to PARITY) + (Output Enable Time).

54F/74F673A
16-Bit Serial-In, Serial/Parallel-Out Shift Register

\section*{General Description}

The 'F673A contains a 16 -bit serial-in, serial-out shift register and a 16 -bit parallel-out storage register. A single pin serves either as an input for serial entry or as a TRISTATE® serial output. In the Serial-out mode, the data recirculates in the shift register. By means of a separate clock, the contents of the shift register are transferred to the storage register for parallel outputting. The contents of the storage register can also be parallel loaded back into the shift register. A HIGH signal on the Chip Select input prevents both shifting and parallel transfer. The storage register may be cleared via STMR.

\section*{Features}
- Serial-to-parallel converter
- 16-bit serial I/O shift register
- 16-bit parallel-out storage register
- Recirculating serial shifting
- Recirculating parallel transfer
- Common serial data I/O pin
- Slim 24 lead package

Ordering Code: See Section 5

Logic Symbols


IEEE/IEC


\section*{Connection Diagrams}


Unit Loading/Fan Out: See Section 2 for U.L. definitions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F/74F} \\
\hline & & U.L. HIGH/LOW & Input \(I_{I H} / I_{I L}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}\) \\
\hline \(\overline{\text { CS }}\) & Chip Select Input (Active LOW) & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline SHCP & Shift Clock Pulse Input (Active Falling Edge) & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline STMR & Store Master Reset Input (Active LOW) & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline STCP & Store Clock Pulse Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline R/W & Read/Write Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline SI/O & Serial Data Input or & 3.5/1.0 & \(70 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline & TRI-STATE Serial Output & 150/40 (33.3) & \(-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})\) \\
\hline \(Q_{0}-Q_{15}\) & Parallel Data Outputs & 50/33.3 & -1 mA/20 mA \\
\hline
\end{tabular}

\section*{Functional Description}

The 16-bit shift register operates in one of four modes, as indicated in the Shift Register Operations Table. A HIGH signal on the Chip Select ( \(\overline{\mathrm{CS}}\) ) input prevents clocking and forces the Serial Input/Output (SI/O) TRI-STATE buffer into the high impedance state. During serial shift-out operations, the SI/O buffer is active (i.e., enabled) and the output data is also recirculated back into the shift register. When parallel loading the shift register from the storage register, serial shifting is inhibited.

The storage register has an asynchronous master reset (STMR) input that overrides all other inputs and forces the \(Q_{0}-Q_{15}\) outputs LOW. The storage register is in the Hold mode when either \(\overline{\mathrm{CS}}\) or the Read/Write ( \(\mathrm{R} / \overline{\mathrm{W} \text { ) input is }}\) HIGH. With \(\overline{C S}\) and R/ \(\bar{W}\) both LOW, the storage register is parallel loaded from the shift register.

Shift Register Operations Table
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Control Inputs} & \multirow[t]{2}{*}{\begin{tabular}{l}
SI/O \\
Status
\end{tabular}} & \multirow{2}{*}{Operating Mode} \\
\hline \(\overline{\text { CS }}\) & R/W & \(\overline{\text { SHCP }}\) & STCP & & \\
\hline \[
\begin{aligned}
& H \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& X \\
& L
\end{aligned}
\] & X & \[
\begin{aligned}
& x \\
& X
\end{aligned}
\] & High Z Data In & \begin{tabular}{l}
Hold \\
Serial Load
\end{tabular} \\
\hline L & H & \(\checkmark\) & L & Data Out & Serial Output with Recirculation \\
\hline L & H & \(\checkmark\) & H & Active & Parallel Load; No Shifting \\
\hline
\end{tabular}
\(X=\) Immaterial
\(\mathcal{Z}=\) HIGH-to-LOW Transition

Storage Register Operations Table
\begin{tabular}{|c|c|c|c|l|}
\hline \multicolumn{5}{|c|}{ Control Inputs } \\
\multicolumn{2}{c|}{\begin{tabular}{c} 
Operating \\
Mode
\end{tabular}} \\
\hline STMR & \(\overline{\text { CS }}\) & R/ \(\bar{W}\) & STCP & \multicolumn{1}{c|}{} \\
\hline L & X & X & X & Reset; Outputs LOW \\
H & H & X & X & Hold \\
H & X & H & X & Hold \\
H & L & L & & Parallel Load \\
\hline
\end{tabular}
\(H=H I G H\) Voltage Level
\(\mathrm{L}=\) LOW Voltage Level
\(\mathrm{X}=\) Immaterial
\(\Omega=\) LOW-to-HIGH Transition

\section*{Block Diagram}


TL/F/9585-5

\section*{Absolute Maximum Ratings (Note 1)}

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\[
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
\]
\(V_{C C}\) Pin Potential to Ground Pin

Input Current (Note 2)
\[
\begin{array}{r}
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\end{array}
\]

Current Applied to Output in LOW State (Max)
twice the rated \(\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{cc}}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\text {IH }}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) (Non I/O pins) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC \(74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}\) & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.5 \\
& 2.4 \\
& 2.7 \\
& 2.7 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{n}, \mathrm{SI} / \mathrm{O}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}(\mathrm{SI} / \mathrm{O}) \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{\mathrm{n}}, \mathrm{SI} / \mathrm{O}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}(\mathrm{SI} / \mathrm{O}) \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{n}, \mathrm{SI} / \mathrm{O}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}(\mathrm{SI} / \mathrm{O})
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& 0.5
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}(\text { All outputs }) \\
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{Q}_{\mathrm{n}}\right) \\
& \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{SI} / \mathrm{O})
\end{aligned}
\] \\
\hline IIH & \multicolumn{2}{|l|}{Input HIGH Current} & & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\) (Non I/O pins) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}\) (Non I/O pins) \\
\hline IBVIT & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test (I/O)} & & & 1.0 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}(\mathrm{SI} / \mathrm{O})\) \\
\hline \(\mathrm{I}_{1 /}\) & \multicolumn{2}{|l|}{Input LOW Current} & & & -0.6 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\) \\
\hline \[
\begin{aligned}
& \mathrm{l}_{\mathrm{IH}}+ \\
& \mathrm{I}_{\mathrm{OZH}} \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{Output Leakage Current} & & & 70 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}(\mathrm{SI} / \mathrm{O})\) \\
\hline \[
\begin{aligned}
& \mathrm{I}_{\mathrm{ILL}}+ \\
& \mathrm{I}_{\mathrm{OZL}} \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{Output Leakage Current} & & & -650 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}(\mathrm{SI} / \mathrm{O})\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -60 & & -150 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline \(I_{\text {CEX }}\) & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline Izz & \multicolumn{2}{|l|}{Bus Drainage Test} & & & 500 & \(\mu \mathrm{A}\) & 0.0 V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline \(\mathrm{I}_{\mathrm{CCH}}\) & \multicolumn{2}{|l|}{Power Supply Current} & & 114 & 172 & mA & Max & \(V_{0}=H I G H\) \\
\hline \(\mathrm{I}_{\mathrm{CCL}}\) & \multicolumn{2}{|l|}{Power Supply Current} & & 114 & 172 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) LOW \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\begin{tabular}{l}
Fig \\
No
\end{tabular}} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M I I \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \(f_{\text {max }}\) & Maximum Clock Frequency & 100 & 130 & & & & 85 & & MHz & 2-1 \\
\hline \[
\begin{aligned}
& t_{\mathrm{PLH}} \\
& t_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay STCP to \(Q_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
10.5 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
10.5 \\
13.5 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
12.0 \\
15.0 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay STMR to \(Q_{n}\) & 6.0 & 16.5 & 20.5 & & & 5.5 & 22.5 & ns & 2-3 \\
\hline \begin{tabular}{l}
\({ }^{\text {tpLH }}\) \\
\(t_{\text {PHL }}\)
\end{tabular} & Propagation Delay SHCP to SI/O & \[
\begin{aligned}
& 4.0 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
8.5 \\
10.5 \\
\hline
\end{gathered}
\] & & & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
12.0 \\
\hline
\end{gathered}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{\mathrm{CS}}\) to \(\mathrm{SI} / \mathrm{O}\) & \[
\begin{aligned}
& 5.0 \\
& 5.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8.5 \\
& 9.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11.0 \\
11.5 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 4.0 \\
& 4.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12.5 \\
& 13.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLLZ}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(\overline{\mathrm{CS}}\) to \(\mathrm{SI} / \mathrm{O}\) & \[
\begin{aligned}
& 3.5 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 6.5
\end{aligned}
\] & & & \[
\begin{aligned}
& 3.0 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 7.5 \\
& \hline
\end{aligned}
\] & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time R/W to SI/O & \[
\begin{aligned}
& 4.5 \\
& 4.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
10.0 \\
\hline
\end{gathered}
\] & & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \\
& 11.5 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLLZ}}
\end{aligned}
\] & Output Disable Time R/W to \(\mathrm{SI} / \mathrm{O}\) & \[
\begin{aligned}
& 3.0 \\
& 2.5
\end{aligned}
\] & 5.5
4.0 & 7.0
5.5 & & & 2.5
2.0 & \[
\begin{aligned}
& 8.0 \\
& 6.5 \\
& \hline
\end{aligned}
\] & & \\
\hline
\end{tabular}

\section*{AC Operating Requirements: See Section 2 for Waveforms}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|r|}{54F/74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \(\mathrm{t}_{\mathrm{s}}(\mathrm{H})\) & Setup Time, HIGH or LOW & 3.5 & & & & 4.0 & & \multirow{4}{*}{ns} & \multirow{4}{*}{2-6} \\
\hline \(\mathrm{t}_{5}(\mathrm{~L})\) & \(\overline{C S}\) or R \(/ \overline{\text { N/ }}\) to STCP & 6.0 & & & & 7.0 & & & \\
\hline \(t_{h}(\mathrm{H})\) & Hold Time, HIGH or LOW & 0 & & & & 0 & & & \\
\hline \(t_{\text {h }}(\mathrm{L})\) & \(\overline{\mathrm{CS}}\) or R/W & 0 & & & & 0 & & & \\
\hline \(\mathrm{t}_{s}(\mathrm{H})\) & Setup Time, HIGH or LOW & 3.0 & & & & 3.5 & & \multirow{4}{*}{ns} & \multirow{4}{*}{2-6} \\
\hline \(\mathrm{t}_{\mathrm{s}}(\mathrm{L})\) & SI/O to SHCP & 3.0 & & & & 3.5 & & & \\
\hline \(t_{\text {h }}(\mathrm{H})\) & Hold Time, HIGH or LOW & 3.0 & & & & 3.5 & & & \\
\hline \(t_{\text {n }}(\mathrm{L})\) & SI/O to SHCP & 3.0 & & & & 3.5 & & & \\
\hline
\end{tabular}

\section*{54F／74F674}

\section*{16－Bit Serial／Parallel－In，Serial－Out Shift Register}

\section*{General Description}

The＇F674 is a 16 －bit shift register with serial and parallel load capability and serial output．A single pin serves alter－ nately as an input for serial entry or as a TRI－STATE \({ }^{\bullet}\) serial output．In the serial－out mode the data recirculates in the register．Chip Select，Read／Write and Mode inputs provide control flexibility．

\section*{Features}
－16－Bit serial I／O shift register
－16－Bit parallel－in，serial－out converter
－Recirculating serial shifting
－Common serial data I／O pin
－Slim 24 lead DIP

\section*{Logic Symbols}


TL／F／9586－1
IEEE／IEC


Connection Diagrams
Pin Assignment
for DIP，SOIC and Flatpak
\(\overline{C S}-1\)
\(\overline{C P}=2\)
\(R / \bar{W}=3\)
\(N C=4\)
\(M=5\)

Pin Assignment for LCC and PCC
\(\dot{P}_{2} P_{1} P_{0}\) NCSI／OM NC四回回目目


\(\mathrm{P}_{8} \mathrm{P}_{9} \mathrm{P}_{10} N C \mathrm{P}_{11} \mathrm{P}_{12} \mathrm{P}_{13}\)
TL／F／9586－3

\section*{Functional Description}

The 16 -bit shift register operates in one of four modes, as indicated in the Shift Register Operations Table.
Hold-a HIGH signal on the Chip Select ( \(\overline{\mathrm{CS}}\) ) input prevents clocking and forces the Serial Input/Output (SI/O) TRISTATE buffer into high impedance state.
Serial Load-data present on the SI/O pin shifts into the register on the falling edge of \(\overline{C P}\). Data enters the \(Q_{0}\) position and shifts toward \(Q_{15}\) on successive clocks.

Serial Output-the SI/O TRI-STATE buffer is active and the register contents are shifted out from \(\mathrm{Q}_{15}\) and simultaneously shifted back into \(Q_{0}\).
Parallel Load-data present on \(\mathrm{P}_{0}-\mathrm{P}_{15}\) are entered into the register on the falling edge of \(\overline{\mathrm{CP}}\). The SI/O TRI-STATE buffer is active and represents the \(Q_{15}\) output.
To prevent false clocking, \(\overline{\mathrm{CP}}\) must be LOW during a LOW-to-HIGH transition of \(\overline{\mathrm{CS}}\).

Shift Register Operations Table
\begin{tabular}{|l|c|c|c|c|l|}
\hline \multicolumn{5}{|c|}{ Control Inputs } & \multirow{2}{*}{\begin{tabular}{c} 
SI/O \\
Status
\end{tabular}} \\
\hline \(\mathbf{C S}\) & R/ \(\overline{\mathbf{W}}\) & \(\overline{\mathbf{M}}\) & \(\overline{\mathbf{C P}}\) & Operating Mode \\
\hline H & X & X & X & \begin{tabular}{l} 
High Z \\
L
\end{tabular} & L
\end{tabular}

\footnotetext{
\(H=\) HIGH Voltage Level
L = LOW Voltage Level
\(X=\) Immaterial
}
\(ح=\) HIGH-to-LOW Transition

\section*{Block Diagram}


\section*{54F/74F675A}

16-Bit Serial-In, Serial/Parallel-Out Shift Register

\section*{General Description}

The 'F675A contains a 16 -bit serial in/serial out shift register and a 16 -bit parallel out storage register. Separate serial input and output pins are provided for expansion to longer words. By means of a separate clock, the contents of the shift register are transferred to the storage register. The contents of the storage register can also be loaded back into the shift register. A HIGH signal on the Chip Select input prevents both shifting and parallel loading.

\section*{Features}

■ Serial-to-parallel converter
- 16-Bit serial I/O shift register
- 16-Bit parallel out storage register
- Recirculating parallel transfer
- Expandable for longer words
- Slim 24 lead package
- 'F675A version prevents false clocking through \(\overline{\mathrm{CS}}\) or R/W inputs

Ordering Code: See Section 5

\section*{Logic Symbols}


IEEE/IEC


\section*{Connection Diagrams}


\section*{Unit Loading/Fan Out: See Section 2 tor U.L. definitions}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F/74F} \\
\hline & & U.L. HIGH/LOW & Input \(I_{I_{H}} / I_{I L}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}\) \\
\hline SI & Serial Data Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\text { CS }}\) & Chip Select Input (Active LOW) & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\text { SHCP }}\) & Shift Clock Pulse Input (Active Falling Edge) & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline STCP & Store Clock Pulse Input (Active Rising Edge) & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline R/W & Read/Write Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline SO & Serial Data Output & 50/33.3 & - \(1 \mathrm{~mA} / 20 \mathrm{~mA}\) \\
\hline \(Q_{0}-Q_{15}\) & Parallel Data Outputs & 50/33.3 & -1 mA/20 mA \\
\hline
\end{tabular}

\section*{Functional Description}

The 16-Bit shift register operates in one of four modes, as determined by the signals applied to the Chip Select ( \(\overline{\mathrm{CS}}\) ), Read/Write (R/W) and Store Clock Pulse (STCP) input. State changes are indicated by the falling edge of the Shift Clock Pulse (SHCP). In the Shift Right mode, data enters \(D_{0}\) from the Serial Input ( Sl ) pin and exits from \(Q_{15}\) via the Serial Data Output (SO) pin. In the Parallel Load mode, data from the storage register outputs enter the shift register and serial shifting is inhibited.
The storage register is in the Hold mode when either \(\overline{\mathrm{CS}}\) or \(R / \bar{W}\) is HIGH. With \(\overline{C S}\) and R/W both LOW, the storage register is parallel loaded from the shift register on the rising edge of STCP.
To prevent false clocking of the shift register, \(\overline{\text { SHCP }}\) should be in the LOW state during a LOW-to-HIGH transition of \(\overline{\mathrm{CS}}\). To prevent false clocking of the storage register, STCP should be LOW during a HIGH-to-LOW transition of \(\overline{\mathrm{CS}}\) if R/ \(\bar{W}\) is LOW, and should also be LOW during a HIGH-toLOW transition of R/W if \(\overline{\mathrm{CS}}\) is LOW.

Shift Register Operations Table
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Control Inputs} & \multirow[t]{2}{*}{Operating Mode} \\
\hline \(\overline{\text { CS }}\) & R/W & \(\overline{\text { SHCP }}\) & STCP & \\
\hline H & X & X & X & Hold \\
\hline L & L & - & X & Shift Right \\
\hline L & H & 7 & L & Shift Right \\
\hline L & H & - & H & Parallel Load, No Shifting \\
\hline
\end{tabular}

Storage Register Operations Table
\begin{tabular}{|ccc|l|}
\hline \multicolumn{3}{|c|}{ Inputs } & \multirow{2}{*}{\begin{tabular}{c} 
Operating \\
Mode
\end{tabular}} \\
\hline\(\overline{\mathbf{C S}}\) & R/ \(\overline{\mathrm{W}}\) & STCP & \multicolumn{1}{c|}{} \\
\hline H & X & X & Hold \\
L & H & X & Hold \\
L & L & - & Parallel Load \\
\hline
\end{tabular}

H = HIGH Voltage Level
L = LOW Voltage Level
\(\mathrm{X}=\) Immaterial
= LOW-to-HIGH Transition
\(\chi=\) HIGH-to-LOW Transition

\section*{Logic Diagram}


TL/F/9587-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
\[
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
\]

Ambient Temperature under Bias
\[
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
\]
\[
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
\]

Input Current (Note 2)
\[
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\]
-0.5 V to \(\mathrm{V}_{\mathrm{CC}}\)
-0.5 V to +5.5 V

\section*{TRI-STATE \({ }^{\text {® }}\) Output}
twice the rated \(\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{Recommended Operating Conditions}

Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathbf{C c}}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & \begin{tabular}{l}
Output HIGH \\
Voltage
\end{tabular} & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{VCC} \\
& 74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& 2.7 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}
\end{aligned}
\] \\
\hline VoL & \begin{tabular}{l}
Output LOW \\
Voltage
\end{tabular} & \begin{tabular}{l}
54F 10\% VCC \\
74F 10\% VCC
\end{tabular} & & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\) \\
\hline \(1 / 2\) & \multicolumn{2}{|l|}{Input LOW Current} & & & -0.6 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -60 & & -150 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline \(I_{\text {CEX }}\) & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline ICCH & \multicolumn{2}{|l|}{Power Supply Current} & & 106 & 160 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}\) \\
\hline ICCL & \multicolumn{2}{|l|}{Power Supply Current} & & 106 & 160 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) LOW \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& V_{C C}=+5.0 \mathrm{~V} \\
& C_{L}=50 \mathrm{pF} \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M I I \\
C_{L}=50 p F
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \(\mathrm{f}_{\text {max }}\) & Maximum Clock Frequency & 100 & 130 & & & & 85 & & MHz & 2-1 \\
\hline \[
\mathrm{t}_{\text {PLH }}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay STCP to \(Q_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
10.5
\end{gathered}
\] & \[
\begin{aligned}
& 10.5 \\
& 13.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 15.0 \\
& \hline
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay \(\overline{\mathrm{SHCP}}\) to SO & \[
\begin{aligned}
& 4.0 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
10.5
\end{gathered}
\] & & & \[
\begin{aligned}
& 3.5 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \\
& 12.0
\end{aligned}
\] & ns & 2-3 \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54 F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}=+25^{\circ} \mathrm{C} \\
V_{C C}=+5.0 \mathrm{~V}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(\overline{\text { CS }}\) or R/W to STCP & \[
\begin{aligned}
& 3.5 \\
& 5.5 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 4.0 \\
& 6.5 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(\mathrm{H}) \\
& t_{\mathrm{h}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(\overline{\text { CS }}\) or R/W to STCP & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW Sl to SHCP & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(\mathrm{H}) \\
& t_{h}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW SI to SHCP & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(R / \bar{W}\) to \(\overline{S H C P}\) & \[
\begin{aligned}
& 6.5 \\
& 9.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{gathered}
7.5 \\
10.0 \\
\hline
\end{gathered}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW R/W to \(\overline{\text { SHCP }}\) & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW STCP to SHCP & \[
\begin{aligned}
& 7.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(L) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW STCP to SHCP & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & & & & \[
\begin{aligned}
& 0 \\
& 0 \\
& \hline
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathbf{s}}(\mathrm{L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(\overline{\mathrm{CS}}\) to \(\overline{\mathrm{SHCP}}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(\overline{\mathrm{CS}}\) to \(\overline{\mathrm{SHCP}}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& t_{w}(H) \\
& t_{w}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & SHCP Pulse Width HIGH or LOW & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-4} \\
\hline \[
\begin{aligned}
& t_{w}(H) \\
& t_{w}(L) \\
& \hline
\end{aligned}
\] & STCP Pulse Width HIGH or LOW & \[
\begin{aligned}
& 6.0 \\
& 5.0
\end{aligned}
\] & & & & \[
\begin{aligned}
& 7.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & & & \\
\hline
\end{tabular}

National Semiconductor

\section*{54F/74F676}

\section*{16-Bit Serial/Parallel-In, Serial-Out Shift Register}

\section*{General Description}

The 'F676 contains 16 flip-flops with provision for synchronous parallel or serial entry and serial output. When the Mode ( \(M\) ) input is HIGH, information present on the paraliel data ( \(\mathrm{P}_{0}-\mathrm{P}_{15}\) ) inputs is entered on the falling edge of the Clock Pulse ( \(\overline{\mathrm{CP}}\) ) input signal. When M is LOW, data is shifted out of the most significant bit position while information present on the Serial ( SI ) input shifts into the least significant bit position. A HIGH signal on the Chip Select ( \(\overline{\mathrm{CS}}\) ) input prevents both parallel and serial operations.

\section*{Features}
- 16-bit parallel-to-serial conversion
- 16-bit serial-in, serial-out
- Chip select control
- Slim 24 lead 300 mil package

Ordering Code: See Section 5

Logic Symbols


Connection Diagrams
Pin Assignment for DIP, SOIC and Flatpak


TL/F/9588-2
Pin Assignment for LCC and PCC
\(\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0}\) NC SOM SI


TL/F/9588-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions
\begin{tabular}{|l|l|c|c|}
\hline \multirow{3}{*}{ Pin Names } & \multicolumn{2}{|c|}{ Description } & \multicolumn{2}{|c|}{\(54 \mathrm{~F} / 74 \mathrm{~F}\)} \\
\cline { 3 - 4 } & & \begin{tabular}{c} 
U.L. \\
HIGH/LOW
\end{tabular} & \begin{tabular}{c} 
Input \(I_{\mathrm{IH}} / I_{\mathrm{IL}}\) \\
Output \(I_{\mathrm{OH}} / I_{\mathrm{OL}}\)
\end{tabular} \\
\hline \(\mathrm{P}_{0}-\mathrm{P}_{15}\) & Parallel Data Inputs & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\(\overline{\mathrm{CS}}\) & Chip Select Input (Active LOW) & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\(\overline{\mathrm{CP}}\) & Clock Pulse Input (Active LOW) & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
M & Mode Select Input & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
SI & Serial Data Input & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
SO & Serial Output & \(50 / 33.3\) & \(-1 \mathrm{~mA} / 20 \mathrm{~mA}\) \\
\hline
\end{tabular}

\section*{Functional Description}

The 16-bit shift register operates in one of three modes, as indicated in the Shift Register Operations Table.
HOLD-a HIGH signal on the Chip Select ( \(\overline{\mathrm{CS}}\) ) input prevents clocking, and data is stored in the sixteen registers. Shift/Serlal Load-data present on the SI pin shifts into the register on the falling edge of \(\overline{C P}\). Data enters the \(Q_{0}\) position and shifts toward \(Q_{15}\) on successive clocks, finally appearing on the SO pin.
Parallel Load-data present on \(\mathrm{P}_{0}-\mathrm{P}_{15}\) are entered into the register on the falling edge of \(\overline{\mathrm{CP}}\). The SO output represents the \(Q_{15}\) register output.
To prevent false clocking, \(\overline{\mathrm{CP}}\) must be LOW during a LOW-to-HIGH transition of \(\overline{\mathrm{CS}}\).

\section*{Block Diagram}


Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallablity and specifications.

Storage Temperature
Ambient Temperature under Bias
\[
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
\]

Junction Temperature under Bias
\(V_{C C}\) Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) )
Standard Output
TRI-STATE © Output
Current Applied to Output in LOW State (Max)
twice the rated \(\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{2}{|r|}{54F/74F} & \multirow[t]{2}{*}{Unlts} & \multirow[t]{2}{*}{Vcc} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ Max & & & \\
\hline \(\mathrm{V}_{\text {IH }}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & -1.2 & V & Min & \(\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & \begin{tabular}{l}
Output HIGH \\
Voltage
\end{tabular} & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% V_{\mathrm{CC}} \\
& \text { 74F 10\% VCC } \\
& \text { 74F 5\% V }
\end{aligned}
\] & \[
\begin{array}{r}
2.5 \\
2.5 \\
2.7 \\
\hline
\end{array}
\] & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{lOL}=20 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{IIH}^{\text {H}}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Input HIGH Current \\
Breakdown Test
\end{tabular}} & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\) \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & -0.6 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -60 & -150 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\text {CEX }}\) & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{C C}\) \\
\hline lcc & \multicolumn{2}{|l|}{Power Supply Current} & & 52 & mA & Max & \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M i I \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \(f_{\text {max }}\) & Maximum Clock Frequency & 100 & 110 & & 45 & & 90 & & MHz & 2-1 \\
\hline \({ }_{\text {t }}\) PLH & Propagation Delay & 4.5 & 9.0 & 11.0 & 4.5 & 17.0 & 4.5 & 12.0 & ns & 2-3 \\
\hline \(\mathrm{t}_{\text {PHL }}\) & \(\overline{\mathrm{CP}}\) to SO & 5.0 & 9.0 & 12.5 & 5.0 & 14.5 & 5.0 & 13.5 & ns & 2-3 \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}=+25^{\circ} C \\
V_{C C}=+5.0 \mathrm{~V}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{M I I}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW SI to \(\overline{\mathrm{CP}}\) & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW Sl to \(\overline{\mathrm{CP}}\) & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW
\[
P_{n} \text { to } \overline{C P}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW
\[
P_{n} \text { to } \overline{C P}
\] & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(M\) to \(\overline{\mathrm{CP}}\) & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(L) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW M to \(\overline{\mathrm{CP}}\) & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & & \\
\hline \(\mathrm{t}_{\mathrm{s}}(\mathrm{L})\) & Setup Time, LOW \(\stackrel{\mathrm{CS}}{\mathrm{So}}\) & 10.0 & & 12.0 & & 10.0 & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \(t_{n}(\mathrm{H})\) & Hold Time, HIGH \(\overline{\mathrm{CS}}\) to \(\overline{\mathrm{CP}}\) & 10.0 & & 10.0 & & 10.0 & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & \(\overline{\mathrm{CP}}\) Pulse Width HIGH or LOW & \[
\begin{aligned}
& 4.0 \\
& 6.0
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 9.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 4.0 \\
& 6.0
\end{aligned}
\] & & ns & 2-4 \\
\hline
\end{tabular}

\section*{54F/74F701 \\ Register, Counter, Comparator}

\section*{General Description}

The 'F701 is a high speed 8 -bit expandable register/counter/comparator. It is capable of synchronous loading of the counter and/or register as well as an up/down counting facility. The device incorporates an 8 -bit bidirectional data bus which is used to input data to the register or counter. The data bus is also used to output the values held in the register and counter. Internal data paths allow the value held in the register to be transferred to the counter or the values to be transferred from the counter to the register. The outputs of the counter and the register are compared in an " \(A=B\) " comparator.

\section*{Features}
- 8-bit counter/register/comparator
- Synchronous parallel loading and counting
- Look ahead carry capability for easy cascading
- TRI-STATE \({ }^{\text {© }}\) output for bus organized systems
- Multi data path routing
- 80 MHz count frequency

■ Fully expandable for \(16,24,32\), etc., bit systems

\section*{Logic Symbol}


\section*{Connection Diagram}

\section*{Pin Assignment for DIP, SOIC and Flatpak}


Functional Block Diagram


\section*{54F/74F702}

Read-Back Transceiver

\section*{General Description}

The 'F702 is a byte wide readback transceiver with bidirectional controls. It is a buffered transceiver that features readback capabilities allowing previously latched data to be read back to the originating bus. These extra pathways are controlled with separate enables in order to allow independent operation of each side of the transceiver.
The Read-Back Transceiver can be used as a buffered interface between two busses. Data can be transmitted from \(A\) to \(B\) and temporarily stored in the \(B\) latch. Later, the data in the \(B\) latch can be accessed by the \(A\) bus in order to verify that the correct data is held by the B latch.

Bus integrity can be verified using the 'F702. Data from \(A\) is stored in the B latch. Later, the data is fed back to the A bus and compared to a matching word in the system. If the match is good, then the A bus is maintaining the correct state. The B bus can also be checked in the same manner.

\section*{Features}
- Bi-directional control
- Allows feedback from latches to original data bus
m Allows independent operation of each side of the transceiver
- 300 Mil 24-pin slimline DIP

\section*{Logic Symbol}


TL/F/9590-1

\section*{Connection Diagram}

Pin Assignment for DIP, SOIC and Flatpak


\section*{Functional Block Diagram}


\section*{54F/74F707 400 MHz 8-Bit TTL-ECL Register}

\section*{General Description}

The 'F707 TTL-ECL Shift Register is comprised of an 8-bit transparent holding register with TTL inputs for data and load enable which is translated internally to ECL levels. The holding register is the loading stage for the 8 -bit shift register. The shift register is a single direction, two output shift register with a cascade input that is functional during serial shift operations.
The shift register also features a mode input (MODE) and differential ECL clock inputs (SC and \(\overline{\mathrm{SC}}\) ) for synchronous shifting and loading of data, both of which are done on the rising edge of the clock. The mode input is provided for selection of shifting or loading of data. Two outputs are available, one for every fourth bit of the shift register. Parallel loading will take place at speeds up to 100 MHz . Shifting will take place at speeds up to 400 MHz . The ' F 707 was dosigned for high speed TTL-ECL translation applications in high resolution color graphics, instrumentation, and communication systems.

\section*{Features}
- 400 MHz shift speed

■ 100 MHz parallel load speed
- TTL parallel inputs
- ECL serial input
- 10 K and 10 KH ECL compatible
- Transparent data holding register

■ Available in 20-lead DIP

\section*{Applications}
- High resolution color graphics
- CAE/CAD/CAM applications
- Radar Processing
- Instrumentation

\section*{Functional Block Diagram}


Connection Diagram



\section*{54F/74F710}

\section*{400 MHz Single Supply TTL-ECL Shift Register}

\section*{General Description}

The 'F710 Shift Register is comprised of an 8-bit transparent holding register with TTL inputs for data and load enable which is translated internally to ECL levels. The holding register is the loading stage for the 8 -bit shift register. The shift register is a single direction, two output shift register with a cascade input that is functional during serial shift operations.
The shift register also features a mode input (MODE) and differential ECL clock inputs (SC and \(\overline{\mathrm{SC}}\) ) for synchronous shifting and loading of data, both of which are done on the rising edge of the clock. The mode input is provided for selection of shifting or loading of data. Two outputs are available, one for every fourth bit of the shift register. Parallel loading will take place at speeds up to 100 MHz . Shifting will take place at speeds up to 400 MHz . The 'F710 was designed to be used in systems where both TTL and ECL logic are operating from a common voltage supply.
The 'F710 can be used in applications of high speed TTL-ECL translation such as high resolution color graphics, instrumentation, and communication systems.

\section*{Functional Block Diagram}


\section*{Features}
- 400 MHz shift speed

■ 100 MHz parallel load speed
- TTL parallel inputs
- ECL serial input
- 10K and 10KH ECL compatible (referenced to \(\mathrm{V}_{\mathrm{CC}}\) )
- Transparent data holding register
- Available in 20-lead DIP

\section*{Applications}
- High resolution color graphics
- CAE/CAD/CAM applications
- Radar Processing
- Instrumentation

\section*{Connection Diagram}

PIn Assignment for DIP



National
ADVANCED INFORMATION Semiconductor

54F/74F779
8-Bit Bidirectional Binary Counter with TRI-STATE \({ }^{\circledR}\) Outputs

\section*{General Description}

The 'F779 is a fully synchronous 8 -stage up/down counter with multiplexed TRI-STATE I/O ports for bus-oriented applications. All control functions (hold, count up, count down, synchronous load) are controlled by two mode pins ( \(\mathrm{S}_{0}, \mathrm{~S}_{1}\) ). The device also features carry lookahead for easy cascading. All state changes are initiated by the rising edge of the clock.

\section*{Features}
- Multiplexed TRI-STATE I/O ports
- Built-in lookahead carry capability
- Count frequency 100 MHz typ
- Supply current 80 mA typ

\section*{Logic Symbols}


IEEE/IEC


\section*{Connection Diagrams}

Pin Assignment for DIP, SOIC and Flatpak


Pin Assignment for LCC and PCC




\section*{General Description}

The 'F821 is a 10 -bit D-type flip-flop with TRI-STATE \({ }^{\text {© }}\) true outputs arranged in a broadside pinout. The 'F821 is functionally and pin compatible with the AMD's Am29821.

\section*{Features}
- TRI-STATE Outputs
- Direct replacement for AMD's Am29821

Ordering Code: See Section 5

\section*{Logic Symbols}


IEEE/IEC


\section*{Connection Diagrams}

Pin Assignment for DIP, SOIC and Flatpak


TL/F/9595-2


Unit Loading/Fan Out: See Section 2 for U.L. definitions
\begin{tabular}{|l|l|c|c|}
\hline \multirow{3}{*}{ PIn Names } & \multirow{2}{*}{ Description } & \multicolumn{2}{|c|}{\(54 \mathrm{~F} / 74 \mathrm{~F}\)} \\
\cline { 3 - 4 } & & \begin{tabular}{c} 
U.L. \\
HIGH/LOW
\end{tabular} & \begin{tabular}{c} 
Input \(I_{\mathrm{IH}} / I_{\mathrm{IL}}\) \\
Output \(\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}\)
\end{tabular} \\
\hline \(\mathrm{D}_{0}-\mathrm{D}_{9}\) & Data Inputs & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\(\overline{\mathrm{OE}}\) & Output Enable & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
CP & TRI-STATE Input & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\(\mathrm{O}_{0}-\mathrm{O}_{9}\) & Clock Input & TRI-STATE Outputs & \(150 / 40(33.3)\) \\
\hline
\end{tabular}

\section*{Functional Description}

The 'F821 consists of ten D-type edge-triggered flip-flops. This device has TRI-STATE true outputs for bus systems organized in a broadside pinning. The buffered Clock (CP) and buffered Output Enable ( \(\overline{\mathrm{OE}}\) ) are common to all filpflops. The flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition. With the OE LOW the content of the flip-flops are available at the outputs. When the \(\overline{\mathrm{OE}}\) is HIGH, the outputs go to the high impedance state. Operation of the \(\overline{O E}\) input does not affect the state of the flip-flops.

Function Table
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Inputs} & Internal & Output & \multirow[t]{2}{*}{Function} \\
\hline \(\overline{O E}\) & CP & D & \(\overline{\mathbf{Q}}\) & 0 & \\
\hline H & H & X & NC & Z & Hold \\
\hline H & L & X & NC & 2 & Hold \\
\hline H & \(\sim\) & L & H & Z & Load \\
\hline H & \(\Gamma\) & H & L & Z & Load \\
\hline L & \(\sim\) & L & H & L & Data Available \\
\hline L & \(\sim\) & H & L & H & Data Available \\
\hline L & H & X & NC & NC & No Change in Data \\
\hline L & L & X & NC & NC & No Change in Data \\
\hline
\end{tabular}

L = LOW Voltage Level
H = HIGH Voltage Level
X = Immaterial
\(Z=\) High Impedance
\(\widetilde{\sim}=\) LOW-to-HIGH Transition
\(\mathrm{NC}=\) No Change

\section*{Logic Diagram}


Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

\section*{Absolute Maximum Ratings (Note 1)}

If Military/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\(V_{C C}\) Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) )
Standard Output
TRI-STATE Output
\[
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
\]
\[
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
\]

Current Applied to Output
\[
\text { in LOW State (Max) twice the rated IOL }(\mathrm{mA})
\]

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & \(+4.5 \mathrm{to}+5.5 \mathrm{~V}\)
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{Vcc} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & \begin{tabular}{l}
Output HIGH \\
Voltage
\end{tabular} & 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.5 \\
& 2.4 \\
& 2.7 \\
& 2.7
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & \begin{tabular}{l}
Output LOW \\
Voltage
\end{tabular} & 54F 10\% VCC 74F 10\% VCC & & & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}\) \\
\hline \(I_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Current} & & & -0.6 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\) \\
\hline IOZH & \multicolumn{2}{|l|}{Output Leakage Current} & & & 50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\) \\
\hline lozl & \multicolumn{2}{|l|}{Output Leakage Current} & & & -50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -60 & & -150 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline ICEX & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline ICCZ & \multicolumn{2}{|l|}{Power Supply Current} & & 78 & 100 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) HIGH Z \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{aligned}
T_{A} & =+25^{\circ} \mathrm{C} \\
V_{C C} & =+5.0 \mathrm{~V} \\
C_{L} & =50 \mathrm{pF}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M i I \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{A}, V_{C C}=\text { Com } \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \(\mathrm{f}_{\text {max }}\) & Maximum Clock Frequency & 100 & 150 & & 60 & & 70 & & ns & 2-1 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(t_{\text {PHL }}\)
\end{tabular} & Propagation Delay CP to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
6.4 \\
6.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \\
& 10.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10.5 \\
10.5 \\
\hline
\end{array}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{O E}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.8 \\
& 6.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \\
& 10.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
13.0 \\
13.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11.5 \\
11.5 \\
\hline
\end{array}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLZ}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(\overline{O E}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.4 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5 \\
& \hline
\end{aligned}
\] & & \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{c c}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \(\mathrm{t}_{\mathrm{s}}(\mathrm{H})\) & Setup Time, HIGH or LOW & 2.5 & & 4.0 & & 3.0 & & \multirow{4}{*}{ns} & \multirow{4}{*}{2-6} \\
\hline \(\mathrm{t}_{\mathrm{s}}(\mathrm{L})\) & \(\mathrm{D}_{\mathrm{n}}\) to CP & 2.5 & & 4.0 & & 3.0 & & & \\
\hline \(t_{h}(\mathrm{H})\) & Hold Time, HIGH or LOW & 2.5 & & 2.5 & & 2.5 & & & \\
\hline \(t_{\text {h }}(\mathrm{L})\) & \(D_{n}\) to CP & 2.5 & & 2.5 & & 2.5 & & & \\
\hline \(\mathrm{t}_{\mathrm{w}}(\mathrm{H})\) & CP Pulse Width & 5.0 & & 6.0 & & 6.0 & & \multirow[b]{2}{*}{ns} & \multirow[t]{2}{*}{2-4} \\
\hline \(t_{\text {w }}(\mathrm{L})\) & HIGH or LOW & 5.0 & & 6.0 & & 6.0 & & & \\
\hline
\end{tabular}

\section*{54F／74F823 \\ 9－Bit D－Type Flip－Flop}

\section*{General Description}

The＇F823 is a 9－bit buffered register．It features Clock En－ able and Clear which are ideal for parity bus interfacing in high performance microprogramming systems．
The＇F823 is functionally and pin compatible with AMD＇s Am29823．

\section*{Features}
－TRI－STATE \({ }^{\text {® }}\) outputs
－Clock Enable and Clear
■ Direct replacement for AMD＇s Am29823

\section*{Ordering Code：See Section 5}

\section*{Logic Symbols}


Connection Diagrams


Pin Assignment for LCC and PCC
\(\mathrm{D}_{7} \mathrm{D}_{5} \mathrm{D}_{5}\) NC \(\mathrm{D}_{2} \mathrm{D}_{3} \mathrm{D}_{2}\)四四回回图图


TL／F／8596－4

Unit Loading／Fan Out：See Section 2 for U．L．definitions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F／74F} \\
\hline & & U．L． HIGH／LOW & Input \(I_{\text {IH }} / I_{\text {IL }}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{lOL}_{\mathrm{OL}}\) \\
\hline \(\mathrm{D}_{0}-\mathrm{D}_{8}\) & Data Inputs & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline OE & Output Enable Input & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline CLR & Clear & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline CP & Clock Input & 1．0／2．0 & \(20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}\) \\
\hline EN & Clock Enable & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\mathrm{O}_{0}-\mathrm{O}_{8}\) & TRI－STATE Outputs & 150／40（33．3） & －3 mA／24 mA（ 20 mA ） \\
\hline
\end{tabular}

\section*{Functional Description}

The 'F823 device consists of nine D-type edge-triggered flip-flops. It has TRI-STATE true outputs and is organized in broadside pinning. The buffered Clock (CP) and buffered Output Enable ( \(\overline{\mathrm{OE}}\) ) are common to all flip-flops. The flipflops will store the state of their individual \(D\) inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition. With the \(\overline{\mathrm{OE}}\) LOW the contents of the flipflops are available at the outputs. When the \(\overline{\mathrm{OE}}\) is HIGH, the outputs go to the high impedance state. Operation of the \(\overline{\mathrm{OE}}\) input does not affect the state of the flip-flops. In addi-
tion to the Clock and Output Enable pins, the 'F823 has Clear ( \(\overline{\mathrm{CLR}}\) ) and Clock Enable ( \(\overline{\mathrm{EN}}\) ) pins.
When the CLR is LOW and the \(\overline{O E}\) is LOW, the outputs are LOW. When \(\overline{\text { CLR }}\) is HIGH, data can be entered into the flipflops. When EN is LOW, data on the inputs is transferred to the outputs on the LOW to HIGH clock transition. When the \(\overline{E N}\) is HIGH, the outputs do not change state regardless of the data or clock inputs transitions. This device is ideal for parity bus interfacing in high performance systems.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Function Table} \\
\hline \multicolumn{5}{|c|}{Inputs} & Internal & Output & \multirow[t]{2}{*}{Function} \\
\hline \(\overline{O E}\) & \(\overline{C L R}\) & EN & CP & D & \(\overline{0}\) & 0 & \\
\hline H & H & L & H & X & NC & Z & Hold \\
\hline H & H & L & L & X & NC & Z & Hold \\
\hline H & H & H & \(X\) & X & NC & Z & Hold \\
\hline L & H & H & \(x\) & X & NC & NC & Hold \\
\hline H & L & X & \(x\) & X & H & Z & Clear \\
\hline L & L & X & X & X & H & L & Clear \\
\hline H & H & L & \(\Omega\) & H & H & Z & Load \\
\hline H & H & L & \(\sim\) & H & L & Z & Load \\
\hline L & H & L & \(\Omega\) & L & H & L & Data Available \\
\hline L & H & L & - & H & L & H & Data Available \\
\hline L & H & L & H & X & NC & NC & No Change in Data \\
\hline L & H & L & L & X & NC & NC & No Change in Data \\
\hline
\end{tabular}
\(L=\) LOW Voltage Level
\(H=H\) HGH Votitage Level
\(X=\) Immaterial
\(Z=\) High Impedance
NC \(=\) LOW-to-HIGH Transition
N \(=\) NO Change

\section*{Logic Diagram}


Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\(V_{C C}\) Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) )
Standard Output
TRI-STATE Output
\[
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
\\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA} \\
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
\end{array}
\]

Current Applied to Output
in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & \(+4.5 \mathrm{to}+5.5 \mathrm{~V}\)
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{Vcc} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(V_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(\mathrm{V}_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC \(74 F 5 \% V_{C C}\) & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.5 \\
& 2.4 \\
& 2.7 \\
& 2.7 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & \begin{tabular}{l}
Output LOW \\
Voltage
\end{tabular} & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{lOL}=20 \mathrm{~mA} \\
& \mathrm{lOL}=24 \mathrm{~mA}
\end{aligned}
\] \\
\hline IIH & \multicolumn{2}{|l|}{Input HIGH Current} & & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}\) \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & & \[
\begin{array}{r}
-0.6 \\
-1.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA} \\
& \hline
\end{aligned}
\] & \[
\operatorname{Max}
\]
Max & \[
\begin{aligned}
& V_{I N}=0.5 \mathrm{~V}(\overline{\mathrm{OE}}, \overline{\mathrm{CLR}}, \overline{\mathrm{EN}}) \\
& \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\mathrm{CP})
\end{aligned}
\] \\
\hline \(\mathrm{l}_{\mathrm{OZH}}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & & 50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\) \\
\hline IozL & \multicolumn{2}{|l|}{Output Leakage Current} & & & -50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -60 & & -150 & mA & Max & \(V_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline \(I_{\text {CEX }}\) & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline \(\mathrm{l} z \mathrm{z}\) & \multicolumn{2}{|l|}{Buss Drainage Test} & & & 500 & \(\mu \mathrm{A}\) & 0.0V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline Iccz & \multicolumn{2}{|l|}{Power Supply Current} & & 75 & 100 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) HIGH Z \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{A}, V_{C C}=\mathrm{Mil} \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \(f_{\text {max }}\) & Maximum Clock Frequency & 100 & 160 & & 60 & & 70 & & MHz & 2-1 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay CP to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.6 \\
& 5.2
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5
\end{aligned}
\] & & \[
\begin{aligned}
& 10.5 \\
& 10.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \\
& 10.5
\end{aligned}
\] & ns & 2-3 \\
\hline \({ }_{\text {tphL }}\) & Propagation Delay CLR to \(\mathrm{O}_{\mathrm{n}}\) & 4.0 & 7.1 & 12.0 & 4.0 & 13.0 & 4.0 & 13.0 & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{\mathrm{OE}}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.8 \\
& 5.5
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \\
& 10.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \\
& 13.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 11.5 \\
& 11.5
\end{aligned}
\] & & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLZ}}
\end{aligned}
\] & Output Disable Time \(\overline{\mathrm{OE}}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.9 \\
& 2.7
\end{aligned}
\] & 7.0
7.0 & 1.0
1.0 & 7.5
7.5 & \[
\begin{aligned}
& 1.5 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5
\end{aligned}
\] & & \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{Cc}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW
\[
D_{n} \text { to } C P
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(L) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(D_{n}\) to CP & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(\overline{E N}\) to CP & \[
\begin{aligned}
& 4.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(\mathrm{H}) \\
& t_{\mathrm{h}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(\overline{E N}\) to CP & \[
\begin{gathered}
2.0 \\
0 \\
\hline
\end{gathered}
\] & & \[
\begin{aligned}
& 3.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{gathered}
2.0 \\
0 \\
\hline
\end{gathered}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & CP Pulse Width HIGH or LOW & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
6.0 \\
6.0 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 6.0 \\
& 6.0 \\
& \hline
\end{aligned}
\] & & ns & 2-4 \\
\hline \(t_{w}(L)\) & \(\overline{\text { CLR Pulse Width, LOW }}\) & 5.0 & & 5.0 & & 5.0 & & ns & 2-4 \\
\hline \(\mathrm{t}_{\text {rec }}\) & \(\overline{\text { CLR }}\) Recovery Time & 5.0 & & 5.0 & & 5.0 & & ns & 2-6 \\
\hline
\end{tabular}

\section*{54F/74F825 \\ 8-Bit D-Type Flip-Flop}

\section*{General Description}

The 'F825 is an 8-bit buffered register. It has Clock Enable and Clear features which are ideal for parity bus interfacing in high performance microprogramming systems. Also included in the 'F825 are multiple enables that allow multiuser control of the interface.
The 'F825 is functionally and pin compatible with AMD's Am29825.

\section*{Features}
- TRI-STATE \({ }^{\text {® }}\) output
- Clock enable and clear
- Multiple output enables
- Direct replacement for AMD's Am24825

Ordering Code: See Section 5

\section*{Logic Symbols}


TL/F/9597-1
IEEE/IEC


\section*{Connection Diagrams}

Pin Assignment for DIP, SOIC and Flatpak


TL/F/9597~2


TL/F/9597-3

Unit Loading/Fan Out: See Section 2 for U.L. definitions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F/74F} \\
\hline & & U.L. HIGH/LOW & Input \(I_{\text {IH }} / I_{\text {IL }}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}\) \\
\hline \(\mathrm{D}_{0}-\mathrm{D}_{7}\) & Data Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\mathrm{O}_{0}-\mathrm{O}_{7}\) & TRI-STATE Data Outputs & 150/40 (33.3) & \(-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})\) \\
\hline \(\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}, \overline{\mathrm{OE}}_{3}\) & Output Enable Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline EN & Clock Enable & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\text { CLR }}\) & Clear & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline CP & Clock Input & 1.0/2.0 & \(20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}\) \\
\hline
\end{tabular}

\section*{Functional Description}

The 'F825 consists of eight D-type edge-triggered flip-flops. This device has TRI-STATE true outputs and is organized in broadside pinning. In addition to the clock and output enable pins, the buffered clock (CP) and buffered Output Enable ( \(\overline{\mathrm{OE}}\) ) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition. With the \(\overline{O E}\) LOW the contents of the flip-flops are available at the outputs. When the \(\overline{\mathrm{OE}}\) is HIGH, the outputs go to the high impedance state. Operation of the \(\overline{\mathrm{OE}}\)
input does not affect the state of the flip-flops. The 'F825 has Clear ( \(\overline{\mathrm{CLR}}\) ) and Clock Enable ( \(\overline{\mathrm{EN}}\) ) pins.
When the \(\overline{\text { CLR }}\) is LOW and the \(\overline{O E}\) is LOW the outputs are LOW. When CLR is HIGH, data can be entered into the flipflops. When EN is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When the EN is HIGH the outputs do not change state, regardless of the data or clock input transitions.
\(L=\) LOW Voltage Level
H = HIGH Voltage Level
\(X=\) immaterial
\(\mathbf{Z}=\) High Impedance
\(\Gamma=\) LOW-to-HIGH Transition
NC = No Change

\section*{Logic Diagram}


TL/F/9597-5
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Milltary/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\(V_{c c}\) Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) )
Standard Output TRI-STATE Output
Current Applied to Output
\[
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\]
\[
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\]
\[
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\]

\section*{Recommended Operating} Conditions
Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}
\[
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
\]
\[
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
\]
\[
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\]
in LOW State (Max)
Note 1: Absolute maximum ratings are values beyod be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{Vcc} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & \(54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}\) 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC 74F 5\% VCC 74F 5\% VCC & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.5 \\
& 2.4 \\
& 2.7 \\
& 2.7 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.5 \\
& 0.5
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{IIH}^{\text {H }}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\) \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & & -0.6 & mA & Max & \(\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}\) \\
\hline lozh & \multicolumn{2}{|l|}{Output Leakage Current} & & & 50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\) \\
\hline İOzL & \multicolumn{2}{|l|}{Output Leakage Current} & & & -50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -60 & & -150 & mA & Max & \(V_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline ICEX & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline lzz & \multicolumn{2}{|l|}{Buss Drainage Test} & & & 500 & \(\mu \mathrm{A}\) & 0.0V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline ICCZ & \multicolumn{2}{|l|}{Power Supply Current} & & 75 & 90 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) HIGH Z \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\begin{tabular}{l}
Fig \\
No
\end{tabular}} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{gathered}
T_{A}=+25^{\circ} \mathrm{C} \\
V_{C C}=+5.0 \mathrm{~V} \\
C_{L}=50 \mathrm{pF} \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M H \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \(\mathrm{f}_{\text {max }}\) & Maximum Clock Frequency & 100 & 160 & & 60 & & 70 & & MHz & 2-1 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay CP to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 6.6
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \\
& 10.5
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \\
& 10.5
\end{aligned}
\] & ns & 2-3 \\
\hline \(\mathrm{t}_{\mathrm{PHL}}\) & Propagation Delay \(\overline{C L R}\) to \(O_{n}\) & 4.0 & 7.4 & 12.0 & 4.0 & 13.0 & 4.0 & 13.0 & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{O E}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 6.5 \\
& 6.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10.5 \\
10.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \\
& 13.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 11.5 \\
& 11.5 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{pLZ}} \\
& \hline
\end{aligned}
\] & Output Disable TIme \(\overline{O E}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 1.5 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 3.3
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5
\end{aligned}
\] & 1.5
1.5 & \[
\begin{aligned}
& 7.5 \\
& 7.5
\end{aligned}
\] & & \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}=+25^{\circ} \mathrm{C} \\
V_{C C}=+5.0 \mathrm{~V}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathrm{Mil}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW
\[
D_{n} \text { to } C P
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
4.0 \\
4.0 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(D_{n}\) to CP & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
2.5 \\
2.5 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(\overline{E N}\) to \(C P\) & \[
\begin{aligned}
& 4.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(L)
\end{aligned}
\] & Hold Time, HIGH or LOW EN to CP & \[
\begin{gathered}
2.0 \\
0
\end{gathered}
\] & & \[
\begin{aligned}
& 3.0 \\
& 2.0
\end{aligned}
\] & & \[
\begin{gathered}
1.0 \\
0
\end{gathered}
\] & & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & CP Pulse Width HIGH or LOW & & & \[
\begin{array}{r}
6.0 \\
6.0 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 6.0 \\
& 6.0
\end{aligned}
\] & & ns & 2-4 \\
\hline \(\mathrm{t}_{\mathrm{w}}(\mathrm{L})\) & \(\overline{\text { CLR }}\) Pulse Width, LOW & 5.0 & & 5.0 & & 5.0 & & ns & 2-4 \\
\hline \(\mathrm{t}_{\text {rec }}\) & \(\overline{\text { CLR }}\) Recovery Time & 5.0 & & 5.0 & & 5.0 & & ns & 2-6 \\
\hline
\end{tabular}

National Semiconductor

\section*{54F/74F827 • 54F/74F828 10-Bit Buffers/Line Drivers}

\section*{General Description}

The 'F827 and 'F828 10-bit bus buffers provide high performance bus interface buffering for wide data/address paths or buses carrying parity. The 10-bit buffers have NOR output enables for maximum control flexibility.
The 'F827 and 'F828 are functionally- and pin-compatible to AMD's Am29827 and Am29828. The 'F828 is an inverting version of the 'F827.

\section*{Features}

■ TRI-STATE \({ }^{\circledR}\) output
- 'F828 is inverting
- Direct replacement for AMD's Am29827 and Am29828

Ordering Code: See Section 5

\section*{Connection Diagrams}
\begin{tabular}{|c|c|}
\hline Pin A DIP, FI & \\
\hline \(\overline{O E}_{1}-1\) & 24 \\
\hline \(\mathrm{D}_{0}-2\) & 23 \\
\hline \(\mathrm{D}_{1}-3\) & 22 \\
\hline \(\mathrm{O}_{2}-4\) & 21 \\
\hline \(\mathrm{D}_{3}-5\) & 20 \\
\hline \(\mathrm{D}_{4}-6\) & 19 \\
\hline \(\mathrm{D}_{5}-7\) & 18 \\
\hline \(\mathrm{D}_{6}-8\) & 17 \\
\hline \(\mathrm{D}_{7}-9\) & 16 \\
\hline \(\mathrm{D}_{8}-10\) & \\
\hline \(\mathrm{D}_{9}-11\) & \\
\hline GND- 12 & 13 \\
\hline
\end{tabular}
'F828


Pin Assignment for LCC and PCC 'F827
\(D_{7} D_{6} D_{5}\) NC \(D_{4} D_{3} D_{2}\)



TL/F/9598-2

TL/F/9598-1
'F828
\(D_{7} D_{6} D_{5}\) NC \(D_{4} D_{3} D_{2}\)



\(\bar{o}_{7} \bar{o}_{6} \bar{o}_{5}\) NC \(\bar{o}_{4} \bar{o}_{3} \bar{o}_{2}\)
TL/F/9598-9

\section*{Logic Symbols}


TL/F/9598-6
'F827


TL/F/9598-3

IEEE/IEC


TL/F/9598-7
'F828


TL/F/9598-10

Unit Loading/Fan Out: See Section 2 for U.L. definitions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F/74F} \\
\hline & & U.L. HIGH/LOW & Input \(\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{lOL}_{\mathrm{OL}}\) \\
\hline \(\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}\) & Output Enable Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\mathrm{D}_{0}-\mathrm{D}_{7}\) & Data Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\mathrm{O}_{0}-\mathrm{O}_{7}\) & Data Outputs, TRI-STATE & 600/106.6 (80) & -12 mA/64 mA (48 mA) \\
\hline
\end{tabular}

\section*{Functional Description}

The 'F827 and 'F828 are line drivers designed to be employed as memory address drivers, clock drivers and busoriented transmitters/receivers which provide improved PC board density. The devices have TRI-STATE outputs controlled by the Output Enable ( \(\overline{\mathrm{OE})}\) pins. The outputs can sink \(64 \mathrm{~mA}(48 \mathrm{~mA}\) mil) and source 15 mA . Input clamp diodes limit high-speed termination effects.

Function Table
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Inputs} & \multicolumn{2}{|c|}{Outputs} & \multirow{3}{*}{Function} \\
\hline \multirow[t]{2}{*}{\(\overline{O E}\)} & \multirow[t]{2}{*}{\(\mathrm{D}_{\mathrm{n}}\)} & \multicolumn{2}{|c|}{\(\mathrm{O}_{\mathrm{n}}\)} & \\
\hline & & 'F827 & 'F828 & \\
\hline L & H & H & L & Transparent \\
\hline L & L & L & H & Transparent \\
\hline H & X & Z & Z & High Z \\
\hline
\end{tabular}
\[
\begin{aligned}
& H=\text { HIGH Voltage level } \\
& \mathrm{L}=\mathrm{LOW} \text { Voltage Level } \\
& Z=\text { High Impedance } \\
& X=\text { Immaterial }
\end{aligned}
\]

\section*{Logic Diagrams}


TL/F/9598-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
'F828


Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

\section*{Absolute Maximum Ratings (Note 1)}

If Milltary/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specificatlons.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(-55^{\circ} \mathrm{C}\) to \(+175^{\circ} \mathrm{C}\)
\(V_{C c}\) Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) )
Standard Output
TRI-STATE Output
Current Applied to Output
in LOW State (Max)
twice the rated \(\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Military
Commercial
Supply Voltage
Military
Commercial
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
+4.5 V to +5.5 V
+4.5 V to +5.5 V

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(V_{\text {cc }}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\text {IH }}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline VOH & Output HIGH Voltage & 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC \(74 \mathrm{~F} 5 \% V_{C C}\) \(74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}\) & \[
\begin{aligned}
& 2.4 \\
& 2.0 \\
& 2.4 \\
& 2.0 \\
& 2.7 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}
\end{aligned}
\] \\
\hline VOL & Output LOW Voltage & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% V_{C C} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.55 \\
& 0.55 \\
& \hline
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA} \\
& \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{IIH}^{\text {H}}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}\) \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & & -0.6 & mA & Max & \(\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}\) \\
\hline lozh & \multicolumn{2}{|l|}{Output Leakage Current} & & & 50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\) \\
\hline lozL & \multicolumn{2}{|l|}{Output Leakage Current} & & & -50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & \(-100\) & & -225 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline ICEX & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & 240 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline \(\mathrm{l} z \mathrm{z}\) & \multicolumn{2}{|l|}{Bus Drainage Test} & & & 500 & \(\mu \mathrm{A}\) & 0.0V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline ICCH & \multicolumn{2}{|l|}{Power Supply Current ('F827)} & & 30 & 45 & mA & Max & \(V_{O}=\mathrm{HIGH}\) \\
\hline \(\mathrm{I}_{\text {CCL }}\) & \multicolumn{2}{|l|}{Power Supply Current ('F827)} & & 60 & 90 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) LOW \\
\hline ICCZ & \multicolumn{2}{|l|}{Power Supply Current ('F827)} & & 40 & 60 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH} Z\) \\
\hline ICCH & \multicolumn{2}{|l|}{Power Supply Current ('F828)} & & 14 & 20 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}\) \\
\hline \({ }^{\text {ICCL }}\) & \multicolumn{2}{|l|}{Power Supply Current ('F828)} & & 56 & 85 & mA & Max & \(V_{O}=\) LOW \\
\hline ICCz & \multicolumn{2}{|l|}{Power Supply Current ('F828)} & & 35 & 50 & mA & Max & \(V_{O}=\) HIGH \(Z\) \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{aligned}
T_{A} & =+25^{\circ} \mathrm{C} \\
V_{C C} & =+5.0 \mathrm{~V} \\
C_{L} & =50 \mathrm{pF}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{A}, \mathrm{~V}_{C C}=\mathrm{Mil} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 p F
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & \begin{tabular}{l}
Propagation Delay \\
Data to Output ('F827)
\end{tabular} & \[
\begin{aligned}
& 1.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.3
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 5.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.5
\end{aligned}
\] & & \[
\begin{aligned}
& 1.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 6.0
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& t_{\mathrm{PLH}} \\
& t_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Propagation Delay \\
Data to Output ('F828)
\end{tabular} & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 2.0
\end{aligned}
\] & & & & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 4.0
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{O E}\) to \(O_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 5.7 \\
& 6.8
\end{aligned}
\] & \[
\begin{gathered}
9.0 \\
11.5
\end{gathered}
\] & \[
\begin{aligned}
& 2.5 \\
& 3.0
\end{aligned}
\] & & \[
\begin{aligned}
& 2.5 \\
& 3.0
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
12.0
\end{gathered}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLZ}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(\overline{\mathrm{OE}}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 1.5 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 \\
& 3.5 \\
& \hline
\end{aligned}
\] & 8.0
8.0 & \[
\begin{aligned}
& 1.5 \\
& 1.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 1.5 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 8.5 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline
\end{tabular}

\section*{54F／74F841}

10－Bit Transparent Latch

\section*{General Description}

The＇F841 bus interface latch is designed to eliminate the extra packages required to buffer existing latches and pro－ vide extra data width for wider address／data paths or buses carrying parity．The＇F841 is a 10－bit transparent latch，a \(10-\) bit version of the＇F373．
The＇F841 is functionally and pin compatible to AMD＇s Am29841．

\section*{Features}
－TRI－STATE \({ }^{\circledR}\) output
－Direct replacement for AMD＇s Am29841

Ordering Code：See Section 5

\section*{Logic Symbols}


\section*{Connection Diagrams}


TL／F／9599－2


Unit Loading／Fan Out：See Section 2 for U．L．definitions
\begin{tabular}{|l|l|c|c|}
\hline \multirow{3}{*}{ Pin Names } & \multirow{2}{*}{ Description } & \multicolumn{2}{|c|}{\(54 \mathrm{~F} / 74 \mathrm{~F}\)} \\
\cline { 3 - 4 } & & \begin{tabular}{c} 
U．L． \\
HIGH／LOW
\end{tabular} & \begin{tabular}{c} 
Input I IH \(/ I_{I L}\) \\
Output \(I_{\mathrm{OH}} / I_{\mathrm{OL}}\)
\end{tabular} \\
\hline \(\mathrm{D}_{0}-\mathrm{D}_{9}\) & Data Inputs & \(1.0 / 1.0\) \\
\(\mathrm{O}_{0}-\mathrm{O}_{9}\) & TRI－STATE Outputs & \(150 / 40(33.3)\) & \(-30 \mu \mathrm{~mA} /-0.6 \mathrm{~mA}\) \\
OE & Output Enable Input & \(1.0 / 1.0\) & \(20 \mu \mathrm{~mA}(20 \mathrm{~mA})\) \\
LE & Latch Enable & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
& & \\
\hline
\end{tabular}

\section*{Functional Description}

The 'F841 device consists of ten D-type latches with TRI-STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition.

On the LE HIGH-to-LOW transition, the data that meets the setup and hold time is latched. Data appears on the bus when the Output Enable ( \(\overline{\mathrm{OE}}\) ) is LOW. When \(\overline{\mathrm{OE}}\) is HIGH the bus output is in the high impedance state.

Function Table
\begin{tabular}{|lcl|c|c|l|}
\hline \multicolumn{3}{|c|}{ Inputs } & & Internal & Output \\
\multirow{2}{*}{ Function } \\
\cline { 1 - 5 }\(\overline{\text { OE }}\) & LE & D & Q & O & \\
\hline X & X & X & X & Z & High Z \\
H & H & L & L & Z & High Z \\
H & H & H & H & Z & High Z \\
H & L & X & NC & Z & Latched \\
L & H & L & L & L & Transparent \\
L & H & H & H & H & Transparent \\
L & L & X & NC & NC & Latched \\
L & X & X & H & H & Preset \\
L & X & X & L & L & Clear \\
L & X & X & H & H & Preset \\
H & L & X & L & Z & Latched \\
H & L & X & H & Z & Latched \\
\hline
\end{tabular}

H = HIGH Voltage Level
L = LOW Voltage Level
\(X=\) Immaterial
Z \(=\) HIGH Impedance
NC \(=\) No Change

\section*{Logic Diagram}


Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
\[
\begin{array}{r}
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\end{array}
\]

Ambient Temperature under Bias
Junction Temperature under Bias
-0.5 V to \(\mathrm{V}_{\mathrm{CC}}\) -0.5 V to +5.5 V

TRI-STATE Output
Current Applied to Output in LOW State (Max)
twice the rated \(\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{Recommended Operating Conditions}

Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathbf{c c}}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input HIGH Voltage & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\text {IL }}\) & Input LOW Voltage & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(\mathrm{V}_{\mathrm{CD}}\) & Input Clamp Diode Voltage & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline VOH & \begin{tabular}{ll} 
Output HIGH Voltage & \(54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}\) \\
& \(54 \mathrm{~F} 10 \% \mathrm{VCC}\) \\
& \(74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}\) \\
& \(74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}\) \\
& \(74 \mathrm{~F} 5 \% \mathrm{CC}_{\mathrm{CC}}\) \\
& \(74 \mathrm{~F} 5 \% \mathrm{VCC}\)
\end{tabular} & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.5 \\
& 2.4 \\
& 2.7 \\
& 2.7 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & \begin{tabular}{ll} 
Output LOW & \(54 \mathrm{~F} \mathrm{10} \mathrm{\%} \mathrm{VCC}\) \\
Voltage & \(74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}\)
\end{tabular} & & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{lOL}=20 \mathrm{~mA} \\
& \mathrm{l} \mathrm{OL}=24 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & Input HIGH Current & & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & Input HIGH Current Breakdown Test & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\) \\
\hline IIL & Input LOW Current & & & -0.6 & mA & Max & \(\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}\) \\
\hline lozh & Output Leakage Current & & & 50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\) \\
\hline lozL & Output Leakage Current & & & -50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) \\
\hline los & Output Short-Circuit Current & -60 & & -150 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline ICEX & Output HIGH Leakage Current & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline lzz & Bus Drainage Test & & & 500 & \(\mu \mathrm{A}\) & 0.0V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline ICcz & Power Supply Current & & 69 & 92 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) HIGH \(Z\) \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Conigiguations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& V_{C C}=+5.0 \mathrm{~V} \\
& C_{L}=50 \mathrm{pF} \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M I I \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & MIn & Max & Min & Max & & \\
\hline \[
\mathrm{t}_{\mathrm{PLH}}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay \(D_{n}\) to \(O_{n}\) & \[
\begin{array}{r}
2.5 \\
1.5 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& 8.0 \\
& 6.5
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 1.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 9.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & ns & 2-3 \\
\hline \[
t_{\text {PLH }}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay LE to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 5.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
12.0 \\
7.5 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 4.5 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
13.5 \\
8.0 \\
\hline
\end{gathered}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{pZH}} \\
& \mathrm{t}_{\mathrm{pZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{O E}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 8.5 \\
& 9.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
10.0 \\
\hline
\end{gathered}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLLZ}}
\end{aligned}
\] & Output Disable Time OE to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & & \[
\begin{aligned}
& 6.5 \\
& 6.5
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5 \\
& \hline
\end{aligned}
\] & & \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Wavetorms


\section*{National Semiconductor}

\section*{54F/74F843 \\ 9-Bit Transparent Latch}

\section*{General Description}

The 'F843 bus interface latch is designed to eliminate the extra packages required to buffer existing latches and provide extra data width for wider address/data paths or buses carrying parity.
The 'F843 is functionally and pin compatible with AMD's Am29843.

\section*{Features}
- TRI-STATE® output
- Direct replacement for AMD's Am29843

Ordering Code: See Section 5

\section*{Logic Symbols}

IEEE Symbol


TL/F/9453-6

Connection Diagrams
Pin Assignment for DIP and SOIC


TL/F/9453-2


Unit Loading/Fan Out: See Section 2 tor U.L. definitions
\begin{tabular}{|l|l|c|c|}
\hline \multirow{2}{*}{ Pin Names } & \multicolumn{2}{|c|}{ Description } & \multicolumn{2}{|c|}{\(54 \mathrm{~F} / 74 \mathrm{~F}\)} \\
\cline { 3 - 4 } & & \begin{tabular}{c} 
U.L. \\
HIGH/LOW
\end{tabular} & \begin{tabular}{c} 
Input \(I_{\mathrm{IH}} / I_{\mathrm{IL}}\) \\
Output \(\mathrm{I}_{\mathrm{OH}} / I_{\mathrm{OL}}\)
\end{tabular} \\
\hline \(\mathrm{D}_{0}-\mathrm{D}_{8}\) & Data Inputs & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline OE & Output Enable Input & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
LE & Latch Enable & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\(\overline{\mathrm{CLR}}\) & Clear & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\(\overline{\mathrm{PRE}}\) & Preset & \(1.0 / 1.0\) & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\(\mathrm{O}_{0}-\mathrm{O}_{8}\) & TRI-STATE Data Outputs & \(150 / 40(33.3)\) & \(-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})\) \\
\hline
\end{tabular}

\section*{Functional Description}

The 'F843 consists of nine D-type latches with TRI-STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition. On the LE HIGH-to-LOW transition, the data that meets the setup times is latched. Data appears on the bus when the Output Enable ( \(\overline{\mathrm{OE}}\) ) is LOW. When \(\overline{\mathrm{OE}}\) is HIGH, the bus

Function Table
\begin{tabular}{|ccccc|c|c|c|}
\hline \multicolumn{4}{|c|}{ Inputs } & & Internal & Output & \multirow{2}{*}{ Function } \\
\cline { 1 - 5 } CLR & \(\overline{\text { PRE }}\) & \(\overline{\text { OE }}\) & LE & D & Q & O & \\
\hline H & H & X & X & X & X & Z & High Z \\
H & H & H & H & L & L & Z & High Z \\
H & H & H & H & H & H & Z & High Z \\
H & H & H & L & X & NC & Z & Latched \\
H & H & L & H & L & L & L & Transparent \\
H & H & L & H & H & H & H & Transparent \\
H & H & L & L & X & NC & NC & Latched \\
H & L & L & X & X & H & H & Preset \\
L & H & L & X & X & L & L & Clear \\
L & L & L & X & X & H & H & Preset \\
L & H & H & L & X & L & Z & Latched \\
H & L & H & L & X & H & Z & Latched \\
\hline
\end{tabular}
output is in the high impedance state. In addition to the LE and \(\overline{O E}\) pins, the 'F843 has a Clear ( \(\overline{\mathrm{CLR}}\) ) pin and a Preset ( \(\overline{\text { PRE }}\) ). These pins are ideal for parity bus interfacing in high performance systems. When CLR is LOW, the outputs are LOW if \(\overline{O E}\) is LOW. When \(\overline{\text { CLR }}\) is HIGH, data can be entered into the latch. When \(\overline{\text { PRE }}\) is LOW, the Outputs are HIGH if \(\overline{O E}\) is LOW. Preset overrides CLR.

\section*{Logic Diagram}
\[
\begin{aligned}
& H=\text { HIGH Voltage Level } \\
& L=\text { LOW Voltage Level } \\
& X=\text { Immaterial } \\
& Z=\text { High Impedance } \\
& N C=\text { No Change }
\end{aligned}
\]


Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\(V_{C C}\) Pin Potential to Ground Pin
\[
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
\]

Input Voltage (Note 2)
\[
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
\]

Input Current (Note 2)
\[
-30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
\]

Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) )
Standard Output TRI-STATE Output
\[
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
\]
\[
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
\]
\[
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\]

Current Applied to Output in LOW State (Max) twice the rated IOL (mA)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{Recommended Operating} Conditions
Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(\mathbf{V}_{\text {cc }}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(\mathrm{V}_{\text {CD }}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline V OH & Output HIGH Voltage & \begin{tabular}{l}
54F 10\% VCC 54F 10\% VCC \\
74F 10\% VCC \\
74F 10\% VCC \\
74F 5\% VCC \\
74F 5\% VCC
\end{tabular} & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.5 \\
& 2.4 \\
& 2.7 \\
& 2.7 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{IOH}^{2}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}
\end{aligned}
\] \\
\hline VOL & Output LOW Voltage & \[
\begin{aligned}
& 54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{IOL}=20 \mathrm{~mA} \\
& \mathrm{IOL}=24 \mathrm{~mA}
\end{aligned}
\] \\
\hline IIH & \multicolumn{2}{|l|}{Input HIGH Current} & & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\) \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & & -0.6 & mA & Max & \(\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\) \\
\hline lozh & \multicolumn{2}{|l|}{Output Leakage Current} & & & 50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\) \\
\hline IOZL & \multicolumn{2}{|l|}{Output Leakage Current} & & & -50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & \(-60\) & & -150 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline \(I_{\text {CEX }}\) & \multicolumn{2}{|l|}{Output HIGH Leakage current} & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline Izz & \multicolumn{2}{|l|}{Bus Drainage Test} & & & 500 & \(\mu \mathrm{A}\) & 0.0 V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline ICC & \multicolumn{2}{|l|}{Power Supply Current} & & 65 & 90 & mA & Max & \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{gathered}
T_{A}=+25^{\circ} \mathrm{C} \\
V_{C C}=+5.0 \mathrm{~V} \\
C_{L}=50 \mathrm{pF} \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M I I \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathbf{t}_{\mathrm{PLH}} \\
& \mathbf{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay
\[
D_{n} \text { to } O_{n}
\] & \[
\begin{array}{r}
2.5 \\
1.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5.4 \\
& 4.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 6.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{array}{r}
2.0 \\
1.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay LE to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 5.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 4.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
12.0 \\
7.5 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 4.5 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
13.5 \\
8.0 \\
\hline
\end{gathered}
\] & ns & 2-3 \\
\hline tplh & Propagation Delay \(\overline{\text { PRE to }} \mathrm{O}_{\mathrm{n}}\) & 3.0 & 7.3 & 10.0 & & & 2.5 & 11.0 & ns & 2-3 \\
\hline \(\mathrm{t}_{\mathrm{PHL}}\) & Propagation Delay \(\overline{\mathrm{CLR}}\) to \(\mathrm{O}_{\mathrm{n}}\) & 3.0 & 6.9 & 10.0 & & & 2.5 & 11.0 & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{O E}\) to \(O_{n}\) & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.1
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 9.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{gathered}
9.5 \\
10.0 \\
\hline
\end{gathered}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLZ}}
\end{aligned}
\] & Output Disable Time \(\overline{O E}\) to \(O_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.6 \\
& 3.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 6.5
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 7.5
\end{aligned}
\] & ns & 2-5 \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}=+25^{\circ} \mathrm{C} \\
V_{C C}=+5.0 \mathrm{~V}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{MlI}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C c}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& t_{s}(H) \\
& t_{s}(L) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(D_{n}\) to LE & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & & & & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & \multirow[t]{2}{*}{ns} & \multirow[t]{2}{*}{2-6} \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(L) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(D_{n}\) to LE & \[
\begin{aligned}
& 2.5 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 3.0 \\
& 3.5 \\
& \hline
\end{aligned}
\] & & & \\
\hline \(t_{w}(H)\) & LE Pulse Width, HIGH & 4.0 & & & & 4.0 & & ns & 2-4 \\
\hline \(t_{W}(L)\) & PRE Pulse Width, LOW & 5.0 & & & & 5.0 & & ns & 2-4 \\
\hline \(t_{w}(L)\) & CLR Pulse Width, LOW & 5.0 & & & & 5.0 & & ns & 2-4 \\
\hline \(\mathrm{t}_{\text {rec }}\) & \(\overline{\text { PRE Recovery Time }}\) & 10.0 & & & & 10.0 & & ns & 2-6 \\
\hline \(t_{\text {rec }}\) & \(\overline{\text { CLR Recovery Time }}\) & 12.0 & & & & 13.0 & & ns & 2-6 \\
\hline
\end{tabular}

\section*{National Semiconductor}

\section*{54F／74F845}

\section*{8－Bit Transparent Latch}

\section*{General Description}

The＇F845 bus interface latch is designed to eliminate the extra packages required to buffer existing latches and pro－ vide extra data width for wider address／data paths or buses carrying parity．
The＇F845 is functionally－and pin－compatible with AMD＇s Am29845．

\section*{Features}
－TRI－STATE \({ }^{\star}\) outputs
－Direct replacement for AMD＇s Am29845

Ordering Code：See Section 5

\section*{Logic Symbols}


TL／F／9601－3
IEEE／IEC


TL／F／9601－5

\section*{Connection Diagrams}


Pin Assignment for LCC and PCC
\(\mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}\) NC \(\mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1}\)四回回图目


回 20 21 22 23 24 25
\(\mathrm{O}_{6} \mathrm{O}_{5} \mathrm{O}_{4} \mathrm{NCO} \mathrm{O}_{3} \mathrm{O}_{2} \mathrm{O}_{1}\)
TL／F／9601－2

\section*{Functional Description}

The 'F845 consists of eight D-type latches with TRI-STATE outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation as the output transition follows the data in transition.

On the LE HIGH-to-LOW transition, the data that meets the setup times is latched. Data appears on the bus when the output Enable ( \(\overline{\mathrm{OE}})\) is LOW. When \(\overline{\mathrm{OE}}\) is HIGH, the bus output is in the high impedance state.

\section*{Logic Diagram}


TL/F/9601-4
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
Function Table
\begin{tabular}{|ccccc|c|c|l|}
\hline \multicolumn{5}{|c|}{ Inputs } & & Internal & Output \\
\multirow{2}{*}{ Function } \\
\cline { 1 - 6 } CLR & PRE & OE & LE & D & Q & O & \\
\hline H & H & H & X & X & X & Z & High Z \\
H & H & H & H & L & L & Z & High Z \\
H & H & H & H & H & H & Z & High Z \\
H & H & H & L & X & NC & Z & Latched \\
H & H & L & H & L & L & L & Transparent \\
H & H & L & H & H & H & H & Transparent \\
H & H & L & L & X & NC & NC & Latched \\
H & L & L & X & X & H & H & Preset \\
L & H & L & X & X & L & L & Clear \\
L & L & L & X & X & H & H & Preset \\
L & H & H & L & X & L & Z & Latched \\
H & L & H & L & X & H & Z & Latched \\
\hline
\end{tabular}

\footnotetext{
H \(=\) HIGH Voltage Level
L = LOW Voltage Level
\(X=\) Immaterial
\(Z=\) High Impedance
NC \(=\) No Change
}

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, contact the Natlonal Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\[
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
\]
\(V_{C C}\) Pin Potential to Ground Pin
-0.5 V to +7.0 V
Input Voltage (Note 2)
-0.5 V to +7.0 V
-30 mA to +5.0 mA
Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) )
Standard Output
\[
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
\] TRI-STATE Output
\[
-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}
\]

Current Applied to Output in LOW State (Max) twice the rated \(I_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions
\begin{tabular}{lr} 
Free Air Ambient Temperature & \\
\(\quad\) Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
\(\quad\) Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow{2}{*}{\(\mathrm{V}_{\mathrm{cc}}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(\mathrm{V}_{\text {CD }}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & 54F \(10 \% V_{C C}\) 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC \(74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}\) \(74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}\) & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.5 \\
& 2.4 \\
& 2.7 \\
& 2.7 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & \(54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}\) 74F 10\% VCC & & & \[
\begin{aligned}
& 0.5 \\
& 0.5 \\
& \hline
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & & 20 & \(\mu \mathrm{A}\) & Max & \(V_{I N}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BV} /}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{1 \mathrm{~N}}=7.0 \mathrm{~V}\) \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & & -0.6 & mA & Max & \(\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}\) \\
\hline \(\mathrm{l}_{\mathrm{OZH}}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & & 50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\) \\
\hline lozL & \multicolumn{2}{|l|}{Output Leakage Current} & & & -50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -60 & & -150 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline ICEX & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline \(\mathrm{I}_{2}\) & \multicolumn{2}{|l|}{Bus Drainage Test} & & & 500 & \(\mu \mathrm{A}\) & 0.0V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline ICCZ & \multicolumn{2}{|l|}{Power Supply Current} & & 63 & 85 & mA & Max & \(V_{O}=\) HIGH \(Z\) \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{aligned}
T_{A} & =+25^{\circ} \mathrm{C} \\
V_{C C} & =+5.0 \mathrm{~V} \\
C_{L} & =50 \mathrm{pF}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M I I \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 p F
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\({ }_{\mathrm{t}}^{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay
\[
D_{n} \text { to } O_{n}
\] & \[
\begin{aligned}
& 2.5 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 4.8 \\
& 3.6
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 6.5
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 1.5
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 7.0
\end{aligned}
\] & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PH}}\)
\end{tabular} & Propagation Delay LE to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 5.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.1 \\
& 4.4
\end{aligned}
\] & \[
\begin{gathered}
12.0 \\
7.5
\end{gathered}
\] & & & \[
\begin{aligned}
& 4.5 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
13.5 \\
8.0 \\
\hline
\end{gathered}
\] & ns & 2-3 \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay PRE to \(\mathrm{O}_{\mathrm{n}}\) & 3.0 & 5.9 & 10.0 & & & 2.5 & 11.0 & ns & 2-3 \\
\hline \(t_{\text {PHL }}\) & Propagation Delay CLR to \(\mathrm{O}_{\mathrm{n}}\) & 3.0 & 6.5 & 10.0 & & & 2.5 & 11.0 & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{\mathrm{O}}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 5.8 \\
& 7.6
\end{aligned}
\] & & & & \[
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.5 \\
& 13.0
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \text { tpHZ }^{2} \\
& \text { tpLZ }^{2}
\end{aligned}
\] & Output Disable Time \(\overline{\mathrm{OE}}\) to \(\mathrm{O}_{\mathrm{n}}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & & 7.5
6.5 & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 7.5
\end{aligned}
\] & ns & 2-5 \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mil}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\text {cc }}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(D_{n}\) to LE & \[
\begin{array}{r}
2.0 \\
2.0 \\
\hline
\end{array}
\] & & & & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(L)
\end{aligned}
\] & Hold Time, HIGH or LOW \(D_{n}\) to LE & \[
\begin{aligned}
& 2.5 \\
& 3.0
\end{aligned}
\] & & & & \[
\begin{aligned}
& 3.0 \\
& 3.5
\end{aligned}
\] & & ns & 2-6 \\
\hline \(t_{w}(H)\) & LE Pulse Width, HIGH & 4.0 & & & & 4.0 & & ns & 2-4 \\
\hline \(t_{w}(\mathrm{~L})\) & PRE Pulse Width, LOW & 5.0 & & & & 5.0 & & ns & 2-4 \\
\hline \(t_{w}(\mathrm{~L})\) & \(\overline{\text { CLR Pulse Width, LOW }}\) & 5.0 & & & & 5.0 & & ns & 2-4 \\
\hline \(\mathrm{t}_{\text {rec }}\) & \(\overline{\text { PRE Recovery Time }}\) & 10.0 & & & & 10.0 & & ns & 2-6 \\
\hline \(\mathrm{t}_{\text {rec }}\) & \(\overline{\text { CLR Recovery Time }}\) & 12.0 & & & & 13.0 & & ns & 2-6 \\
\hline
\end{tabular}

\section*{54F/74F968}

\section*{1 Mbit Dynamic RAM Controller}

\section*{General Description}

The 'F968 is a high performance memory controller, replacing many SSI and MSI devices by grouping several unique functions. It provides two 10-bit address latches and two 10bit counters for row and column address generation during refresh. A 2-bit bank select latch for row and column address generation during refresh and a 2-bit bank select latch for the two high order address bits are provided to select one of the four RAS and CAS outputs.

\section*{Features}
- Provides control for \(16 \mathrm{~K}, 64 \mathrm{~K}, 256 \mathrm{~K}\) or 1 Mbit DRAM systems
- Outputs directly drive up to 88 DRAMs
- Chip select for easy expansion
- Provides memory refresh with error correction mode
- 52-pin plastic leaded chip carrier

Ordering Code: See Section 5
Logic Symbol


TL/F/9604-1

Pin Assignment for PCC


TL/F/9604-3
Pin Assignment
for Side Brazed DIP

Unit Loading/Fan Out: See Section 2 for U.L. definitions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F/74F} \\
\hline & & U.L. HIGH/LOW & Input \(I_{I H} / I_{I L}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OL}}\) \\
\hline \(\mathrm{AC}_{0}-\mathrm{AC}_{9}\) & Column Address Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\mathrm{AR}_{0}-\mathrm{AR}_{9}\) & Row Address Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\mathrm{MC}_{0}, \mathrm{MC}_{1}\) & Mode Control Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\text { CS }}\) & Chip Select Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline MSEL & Multiplexer Select Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline LE & Latch Enable Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline SEL \({ }_{0}, \mathrm{SEL}_{1}\) & Bank Select Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline RASI & Row Address Strobe In & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline CASI & Column Address Strobe In & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{O E}\) & Output Enable & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\mathrm{RAS}}_{0}-\overline{\mathrm{RAS}}_{3}\) & Row Address Strobe Outputs & 150/1.667 & \(-3 \mathrm{~mA} / 1.0 \mathrm{~mA}\) \\
\hline \(\overline{\mathrm{CAS}}_{0}-\overline{\mathrm{CAS}}_{3}\) & Column Address Strobe Outputs & 150/1.667 & -3 mA/1.0 mA \\
\hline \(\mathrm{Q}_{0}-\mathrm{Q}_{9}\) & Address Outputs & 150/1.667 & \(-3 \mathrm{~mA} / 1.0 \mathrm{~mA}\) \\
\hline
\end{tabular}

\section*{Pin Description}
\begin{tabular}{|c|c|c|}
\hline Name & 1/0 & Description \\
\hline \[
\begin{aligned}
& {A R_{0}-A R_{9}}^{A C_{0}-A C_{9}}
\end{aligned}
\] & 1 & Address Inputs. \(\mathrm{AR}_{0}-\mathrm{AR}_{9}\) are latched in as the 10 -bit Row Address for the RAM. These inputs drive \(\mathrm{Q}_{0}-\mathrm{Q}_{9}\) when the ' \(\mathrm{F968}\) is in the Read/Write mode and MSEL is \(L O W\). \(A C_{0}-A C_{9}\) are latched in as the Column Address, and will drive \(\mathrm{Q}_{0}-\mathrm{Q}_{9}\) when MSEL is HIGH and the 'F968 is in the Read/Write mode. The addresses are latched with the Latch Enable (LE) signal. \\
\hline \(\mathrm{SEL}_{0}-\mathrm{SEL}_{1}\) & 1 & Bank Select. These two inputs are normally the two higher order address bits, and are used in the Read/Write mode to select which bank of memory will be receiving the \(\overline{\mathrm{RAS}}_{n}\) and \(\overline{\mathrm{CAS}}_{n}\) signals after RASI and CASI go HIGH. \\
\hline LE & 1 & Latch Enable. This active-HIGH input causes the Row, Column and Bank Select latches to become transparent, allowing the latches to accept new input data. A LOW input on LE latches the input data, assuming it meets the setup and hold time requirements. \\
\hline MSEL & 1 & Multiplexer Select. This input determines whether the Row or Column Address will be sent to the memory address inputs. When MSEL is HIGH the Column Address is selected, while the Row Address is selected when MSEL is LOW. The address may come from either the address latch or refresh address counter depending on \(\mathrm{MC}_{0}, \mathrm{MC}_{1}\). \\
\hline \(\overline{\text { CS }}\) & 1 & Chip Select. This active-LOW input is used to enable the 'F968. When \(\overline{\mathrm{CS}}\) is active, the ' \(F 968\) operates normally in all four modes. When \(\overline{\mathrm{CS}}\) goes HIGH, the device will not enter the Read/Write mode. This allows other devices to access the same memory that the 'F968 is controlling (e.g., DMA controller). \\
\hline \(\overline{O E}\) & 1 & Output Enable. This active-LOW input enables/disables the output signals. When \(\overline{\mathrm{O}}\) is HIGH, the outputs of the 'F968 enter the high impedance state. The \(\overline{\mathrm{OE}}\) signal allows more than one 'F968 to control the same memory, thus providing an easy method to expand the memory size. \\
\hline \(\mathrm{MC}_{0}, \mathrm{MC}_{1}\) & 1 & Mode Control. These inputs are used to specify which of the four operating modes the 'F968 should be using. The description of the four operating modes is given in the Mode Control Function Table. \\
\hline \(\mathrm{Q}_{0}-\mathrm{Q}_{9}\) & \(\bigcirc\) & Address Outputs. These address outputs will feed the DRAM address inputs and provide drive for memory systems up to 500 pF in capacitance. \\
\hline RASI & 1 & Row Address Strobe Input. During normal memory cycles, the decoded \(\overline{\mathrm{AS}}_{n}\) output \(\left(\overline{\mathrm{RAS}}_{0}, \overline{\mathrm{RAS}}_{1}\right.\), \(\overline{\mathrm{RAS}}_{2}\) or \(\overline{\mathrm{RAS}}_{3}\) ) is forced LOW after receipt of RASI. In either refresh mode, all four \(\mathrm{RAS}_{n}\) outputs will go LOW following RASI going HIGH. \\
\hline \(\overline{\mathrm{RAS}}_{0}-\overline{\mathrm{RAS}}_{3}\) & 0 & Row Address Strobe. Each one of the Row Address Strobe outputs provides a \(\overline{\mathrm{RAS}}_{\mathrm{n}}\) signal to one of the four banks of dynamic memory. Each will go LOW only when selected by \(S E L_{0}\) and \(S_{E L} L_{1}\) and only after RASI goes HIGH. All four go LOW in response to RASI in either of the Refresh modes. \\
\hline CASI & 1 & Column Address Strobe Input. This input going active will cause the selected \(\overline{\mathrm{CAS}}_{n}\) output to be forced LOW. \\
\hline \(\overline{\mathrm{CAS}}_{0}-\overline{\mathrm{CAS}}_{3}\) & 0 & Column Address Strobe. During normal Read/Write cycles the two select bits (SEL \(\mathrm{L}_{0}, \mathrm{SEL}_{1}\) ) determine which \(\overline{\mathrm{CAS}}_{\mathrm{n}}\) output will go active following CASI going HIGH. When memory error correction is performed, only the \(\overline{\mathrm{CAS}}_{n}\) signal selected by \(\mathrm{CNTR}_{0}\) and \(\mathrm{CNTR}_{1}\) will be active. For non-error correction cycles, all four \(\overline{\mathrm{CAS}}_{n}\) outputs remain HIGH. \\
\hline
\end{tabular}

\section*{Functional Description}

The 74F968 is a 1 Mbit DRAM controller which is functionally equivalent to AMD's Am29368. The 74F968 provides row/column address multiplexing, refresh address generation and bank selection for up to four banks of RAMs.
Twenty-two (22) address bits \(\left(\mathrm{AR}_{0}-A R_{8}, A C_{0}-A C_{9}\right.\) and bank select addresses SEL \(L_{0}\) and SEL \(_{1}\) ) are presented to the controller. These addresses are latched by a 22-bit latch. A 22-bit counter generates the refresh address.

A 10-bit multiplexer selects the output address between the input row address, column address, refresh counter row address, column address, or zero (clear). Four RAS and four CAS outputs select the appropriate bank of RAMs and strobe in the row and column addresses.
It should be noted that the counters are cleared ( \(\mathrm{MC}_{0}, ~ M C_{1}\) \(=1,1\) ) on the next RASI transition, but the \(Q\) outputs are asynchronously cleared through the multiplexer.

Mode Control Functlon Table
\begin{tabular}{c|c|l}
\hline MC \(_{1}\) & MC \(_{0}\) & \multicolumn{1}{c}{ Operating Mode } \\
\hline\(L\) & \(L\) & \(\begin{array}{l}\text { Refresh without Error Correctlon- Refresh cycles are performed with only the Row Counter being } \\
\text { used to generate addresses. In this mode, all four } \overline{R A S} S_{n} \text { outputs are active while the four } \overline{C A S} \\
n\end{array}\) \\
are signals
\end{tabular}\(]\)

H = HIGH Voltage Level
\(\mathrm{L}=\) LOW Voltage Level
Address Output Function Table
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\overline{\text { CS }}\) & MC \({ }_{1}\) & MCo & MSEL & Mode & MUX Output \\
\hline \multirow{5}{*}{L} & L & L & X & Refresh without Error Correction & Row Counter Address \\
\hline & \multirow[t]{2}{*}{L} & \multirow[t]{2}{*}{H} & H & \multirow[t]{2}{*}{Refresh with Error Correction} & Column Counter Address \\
\hline & & & L & & Row Counter Address \\
\hline & \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{L} & H & \multirow[t]{2}{*}{Read/Write} & Column Address Latch \\
\hline & & & L & & Row Address Latch \\
\hline & H & H & X & Clear Refresh Counter & Zero \\
\hline \multirow{5}{*}{H} & L & L & X & Refresh without Error Correction & Row Counter Address \\
\hline & \multirow[t]{2}{*}{L} & \multirow[t]{2}{*}{H} & H & \multirow[t]{2}{*}{Refresh with Error Correction} & Column Counter Address \\
\hline & & & L & & Row Counter Address \\
\hline & H & L & X & Read/Write & Zero \\
\hline & H & H & X & Clear Refresh Counter & Zero \\
\hline
\end{tabular}

H \(=\) HIGH Voltage Level
L = LOW Voltage Level
\(\mathrm{X}=\mathrm{Immaterial}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{\(\overline{\text { RAS }}\) Output Function Table} \\
\hline RASI & \(\overline{\text { CS }}\) & MC1 & MC \({ }_{0}\) & SEL \({ }_{1}\) & SEL \({ }_{0}\) & Mode & \(\overline{\mathbf{R A S}}_{\mathbf{0}}\) & \(\overline{\mathbf{R A S}}_{1}\) & \(\overline{\mathbf{R A S}}_{2}\) & \(\overline{\mathbf{R A S}}_{3}\) \\
\hline L & X & X & X & X & X & Non-Refresh & H & H & H & H \\
\hline \multirow{11}{*}{H} & \multirow{6}{*}{L} & L & L & X & X & Refresh without Error Correction & L & L & L & L \\
\hline & & L & H & X & X & Refresh with Error Correction & L & L & L & L \\
\hline & & \multirow{4}{*}{H} & \multirow{4}{*}{L} & L & L & \multirow[t]{4}{*}{Read/Write} & L & H & H & H \\
\hline & & & & L & H & & H & L & H & H \\
\hline & & & & H & L & & H & H & L & H \\
\hline & & & & H & H & & H & H & H & L \\
\hline & & H & H & X & X & Clear Refresh Counter & L & L & L & L \\
\hline & \multirow{4}{*}{H} & L & L & \multirow[t]{4}{*}{X} & \multirow[t]{4}{*}{X} & Refresh without Error Correction & L & L & L & L \\
\hline & & L & H & & & Refresh with Error Correction & L & L & L & L \\
\hline & & H & L & & & Read/Write & H & H & H & H \\
\hline & & H & H & & & Clear Refresh Counter & L & L & L & L \\
\hline
\end{tabular}

CAS Output Function Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Inputs} & \multicolumn{2}{|l|}{Internal Counter} & \multicolumn{2}{|c|}{Inputs} & \multicolumn{4}{|c|}{Outputs} \\
\hline CASI & \(\overline{\mathbf{C S}}\) & MC \({ }_{1}\) & \(\mathrm{MC}_{0}\) & CNTR \({ }_{1}\) & CNTR \({ }_{0}\) & SEL \({ }_{1}\) & SEL0 & \(\overline{\mathbf{C A S}}_{0}\) & \(\overline{\mathrm{CAS}}_{1}\) & \(\overline{\text { CAS }}_{2}\) & \(\overline{\mathrm{CAS}}_{3}\) \\
\hline \multirow{17}{*}{H} & \multirow{10}{*}{L} & L & L & X & X & X & X & H & H & H & H \\
\hline & & \multirow{4}{*}{L} & \multirow{4}{*}{H} & L & L & \multirow{4}{*}{X} & \multirow{4}{*}{X} & L & H & H & H \\
\hline & & & & L & H & & & H & L & H & H \\
\hline & & & & H & L & & & H & H & L & H \\
\hline & & & & H & H & & & H & H & H & L \\
\hline & & \multirow{4}{*}{H} & \multirow{4}{*}{L} & \multirow{4}{*}{X} & \multirow{4}{*}{X} & L & L & L & H & H & H \\
\hline & & & & & & L & H & H & L & H & H \\
\hline & & & & & & H & L & H & H & L & H \\
\hline & & & & & & H & H & H & H & H & L \\
\hline & & H & H & X & X & X & X & H & H & H & H \\
\hline & \multirow{7}{*}{H} & L & L & X & X & X & X & H & H & H & H \\
\hline & & \multirow{4}{*}{L} & \multirow{4}{*}{H} & L & L & \multirow{4}{*}{X} & \multirow{4}{*}{X} & L & H & H & H \\
\hline & & & & L & H & & & H & L & H & H \\
\hline & & & & H & L & & & H & H & L & H \\
\hline & & & & H & H' & & & H & H & H & L \\
\hline & & H & L & \multirow[t]{2}{*}{X} & \multirow[t]{2}{*}{X} & \multirow[t]{2}{*}{X} & \multirow[t]{2}{*}{X} & \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{H} \\
\hline & & H & H & & & & & & & & \\
\hline L & X & X & X & X & X & x & X & H & H & H & H \\
\hline
\end{tabular}


\section*{Memory Cycle Timing}

The relationship between the 'F968 specifications and system timing requirements is shown in Figures 1-6. T1, T2 and T3 represent the minimum timing requirements at the 'F968 inputs to guarantee that the RAM timing requirements are met and that maximum system performance is achieved.

The minimum requirement for T1, T2 and T3 are as follows:
\[
\begin{aligned}
& \mathrm{T} 1 \text { Min }=\mathrm{t}_{\text {ASR }}+\mathrm{t}_{\text {skew }} \\
& \mathrm{T} 2 \text { Min }=\mathrm{t}_{\text {RAH }}+\mathrm{t}_{\text {skew }} \\
& \mathrm{T} 3 \text { Min }=\mathrm{T}_{2}+\mathrm{t}_{\text {skew }}+\mathrm{t}_{\text {ASC }} .
\end{aligned}
\]

See RAM data sheet for applicable values for \(t_{\text {RAH }}, t_{\text {ASC }}\) and \(t_{\text {ASR }}\).

Memory Cycle Timing (Continued)


FIGURE 1. Dynamic Memory Controller TIming


TL/F/9604-6
Note A: Guaranteed maximum difference between fastest RASI to \(\overline{\operatorname{RAS}}{ }_{n}\) delay and the slowest \(A_{n}\) to \(Q_{n}\) delay on any single device.
Note B: Guaranteed maximum difference between fastest MSEL to \(Q_{n}\) delay and the slowest RASI to \(\overline{\operatorname{RAS}}_{n}\) delay on any single device. Note C: Guaranteed maximum difference between fastest CASI to \(\overline{\mathrm{CAS}}_{n}\) delay and the slowest MSEL to \(\mathrm{Q}_{n}\) delay on any single device.

FIGURE 2. Specifications Applicable to Memory Cycle Timing ( \(\mathrm{MC}_{\mathbf{n}}=\mathbf{1 , 0}\) )

\section*{Memory Cycle Timing (Continued)}


TL/F/9604-7
FIGURE 3. Desired System Timing

\section*{Refresh Cycle Timing}


Note B: Guaranteed maximum difference between fastest MSEL to \(Q_{n}\) delay and the slowest RASI to \(\overline{\operatorname{RAS}}_{n}\) delay on any single device. Note C: Guaranteed maximum difference between fastest CASI to \(\overline{\mathrm{CAS}}_{n}\) delay and the slowest MSEL to \(\mathrm{Q}_{n}\) delay on any single device. Note D: Guaranteed maximum difference between fastest RASI to \(\overline{\mathrm{RAS}}_{n}\) delay and the slowest \(M C_{n}\) to \(Q_{n}\) delay on any single device.

FIGURE 4. Specifications Applicable to Refresh Cycle Timing ( \(\mathbf{M C}_{\mathbf{n}}=\mathbf{0 0 , 0 1}\) )

Refresh Cycle Timing (Continued)


TL/F/9604-9
FIGURE 5. Designed Timing-Refresh with Error Correction


TL/F/9604-10
FIGURE 6. Desired Timing-Refresh without Error Correction

\section*{Absolute Maximum Ratings (Note 1)}

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)

Junction Temperature under Bias
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(V_{C C}\) Pin Potential to Ground Pin

Input Voltage (Note 2)
Input Current (Note 2)
\(-55^{\circ} \mathrm{C}\) to \(+175^{\circ} \mathrm{C}\)
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA

Recommended Operating Conditions
Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & \(+4.5 \mathrm{to}+5.5 \mathrm{~V}\)
\end{tabular}
\(\begin{array}{lr}\text { Voltage Applied to Output } \\ \text { in HIGH State (with } V_{C C}=0 \mathrm{~V} \text { ) } & \\ \text { Standard Output } & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ \text { 3-State Output } & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}\end{array}\)
Current Applied to Output
in LOW State (Max)
twice the rated \(\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{2}{|r|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathbf{C C}}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & V & & Recognized as a HIGH Signal \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(\mathrm{V}_{\mathrm{CD}}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Output HIGH Voltage & 54F 10\% VCC 54F 10\% VCC 74F 10\% VCC 74F 10\% VCC \(74 \mathrm{~F} 5 \% \mathrm{~V}_{\mathrm{CC}}\) 74F 5\% VCC & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.5 \\
& 2.4 \\
& 2.7 \\
& 2.7
\end{aligned}
\] & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output LOW Voltage & 54F 10\% VCC \(54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}\) 74F 10\% VCC 74F 10\% VCC & & \[
\begin{aligned}
& 0.5 \\
& 0.8 \\
& 0.5 \\
& 0.8
\end{aligned}
\] & V & Min & \[
\begin{aligned}
& \mathrm{l} \mathrm{OL}=1.0 \mathrm{~mA} \\
& \mathrm{IOL}=12 \mathrm{~mA} \\
& \mathrm{IOL}=1.0 \mathrm{~mA} \\
& \mathrm{IOL}=12 \mathrm{~mA}
\end{aligned}
\] \\
\hline \(\mathrm{IH}^{\text {H }}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}\) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}\) \\
\hline IIL & \multicolumn{2}{|l|}{Input LOW Current} & & -0.6 & mA & Max & \(\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}\) \\
\hline lozh & \multicolumn{2}{|l|}{Output Leakage Current} & & 50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\) \\
\hline lozL & \multicolumn{2}{|l|}{Output Leakage Current} & & -50 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & -60 & -150 & mA & Max & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) \\
\hline \(I_{\text {CEX }}\) & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline l zz & \multicolumn{2}{|l|}{Buss Drainage Test} & & 500 & \(\mu \mathrm{A}\) & 0.0V & \(V_{\text {OUT }}=V_{\text {CC }}\) \\
\hline \({ }^{\text {ICCH }}\) & \multicolumn{2}{|l|}{Power Supply Current} & & 300 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}\) \\
\hline ICCL & \multicolumn{2}{|l|}{Power Supply Current} & & 300 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) LOW \\
\hline I CCz & \multicolumn{2}{|l|}{Power Supply Current} & & 300 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) HIGH \(Z\) \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{8}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{Fig
No} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& T_{A}, V_{C C}=C o m \\
& C_{L}=500 \mathrm{pF}^{*}
\end{aligned}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Typ & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay AR to \(Q_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{aligned}
& 11.0 \\
& 11.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 12.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 19.0 \\
& 22.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay AC to \(Q_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 7.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{aligned}
& 11.0 \\
& 11.0
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 12.0
\end{aligned}
\] & & \[
\begin{aligned}
& 19.0 \\
& 22.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay RASI to \(\overline{\operatorname{RAS}}_{\mathrm{n}}\) & \[
\begin{aligned}
& 3.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 12.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \\
& 13.0
\end{aligned}
\] & & \[
\begin{aligned}
& 23.0 \\
& 20.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \[
\mathrm{t}_{\mathrm{PLH}}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay CASI to \(\overline{\mathrm{CAS}}_{\mathrm{n}}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 6.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 8.5
\end{aligned}
\] & & \[
\begin{aligned}
& 19.0 \\
& 17.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \[
t_{\text {PLH }}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay MSEL to \(Q_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \\
& 13.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 14.0 \\
& 14.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 24.0 \\
& 21.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \[
t_{\text {PLH }}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay \(M C_{n}\) to \(Q_{n}\) & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10.0 \\
9.0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 15.0 \\
& 15.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
16.0 \\
16.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
25.0 \\
22.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \[
t_{\text {PLH }}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay \(M C_{n}\) to \(\overline{\operatorname{RAS}}_{n}\) & \[
\begin{aligned}
& 3.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{gathered}
11.0 \\
8.0 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 17.5 \\
& 17.5
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 18.5 \\
& 18.5
\end{aligned}
\] & & \[
\begin{aligned}
& 24.0 \\
& 22.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \[
t_{\text {PLH }}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay \(\mathrm{MC}_{\mathrm{n}}\) to \(\overline{\mathrm{CAS}}_{\mathrm{n}}\) & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 9.0
\end{aligned}
\] & \[
\begin{aligned}
& 12.5 \\
& 12.5
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 13.5 \\
& 13.5
\end{aligned}
\] & & \[
\begin{aligned}
& 23.0 \\
& 21.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \[
\mathrm{t}_{\mathrm{PLH}}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay LE to \(\overline{\operatorname{RAS}}_{\mathrm{n}}\) & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{gathered}
10.0 \\
9.0
\end{gathered}
\] & \[
\begin{aligned}
& 15.0 \\
& 15.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 16.0 \\
& 16.0
\end{aligned}
\] & & \[
\begin{aligned}
& 25.0 \\
& 24.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\({ }^{\text {t }}{ }^{\text {PHL }}\)
\end{tabular} & Propagation Delay LE to \(\overline{\mathrm{CAS}}_{\mathrm{n}}\) & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 9.0
\end{aligned}
\] & \[
\begin{aligned}
& 13.5 \\
& 13.5
\end{aligned}
\] & \[
\begin{aligned}
& 4.5 \\
& 4.5
\end{aligned}
\] & \[
\begin{aligned}
& 14.5 \\
& 14.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 24.0 \\
& 24.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \[
\mathrm{t}_{\mathrm{PLH}}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay \(L E\) to \(Q_{n}\) & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 12.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \\
& 13.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
23.0 \\
22.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay \(\overline{C S}\) to \(Q_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10.0 \\
8.0 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
14.5 \\
14.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15.5 \\
& 15.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
25.0 \\
23.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \[
t_{\text {PLH }}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay \(\overline{\mathrm{CS}}\) to \(\overline{\operatorname{RAS}}_{\mathrm{n}}\) & \[
\begin{aligned}
& 3.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 8.0
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \\
& 13.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 14.0 \\
& 14.0
\end{aligned}
\] & & \[
\begin{aligned}
& 23.0 \\
& 23.0
\end{aligned}
\] & & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay \(\overline{\mathrm{CS}}\) to \(\overline{\mathrm{CAS}}_{\mathrm{n}}\) & \[
\begin{array}{r}
4.0 \\
4.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11.5 \\
11.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12.5 \\
& 12.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
23.0 \\
23.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \[
t_{\text {PLH }}
\]
\[
\mathrm{t}_{\mathrm{PHL}}
\] & Propagation Delay \(S E L_{n}\) to \(\overline{\operatorname{RAS}}_{n}\) & \[
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
15.5 \\
15.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 16.0 \\
& 16.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
24.0 \\
23.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \begin{tabular}{l}
tpLH \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay \(S E L_{n}\) to \(\overline{\mathrm{CAS}}_{n}\) & \[
\begin{aligned}
& 4.5 \\
& 4.5
\end{aligned}
\] & & & & & & \[
\begin{array}{r}
24.0 \\
24.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline
\end{tabular}
*These values are given for typical derivative with a 500 pF load; these are not guaranteed specifications.

AC Electrical Characteristics (Continued): See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{5}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & & \\
\hline \[
t_{\text {PHZ }}
\]
\[
t_{P L Z}
\] & Output Disable Time \(\overline{\mathrm{OE}}\) to \(\mathrm{Q}_{\mathrm{n}}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}}
\end{aligned}
\] & Output Enable Time \(\overline{O E}\) to \(Q_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLZ}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(\overline{\mathrm{OE}}\) to \(\overline{\mathrm{RAS}}_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}}
\end{aligned}
\] & Output Enable Time \(\overline{\mathrm{OE}}\) to \(\overline{\mathrm{RAS}}_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 6.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \text { tphZ } \\
& \text { tplZ } \\
& \hline
\end{aligned}
\] & Output Disable Time \(\overline{\mathrm{OE}}\) to \(\overline{\mathrm{CAS}}_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 4.0
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0
\end{aligned}
\] & ns & 2-5 \\
\hline \[
t_{\text {PZH }}
\]
\[
t_{\text {PZL }}
\] & Output Enable Time \(\overline{\mathrm{OE}}\) to \(\overline{\mathrm{CAS}}_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & 5.0
6.0 & \[
\begin{aligned}
& 9.5 \\
& 9.5
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0
\end{aligned}
\] & ns & 2-5 \\
\hline
\end{tabular}

\section*{AC Operating Requirements: See Section 2 for Waveforms}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{4}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& V_{C C}=+5.0 \mathrm{~V}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(H) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L})
\end{aligned}
\] & Setup Time, HIGH or LOW \(A_{n}\) to LE & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(A_{n}\) to LE & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{0}(H) \\
& t_{s}(\mathrm{~L})
\end{aligned}
\] & Setup Time, HIGH or LOM! SEL to LE & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{\mathrm{t}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW SEL to LE & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{w}(H) \\
& t_{w}(L)
\end{aligned}
\] & Pulse Width, HIGH or LOW \(\overline{\mathrm{CAS}}_{n}, \overline{\mathrm{RAS}}_{n}\) & \[
\begin{aligned}
& 15.0 \\
& 15.0
\end{aligned}
\] & & \[
\begin{aligned}
& 15.0 \\
& 15.0
\end{aligned}
\] & & ns & 2-4 \\
\hline \(\mathrm{t}_{\text {skew }}\) & \(\mathrm{Q}_{\mathrm{n}}\) to \(\overline{\mathrm{CAS}}_{n}, \overline{\mathrm{RAS}}_{n}\) & 10.0 & & 10.0 & & ns & \\
\hline
\end{tabular}

\section*{54F/74F978}

\section*{Octal Flip-Flop with Serial Scanner}

\section*{General Description}

The 'F978 is a high speed low power octal flip-flop with a buffered Data Clock (DCLK), Test Clock (TCLK), and a buffered Output Enable (OEN). Serial diagnostics are performed with on-board multiplexers.

\section*{Features}
- Edge-triggered D-type registers
m On-line and off-line system diagnostics with independent test clock

■ Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- RAM write-back for writable control store
- Useful as input or output port for microprocessors
- Cascadable for wide control words as used in microprogramming

Logic Symbol


Connection Diagrams

\section*{Pin Assignment for 24-Pin DIP/SOIC \\ }

Pin Assignment for 28-Pin LCC/PLCC
\(D_{7} D_{6} D_{5} D_{4} D_{3} D_{2} D_{1}\)



\section*{29F52•29F53}

\section*{8-Bit Registered Transceiver}

\section*{General Description}

The 29F52 and 29F53 are 8-bit registered transceivers. Two 8 -bit back to back registers store data flowing in both directions between two bidirectional buses. Separate clock, clock enable and TRI-STATE \({ }^{\circledR}\) output enable signals are provided for each register. The \(A_{0}-A_{7}\) output pins are guaranteed to sink 24 mA ( 20 mA mil.) while the \(\mathrm{B}_{0}-\mathrm{B}_{7}\) output pins are designed for 64 mA .
The 29F53 is an inverting option of the 29F52. Both transceivers are AMD Am2952/2953 functional equivalents.

\section*{Features}
- 8-bit registered transceivers

■ Separate clock, clock enable and TRI-STATE output enable provided for each register
- AMD Am2952/2953 functional equivalents
- Both inverting and non-inverting options available
- 24-Pin slimline package

Ordering Code: See Section 5

\section*{Logic Symbols}


TL/F/9606-1

IEEE/IEC
29F52



TL/F/9606-7

IEEE/IEC
29F53


Connection Diagrams（Continued）

Pin Assignment
for DIP，SOIC and Flatpak 29F52


TL／F／9606－2

Pin Assignment for LCC and PCC \(29 F 52\)
\(\overline{O E B} \mathrm{~B}_{0} \mathrm{~B}_{1} \mathrm{NC} \mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}\)困回目765


Pin Assignment for DIP，SOIC and Flatpak \(29 F 53\)


TL／F／9606－8

Pin Assignment for LCC and PCC 29F53


TL／F／9606－9

Unit Loading／Fan Out：See Section 2 for U．L．definitions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F／74F} \\
\hline & & U．L． HIGH／LOW & Input \(I_{I H} / I_{I L}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{A}_{0}-\mathrm{A}_{7}\)} & A－Register Inputs／ & 3．5／1．083 & \(70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}\) \\
\hline & B－Register TRI－STATE Outputs & 150／40（33．3） & －3 mA／24 mA（20 mA） \\
\hline \multirow[t]{2}{*}{\(\mathrm{B}_{0}-\mathrm{B}_{7}\)} & B Register Inputs／ & 3．5／1．083 & \(70 \mu \mathrm{~A} / 0.65 \mathrm{~mA}\) \\
\hline & A－Register TRI－STATE Outputs & 600／106．6（80） & \(-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})\) \\
\hline \(\overline{O E A}\) & Output Enable A－Register & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline CPA & A－Register Clock & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\text { CEA }}\) & A－Register Clock Enable & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\text { OEB }}\) & Output Enable B－Register & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline CPB & B－Register Clock & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\text { CEB }}\) & B－Register Clock Enable & 1．0／1．0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline
\end{tabular}

Block Diagrams


TL/F/9606-6

Block Diagrams (Continued)


TL/F/9606-10
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{6}{*}{ OE } & Internal \\
Q & \multicolumn{2}{|c|}{ Y-Output } & \multirow{2}{*}{ Function } \\
\cline { 3 - 4 } & 29F52 & \(29 F 53\) & \\
\hline H & X & Z & Z & Disable Outputs \\
\hline L & L & L & H & Enable Outputs \\
L & H & H & L & \\
\hline
\end{tabular}

Register Function Table (Applies to A or B Register)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Inputs } & \multirow{2}{c|}{\begin{tabular}{c} 
Internal \\
Q
\end{tabular}} & Function \\
\hline D & CP & CE & N & \\
\hline X & X & H & NC & Hold Data \\
\hline L & H & L & L & Load Data \\
H & L & L & H & \\
\hline
\end{tabular}

\footnotetext{
H = HIGH Voltage Level
L = LOW Voltage Level
\(X=\) Immaterial
\(Z=\) HIGH Impedance
\(\mathcal{J}=\) LOW-to-HIGH Transition
\(\mathrm{NC}=\mathrm{No}_{\mathrm{C}}\) Change
}

\section*{Absolute Maximum Ratings (Note 1)}

If Military/Aerospace specifled devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\[
\begin{aligned}
& -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
& -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
\end{aligned}
\]
\(V_{C C}\) Pin Potential to Ground Pin
-0.5 V to +7.0 V
Input Voltage (Note 2)
Input Current (Note 2)
-0.5 V to +7.0 V
-30 mA to +5.0 mA
Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\) )
Standard Output
-0.5 V to \(\mathrm{V}_{\mathrm{CC}}\)
TRI-STATE Output
-0.5 V to +5.5 V
Current Applied to Output in LOW State (Max)
twice the rated \(\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{Recommended Operating Conditions}

Free Air Ambient Temperature
\begin{tabular}{lr} 
Military & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
Commercial & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Supply Voltage & \\
Military & +4.5 V to +5.5 V \\
Commercial & +4.5 V to +5.5 V
\end{tabular}

\section*{DC Electrical Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{54F/74F} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{\(V_{c c}\)} & \multirow[t]{2}{*}{Conditions} \\
\hline & & & Min & Typ & Max & & & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{Input HIGH Voltage} & 2.0 & & & V & & Recognized as a HIGH Signal \\
\hline \(V_{\text {IL }}\) & \multicolumn{2}{|l|}{Input LOW Voltage} & & & 0.8 & V & & Recognized as a LOW Signal \\
\hline \(V_{C D}\) & \multicolumn{2}{|l|}{Input Clamp Diode Voltage} & & & -1.2 & V & Min & \(\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}\) (Non I/O Pins) \\
\hline V OH & Output HIGH Voltage & \(54 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}\) 54F 10\% VCC \(54 \mathrm{~F} 10 \%\) VCC 74F 10\% VCC 74F 10\% VCC 74F 10\% VCC \(74 \mathrm{~F} 5 \% \mathrm{VCC}_{\mathrm{C}}\) 74F 5\% VCC 74F 5\% VCC & \[
\begin{aligned}
& 2.5 \\
& 2.4 \\
& 2.0 \\
& 2.5 \\
& 2.4 \\
& 2.0 \\
& 2.7 \\
& 2.7 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(A_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(A_{n}, B_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(B_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(A_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(A_{n}, B_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(A_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(A_{n}, B_{n}\right) \\
& \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~B}_{n}\right)
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\text {OL }}\) & Output LOW Voltage & \[
\begin{aligned}
& \text { 54F 10\% } V_{\mathrm{CC}} \\
& \text { 54F 10\% } \mathrm{V}_{\mathrm{CC}} \\
& \text { 74F 10\% } \mathrm{VCC} \\
& 74 \mathrm{~F} 10 \% \mathrm{~V}_{\mathrm{CC}}
\end{aligned}
\] & & & \[
\begin{gathered}
0.5 \\
0.55 \\
0.5 \\
0.55 \\
\hline
\end{gathered}
\] & V & Min & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\
& \mathrm{I}_{\mathrm{OL}}=48 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \\
& \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\
& \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~B}_{n}\right)
\end{aligned}
\] \\
\hline \({ }_{1 / \mathrm{H}}\) & \multicolumn{2}{|l|}{Input HIGH Current} & & & 20 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\) (Non-1/O Pins) \\
\hline \(\mathrm{I}_{\mathrm{BVI}}\) & \multicolumn{2}{|l|}{Input HIGH Current Breakdown Test} & & & 100 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}\) (Non-1/O Pins) \\
\hline IbVIT & \multicolumn{2}{|l|}{Input HIGH Current Breakdo:vn Test (I/O)} & & & 1.0 & mA & Max & \(\mathrm{V}_{1 \mathrm{~N}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)\) \\
\hline I/L & \multicolumn{2}{|l|}{Input LOW Current} & & & -0.6 & mA & Max & \(\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}\) (Non-1/O Pins) \\
\hline \(\mathrm{IIH}+\mathrm{I}_{\mathrm{OZH}}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & & 70 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)\) \\
\hline \(\mathrm{IIL}^{+} \mathrm{I}_{\text {OZL }}\) & \multicolumn{2}{|l|}{Output Leakage Current} & & & -650 & \(\mu \mathrm{A}\) & Max & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right)\) \\
\hline los & \multicolumn{2}{|l|}{Output Short-Circuit Current} & \[
\begin{gathered}
-60 \\
-100 \\
\hline
\end{gathered}
\] & & \[
\begin{array}{r}
-150 \\
-225 \\
\hline
\end{array}
\] & mA & Max & \[
\begin{aligned}
& V_{\text {OUT }}=O V\left(A_{n}\right) \\
& V_{\text {OUT }}=O V\left(B_{n}\right)
\end{aligned}
\] \\
\hline \(I_{\text {CEX }}\) & \multicolumn{2}{|l|}{Output HIGH Leakage Current} & & & 250 & \(\mu \mathrm{A}\) & Max & \(V_{\text {OUT }}=V_{\text {CC }}\left(A_{n}, B_{n}\right)\) \\
\hline \(\mathrm{l} z \mathrm{z}\) & \multicolumn{2}{|l|}{Bus Drainage Test} & & & 500 & \(\mu \mathrm{A}\) & 0.0V & \(V_{\text {OUT }}=V_{\text {CC }}\left(A_{n}, B_{n}\right)\) \\
\hline ICCH & \multicolumn{2}{|l|}{Power Supply Current} & & 130 & 190 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}\) \\
\hline \({ }^{\text {CCLL }}\) & \multicolumn{2}{|l|}{Power Supply Current} & & & 190 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) LOW \\
\hline ICCz & \multicolumn{2}{|l|}{Power Supply Current} & & & 190 & mA & Max & \(\mathrm{V}_{\mathrm{O}}=\) HIGH Z \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{3}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{3}{|c|}{\[
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=M i I \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Typ & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay CPA or CPB to \(A_{n}\) or \(B_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 9.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{gathered}
8.5 \\
10.0 \\
\hline
\end{gathered}
\] & ns & 2-3 \\
\hline \[
\begin{aligned}
& \text { tPZH } \\
& \text { tpZL }^{2} \\
& \hline
\end{aligned}
\] & Output Enable Time \(\overline{O E A}\) or \(\overline{O E B}\) to \(A_{n}\) or \(B_{n}\) & \[
\begin{aligned}
& 2.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 7.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7.5 \\
& 9.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
8.5 \\
10.5 \\
\hline
\end{gathered}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLLZ}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(\overline{O E A}\) or \(\overline{O E B}\) to \(A_{n}\) or \(B_{n}\) & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6.5 \\
& 5.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.0 \\
& 7.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
10.0 \\
8.5 \\
\hline
\end{gathered}
\] & ns & 2-5 \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{74F} & \multicolumn{2}{|c|}{54F} & \multicolumn{2}{|c|}{74F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\begin{tabular}{l}
Fig \\
No
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& T_{A}=+25^{\circ} \mathrm{C} \\
& V_{C C}=+5.0 \mathrm{~V}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{MII}\)} & \multicolumn{2}{|l|}{\(\mathbf{T}_{\mathbf{A}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(\mathrm{A}_{\mathrm{n}}\) or \(\mathrm{B}_{\mathrm{n}}\) to CPA or CPB & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{array}{r}
4.5 \\
4.5 \\
\hline
\end{array}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{h}(\mathrm{H}) \\
& t_{h}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(\mathrm{A}_{\mathrm{n}}\) or \(\mathrm{B}_{\mathrm{n}}\) to CPA or CPB & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(\overline{\mathrm{CEA}}\) or \(\overline{\mathrm{CEB}}\) to CPA or CPB & \[
\begin{aligned}
& 1.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 1.5 \\
& 4.5 \\
& \hline
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(\overline{\mathrm{CEA}}\) or \(\overline{\mathrm{CEB}}\) to CPA or CPB & \[
\begin{aligned}
& 2.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 2.5 \\
& 2.5
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{w}(H) \\
& t_{w}(L) \\
& \hline
\end{aligned}
\] & Pulse Width, HIGH or LOW CPA or CPB & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & & ns & 2-4 \\
\hline
\end{tabular}

\section*{29 F68}

\section*{Dynamic RAM Controller}

\section*{General Description}

The 29F68 is a high-performance memory controller, replacing many SSI and MSI devices by grouping several unique functions. It provides two 9 -bit address latches and two 9-bit counters for row and column address generation during refresh. A 2-bit bank select latch for row and column address generation during refresh, and a 2-bit bank select latch for the two high order address bits are provided to select one of the four RAS and CAS outputs.
The 29F68 is functionally equivalent to AMD's Am2968 and Motorola's MC74F2968.

\section*{Features}
- High-performance memory controller
- Replaces many SSI and MSI devices by grouping several unique functions
- Functionally equivalent to AMD's Am2968 and Motorola's MC74F2968
■ Provides control for \(16 \mathrm{~K}, 64 \mathrm{~K}\), or 256 K dynamic RAM systems
- Outputs directly drive up to 88 DRAMs
- Highest order two address bits select one of four banks of RAMs
- Chip Select for easy expansion
- Provides memory refresh with error correction mode

\section*{Ordering Code: See Section 5}

\section*{Logic Symbol}


\section*{Connection Diagram}

Pin Assignment for LCC and PCC
\(A R_{7} A C_{6} A R_{6} A C_{5} A R_{5} L E G D C_{4} A R_{4} A C_{3} A R_{3} A C_{2} A R_{2}\)



\(Q_{8} Q_{7} Q_{6} Q_{5} V_{C C} V_{C C} \overline{O E G D D} Q_{4} Q_{3} Q_{2} a_{1} N C\)
TL/F/9608-2

Pin Description
\begin{tabular}{|c|c|c|}
\hline Name & 1/0 & Description \\
\hline \[
\begin{aligned}
& A R_{0}-A R_{8} \\
& A C_{0}-A C_{8}
\end{aligned}
\] & 1 & Address Inputs. \(\mathrm{AR}_{0}-\mathrm{AR}_{8}\) are latched in as the 9-bit Row Address for the RAM. These inputs drive \(Q_{0}-Q_{8}\) when the 29F68 is in the Read/ Write mode and MSEL is LOW. \(A C_{0}-\mathrm{AC}_{8}\) are latched in as the Column Address, and will drive \(Q_{0}-Q_{8}\) when MSEL is HIGH and the 29F68 is in the Read/Write mode. The addresses are latched with the Latch Enable (LE) signal. \\
\hline SELO-SEL \({ }_{1}\) & I & Bank Select. These two inputs are normally the two higher order address bits, and are used in the Read/Write mode to select which bank of memory will be receiving the \(\overline{\mathrm{RAS}}_{n}\) and \(\overline{\mathrm{CAS}}_{n}\) signals after RASI and CASI go HIGH. \\
\hline LE & I & Latch Enable. This active-HIGH input causes the Row, Column and Bank Select latches to become transparent, allowing the latches to accept new input data. A LOW input on LE latches the input data, assuming it meets the setup and hold time requirements. \\
\hline MSEL & 1 & Multiplexer Select. This input determines whether the Row or Column Address will be sent to the memory address inputs. When MSEL is HIGH the Column Address is selected, while the Row Address is selected when MSEL is LOW. The address may come from either the address latch or refresh address counter depending on \(M C_{0}, M C_{1}\). \\
\hline \(\overline{\text { CS }}\) & 1 & Chip Select. This active-LOW input is used to enable the 29F68. When \(\overline{\mathrm{CS}}\) is active, the 29 F 68 operates normally in all four modes. When \(\overline{\mathrm{CS}}\) goes HIGH, the device will not enter the Read/Write mode. This allows other devices to access the same memory that the 29F68 is controlling (e.g., DMA controller). \\
\hline \(\overline{O E}\) & 1 & Output Enable. This active-LOW input enables/disables the output signals. When \(\overline{\mathrm{OE}}\) is HIGH, the outputs of the 29F68 enter the high impedance state. The \(\overline{O E}\) signal allows more than one 29 F 68 to control the same memory, thus providing an easy method to expand the memory size. \\
\hline \(M C_{0}, M C_{1}\) & I & Mode Control. These inputs are used to specify which of the four operating modes the 29F68 should be using. The description of the four operating modes is given in the Mode Control Function Table. \\
\hline \(Q_{0}-Q_{8}\) & 0 & Address Outputs. These address outputs will feed the DRAM address inputs and provide drive for memory systems up to 500 pF in capacitance. \\
\hline RASI & 1 & Row Address Strobe Input. During normal memory cycles, the decoded \(\overline{\mathrm{RAS}}_{n}\) output ( \(\overline{\mathrm{RAS}}_{0}, \overline{\mathrm{RAS}}_{1}, \overline{\mathrm{RAS}}_{2}\) or \(\overline{\mathrm{RAS}}_{3}\) ) is forced LOW after receipt of RASI. In either refresh mode, all four \(\overline{\mathrm{RAS}}_{\mathrm{n}}\) outputs will go LOW following RASI going HIGH. \\
\hline \(\overline{\mathrm{RAS}}_{0}-\overline{\mathrm{RAS}}_{3}\) & 0 & Row Address Strobe. Each one of the Row Address Strobe outputs provides a \(\overline{\operatorname{RAS}}_{n}\) signal to one of the four banks of dynamic memory. Each will go LOW only when selected by \(\mathrm{SEL}_{0}\) and \(\mathrm{SEL}_{1}\) and only after RASI goes HIGH. All four go LOW in response to RASI in either of the Refresh modes. \\
\hline CASI & 1 & Column Address Strobe Input. This input going active will cause the selected \(\overline{\mathrm{CAS}}_{n}\) output to be forced LOW. \\
\hline \(\overline{\mathrm{CAS}}_{0}-\overline{\mathrm{CAS}}_{3}\) & 0 & Column Address Strobe. During normal Read/Write cycles the two select bits (SELO, SEL \({ }_{1}\) ) determine which \(\overline{\mathrm{CAS}}_{\mathrm{n}}\) output will go active following CASI going HIGH. When memory error correction is performed, only the \(\overline{\mathrm{CAS}}_{n}\) signal selected by CNTR \(_{0}\) and CNTR \(_{1}\) will be active. For non-error correction cycles, all four \(\overline{\mathrm{CAS}}_{n}\) outputs remain HIGH. \\
\hline
\end{tabular}

\section*{Functional Description}

The 29 F 68 is designed to be used with \(16 \mathrm{k}, 64 \mathrm{k}\), or 256 k dynamic RAMs and is functionally equivalent to AMD's AM2968. The 29F68 provides row/column address multiplexing, refresh address generation and bank selection for up to four banks of RAMs.
Twenty (20) address bits ( \(\mathrm{AR}_{0}-\mathrm{AR}_{8}, \mathrm{AC}_{0}-\mathrm{AC}_{8}\), and bank select addresses \(\mathrm{SEL}_{0}\) and \(\mathrm{SEL}_{1}\) ) are presented to the controller. These addresses are latched by a 20-bit latch. A 20bit counter generates the refresh address.

A 9-bit multiplexer selects the output address between the input row address, column address, refresh counter row address, column address, or zero (clear). Four RAS and four CAS outputs select the appropriate bank of RAMs and strobe in the row and column addresses.
It should be noted that the counters are cleared ( \(\mathrm{MC}_{0}\), \(M C_{1}=1,1\) ) on the next RASI transition, but the \(Q\) outputs are asynchronously cleared through the multiplexer.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{Mode Control Function Table} \\
\hline \(\mathrm{MC}_{1}\) & \(\mathrm{MC}_{0}\) & Operating Mode \\
\hline 0 & 0 & Refresh without Error Correction. Refresh cycles are performed with only the Row Counter being used to generate addresses. In this mode, all four \(\overline{\operatorname{ASS}}_{n}\) outputs are active while the four \(\overline{\mathrm{CAS}}_{n}\) signals are kept HIGH. \\
\hline 0 & 1 & Refresh with Error Correction/Initialize—During this mode, refresh cycles are done with both the Row and Column counters generating the addresses. MSEL is used to select between the Row and Column counter. All four \(\overline{\operatorname{RAS}}_{n}\) outputs go active in response to RASI, while only one \(\overline{\mathrm{CAS}}_{n}\) output goes LOW in response to CASI. The Bank Counter keeps track of which \(\overline{\mathrm{CAS}}_{\mathrm{n}}\) output will go active. This mode is also used on system power-up so that the memory can be written with a known data pattern. \\
\hline 1 & 0 & Read/Write- This mode is used to perform Read/Write cycles. Both the Row and Column addresses are latched and multiplexed to the address output lines using MSEL; SEL \(L_{0}\) and SEL \(_{1}\) are decoded to determine which \(\overline{\mathrm{RAS}}_{n}\) and \(\overline{\mathrm{CAS}}_{n}\) will be active. \\
\hline 1 & 1 & Clear Refresh Counter-This mode will clear the three refresh counters (Row, Column, and Bank) on the HIGH-to-LOW transition of RASI, putting them at the start of the refresh sequence. In this mode, all four \(\overline{\operatorname{RAS}}_{n}\) are driven LOW upon receipt of RASI so that DRAM wake-up cycles may be performed. This mode also asynchronously clears the \(Q_{n}\) outputs. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Address Output Function Table} \\
\hline \(\overline{\text { CS }}\) & MC \({ }_{1}\) & MCo & MSEL & Mode & MUX Output \\
\hline \multirow[t]{6}{*}{L} & L & L & X & Refresh without Error Correction & Row Counter Address \\
\hline & \multirow[t]{2}{*}{L} & \multirow[t]{2}{*}{H} & H & \multirow[t]{2}{*}{Refresh with Error Correction} & Column Counter Address \\
\hline & & & L & & Row Counter Address \\
\hline & \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{L} & H & \multirow[t]{2}{*}{Read/Write} & Column Address Latch \\
\hline & & & L & & Row Address Latch \\
\hline & H & H & X & Clear Refresh Counter & Zero \\
\hline \multirow[t]{5}{*}{H} & L & L & X & Refresh without Error Correction & Row Counter Address \\
\hline & \multirow[t]{2}{*}{L} & \multirow[t]{2}{*}{H} & H & \multirow[t]{2}{*}{Refresh with Error Correction} & Column Counter Address \\
\hline & & & L & & Row Counter Address \\
\hline & H & L & X & Read/Write & Zero \\
\hline & H & H & X & Clear Refresh Counter & Zero \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{RAS Output Function Table} \\
\hline RASI & \(\overline{\mathbf{c s}}\) & MC \({ }_{1}\) & \(\mathrm{MC}_{0}\) & SEL \(_{1}\) & SEL \({ }_{0}\) & \multicolumn{3}{|c|}{Mode} & \(\overline{\mathbf{R A S}}_{0}\) & \(\overline{\mathbf{R A S}}_{1}\) & \(\overline{\mathbf{R A S}}_{2}\) & \(\overline{\mathbf{R A S}}_{3}\) \\
\hline L & x & x & x & X & x & \multicolumn{3}{|l|}{Non-refresh} & H & H & H & H \\
\hline H & \multirow[t]{7}{*}{L} & L & L & x & x & \multicolumn{3}{|l|}{Refresh without Scrubbing} & L & L & L & L \\
\hline & & L & H & x & x & \multicolumn{3}{|l|}{Refresh with Scrubbing} & L & L & L & L \\
\hline & & \multirow[t]{4}{*}{H} & \multirow[t]{3}{*}{L} & L & L & \multicolumn{3}{|l|}{} & L & H & H & H \\
\hline & & & & L & H & \multicolumn{3}{|l|}{\multirow{3}{*}{Read/Write}} & H & L & H & H \\
\hline & & & & H & L & & & & H & H & L & H \\
\hline & & & & H & H & & & & H & H & H & L \\
\hline & & H & H & X & X & \multicolumn{3}{|l|}{Clear Refresh Counter} & L & L & L & L \\
\hline & \multirow[t]{4}{*}{H} & L & L & \multirow[t]{4}{*}{x} & \multirow[t]{4}{*}{x} & \multicolumn{3}{|l|}{Refresh without Error Correction} & L & L & L & L \\
\hline & & L & H & & & \multicolumn{3}{|l|}{Refresh with Error Correction} & L & L & L & L \\
\hline & & H & L & & & \multicolumn{3}{|l|}{Read/Write} & H & H & H & H \\
\hline & & H & H & & & \multicolumn{3}{|l|}{Clear Refresh Counter} & L & L & L & L \\
\hline \multicolumn{13}{|c|}{CAS Output Function Table} \\
\hline \multicolumn{4}{|c|}{Inputs} & \multicolumn{3}{|r|}{Internal Counter} & \multicolumn{2}{|c|}{Inputs} & \multicolumn{4}{|c|}{Outputs} \\
\hline CASI & \(\overline{\mathbf{C S}}\) & MC \({ }_{1}\) & MC \({ }_{0}\) & CNTR & & \(\mathrm{CNTR}_{0}\) & SEL \({ }_{1}\) & SEL \({ }_{0}\) & \(\overline{\mathbf{C A S}}_{0}\) & \(\overline{\mathrm{CAS}}_{1}\) & \(\overline{\mathbf{C A S}}_{2}\) & \(\overline{\mathrm{CAS}}_{3}\) \\
\hline \multirow[t]{17}{*}{H} & \multirow[t]{9}{*}{L} & L & L & X & & x & x & x & H & H & H & H \\
\hline & & \multirow[t]{4}{*}{L} & \multirow[t]{4}{*}{H} & L & & L & \multirow[t]{4}{*}{X} & \multirow[t]{4}{*}{x} & L & H & H & H \\
\hline & & & & L & & H & & & H & L & H & H \\
\hline & & & & H & & L & & & H & H & L & H \\
\hline & & & & H & & H & & & H & H & H & L \\
\hline & & \multirow[t]{4}{*}{H} & \multirow[t]{4}{*}{L} & \multirow[t]{4}{*}{X} & & \multirow[t]{4}{*}{x} & L & L & L & H & H & H \\
\hline & & & & & & & L & H & H & L & H & H \\
\hline & & & & & & & H & L & H & H & L & H \\
\hline & & & & & & & H & H & H & H & H & L \\
\hline & \multirow[t]{8}{*}{H} & H & H & \(x\) & & x & x & X & H & H & H & H \\
\hline & & L & L & X & & x & x & x & H & H & H & H \\
\hline & & L & H & L & & L & \multirow[t]{4}{*}{x} & \multirow[t]{4}{*}{X} & L & H & H & H \\
\hline & & & & L & & H & & & H & L & H & H \\
\hline & & & & H & & L & & & H & H & L & H \\
\hline & & & & H & & H & & & H & H & H & L \\
\hline & & H & L & \multirow[t]{2}{*}{X} & & \multirow[t]{2}{*}{x} & \multirow[t]{2}{*}{x} & \multirow[t]{2}{*}{x} & \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{H} \\
\hline & & H & H & & & & & & & & & \\
\hline L & x & X & x & x & & x & x & x & H & H & H & H \\
\hline
\end{tabular}

Unit Loading/Fan Out: See Section 2 for U.L. definitions
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pin Names} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|r|}{54F/74F} \\
\hline & & U.L. HIGH/LOW & Input \(I_{I_{H}} / I_{I L}\) Output \(\mathrm{IOH}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}\) \\
\hline \(\mathrm{AC}_{0}-\mathrm{AC}_{8}\) & Column Address & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\mathrm{AR}_{0}-\mathrm{AR}_{8}\) & Row Address & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(Q_{0}-Q_{8}\) & Address Outputs & 50/33.3 & -1 mA/20 mA \\
\hline MCo, MC \({ }_{1}\) & Memory Cycle & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\mathrm{CS}}\) & Chip Select Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline MSEL & Multiplexer Select Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline LE & Latch Enable Input & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline SEL \({ }_{0}\), SEL \(_{1}\) & Select Inputs & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline RASI & Row Address Strobe In & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline CASI & Column Address Strobe In & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline \(\overline{\mathrm{RAS}}_{0}-\overline{\mathrm{RAS}}_{3}\) & Row Address Stobe Outputs & 50/33.3 & \(-1 \mathrm{~mA} / 20 \mathrm{~mA}\) \\
\hline \(\overline{\mathrm{CAS}}_{0}-\overline{\mathrm{CAS}}_{3}\) & Column Address Strobe Outputs & 50/33.3 & -1 mA/20 mA \\
\hline \(\overline{O E}\) & Output Enable & 1.0/1.0 & \(20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}\) \\
\hline
\end{tabular}

\section*{Block Diagram}


\section*{Timing Waveforms}


FIGURE 1. Dynamic Memory Controller Timing


TL/F/9608-5
Note A: Guaranteed maximum difference between fastest RASI to \(\overline{\operatorname{RAS}}_{n}\) delay and the slowest \(A_{n}\) to \(Q_{n}\) delay on any single device.
Note B: Guaranteed maximum difference between fastest MSEL to \(Q_{n}\) delay and the slowest RASI to \(\overline{\operatorname{RAS}}_{n}\) delay on any single device. Note C: Guaranteed maximum difference between fastest CASI to \(\overline{\mathrm{CAS}}_{n}\) delay and the slowest MSEL to \(\mathrm{Q}_{n}\) delay on any single device.

FIGURE 2. Specifications Applicable to Memory Cycle Timing ( \(\mathbf{M C}_{\mathbf{n}}=\mathbf{1 , 0}\) )

\section*{Timing Waveforms (Continued)}


TL/F/9608-6
FIGURE 3. Desired System Timing

\section*{Refresh Cycle Timing}


TL/F/9608-7
FIGURE 4. Specifications Applicable to Refresh Cycle Timing ( \(\mathrm{MC}_{\boldsymbol{n}}=\mathbf{0 0 , 0 1}\) )
Note B: Guaranteed maximum difference between fastest MSEL to \(Q_{n}\) delay and the slowest RASI to \({\bar{R} A S_{n}}_{n}\) delay on any single device.
Note C: Guaranteed maximum difference between fastest CASI to \(\overline{\mathrm{CAS}}_{n}\) delay and the slowest MSEL to \(Q_{n}\) delay on any single device. Note D: Guaranteed maximum difference between fastest RASI to \(\overline{\operatorname{RAS}}_{n}\) delay and the slowest \(M C_{n}\) to \(Q_{n}\) delay on any single device.

Refresh Cycle Timing (Continued)


FIGURE 5. Designed Timing-Refresh with Error Correction


FIGURE 6. Desired Timing-Refresh without Error Correction

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
\(V_{C C}\) Pin Potential to Ground Pin
Input Voltage (Note 2)
Input Current (Note 2)
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(-55^{\circ} \mathrm{C}\) to \(+175^{\circ} \mathrm{C}\)
-0.5 V to +7.0 V
-0.5 V to +7.0 V
-30 mA to +5.0 mA
Voltage Applied to Output
in HIGH State (with \(\mathrm{V}_{\mathrm{CC}}=\mathrm{OV}\) )
Standard Output
TRI-STATE \({ }^{\circledR}\) Output
Current Applied to Output in LOW State (Max)
twice the rated \(\mathrm{lOL}_{\mathrm{OL}}(\mathrm{mA})\)
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

\section*{Recommended Operating} Conditions
Free Air Ambient Temperature

\section*{Military}
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Commercial
Supply Voltage
Military +4.5 V to +5.5 V

Commercial +4.5 V to +5.5 V

\section*{DC Electrical Characteristics}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{29F} & \multicolumn{2}{|c|}{Military 29F} & \multicolumn{5}{|c|}{Commercial 29F} & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
\mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\
\mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF}
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{gathered}
T_{A}, V_{C C}=C o m \\
C_{L}=50 \mathrm{pF}
\end{gathered}
\]} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\mathrm{T}_{A}, V_{C C}=C o m \\
C_{L}=500 \mathrm{pF}
\end{gathered}
\]} & & \\
\hline & & Min & Max & Min & Max & Min & Max & Min & Typ & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay AR to \(Q_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 11.0 \\
& 11.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
12.0 \\
12.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
19.0 \\
22.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\({ }^{\text {tpHL }}\)
\end{tabular} & Propagation Delay \(A C\) to \(Q_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 11.0 \\
& 11.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
12.0 \\
12.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
19.0 \\
22.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{pLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay RASI to RAS \({ }_{i}\) & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 12.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
13.0 \\
13.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
23.0 \\
20.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay CASI to CAS & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.0 \\
& 8.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.5 \\
& 8.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
19.0 \\
17.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{tPLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay MSEL to \(Q_{n}\) & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
13.0 \\
13.0 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 2.5 \\
& 2.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
14.0 \\
14.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
24.0 \\
21.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{tPLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay \(M C_{n}\) to \(Q_{n}\) & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15.0 \\
& 15.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
16.0 \\
16.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
25.0 \\
22.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \begin{tabular}{l}
\({ }^{\text {tpLH }}\) \\
tpHL
\end{tabular} & Propagation Delay \(M C_{n}\) to RAS \(_{n}\) & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
17.5 \\
17.5 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 3.0 \\
& 3.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
18.5 \\
18.5 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
24.0 \\
22.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\({ }^{\text {tpHL }}\)
\end{tabular} & Propagation Delay \(M C_{n}\) to \(C A S_{n}\) & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12.5 \\
& 12.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 13.5 \\
& 13.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
23.0 \\
21.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PLH}} \\
& \mathrm{t}_{\mathrm{PHL}} \\
& \hline
\end{aligned}
\] & Propagation Delay LE to RAS \(_{n}\) & \[
\begin{aligned}
& 4.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 15.0 \\
& 15.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 3.5 \\
& 3.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
16.0 \\
16.0 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
25.0 \\
24.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\({ }^{\text {tpHL }}\)
\end{tabular} & Propagation Delay LE to CAS \(_{n}\) & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 13.5 \\
& 13.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 4.5 \\
& 4.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 14.5 \\
& 14.5 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
24.0 \\
24.0 \\
\hline
\end{array}
\] & & ns & 2-3 \\
\hline \begin{tabular}{l}
\(t_{\text {PLH }}\) \\
\(\mathrm{t}_{\mathrm{PHL}}\)
\end{tabular} & Propagation Delay LE to \(Q_{n}\) & \[
\begin{aligned}
& 3.5 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& 12.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 3.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 13.0 \\
& 13.0
\end{aligned}
\] & & \[
\begin{aligned}
& 23.0 \\
& 22.0
\end{aligned}
\] & & ns & 2-3 \\
\hline
\end{tabular}

AC Electrical Characteristics: See Section 2 for Waveforms and Load Configurations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{2}{|c|}{29F} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { Military } 29 \mathrm{~F} \\
\hline \mathrm{~T}_{\mathrm{A}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Mil} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Commercial 29F
\[
\begin{gathered}
\mathrm{T}_{A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Com} \\
\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{gathered}
\]}} & \multirow{3}{*}{Units} & \multirow{3}{*}{\begin{tabular}{l}
Fig \\
No
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
\mathrm{T}_{\mathrm{A}} & =+25^{\circ} \mathrm{C} \\
\mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \\
\mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF}
\end{aligned}
\]} & & & & & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{pZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(O E\) to \(Q_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PZL}} \\
& \hline
\end{aligned}
\] & Output Disable Time \(O E\) to \(Q_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{PLLZ}} \\
& \hline
\end{aligned}
\] & Output Disable Time OE to RAS \({ }_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9.5 \\
9.5 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 \\
& 10.0 \\
& \hline
\end{aligned}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PZH}} \\
& \mathrm{t}_{\mathrm{PLL}} \\
& \hline
\end{aligned}
\] & Output Disable Time OE to RAS \({ }_{n}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10.0 \\
10.0 \\
\hline
\end{array}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{PHZ}} \\
& \mathrm{t}_{\mathrm{pLZ}} \\
& \hline
\end{aligned}
\] & Output Disable Time OE to CAS & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.5 \\
& 9.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10.0 \\
10.0 \\
\hline
\end{array}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& \text { tpZH } \\
& \text { tpzL }^{2}
\end{aligned}
\] & Output Enable Time OE to \(\mathrm{CAS}_{\mathrm{n}}\) & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9.5 \\
9.5 \\
\hline
\end{array}
\] & & & \[
\begin{aligned}
& 1.0 \\
& 1.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
10.0 \\
10.0 \\
\hline
\end{array}
\] & ns & 2-5 \\
\hline \[
\begin{aligned}
& t_{w}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Pulse Width, HIGH or LOW CAS \(_{n}\), RAS \(_{n}\) & \[
\begin{array}{r}
15.0 \\
15.0 \\
\hline
\end{array}
\] & & & & \[
\begin{aligned}
& 15.0 \\
& 15.0 \\
& \hline
\end{aligned}
\] & & ns & 2-4 \\
\hline \(\mathrm{t}_{\text {skew }}\) & \(\mathrm{Q}_{\mathrm{n}}\) to \(\mathrm{CAS}_{\mathrm{n}}, \mathrm{RAS}_{n}\) & & 10.0 & & & & 10.0 & ns & \\
\hline
\end{tabular}

AC Operating Requirements: See Section 2 for Waveforms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & & & & & Comm & al 29 F & \multirow{3}{*}{Units} & \multirow{3}{*}{\[
\begin{aligned}
& \text { Fig } \\
& \text { No }
\end{aligned}
\]} \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathbf{C C}}=\mathrm{Mit}\)} & \multicolumn{2}{|l|}{\(\mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{Cc}}=\mathbf{C o m}\)} & & \\
\hline & & Min & Max & Min & Max & Min & Max & & \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW \(A_{n}\) to LE & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{h}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Hold Time, HIGH or LOW \(A_{n}\) to LE & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{array}{r}
5.0 \\
5.0 \\
\hline
\end{array}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\
& \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\
& \hline
\end{aligned}
\] & Setup Time, HIGH or LOW SEL to LE & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & & & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & & ns & 2-6 \\
\hline \[
\begin{aligned}
& t_{h}(H) \\
& t_{h}(\mathrm{~L})
\end{aligned}
\] & Hold Time, HIGH or LOW SEL to LE & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & & & \[
\begin{aligned}
& 5.0 \\
& 5.0
\end{aligned}
\] & & ns & 2-6 \\
\hline
\end{tabular}

\section*{29F524 • 29F525 \\ Dual 7－and 8－Deep Pipeline Registers}

\section*{General Description}

The 29F524／525 are 8－bit wide，14－and 16－word deep pipe－ line registers with TRI－STATE outputs．The registers are organized as two 7 －or 8 －byte shift registers．A single clock is provided and operation of the shift registers is under mi－ croprogram control．
In the 29F524，the shift registers are 7 deep．All fourteen registers are available at the output．The input data is fed directly to the output or an all－zero byte．
The shift registers are 8 deep in the 29F525．Any of the sixteen registers may be cascaded to from a single 14－or 16－byte－long pipeline register．

\section*{Features}

■ 29F524－Dual 7－deep or single 14－deep（with feed－ through and 0 ）registers
－29F525－Dual 8－deep or single 16－deep registers
－Allows saving addresses within its registers for use at a later time
－Hold，or shift and load instructions
－Number of delay cycles can be changed by the user without interrupting the data flow
m All registers available at TRI－STATE output
－Functionally and pin compatible to AMD Am29524／Am29525

\section*{Logic Symbol}

29F525


Pin Assignment for DIP／SOIC 29F525


Pin Assignment for LCC and PCC 29F525
（ECL）， \(\mathrm{D}_{6} \mathrm{D}_{5} \mathrm{O}_{4} \mathrm{GND} \mathrm{V}_{\mathrm{CC}} \mathrm{D}_{3} \mathrm{D}_{2}\)四回回图国


TL／F／8611－2

\title{
Section 5 Ordering Information/ Physical Dimensions
}

\section*{Section 5 Contents}

\section*{Ordering Information and Physical Dimensions \\ Bookshelf}

Distributors

\section*{National Semiconductor}

\section*{Ordering Information}

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:


TL/F/9790-1
For most current packaging information, contact Product Marketing.

\section*{52 Lead Side Brazed Ceramic Dual In-Line Package NS Package Number D52A}


NOTE: FASTTM Product Shipped WITHOUT Protective Silicon "Bumpers".



\section*{14 Lead Ceramic Flatpak NS Package Number W14B}


\section*{16 Lead Ceramic Flatpak}

NS Package Number W16A


\section*{20 Lead Ceramic Flatpak \\ NS Package Number W20A}


\section*{24 Lead Ceramic Flatpak NS Package Number W24C}


\section*{14 Lead Ceramic Dual In-Line Package} NS Package Number J14A


\section*{16 Lead Ceramic Dual In-Line Package NS Package Number J16A}


\section*{18 Lead Ceramic Dual In-Line Package NS Package Number J18A}


\section*{20 Lead Ceramic Dual In-Line Package NS Package Number J20A}


\section*{24 Lead Ceramic Dual In-Line Package NS Package Number J24A}


\section*{28 Lead Ceramic Dual In-Line Package NS Package Number J28A}


14 Lead Small Outline Integrated Circuit (SOIC) NS Package Number M14A


\section*{16 Lead Small Outline Integrated Circuit (SOIC) NS Package Number M16A}


\section*{16 Lead ( \(0.300^{\prime \prime}\) Wide) Small Outline Integrated Circuit (SOIC)} NS Package Number M16B


20 Lead Small Outline Integrated Circuit (SOIC) NS Package Number M20B


\section*{24 Lead Small Outline Integrated Circuit (SOIC) NS Package Number M24B}


\section*{28 Lead Small Outline Integrated Circuit (SOIC) *NS Package Number M28B}

*For most current package information contact product marketing.

\section*{14 Lead Plastic Dual In-Line Package NS Package Number N14A}


\section*{16 Lead Plastic Dual In-Line Package NS Package Number N16E}


\section*{20 Lead Plastic Dual In-Line Package NS Package Number N20A}


\section*{24 Lead Plastic Dual In-Line Package NS Package Number N24A}


\section*{28 Terminal Ceramic Leadless Chip Carrier (LCC) NS Package Number E28A}


TOP VIEW

\(\underset{\substack{\text { SIDE } \\ \text { VIEW }}}{ }\)

\section*{24 Lead Slim (0.300" Wide) Ceramic Dual In-Line Package NS Package Number J24F}


\section*{24 Lead Slim ( \(0.300^{\prime \prime}\) Wide) Plastic Dual In-Line Package NS Package Number N24C}


\section*{52 Lead Plastic Chip Carrier (PCC) NS Package Number V52A}


V52A (AEV A)
\(\square\)

\section*{NOTES}

\section*{NOTES}

\section*{7 National}

\section*{Semiconductor}

\section*{Bookshelf of Technical Support Information}

National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.
This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.
Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this bookshelf.
We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:
Technical Communications Dept. M/S 23-200
2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090
For a recorded update of this listing plus ordering information for these books from National's Literature Distribution operation, please call (408) 749-7378.

\author{
ALS/AS LOGIC DATABOOK—1987 \\ Introduction to Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky
}

\title{
ASIC DESIGN MANUAL/GATE ARRAYS \& STANDARD CELLS—1987 \\ SSI/MSI Functions • Peripheral Functions •LSI/VLSI Functions • Design Guidelines • Packaging
}

ASIC 1.5 CMOS GATE ARRAY DESIGN MANUAL—1988
CMOS LOGIC DATABOOK—1988
CMOS AC Switching Test Circuits and Timing Waveforms •CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • Surface Mount

\section*{DATA COMMUNICATION/LAN/UART DATABOOK—Rev. 1-1988 \\ LAN IEEE 802.3 • High Speed Serial/IBM Data Communications • ISDN Components • UARTs Modems • Transmission Line Drivers/Receivers}

\section*{DRAM MANAGEMENT-1988}

Dynamic Memory Control - Error Detection and Correction - Microprocessor Applications for the DP8408A/09A/17/18/19/28/29 • Microprocessor Applications for the DP8420A/21A/22A

\section*{GRAPHICS DATABOOK—1988}

Advanced Graphics Chipset • Application Notes

\section*{INTERFACE DATABOOK—1988}

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral Power Drivers • Display Drivers
Memory Support • Microprocessor Support • Level Translators and Buffers • Frequency Synthesis • Hi-Rel Interface

\section*{LINEAR APPLICATIONS HANDBOOK—1986}

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

\section*{LINEAR 1 DATABOOK—1988}

Voltage Regulators • Operational Amplifiers • Buffers • Voltage Comparators • Instrumentation Amplifiers • Surface Mount

\section*{LINEAR 2 DATABOOK-1988}

Active Filters • Analog Switches/Multiplexers • Analog-to-Digital • Digital-to-Analog • Sample and Hold Sensors • Voltage References • Surface Mount

LINEAR 3 DATABOOK-1988
Audio Circuits • Radio Circuits • Video Circuits • Motion Control • Special Functions • Surface Mount

\section*{LS/S/TTL DATABOOK-1987}

Introduction to Bipolar Logic • Low Power Schottky • Schottky • TTL • Low Power

\section*{MASS STORAGE HANDBOOK—Rev. 2-1988}

Winchester Disk Preamplifiers • Winchester Disk Servo Control • Winchester Disk Pulse Detectors Winchester Disk Data Separators/Synchronizers and ENDECs • Winchester Disk Data Controller SCSI Bus Interface Circuits • Floppy Disk Controllers

\section*{MEMORY DATABOOK—Rev. 1-1988}

PROMs • EPROMs • EEPROMs • Flash EPROMs • Flash EEPROMs • TTLI/O SRAMs
ECL I/O SRAMs • ECL I/O Memory Modules

\section*{MICROCONTROLLER DATABOOK—1988}

COP400 Family • COP800 Family • COPS Applications • HPC Family • HPC Applications MICROWIRE and MICROWIRE/PLUS Peripherals • Display/Terminal Management Processor (TMP) Microcontroller Development Tools

\section*{SERIES 32000 MICROPROCESSORS DATABOOK—1988}

Series 32000 Overview •Central Processing Units • Slave Processors • Peripherals • Board Level Products
Development Systems and Tools • Software Support • Application Notes • NSC800 Family
RELIABILITY HANDBOOK-1986
Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510
The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

\section*{TELECOMMUNICATIONS—1987}

Line Card Components • Integrated Services Digital Network Components • Modems Analog Telephone Components • Application Notes

\section*{NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS}

ALABAMA
Arrow Electronics
1015 Henderson Rd.
Huntsville, AL 35818
(205) 837.6955

Bell Industries
1031 Putnam Drive, Suite A
Huntsville, AL 35816
(205) 837-1074

Hamilton/Avnet
4940 Research Drive NW
Huntsville, AL 35805
(205) \(837-7210\)

TWX: 8107262162
Pioneer Technology
4825 University Square
Huntsville, AL 35805
(205) 837-9300

TWX: 8107262197

\section*{ARIZONA}

Anthem Electronics
1727 E Weber Dr.
Tempe, AZ 85281
(602) 966-6600

Arrow Electronics
4134 East Wood St.
Phoenix, AZ 85040
(602) 437-0750

TWX: 9109511550
Bell Industries
1705 W. Fourth St.
Tempe, AZ 85281
(602) 966-7800

TWX: 9109500133
Hamilton/Avnet
30 South McKemy
Chandler, AZ 85226
(602) 231-5100

TWX: 667450
CALIFORNIA-Northern
Anthem Electronics
1040 East Brokaw Rd.
San Jose, CA 95131
(408) 295-4200

TWX: 9103382038
Anthem Electronics
4700 Northgate Blvd.
Suite 165
Sacramento, CA 95834
(916) 922-6800

TWX: 5101011419
Arrow Electronics
521 Weddell Drive Sunnyvale, CA 94089
(408) 745-6600

TWX: 9103399371
Bell Industries
1161 North Fairoaks Ave.
Sunnyvale, CA 94086
(408) 734-8570

TWX: 9103399378
Bell Industries
4311 Anthony Court \#100
Rocklin, CA 95677
(916) 652-0414

Hamilton/Avnet
1175 Bordeaux
Sunnyvale, CA 94086
(408) 743-3355

TWX: 9103399332

Hamilton/Avnet
4103 Northgate Blvd.
Sacramento, CA 95834
(916) 925-2216

Time Electronics
1339 Moffet Park Dr.
Sunnyvale, CA 94089
(408) 734-9888

TWX: 172233
Zeus Components Inc., Reg 6
N CA/OR/WA/CO/
UT/NE/NM/ \& AZ
1580 Old Oakland Rd. \#C205
San Jose, CA 95181
(408) 998-5121

CALIFORNIA-Southern
Anthem Electronics
9369 Carroll Park Dr.
San Diego, CA 92121
(619) 453-9005

TWX: 9103351515
Anthem Electronics
1 Oldfield Dr.
Irvine, CA 92718
(714) 768-4444

TWX: 9105951583
Anthem Electronics
20640 Bahama St.
Chatsworth, CA 91311
(818) 700-1000

TWX: 9104932083
Arrow Electronics
9511 Ridgehaven Ct.
San Diego, CA 92123
(619) 565-4800

TWX: 9103351195
Arrow Electronics
2961 Dow Ave.
Tustin, CA 92680
(714) 838-5422

TWX: 9105952860
Arow Elctionics
19748 Dearborn St.
Chatsworth, CA 91311
(818) 701-7500

TWX: 9104932086
Avnet Electronics
350 McCormick Ave.
Irvine Industrial Complex
Costa Mesa, CA 92626
(714) 754-6050

TWX: 9105951928
Bell Industries
306 E. Alondra Blvd.
Gardena, CA 90248
(213) 515-1800

Bell Industries
12322 Monarch St.
Garden Grove, CA 92641
(714) 895-7801

TWX: 9105962362
Bell Industries
1829 Dehavilland Suite A
Thousand Oaks, CA 91320
(805) 499-6821

TWX: 9103213799
Hamilton Electro Sales
3170 Pullman Street
Costa Mesa, CA 92626
(714) 641-4159

Hamilton Electro Sales
9650 DeSoto
Chatsworth, CA 91311
(818) 700-0440

Hamilton/Avnet
1361B West 190th St.
Gardena, CA 90248
(213) 217-6751

Hamilton/Avnet
4545 Viewridge Avenue
San Diego, CA 92123
(619) \(571-7510\)

TWX: 695415
Hamilton/Avnet
3002 East G Street
Ontario, CA 91764
(714) 989-4602

Time Electronics
370 South Crenshaw BIvd.
Suite E-104
Torrance, CA 90503-1727
(213) 320-0880

TWX: 9103496650
Time Electronics
2410 E. Cerritos Ave.
Anaheim, CA 92806
(714) 934-0911

TWX: 9105911234
Time Electronics
8525 Arjons Drive
San Diego, CA 92126
(619) 586-1331

TWX: 858902
Time Electronics
9751 Independence Ave.
Chatsworth, CA 91311
(818) 998-7200

TWX: 9103806274
Zeus Components Inc., Reg 5
San Fernando Valley
5236 Colodny Drive
Agoura Hills, CA 91301
(818) 889-3838

Zeus Components Inc., Reg 5H All Hughes
22700 Savy Ranch Pkwy.
Yorba Linda, CA 92686
Zeus Components Inc., Reg 8
S CA, SG VLY, OC, SD CTY
22700 Savy Ranch Pkwy.
Yorba Linda, CA 92686
(714) 921-9000

\section*{COLORADO}

Anthem Electronics
373 Inverness Dr. South
Englewood, CO 80112
(303) 790-4500

Arrow Electronics
7060 S Tucson Way
Suite 136
Englewood, CO 80112
(303) 790-4444

TWX: 9109312626
Bell Industries
12421 W. 49th Avenue
Wheatridge, CO 80033
(303) 424-1985

TWX: 9109380393
Hamilton/Avnet
8765 E Orchard Road \#708
Englewood, CO 80111
(303) 779-9998

TWX: 9109350787

CONNECTICUT
Arrow Electronics
12 Beaumont Rd.
Wallingford, CT 06492
(203) 265-7741

TWX: 7104760162
Hamilton/Avnet
Commerce Drive
Commerce Park
Danbury, CT 06810
(203) 797-2800

Anthem Electronics
170 Research Parkway
Meridan, CT 06450
(203) 237-2282

Pioneer Northeast
112 Main St.
Norwalk, CT 06852
(203) \(853-1515\)

TWX: 7104683378
Time Electronics
1701 Highland Ave.
Cheshire, CT 06410
(203) 271-3200

TWX: 9103806270
FLORIDA
Arrow Electronics
400 Fairway Drive
Deerfield Beach, FL 33441
(305) 429-8200

TWX: 5109559456
Arrow Electronics
37 Skyline Drive \#3t01
Lake Mary, FL 32746
(407) 323-0252

Bell Industries
10810 72nd St. North \#201
Suite 201
Largo, FL 33543
(813) \(541-4434\)

Bell Industries
638 South Military Trail
Deerfield Beach, FL 33442
(305) 421-1997

Hamilton/Avnet
6801 N.W. 15th Way
Ft. Lauderdale, FL 33309
(305) 971-2900

TWX: 5109563097
Hamilton/Avnet
3197 Tech Drive North
St. Petersburg, FL 33702
(813) 576-3930

TWX: 8108630374
Hamilton/Avnet
6947 University Blvd.
Winter Park, FL 32792
(305) 628-3888

Pioneer Technology
221 North Lake Blvd.
Altamonte Springs, FL 32701
(305) 834-9090

TWX: 8108530284
Pioneer Technology
674 South Military Trial
Deerfield Beach, FL 33441
(305) 428-8877

TWX: 5109559653

\section*{NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)}

FLORIDA (Continued)
Zeus Components Inc., Reg 4
FL, GA, AL, MI, SC \& TN
1750 West Broadway
Oviedo, FL 32765
(305) 365-3000

\section*{GEORGIA}

Arrow Electronics
3155 Northwoods Parkway
Suite A
Norcross, GA 30071
(404) 449-8252

TWX: 8107660439
Bell Industries
3020A Business Park Drive
Norcross, GA 30071
(404) 662-0923

Hamilton/Avnet
5825D Peach Tree Corner E
Norcross, GA 30092
(404) 447-7500

Pioneer Technology
3100F Northwoods Place
Norcross, GA 30071
(404) 448-1711

TWX: 8107664515
ILLINOIS
Anthem Electronics
180 Crossen Ave.
Elk Grove Village, IL 60007
(312) 640-6066

Arrow Electronics
1140 West Thorndale Avenue
Itasca, IL 60143
(312) 250-0500

TWX: 9102220351
Bell Industries
515 Busse Road
Elk Grove Village, II 60007
(312) 640-1910

TWX: 9102234519
Bell Industries
730 West Kilarney
Urbana, IL 61801
(217) 328-1077

Hamilton/Avnet
1130 Thorndale Ave.
Bensenville, IL 60106
(312) 860-7780

Pioneer Electronics
2171 Executive Dr., Suite 200
Addison, IL 60101
(312) 495-9680

TWX: 9102221834

\section*{INDIANA}

Advent Electronics Inc.
8446 Moller Rd.
Indianapolis, \(\mathbb{I N} 46268\)
(317) 872-4910

TWX: 8103413228
Arrow Electronics
2495 Directors Row
Suite H
Indianapolis, IN 46241
(317) 243-9353

TWX: 8103413119
Bell Industries
3606 E. Maumee Ave.
Fort Wayne, IN 46803
(219) 423-3422

TWX: 9109970701

Bell Industries-Graham Div.
133 S Pennsylvania St Indianapolis, IN 46204
(317) 834-8202

TWX: 8103413481
Hamilton/Avnet
485 Gradle Dr.
Carmel, IN 46032
(317) 844-9333

TWX: 8102603966
Pioneer-Indiana
6408 Castleplace Drive
Indianapolis, IN 46250
(317) 849-7300

\section*{IOWA}

Advent Electronics
682 58th Ave. Court S.W.
Cedar Rapids, IA 52404
(319) 363-0221

TWX: 9105251337
Arrow Electronics
375 Collins Rd. N.E
Cedar Rapids, IA 52402
(319) 395-7230

TWX: 9104932086
Bell Industries
1221 Park Place N.E.
Cedar Rapids, IA 52402
(319) 395-0730

Hamilton/Avnet
915 33rd Avenue S.W.
Cedar Rapids, IA 52404
(319) 362-4757

\section*{KANSAS}

Arrow Electronics
8208 Melrose Dr.
Suite 210
Lenexa, KS 66214
(913) 541-9542

Hamilton/Avnet
9219 Quivira Rd
Overland Park, KS 66215
(913) 888-8900

Pioneer Standard
10551 Lackmann Road
Lenexa, KS 66215
(913) 492-0500

MARYLAND
Arrow Electronics
8300 Guilford Dr.
Columbia, MD 21045
(301) 995-0003

TWX: 7102369005
Hamilton/Avnet
6822 Oak Hall Lane
Columbia, MD 21045
(301) 995-3500

TWX: 7108621861
Anthem Electronics
9020-A Mendenhall Court
Columbia, MD 21045
(301) 964-0040

TWX: 7108621909
Pioneer Technology 9100 Gaither Road
Gaithersburg, MD 20877
(301) 921-0660

TWX: 7108280545
Time Electronics
9051 Red Branch Rd.
Columbia, MD 21045
(301) \(964-3090\)

TWX: 7108622860

Zeus Components Inc., Reg 2
MD, DE, VA, WVA,
NC, RAYTHEON
8930 Route 108
Columbia, MD 21045
(301) 997-1118

MASSACHUSETTS
Arrow Electronics
25 Upton Drive
Wilmington, MA 01887
(617) 935-5134

TWX: 7103936770
Gerber Electronics
128 Carnegie Row
Norwood, MA 02062
(617) 769-6000

TWX: 7103361987
Hamilton/Avnet
10D Centennial Dr.
Peabody, MA 01960
(617) 531-7430

TWX: 7103930382
Anthem Electronics
38 Jonspin Road
Wilmington, MA 01887
(617) 657.5170

TWX: 7103321387
Pioneer Northeast
44 Hartwell Avenue
Lexington, MA 02173
(617) 861-9200

TWX: 7103266617
Time Electronics
10 A Centennial Drive
Peabody, MA 01960
(617) 532-6200

TWX: 7103930171
Zeus Coomponents Inc., Reg 1A
MA, RI, VT, NH, ME \& CANADA
429 Marrett Rd.
Lexington, MA 02173
(617) 863-8800

\section*{MICHIGAN}

Arrow Electronics
3510 Roger Chaffee
Memorial Blvd. S.E.
Grand Rapids, MI 49508
(616) 243-0912

Arrow Electronics
755 Phoenix Dr.
Ann Arbor, Ml 48108
(313) 971-8220

TWX: 8102236020
Bell Industries
814 Phoenix Dr.
Ann Arbor, MI 48104
(313) 971-9093

Hamilton/Avnet
2215 29th St. S.E.
Grand Rapids, MI 49508
(616) 243-8805

TWX: 8102736921
Hamilton/Avnet
32487 Schoolcraft Road
Livonia, MI 48150
(313) 522-4700

Pioneer Standard
4505 Broadmoor S.E.
Grand Rapids, MI 49508
(616) 698-1800

TWX: 5106008456

Pioneer Standard
13485 Stanford
Livonia, MI 48150
(313) 525-1800

TWX: 8102423271
R. M. Electronics

4310 Roger B Chaffee
Wyoming, MI 49508
(616) 531-9300

MINNESOTA
Anthem Electronics
10025 Valley View Rd. \#160
Eden Prairie, MN 55344
(612) 944-5454

Arrow Electronics
5230 73rd Street
Edina, MN 55435
(612) 830-1800

TWX: 9105763125
Hamilton/Avnet
12400 Whitewater Dr.
Minnetonka, MN 55343-9421
(612) 932-0600

TWX: 9105722867
Pioneer-Twin Cities
7625 Golden Triangle Dr.
Suite G
Eden Prairie, MN 55344
(612) 935-5444

TWx: 9105762738
MISSOURI
Arrow Electronics
2380 Schuetz Road
St. Louis, MO 63146
(314) 567-6888

TWX: 9107640882
Hamilton/Avnet
13743 Shoreline Ct.East
Earth City, MO 83045
(314) 344-1200

TWX: 9107620627
Time Electronics
330 Sovereign Ct .
St. Louis, MO 63011-4491
(314) 391-6444

TWX: 9107601893
NEW HAMPSHIRE
Arrow Electronics
3 Perimeter Rd.
Manchester, NH 03103
(603) 668-6968

TWX: 7102201684
Bell Industries-C \& H Div.
19 Park Avenue
Hudson, NH 03051
(603) 882-1133

TWX: 7102288959
Hamilton/Avnet
444 Industrial Dr.
Manchester, NH 03102
(603) 624-9400

NEW JERSEY-Northern
Arrow Electronics
6 Century Drive
Parsippany, NJ 07054
(201) 575-5300

TWX: 7107344403
Hamilton/Avnet
10 Industrial Rd.
Fairfield, NJ 07006
(201) 575-3390

TWX: 7107344409

\section*{NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS \\ (Continued)}

NEW JERSEY-Northern
(Continued)
Anthem Electronics
311 Rt. 46 West
Fairfield, NJ 07006
(201) 227-7960

TWX: 7107344312
Nu Horizons Electronics 39 Route 46
Pinebrook, NJ 07058
(201) 882-8300

Pioneer
45 Route 46
Pine Brook, NJ 07058
(201) 575-3510

TWX: 7107344382
NEW JERSEY-Southern
Arrow Electronics 6000 Lincoln Drive East Marlton, NJ 08053 (609) 596-8000 TWX: 7108970829

Hamilton/Avnet
One Keystone Ave.
Cherry Hill, NJ 08003
(609) 424-0100

TWX: 7109400262

\section*{NEW MEXICO}

Alliance Electronics Inc.
11030 Cochiti S.E.
Albuquerque, NM 87123
(505) 292-3360

TWX: 9109891151
Arrow Electronics
2460 Alamo Ave. S.E
Albuquerque, NM 87106
(505) 243-4566

TWX: 9109891679
Bell Industries
11728 Linn N.E
Albuquerque, NM 87123
(505) 292-2700

TWX: 910989 002え5
Hamilton/Avnet
2524 Baylor Drive S.E.
Albuquerque, NM 87106
(505) 765-1500

TWX: 9109891631
NEW YORK—Upstate
Arrow Electronics
3375 Brighton-Henrietta
Townline Rd.
Rochester, NY 14623 (716) 427-0300 TWX: 5102534766
Hamilton/Avnet
103 Twin Oaks Drive
Syracuse, NY 13206 (315) 437-2641

TWX: 7105411506
Hamilton/Avnet
2060 Town Line Road
Rochester, NY 14623
(716) 475-9130

TWX: 5102535470

Pioneer Northeast
68 Corporate Drive
Binghamton, NY 13904
(607) 722-9300

TWX: 5102520893
Pioneer Northeast
840 Fairport Rd.
Fairport, NY 14450
(716) 381-7070

TWX: 5102537001
Summit Electronics
916 Main Street
Buffalo, NY 14202
(716) 887-2800

TWX: 7105221692
Summit Electronics
292 Commerce Drive
Rochester, NY 14623
(716) 334-8110

Time Electronics
6075 Corporate Dr.
East Syracuse, NY 13057
(315) 432-0355

TWX: 5101006192
NEW YORK-Metro Area
Arrow Electronics
20 Oser Ave.
Hauppauge, NY 11788
(516) 231-1000

TWX: 5102276623
Hamilton/Avnet
833 Motor Parkway
Hauppauge, NY 11788
(516) 434-7413

Hamilton/Avnet Export Div.
1065 Old Country Rd., \#211A
Westbury, NY 11590
(516) 997-6868

Anthem Electronics
400 Oser Ave.
Hauppauge, NY 11787
(516) 273-1660

TWX: 510227 1042
Nu Horizons Electronics
6000 New Horizons Blvd.
Amityville, NY 11701
(516) 226-6000

Pioneer
60 Crossways Park West
Woodbury, NY 11797
(516) 921-8700

TWX: 7103266617
Time Electronics
70 Marcus Boulevard
Hauppauge, NY 11788
(515) 273-0100

TWX: 858881
Zeus Components Inc., Reg 1
NY/ROCK/NJ/E PA/ CT
100 Midland Ave.
Port Chester, NY 10573
(914) 937.7400

Zeus Components Inc., Reg 1B
Long Island/NYC
2110 Smithtown Ave.
Ronkonkoma, NY 11779
(516) 737-4500

NORTH CAROLINA
Arrow Electronics
5240 Greens Dairy Rd.
Raleigh, NC 27604
(919) 876-3132

TWX: 5109281856
Arrow Electronics
938 Burke Street
Winston-Salem, NC 27101
(919) 725-8711

TWX: 5109313169
Hamilton/Avnet
3510 Spring Forest Road
Raleigh, NC 27601
(919) 878-0810

TWX: 5109281836
Pioneer Technology
9801-A Southern Pine Blvd
Charlotte, NC 28210
(704) 527-8188

TWX: 8106210366
Pioneer Technology
2810 Meridian Pkwy. \# 148
Durham, NC 27713
(919) 544-5400

OHIO
Arrow Electronics
7620 Mc Ewen Rd.
Centerville, OH 45459
(513) 435-5563

TWX: 8104591611
Arrow Electronics
6238 Cochran Rd.
Solon, OH 44139
(216) 248-3990

TWX: 8104279409
Bell Industries
444 Windsor Park Drive
Dayton, OH 45459
(513) 435-8660

Bell Industries
Micro-Mil Division
113 W'úsipalín Ficad
Dayton, OH 45459
(513) 434-8231

TWX: 8104591615
CAM/OHIO Electronics
749 Miner Road
Highland Heights, OH 44143
(216) \(461-4700\)

TWx: 8104272976
Hamilton/Avnet
954 Senate Drive
Dayton, OH 45459
(513) 439-6700

TWX: 8104502531
Hamilton/Avnet
30325 Bainbridge Rd., Bldg. A
Solon, OH 44139
(216) \(831-3500\)

TWX: 8104279452
Hamilton/Avnet
777 Brooksedge Blvd.
Westerville, OH 43081
(614) 882-7004

Pioneer Standard
4800 East 131st Street
Cleveland, OH 44105
(216) 587-3600

TWX: 8104222210

Pioneer Standard
4433 Interpoint Blvd.
Dayton, OH 45424
(513) 236-9900

TWX: 8104591683
Zeus Components Inc., Reg 3
Dayton (DESC)
2912 Springboro St., Ste. 106
Dayton, OH 45439
(513) 293-6162

\section*{OKLAHOMA}

Arrow Electronics
12111 E. 51st Street
Tulsa, OK 74146
(918) 252-7537

Hamilton/Avnet
12121 East 51st St.
Suite 102A
Tulsa, OK 74146
(918) 252.7297

Quality Components
3158 South 108th East Ave.
Suite 274
Tulsa, OK 74146
(918) 664-8812

Radio Inc.
1000 South Main Street
Tulsa, OK 74119
(918) 587-9123

TWX: 492429

\section*{OREGON}

Almac-Stroum Electronics
1885 N.W. 169th Place
Beaverton, OR 97006
(503) 629-8090

TWX: 9104678743
Anthem Electronics
9705 S.W. Sunshine Ct.
Suite 900
Beaverton, OR 97005
(503) 643-1114

Arrow Electronics

Suite 145
Beaverton, OR 97006
(503) 645-6456

TWX: 9104640007
Bell Industries
6024 S.W. Jean Rd.
Lake Oswego, OR 97034
(503) \(241-4115\)

TWX: 9104558177
Hamilton/Avnet
6024 S.W. Jean Rd.
Bldg. C, Suite 10
Lake Oswego, OR 97034
(503) 635-7850

PENNSYLVANIA-Eastern
Arrow Electronics
650 Seco Rd.
Monroeville, PA 15146
(412) 856-7000

TWX: 7107973894
CAM/RPC IND Electronics
620 Alpha Drive
RIDC Park
Pittsburgh, PA 15238
(412) 782-3770

TWX: 7107953126
Hamilton/Avnet
2800 Liberty Ave.
Pittsburgh, PA 15227
(412) \(281-4150\)

\section*{NATIONAL SEMICONDUCTOR CORPORATION DISTRIBUTORS (Continued)}

PENNSYLVANIA-Eastern
(Continued)
Anthem Electronics
355 Business Ctr. Drive
Horsham, PA 19044
(215) 443-5150

Pioneer Technology
261 Gibraltar Road
Horsham, PA 19044
(215) \(674-4000\)

TWX: 5106656778
Pioneer-Pittsburgh
259 Kappa Drive
Ridgepark
Pittsburgh, PA 15238
(412) 782-2300

TWX: 7107953122
Time Electronics 600 Clark Ave
King of Prussia, PA 19406
(215) 337-0900

TWX: 845317
TENNESSEE
Bell Industries
Instate: (800) 752-2050

\section*{TEXAS}

Arrow Electronics 3220 Commander Dr.
Carrollton, TX 75006
(214) 380-6464

TWX: 9108605377
Arrow Electronics
2227 West Braker Lane
Austin, TX 78758
(512) \(835-4180\)

TWX: 9108741348
Arrow Electronics
10899 Kinghurst Dr.
Suite 100
Houston, TX 77099
(713) 530-4700

TWX: 910880439
Hamilton/Avnet
111 West Walnut Hill Ln.
Irving, TX 75062
(214) 550-7755

TWX: 0732359
Hamilton/Avnet
4850 Wright Road \# 190
Staford, TX 77477
(713) 240-7733

TWX: 9108815523
Hamilton/Avnet
1807A West Braker Lane
Austin, TX 78758
(512) 837-8911

TWX: 9108741319
Pioneer Electronics
1826 Kramer Lane
Suite D
Austin, TX 78758
(512) 835-4000

Pioneer Standard 13710 Omega Road
Dallas, TX 75240
(214) \(386-7300\)

TWX: 9108605563

Pioneer Electronics 5853 Point West Drive Houston, TX 77036
(713) 988-5555

TWX: 9108811606
Quality Components 1005 Industrial Blvd.
Sugarland, TX 77478
(713) 240-2255

TWX: 9108817251
Quality Components
2120M Braker Lane
Austin, TX 78758
(512) 835-0220

TWX: 9108741377
Quality Components 4257 Kellway Circle
Addison, TX 75001
(214) 733-4300

TWX: 9106605459
Zeus Components Inc., Reg 7
TX, AR, OK, LA, KS, MO, IO, NE
1800 N. Glenville Rd.
Richardson, TX 75081
(214) 783-7010

UTAH
Anthem Electronics
1615 West 2200 South \# A
Salt Lake City, UT 84119
(801) 973-8555

Arrow Electronics
1946 W. Parkway Blvd.
Salt Lake City, UT 84119
(801) 973-6913

Bell Industries
6912 S. 185 West \#B
Midvale, UT 84047
(801) 255-9611

Hamilton/Avnet
1585 West 2100 South
Salt Lake City, UT 84117
(801) 972.4300

TWX: 9109254018
WASHINGTON
Almac-Stroum Electronics
14360 S.E. Eastgate Way
Bellevue, WA 98007
(206) 643-9992

TWX: 9104442067
Anthem Electronics
5020 148th Ave. N.E.
Suite 103
Redmond, WA 98052
(206) 881-0850

TWX: 9109970118
Arrow Electronics
19450 68th Ave. South
Kent, WA 98032
(206) 575-4420

TWX: 9104442034
Hamilton/Avne
17761 N.E. 78th Place Bld. C
Redmond, WA 98052
(206) 881-6697

WISCONSIN
Arrow Electronics
200 N. Patrick Blvd.
Brookfield, WI 53005
(414) 792-0150

TWX: 9102621193
Bell Industries
W227 N913 Westmound Ave.
Waukesha, WI 53186
(414) 547-8879

TWX: 9102621156
Hamilton/Avnet
20815 Crossroads Civ. \# 400
Waukesha, WI 53186
(414) 784-4516

Taylor Electric
1000 West Donges Bay Road
Mequon, WI 53092
(414) 241-4321

TWX: 9102623414

\section*{CANADA}

Electro Sonic Inc.
1100 Gordon Baker Road Willowdale, Ontario M2H 3B3
(416) 494-1666

TWX: 06525295
Hamilton/Avnet
2550 Boundary Rd. \#105
Burnaby, B.C., V5M 3Z0
(604) 437-6667

Hamilton/Avnet
2816 21st N.E.
Calgary, Alberta T2E 6 Z2
(403) 250-9380

TWX: 03827642
Hamilton/Avnet
2795 Rue Halpern
St. Laurent, Quebec H4S 1P8 (514) 335-1000

TWX: 6104213731
Hamilton/Avnet
6845 Redwood Drive 3, 4, 5
Mississauga, Ontario L4V 1T1
(416) 677.7432

TWX: 6104928867
Hamilton/Avnet
190 Colonnade Rd.
Nepean, Ontario K2E 7L5
(613) 226-1700

TWX: 0534971
Semad Electronics Ltd.
243 Place Frontenac
Pointe Claire, Quebec H9R \(4 Z 7\) (514) 694-0860

Semad Electronics Ltd. 8563 Government Street Burnaby, B.C. V5G 4M1 (604) 420-9889

Semad Electronics Ltd. 75 Glendeer Dr. S.E. \# 210 Calgary, Alberta T2H 2S8 (403) 252-5664

Semad Electronics Ltd. 1827 Woodward Dr. \#303 Ottawa, Ontario K2C OR3
(613) 727-8325

Zentronics
8 Tilbury Ct.
Brampton, Ontario L6T 3T4
(416) \(451-9600\)

TWX: 0697678
Zentronics
Edmonton Sales Office Edmonton, Alberta T6N 1 B2 (403) 468-8306

Zentronics
11400 Bridgeport Rd., Unit 108
Richmond, B.C. V6X 1 T2
(604) 273-5575

TWX: 04355844
Zentronics
155 Colonade Rd. So.
Units 17 \& 18
Nepean, Ontario K2E 7K1
(613) 226-8840

Zentronics
817 McCaffrey St.
Ville St. Laurent, Quebec H4T 1N3
(514) 737-9700

Zentronics
\(93-1313\) Border St.
Winnipeg, Manitoba R3H 0X4
(204) 694-1957

Zentronics
Saskatoon Sales Office
Saskatoon, Alberta R3H OX4
(306) 955-2207

\section*{Zentronics}

6815 8th St. N.E.
Suite 100
Calgary, Alberta T2E 7H7
(403) 272-1021

TWX: 04355844

\section*{SALES OFFICES}
ALABAMA
Huntsville
(205) 837-8960
(205) 721-9367
ARIZONA
Tempe
(602) \(966-4563\)
B.C.
Burnaby
(604) 435-8107
CALIFORNIA
Encino
(818) 888-2602
Inglewood
(213) \(645-4226\)
Roseville
(916) \(786-5577\)
San Diego
(619) 587-0666
Santa Clara
(408) \(562-5900\)
Tustin
(714) 259-8880
Woodland Hills
(818) 888-2602
COLORADO
Boulder
(303) \(440-3400\)
Colorado Springs
(303) \(578-3319\)
Englewood
(303) \(790-8090\)
CONNECTICUT
Fairfield
(203) \(371-0181\)
Hamden
(203) \(288-1560\)
FLORIDA
Boca Raton
(305) 997-8133
Ortando
(305) 629-1720
St. Petersburg
(813) 577-1380
GEORGIA
Atlanta
(404) 396-4048
Norcross
(404) 441-2740
ILLINOIS
Schaumburg
(312) 397-8777
INDIANA
Carmel
(317) 843-7160
Fort Wayne
(219) 484-0722
IOWA
Cedar Rapids
(319) \(395-0090\)
KANSAS
Overland Park
(913) 451-8374
MARYLAND
Hanover
(301) \(796-8900\)
MASSACHUSETTS
Burlington
(617) 273-3170
Waltham
(617) 890-4000
MICHIGAN
W. Bloomfield
(313) 855-0166
\begin{tabular}{|c|c|}
\hline MINNESOTA & OREGON \\
\hline Bloomington (612) 835-3322 & Portland
(503) 639-5442 \\
\hline (612) 854-8200 & PENNSYLVANIA \\
\hline NEW JERSEY & Horsham \\
\hline Paramus & (215) 675-6111 \\
\hline (201) 599-0955 & Willow Grove \\
\hline NEW MEXICO & (215) 657-2711 \\
\hline Albuquerque (505) 884-5601 & \begin{tabular}{l}
PUERTO RICO \\
Rio Piedias
\end{tabular} \\
\hline NEW YORK & (809) 758-9211 \\
\hline Endicott & QUEBEC \\
\hline (607) 757-0200 & Dollard Des Ormeaux \\
\hline Fairport & (514) 683-0683 \\
\hline (716) 425-1358 & Lachine \\
\hline (716) 223-7700 & (514) 636-8525 \\
\hline Melville & TEXAS \\
\hline (516) 351-1000 & Austin \\
\hline Wappinger Falls & (512) 346-3990 \\
\hline (914) 298-0680 & Houston \\
\hline NORTH CAROLINA & (713) 771-3547 \\
\hline Cary
(919) 481-431t & Richardson
234-3811 (214) \\
\hline OHIO & UTAH \\
\hline \begin{tabular}{l}
Dayton \\
(513) 435-6886
\end{tabular} & Salt Lake City (801) 322-4747 \\
\hline Highland Heights & WASHINGTON \\
\hline (216) 442-1555 & Bellevue \\
\hline (216) 461-0191 & (206) 453-9944 \\
\hline ONTARIO & WISCONSIN \\
\hline Mississauga
(416) 678-2920 & Brookfield (414) 782-1818 \\
\hline Nepean & Milwaukee \\
\hline (404) 441-2740 & (414) \(527-3800\) \\
\hline (613) 596-0411 & \\
\hline Woodbridge & \\
\hline (416) 746-7120 & \\
\hline
\end{tabular}

\author{
National Semiconductor \\ 2900 Semiconductor Drive \\ P.O. Box 58090 \\ Santa Clara, CA 95052-8090 \\ Tel: (408) 721-5000
}

TWX: (910) 339-9240

\section*{SALES OFFICES} (Continued)

\section*{INTERNATIONAL OFFICES}

\section*{Electronica NSC de Mexico SA}

Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: 52-5-524-9402
National Semicondutores

\section*{Do Brasil Ltda.}

Av. Brig. Faria Lima, 1409
6 Andor Salas 62/64
01451 Sao Paulo, SP, Brasil
Tel: (55/11) 212-5066
Telex: 391-1131931 NSER BR
National Semiconductor GmbH
Industriestrasse 10
D-8080 Furstenfeldbruck
West Germany
Tel: 49-08141-103-0
Telex: 527649
National Semiconductor (UK) Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 ITR
United Kingdom
Tel: (02 34) 270027
Telex: 826209
National Semiconductor Benelux
Vorstlaan 100
B-1170 Brussels
Beigium
Tel: (02) 6725360
Telex: 61007

National Semiconductor (UK) Ltd.
1, Bianco Lunos Alle
DK-1868 Fredriksberg C
Denmark
Tel: (01) 213211
Telex: 15179
National Semiconductor
Expansion 10000
28, rue de la Redoute
F-92260 Fontenay-aux-Roses
France
Tel: (01) 46608140
Telex: 250956
National Semiconductor S.p.A.
Strada 7, Palazzo R/3
20089 Rozzano
Milanofiori
Italy
Tel: (02) 8242046/7/8/9
National Semiconductor AB
Box 2016
Stensatravagen 13
S-12702 Skarhoimen
Sweden
Tel: (08) 970190
Telex: 10731
National Semiconductor
Calle Agustin de Foxa, 27
28036 Madrí
Spain
Tel: (01) 733-2958
Telex: 46133
\begin{tabular}{|c|c|}
\hline National Semiconductor Switzerland & National Semiconductor (Australia) PTY, Ltd. \\
\hline Alte Winterthurerstrasse 53 & 1st Floor, 441 St. Kilda Rd. \\
\hline Postfach 567 & Melbourne, 3004 \\
\hline Ch-8304 Wallisellen-Zurich & Victory, Australia \\
\hline Switzerland & Tel: (03) 267-5000 \\
\hline Tel: (01) 830-2727 & Fax: 61-3-2677458 \\
\hline Telex: 59000 & National Semiconductor (PTE), \\
\hline National Semiconductor & Ltd. \\
\hline Kauppakartanonkatu 7 & 200 Cantonment Road 13-01 \\
\hline SF-00930 Helsinki & Southpoint \\
\hline Finland & Singapore 0208 \\
\hline Tel: (0) 338033 & Tel: 2252226 \\
\hline Telex: 126116 & Telex: RS 33877 \\
\hline National Semiconductor Japan & National Semiconductor (Far East) \\
\hline Ltd. & Ltd. \\
\hline Sanseido Bldg. 5F & Taiwan Branch \\
\hline 4-15 Nishi Shinjuku & P.O. Box 68-332 Taipei \\
\hline Shinjuku-ku & 7th Floor, Nan Shan Life Bldg. \\
\hline Tokyo 160 Japan & 302 Min Chuan East Road, \\
\hline Tel: 3-299-7001 & Taipei, Taiwan R.O.C. \\
\hline Fax: 3-299-7000 & Tel: (86) 02-501-7227 \\
\hline \multirow[t]{2}{*}{National Semiconductor Hong Kong Ltd.} & Telex: 22837 NSTW \\
\hline & Cable: NSTW TAIPEI \\
\hline Southeast Asia Marketing & National Semiconductor (Far East) \\
\hline Austin Tower, 4th Floor & Ltd. \\
\hline 22-26A Austin Avenue & Korea Office \\
\hline Tsimshatsui, Kowloon, H.K. & Room 612. \\
\hline Tel: 852 3-7243645 & , Korea Fed. of Small Bus. Bldg. \\
\hline Cable: NSSEAMKTG & 16-2, Yoido-Dong, \\
\hline \multirow[t]{4}{*}{Telex: 52996 NSSEA HX} & Youngdeungpo-Ku \\
\hline & Seoul, Korea \\
\hline & Tel: (02) 784-8051/3-785-0696-8 \\
\hline & Telex: K24942 NSRKLO \\
\hline
\end{tabular}

National Semiconductor Switzerland

Postfach 567
Ch-8304 Wallisellen-Zurich
Switzerland
Tel: (01) 830-2727
Telex: 59000
National Semiconductor
Kauppakartanonkatu 7
SF-00930 Helsinki
land
Tel. (0) 33803
National Semiconductor Japan

Sanserao Blag. GF
Shinjuku-ku
Tokyo 160 Japan
Tel: 3-299-7001
x: 3-299-7000

Hong Kong Ltd.
Southeast Asia Marketing
Austin Tower, 4th Floor
22-26A Austin Avenue
Tsimshatsui, Kowloon, H. K.
el: 852 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

\footnotetext{
National Semiconductor
(Australia) PTY, Ltd.
st Floor, 441 St. Kilda Rc
Melbourne, 3004
ory, Australia
03) 267.5000

National Semiconductor (PTE),
Ltd.
Cantonment Road 13-01
Southpoint
02
Telex: RS 33877
National Semiconductor (Far East)
P.O. Box 68-332 Taipei

7th Floor, Nan Shan Life Bldg.
302 Min Chuan East Road
Taipei, Taiwan R.O.C
el: (86) 02-501-7227
Telex: 22837 NSTW

National Semiconductor (Far East)
Ltd.
Korea Office

Korea Fed. of Small Bus. Bidg
16-2, Yoido-Dong,
Seoul, Korea
Tel: (02) 784-8051/3 - 785-0696-8
Telex: K24942 NSRKLO
}
\(\$\)```


[^0]:    National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time without notice, to change said circuitry or specifications.

[^1]:    For further information on TTL to ECL translators, refer to the F100k databook.

[^2]:    Absolute Maximum Ratings (Note 1)
    If Milltary/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for avallability and specifications.

    Storage Temperature
    $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
    Ambient Temperature under Bias
    $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
    Junction Temperature under Bias

    $$
    -55^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C}
    $$

    $V_{C C}$ Pin Potential to Ground Pin
    Input Voltage (Note 2)

    $$
    -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
    $$

    $$
    -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
    $$

    Input Current (Note 2)

    $$
    -30 \mathrm{~mA} \text { to }+5.0 \mathrm{~mA}
    $$

    Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ )
    Standard Output

    $$
    -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
    $$

    TRI-STATE ${ }^{\circledR}$ Output
    Current Applied to Output
    in LOW State (Max)
    twice the rated $\mathrm{IOL}_{\mathrm{OL}}(\mathrm{mA})$
    Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
    Note 2: Either voltage limit or current limit is sufficient to protect inputs.

[^3]:    H = HIGH Voltage Level
    $\mathrm{L}=$ LOW Voltage Level

[^4]:    H $=$ HIGH Voltage Level

[^5]:    $H(h)=$ HIGH Voltage Level
    L (l) = LOW Voltage Level
    $\mathcal{T}=$ LOW-to-HIGH Transition
    $X=$ Immaterial
    $\mathrm{Q}_{0}\left(\bar{Q}_{0}\right)=$ Before LOW-to-HIGH Transition of Clock
    Lower case letters indicate the state of the referenced output one setup time prior to the LOW-to-HIGH clock transition.

[^6]:    $\mathrm{H}=$ High Voltage Level
    L = LOW Voltage Level
    $Z=$ High Impedance
    $X=$ Immateria!

[^7]:    $H=H I G H$ Voltage Level
    L = LOW
    $X=$ Immaterial

[^8]:    ${ }^{-}$TC is qenerated internally
    H = HIGH Voltage Level
    $L=$ LOW Voltage Level
    $X=$ Immaterial
    $\mathcal{L}=$ LOW-to-HIGH Clock Transition
    $\tau=$ LOW Pulse

[^9]:    $H=$ HIGH Voltage Level
    L＝LOW Voltage Level
    Z $=$ High Impedance
    $N / A=$ Not Allowed Due to Excessive Currents

[^10]:    H $=$ HIGH Voltage Level
    L. $=$ LOW Voltage Level
    $\mathrm{X}=\mathrm{Immaterial}$

[^11]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    $\mathrm{X}=$ Immaterial
    $Z=$ High Impedance

[^12]:    Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

[^13]:    H = HIGH Voltage Level
    $\mathrm{L}=\mathrm{LOW}$ Voltage Level
    $X=$ Immaterial
    $\Gamma=$ LOW-to-HIGH Clock Transition

[^14]:    H = HIGH Voltage Level
    L = LOW Voltage Level
    $X=$ Immaterial

    * = Inputs before CP transition, output after C
    $\mathrm{C}_{1}=$ Carry flip-flop state before $(\mathrm{C})$ and after $\left(\mathrm{C}_{1}\right)$ clock transition

[^15]:    *OC = Open Collector

[^16]:    $H=H I G H$ Voltage Level
    L $=$ LOW Voltage Level
    $X=$ Immaterial
    $\int=$ LOW-to-HIGH Transition
    $\dagger=$ Not LOW-to-HIGH Transition
    NC $=$ No Change

[^17]:    $H=$ HIGH Voltage Level
    L = LOW Voltage Level

[^18]:    *Diagnostic data is a data word with an error in one bit location except when testing the $\overline{M E R \bar{A}}$ error flag. In this case,the diagnostic data word will contain errors in two bit locations.

