LS/S/TTL Logic Databook

A Corporate Dedication to Quality and Reliability

National Semiconductor is an industry leader in the manufacture of high quality, high reliability integrated circuits. We have been the leading proponent of driving down IC defects and extending product lifetimes. From raw material through product design, manufacturing and shipping, our quality and reliability is second to none.
We are proud of our success . . . it sets a standard for others to achieve. Yet, our quest for perfection is ongoing so that you, our customer, can continue to rely on National Semiconductor Corporation to produce high quality products for your design systems.

Charles E. Sporck
President, Chief Executive Officer National Semiconductor Corporation

Wir fühlen uns zu Qualität und Zuverlässigkeit verpflichtet

National Semiconductor Corporation ist führend bei der Herstellung von integrierten Schaltungen hoher Qualität und hoher Zuverlässigkeit. National Semiconductor war schon immer Vorreiter, wenn es galt, die Zahl von IC Ausfällen zu verringern und die Lebensdauern von Produkten zu verbessern. Vom Rohmaterial über Entwurf und Herstellung bis zur Auslieferung, die Qualität und die Zuverlässigkeit der Produkte von National Semiconductor sind unübertroffen.
Wir sind stolz auf unseren Erfolg, der Standards setzt, die für andere erstrebenswert sind. Auch ihre Ansprüche steigen ständig. Sie als unser Kunde können sich auch weiterhin auf National Semiconductor verlassen.

La Qualité et La Fiabilité:
 Une Vocation Commune Chez National Semiconductor Corporation

National Semiconductor Corporation est un des leaders industriels qui fabrique des circuits intégrés d'une très grande qualité et d'une fiabilité exceptionelle. National a été le premier à vouloir faire chuter le nombre de circuits intégrés défectueux et a augmenter la durée de vie des produits. Depuis les matières premières, en passant par la conception du produit sa fabrication et son expédition, partout la qualité et la fiabilité chez National sont sans équivalents.

Nous sommes fiers de notre succès et le standard ainsi défini devrait devenir l'objectif à atteindre par les autres sociétés. Et nous continuons à vouloir faire progresser notre recherche de la perfection; il en résulte que vous, qui êtes notre client, pouvez toujours faire confiance à National Semiconductor Corporation, en produisànt des systèmes d'une très grande qualité standard.

Un Impegno Societario di Qualità e Affidabilità

National Semiconductor Corporation è un'industria al vertice nella costruzione di circuiti integrati di altà qualità ed affidabilità. National è stata il principale promotore per l'abbattimento della difettosità dei circuiti integrati e per l'allungamento della vita dei prodotti. Dal materiale grezzo attraverso tutte le fasi di progettazione, costruzione e spedizione, la qualità e affidabilità National non è seconda a nessuno.
Noi siamo orgogliosi del nostro successo che fissa per gli altri un traguardo da raggiungere. II nostro desiderio di perfezione è d'altra parte illimitato e pertanto tu, nostro cliente, puoi continuare ad affidarti a National Semiconductor Corporation per la produzione dei tuoi sistemi con elevati livelli di qualità.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

LS/S/TTL DATABOOK

Introduction to Bipolar Logic
Low Power Schottky

Schottky

TTL
Low Power
Physical Dimensions/Appendices

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

Abuseableтм	E-Z-LINKTM	Naked-8TM	Shelf $\boldsymbol{\sim}$ Chek ${ }^{\text {TM }}$
Anadig ${ }^{\text {TM }}$	5-Star Service ${ }^{\text {TM }}$	National ${ }^{\text {® }}$	SPIRETM
ANS-R-TRANTM	GENIXTM	NAX 800 TM	STARTM
APPSTM	GNXTM	Nitride Plus ${ }^{\text {TM }}$	Starlink ${ }^{\text {TM }}$
Auto-Chem DeflasherTM	HEX 3000 ${ }^{\text {™ }}$	Nitride Plus Oxide ${ }^{\text {TM }}$	STARPLEXTM
BI-FETTM	HPCTM	NMLTM	STARPLEX IITM
BI-FET IITM	ICMTM	NOBUSTM	SuperChipTM
BI-LINETM	INFOCHEXTM	NSC800tm	SuperScript ${ }^{\text {TM }}$
BIPLANTM	Integral ISETM	NSX-16TM	SYS32TM
BLCTM	Intelisplay ${ }^{\text {TM }}$	NS-XC-16TM	TapePak ${ }^{\text {TM }}$
BLXTM	ISETM	NURAMTM	TDSTM
Brite-LiteTM	ISE/06TM	OXISSTM	TeleGate™
BTLTM	ISE/08TM	P2CMOSTM	The National Anthem ${ }^{\text {® }}$
CheckTrackTM	ISE/16TM	Perfect Watch ${ }^{\text {TM }}$ M	Time \sim Chek ${ }^{\text {TM }}$
CIM ${ }^{\text {™ }}$	ISE32TM	Pharma $\sim^{\text {Chek }}{ }^{\text {TM }}$	TINATM
CIMBUSTM	KeyScanTM	PLANTM	TLCTM
Clock \sim ChekTM	LMCMOSTM	Polycraft ${ }^{\text {TM }}$	TrapezoidalTM
COMBOTм	M ${ }^{2} \mathrm{CMOSTM}$	POSitalker ${ }^{\text {TM }}$	TRI-CODETM
COMBO ITM	Macrobus ${ }^{\text {TM }}$	Power \& ControlTM	TRI-POLYTM
COMBO IITM	Macrocomponent ${ }^{\text {TM }}$	QUAD3000TM	TRI-SAFETM
COPSTM microcontrollers	Meat \sim Chek ${ }^{\text {TM }}$	QUIKLOOKTM	TRI-STATE ${ }^{\text {® }}$
Datachecker ${ }^{\text {® }}$	Microbus ${ }^{\text {TM }}$ data bus	RATTM	TURBOTRANSCEIVERTM
DENSPAKTM	MICRO-DACTM	RTX16TM	VIPTM
DIBTM	μ talkertM	SABRTM	VR32'M
Digitalker ${ }^{\text {® }}$	Microtalker ${ }^{\text {TM }}$	Script Chek $^{\text {TM }}$	XMOSTM
DISCERNTM	MICROWIRETM	SCXTM	XPUTM
DISTILLTM	MICROWIRE/PLUSTM	SERIES/800 ${ }^{\text {TM }}$	Z STARTM
DNRTM	MOLETM	Series 30007M	883B/RETSTM
DPVM ${ }^{\text {TM }}$	MST'M	Series 32000®	883S/RETSTM

ELSTARTM

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Table of Contents

Section 1-Introduction to Bipolar Logic

Guide to Bipolar Logic Device Families 1-3
IC Device Testing 1-8
AN-363 Designing with TTL 1-16
AN-372 Designer's Encyclopedia of Bipolar One-Shots 1-19
Functional Index/Selection Guide 1-35
Glossary of Terms 1-54
Test Waveforms 1-59
Section 2-Low Power Schottky
Arithmetic Functions
DM54/74LS83A 4-Bit Binary Adders with Fast Carry 2-57
DM54/74LS283 4-Bit Binary Adders with Fast Carry 2-208
Buffers/Drivers
DM54/74LS26 Quad 2-Input NAND Buffers with High-Voltage Open-Collector Outputs 2-31
DM54/74LS37 Quad 2-Input NAND Buffers 2-39
DM54/74LS38 Quad 2-Input NAND Buffers with Open-Collector Outputs 2-41
DM54/74LS125A Quad TRI-STATE Buffers 2-92
DM54/74LS126A Quad TRI-STATE Buffers 2-95
DM54/74LS240 Octal TRI-STATE Inverting Buffers/Line Drivers/Line Receivers 2-179
DM54/74LS241 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 2-179
DM54/74LS244 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 2-185
DM54/74LS365A Hex TRI-STATE Buffers/Bus Drivers 2-223
DM54/74LS366A Hex TRI-STATE Inverting Buffers/Bus Drivers 2-226
DM54/74LS367A Hex TRI-STATE Buffers/Bus Drivers 2-229
DM54/74LS368A Hex TRI-STATE Inverting Buffers/Bus Drivers 2-232
DM54/74LS465 (DM71/81LS95A) Octal TRI-STATE Buffers/Bus Drivers 2-247
DM54/74LS466 (DM71/81LS96A) Octal TRI-STATE Inverting Buffers/Bus Drivers 2-247
DM54/74LS467 (DM71/81LS97A) Octal TRI-STATE Buffers/Bus Drivers 2-247
DM54/74LS468 (DM71/81LS98A) Octal TRI-STATE Inverting Buffers/Bus Drivers 2-247
Comparators
DM54/74LS85 4-Bit Magnitude Comparators 2-61
Counters
DM54/74LS90 Decade Counter 2-68
DM54/74LS93 4-Bit Binary Counter 2-68
DM54/74LS161A Synchronous 4-Bit Binary Counter with Asynchronous Clear 2-123
DM54/74LS163A Synchronous 4-Bit Binary Counter with Synchronous Clear 2-123
DM54/74LS169A Synchronous 4-Bit Up/Down Binary Counter 2-141
DM54/74LS190 Synchronous 4-Bit Up/Down Decade Counter with Mode Control 2-155
DM54/74LS191 Synchronous 4-Bit Up/Down Binary Counter with Mode Control 2-155
DM54/74LS193 Synchronous 4-Bit Up/Down Binary Counter with Dual Clock 2-161
DM54/74LS290 4-Bit Decade Counter 2-212
DM54/74LS293 4-Bit Binary Counter 2-216
DM54/74LS390 Dual 4-Bit Decade (Bi-Quinary) Counter 2-240
DM54/74LS393 Dual 4-Bit Binary Counter 2-244

Table of Contents ${ }_{\text {(Coninuou) }}$

Decoders/Encoders

DM54/74LS42 BCD to Decimal Decoder 2-43
DM54/74LS138 3 to 8 Line Decoder/Demultiplexer 2-101
DM54/74LS139 Dual 2 to 4 Line Decoder/Demultiplexers 2-101
DM54/74LS154 4 to 16 Line Decoder/Demultiplexer 2-112
DM54/74LS155 Dual 2 to 4 Line Decoders/ 1 to 4 Line Demultiplexers 2-115
DM54/74LS156 Dual 2 to 4 Line Decoders/1 to 4 Line Demultiplexers with Open- Collector Outputs 2-115
Flip-Flops
DM54/74LS73A Dual Negative-Edge-Triggered J-K Flip-Flops with Clear 2-48
DM54/74LS74A Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 2-51
DM54/74LS107A Dual Negative-Edge-Triggered J-K Master-Slave Flip-Flops with Clear 2-75
DM54/74LS109A Dual Positive-Edge-Triggered J-K Flip-Flops with Preset and Clear 2-78
DM54/74LS112A Dual Negative-Edge-Triggered J-K Flip-Flops with Preset and Clear 2-81
DM54/74LS174 Hex D Flip-Flops with Clear 2-150
DM54/74LS175 Quad D Flip-Flops with Clear and Complementary Outputs 2-150
DM54/74LS374 Octal TRI-STATE Positive-Edge-Triggered D Flip-Flops 2-235
Gates/Inverters
DM54/74LSOO Quad 2-Input NAND Gates 2-4
DM54/74LSO2 Quad 2-Input NOR Gates 2-6
DM54/74LS03 Quad 2-Input NAND Gates with Open-Collector Outputs 2-8
DM54/74LS04 Hex Inverters 2-10
DM54/74LS05 Hex Inverters with Open-Collector Outputs 2-12
DM54/74LSO8 Quad 2-Input AND Gates 2-14
DM54/74LS09 Quad 2-Input AND Gates with Open-Collector Outputs 2-16
DM54/74LS10 Triple 3-input NAND Gates 2-18
DM54/74LS11 Triple 3-Input AND Gates 2-20
DM54/74LS12 Triple 3-Input NAND Gates with Open-Collector Outputs 2-22
DM54/74LS14 Hex Schmitt Trigger Inverters 2-24
DM54/74LS20 Dual 4-Input NAND Gates 2-27
DM54/74LS21 Dual 4-Input AND Gates 2-29
DM54/74LS27 Triple 3-Input NOR Gates 2-33
DM54/74LS30 8-Input NAND Gate 2-35
DM54/74LS32 Quad 2-Input OR Gates 2-37
DM54/74LS51 Dual 2-Wide 2-Input AND-OR-INVERT Gates 2-46
DM54/74LS86 Quad Exclusive-OR Gates 2-65
DM54/74LS132 Quad 2-input Schmitt Trigger NAND Gates 2-98
Latches
DM54/74LS75 4-Bit Bistable Latches 2-54
DM54/74LS259 8-Bit Serial In to Parallel Out Addressable Latch 2-202
DM54/74LS279 Quad $\overline{\mathrm{S}}$ - $\overline{\mathrm{R}}$ Latches 2-205
DM54/74LS373 Octal TRI-STATE Transparent D Latches 2-235
Multiplexers/Demultiplexers
DM54/74LS151 1 of 8 Line Data Selector/Multiplexer 2-106
DM54/74LS153 Dual 1 of 4 Line Data Selectors/Multiplexers 2-109
DM54/74LS157 Quad 2 to 1 Line Data Selectors/Multiplexers 2-119
DM54/74LS158 Quad 2 to 1 Line Inverting Data Selectors/Multiplexers 2-119

Table of Contents (Coninuon)

DM54/74LS251 TRI-STATE 1 of 8 Line Data Selector/Multiplexer with Complementary Outputs 2-191
DM54/74LS253 Dual TRI-STATE 1 of 4 Data Selectors/Multiplexers 2-194
DM54/74LS257B Quad TRI-STATE 2 to 1 Line Data Selectors/Multiplexers 2-197
DM54/74LS258B Quad TRI-STATE 2 to 1 Line Inverting Data Selectors/Multiplexers 2-197
DM54/74LS352 Dual 1 of 4 Line Inverting Data Selectors/Multiplexers 2-220
Multivibrators
DM54/74LS122 Retriggerable Monostable Multivibrators with Clear 2-84
DM54/74LS123 Dual Retriggerable Monostable Multivibrators with Clear 2-88
DM54/74LS221 Dual Monostable Multivibrators with Schmitt-Trigger Input 2-174
Registers
DM54/74LS164 8-Bit Serial In/Parallel Out Shift Register with Asynchronous Clear 2-130
DM54/74LS165 8-Bit Parallel In/Serial Out Shift Register with Complementary Outputs 2-133
DM54/74LS166 8-Bit Parallel or Serial In/Serial Out Shift Register with Complementary Outputs 2-137
DM54/74LS173A 4-Bit TRI-STATE D Register 2-146
DM54/74LS194A 4-Bit Bidirectional Universal Shift Register 2-166
DM54/74LS195A 4-Bit Parallel Access Shift Register 2-170
DM54/74LS670 TRI-STATE 4 by 4 Register File 2-254
DM54/74LS952 Dual TRI-STATE 8-Bit Positive-Edge-Triggered Rank Shift Registers 2-258
DM54/74LS962 Dual TRI-STATE 8-Bit Positive-Edge-Triggered Rank Shift Registers 2-264
Transceivers
DM54/74LS243 Quad TRI-STATE Bus Transceivers 2-182
DM54/74LS245 Octal TRI-STATE Bus Transceivers 2-188
DM54/74LS645 Octal TRI-STATE Bus Transceivers 2-251
Section 3-Schottky
Arithmetic Functions
DM54/74S181 Arithmetic Logic Unit/Function Generator 3-74
DM54/74S182 Look-Ahead Carry Generator 3-83
DM54/74S280 9-Bit Parity Generators/Checkers 3-110
DM54/74S283 4-Bit Binary Adders with Fast Carry 3-114
DM54/74S381 Arithmetic Logic Unit/Function Generator 3-128
Buffers/Drivers
DM54/74S40 Dual 4-Input NAND Buffers 3-27
DM54/74S140 Dual 4-Input NAND 50Ω Line Driver 3-50
DM54/74S240 Octal TRI-STATE Inverting Buffers/Line Drivers/Line Receivers 3-95
DM54/74S241 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 3-95
DM54/74S244 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 3-95
DM54/74S940 Octal TRI-STATE Inverting Buffer 3-132
DM54/74S941 Octal TRI-STATE Buffer 3-132
Counters
DM54/74S161 Synchronous 4-Bit Binary Counter with Asynchronous Clear 3-64
DM54/74S163 Synchronous 4-Bit Binary Counter with Synchronous Clear 3-64
Decoders/Encoders
DM54/74S138 3 to 8 Line Decoder/Demultiplexer 3-46
DM54/74S139 Dual 2 to 4 Line Decoders/Demultiplexers 3-46

Table of Contents Coninuwe)

Flip-Flops
DM54/74S74 Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 3-33
DM54/74S112 Dual Negative-Edge-Triggered J-K Flip-Flops with Preset and Clear 3-38
DM54/74S113 Dual Negative-Edge-Triggered J-K Flip-Flops with Preset 3-41
DM54/74S174 Hex D Flip-Flops with Clear 3-70
DM54/74S175 Quad D Flip-Flops with Clear and Complementary Outputs 3-70
DM54/74S374 Octal TRI-STATE Positive-Edge-Triggered D Flip-Flops 3-123
Gates/Inverters
DM54/74S00 Quad 2-Input NAND Gates 3-3
DM54/74S02 Quad 2-Input NOR Gates 3-5
DM54/74S03 Quad 2-Input NAND Gates with Open-Collector Outputs 3-7
DM54/74S04 Hex Inverters 3-9
DM54/74S05 Hex Inverters with Open-Collector Outputs 3-11
DM54/74S08 Quad 2-Input AND Gates 3-13
DM54/74S09 Quad 2-Input AND Gates with Open-Collector Outputs 3-15
DM54/74S10 Triple 3-Input NAND Gates 3-17
DM54/74S11 Triple 3-Input AND Gates 3-19
DM54/74S20 Dual 4-Input NAND Gates 3-21
DM54/74S30 8-Input NAND Gate 3-23
DM54/74S32 Quad 2-Input OR Gates 3-25
DM54/74S51 Dual 2-Wide 2-Input AND-OR-INVERT Gates 3-29
DM54/74S64 4-Wide AND-OR-INVERT Gates 3-31
DM54/74S86 Quad Exclusive-OR Gates 3-36
DM54/74S133 13-Input NAND Gate 3-44
Latches
DM54/74S373 Octal TRI-STATE Transparent D Latches 3-123
Multiplexers/Demultiplexers
DM54/74S151 1 of 8 Line Data Selector/Multiplexer 3-52
DM54/74S153 Dual 1 of 4 Line Data Selectors/Multiplexers 3-56
DM54/74S157 Quad 2 to 1 Line Data Selectors/Multiplexers 3-59
DM54/74S158 Quad 2 to 1 Line Inverting Data Selectors/Multiplexers 3-59
DM54/74S251 TRI-STATE 1 of 8 Line Data Selector/Multiplexer with Complementary Outputs 3-98
DM54/74S253 Dual TRI-STATE 1 of 4 Data Selectors/Multiplexers 3-102
DM54/74S257 Quad TRI-STATE 2 to 1 Line Data Selectors/Multiplexers 3-105
DM54/74S258 Quad TRI-STATE 2 to 1 Line Inverting Data Selectors/Multiplexers 3-105
Registers
DM54/74S194 4-Bit Bidirectional Universal Shift Register 3-87
DM54/74S195 4-Bit Parallel Access Shift Register 3-91
DM54/74S299 TRI-STATE 8-Bit Universal/Shift Storage Registers 3-118
Section 4-TTL
Arithmetic Functions
DM54/74180 9-Bit Parity Generator/Checker 4-174
DM54/74181 Arithmetic Logic Unit/Function Generator 4-177
DM54/74184 BCD-to-Binary Converter 4-185
DM54/74185A Binary-to-BCD Converter 4-185
DM7875A/8875A TRI-STATE 4-Bit Parallel Binary Multipliers 4-238
DM7875B/8875B TRI-STATE 4-Bit Parallel Binary Multipliers 4-238

Table of Contents ${ }_{\text {(conitioues) }}$

Buffers/Drivers
DM54/7406 Hex Inverting Buffers/Drivers with High-Voltage Open-Collector Outputs 4-26
DM54/7407 Hex Buffers/Drivers with High-Voltage Open-Collector Outputs 4-28
DM54/7416 Hex Inverting Buffers/Drivers with High-Voltage Open-Collector Outputs 4-39
DM54/7417 Hex Buffers/Drivers with High-Voltage Open-Collector Outputs 4-41
DM54/7426 Quad 2-Input NAND Buffers with High-Voltage Open-Collector Outputs 4-45
DM54/7437 Quad 2-Input NAND Buffers 4-53
DM54/7438 Quad 2-Input NAND Buffers with Open-Collector Outputs 4-55
DM54/74125 Quad TRI-STATE Buffers 4-114
DM54/74365 Hex TRI-STATE Buffers/Bus Drivers 4-210
DM54/74367 Hex TRI-STATE Buffers/Bus Drivers 4-213
DM54/74368 Hex TRI-STATE Inverting Buffers/Bus Drivers 4-216
Comparators
DM54/7485 4-Bit Magnitude Comparators 4-83
DM7130/8130 10-Bit Magnitude Comparator with Open-Collector Outputs 4-222
DM7131/8131 6-Bit Unified Bus Comparators 4-224
DM7136/8136 6-Bit Unified Bus Comparator with Open-Collector Output 4-227
DM7160/8160 6-Bit Magnitude Comparator with Open-Collector Outputs 4-230
Counters
DM54/7490A Decade Counter 4-90
DM54/7493A 4-Bit Binary Counter 4-90
DM54/74161A Synchronous 4-Bit Binary Counter with Asynchronous Clear 4-148
DM54/74162A Synchronous 4-Bit Decade Counter with Synchronous Clear 4-148
DM54/74163A Synchronous 4-Bit Binary Counter with Synchronous Clear 4-148
DM54/74191 Synchronous 4-Bit Up/Down Binary Counter with Mode Control 4-193
DM54/74193 Synchronous 4-Bit Up/Down Binary Counter with Dual Clock 4-198
DM7556/8556 TRI-STATE Programmable 4-Bit Binary Counter 4-232
DM9310/8310 Synchronous 4-Bit Decade Counter 4-264
DM9316/8316 Synchronous 4-Bit Binary Counter 4-279
Decoders/Encoders
DM54/7441A BCD to Decimal Decoder/Driver (NIXIE Drivers) 4-57
DM54/7442 BCD to Decimal Decoder 4-60
DM54/7445 BCD to Decimal Decoder/Driver 4-63
DM54/7446A BCD to 7-Segment Decoder/Driver with Open-Collector Outputs 4-66
DM54/7447A BCD to 7-Segment Decoder/Driver with Open-Collector Outputs 4-66
DM54/74141 BCD to Decimal Decoder/Driver 4-120
DM54/74145 BCD to Decimal Decoder/Driver 4-123
DM54/74148 8-Line Decimal to 3-Line Octal Priority Encoder 4-126
DM54/74154 4 to 16 Line Decoder/Demultiplexer 4-139
DM54/74155 Dual 2 to 4 Line Decoders/ 1 to 4 Line Demultiplexers 4-142
DM8898 TRI-STATE 6-Bit BCD to Binary Converters 4-243
DM8899 TRI-STATE 6-Bit Binary to BCD Converters 4-243
DM9301/8301 1 of 10 Line Decoders 4-258
DM9311/8311 4 to 16 Line Decoders/Demultiplexers 4-271
DM9318/8318 8 to 3 Line Priority Encoders 4-286
Flip-Flops
DM54/7473 Dual J-K Flip-Flops with Clear $4-71$
DM54/7474 Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 4-74

Table of Contents (coninuou)

DM54/7476 Dual J-K Flip-Flops with Preset and Clear 4-80
DM54/74107 Dual Master-Slave J-K Flip-Flops with Clear 4-100
DM54/74109 Dual Positive-Edge-Triggered J-K Flip-Flops with Preset and Clear 4-103
DM54/74174 Hex D Flip-Flops with Clear 4-169
DM54/74175 Quad D Flip-Flops with Clear and Complementary Outputs 4-169
DM9024/8024 Dual Positive-Edge-Triggered J-K Flip-Flops with Preset and Clear 4-251
Gates/Inverters
DM54/7400 Quad 2-Input NAND Gates 4-14
DM54/7401 Quad 2-Input NAND Gates with Open-Collector Outputs 4-16
DM54/7402 Quad 2-Input NOR Gates 4-18
DM54/7403 Quad 2-Input NAND Gates with Open-Collector Outputs 4-20
DM54/7404 Hex Inverters 4-22
DM54/7405 Hex Inverters with Open-Collector Outputs 4-24
DM54/7408 Quad 2-Input AND Gates 4-30
DM54/7409 Quad 2-Input AND Gates with Open-Collector Outputs 4.32
DM54/7410 Triple 3-Input NAND Gates 4-34
DM54/7414 Hex Schmitt Trigger Inverters 4-36
DM54/7420 Dual 4-Input NAND Gates 4-43
DM54/7427 Triple 3-Input NOR Gates 4-47
DM54/7430 8-Input NAND Gate 4-49
DM54/7432 Quad 2-Input OR Gates 4-51
DM54/7486 Quad Exclusive-OR Gates 4-87
DM54/74132 Quad 2-Input Schmitt Trigger NAND Gates 4-117
DM9002C Quad 2-Input NAND Gates 4-249
Latches
DM54/7475 4-Bit Bistable Latches 4-77
DM54/74259 8-Bit Serial In to Parallel Out Addressable Latch 4-207
DM9334/8334 8-Bit Addressable Latches 4-293
Multiplexers/Demultiplexers
DM54/74150 1 of 16 Line Data Selector/Multiplexer 4-130
DM54/74151A 1 of 8 Line Data Selector/Multiplexer 4-130
DM54/74153 Dual 1 of 4 Line Data Selectors/Multiplexers 4-136
DM54/74157 Quad 2 to 1 Line Data Selectors/Multiplexers 4-145
DM7123/8123 Quad TRI-STATE 1 of 2 Line Data Selectors/Multiplexers 4-219
DM9309/8309 Dual 1 of 4 Line Data Selectors/Multiplexers with Complementary Outputs 4-261
DM9312/8312 1 of 8 Line Data Selector/Multiplexer 4-275
DM9322/8322 Quad 1 of 2 Line Data Selectors/Multiplexers 4-290
Multivibrators
DM54/74121 Monostable Multivibrator with Schmitt-Trigger Input 4-106
DM54/74123 Dual Retriggerable Monostable Multivibrators with Clear 4-110
DM9601/8601 Retriggerable Monostable Multivibrators with Complementary Outputs 4-297
DM9602/8602 Dual Retriggerable, Resettable Monostable Multivibrators with Complementary Outputs 4-301
Registers
DM2502 8-Bit Successive Approximation Register $4-4$
DM2503 8-Bit Expandable Successive Approximation Register 4-4
Table of Contents (coninued)
DM2504 12-Bit Expandable Successive Approximation Register 4-4
DM54/7495 4-Bit Parallel Access Shift Register 4-97
DM54/74164 8-Bit Serial In/Parallel Out Shift Register with Asynchronous Clear 4-158
DM54/74166 8-Bit Parallel or Serial In/Serial Out Shift Register with Complementary Outputs 4-161
DM54/74173 4-Bit TRI-STATE D Register 4-165
DM54/74194 4-Bit Bidirectional Universal Shift Register 4-203
DM9300/8300 4-Bit Positive-Edge-Triggered Parallel or Serial Access Shift Registers 4-254
Section 5-Low Power
Counters
DM54/74L93 4-Bit Binary Counter 5-22
DM75/85L60 Synchronous 4-Bit Up/Down BCD Counter 5-30
DM75/85L63 Synchronous 4-Bit Up/Down Binary Counter 5-30
Flip-Flops
DM54/74L72 AND-Gated Master-Slave J-K Flip-Flop with Preset and Clear 5-13
DM54/74L73 Dual J-K Flip-Flops with Clear 5-16
DM54/74L74 Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 5-19
Gates/Inverters
DM54/74L00 Quad 2-Input NAND Gates 5-3
DM54/74L02 Quad 2-Input NOR Gates 5-5
DM54/74L04 Hex Inverters 5-7
DM54/74L10 Triple 3-Input NAND Gates 5-9
DM54/74L20 Dual 4-Input NAND Gates 5-11
Registers
DM54/74L95 4-Bit Parallel Access Shift Register 5-25
DM54/74L98 4-Bit Data Selector/Storage Register 5-28
DM76/86L90 8-Bit Parallel In/Serial Out Shift Register with Complementary Outputs 5-37
Section 6-Appendices/Physical Dimensions
Physical Dimensions 6-3
Data Bookshelf
Sales and Distribution Offices

Alpha-Numeric Index

AN-363 Designing with TTL 1-16
AN-372 Designer's Encyclopedia of Bipolar One-Shots 1-19
DM2502 8-Bit Successive Approximation Register 4-4
DM2503 8-Bit Expandable Successive Approximation Register 4-4
DM2504 12-Bit Expandable Successive Approximation Register 4-4
DM54/7400 Quad 2-Input NAND Gates 4-14
DM54/7401 Quad 2-Input NAND Gates with Open-Collector Outputs 4-16
DM54/7402 Quad 2-Input NOR Gates 4-18
DM54/7403 Quad 2-Input NAND Gates with Open-Collector Outputs 4-20
DM54/7404 Hex Inverters 4-22
DM54/7405 Hex Inverters with Open-Collector Outputs 4-24
DM54/7406 Hex Inverting Buffers/Drivers with High-Voltage Open-Collector Outputs 4-26
DM54/7407 Hex Buffers/Drivers with High-Voltage Open-Collector Outputs 4-28
DM54/7408 Quad 2-Input AND Gates 4-30
DM54/7409 Quad 2-Input AND Gates with Open-Collector Outputs 4-32
DM54/7410 Triple 3-Input NAND Gates 4-34
DM54/7414 Hex Schmitt Trigger Inverters 4-36
DM54/7416 Hex Inverting Buffers/Drivers with High-Voltage Open-Collector Outputs 4-39
DM54/7417 Hex Buffers/Drivers with High-Voltage Open-Collector Outputs 4-41
DM54/7420 Dual 4-Input NAND Gates 4-43
DM54/7426 Quad 2-Input NAND Buffers with High-Voltage Open-Collector Outputs 4-45
DM54/7427 Triple 3-Input NOR Gates 4-47
DM54/7430 8-Input NAND Gate 4-49
DM54/7432 Quad 2-Input OR Gates 4-51
DM54/7437 Quad 2-Input NAND Buffers 4-53
DM54/7438 Quad 2-Input NAND Buffers with Open-Collector Outputs 4-55
DM54/7441A BCD to Decimal Decoder/Driver (NIXIE Drivers) 4-57
DM54/7442 BCD to Decimal Decoder 4-60
DM54/7445 BCD to Decimal Decoder/Driver 4-63
DM54/7446A BCD to 7-Segment Decoder/Driver with Open-Collector Outputs 4-66
DM54/7447A BCD to 7-Segment Decoder/Driver with Open-Collector Outputs 4-66
DM54/7473 Dual J-K Flip-Flops with Clear 4-71
DM54/7474 Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 4-74
DM54/7475 4-Bit Bistable Latches 4-77
DM54/7476 Dual J-K Flip-Flops with Preset and Clear 4-80
DM54/7485 4-Bit Magnitude Comparators 4-83
DM54/7486 Quad Exclusive-OR Gates 4-87
DM54/7490A Decade Counter 4-90
DM54/7493A 4-Bit Binary Counter 4-90
DM54/7495 4-Bit Parallel Access Shift Register 4-97
DM54/74107 Dual Master-Slave J-K Flip-Flops with Clear 4-100
DM54/74109 Dual Positive-Edge-Triggered J-K Flip-Flops with Preset and Clear 4-103
DM54/74121 Monostable Multivibrator with Schmitt Trigger Input 4-106
DM54/74123 Dual Retriggerable Monostable Multivibrators with Clear 4-110
DM54/74125 Quad TRI-STATE Buffers 4-114
DM54/74132 Quad 2-Input Schmitt Trigger NAND Gates 4-117
DM54/74141 BCD to Decimal Decoder/Driver 4-120
DM54/74145 BCD to Decimal Decoder/Driver 4-123
DM54/74148 8 Line Decimal to 3 Line Octal Priority Encoder 4-126
DM54/74150 1 of 16 Line Data Selector/Multiplexer 4-130
DM54/74151A 1 of 8 Line Data Selector/Multiplexer 4-130
Alpha-Numeric Index (Continued)
DM54/74153 Dual 1 of 4 Line Data Selectors/Multiplexers 4-136
DM54/74154 4 to 16 Line Decoder/Demultiplexer 4-139
DM54/74155 Dual 2 to 4 Line Decoders/1 to 4 Line Demultiplexers 4-142
DM54/74157 Quad 2 to 1 Line Data Selectors/Multiplexers 4-145
DM54/74161A Synchronous 4-Bit Binary Counter with Asynchronous Clear 4-148
DM54/74162A Synchronous 4-Bit Decade Counter with Synchronous Clear 4-148
DM54/74163A Synchronous 4-Bit Binary Counter with Synchronous Clear 4-148
DM54/74164 8-Bit Serial In/Parallel Out Shift Register with Asynchronous Clear 4-158
DM54/74166 8-Bit Parallel or Serial In/Serial Out Shift Register with Complementary Outputs 4-161
DM54/74173 4-Bit TRI-STATE D Register 4-165
DM54/74174 Hex D Flip-Flops with Clear 4-169
DM54/74175 Quad D Flip-Flops with Clear and Complementary Outputs 4-169
DM54/74180 9-Bit Parity Generator/Checker 4-174
DM54/74181 Arithmetic Logic Unit/Function Generator 4-177
DM54/74184 BCD-to-Binary Converter 4-185
DM54/74185A Binary-to-BCD Converter 4-185
DM54/74191 Synchronous 4-Bit Up/Down Binary Counter with Mode Control 4-193
DM54/74193 Synchronous 4-Bit Up/Down Binary Counter with Dual Clock 4-198
DM54/74194 4-Bit Bidirectional Universal Shift Register 4-203
DM54/74259 8-Bit Serial In to Parallel Out Addressable Latch 4-207
DM54/74365 Hex TRI-STATE Buffers/Bus Drivers 4-210
DM54/74367 Hex TRI-STATE Buffers/Bus Drivers 4-213
DM54/74368 Hex TRI-STATE Inverting Buffers/Bus Drivers 4-216
DM7123/8123 Quad TRI-STATE 1 of 2 Line Data Selectors/Multiplexers 4-219
DM7130/8130 10-Bit Magnitude Comparator with Open-Collector Outputs 4-222
DM7131/8131 6-Bit Unified Bus Comparators 4-224
DM7136/8136 6-Bit Unified Bus Comparator with Open-Collector Output 4-227
DM7160/8160 6-Bit Magnitude Comparator with Open-Collector Output 4-230
DM7556/8556 TRI-STATE Programmable 4-Bit Binary Counter 4-232
DM7875A/8875A TRI-STATE 4-Bit Parallel Binary Multipliers 4-238
DM7875B/8875B TRI-STATE 4-Bit Parallel Binary Multipliers 4-238
DM8898 TRI-STATE 6-Bit BCD to Binary Converters 4-243
DM8899 TRI-STATE 6-Bit Binary to BCD Converters 4-243
DM9002C Quad 2-Input NAND Gates 4-249
DM9024/8024 Dual Positive-Edge-Triggered J-K Flip-Flops with Preset and Clear 4-251
DM9300/8300 4-Bit Positive-Edge-Triggered Parallel or Serial Access Shift Registers 4-254
DM9301/8301 1 of 10 Line Decoders 4-258
DM9309/8309 Dual 1 of 4 Line Data Selectors/Multiplexers with Complementary Outputs 4-261
DM9310/8310 Synchronous 4-Bit Decade Counter 4-264
DM9311/8311 4 to 16 Line Decoders/Demultiplexers 4-271
DM9312/8312 1 of 8 Line Data Selector/Multiplexer 4-275
DM9316/8316 Synchronous 4-Bit Binary Counter 4-279
DM9318/8318 8 to 3 Line Priority Encoders 4-286
DM9322/8322 Quad 1 of 2 Line Data Selectors/Multiplexers 4-290
DM9334/8334 8-Bit Addressable Latches 4-293
DM9601/8601 Retriggerable Monostable Multivibrators with Complementary Outputs 4-297
DM9602/8602 Dual Retriggerable, Resettable Monostable Multivibrators withComplementary Outputs4-301
DM54/74L00 Quad 2-Input NAND Gates 5-3
DM54/74L02 Quad 2-Input NOR Gates 5-5
DM54/74L04 Hex Inverters 5-7
DM54/74L10 Triple 3-Input NAND Gates 5-9

Alpha-Numeric Index ${ }_{\text {(Conitinueo }}$

DM54/74L20 Dual 4-Input NAND Gates 5-11
DM54/74L72 AND-Gated Master-Slave J-K Flip-Flops with Preset and Clear 5-13
DM54/74L73 Dual J-K Flip-Flops with Clear 5-16
DM54/74L74 Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 5-19
DM54/74L93 4-Bit Binary Counter 5-22
DM54/74L95 4-Bit Parallel Access Shift Register 5-25
DM54/74L98 4-Bit Data Selector/Storage Register 5-28
DM75/85L60 Synchronous 4-Bit Up/Down BCD Counter 5-30
DM75/85L63 Synchronous 4-Bit Up/Down Binary Counter 5-30
DM76/86L90 8-Bit Parallel In/Serial Out Shift Register with Complementary Outputs 5-37
DM54/74LS00 Quad 2-Input NAND Gates 2-4
DM54/74LS02 Quad 2-Input NOR Gates 2-6
DM54/74LS03 Quad 2-Input NAND Gates with Open-Collector Outputs 2-8
DM54/74LS04 Hex Inverters 2-10
DM54/74LS05 Hex Inverters with Open-Collector Outputs 2-12
DM54/74LS08 Quad 2-Input AND Gates 2-14
DM54/74LS09 Quad 2-Input AND Gates with Open-Collector Outputs 2-16
DM54/74LS10 Triple 3-Input NAND Gates 2-18
DM54/74LS11 Triple 3-Input AND Gates 2-20
DM54/74LS12 Triple 3-Input NAND Gates with Open-Collector Outputs 2-22
DM54/74LS14 Hex Schmitt Trigger Inverters 2-24
DM54/74LS20 Dual 4-Input NAND Gates 2-27
DM54/74LS21 Dual 4-Input AND Gates 2-29
DM54/74LS26 Quad 2-Input NAND Buffers with High-Voltage Open-Collector Outputs 2-31
DM54/74LS27 Triple 3-Input NOR Gates 2-33
DM54/74LS30 8-Input NAND Gate 2-35
DM54/74LS32 Quad 2-Input OR Gates 2-37
DM54/74LS37 Quad 2-Input NAND Buffers 2-39
DM54/74LS38 Quad 2-Input NAND Buffers with Open-Collector Outputs 2-41
DM54/74LS42 BCD to Decimal Decoder 2-43
DM54/74LS51 Dual 2-Wide 2-Input AND-OR-INVERT Gates 2-46
DM54/74LS73A Dual J-K Negative Edge-Triggered Flip-Flops with Clear 2-48
DM54/74LS74A Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear 2-51
DM54/74LS75 4-Bit Bistable Latches 2-54
DM54/74LS83A 4-Bit Binary Adders with Fast Carry 2-57
DM54/74LS85 4-Bit Magnitude Comparators 2-61
DM54/74LS86 Quad Exclusive-OR Gates 2-65
DM54/74LS90 Decade Counter 2-68
DM54/74LS93 4-Bit Binary Counter 2-68
DM54/74LS107A Dual J-K Negative-Edge-Triggered Master-Slave Flip-Flops with Clear 2-75
DM54/74LS109A Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear 2-78
DM54/74LS112A Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear 2-81
DM54/74LS122 Retriggerable Monostable Multivibrators with Clear 2-84
DM54/74LS123 Dual Retriggerable Monostable Multivibrators with Clear 2-88
DM54/74LS125A Quad TRI-STATE Buffers 2-92
DM54/74LS126A Quad TRI-STATE Buffers 2-95
DM54/74LS132 Quad 2-Input Schmitt Trigger NAND Gates 2-98
DM54/74LS138 3 to 8 Line Decoder/Demultiplexer 2-101
DM54/74LS139 Dual 2 to 4 Line Decoders/Demultiplexers 2-101
DM54/74LS151 1 of 8 Line Data Selector/Multiplexer 2-106
DM54/74LS153 Dual 1 of 4 Line Data Selectors/Multiplexers 2-109
DM54/74LS154 4 to 16 Line Decoder/Demultiplexer 2-112

Alpha-Numeric Index Cominues

DM54/74LS155 Dual 2 to 4 Line Decoders/ 1 to 4 Line Demultiplexers 2-115
DM54/74LS156 Dual 2 to 4 Line Decoders/1 to 4 Line Demultiplexers with Open-Collector Outputs 2-115
DM54/74LS157 Quad 2 to 1 Line Data Selectors/Multiplexers 2-119
DM54/74LS158 Quad 2 to 1 Line Inverting Data Selectors/Multiplexers 2-119
DM54/74LS161A Synchronous 4-Bit Binary Counter with Asynchronous Clear 2-123
DM54/74LS163A Synchronous 4-Bit Binary Counter with Synchronous Clear 2-123
DM54/74LS164 8-Bit Serial In/Parallel Out Shift Register with Asynchronous Clear 2-130
DM54/74LS165 8-Bit Parallel In/Serial Out Shift Register with Complementary Outputs 2-133
DM54/74LS166 8-Bit Parallel or Serial In/Serial Out Shift Register with Complementary Outputs 2-137
DM54/74LS169A Synchronous 4-Bit Up/Down Binary Counter 2-141
DM54/74LS173A 4-Bit TRI-STATE D Register 2-146
DM54/74LS174 Hex D Flip-Flops with Clear 2.150
DM54/74LS175 Quad D Flip-Flops with Clear and Complementary Outputs 2-150
DM54/74LS190 Synchronous Up/Down Decade Counter with Mode Control 2-155
DM54/74LS191 Synchronous 4-Bit Up/Down Binary Counter with Mode Control 2-155
DM54/74LS193 Synchronous 4-Bit Up/Down Binary Counter with Dual Clock 2-161
DM54/74LS194A 4-Bit Bidirectional Universal Shift Register 2-166
DM54/74LS195A 4-Bit Parallel Access Shift Register 2-170
DM54/74LS221 Dual Monostable Multivibrators with Schmitt Trigger Input 2-174
DM54/74LS240 Octal TRI-STATE Inverting Buffers/Line Drivers/Line Receivers 2-179
DM54/74LS241 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 2-179
DM54/74LS243 Octal TRI-STATE Bus Transceivers 2-182
DM54/74LS244 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 2-185
DM54/74LS245 Octal TRI-STATE Bus Transceivers 2-188
DM54/74LS251 TRI-STATE 1 of 8 Line Data Selector/Multiplexer with Complementary Outputs 2.191
DM54/74LS253 Dual TRI-STATE 1 of 4 Data Selectors/Multiplexers 2-194
DM54/74LS257B Quad TRI-STATE 2 to 1 Line Data Selectors/Multiplexers 2-197
DM54/74LS258B Quad TRI-STATE 2 to 1 Line Inverting Data Selectors/Multiplexers 2-197
DM54/74LS259 8-Bit Serial In to Parallel Out Addressable Latch 2-202
DM54/74LS279 Quad S-R Latches 2-205
DM54/74LS283 4-Bit Binary Adders with Fast Carry 2-208
DM54/74LS290 Decade Counter 2-212
DM54/74LS293 4-Bit Binary Counter 2-216
DM54/74LS352 Dual 1 of 4 Line Inverting Data Selectors/Multiplexers 2-220
DM54/74LS365A Hex TRI-STATE Buffers/Bus Drivers 2-223
DM54/74LS366A Hex TRI-STATE Inverting Buffers/Bus Drivers 2-226
DM54/74LS367A Hex TRI-STATE Buffers/Bus Drivers 2.229
DM54/74LS368A Hex TRI-STATE Inverting Buffers/Bus Drivers 2-232
DM54/74LS373 Octal TRI-STATE Transparent D Latches 2-235
DM54/74LS374 Octal TRI-STATE Positive-Edge-Triggered D Flip-Flops 2-235
DM54/74LS390 Dual Decade (Bi-Quinary) Counter 2-240
DM54/74LS393 Dual 4-Bit Binary Counter 2-244
DM54/74LS465 (DM71/81LS95A) Octal TRI-STATE Buffers/Bus Drivers 2.247
DM54/74LS466 (DM71/81LS96A) Octal TRI-STATE Inverting Buffers/Bus Drivers 2-247
DM54/74LS467 (DM71/81LS97A) Octal TRI-STATE Buffers/Bus Drivers 2-247
DM54/74LS468 (DM71/81LS98A) Octal TRI-STATE Inverting Buffers/Bus Drivers 2-247
DM54/74LS645 Octal TRI-STATE Bus Transceivers 2-251
DM54/74LS670 TRI-STATE 4 by 4 Register File 2.254
DM54/74LS952 Dual TRI-STATE 8-Bit Positive-Edge-Triggered Rank Shift Registers 2-258
DM54/74LS962 Dual TRI-STATE 8-Bit Positive-Edge-Triggered Rank Shift Registers 2-264
Alpha-Numeric Index (Continuos)
DM54/74S00 Quad 2-Input NAND Gates 3-3
DM54/74S02 Quad 2-Input NOR Gates 3-5
DM54/74S03 Quad 2-Input NAND Gates with Open-Collector Outputs 3-7
DM54/74S04 Hex Inverters 3-9
DM54/74S05 Hex Inverters with Open-Collector Outputs 3-11
DM54/74S08 Quad 2-Input AND Gates 3-13
DM54/74S09 Quad 2-Input AND Gates with Open-Collector Outputs 3-15
DM54/74S10 Triple 3-Input NAND Gates 3-17
DM54/74S11 Triple 3-Input AND Gates 3-19
DM54/74S20 Dual 4-Input NAND Gates 3-21
DM54/74S30 8-Input NAND Gate 3-23
DM54/74S32 Quad 2-Input OR Gates 3-25
DM54/74S40 Dual 4-Input NAND Buffers 3-27
DM54/74S51 Dual 2-Wide 2-Input AND-OR-INVERT Gates 3-29
DM54/74S64 4-Wide AND-OR-INVERT Gates 3-31
DM54/74S74 Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 3-33
DM54/74S86 Quad Exclusive-OR Gates 3-36
DM54/74S112 Dual Negative-Edge-Triggered J-K Flip-Flops with Preset and Clear 3-38
DM54/74S113 Dual Negative-Edge-Triggered J-K Flip-Flops with Preset 3-41
DM54/74S133 13-Input NAND Gate 3-44
DM54/74S138 3 to 8 Line Decoder/Demultiplexer 3-46
DM54/74S139 Dual 2 to 4 Line Decoders/Demultiplexers 3-46
DM54/74S140 Dual 4-Input NAND 50Ω Line Driver 3-50
DM54/74S151 1 of 8 Line Data Selector/Multiplexer 3-52
DM54/74S153 Dual 1 of 4 Line Data Selectors/Multiplexers 3-56
DM54/74S157 Quad 2 to 1 Line Data Selectors/Multiplexers 3-59
DM54/74S158 Quad 2 to 1 Line Inverting Data Selectors/Multiplexers 3-59
DM54/74S161 Synchronous 4-Bit Binary Counter with Asynchronous Clear 3-64
DM54/74S163 Synchronous 4-Bit Binary Counter with Synchronous Clear 3-64
DM54/74S174 Hex D Flip-Flops with Clear 3-70
DM54/74S175 Quad D Flip-Flops with Clear and Complementary Outputs 3-70
DM54/74S181 Arithmetic Logic Unit/Function Generator 3-74
DM54/74S182 Look-Ahead Carry Generator 3-83
DM54/74S194 4-Bit Bidirectional Universal Shift Register 3-87
DM54/74S195 4-Bit Parallel Access Shift Register 3-91
DM54/74S240 Octal TRI-STATE Inverting Buffers/Line Drivers/Line Receivers 3-95
DM54/74S241 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 3-95
DM54/74S244 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 3-95
DM54/74S251 TRI-STATE 1 of 8 Line Data Selector/Multiplexer with Complementary Outputs 3-98
DM54/74S253 Dual TRI-STATE 1 of 4 Data Selectors/Multiplexers 3-102
DM54/74S257 Quad TRI-STATE 2 to 1 Line Data Selectors/Multiplexers 3-105
DM54/74S258 Quad TRI-STATE 2 to 1 Line Inverting Data Selectors/Multiplexers 3-105
DM54/74S280 9-Bit Parity Generators/Checkers 3-110
DM54/74S283 4-Bit Binary Adders with Fast Carry 3-114
DM54/74S299 TRI-STATE 8-Bit Universal Shift/Storage Registers 3-118
DM54/74S373 Octal TRI-STATE Transparent D Latches 3-123
DM54/74S374 Octal TRI-STATE Positive-Edge-Triggered D Flip-Flops 3-123
DM54/74S381 Arithmetic Logic Unit/Function Generator 3-128
DM54/74S940 Octal TRI-STATE Inverting Buffer 3-132
DM54/74S941 Octal TRI-STATE Buffer 3-132

Section 1
Introduction to Bipolar Logic

Section 1 Contents

Guide to Bipolar Logic Device Families 1-3
IC Device Testing 1-8
AN-363 Designing with TTL 1-16
AN-372 Designer's Encyclopedia of Bipolar One-Shots 1-19
Functional Index/Selection Guide 1-35
Glossary of Terms 1-54
Test Waveforms 1-59

Guide to Bipolar Logic Device Families

Since the introduction of the first saturating logic bipolar integrated circuit family (DM54/DM74), there have been many developments in the process and manufacturing technologies as well as circuit design techniques which have produced new generations (families) of bipolar logic devices. Each generation had advantages and disadvantages over the previous generations. Today National provides six bipolar logic families.
TTL
(DM54/DM74)
(DM54L/DM74L)
(DM54LS/DM74LS)
(DM54ALS/DM74ALS)
(DM54S/DM74S)
(DM54AS/DM74AS)

TTL LOGIC (DM54/DM74)

TTL logic was the first saturating logic integrated circuit family introduced, thus setting the standard for all the future families. It offers a combination of speed, power consumption, output source and sink capabilities suitable for most applications. This family offers the greatest variety of logic functions. The basic gate (see Figure 1) features a multipleemitter input configuration for fast switching speeds, active pull-up output to provide a low driving source impedance which also improves noise margin and device speed. Typical device power dissipation is 10 mW per gate and the typical propagation delay is 10 ns when driving a 15 $\mathrm{pF} / 400 \Omega$ load.

LOW POWER (DM54L/DM74L)

The low power family has essentially the same circuit configuration as the TTL devices. The resistor values, however, are increased by nearly tenfold, which results in tremendous reduction of power dissipation to less than $1 / 10$ of the TTL family. Because of this reduction of power, the device speed is sacrificed. The propagation delays are increased threefold. These devices have a typical power dissipation of 1 mW per gate and typical propagation delay of 33 ns , making this family ideal for applications where power consumption and heat dissipation are the critical parameters.

TL/F/5534-1

LOW POWER SCHOTTKY (DM54LS/DM74LS)

The low power Schottky family features a combined fivefold reduction in current and power when compared to the TTL family. Gold doping commonly used in the TTL devices reduces switching times at the expense of current gain. The LS process overcomes this limitation by using a surface barrier diode (Schottky diode) in the baker clamp configuration between the base and collector junction of the transistor. In this way, the transistor is never fully saturated and recovers quickly when base drive is interrupted. Using shallower diffusion and soft-saturating Schottky diode clamped transistors, higher current gains and faster turn-on times are obtained. The LS circuits do not use the multi-emitter inputs. They use diode-transistor inputs which are faster and give increased input breakdown voltage; the input threshold is $\sim 0.1 \mathrm{~V}$ lower than TTL. Another commonly used input is the vertical substrate PNP transistor. In addition to fast switching, it exhibits very high impedance at both the high and low input states, and the transistor's current gain (β) significantly reduces input loading and provides better output performance. The output structure is also modified with a Darlington transistor pair to increase speed and improve drive capability. An active pull-down transistor (Q3) is incorporated to yield a symmetrical transfer characteristic (squaring network). This family achieves circuit performance exceeding the standard TTL family at fractions of its power consumption. The typical device power dissipation is 2 mW per gate and typical propagation delay is 10 ns while driving a $15 \mathrm{pF} /$ $2 \mathrm{k} \Omega$ load.

SCHOTTKY (DM54S/DM74S)

This family features the high switching speed of unsaturated bipolar emitter-coupled logic, but consumes more power than standard TTL devices. To achieve this high speed, the Schottky barrier diode is incorporated as a clamp to divert the excess base current and to prevent the transistor from reaching deep saturation. The Schottky gate input and inter-

FIGURE 2. DM54LOO/DM74LOO

FIGURE 1. DM5400/DM7400
nal circuitry resemble the standard TTL gate except the resistor values are about one-half the TTL value. The output section has a Darlington transistor pair for pull-up and an active pull-down squaring network. This family has power dissipation of 20 mW per gate and propagation delays three times as fast as TTL devices with the average time of 3 ns while driving $15 \mathrm{pF} / 280 \Omega$ load.

ADVANCED LOW POWER SCHOTTKY (DM54ALS/DM74ALS)

The advanced low power Schottky family is one of the most advanced TTL families. It delivers twice the data handling efficiency and still provides up to 50% reduction in power consumption compared to the LS family. This is possible because of a new fabrication process where components are isolated by a selectively grown thick-oxide rather than the P-N junction used in conventional processes. This refined process, coupled with improved circuit design techniques, yields smaller component geometries, shallower diffusions, and lower junction capacitances. This enables the devices to have increased f_{\top} in excess of 5 GHz and improved switching speeds by a factor of two, while offering much lower operating currents.
In addition to the pin-to-pin compatibility of the ALS family, a large number of MSI and LSI functions are introduced in the high density 24 -pin 300 mil DIP. These devices offer the designers greater cost effectiveness with the advantages of reduced component count, reduced circuit board real-estate, increased functional capabilities per device and improved speed-power perfomance.
The basic ALS gate schematic is quite similar to the LS gate. It consists of either the PNP transistor or the diode inputs, Darlington transistor pair pull-up and active pulldown (squaring network) at the output. Since the shallower diffusions and thinner oxides will cause ALS devices to be more susceptible to damage from electro-static discharge, additional protection via a base-emitter shorted transistor is included at the input for rapid discharge of high voltage static electricity. Furthermore, the inputs and outputs are

TL/F/5534-3
FIGURE 3. DM54LS00/DM74LS00

TL/F/5534-5

FIGURE 5. DM54ALS00/DM74ALS00

FIGURE 6. DM54AS00/DM74AS00

Bipolar Logic Family Electrical Characteristics Over Operating Temperatures

		TTL	L-TTL	LS	ALS	S	AS	Units
DM5400/DM7400								
2-Input NAND	tple ${ }^{\text {* }}$	11	35	8	4	3	2.5	ns
	$t_{\text {PHL }}{ }^{*}$	7	31	8	4	3	1.5	ns
	tr^{*}	12	66	13	10	6	5	ns
	$t_{r}{ }^{*}$	5	30	3	6	3	3	ns
Mil/Com	IOH	-400	-200	-400	-400	-1000	-2000	$\mu \mathrm{A}$
	Iol	16	2/3.6	4/8	4/8	20	20	mA
	$\mathrm{IIH}^{\text {H }}$	40	10	20	20	50	20	$\mu \mathrm{A}$
	1 LL	-1.6	-0.18	-0.36	-0.20	-2	-0.50	mA
Min	los	-20	-3	-20	-30	-40	-30	mA
Max	los	- 100	-15	-100	-112	-100	-112	mA
	ICCH	8	0.8	1.6	0.85	16	3.2	mA
	ICCL	22	2.04	4.4	3.0	36	16.1	mA
Mil	V_{OH}	2.4	2.4	2.5	$\mathrm{V}_{C C}-2$	2.5	$\mathrm{V}_{C C}-2$	V
Com	V_{OH}	2.4	2.4	2.7	$\mathrm{V}_{\mathrm{CC}}-2$	2.7	$V_{C C}-2$	V
Mil	VOL	0.4	0.3	0.4	0.4	0.5	0.5	V
Com	V_{OL}	0.4	0.4	0.5	0.5	0.5	0.5	V
MilCom	V_{IH}	2	2	2	2	2	2	V
	$\mathrm{V}_{\text {IL }}$	0.8	0.7	0.7	0.8	0.8	0.8	V
	$V_{\text {IL }}$	0.8	0.7	0.8	0.8	0.8	0.8	V
	V_{1}	-1.5	N/A	-1.5	-1.5	-1.2	-1.2	V
Mil	NM-H	400	400	500	500	500	500	mV
Com	NM-H	400	400	700	700	700	700	mV
Mil	NM-L	400	400	300	400	400	300	mV
Com	NM-L	400	300	300	300	300	300	mV
Gate Power x Delay Product		100	20	20	4	60	30	pj
DM5474/DM7474								
D Flip-Flop	${ }_{\text {tPLH }}{ }^{*}$	14	50	17	5	8	6	ns
(CLK to Q)	tPHL* *	20	60	22	8	9	6	ns
(PS or	tPLH*	14	40	17	7	6	4.5	ns
CLR to Q)	tPHL^{*}	20	60	22	10	12	6	ns
(CLK HI)	$t^{\text {w }}$	30	75	25	12	8	4	ns
(PS or	$t_{\text {w }}$	30	75	20	15	9	4	ns
tset-up thold		20	50	25	15	3	3/2	ns
		5	15	0	0	2	2/1	ns
	tr^{*}	13	64	9	17	4	5	ns
	$t_{r}{ }^{*}$	6	19	6	9	3	3	ns
	$\mathrm{f}_{\text {MAX }}{ }^{*}$	25	11	33	34	95	125	MHz
Mil/Com	$\mathrm{IOH}^{\text {O }}$	-400	-200	-400	-400	-1000	-2000	$\mu \mathrm{A}$
	loL	16	2/3.6	4/8	4/8	20	20	mA
(CLK/D)	1 IH	80/40	20/10	20	20	100/50	20	$\mu \mathrm{A}$
(PS/CLR)	$\mathrm{IIH}^{\text {H}}$	40/120	20/30	40	40	100/150	40	$\mu \mathrm{A}$
(CLK/D)	IIL	-3.2/-1.6	$-0.36 /-0.18$	-0.4	-0.2	-4/-2	-0.5	mA
(PS/CLR)	ILL	$-1.6 /-3.2$	$-0.18 /-0.36$	-0.8	-0.4	$-4 /-6$	-1.0	mA

Bipolar Logic Family Electrical Characteristics Over Operating Temperatures (Continued)								
		TTL	L-TTL	LS	ALS	S	AS	Units
DM5474/DM7474 (Continued)								
Min	los	-20/-18	-3	-20	-30	-40	-30	mA
Max	los	-55	-15	-100	-112	-100	-112	mA
	ICC	15	3	8	4	50	16	mA
Mil	V OH	2.4	2.4	2.5	$\mathrm{V}_{\mathrm{CC}}-2$	2.5	$\mathrm{V}_{\mathrm{CC}}-2$	\checkmark
Com	V_{OH}	2.4	2.4	2.7	$\mathrm{V}_{\mathrm{CC}}{ }^{-2}$	2.7	$\mathrm{V}_{\mathrm{CC}}-2$	V
Mil	V OL	0.4	0.3	0.4	0.4	0.5	0.5	V
Com	V_{OL}	0.4	0.4	0.5	0.5	0.5	0.5	V
	V_{IH}	2	2	2	2	2	2	V
Mil/Com	$V_{\text {IL }}$	0.8	0.7	0.7/0.8	0.8	0.8	0.8	V
	V_{1}	-1.5	N/A	-1.5	-1.5	-1.2	-1.2	V
Mil	NM-H	400	400	500	500	500	500	mV
Com	NM-H	400	400	700	700	700	700	mV
Mil	NM-L	400	400	400	400	300	300	mV
Com	NM-L	400	300	300	300	300	300	mV

Note: See Test Waveforms in this section for loading conditions, t_{r} and t_{t} are measured from 10% to 90% of waveform.
Note: NM-H is noise margin high. NM-L is noise margin low.
*Typical values. Other values are limit values.
Blpolar Logic Family Output Source/SInk Capabillty: 54/74 Familles

Output			TTL	L-TTL	LS	ALS	S	AS	Units
Standard	Mil	IOH	-0.4	-0.2	-0.4	-0.4	-1	-2	mA
	Com		-0.4	-0.2	-0.4	-0.4	-1	-2	mA
	Mil	lOL	16	2	4	4	20	20	mA
	Com		16	3.6	8	8	20	20	mA
Buffered	Mil	IOH	-0.8	-0.2	-0.4	-1	-1	-12	mA
	Com		-0.8	-0.2	-0.4	-2.6	-1	-15	mA
	Mil	lOL	16	2	4	12	20	32	mA
	Com		16	3.6	8	24	20	48	mA
Bus Driver	Mil	lOH	-2	N/A	-1	-12	-2	-48	mA
	Com		-5.2	N/A	-2.6	-15	-6.5	-48	mA
	Mil	loL	32	N/A	12	12	20	40	mA
	Com		32	N/A	24	24-48	20	48	mA

Fan-in and Fan-Out

	TTL	L-TTL	LS	ALS	S	AS	Units
Input Load: high	1	0.25	0.5	0.5	1.25	0.5	U.L.
Low	1	0.1125	0.225	0.125	1.25	0.3125	U.L.
Output Drive: High	10	2.25	5	5	12.5	12.5	U.L.
Low	10	5	10	10	25	50	U.L.

Note: UNIT LOAD (U.L.) Standard is referenced with respect to standard TTL device loading. It is defined as:
1 U.L. $=40 \mu \mathrm{~A}$ (HIGH STATE)
1 U.L. $=1.6 \mathrm{~mA}$ (LOW STATE)

IC Device Testing

Understanding the intent and practice of IC device testing is vital to insuring both the quality and proper usage of integrated circuits. All National Semiconductor data sheets list the AC and DC parameters with min and/or max limits, along with forcing functions. Understanding when a part fails the limit, and which forcing functions are really tighter, is critical when determining if an IC device is good or bad.
All of National's databook parameters are defined and guaranteed for "worst-case testing." Input loading currents (fanin) are tested at the input and $V_{C C}$ levels that most increase that loading, while the output drive capability (fan-out) is tested at the input and $V_{C C}$ levels that most decrease that capability. ICC is tested with the input conditions and $V_{C C}$ level that yield the greatest ICC value, and V VLAMP is tested such that the negative voltage is maximized for the given clamp current. The fan-in and fan-out specs are contained in the $I_{I H}, I_{O H}, I_{I L}$ and $I_{O L}$ values. To guarantee these fan-in and fan-out limits at 10, the lol must be at least 10 times the $I_{I L}$ and the $I_{O H}$ must be at least 10 times the $I_{I H}$. Be aware that the fan-in and fan-out specifications are valid only within a given device family. The standard input loading and output drives are shown in Table I.
Notice that the loL is at least 10 times the $I_{I L}$ and that the I_{OH} is greater than 10 times the I_{IH}. Also notice that these are "standard" drive and load currents for single sink outputs and inputs. Certain devices may have multiple load inputs where the input line goes to several input structures and has, say, 2 or 3 times the normal $l_{I L}$ and $I_{I H}$ loading.

Certain other devices will have "triple sink" outputs that can drive 3 times the standard l_{OL} and $\mathrm{IOH}_{\mathrm{OH}}$ currents. These devices are generally bus drivers, or drivers intended to drive highly capacitive loads. Finally, there are certain devices that have PNP inputs that reduce the I/L loading to typically $-200 \mu \mathrm{~A}$, thus allowing an increased DC fan-in of 20 . One must therefore be careful when interfacing many different types of devices, even in the same family, and not simply go the "fan-out of 10" rule.
When dealing with any kind of device specification, it is important to note that there exists a pair of test conditions that define that test: the forcing function and the limit. Forcing functions appear under the column labeled "Conditions" and define the external operating constraints placed upon the device tested. The actual test limit defines how well the device responds to these constraints. For example, take the parameter $\mathrm{V}_{\mathrm{OH}(\mathrm{min})}$ for the DM74LSOO. It is tested at $\mathrm{V}_{\mathrm{CC}(\text { min })}=4.75 \mathrm{~V}$ commercial, using an $\mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$. If we required an $\mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}$, this would be a "tighter" test, as the output voltage drops with increased I_{OH}. Hence, a device that would pass the $-800 \mu \mathrm{~A} \mathrm{IOH}^{\text {would also pass }}$ the $-400 \mu \mathrm{AlOH}$, but not necessarily the other way around. Futhermore, V_{OH} tracks with V_{CC}, which is why $\mathrm{V}_{\mathrm{CC}(\text { min })}$ is the worst-case testing, and not $\mathrm{V}_{\mathrm{CC}}(\max)$. Finally, forcing inputs to threshold represents the most difficult testing because this puts those inputs as close as possible to the actual switching point and guarantees that the device will meet the $\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}$ spec.

TABLE I. Fan-In/Fan-Out

Device Family	Input Loading	Output Drive
TTL	$\begin{aligned} & \mathrm{I}_{\mathrm{LL}}=-1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{H}}=40 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$
Low Power Schottky	$\begin{aligned} & I_{L}=-400 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{H}}=20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{IOL}_{\mathrm{OL}}=4 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{IOL}^{2}=8 \mathrm{~mA}(\mathrm{Com}) \\ & \mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \end{aligned}$
Advanced Low Power Schottky	$\begin{aligned} & I_{I L}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{IH}}=20 \mu \mathrm{~A} \end{aligned}$	$\mathrm{IOL}_{\mathrm{OL}}=4 \mathrm{~mA}$ (Mil) $\mathrm{IOL}_{\mathrm{OL}}=8 \mathrm{~mA}$ (Com) $\mathrm{l}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
Schottky	$\begin{aligned} & I_{\mathrm{IL}}=-2 \mathrm{~mA} \\ & I_{\mathrm{IH}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
Advanced Schottky	$\begin{aligned} & \mathrm{I}_{\mathrm{IL}}=-500 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{IH}}=20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA} \end{aligned}$
Low Power	$\begin{aligned} & I_{\mathrm{IL}}=-180 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{IH}}=10 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}(\mathrm{Mil}) \\ & \mathrm{IOL}_{\mathrm{OL}}=3.6 \mathrm{~mA}(\mathrm{Com}) \\ & \mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A} \end{aligned}$

Tables II and III show the "direction" of the looser/tighter testing for most common DC parameters. Notice that one can tighten either the forcing function or the limit, or both. Tightening either one is sufficient to insure a tighter test. Also notice the difference between max and min limits. For los (double-ended limits), even though -20 mA is more positive than -100 mA , and is mathematically the max limit,
the magnitude of the number is the determining factor when deciding which is the max limit. The negative sign simply implies the direction that the current is going, with a negative current leaving the device, and a positive current entering the device. Table II shows the direction of tighter forcing functions, while Table III shows the direction of tighter limits.

TABLE II. Looser/TIghter Forcing Functions Example: DM74LS00

Condition	Test	Looser	Nominal	Tighter	Units
I_{IK}	V_{IK}	-17	-18	-19	mA
$\mathrm{IOH}_{\mathrm{OH}}$	V_{OH}	-350	-400	-450	$\mu \mathrm{~A}$
I_{OL}	V_{OL}	3	4	5	mA
$\mathrm{~V}_{\mathrm{I}}$	I_{IH}	6.5	7	7.5	V
$\mathrm{~V}_{\mathrm{IH}}$	I_{IH}	2.6	2.7	2.8	V
$\mathrm{~V}_{\mathrm{IL}}$	I_{IL}	0.5	0.4	0.3	V
$\mathrm{~V}_{\mathrm{O}}$	$\mathrm{IOS}_{\mathrm{OS}}$	0.1	0.0	-0.1	V
$\mathrm{~V}_{\mathrm{CC}}$	I_{CC}	5.0	5.5	6.0	V

TABLE III. Looser/Tighter Test LImits Example: DM74LS00

Parameter	Looser	Nominal	Tighter	Units
$V_{I H(\text { min })}$	2.1	2.0	1.9	V
$V_{\text {IL(max }}$	0.7	0.8	0.9	V
$V_{\text {IK(max }}$	-1.6	-1.5	-1.4	V
$\mathrm{VOH}_{(\text {min }}$)	2.6	2.7	2.8	V
$V_{\text {OL(max }}$)	0.6	0.5	0.4	V
$1($ min $)$	6.5	7.0	7.5	V
$\mathrm{I}_{1 / \mathrm{H}(\text { max })}$	50	40	30	$\mu \mathrm{A}$
$I_{1 L}($ max $)$	-450	-400	-390	$\mu \mathrm{A}$
los(max)	-110	-100	-90	mA
los(min)	-10	-20	-30	mA
${ }^{\text {CCH (max }}$)	1.7	1.6	1.5	mA
ICCL(max)	4.5	4.4	4.3	mA

Following are the test set-ups that are used to test the DC parametrics. In each case, the gate connection, equivalent circuit schematic and resultant voltage/current plot are shown.
The indicated graphs are typical of LS products and are similiar to other bipolar logic families. The schematics shown are for single inversion devices and represent generalized circuits.

OUTPUT VOLTAGE LOW LEVEL (VOL)

Both inputs are connected to logic "1" values (assuming an inverting gate) and forced at the V_{IH} specs. V_{CC} minimum is used, and I_{OL} is forced on the output. The resulting V_{OL} is

TL/F/6731-1

TL/F/6731-3

measured. For typical LS products, the military and commercial test points are indicated on the V_{OL} vs loL graph. In each case, the device must not exceed the $\mathrm{V}_{\mathrm{OL}} \mathrm{spec}$ when the IOL current is being forced.

OUTPUT VOLTAGE HIGH LEVEL (VOH)

One input is tied high (any value above 2.0 V) and the other input is forced at the V_{IL} threshold (assuming a single inversion gate). The minimum $V_{C C}$ value is used. Each input is tested independently and the I_{OH} current is forced. The resulting V_{OH} is measured. The $\mathrm{V}_{\mathrm{OH}} \mathrm{vs} \mathrm{IOH}_{\mathrm{OH}}$ graph shows the military and commercial $\mathrm{VOH}_{\mathrm{OH}} / \mathrm{lOH}_{\mathrm{OH}}$ test points for standard LS products.

TL/F/6731-2

TL/F/6731-4

TL/F/6731-6

INPUT CURRENT HIGH LEVEL (IH)

$I_{I H}$ tests the input leakage in the high state. For MET, diode, and PNP input, the test set-up consists of all inputs except the one under test tied high (greater than V_{IH}). The remaining input has the V_{IH} value forced upon it, and the resultant $l_{\mid H}$ is measured. This test checks for emitter-to-collector inverse transistor action for MET inputs, and reverse bias leakage for diode and PNP inputs.

For MET inputs, there is also an additional set-up for l_{H} testing that checks for emitter-to-emitter transistor action. This is done with all the other inputs tied to ground.

MAXIMUM INPUT CURRENT (l_{1})

I/ or $\mathrm{BV}_{\mathrm{IN}}$ testing is the same as the emitter-to-collector leakage test $\left(l_{\mid H}\right)$ and guarantees that the input will not pass more than the specified current at the stated specification ($100 \mu \mathrm{~A}$ at 7 V for LS).

TL/F/6731-7

TL/F/6731-9

TL/F/6731-11

INPUT CURRENT LOW LEVEL (IIL)

One input at a time is tested with the other inputs tied to a solid " 1 " value. $V_{C C}$ is set to the maximum value and the $V_{\text {IL }}$ value is forced. $I_{\text {IL }}$ is then measured.

$$
\begin{aligned}
& I_{I L}=\frac{\left[V_{C C}-\left(V_{I L}+V_{B E}\right)\right]}{R 1} \text { Standard Inputs } \\
& I_{I L}=\frac{\left[V_{C C}-\left(V_{I L}+V_{S H}\right)\right]}{R 1} \text { Diode Inputs } \\
& I_{I L}=\frac{\left[V_{C C}-\left(V_{I L}+V_{B E}\right)\right]}{R 1 \times \beta} \text { PNP Inputs }
\end{aligned}
$$

$I_{I L}$ is intended to measure the value of the base pull-up resistor on the input, and to guarantee the maximum input load an IC presents.

TL/F/6731-10

TL/F/6731-12

OUTPUT SHORT CIRCUIT CURRENT (IOS)

l_{OS} is measured with $\mathrm{V}_{\mathrm{CC}(\text { max })}$ and the V forced on the output while it is in the high state. The resultant current is measured. The purpose of this is to check the los resistor that forms the Darlington's collector pull-up. This parameter is important as it reflects both the maximum current the device will draw and the maximum drive it will provide when it is switching from low to high.
Caution must be taken when measuring TTL, LS and S outputs as the power dissipated on the die will be substantial. los shorts should not be maintained in excess of one second or damage to the device may result.

TL/F/6731-13

TL/F/6731-15

TL/F/6731-17

SUPPLY CURRENT HIGH LEVEL (ICCH) AND SUPPLY CURRENT LOW LEVEL (IccL)

Both $\mathrm{I}_{\mathrm{CCH}}$ and $\mathrm{I}_{\mathrm{CCL}}$ are tested using the V_{CC} maximum value. The inputs are set to the values necessary to achieve the output in the desired state. All outputs are left open, neither sourcing nor sinking current. The goal of this test is to guarantee the maximum quiescent operating power that the device will draw.

TL/F/6731-16

TL/F/6731-18

INPUT CLAMP VOLTAGE (V_{IC} OR V_{IK})

$V_{\text {CLAMP }}\left(V_{I K}\right)$ is measured with all but one input tied high and the $l_{I K}$ current forced on the remaining input. $V_{C C}$ is set to the minimum and the $\mathrm{V}_{I K}$ voltage is measured.

OUTPUT TRI-STATE CURRENT HIGH LEVEL (IOZH) AND OUTPUT TRI-STATE CURRENT LOW LEVEL (lozl)
TRI-STATE ${ }^{\circledR}$ I SINK and ISOURCE are measured with the output control input tied to the appropriate threshold value (usually $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$) and with $\mathrm{V}_{\mathrm{CC}(\max)}$. This is to insure that
$V_{\text {CLAMP }}$ vs IcLAMP Typical LS Device Curve

TL/F/6731-22
the output will have the greatest drive capability and the TRI-STATE control can effectively "turn off" the output under these conditions.
TRI-STATE IsINK: Output is set in the high state and then TRI-STATE mode. $\mathrm{V}_{\text {OZL }}=0.4 \mathrm{~V}$ is then applied. The current drawn out of the device is then measured.
TRI-STATE ISOURCE: Output is set in the low state and then TRI-STATE mode. $\mathrm{V}_{\mathrm{OZH}}=2.7 \mathrm{~V}$ is then applied. The current drawn into the device is then measured.

TL/F/6731-23

HIGH LEVEL OUTPUT CURRENT (OPEN-COLLECTOR DEVICES ONLY)

$I_{C E X}$ is tested with the output in the high state. $V_{C C}$ is set to 5.0 V and the specified voltage (5.5 V for LS) is applied to the output. The inputs are at the threshold values $(0.8 \mathrm{~V}$ and 2.0 V , depending upon the logic to put output in the high state) and the resulting ICEX leakage current is measured.

TL/F/6731-25

AC SWITCHING CHARACTERISTICS

The $A C$ switching characteristics are generally measured in units of time (commonly in nanoseconds), and define how long it takes for the signal to propagate from the input to the output. The definitions used in determining the pass/fail status of each limit are not the same for AC as they are for DC. The distinction lies in the fact that for DC operation there exists one characteristic V-I curve on which the device must operate. Devices are good if they operate on the correct side of the limit, and bad if they operate on the wrong side of the limit. When dealing with certain AC parameters (${ }^{\text {max, }} \mathrm{t}_{\text {SET-up, }} \mathrm{t}_{\text {hold }} \mathrm{t}_{\text {Release, }} \mathrm{t}_{\text {pW }}$), the device can, and usually does, operate on both sides of the databook limit. The limit really implies a boundary that all devices are guaranteed to exceed. Depending upon the parameter, the device will either operate at all values above and some below the limit, or it will operate at all values below and some above the limit. In each case, the device is only guaranteed to operate for all values on one side of the limit. Although the device will also operate beyond the limit, it is not guaranteed to. Furthermore, device operation beyond the limit is not considered a failure. For instance, take the f MAX parameter with a min limit of 25 MHz . All devices are guaranteed to operate at all frequencies below 25 MHz and will operate in excess of 25 MHz , although this is not guaranteed. Now, take the example of $\mathrm{I}_{\text {SET-UP }}$ with a minimum limit of 25 ns . All of the devices are guaranteed to operate with a set-up time of 25 ns and longer, and will operate with set-up times below 25 ns , although this is not guaranteed either. Be aware that both of these specifications are listed in the minimum column in the databook, but the interpretation of what is failing differs significantly.
Propagation delays (called prop delays and denoted by the symbols $t_{P H L}$ and $\left.t_{P L H}\right)$ are specified as maximum limits, and guarantee the maximum time one must wait to insure that the correct data has appeared at the device's output. Each propagation delay is specified from one input to one output only.
Input set-up and hold times (including $t_{\text {RELEASE) }}$ specify how long one input must be stable at a particular logic level prior to an action occurring at another input. For example, take the DM54/74LS74 positive-edge-triggered D flip-flop. The "set-up 1" specification defines how long a logic " 1 " must be present and stable at the DATA input prior to the positive edge of the CLOCK to insure that the device will recognize that data as a " 1 ". There also exists a "hold 1" specification which specifies how long a logic " 1 " must be held after the active edge of CLOCK for the device to recognize that logic " 1 ". Both the set-up and hold times must always be met or the device will not necessarily bring in the proper data. Set-up times are generally positive, while hold
times may be either positive or negative, usually negative. The meaning of a negative hold time is that the data may be removed from the input prior to the active edge of CLOCK, and the CLOCK will still bring in the desired data. Set-up and hold times are specified as minimum values, since this defines the minimum time data must be stable prior to any change at the CLOCK input. Removing the data sooner than the minimum time may cause improper action on the part of the device.
$t_{\text {release }}$ is specified on devices where there is an input that must be set inactive prior to the active edge of CLOCK. Such inputs are usually overriding inputs like CLEAR and PRESET. With CLEAR active, it will prevent the device from switching on the CLOCK signal. trelease is defined as the time it takes for the CLEAR input to "release" the device for clocking action, and is specified as a minimum. This represents the maximum delay required between CLEAR going inactive and the active edge of CLOCK to insure proper device operation.
All devices that have a CLOCK input also have a specification that defines the maximum speed that the CLOCK can be driven, called $f_{\text {MAX }}$. This specification is defined as a minimum specification and states that all of the devices will
be able to operate at frequencies up to 25 MHz . For the DM54/74LS74 with an f mAX of 25 MHz , all of the devices are guaranteed to operate at all clock frequencies, up to and including 25 MHz . Although no devices are guaranteed to operate above fmax (only below it), most devices will operate beyond the maximum specification. The minimum limit does not state that the device will not operate below $f_{\text {MAX }}$ or that any devices that do are bad, but rather that all the devices will operate up to the limit.
Table IV shows the direction of the tighter testing for the more common AC parameters. All prop dealys (those AC parameters that have the symbols $\mathrm{t}_{\mathrm{PLH}}$ or $\mathrm{t}_{\mathrm{PHL}}$) have simple $\mathrm{min} / \mathrm{max}$ limits. The device is guaranteed to operate within the bounds of the min/max limits, and any operation outside these limits denotes a device failure. $\mathrm{t}_{\text {SET }}$ UP, $\mathrm{t}_{\text {HOLD }} \mathrm{f}_{\text {MAX }}$, and $t_{\text {RELEASE }}$ parameters have limits that denote guaranteed operation boundaries (i.e., the device is guaranteed to operate up to the boundary) but no guarantee is made concerning the device operation (or lack of it) beyond the boundary.
For detailed information on the AC waveforms, please see the test waveforms in this section.

TABLE IV. Looser/Tighter AC Test Limits Example: DM74LS74

Test	From	Looser	Nominal	Tighter	Units
$f_{\text {max }(\text { min })}$		24	25	26	MHz
$t_{\text {PLH }}$ (max)	CLR, PRE, CLK	26	25	24	ns
$\mathrm{t}_{\text {PHL (max) }}$	CLR, PRE, CLK	31	30	29	ns
${ }^{\text {tw}}$ (min)	CLOCK HIGH	21	20	19	ns
${ }^{\text {tw}}$ (min)	PRE, CLR LOW	26	25	24	ns
tSET-UP(min)	DATA HIGH	21	20	19	ns
tSET-UP(min)	DATA LOW	21	20	19	ns
$\mathrm{t}_{\mathrm{HOLD}}(\mathrm{min})$	All DATA	1	0	-1	ns

Designing with TTL

54/74 series TTL has been used for more than a decade with excellent results, and continues to be a standard choice for design engineers because of the wide performance range and system optimization possible from the different families available. 54/74 logic comes in 7 different speed/power families (standard TTL, LS, S, ALS, AS, and L) that allow a design engineer to select device performance to suit his needs. Understanding the differences and the general limitations of all these families will go a long way toward insuring that a system will operate as intended with the minimum of corrections and redesigning.

FAMILY COMPATIBILITY: Intermixing Logic Types in One Design

Family interchangeability is a beneficial characteristic of the different TTL families and provides the designer with the ability to customize specific areas of his design in order to accomplish the task of achieving both high performance and the lowest power consumption possible. However, interchangeability is not simply a matter of replacing, say, an SOO for an LSOO to improve the speed and replacing an LS00 for an S00 for power savings. One must also look at the DC and $A C$ characteristics to insure that the replacement device will be compatible with the existing circuit. The DC problems include input loading and compatible output drive capabilities. The AC problems include insuring that the new device speeds will be acceptable to the rest of the system. The different logic families also generate different amounts of noise and have different noise immunity. Finally, measure points for the AC parameters of the different families, although very similar, do vary some, and this will require attention.

SUPPLY RAILS: Why Not to Exceed the Specs

All bipolar logic (both junction and oxide isolated) is made up of selectively located regions of differently doped materials that form transistors, resistors, and diodes. Because of this, certain overall requirements are necessary to insure that the IC will be able to perform its task without interference from its environment. The first characteristic of bipolar devices is that the two power rails (V_{CC} and ground) represent the two voltage extremes that should be used in any system. Certain exceptions exist, primarily inputs and opencollector outputs that are pulled up to higher voltages than $V_{C C}$. However, while it is occasionally permissible to exceed the V_{CC} specification, it is never permissible to drive any input or output more than 0.5 V below the ground reference. This limitation is due to the method used to electrically isolate the many circuit elements that are present on a bipolar IC. Oxide isolated devices use an oxide layer surrounding the various transistor and resistor tanks to provide an insulating barrier, while the original junction isolated devices use reverse biased PN junctions to provide that barrier. In both cases, the circuit is built on a P-type substrate that uses reverse biased PN junctions to separate the different circuit elements. The ground pin is electrically connected to the substrate and must be the most negative voltage on the device. When an input or output pin is taken below ground, the normally reverse biased isolation regions between the elements become forward biased and electrically connect

National Semiconductor Corp. Application Note 363 Walt Sirovy
these elements together, thus eliminating the integrity of the circuit. This may or may not result in actual damage to the device depending upon the magnitude of the violating signal and the specifics of the device being violated. This holds true for both junction and oxide isolated logic. Oxide isolated logic may provide more margin before failing (thereby "working" in some marginal designs), but it is nevertheless subject to the same kind of limitations as junction isolated logic.

IMPROPER GROUNDING: Nolse Immunity, Floating Grounds

Bipolar logic uses the ground rail as the signal reference. Consequently, any modulation on the ground line will be directly added to the signal voltage. The logic " 0 " input noise margin is guaranteed as the difference between the $V_{O L}$ and $V_{\text {IL }}$ specification, and the logical " 1 " input noise margin is guaranteed as the difference between the V_{OH} and $\mathrm{V}_{I H}$ specification. This noise margin is intended to be protection against a reasonable amount of noise present. Insufficient grounding techniques can cause significant If and I_{L} drops on the ground line between two ICs and result in a "floating" ground line. This is due to the large currents that are present on ground and $V_{C C}$ during high speed switching and means that the two devices are not using the same reference point. Any voltage drop in the ground line is added to the signal and ends up consuming some of the noise margin. Eventually, the mismatch caused by the floating ground will exceed the total noise margin and cause erroneous data to propagate through the system. The solutions to this problem are many and varied, but all of them revolve around improving the system grounding and include such ideas as providing separate signal and power grounds.

$V_{C C}$ NOISE AND DECOUPLING: Providing Clean Power

The $V_{C C}$ power rail is also susceptible to both I_{R} and I_{L} voltage drops. The problems that arise from the V_{CC} line are not the same as the problems that arise from the ground line. Since the $V_{O H}$ level tracks the $V_{C C}$ almost exactly, any voltage loss on the $V_{C C}$ line is directly transferred to the V_{OH} level. However, the noise margin for the logic high state is typically 700 mV for commercial and 500 mV for military product, versus 400 mV and 300 mV for commercial and military product, respectively, for the logic low level. The main consequences of a drooping V_{CC} line now become $\mathrm{IOL}_{\mathrm{OL}} / \mathrm{IOH}_{\mathrm{OH}}$ drive capability, and the AC performance in critical applications. Although bipolar devices are only guaranteed to operate over a given V_{CC} range ($5 \mathrm{~V} \pm 10 \%$), these devices typically function to V_{CC} values as low as 4 V . Be aware that if the device does indeed function down to 4 V , the AC and DC characteristics will be compromised, some quite severely.
Designing in a good power distribution system will insure that all the devices in the circuit will perform the same, regardless of their physical location. Properly decoupling the $V_{C C}$ against both high and low frequency noise will help eliminate any problems with individual device operation. High frequency noise (100 MHz and above) comes primarily from two sources, while low frequency noise (less than 25 MHz) results from primarily one source.

SOURCES OF HIGH FREQUENCY NOISE ON THE VCc LINE

1) High frequency noise results from the device rapidly switching logic levels. The bulk of the switching current from a low to high transitions shows up in Icc current surges, while the bulk of the switching current from a high to low transition shows up in ground current surges.
2) Noise is transmitted through the changing magnetic fields that result from the changing electric fields in a switching line and are picked up on adjacent signal paths.
Note that the frequency causing the noise is not the signal's frequency, but the frequency of the signal's slew rate. For instance, in an SOO that is switching OV to 3 V at 1 MHz , the slew rate of the output is typically about $1 \mathrm{~ns} / \mathrm{V}$, which is a frequency of around 160 MHz . The faster the slew rate, the higher the frequency, until one has an ideal square wave with infinite frequency. It is this frequency component that gives rise to the strong magnetic fields associated with switching bipolar devices.

SOURCES OF LOW FREQUENCY NOISE ON THE VCC LINE

1) Low frequency noise results from the change in the ICC current demand as devices change state. For instance, gates, flip-flops, and registers will draw different ICC currents, depending upon the state of the outputs.

The most commonly used method for countering these noise problems is to decouple the V_{CC} line. With this approach, capacitors are used to stabilize the $V_{C C}$ line and filter out the unwanted frequency components. A small value capacitor (i.e., $0.1 \mu \mathrm{~F}$) is used near the device to insure that the transient currents arising from device switching and magnetic coupling are minimized. A large value capacitor (i.e., $50 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$) is used on the board in general to accommodate the continually changing Icc requirements of the total $V_{C C}$ bus line. The following table shows a rough "rule of thumb" approach to determining how many capacitors to use for a given number if ICs. Be aware that the table is not a hard and fast rule, and that you must always evaluate your particular application to insure that there is sufficient V_{CC} decoupling. When using these guidelines, be sure that the devices are located near each other and near the capacitor. If the capacitor is too far away, I_{R} and I_{L} drops will diminish the capacitor's effect. All capacitors (especially the $0.01 \mu \mathrm{Fs}$) must be high frequency RF capacitors. Disk ceramics are acceptable for this application. Keep in mind that, in synchronous systems, since a majority of the devices will be switching at once, alter your power distribution system accordingly.

Device Family

AS, S, ALS, LS, H
TTL, L

Number of Capacitors
 1 Cap per 1 device
 1 Cap per 2 devices

TYING ALL UNUSED INPUTS TO A SOLID LOGIC LEVEL

Unused inputs on TTL devices float at threshold, anywhere from 1.1V to 1.5 V , depending upon the device and its family. While this usually simulates a "high", many application problems can be traced to open inputs. Inputs floating at threshold are very susceptible to induced noise (transmitted from other lines) and can easily switch the state of the device. A good design rule is to tie unused inputs to a solid logic level. Inputs are usually tied to $V_{C C}$ through a $1 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$ resistor, since tying them to ground means supplying the $I_{I L}$ current instead of the $I_{I H}$ current. $I_{I L}$ is several orders of magnitude greater than I_{IH}. The resistor is recommended
to protect the input against $V_{C C}$ voltage surges and to protect the system against the possibility of the input shorting directly to ground. A single 1 k resistor can handle up to 10 inputs.

TERMINATIONS: Why Terminate a Transmission Line?

Whenever signals change voltage levels, a wavefront is created that propagates according to the characteristics of the transmission line being used. If the overall length of the signal path is short compared with the signal's wavelength ($1 /$ frequency), then none of the complications of transmission lines are present. However, if the length of the signal path is long in comparison, then the wavefront will be significantly affected by the geometry and composition of that transmission line.
Fortunately, when dealing with a single board layout, the distances are usually short enough that one need not worry about the difficulties of terminating or impedance matching the line. However, if one is driving between boards or over long distances, he must be aware of the characteristics involved. When dealing with transmission lines it is necessary to know the impedance of the line. Every time the signal wavefront encounters a discontinuity (a point where the impedance changes, whether from a branch, junction or because of a change of environment), the opportunity for reflections and standing waves is present. These waves can easily cause the loss of the signal's integrity, having the ability to build voltages that are large enough to destroy an IC. Proper line termination will insure that the signal propagates down the line and is totally absorbed at the receiving end, thus preventing these waves from occurring.
Listed below is a guideline to the types of transmission lines to use when sending signals over various distances.
$0^{\prime \prime}$ to $12^{\prime \prime}$ Single wire conductor OK. Use point-to-point routing and avoid parallel routing if possible. Ground plane recommended, but not mandatory. Space conductors as far apart as possible to reduce line to line capacitance.
$12^{\prime \prime}$ to 6^{\prime} Dense ground plane required with wire routed as closely as possible. Twisted-pair lines or coaxial cable mandatory for clock lines and recommended for all sensitive control lines.
Over 6' Use fully terminated transmission lines. Avoid the use of radially distributed lines and avoid sharp bends in the line. Be aware that transmission lines have complex impedances and are not simply resistive in nature.

BUS DRIVERS: On Board vs Off Board

Many of the TRI-STATE © buffers and flip-flops are intended to connect directly to the system bus and must be able to drive heavily capacitive loads. Keeping this in mind, all of National's LS TRI-STATE devices have "triple-sink" capability; that is, the $\mathrm{IOL}_{\mathrm{O}}$ and $\mathrm{IOH}_{\mathrm{OH}}$ drive currents have been tripled. However, these devices are intended to drive single board buses. Driving off the board with these devices can easily lead to serious problems.
When using standard logic bus drivers on a single board, be aware that many of the octal and bus oriented devices have PNP inputs to reduce DC loading. PNP inputs on 54S/74S devices tend to be more capacitive than the corresponding diode or emitter inputs, and as such, compromise the AC loading of the bus. Careful attention must be given to both DC and AC loading when driving heavily loaded buses. PNP
inputs on LS/AS/ALS operate at significantly lower currents and do not significantly increase capacitive load.
It is strongly recommended that any time a bus line leaves a board, interface bus drivers be used. These devices (see National's 1986 Interface/Databook) are specifically designed to impedance match different kinds of transmission lines and have the necessary current drive to handle the job. Using an ordinary logic device will usually yield poor results. If one must drive a transmission line with a logic device, there are some guidelines that should be followed to minimize the problems that can result.

1) Take care to properly terminate the bus. Be aware that every time a signal passes through a different impedance, an interface is created and that any impedance mismatch will result in reflections.
2) Never drive off the board with a bistable element like a flip-flop or a latch. This is because those devices are very susceptible to reflected waves changing their state. By buffering the output of the latch with another device, the reflected wave can affect the output of the buffer, but not the latch. This means that when the wave finally dies out, the latch will still have the proper data and the buffer will "snap back" to the proper output.
3) Be sure to carry an adequate ground plan with the signals and to shield the bus. Carrying a good ground plan (use multiple ground lines spaced around the connector if possible) will reduce the problem of floating ground, and the shielding will help protect the signal lines for induced noise. Using twisted-pair transmission lines for critical signals helps to eliminate the capacitive coupling that can degrade signals, or even cause false signals.
4) It is best to buffer any clock or control lines that depend upon fast, clean switching. Buffering at both the sending and receiving end will go a long way toward insuring that the clock can accomplish its goals.
5) Use the devices with Schmitt inputs to add to the noise margin of the receiving device. This will help increase the noise rejection of the system. Decouple each receiver separately, connecting the capacitor directly between ground and $V_{C C}$. Make sure that the device ground is tied directly to the bus ground.
6) If using open-collector devices to drive the bus, add a pull-up resistor on the input to the receiving device if the IOL current of the driving device can handle it. A resistance in the 300Ω range will significantly improve the signal's rise time.

AC LOADING: What Do AC Loads Look Like, and Why?

The standard AC load for all of the logic families, except ALS and AS, is built around a diode chain to ground and a pull-up resistor to $V_{C C}$ with added capacitance. This load is designed to look like the standard logic circuit input structure, and to simulate the appearance of switching in an actual application. For ALS and AS, the load is built around a resistor to ground and added capacitance. This is primarily for the requirements of high speed device testing. There also exists a set of standardized military AC loads that were
designed to approximate the input structure, while using no switches for the TRI-STATE parameters. Please see waveforms in this section. In the final analysis of these loads, it must be kept in mind that they represent a standard that can be used to determine the quality of an IC. No load will be able to predict exactly how a device will perform in a circuit or the speeds that a device can achieve in a good test jig with the spec load, as compared to the speeds that a device will produce in an application.

OPEN-COLLECTOR DEVICES: What They Are, How to Use Them

Open-collector devices are totem pole outputs where the upper output (usually a Darlington transistor) is left out of the circuit. As such, these devices have no active logic high drive and cannot be used to drive a line high. The advantage to open-collector devices is that a number of outputs can be directly tied together. If one were to tie two complete totem pole outputs together, then at some time one output would be driving high while the other output was driving low. The result is that one device will be dumping excessive current directly into the other device. The resulting power dissipation in both devices can easily degrade the lifetime of the device. Since open-collector devices only have active drive in one state, if two connected devices drive to opposite states, the low state will always predominate and there will be no degradation to either device. Open-collector specifications are obvious by the lack of a V_{OH} specification. The only $\mathrm{V}_{\mathrm{OH}} / \mathrm{l}_{\mathrm{OH}}$ specification is the leakage limits, and these are specified at $\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$.
When dealing with open-collector devices, it must be noted that each output requires a resistive pull-up, usually tied to $V_{C C}$. (By using high voltage outputs, one can tie the resistor pull-up to a voltage higher than $V_{C C}$.) Designers often try to get away with tying the output to an input and relying on the IIL current to pull up the output. This unwise, as it is just like leaving inputs floating: the input is very susceptible to noise and can easily give false signals. Shown below are two equations that can be used to determine the $\mathrm{min} / \mathrm{max}$ range of the pull-up resistor.

$$
\begin{aligned}
& R_{\text {MAX }}=\frac{\left(V_{C C(M I N)}-V_{O H}\right)}{\left(N 1 \cdot I_{O H}+N 2 \cdot I_{I H}\right)} \\
& R_{M I N}=\frac{\left(V_{C C(M I N)}-V_{O L}\right)}{\left(I_{O L}-N 2 \cdot I_{I L}\right)}
\end{aligned}
$$

where: $\mathrm{N} 1=$ the number of open-collector devices tied together,
N2 $=$ the number of inputs being driven on the line. If the maximum resistance is exceeded, then it is possible for the total leakage currents from all of the inputs and outputs to pull the V_{OH} level below the spec value. Likewise, if the $\mathrm{R}_{\text {MIN }}$ value is exceeded, then the driving device may not be able to pull down the signal line to a solid V_{OL}. Either of these two cases can easily result in false logic levels being propagated through the system.

Designer's Encyclopedia of Bipolar One-Shots

INTRODUCTION

National Semiconductor manufacturers a broad variety of industrial bipolar monostable multivibrators (one-shots) in TTL and LS-TTL technologies to meet the stringent needs of systems designers for applications in the areas of pulse generation, pulse shaping, time delay, demodulation, and edge detection of waveforms. Features of the various device types include single and dual monostable parts, retriggerable and non-retriggerable devices, direct clearing input, and DC or pulse-triggered inputs. Furthermore, to provide the designer with complete flexibility in controlling the pulse width, some devices also have Schmitt trigger input, and/or contain internal timing components for added design convenience.

DESCRIPTION

One-shots are versatile devices in digital circuit design. They are actually quite easy to use and are best suited for applications to generate or to modify short timings ranging from several tens of nanoseconds to a few microseconds. However, difficulties are constantly being experienced by design and test engineers, and basically fall into the categories of either pulse width problems or triggering difficulties.
The purpose of this note is to present an overall view of what one-shots are, how they work, and how to use them properly. It is intended to give the reader comprehensive information which will serve as a designer's guide to bipolar one-shots.
Nearly all malfunctions and failures on one-shots are caused by misuse or misunderstanding of their fundamental operating rules, characteristic design equations, param-

National Semiconductor Corp.
Application Note 372
Kern Wong

eters, or more frequently by poor circuit layout, improper bypassing, and improper triggering signal.
In the following sections all bipolar one-shots manufactured by National Semiconductor are presented with features tables and design charts for comparisons. Operating rules are outlined for devices in general and for specific device types. Notes on unique differences per device and on special operating considerations are detailed. Finally, truth tables and connection diagrams are included for reference.

DEFINITION

A one-shot integrated circuit is a device that, when triggered, produces an output pulse width that is independent of the input pulse width, and can be programmed by an external Resistor-Capacitor network. The output pulse width will be a function of the RC time constant. There are various one-shots manufactured by National Semiconductor that have diverse features, although, all one-shots have the basic property of producing a programmable output pulse width. All National one-shots have True and Complementary outputs, and both positive and negative edge-triggered inputs.

OPERATING RULES

In all cases, R and C represented by the timing equations are the external resistor and capacitor, called $R_{\text {EXT }}$ and $\mathrm{C}_{\mathrm{EXT}}$, respectively, in the data book. All the foregoing timing equations use C in pF, R in $\mathrm{K} \Omega$, and yield t_{W} in nanoseconds. For those one-shots that are not retriggerable, there is a duty cycle specification associated with them that

TTL AND LS-TTL ONE-SHOT FEATURES

Device Number	\# Per IC Package	Retrigger	Reset	Capacitor Min Max in $\mu \mathrm{F}$	$\begin{array}{r} \mathrm{R} \\ \text { Min } \\ \hline \end{array}$	tor Max Ω	$\begin{aligned} & \text { Timing Equation* } \\ & \text { for } \\ & \mathrm{C}_{\mathrm{EXT}}>1000 \mathrm{pF} \\ & \hline \end{aligned}$
DM54121 DM74121	One One	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{array}{ll} 0 & 1000 \\ 0 & 1000 \end{array}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{gathered} t_{W}=K R C \bullet(1+0.7 / R) \\ K=0.55 \end{gathered}$
DM54LS122 DM74LS122	One One	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes Yes	None None	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 180 \\ & 260 \end{aligned}$	$\begin{gathered} t_{W}=K R C \\ K=0.45 \end{gathered}$
$\begin{aligned} & \text { DM54123 } \\ & \text { DM74123 } \end{aligned}$	Two Two	Yes Yes	Yes Yes	None None	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{gathered} t_{W}=K R C \bullet(1+0.7 / R) \\ K=0.34 \end{gathered}$
DM54LS123 DM74LS123	Two Two	Yes Yes	Yes Yes	None None	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 180 \\ & 260 \end{aligned}$	$\begin{aligned} \mathrm{t}_{\mathrm{W}} & =\mathrm{KRC} \\ \mathrm{~K} & =0.45 \end{aligned}$
DM54LS221 DM74LS221	Two Two	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Yes Yes	$\begin{array}{ll} 0 & 1000 \\ 0 & 1000 \end{array}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{gathered} 70 \\ 100 \end{gathered}$	$\begin{aligned} \mathrm{t}_{\mathrm{W}} & =\mathrm{KRC} \\ \mathrm{~K} & =0.7 \end{aligned}$
DM8601 DM9601	One One	Yes Yes	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	None None	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{gathered} t_{W}=K R C \bullet(1+0.7 / R) \\ K=0.32 \end{gathered}$
DM8602 DM9602	Two Two	Yes Yes	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	None None	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	$\begin{aligned} t_{W}= & K R C \cdot(1+1 / R) \\ & K=0.31 \end{aligned}$

[^0]defines the maximum trigger frequency as a function of the external resistor, REXT.
In all cases, an external (or internal) timing resistor ($\mathrm{R}_{\mathrm{EXT}}$) connects from V_{CC} or another voltage source to the " $\mathrm{R}_{\mathrm{EXT}}$ / $\mathrm{C}_{\mathrm{EXT}}$ " pin, and an external timing capacitor ($\mathrm{C}_{\mathrm{EXT}}$) connects between the "REXT $/ \mathrm{C}_{\text {EXT }}$ ", and "CEXT" pins are required for proper operation. There are no other elements needed to program the output pulse width, though the value of the timing capacitor may vary from 0.0 to any necessary value.
When connecting the $R_{E X T}$ and $C_{E X T}$ timing elements, care must be taken to put these components absolutely as close to the device pins as possible, electrically and physically. Any distance between the timing components and the device will cause time-out errors in the resulting pulse width, because the series impedance (both resistive and inductive) will result in a voltage difference between the capacitor and the one-shot. Since the one-shot is designed to discharge the capacitor to a specific fixed voltage, the series voltage will "fool" the one-shot into releasing the capacitor before the capacitor is fully discharged. This will result in a pulse width that appears much shorter than the programmed value. We have encountered users who have been frustrated by pulse width problems and had difficulty to perform correlations with commercial test equipment. The nature of such problems are usually related to the improper layout of the DUT adapter boards. (See Figure 6 for a PC layout of an AC test adapter board.) It has been demonstrated that lead length greater than 3 cm from the timing component to the device pins can cause pulse width problems on some devices.
For precise timing, precision resistors with good temperature coefficient should be used. Similarly, the timing capacitor must have low leakage, good dielectric absorption characteristics, and a low temperature coefficient for stability. Please consult manufacturers to obtain the proper type of component for the application.
For small time constants, high-grade mica glass, polystyrene, polypropylene, or polycarbonate capacitor may be used. For large time constants, use a solid tantalum or special aluminum capacitor.
In general, if a small timing capacitor is used that has leakage approaching 100 nA or if the stray capacitance from either terminal to ground is greater than 50 pF , then the timing equations or design curves which predict the pulse width would not represent the programmed pulse width which the device generates.
When an electrolytic capacitor is used for $\mathrm{C}_{\mathrm{EXT}}$, a switching diode is often suggested for standard TTL one-shots to prevent high inverse leakage current (Figure 1). In general, this switching diode is not required for LS-TTL devices; it is also not recommended with retriggerable applications.

TL/F/7508-1

It is never a good practice to leave any unused inputs of a logic integrated circuit "floating". This is particularly true for one-shots. Floating uncommitted inputs or attempts to establish a logic HIGH level in this manner will result in malfunction of some devices.
Operating one-shots with values of the $\mathrm{R}_{\text {EXT }}$ outside the recommended limits is at the risk of the user. For some devices it will lead to complete inoperation, while for other devices it may result in either output pulse widths different from those values predicted by design charts or equations, or with modes of operation and performance quite different from known standard characterizations.
To obtain variable pulse width by remote trimmiing, the following circuit is recommended (Figure 2). "RREMOTE" should be placed as close to the one-shot as possible.

FIGURE 2
$V_{C C}$ and ground wiring should conform to good high frequency standards and practices so that switching transients on the $V_{C C}$ and ground return leads do not cause interaction between one-shots. A $0.001 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ bypass capacitor (disk or monolithic type) from the V_{CC} pin to ground is necessary on each device. Furthermore, the bypass capacitor shoud be located so as to provide as short an electrical path as possible between the V_{CC} and ground pins. In severe cases of supply-line noise, decoupling in the form of a local power supply voltage regulator is necessary.
For retriggerable devices the retrigger pulse width is calculated as follows for positive-edge triggering:

FIGURE 3

$$
t_{\text {RET }}=t_{W}+t_{\text {PLH }}=K \bullet\left(R_{E X T}\right)\left(C_{E X T}\right)+t_{P H L}
$$

(See tables for exact expressions for K and t_{W}; K is unity on most HCMOS devices.)

SPECIAL CONSIDERATIONS AND NOTES:

The 9601 is the single version of the dual 9602 one-shot. With the exception of an internal timing resistor, $\mathrm{R}_{\mathrm{INT}}$, the 'LS122 has performance characteristics virtually identical to the 'LS123. The design and characteristic curves for equivalent devices are not depicted individually, as they can be referenced from their parent device.
National's TTL-'123 dual retriggerable one-shot features a unique logic realization not implemented by other manufacturers. The "CLEAR" input does not trigger the device, a design tailored for applications where it is desired only to terminate or to reduce the timing pulse width.

The 'LS221, even though it has pin-outs identical to the 'LS123, is not functionally identical. It should be remembered that the 'LS221 is a non-retriggerable one-shot, while -the 'LS123 is a retriggerable one. For the 'LS123 device, it is sometimes recommended to externally ground its "CEXT" pin for improved system performance. The " $\mathrm{C}_{\mathrm{ExT}}$ " pin on the 'LS221, however, is not an internal connection to the device ground. Hence, grounding this pin on the 'LS221 device will render the device inoperative.
Furthermore, if a polarized timing capacitor is used on the 'LS221, the positive side of the capacitor should be connected to the "CEXT" pin. For the 'LS123 part, it is the contrary, the negative terminal of the capacitor should be connected to the " $\mathrm{C}_{\mathrm{EXT}}$ " pin of the device (Figure 4).

('LS221)

('LS123)
TL/F/7508-4

FIGURE 4

FIGURE 6a. AC Test Adapter

The 'LS221 trigger on "CLEAR": This mode of trigger requires first the "B-Input" be set from a Low-to-High level while the "CLEAR" input is maintained at logic Low level. Then, with the " B " Input at logic High level, the "CLEAR" input, whose positive transition from LOW-to-HIGH will trigger an output pulse (" A input" is LOW).

FIGURE 5

AC Test Adapter Board

The compact PC layout below is a universal one-shot test adapter board. By wiring different jumpers, it can be configured to accept all one-shots made by National Semiconductor. The configuration shown below is dedicated for the '123 device. It has been used successfully for functional and pulse width testing on all the '123 families of one-shots on the Teradyne AC test system.

FIGURE 6b. AC Test Adapter

TL/F/7508-8
FIGURE 7a. Timing Components and I/O connections to D.U.T.

Typical Output Pulse Width vs Timing Components

Timing equations listed in the features tables hold all combinations of $\mathrm{R}_{\mathrm{EXT}}$ and $\mathrm{C}_{\text {EXT }}$ for all cases of $\mathrm{C}_{\text {EXT }}>$ 1000 pF. For cases where the $\mathrm{C}_{\text {EXT }}<$ 1000 pF , use graphs shown below.

TL/F/7508-9

Typical Output Pulse Width Variation vs Ambient Temperature

The graphs shown below demonstrate the typical shift in the device output pulse widths as a function of temperature. It should be noted that these graphs represent the temperature shift of the device after being corrected for any temperature shift in the timing components. Any shift in these components will result in a corresponding shift in the pulse width, as well as any shift due to the device itself.

74LS221

DM74LS123

Typical Output Pulse Width Variation vs Supply Voltage

The following graphs show the dependence of the pulse width on $V_{C C}$. As with any IC applications, the device should be properly bypassed so that large transient switching currents can be easily supplied by the bypass capacitor. Capacitor values of $0.001 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ are generally used for the $V_{C C}$ bypass capacitor.

DM74LS123
$v_{c c}(V)$

TL/F/7508-1

DM9602

DM74123

TL/F/7508-10

Typical "K" Coefficient Variation vs Timing Capacitance

For certain one-shots, the " K " coefficient is not a constant, but varies as a function of the timing capacitor $\mathrm{C}_{\text {EXT }}$. The graphs below detail this characteristic.

Typical Output Pulse Width vs Minimum Timing Resistance

The plots shown below demonstrate typical pulse widths and limiting values of the true output as a function of the external timing resistor, REXT. This information should evaporate those years of mysterious notions and numerous concerns about operating one-shots with lower that recommended minimum $R_{E X T}$ values.

Typical Output Pulse Width vs Minimum Timing Resistance（Continued）

TL／F／7508－14

Function Tables
＇121 One－Shots

Inputs			Outputs	
A1	A2	B	Q	$\overline{\text { Q }}$
L	X	H	L	H
X	L	H	L	H
X	X	L	L	H
H	H	X	L	H
H	\downarrow	H	Ω	$工$
\downarrow	H	H	Ω	$工$
\downarrow	\downarrow	H	Ω	$工$
L	X	\uparrow	Ω	$工$
X	L	\uparrow	Ω	$工$

Connection Diagrams

54LS122（J，W）；74LS122（N）

$\mathrm{H}=\mathrm{HIGH}$ Level
L＝LOW Level
$\uparrow=$ Transition from LOW－to－HIGH
$\downarrow=$ Transition from HIGH－to－LOW

Function Tables (Continued)
'123 Dual Retriggerable One-Shots with Clear '123

Inputs			Outputs	
A	A	Clear	Q	$\overline{\mathbf{Q}}$
H	X	H	L	H
X	L	H	L	H
L	\uparrow	H	Ω	U
\downarrow	H	H	K	U
X	X	L	L	H

Function Tables（Continued）
＇221 Dual One－Shots with Schmitt Trigger Inputs

Inputs			Outputs	
Clear	A	B	Q	$\overline{\mathbf{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	凹
H	\downarrow	H	Ω	い
\uparrow	L	H	Ω	士

8601

Inputs				Outputs	
A1	A2	B1	B2	Q	$\overline{\mathbf{Q}}$
H	H	X	X	L	H
X	X	L	X	L	H
X	X	X	L	L	H
L	X	H	H	L	H
L	X	\uparrow	H	Ω	T
L	X	H	\uparrow	Ω	凹
X	L	H	H	L	H
X	L	\uparrow	H	Ω	Ч
X	L	H	\uparrow	Ω	Ч
H	\downarrow	H	H	Ω	凹
\downarrow	\downarrow	H	H	Ω	凹
\downarrow	H	H	H	Ω	凹

$\mathrm{H}=\mathrm{HIGH}$ Level
L＝LOW Level
$\uparrow=$ Transition from LOW－to－HIGH
$\downarrow=$ Transition from HIGH－to－LOW
$\Omega=$ One HIGH Level Pulse
$\Psi=$ One LOW Level Pulse
X＝Don＇t Care

Applications

The following circuits are shown with generalized one－shot connection diagram．

NOISE DISCRIMINATOR（Figure 8）

The time constant of the one－shot（O－S）can be adjusted so that an input pulse width narrower than that determined by the time constant will be rejected by the circuit．Output at Q_{2}

Connection Diagrams（Continued）
54LS221（J，W）；74LS221（N）

will follow the desired input pulse，with the leading edge delayed by the predetermined time constant．The output pulse width is also reduced by the amount of the time con－ stant from R_{X} and C_{X} ．

FIGURE 8．Noise Discriminator

FIGURE 8. Noise Discriminator (Continued)

FREQUENCY DISCRIMINATOR (Figure 9)

The circuit shown in Figure 9 can be used as a frequency-to-voltage converter. For a pulse train of varying frequency applied to the input, the one-shot will produce a pulse con-

TL/F/7508-24
FIGURE 9. Frequency Discriminator

ENVELOPE DETECTOR (Figures 10a and 10b)

An envelope detector can be made by using the one-shot's retrigger mode. The time constant of the device is selected to be slightly longer than the period of each cycle within the input pulse burst. Two distinct DC levels are present at the output for the duration of the input pulse burst and for its

absence (see Figure 10a). The same circuit can also be employed for a specific frequency input as a Schmitt trigger to obviate input trigger problems associated with hysteresis and slow varying, noisy waveforms (see Figure 10b). (Retriggerable device required.)

TL/F/7508-27
FIGURE 10b. Schmitt Trigger

PULSE GENERATOR (FIgure 11)
Two one-shots can be connected together to form a pulse generator capable of variable frequency and independent duty cycle control. The $\mathrm{R}_{\mathrm{X} 1}$ and $\mathrm{C}_{\mathrm{X} 1}$ of $\mathrm{O}-\mathrm{S} 1$ determine
the frequency developed at output $Q_{1} . R_{X 2}$ and $C_{X 2}$ of $\mathrm{O}-\mathrm{S} 2$ determine the output pulse width at Q_{2}. (Retriggerable device required.)

FIGURE 11. Pulse Generator (Retriggerable Device Required)
Note: K is the multiplication factor dependent of the device. Arrow indicates edge-trigger mode.

DELAYED PULSE GENERATOR WITH OVERRIDE TO TERMINATE OUTPUT PULSE (Figure 12)

An input pulse of a particular width can be delayed with the circuit shown in Figure 12. Preselected values of $\mathrm{R}_{\mathrm{X}_{1}}$ and $\mathrm{C}_{\mathrm{X} 1}$ determine the delay time via $\mathrm{O}-\mathrm{S} 1$, while preselected
values of $R_{X 2}$ and $C_{X 2}$ determine the output pulse width through O-S2. The override input can additionally serve to modify the output pulse width.

MISSING PULSE DETECTOR (Figure 13)
By setting the time constant of $\mathrm{O}-\mathrm{S} 1$ through R_{XI} and $\mathrm{C}_{\mathrm{X} 1}$ to be the least one full period of the incoming pulse period, the one-shot will be continuously retriggered as long as no missing pulse occurs. Hence, \bar{Q}_{1} remains LOW until a pulse $\mathrm{O}-\mathrm{S} 2$ and produces an indicating pulse at Q_{2}. (Retriggerable device required.)

TL/F/7508-34
FIGURE 13. Missing Pulse Detector (Retriggerable Device Required)

PULSE WIDTH DETECTOR (Figure 14)

The circuit of Figure 14 produces an output pulse at $V_{\text {OUT }}$ if the pulse width at $\mathrm{V}_{\mathbb{N}}$ is wider than the predetermined pulse width set by R_{X} and C_{X}.

TL/F/7508-35
FIGURE 14. Pulse Width Detector

TL/F/7508-36
FIGURE 14. Pulse Width Detector (Continued)
BAND PASS FILTER (FIgure 15)

The band pass of the circuit is determined by the time constants of the two low-pass filters represented by O-S1 and O-S2. With the output at Q_{2} delayed by C, the D-flip flop
(D-FF) clocks HIGH only when the cutoff frequency of O-S2 has been exceeded. The output at Q_{3} is gated with the delayed input pulse train at Q_{4} to produce the desired output. (Retriggerable device required.)

TL/F/7508-37

Vout

FIGURE 15. Band Pass Filter (Retriggerable Device Required)

FM DATA SEPARATOR (FIgure 16)
The data separator shown in Figure 16 is a two-time constant separator that can be used on tape and disc drive memory storage systems. The clock and data pulses must fall within prespecified time windows. Both the clock and data windows are generated in this circuit. There are two data windows; the short window is used when the previous bit cell had a data pulse in it, while the long window is used when the previous bit cell had no data pulse.
If the data pulse initially falls into the data window, the -SEP DATA output returns to the NAND gate that generates the data window, to assure that the full data is allowed through before the window times out. The clock windows will take up the remainder of the bit cell time.
Assume all one-shots and flip-flops are reset initially and the +READ DATA has the data stream as indicated.

With O-S1 and O-S2 inactive, + CLK WINDOW is active. The first + READ DATA pulse will be gated through the second AND gate, which becomes -SEP CLK for triggering of the R-S FF and the one-shots. With the D-FF off, O-S1 will remain reset. The -SEP CLK pulse will trigger O-S2, whose output is sent to the OR gate, and its output becomes + DATA WINDOW to enable the first AND gate. The next pulse on + READ DATA wil be allowed through the first AND gate to become - SEP DATA. This pulse sets the R-S FF, whose HIGH output becomes the data to the D-FF. The D-FF is clocked on by O-S2 timing out and +CLK WINDOW becoming active. $\overline{\mathrm{Q}}_{4}$ will hold O -S2 reset and allow O-S1 to trigger on the next clock pulse.

+ SEP DATA

TL/F/7508-39
FIGURE 16. FM Data Separator

The next clock pulse (the second bit cell) is ANDed with +CLK WINDOW and becomes the next -SEP CLK, which will reset the R-S FF and trigger O-S1. As O-S1 becomes active, the + DATA WINDOW becomes active, enabling the first AND gate. With no data bit in the second bit cell, the R-S FF will remain reset, enabling the D-FF to be clocked off when +DATA WINDOW falls. When the D-FF is clocked off, Q_{4} will hold $\mathrm{O}-\mathrm{S} 1$ reset and allow O -S2 to be triggered.
The third clock pulse (bit cell 3) is ANDed with + CLK WINDOW and becomes -SEP CLK, which continues re-

TL/F/7508-40
FIGURE 16. FM Data Separator (Continued)

PHASE-LOCKED LOOP VCO (Figure 17)

The circuit shown in Figure 17 represents the VCO in the data separation part of a rotational memory storage system which generates the bit rate synchronous clocks for write data timing and for establishing the read data windows.
The op-amp that performs the phase-lock control operates by having its inverting input be driven by two sources that normally buck one another. One source is the one-shot, the other source is the phase detector flip-flop. When set, the one-shot, through an inverter, supplies a HIGH-level voltage to the summing node of the op-amp and the phase detector FF, also through an inverter, supplies a canceling LOW-level input.
It is only when the two sources are out of phase with each other, that is one HIGH and the other LOW, that a positiveor negative-going phase error will be applied to the op-amp to effect a change in the VCO frequency. Figure 17 illustrates the process of phase-error detection and correction when synchronizing to a data bit pattern. The rising edge of each pulse at DATA+PLO clocks the one-shot LOW and the phase detector FF HIGH. Since both outputs are still bucking each other, no change will be observed at the
setting the R-S FF and triggers O -S2. When O -S2 becomes active, +DATA WINDOW enables the first AND gate, allowing the data pulse in bit cell 3 to become -SEP DATA. This -SEP DATA will set the R-S FF, which enables the D-FF to be clocked on when + DATA WINDOW falls. When this happens, Q_{4} will hold $\mathrm{O}-\mathrm{S} 2$ reset and allow $\mathrm{O}-\mathrm{S} 1$ to trigger. This procedure continues as long as there is clock and data puise stream present on the +READ DATA line.

Functional Index/Selection Guide

*Several methods are used to represent typical values. For propagation delay typical values, the average of the typical values of the two delays are used.
$\left[\frac{\mathrm{t}_{\mathrm{PHL}(T Y P)}+\mathrm{t}_{\mathrm{PLH}(T Y P)}}{2}\right]$
For power dissipation, the average of the typical values of current for all states the outputs can achieve is used (ICCL, ICCH, ICCz.) This current value is multiplied by nominal supply voltage (5 V), and in some cases divided by the number of gates, bits, etc. All other typical values are singular typicals.
Adders

Description	Device Type	Typ* Carry Time (ns)	Typ* Add Time (ns)	```Typ* Power Diss./Blt (mW)```	Package Availability		Page
					MII	Com	
Single 4-Bit	54/74LS283	12	15	24	J	N,M	2-208
Full Adders	54/74S283	8.5	11	110	J	N	3-114
	54/74LS83A	12	15	24	J	N,WM	2-57

Arithmetic Logic Units, Carry Look-Ahead Generators

Description	Device Type	Typ* Carry Time (ns)	Typ* Add Time (ns)	Typ* Power Diss. Total (mW)	Package Avallability		Page
					Mil	Com	
4-Bit ALU/	54/74AS181B	5	5	370	J	N	\dagger
Function	54/74S181	7	14	600	J	N	3-74
Generators	54/74181	12.5	18	455	J	N	4-177
	54/74S381	10	12	525	J	N	3-128
	54/74AS881B	5	5	370	J	N	\dagger
Carry	54/74AS182	5	N/A	115	J	N	\dagger
Look-Ahead	54/74S182	9	N/A	345	J	N	3-83
Generator	54/74AS264	6	N/A	140	J	N	\dagger
	54/74AS282	6	N/A	130	J	N	\dagger

Buffers/Clock Drivers with Totem-Pole Outputs

Description	Device Type	Low- Level Output Current (mA)	HighLevel Output Current (mA)	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availability		Page
						Mil	Com	
Dual 4-Input NAND Buffers	54ALS40A	12	-1	4	3.5	J		\dagger
	74ALS40A	24	-2.6	4	3.5		N,M	\dagger
	54/74S40	60	-3	4	44	J	N	3-27
	54ALS1020A	12	-1	4	3.6	J		\dagger
	74ALS1020A	24	-2.6	4	3.6		N,M	\dagger
Quad 2-Input NAND Buffers	54ALS37A	12	-1	5	5	J		\dagger
	74ALS37A	24	-2.6	5	5		N,M	\dagger
	54LS37	12	-1.2	10	4.3	J		2-39
	74LS37	24	-1.2	10	4.3		N,M	2-39
	54/7437	48	-1.2	10.5	27	J	N	4-53
	54ALS1000A	12	-1	5	3.5	J		\dagger
	74ALS1000A	24	-2.6	5	3.5		N,M	\dagger
	54AS1000A	40	-40	2	8.5	J	N	\dagger
	74AS1000A	48	-48	2	8.5	J	N	\dagger

\dagger Please see the ALS/AS Databook for this datasheet.

Buffers/Clock Drivers with Open-Collector Outputs (Continued)

Description	Device Type	High- Level Output Voltage (V)	Low- Level Output Current (mA)	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availability		Page
						Mil	Com	
Quad 2-Input NOR Buffers	54ALS33A 74ALS33A	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	J	N,M	$\begin{aligned} & \dagger \\ & \dagger \end{aligned}$
Hex Buffers/ Drivers	5407 7407 5417 7417 54ALS1035 74ALS1035	$\begin{aligned} & 30 \\ & 30 \\ & 15 \\ & 15 \\ & 5.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 30 \\ & 40 \\ & 12 \\ & 24 \end{aligned}$	$\begin{gathered} 13 \\ 13 \\ 13 \\ 13 \\ 12.5 \\ 12.5 \\ \hline \end{gathered}$	21 21 21 21 4.6 4.6	J J J	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \\ \mathrm{~N}, \mathrm{M} \end{gathered}$	$\begin{aligned} & 4-28 \\ & 4-28 \\ & 4-41 \\ & 4-41 \\ & \dagger \\ & \dagger \\ & \hline \end{aligned}$
Hex Inverter Buffers/ Drivers	5406 7406 5416 7416 54ALS1005 74ALS1005	$\begin{aligned} & 30 \\ & 30 \\ & 15 \\ & 15 \\ & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \\ & 30 \\ & 40 \\ & 12 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \\ & 12.5 \\ & 12.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \\ & 26 \\ & 3.3 \\ & 3.3 \end{aligned}$	J J J	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \\ \mathrm{~N}, \mathrm{M} \end{gathered}$	$\begin{aligned} & 4-26 \\ & 4-26 \\ & 4-39 \\ & 4-39 \\ & \dagger \\ & \dagger \end{aligned}$

Buffer Gates with TRI-STATE ${ }^{*}$ Totem-Pole Outputs

Descriptlon	Device Type	Max Source Current (mA)	Max Sink Current (mA)	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availabillty		Page
						Mil	Com	
Quad Buffers	54LS125A	-1	12	10	14.4	J		2.92
	74LS125A	-2.6	24	10	14.4		N,M	2.92
	54125	-2	16	11	40	J		4-114
	74125	-5.2	16	11	40		N	4-114
	54LS126A	-1	12	10	14.4	J		2-95
	74LS126A	-2.6	24	10	14.4		N,M	$2-95$
Hex Buffers	54LS365A	-1	12	10	10.8	J		2-223
	74LS365A	-2.6	24	10	10.8		N,M	2-223
	54365	-2	32	10.5	51.6	J		4-210
	74365	-5.2	32	10.5	51.6		N	4-210
	54LS367A	-1	12	10	10.8	J		2-229
	74LS367A	-2.6	24	10	10.8		N,M	2-229
	54367	-2	32	12	51.6	J		4-213
	74367	-5.2	32	12	51.6		N	4.213
Hex Inverter Buffers	54LS366A	-1	12	10	10.8	J		2-226
	74LS366A	-2.6	24	10	10.8		N,M	2-226
	54LS368A	-1	12	10	10.8	J		2-232
	74LS368A	-2.6	24	10	10.8		N,M	2-232
	54368	-2	32	10.5	51.6	J		4-216
	74368	-5.2	32	10.5	51.6		N	4-216

\dagger Please see the ALS/AS Databook for this datasheet.

Description	Device Type	Max Source Current (mA)	Max Sink Current (mA)	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availability		Page
						Mil	Com	
Octal Buffers	54ALS465A	-12	12	6.6	8.6	J		\dagger
	74ALS465A	-15	24	6.6	8.6		N,M	\dagger
	54LS465	-2.6	12	14.5	10	J		2-247
	74LS465	-5.2	24	14.5	10		N,M	2-247
	54ALS467A	-12	12	6.6	9.1	J		\dagger
	74ALS467A	-15	24	6.6	9.1		N,M	\dagger
	54LS467	-2.6	12	14.5	10	J		2-247
	74LS467	-5.2	24	14.5	10		N,M	2-247
	54ALS2541	-12	12	6	10.8	J		\dagger
	74ALS2541	-15	24	6	10.8		N,M	\dagger
	54ALS541	-12	12	6	10.8	J		\dagger
	74ALS541	-15	24	6	10.8		N,M	\dagger
Octal Inverter Buffers	54ALS466A	-12	12	4.8	7.5	J		\dagger
	74ALS466A	-15	24	4.8	7.5		N,M	\dagger
	54LS466	-2.6	12	9.5	8	J		2-247
	74LS466	-5.2	24	9.5	8		N,M	2-247
	54ALS468A	-12	12	4.7	7.5	J		
	74ALS468A	-15	24	4.7	7.5		N,M	
	54LS468	-2.6	12	9.5	8	J		2-247
	74LS468	-5.2	24	9.5	8		N,M	2-247
	54ALS540	-12	12	6.6	10.8	J		\dagger
	74ALS540	-15	24	6.6	10.8		N,M	\dagger
	54ALS5620	-12	12	6.6	18.3	J		\dagger
	74ALS5620	-15	24	6.6	18.3		N,M	\dagger
Quad Inverter Transceivers	54ALS242A	-12	12	5.6	16.3	J		\dagger
	74ALS242A	-15	24	5.6	16.3		N,M	\dagger
	54AS242	-12	48	3.5	33.8	J		\dagger
	74AS242	-15	64	3.5	33.8		N	\dagger
Quad Transceivers	54ALS243A	-12	12	6	23.3	J		\dagger
	74ALS243A	-15	24	6	23.3		N,M	\dagger
	54AS243	-12	48	4	45.8	J		\dagger
	74AS243	-15	64	4	45.8		N	\dagger
	54LS243	-15	12	12	34.5	J		2-182
	74LS243	-15	24	12	34.5		N,M	2-182
Octal Inverter Bus Buffers/ Drivers	54AS231	-12	40	3.5	18.5	J		\dagger
	74AS231	-15	48	3.5	18.5		N	\dagger
	54ALS240A	-12	12	2.6	6.5	J		\dagger
	74ALS240A	-15	24	2.6	6.5		N,WM	\dagger
	54AS240	-12	48	3.5	19.2	J		\dagger
	74AS240	-15	64	3.5	19.2		N	\dagger
	54LS240	-12	12	10	14.2	J		2-179
	74LS240	-15	24	10	14.2		N,WM	2-179
	54S240	-12	48	5	56.3	J		3-95
	74S240	-15	64	5	56.3		N,WM	3-95
	54S940	-12	48	5	56.3	J		3-132
	745940	-15	64	5	56.3		N	3-132
	54ALS1240A	-12	8	9	5.9	J		\dagger
	74ALS1240A	-15	16	9	5.9		N,WM	\dagger

\dagger Please see the ALS/AS Databook for this datasheet.

Buffer Gates with TRI-STATE® Totem-Pole Outputs (Continued)									$\stackrel{5}{3}$
Description	Device Type	Max Source Current (mA)	Max Sink Current (mA)	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Avallability		Page	
						MII	Com		$\underset{\sim}{\mathbb{O}}$
Octal Bus Buffers/ Drivers	54ALS241A	-12	12	4.3	8.6	J		\dagger	¢
	74ALS241A	-15	24	4.3	8.6		N,WM	\dagger	$\stackrel{\square}{8}$
	54AS241	-12	48	4	24.6	J		\dagger	$\stackrel{2}{\square}$
	74AS241	-15	64	4	24.6		N	\dagger	O
	54LS241	-12	12	10	14.2	J		2-179	8
	74LS241	-15	24	10	14.2		N,WM	2-179	등
	54S241	-12	48	5	67.2	J		3-95	-8
	74S241	-15	64	5	67.2		N	3-95	
	54ALS244A	-12	12	4.3	8.5	J		\dagger	
	74ALS244A	-15	24	4.3	8.5		N,WM	\dagger	
	54AS244	-12	48	4	24.1	J		\dagger	
	74AS244	-15	64	4	24.1		N	\dagger	
	54LS244	-12	12	10	24.6	J		2-185	
	74LS244	-15	24	10	24.6		N,WM	2-185	
	54S244	-12	48	5	67.2	J		3-95	
	74S244	-15	64	5	67.2		N	3-95	
	54S941	-12	48	5	67.2	J		3-132	
	74S941	-15	64	5	67.2		N,WM	3-132	
	54ALS1241A	-12	12	9	5.9	J		\dagger	
	74ALS1241A	-15	24	9	5.9		N,WM	\dagger	
	54ALS1244A	-12	12	9	5.9	J		\dagger	
	74ALS1244A	-15	24	9	5.9		N,WM	\dagger	
Octal Transceivers	54ALS245A	-12	12	9	21.7	J		\dagger	
	74ALS245A	-15	24	9	21.7		N,WM	\dagger	
	54AS245	-12	32	5.5	49.1	J		\dagger	
	74AS245	-15	48	5.5	49.1		N	\dagger	
	54LS245	-12	12	8	36.3	J		2-188	
	74LS245	-15	24	8	36.3		N,WM	2-188	
	54ALS645A	-12	12	5	21.7	J		\dagger	
	74ALS645A	-15	24	5	21.7		N,WM	\dagger	
	54AS645	-12	48	5.5	49.2	J		\dagger	
	74AS645	-15	64	5.5	49.2		N	\dagger	
	54LS645	-12	12	8	36	J		2-251	
	74LS645	-15	24	8	36		N,WM	2-251	
	54ALS1243A	-12	8	7	19	J		\dagger	
	74ALS1243A	-15	16	7	19		N,WM	\dagger	
	54ALS1245A	-12	8	9	14	J	N,WM	\dagger	
	74ALS1245A	-15	16	9	14	J	N,WM	\dagger	
	54ALS1645A	-12	8	7.5	14.4	J		\dagger	
	74ALS1645A	-15	16	7.5	14.4		N,WM	\dagger	

\dagger Please see the ALS/AS Databook for this datasheet

Buffer Gates with TRI-STATE® Totem-Pole Outputs (Continued)

Description	Device Type	Max Source Current (mA)	Max Sink Current (mA)	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Avallabllity		Page
						MII	Com	
Octal Inverter Transceivers	54ALS620A	-12	12	8	14.6	J	N,WM	\dagger
	74ALS620A	-15	24	8	14.6			
	54AS620	-12	48	5.5	32.7	J	N	$\begin{aligned} & \dagger \\ & \dagger \end{aligned}$
	74AS620	-15	64	5.5	32.7	J		
	54ALS640A	-12	12	5	15.4		N,WM	\dagger
	74ALS640A	-15	24	5	15.4	J		
	54AS640	-12	48	4	32.9		N	\dagger
	74AS640	-15	64	4	32.9	J		
	54ALS1242A	-12	12	5	10.9			\dagger
	74ALS1242A	-15	24	5	10.9		N,WM	\dagger
Octal Trans-	54AS230	-12	48	3.5	20.8	J	N	$\begin{aligned} & \dagger \\ & \dagger \end{aligned}$
ceivers with	74AS230	-15	64	3.5	20.8			
True and								
Inverting								
Outputs								
Octal Trans-	54AS646	-12	32	5	93.8	J	N	++
ceivers with	74AS646	-15	48	5	93.8	J		
Register	54AS652	-12	32	5	93.8			$\dagger$$\dagger$
Storage	74AS652	-15	48	5	93.8		N	
Octal Inverter	54AS648	-12	32	6	81.3	J	N	\dagger
Transceivers	74AS648	-15	48	6	81.3	J		\dagger
with Register	54AS651	-12	32	6	81.3			\dagger
Storage	74AS651	-15	48	6	81.3		N	\dagger
Octal Inverting	54/74AS2620	-2	1	4.5	38.3	J	N	\dagger
Tranceivers/ MOS Drivers								
Octal Bus	54/74ALS2645A				TBD	J	N,WM	\dagger
Transceivers/	54/74AS2645	-2	1	5.5	47	J	N	\dagger
MOS Drivers								
Code Converters								

Description	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Diss. Total (mW)	Package Avallability		Page
				Mil	Com	
6-Bit Binary to 6-Bit BCD Converters	$\begin{aligned} & 54 / 74185 A \\ & 8899 \end{aligned}$	$\begin{aligned} & 25 \\ & 31 \end{aligned}$	$\begin{aligned} & 280 \\ & 350 \end{aligned}$	J	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 4-185 \\ & 4-243 \end{aligned}$
6-Bit BCD to 6-Bit Binary or 4-Line to 4-Line BCD 9's/BCD 10's Converters	$\begin{aligned} & 54 / 74184 \\ & 8898 \end{aligned}$	$\begin{aligned} & 25 \\ & 31 \end{aligned}$	$\begin{aligned} & 280 \\ & 350 \end{aligned}$	J	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 4-185 \\ & 4-243 \end{aligned}$

\dagger Please see the ALS/AS Databook for this datasheet.

Comparators						
Description	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Diss. Total (mW)	Package Avallability		Page
				Mil	Com	
4-Bit Magnitude Comparator	$\begin{aligned} & 54 / 74 \mathrm{LS} 85 \\ & 54 / 7485 \\ & \hline \end{aligned}$	$\begin{array}{r} 20 \\ 21 \\ \hline \end{array}$	$\begin{gathered} 52 \\ 275 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & 2-61 \\ & 4-83 \\ & \hline \end{aligned}$
6-Bit Magnitude Comparators	$\begin{aligned} & 71 / 8131 \\ & 71 / 8136 \\ & 71 / 8160 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 205 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 4-224 \\ & 4-227 \\ & 4-230 \end{aligned}$
8-Bit Identity Comparator	54/74ALS520 54/74ALS521	$\begin{aligned} & 13.5 \\ & 13.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \mathrm{N}, \mathrm{M} \\ & \mathrm{~N}, \mathrm{M} \end{aligned}$	$\begin{aligned} & \dagger \\ & \dagger \end{aligned}$
8-Bit Identity Comparator with Open-Collector Outputs	54/74ALS518 54/74ALS519 54/74ALS522 54/74ALS689	$\begin{gathered} 18.2 \\ 18 \\ 19 \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & 55 \\ & 55 \\ & 45 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	N,M N,M N,M N,M	$\begin{aligned} & \dagger \\ & \dagger \\ & \dagger \\ & \dagger \\ & \dagger \end{aligned}$
10-Bit Magnitude Comparators	71/8130	21	240	J	N	4-222

Counters, Asynchronous (Ripple Clock)/Negatlve-Edge-Triggered

Descriptlon	Device Type	Count Freq. (MHz)	Parallel Load	Clear	Typ* Power Diss. Total (mW)	Package Avallabllity		Page
						MII	Com	
4-Bit Binary	54/74LS93	32	None	High	39	J	N,M	2-68
	54/7493A	32	None	High	160	J	N	4.90
	54/74L93	6	None	High	20	J	N	5-22
	54/74LS293	32	None	High	45	J	N,M	2-216
Decade	54/74LS90	32	Set-to-9	High	40	J	N,M	$2 \cdot 68$
	54/7490A	32	Set-to-9	High	160	J	N	4-90
	54/74LS290	32	None	High	45	J	N,M	2-212
Dual 4-Bit Decade	54/74LS390	25	None	High	75	J	N,M	2-240
Dual 4-Bit Binary	54/74LS393	25	None	High	75	J	N,M	2-244

\dagger Please see the ALS/AS Databook for this datasheet.

Description	Device Type	Count Freq. (MHz)	Parallel Load	Clear	Typ* Power Dlss. Total (mW)	Package Avallabllity		Page
						MII	Com	
4-Bit Binary	54/74ALS161B	25	Sync Sync	Async-L Async-L	$60$$200$	J	N,M	\dagger
	54/74AS161					J	N	\dagger
	54/74LS161A	25	Sync	Async-L	93	J	N, M	2-123
	54/74S161	40	Sync	Async-L	475	J	N	3-64
	54/74161A	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	Sync	Async-L	305	J	N	4-148
	54/74ALS163B		Sync Sync	Sync-L	60	J	N,M	+
	54/74AS163			Sync-L	200	J	N	
	54/74LS163A	25	Sync	Sync-L	93	J	N,M	2-123
	54/74S163	40	Sync	Sync-L	475	J	N	3-64
	54/74163A	25	Sync	Sync-L	93	J	N	4-148
	75/8556	25	Sync	Sync-L	375	J	N	4-232
	93/8316	25	Sync	Async-L	305	J	N	4-279
4-Bit Binary Up-Down	54/74ALS169B	25	Sync	None	75	J	N,M	\dagger
	54/74AS169		Sync	None	230	J	N	\dagger
	54/74LS169A	25	Async	None	100	J	N,M	2-141
	54/74ALS191	25	Async Async	None	60	J	N,M	\dagger
	54/74LS191	20		None None	90	J	N,M	$\begin{aligned} & 2-155 \\ & 4-193 \end{aligned}$
	54/74191	20	Async Async		325	J	N	
	54/74ALS193	25		None Async-H	60	J	N,M	$\begin{aligned} & \dagger \\ & 2-161 \end{aligned}$
	54/74LS193	25	Async Async	Async-H Async-H	85	J	$\begin{aligned} & \mathrm{N}, \mathrm{M} \\ & \mathrm{~N} \\ & \mathrm{~N} \\ & \hline \end{aligned}$	
	54/74193	20	Async Async	Async-H Async-H	$\begin{gathered} 325 \\ 40 \\ \hline \end{gathered}$			$\begin{aligned} & 4-198 \\ & 5-30 \end{aligned}$
	75/85L63	6						
Decade	54/74ALS160B	25	Sync	Async-L	60	J	N,M	\dagger
	54/74AS160		Sync	Async-L	200	J	N	\dagger
	54/74ALS162B	25	Sync Sync	Sync-L Sync-L	60	J	N,M	$\begin{aligned} & \dagger \\ & \dagger \\ & 4-148 \\ & 4-264 \end{aligned}$
	54/74AS162				200	J	N	
	54/74162A	25	Sync	Sync-L	305	J	N	
	93/8310	25	Sync	Async-L	305	J	N	
Decade Up/Down	54/74ALS168B	25	Sync Sync	None None	75	J	N, M	$\begin{aligned} & \dagger \\ & \dagger \\ & \dagger \\ & 2-155 \\ & \dagger \\ & 5-30 \\ & \hline \end{aligned}$
	54/74AS168				230	J	N	
	54/74ALS190	20	Async	None	110	J	N,M	
	54/74LS190	20	Async	None	100	J	N,M	
	54/74ALS192	20	Async	Async-H	60	J	N,M	
	75/85L60	6	Async	Async-H	40	J	N	

\dagger Please see the ALS/AS Databook for this datasheet.

Data Selectors/Multiplexers									
Description	Device Type	Type of Output	Data Inver. Output	Typ* Prop. Delay Time (ns)		Typ* Power Diss. Total (mW)	Package Avallability		Page
				Data	Fro				
				Out			Mil	Com	
Quad 2 to 1 Line	54/74ALS157	Standard	N/A	4.3	6.3	39	J	N,M	\dagger
	54/74AS157	Standard	N/A	3.5	5.5	95	J	N	\dagger
	54/74LS157	Standard	N/A	9	14	49	J	N,M	2-119
	54/74S157	Standard	N/A	5	8	250	J	N	3-59
	54/74157	Standard	N/A	9	14	150	J	N	4-145
	54/74ALS257A	TRI-STATE	N/A	4.2	6	33	J	N,M	\dagger
	54/74AS257	TRI-STATE	N/A	3.5	4	83	J	N	
	54/74LS257B	TRI-STATE	N/A	12	12	50	J	N,M	2-197
	54/74S257	TRI-STATE	N/A	5	41	320	J	N	3-105
	93/8322	Standard	N/A	9	14	150	J	N	4-290
	71/8123	TRI-STATE	N/A	9.5	N/A	200	J	N	4-219
Quad 2 to 1 Line (Inverting)	54/74ALS158	Standard	4.2	N/A	6.1	11.5	J	N,M	\dagger
	54/74AS158	Standard	2.5	N/A	4	78	J	N	\dagger
	54/74LS158	Standard	7	N/A	12	24	J	N,M	2-119
	54/74S158	Standard	4	N/A	7	195	J	N	3-59
	54/74ALS258A	TRI-STATE	4.2	N/A	6	29.2	J	N,M	
	54/73AS258	TRI-STATE	3	N/A	4.5	58.5	J	N	
	54/74LS258B	TRI-STATE	12	N/A	12	35	J	N,M	2-197
	54/74S258	TRI-STATE	4	N/A	14	280	J	N	3-105
Dual 4 to 1 Line	54/74ALS153	Standard	N/A	16.5	14.5	37.5	J	N,M	\dagger
	54/74LS153	Standard	N/A	14	22	31	J	N,M	2-109
	54/74S153	Standard	N/A	6	9.5	225	J	N	3-56
	54/74153	Standard	N/A	10.5	20	170	J	N	4-136
	54/74ALS253	TRI-STATE	N/A	8	4.5	35	J	N,M	
	54/74LS253	TRI-STATE	N/A	15	25	38	J	N,M	2-194
	54/74S253	TRI-STATE	N/A	6	12	275	J	N	3-102
	93/8309	Standard	12	20	20	135	J	N	4-261
Dual 4 to 1 Line (Inverting)	54/74ALS352	Standard	6		4.5	32.5	J	N,M	\dagger
	54/74LS352	Standard	15	N/A	18	31	J	N,M	2-220
	54/74ALS353	TRI-STATE	6	N/A	4.5	37.5	J	N,M	\dagger
8 to 1 Line	54/74ALS151	Standard	9.3	7.8	11	37.5	J	N,M	\dagger
	54/74AS151	Standard	2.8	3.5	5	130	J	N	\dagger
	54/74S151	Standard	4.5	8	9	225	J	N	3-52
	54/74151A	Standard	8	16	22	145	J	N	4-130
	54/74ALS251	TRI-STATE	9.4	7.6	7	47	J	N,M	
	54/74LS251	TRI-STATE	17	21	21	35	J	N,M	2-191
	54/74S251	TRI-STATE	4.5	8	14	275	J	N	3-98
	93/8312	Standard	9	16	17	135	J	N	4-275
16 to 1 Line	54/74150	Standard	11	N/A	18	200	J	N	4-130
\dagger Please see the ALS/AS Databook for this datasheet.									

Flip-Flops, Single and Dual J-K Edge Triggered									
Device Type	Clear	Preset	Typ* $\mathrm{f}_{\text {MAX }}$ (MHz)	Data Setup Time (ns)	Data Hold Time (ns)	Typ* Power Diss. /FF (mW)	Package Avallability		Page
							Mil	Com	
54/74LS73A	Yes	No	45	25	5	10	J	N,M	$2-48$
54/74LS107A	Yes	No	45	20	0	10	J	N,M	$2-75$
54/74AS109A	Yes	Yes	50	15	0	6	J	N,M	\dagger
54/74AS109	Yes	Yes	125	3	1	28.8	\checkmark	N	\dagger
54/74LS109A	Yes	Yes	33	25	0	10	J	N,M	2-78
54/74109	Yes	Yes	33	10	6	45	J	N	4-103
54/74AS112	Yes	Yes	200			95	J	N	\dagger
54/74LS112A	Yes	Yes	45	20	0	10	J	N,M	2-81
54/74S112	Yes	Yes	125	6	0	75	J	N	3-38
54/74S113	No	Yes	125	6	0	75	J	N	3-41
90/8024	Yes	Yes	40	15	10	45	J	N	4-251

Flip-Flops, Dual D Edge Triggered with Preset and Clear

Device Type	Typ* $\mathrm{f}_{\text {MAX }}$ (MHz)	Data Setup Time (ns)	Data Hold Time (ns)	Typ* Power Diss. /FF (mW)	Package Avallability		Page
					Mil	Com	
54/74ALS74A	30	15	0	6	J	N,M	\dagger
54/74AS74	125	2	1	26.3	J	N	
54/74LS74A	33	20	0	10	J	N,M	2-51
54/74S74	110	3	2	75	J	N	3-33
54/7474	25	20	5	43	J	N,M	4-74
54/74L74	6	50	15	4	J	N	5-19

Flip-Flop, Octal D Edge Triggered with TRI-STATE Outputs

Device Type	Typ* $f_{\text {MAX }}$ (MHz)	Data Setup Time (ns)	Data Hold Time (ns)	$\begin{gathered} \text { Typ* } \\ \text { Power } \\ \text { Diss. } \\ \text { /FF }(\mathrm{mW}) \end{gathered}$	Package Avallability		Page
					Mil	Com	
54/74ALS374	50	10	4	10.8	J	N,WM	\dagger
54/74AS374	200	3	3	50.3	J	N	\dagger
54/74LS374	50	20	0	15.9	J	N,WM	2-235
54/74S374	100	5	2	60.9	J	N	3-123
54/74ALS534	50	10	0	10.4	J	N,WM	\dagger
54/74AS534	200	3	2	50.3	J	N	\dagger
54/74ALS564	50	15	4	8.5	J	N,WM	\dagger
54/74ALS574A	50	15	4	8.5	J	N,WM	\dagger
54/74AS574	200	3	3	50.4	J	N	\dagger
54/74AS575	160	3	3	53	J	N	\dagger
54/74ALS576A	50	15	4	8.5	J	N,WM	\dagger
54/74AS576	160	3	3	52.5	J	N	\dagger
54/74AS577	160	3	3	50.4	J	N	\dagger
54/74ALS874A	50	15	4	10.8	J	N,WM	\dagger
54/74AS874	160	2.5	1	62.5	J	N	\dagger
54/74ALS876A	50	15	4	10.8	J	N,WM	\dagger
54/74AS876	160	2.5	1	58	J	N	\dagger
54/74AS878	160	3	3	62.5	J	N	\dagger
54/74AS879	160	3	3	59	J	N	\dagger

[^1]| Device Type | Clear | Preset | Typ* $\mathrm{f}_{\text {MAX }}$ (MHz) | Data
 Setup Time (ns) | Data
 Hold
 Time
 (ns) | Typ*
 Power Diss. /FF (mW) | Package Availability | | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | Mil | Com | |
| 54/7473 | No | Yes | 35 | 0 | 0 | 50.0 | J | N | 4-71 |
| 54/74L73 | No | Yes | 11 | 0 | 0 | 3.8 | J | N | 5-16 |
| 54/7476 | Yes | Yes | 20 | 0 | 0 | 50.0 | J | N | 4-80 |
| 54/74107 | No | Yes | 20 | 0 | 0 | 50.0 | J | N | 4-100 |

Gates, AND with Totem-Pole Outputs

Description	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availability		Page
				Mil	Com	
Dual 4-Input	54/74ALS21	9	2.2	J	N,M	\dagger
	54/74AS21	3.3	12.5	J	N	\dagger
	54/74LS21	7.8	4.5	J	N,M	2-29
Triple 3-Input	54/74ALS11A	9	2.1	J	N,M	\dagger
	54/74AS11	3.3	12.9	J	N	\dagger
	54/74LS11	7.8	4.3	J	N,M	2-20
	54/74S11	4.8	31	J	N	3-19
Quad 2-Input	54/74ALS08	6.5	2.2	J	N,M	\dagger
	54/74AS08	3.3	12.9	J	N	\dagger
	54/74LS08	7.8	4.3	J	N,M	2-14
	54/74S08	4.8	31	J	N	3-13
	54/7408	15	19	J	N	4-30

Gates, AND with Open-Collector Outputs

Description	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availability		Page
				Mil	Com	
Triple 3-Input	54/74ALS15	17	1.5	J	N,M	\dagger
Quad 2-Input	$\begin{aligned} & \text { 54/74ALS09 } \\ & \text { 54/74LS09 } \\ & \text { 54/74S09 } \\ & \text { 54/7409 } \end{aligned}$	$\begin{gathered} 17 \\ 19 \\ 6.5 \\ 18.5 \end{gathered}$	$\begin{gathered} 2.2 \\ 4.3 \\ 31 \\ 19.4 \end{gathered}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N}, \mathrm{M} \\ \mathrm{~N} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \hline \dagger \\ & 2-16 \\ & 3-15 \\ & 4-32 \end{aligned}$

Gates, AND-OR-INVERT with Totem-Pole Outputs

Description	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availability		Page
				Mil	Com	
Dual 2-Wide	54/74LS51	7.5	2.75	J	N,M	2-46
2-Input	54/74S51	3.5	28	J	N	3-29
4-Wide 4-2-3-2 Input	54/74S64	3.5	29	J	N	3-31

\dagger Please see the ALS/AS Databook for this datasheet.

Gates, NAND and Inverters with Totem-Pole Outputs (Continued)

Description	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availability		Page
				Mil	Com	
Hex Inverters	54/74ALS04A	3.5	1.5	J	N,M	\dagger
	54/74ASO4	2	7.1	J	N	\dagger
	54/74LS04	8	2	J	N,M	2-10
	54/74S04	4.5	19	J	N,M	3-9
	54/7404	10	10	J	N,M	4-22
	54/74L04	33	1	J	N	5-7
	54/74ALS14	8	10	J	N,M	\dagger
8-Input NAND Gates	54/74ALS30A	6.5	1.9	J	N,M	\dagger
	54/74AS30	2	9.8	J	N	\dagger
	54/74LS30	10	2.4	J	N, M	2-35
	54/74S30	4.5	19	J	N	3.23
	54/7420	10	10	J	N	4-43
13-Input NAND	54/74ALS133	7	2	J	N,M	\dagger
Gate	54/74S133	6	19	J	N,M	$3-44$
Hex Non-Inverter	54/74AS34	4.5	12	J	N	\dagger

Gates, Exclusive NOR, OR with Open-Collector Outputs

Description	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availabllity		Page
				MII	Com	
Quad 2-Input Exclusive NOR Gates	54/74ALS811 54/74AS811		9.1	J	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \dagger \\ & \dagger \end{aligned}$
Quad 2-Input Exclusive OR Gates	54/74ALS136 54/74AS136			J	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \dagger \\ & \dagger \end{aligned}$

Gates, Exclusive NOR with Totem-Pole Outputs

Description	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Availability		Page
				Mil	Com	
Quad 2-Input Exclusive NOR Gates	54/74ALS810 54/74AS810	$\begin{aligned} & N / A \\ & N / A \end{aligned}$	N/A N/A	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \dagger \\ & \dagger \end{aligned}$

Gates, NOR with Totem-Pole Outputs

Description	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Diss. /Gate (mW)	Package Avallabillty		Page
				Mil	Com	
Triple 3-Input NOR Gates	54/74ALS27	5.5	2.5	J	N,M	\dagger
	54/74AS27	2	12.2	J	N	\dagger
	54/74LS27	10	4.5	J	N,M	2.33
	54/7427	8.5	22	J	N	4-47
Quad 2-Input NOR Gates	54/74ALS02	5	1.9	J	N,M	\dagger
	54/74AS02	2	10.1	J	N	\dagger
	54/74LS02	10	2.75	J	N,M	2-6
	54/74S02	5	29	J	N	3-5
	54/7402	10	14	J	N	4-18
	54/74L02	33	1.5	J	N	5-5

[^2]Gates, OR with Totem-Pole Outputs

Descriptlon	Device Type	Typ* Prop. Delay Time (ns)	Typ* Power Dlss. /Gate (mW)	Package Avallabillity		Page
				Mil	Com	
Quad 2-Input OR Gates	54/74ALS32	5.5	2.8	J	N, M	\dagger
	54/74AS32	3.5	14.9	J	N	\dagger
	54/74LS32	10	5	J	N,M	2.37
	54/74S32	5	35	J	N	3-25
	54/7432	12	24	J	N	4-51
Quad 2-Input Exclusive OR Gates	54/74ALS86	7	3.75	J	N,M	\dagger
	54/74AS86			J	N	\dagger
	54/74LS86	10	7.5	J	N,M	$2-65$
	54/74S86	9	62.5	J	N	$3-36$
	54/7486	14	41	J	N	4-87

Latches

Description	Device Type	No. of Bits	Clear	Outputs	Typ.* Prop. Delay Time (ns)	Typ* Power Diss. Total (mW)	Package Avallabillity		Page
							Mil	Com	
Addressable	54/74LS259	8	Low	Q	17	110	J	N,WM	2-202
Latches	54/74259	8	Low	Q	21	150	J	N	4-207
	93/8334	8	Low	Q	21	280	J	N	4-293
DG (Clocked)	54/74LS75	4	None	Q, \bar{Q}	11	32	J	N,M	2-54
Latches	54/7475	4	None	Q, $\overline{\mathbf{Q}}$	15	160	J	N	4.77
$\overline{\mathrm{S}}, \overline{\mathrm{R}}$ Latches	54/74LS279	4	None	Q	12	19	J	N,M	2-205
Dual 4-Bit	54/74ALS880A	4	None	\bar{Q}	9	88.3	J	N,M	\dagger
Latches	54/74AS880	4	None	\bar{Q}	6	391.5	J	N	\dagger
Octal Latch	54/74ALS273	8	Low	Q	12	50	J	N,M	\dagger
TRI-STATE	54/74ALS373	8	None	Q	10	70	J	N,WM	\dagger
Octal	54/74AS373	8	None	Q	6	300	J	N	
Latches	54/74LS373	8	None	Q	17	120	J	N,WM	2-235
	54/74S373	8	None	Q	12	525	J	N,WM	3-123
	54/74ALS573A	8	None	Q	9	68.3	J	N,WM	\dagger
	54/74AS573	8	None	Q	4.5	293	J	N	\dagger
TRI-STATE	54/74ALS533	8	None	$\overline{\mathrm{Q}}$	10	75.8	J	N,WM	\dagger
Inverting	54/74AS533	8	None	$\overline{\mathrm{Q}}$	5	328	J	N	\dagger
Octal	54/74ALS563	8	None	\bar{Q}	13	68.3	J	N,WM	\dagger
Latches	54/74ALS580A	8	None	\bar{Q}	9	68.3	J	N,WM	\dagger
	54/74AS580	8	None	$\overline{\mathrm{Q}}$	4.5	330	J	N	\dagger
Dual 4-Bit	54/74ALS873A	4	Low	Q	10	68.3	J	N,WM	\dagger
TRI-STATE Latches	54/74AS873	4	Low	Q	4.5	330	J	N	\dagger

\dagger Please see the ALS/AS Databook for this datasheet.

[^3]| One Shots, Retriggerable | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | Device Type | | No. of Inputs | | Dir. Clear | | Output
 Pulse
 Range (ns) | Typ*
 Total Power Diss. (mW) | Package Availability | | Page |
| | | | Pos | Neg | | | | | Mil | Com | |
| Single | $\begin{aligned} & \text { 54/74LS122 } \\ & 96 / 8601 \end{aligned}$ | | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | Yes
 Yes | | $\begin{aligned} & 45 \mathrm{~ns} \text {-inf. } \\ & 50 \mathrm{~ns} \text {-inf. } \end{aligned}$ | $\begin{aligned} & 30 \\ & 90 \end{aligned}$ | $\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$ | $\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \end{gathered}$ | $\begin{aligned} & 2-84 \\ & 4-297 \end{aligned}$ |
| Dual | 54/74LS123
 54/74123
 96/8602 | | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | Yes
 Yes
 Yes | | 90 ns -inf.
 45 ns -inf.
 $72 \mathrm{~ns}-\mathrm{inf}$. | $\begin{array}{r} 60 \\ 230 \\ 195 \end{array}$ | $\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$ | $\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \\ \mathrm{~N} \end{gathered}$ | $\begin{aligned} & 2-88 \\ & 4-110 \\ & 4-301 \end{aligned}$ |
| One Shots with Schmitt-Trigger Inputs | | | | | | | | | | | |
| Description | Device Type | | No. of Inputs | | Dir. Clear | | Output
 Pulse
 Range (ns) | Typ*
 Total
 Power
 Diss.
 (mW) | Package Availability | | Page |
| | | | Pos | Neg | | | | | Mil | Com | |
| Single | 54/74121 | | 1 | 2 | Yes | | $40 \mathrm{~ns}-28 \mathrm{~s}$ | 90 | J | N | 4-106 |
| Dual | $\begin{aligned} & \text { 54LS221 } \\ & \text { 74LS221 } \end{aligned}$ | | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | | | $\begin{aligned} & 20 \mathrm{~ns}-49 \mathrm{~s} \\ & 20 \mathrm{~ns}-49 \mathrm{~s} \\ & \hline \end{aligned}$ | $\begin{aligned} & 65 \\ & 23 \\ & \hline \end{aligned}$ | J | N,M | $\begin{aligned} & 2-174 \\ & 2-174 \\ & \hline \end{aligned}$ |
| Parity Generators/Checkers | | | | | | | | | | | |
| Description | | | e Type | Typ*
 Prop.
 Delay
 Time (ns) | | | Tур*
 Power
 Diss.
 Total (mW) | Package Avallability | | | Page |
| | | | | | | Mil | | Com | | |
| 8-Bit Odd/Even Parity Generators/Checkers | | | | 54/74180 | | 35 | | 170 | J | N | | 4-174 |
| 9-Bit Odd/Even Parity Generators/Checkers | | $\begin{aligned} & 54 / 74 \mathrm{~S} 280 \\ & 54 / 74 \mathrm{AS} 280 \\ & \hline \end{aligned}$ | | $\begin{aligned} & 13 \\ & 7.3 \end{aligned}$ | | | $\begin{aligned} & 335 \\ & 135 \end{aligned}$ | $\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$ | $\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \end{gathered}$ | | $\begin{aligned} & 3-110 \\ & +\quad \\ & \hline \end{aligned}$ |
| 9-Bit Parity
 Generator/Checker with Bus Driver Parity I/O Port | | 54/74AS286 | | | 9.3 | | 160 | J | N | | \dagger |
| Priority Encoders | | | | | | | | | | | |
| Description | | Device Type | | Typ*
 Prop.
 Delay
 Time (ns) | | Tур*
 Power
 Diss.
 Total (mW) | | Package
 Availabillity | | | Page |
| | | MII | | | | | | | |
| Cascadable Octal Priority Encoders | | | | $\begin{aligned} & 54 / 74148 \\ & 93 / 8318 \\ & \hline \end{aligned}$ | | | | $\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$ | | | $\begin{aligned} & 190 \\ & 190 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$ | NN | | $\begin{aligned} & 4-126 \\ & 4-286 \end{aligned}$ |
| Register Files | | | | | | | | | | | |
| Description | | Device Type | | Typ*
 Address Time (ns) | | Typ*
 Read
 Enable
 Time
 (ns) | Data
 Input
 Rate | Typ*
 Power
 Dlss.
 Total
 (mW) | Package Availability | | Page |
| | | | Mil | | | Com | | | |
| 4 Words of 4 Bits with TRI-STATE Outputs | | | | 54/74LS670 | | | | | 19 | 20 | 135 | J | N,M | 2-254 |
| \dagger Please see the ALS/AS Databook for this datasheet. | | | | | | | | | | | |

Registers, Other

Description	Device Type	Typ* Clock Freq. (MHz)	Asyn. Clear	Typ* Power Diss. Total (mW)	Package Availability		Page
					Mil	Com	
Quad Bus Buffer Registers	$\begin{aligned} & \text { 54/74LS173A } \\ & 54 / 74173 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & \hline \end{aligned}$	High High	$\begin{array}{r} 85 \\ 250 \\ \hline \end{array}$	J	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \\ \hline \end{gathered}$	$\begin{aligned} & 2-146 \\ & 4-165 \\ & \hline \end{aligned}$
Quad D-Type Registers	54/74ALS175 54/74AS175 54/74LS175 54/74S175 54/74175	$\begin{gathered} 60 \\ 160 \\ 40 \\ 90 \\ 40 \\ \hline \end{gathered}$	Low Low Low Low Low	47.5 395 55 300 150	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \\ \mathrm{~N}, \mathrm{M} \\ \mathrm{~N} \\ \mathrm{~N} \\ \hline \end{gathered}$	$\begin{aligned} & \dagger \\ & \dagger \\ & 2-150 \\ & 3-70 \\ & 4-169 \end{aligned}$
Quad Multiplexers with Storage	54/74L98	15	None	30	J	N	5-28
Hex D-Type Registers	54/74ALS174 54/74AS174 54/74LS174 54/74S174 54/74174	$\begin{gathered} 60 \\ 160 \\ 40 \\ 90 \\ 40 \end{gathered}$	Low Low Low Low Low	$\begin{gathered} 50 \\ 395 \\ 80 \\ 450 \\ 225 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \\ & \mathrm{~J} \end{aligned}$	$\begin{gathered} \mathrm{N}, \mathrm{M} \\ \mathrm{~N} \\ \mathrm{~N}, \mathrm{M} \\ \mathrm{~N} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \dagger \\ & \dagger \\ & 2-150 \\ & 3-70 \\ & 4-169 \end{aligned}$
8-Bit Universal Shift/Storage Registers	54/74S299	60	Low	700	J	N	3-118
Octal D-Type Registers	54/74ALS374 54/74AS374 54/74LS374 54/74S374 54/74ALS534 54/74AS534 54/74ALS574A 54/74AS574 54/74AS575 54/74ALS576A 54/74AS576 54/74AS577 54/74ALS874A 54/74AS874 54/74ALS876A 54/74AS876 54/74AS878 54/74AS879	$\begin{gathered} 50 \\ 200 \\ 50 \\ 100 \\ 50 \\ 200 \\ 40 \\ 160 \\ 160 \\ 50 \\ 160 \\ 160 \\ 50 \\ 160 \\ 50 \\ 160 \\ 160 \\ 160 \end{gathered}$	None Low Low None None Low Low	86 402 128 487 83 328 68 403 383 68 420 420 87 500 87 500 500 500	J	N,WM N N,WM N,WM N,WM N N,WM N N N,WM N N N,WM N N,WM N N N	$\begin{aligned} & \dagger \\ & \dagger \\ & 2-235 \\ & 3-123 \\ & \dagger \\ & \hline \end{aligned}$
8-Bit Dual Rank Shift Register	54/74LS952 54/74LS962	$\begin{aligned} & 36 \\ & 36 \\ & \hline \end{aligned}$	None None	$\begin{aligned} & 305 \\ & 305 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \mathrm{N}, \mathrm{M} \\ & \mathrm{~N}, \mathrm{M} \end{aligned}$	$\begin{aligned} & 2-258 \\ & 2-264 \\ & \hline \end{aligned}$
Successive Approximation Registers	$\begin{aligned} & 2502 \mathrm{C} \\ & 2503 \mathrm{C} \\ & 2504 \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & \hline \end{aligned}$	None None None	$\begin{array}{r} 325 \\ 300 \\ 450 \\ \hline \end{array}$	J J J	$\begin{aligned} & N \\ & N \\ & N \end{aligned}$	4-4 4-4 4-4
Octal Bus Transceivers And 8-Bit Storage Register	54/74ALS646 54/74ALS648 54/74ALS652	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	None None None	$\begin{aligned} & 255 \\ & 260 \\ & 255 \end{aligned}$	J J J	N,WM N,WM N,WM	$\begin{aligned} & \dagger \\ & \dagger \\ & \dagger \end{aligned}$

\dagger Please see the ALS/AS Databook for this datasheet.

\dagger Please see the ALS/AS Databook for this datasheet.

DC Operating Conditions and Characteristics

GENERAL DEFINITIONS

I: Current is the flow of electric charge from one potential to another through a conductor. The unit of measure is the Ampere, or Amp, abbreviated A. One Amp is equal to the current flowing through one ohm of resistance when one volt is applied across that resistance. Common units found in the semiconductor industry are the milliampere, abbreviated mA , equal to 0.001 A and the microampere, abbreviated $\mu \mathrm{A}$, equal to 0.000001 A . Negative current is defined as current flowing out of a device terminal and positive current is defined as current flowing into a device terminal.
V: Voltage, or the electromotive force which causes current to flow through a conductor. One Ampere of current flowing through one ohm of resistance develops a potential difference of one volt across that resistance. The unit of measure is the Volt, abbreviated V , and a common unit is the millivolt, abbreviated mV , equal to 0.001 V .

INPUT CURRENT PARAMETERS

II Maximum High Level Input Current: Current flowing into an input when that input has the maximum voltage specified for the family applied to it. This test is used to guarantee the minimum reverse breakdown voltage of the input structure.
I_{IH} High Level Input Current: The current flowing into an input when that input has a high level voltage equal to the minimum high level output voltage specified for the family. This test is used to check the emitter-to-emitter leakage and the inverse transistor action of a multi-emitter transistor input, the input leakage of a diode, PNP transistor, or C-B short type of input, and to guarantee the fan-in specified for the family.
IIK Input Clamp Current: The current flowing out of an input when that input is pulled below ground. This test is used to guarantee the integrity of the input clamp diode. The input clamp diode is used to limit the voltage swings on the input by clamping the negative excursions to a level equal to one diode drop below ground. This serves to reduce ringing on an incoming signal. Pulling the input below ground for an extended length of time can cause parasitic transistor action to occur between adjacent tanks on the die which can cause erroneous data to occur on the outputs of the device. To prevent this, voltages on the inputs during operation (other than high speed ringing) should be limited to no more than 0.5 V below ground at all times.
IIL Low Level Input Current: The current flowing out of an input when a low level voltage equal to the maximum low level output voltage specified for the family is applied to the input. This test is used to check the input pullup resistor on an MET or a diode input and to guarantee the spec̣ified fanin of the family.
$I_{T}+$ Current at Positive-Going Threshold Point: The current flowing out of a transition-operated (Schmitt trigger) input when a voltage equal to the positive going threshold voltage is applied to the input.
$\mathbf{I}_{\mathbf{T}}$ - Current at Negative-Going Threshold Point: The current flowing out of a transition-operated (Schmitt trigger) input when a voltage equal to the negative going threshold voltage is applied to the input.

OUTPUT CURRENT PARAMETERS

ICEX Output Leakage Current: The current flowing into an open collector output when input conditions have been applied that, according to the product specification, will cause the output to be in the logic high state. This test checks the reverse breakdown of the output transistor.
I_{O} (off) Off-State Output Current: The current flowing into an output with input conditions applied that, according to the product specification, will cause the output switching element to be in the off state.
NOTE: This parameter is usually specified for open collector outputs intended to drive devices other than logic circuits, such as displays. Any leakage current applied to a display may cuase the display to be activated.
$\mathbf{I O H}_{\mathrm{OH}}$ High Level Output Current: The current flowing out of an output with input conditions applied that, according to the product specification, will establish a logic high level at the output. This test guarantees the current sourcing (drive) capability of the output and the fan-out specified for the family.
IOL Low Level Output Current: The current flowing into an output with input conditions applied that, according to the product specification, will establish a logic low level at the output. This test guarantees the current sinking capability of the output and the fan-out specified for the family.
Ios Output Short-Circuit Current: The current out of an output when that output is shorted to ground, or another specified potential, with input conditions applied that, according to the product specification, will establish a logic high level at the output.
Ioz High-Impedance State Output Current: These tests guarantee that the device will not excessively load a bus line when the device output is put into the TRI-STATE ${ }^{\circledR}$ mode.
$I_{\text {OZH }}$ (or $I_{\text {SINK }}$): The current flowing into an output with input conditions applied to the output control pin such that the output is in the high impedance state and input conditions applied to the other inputs that, according to the product specification, will establish a logic low level at the output.
IOZL(or ISOURCE): The current flowing out of an output with input conditions applied to the output control pin such that the output is in the high impedance state and input conditions applied to the other inputs that, according to the product specification, will establish a logic high level at the output.

SUPPLY CURRENT PARAMETERS

$\mathbf{I}_{\mathbf{C c h}}$ Supply Current (outputs in the high state): The current flowing into the $V_{C C}$ terminal of a device with input conditions applied that, according to the product specification, will establish a logic high level at the output(s).
ICCL Supply Current (outputs in the low state): The current flowing into the V_{CC} terminal of a device with input conditions applied that, according to the product specification, will establish a logic low level at the output(s).

DC Operating Conditions and Characteristics (Continued)

Iccz Supply Current (outputs in the high-impedance state): The current flowing into the $V_{C C}$ terminal of a device with input conditions applied that, according to the product specification, will establish a high impedance state at the output.

INPUT VOLTAGE PARAMETERS

BV ${ }_{\text {IN }}$ Input Breakdown Voltage: The maximum voltage that the device is guaranteed to be able to withstand without exceeding the maximum input current specification.
V_{F} Input Forward Voltage: The voltage applied to the input of a device that causes the input structure to become forward biased; usually equal to the maximum output low voltage specified for the family.
$\mathbf{V}_{\mathbf{I H}}$ High Level Input Voltage: The minimum positive voltage level that can be applied to an input terminal of a device and be recognized as a logic high level.
$V_{I K}$ Input Clamp Voltage: The input clamp voltage specification checks the quality of the input diode whose purpose is to damp out ringing. This is not intended to be an operating condition and if this voltage is allowed to persist for any length of time, parasitic transistor action will occur between adjacent geometry tanks and circuit performance will be degraded, in some cases to the point of failure.
VIL Low Level Input Voltage: The maximum positive voltage level that can be applied to an input terminal of a device and be recognized as a logic low level.
$\mathbf{V}_{\mathbf{R}}$ Input Reverse Voltage: The voltage applied to an input of a device that causes the input structure to become reverse biased; usually equal to the minimum high level output voltage specified for the family.
$\mathbf{V}_{\mathbf{T}}+$ Positive-Going Threshold Voltage: The voltage level at a transition-operated (Schmitt trigger) input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, $\mathrm{V}_{\mathrm{T}}-$.
$\mathbf{V}_{\mathbf{T}}$ - Negative-Going Threshold Voltage: The voltage level at a transition-operated (Schmitt trigger) input that causes operation of the logic element according to specification as the input voltage falls from a level above the positive-going threshold voltage, $\mathrm{V}_{\mathrm{T}}+$.

OUTPUT VOLTAGE PARAMETERS

\mathbf{V}_{OH} High Level Output Voltage: The voltage at an output terminal with input conditions applied that, according to the product specification, will establish a high level at the output.
VoL Low Level Output Voltage: The voltage at an output terminal with input conditions applied that, according to the product specification, will establish a low level at the output.
$V_{0}($ off $)$ Off-State Output Voltage: The voltage at an output terminal with input conditions applied that, according to the product specification, will cause the output switching element to be in the off state.
NOTE: This characteristic is usually specified only for outputs without internal pull-up elements intended for driving devices other than logic circuits.
$V_{0}(o n)$ On-State Output Voltage: The voltage at an output terminal with input conditions applied that, according to the product specification, will cause the output switching element to be in the on state.
NOTE: This characteristic is usually specified only for outputs without internal pull-up elements intended for driving devices other than logic circuits.

AC Operating Conditions and Characteristics

INPUT PARAMETERS

$f_{\text {MAX }}$ Maximum Clock Frequency: The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic levels at the output with input conditions established that should cause changes of output logic level in accordance with the specification. Unless otherwise specified, this test is performed with no restrictions on input rise and fall times or duty cycle.
NOTE: A minimum value is specified that is the highest frequency at which all devices are guaranteed to function correctly.
t_{H} Hold Time: The interval during which a signal must be maintained at a given data input after an active transition at another given input.
NOTE: A minimum value is specified that is the smallest time interval above which all devices are guaranteed to function correctly.
${ }^{\text {tw }}$ Pulse WIdth: The time interval between specified voltage reference points on the leading and trailing edges of a pulse waveform.
NOTE: A minimum value is specified that is the smallest time interval at which correct operation of the logic element is guaranteed.
$\boldsymbol{t}_{\text {REC }}$ Recovery Time: The time interval needed to switch a memory-type device from a write mode to a read mode and to obtain valid data signals at the output.
NOTE: A minimum value is specified that is the smallest time interval at which correct operation of the device is guaranteed.
$\mathbf{t}_{\text {REL }}$ Release Time: The time interval between one control input going inactive and another input going active after which the inactive input no longer has any influence on the device operation.
NOTE: A minimum value is specified that is the smallest time interval at which correct operation of the logic element is guaranteed.
ts $_{\text {S }}$ Set-Up Time: The time interval during which a stable signal must be maintained at a specified input terminal before an active transition at another specified input terminal. NOTE: A minimum value is specified that is the smallest time interval at which correct operation of the logic element is guaranteed.
$\boldsymbol{t}_{\mathbf{R}}$ Rise TIme: The time interval between a specified lowlevel voltage and a specified high-level voltage on a waveform that is changing from a defined low level to a defined high level. Common defined levels are from 10% of the signal amplitude to 90% of the signal amplitude.
$\mathbf{t}_{\mathbf{F}}$ Fall Time: The time interval between a specified high-level voltage and a specified low-level voltage on a waveform that is changing from a defined high level to a defined low level. Common defined levels are from 90% of the signal amplitude to 10% of the signal amplitude.

OUTPUT PARAMETERS

$t_{p z H}$ Output Enable Time to a High Logic Level: The propagation delay time between the specified voltage reference points on the input and output waveforms with a TRISTATE output changing from a high impedance (off) state to the defined high state.
$t_{\text {pzL }}$ Output Enable Time to a Low Logic Level: The propagation delay time between the specified voltage reference points on the input and output waveforms with a TRI-STATE output changing from a high impedance (off) state to the defined low state.
$t_{\text {thz }}$ Output Disable Time from a High Logic Level: The propagation delay time between the specified voltage reference points on the input and output waveforms with a TRISTATE output changing from the defined high state to the high impedance (off) state .
$t_{\text {PLz }}$ Output Disable Time from a Low Logic Level: The propagation delay time between the specified voltage reference points on the input and output waveforms with a TRISTATE output changing from the defined low state to the high impedance (off) state .
$t_{\text {wout }}$ Output Pulse Width: The time interval between specified voltage reference points on the leading and trailing edges of an output waveform.
NOTE: This is usually only specified for monostable elements.
$t_{\text {plH }}$ Propagation Time, Low to High: The time between the specified voltage reference points on the input and output waveforms with the output changing from a low logic level to a high logic level.
tphl $^{\text {Propagation Delay, High to Low: The time between }}$ the specified voltage reference points on the input and output waveforms with the output changing from a high logic level to a low logic level.
${ }^{t_{T}} \mathbf{L H}, t_{\mathbf{r}}$ Transition Time, or Rise Time: The time interval between a specified low-level voltage and a specified highlevel voltage on a waveform that is changing from a defined low level to a defined high level. Common defined levels are from 10% of the signal amplitude to 90% of the signal amplitude, or from 0.6 V to 2.6 V .
${ }^{t_{T H L}} \boldsymbol{t}_{\mathbf{f}}$ Transition Time, or Fall Time: The time interval between a specified high-level voltage and a specified lowlevel voltage on a waveform that is changing from a defined high level to a defined low level. Common defined levels are from 90% of the signal amplitude to 10% of the signal amplitude, or from 2.6 V to 0.6 V .

EXPLANATION OF DEVICE FUNCTIONS

CIrcult Complexity

SSI: Small Scale Integration; the lowest level of complexity in integrated circuits.
MSI: Medium Scale Integration; small subsystems integrated into a single microcircuit.
LSI: Large Scale Integration; large subsystems or small systems integrated into a single microcircuit.

FUNCTIONAL DESCRIPTIONS

Buffer: A logic gate with high output drive capability, or fanout. Buffers are used where a single circuit must drive a large number of loads.
Comparator: A logic circuit that will compare two separate input signals and produce an output based on that comparison. A simple comparator is the Exclusive-NOR gate, which produces a high level output only when its two inputs are identical.
Counter: A logic circuit that counts the number of input pulses it receives. Counters can be used for frequency division, counting, and sequencing digital operations. Common counter configurations are Binary, where the device counts from 0 to 15 and Decade, where the device counts from 0 to 9 .

AC Operating Conditions and Characteristics (Continued)

Data Selector/Multiplexer: A logic circuit that will select one of several input signals and feed that signal onto a common bus line. It can be thought of as a multipole, multiposition switch with each switch pole representing one output and each switch position representing one input.
Decoder/Demultiplexer: A logic circuit that is the complement of the Data Selector/Multiplexer; that is, this circuit takes an input signal and feeds it to any one of several output lines depending on the information placed on its steering, or control, inputs.
Driver: Same as Buffer, above.
Flip-Flop: A logic circuit that is used to store information. A flip-flop is called "bistable" since it has two stable states.
Gate: The basic building block of all logic circuits; an element whose output is a Boolean function of its inputs. The basic functions are the AND, OR, and NOT. By combining these functions, NAND, NOR, and Exclusive-OR and Exclu-sive-NOR gates are built.
Latch: A bistable element that latches, or holds, data which is present at its input at the time the Enable input goes to its inactive state. When the Enable input is active, the data, present at the input, is passed directly to the output, similar to the operation of a gate.
One-Shot: Monostable multivibrator; a flip-flop that only has one stable state. When triggered by an input transient, it flips to its unstable state for a time period determined by an external R-C network connected to its timing inputs, and then returns to its stable state.
Shift Register: A series of flip-flops in which the data signal is shifted out of one flip-flop and into the succeeding flip-flop during an active transition on the clock input.
Transcelver: A logic circuit that can transmit data onto a bus line and receive data off of the bus line using the same terminal as an input and output. The direction of signal flow is determined by logic levels present at a Direction Control input.

OTHER TERMS

Asynchronous: A mode of operation that does not require any specific timing relationship between different control inputs.
Open Collector: Output configuration that has no internal pullup. This configuration enables outputs that are connected together (wired-OR) to assume opposite states without incurring damage.
Schmitt Trigger: An input configuration that has a different threshold point depending on whether the input signal is rising or falling. This is especially useful in electrically noisy environments.
Synchronous: A mode of operation where specific timing requirements must be met between control inputs before an indicated action can occur.
Totem Pole: An output configuration that contains an internal pullup structure, usually a transistor pullup allowing higher output drive capability than is available with open collector outputs.

TRI-STATE: A registered trademark for a circuit configuration in which the device can be switched 'off' during which time the output presents a very high impedance to the bus it is connected to. This allows multiple outputs to be connected to a bus line while only one output drives the line, the other outputs being switched into their high impedance states.

EXPLANATION OF FUNCTION TABLES

The following symbols are used in the function tables found in NSC data sheets:
H $\quad=$ high logic level (steady state)
L = low logic level (steady state)
$\uparrow \quad=$ transition from low to high logic level
$\downarrow \quad=$ transition from high to low logic level
$\mathrm{X} \quad=$ irrelevant (any level, including transitions)
$\mathrm{Z} \quad=$ off (high impedance) state of a TRI-STATE output
$\mathrm{a} . . \mathrm{h}=$ the level of steady state inputs at inputs A through H respectively
$Q_{0} \quad=$ the level of Q before the indicated steady state input conditions were established
$\bar{Q}_{0} \quad=$ complement of Q_{0} or level of Q before the indicated steady state input conditons were established
$Q_{\mathrm{n}} \quad=$ level of Q before the most recent active transition indicated by \uparrow or \downarrow
$\Omega=$ one high level pulse
〕 = one low level pulse
toggle $=$ each output changes to the complement of its previous level on each active transition indicated by \uparrow or \downarrow
If, in the input columns, a row contains only the symbols H , L , and/or X , this means the indicated output is valid whenever the input configuration is achieved regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.
If, in the input columns, a row contains H, L, and/or X together with \uparrow and/or \downarrow, this means the output is valid whenever the input configuration is achieved but the transition(s) must occur following the achievement of the steady state levels. If the output is shown as a level $\left(H, L, Q_{0}\right.$, or \bar{Q}_{0}), it persists so long as the steady state input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input transitions in the opposite direction to those shown have no effect on the output. If the output is shown as a pulse, Ω or \urcorner, the pulse follows the indicated input transition and persists for an interval dependent on the circuit.
Among the most complex function tables in this book are those of the shift registers. These embody most of the symbols used in any of the function tables, plus more. As an example, Figure 1 is the function table for a 4-bit bidirectional universal shift register, similar to the DM54LS194.
The first line of the table represents "asynchronous" clearing of the register and indicates that if CLEAR is low, all four outputs will be reset low regardless of the states of the other inputs. In the succeeding lines, CLEAR is inactive (high) and consequently has no effect.

AC Operating Conditions and Characteristics (Continued)

The second line indicates that so long as the CLOCK input remains low (while CLEAR is high), no other input has any effect and the outputs maintain the levels they assumed before the steady-state combination of CLEAR high and CLOCK low was established. Since on all the other lines of the table only the rising edge of the CLOCK is shown to be active, the second line implicitly shows that no further change in the outputs will occur while the CLOCK remains high or on the high-to-low transition of the CLOCK.
The third line of the table represents "synchronous" parallel loading of the register and indicates that if S1 and S0 are both high, then regardless of the levels at the SERIAL inputs, the data present at A will transfer to QA, the data present at B will transfer to QB, and so forth, following a low-to-high transition on CLOCK.
The fourth and fifth lines represent the "synchronous" loading of high and low level data, respectively, from the SHIFT RIGHT SERIAL input and the shifting one bit to the right of previously entered data; data previously at QA is now at QB, data previously at QB and QC is now at QC and QD respec-
tively, and the data previously at QD has been shifted out of the register. This entry of data and shifting takes place on the low-to-high level transition of CLOCK when S1 is low and SO is high and as shown, the levels at the PARALLEL inputs, A through D, have no effect.
The sixth and seventh lines represent the "synchronous" loading of high and low level data respectively, from the SHIFT LEFT SERIAL input and the shifting one bit to the left of previously entered data; data previously at QD is now at QC, data previously at QC and QB is now at QB and QA respectively, and the data previously at QA has been shifted out of the register. This entry of serial data and shifting to the left takes place on the low-to-high level transition of CLOCK when S1 is high and SO is low and as seen, the levels at the PARALLEL inputs, A through D, have no effect.
The last line indicates that so long as both MODE inputs are low, no other input has any effect and, as in the second line, the outputs maintain the levels they assumed before the steady state combination of CLEAR high and both MODE inputs low was established.

Clear	Mode		Inputs							Outputs			
			Clock	Serial		Parallel							
	S1	So		Left	Right	A	B	C	D	$\mathbf{Q}_{\mathbf{A}}$	Q_{B}	Q_{C}	Q_{D}
L	X	X	X	X	x	X	X	X	X	L	L	L	L
H	X	X	L	X	X	X	X	X	X	$Q_{\text {AO }}$	$Q_{B 0}$	$Q_{\text {co }}$	$Q_{\text {DO }}$
H	H	H	\uparrow	X	X	a	b	c	d	a	b	c	d
H	L	H	\uparrow	X	H	X	X	X	X	H	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$
H	L	H	\uparrow	X	L	X	X	X	X	L	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$
H	H	L	\uparrow	H	X	X	x	X	x	$Q_{B n}$	$Q_{C n}$	$Q_{\text {Dn }}$	H
H	H	L	\uparrow	L	X	X	x	x	X	$Q_{B n}$	$Q_{C n}$	$Q_{\text {Dn }}$	L
H	L	L	X	X	X	X	X	X	X	$Q_{A 0}$	$\mathrm{Q}_{\mathrm{B} 0}$	$Q_{\text {co }}$	$Q_{D 0}$

FIGURE 1. Function Table

DM54/74, 54S/74S Test Waveforms

Parameter Measurement Information

TL/X/0005-3
Note A: C_{L} includes probe and jig capacitance.
Note B: All diodes are 1N916 or 1N3064.

$$
\begin{aligned}
& 54 / 74 \mathrm{t}_{\mathrm{r}} \leq 7 \mathrm{~ns} ; \mathrm{t}_{\mathrm{f}} \leq 7 \mathrm{~ns} \\
& 54 \mathrm{~S} / 74 \mathrm{~S} \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} \\
& \text { Generator: } \text { Z OUT } \approx 50 \Omega \\
& \text { PRR } \leq 1 \mathrm{MHz}
\end{aligned}
$$

TL/X/0005-4

DM54/74, 54S/74S Test Waveforms (Continued)

Parameter Measurement Information (Continued)

Voltage Waveforms Propagation Delay Times

TL/X/0005-7

Voltage Waveforms Enable and Disable Times, TRI-STATE Outputs

TL/X/0005-8
Note C: Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
Note D: In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
Note E: When measuring propagation delay times of TRI-STATE outputs, switches S1 and S2 are closed.

DM54L/74L, 54LS/74LS Test Waveforms

Parameter Measurement Information

TRI-STATE Outputs

TL/X/0005-11
Note $\mathrm{A}: \mathrm{C}_{\mathrm{L}}$ includes probe and jig capacitance.
Note B: All diodes are 1N916 or 1N3064.
Note C: C1 (30 pF) is used for testing Series 54L/74L devices only.

54LS/74LS: $\mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$
$54 \mathrm{~L} / 74 \mathrm{~L}$ gates and inverters: $\mathrm{t}_{\mathrm{r}} \leq 60 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 60 \mathrm{~ns}$
$54 \mathrm{~L} / 74 \mathrm{~L}$ flip-flops and MSI: $\mathrm{t}_{\mathrm{r}} \leq 25 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 25 \mathrm{~ns}$
Generator: Z OUT $\approx 50 \Omega$ PRR $\leq 1 \mathrm{MHz}$

TL/X/0005-14
\qquad

DM54L/74L, 54LS/74LS Test Waveforms (Continued)
Parameter Measurement Information (Continued)

Voltage Waveforms Enable and Disable Times, TRI-STATE Outputs

TL/X/0005-16
Note D: Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
Note E: In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily.
Note F: When measuring propagation delay times of TRI-STATE outputs, switches S1 and S2 are closed.

Test Waveforms DM54ALS/74ALS, 54AS/74AS

Load CIrcult for BI-State Totem-Pole Outputs

TL/X/0005-17
Load Clrcuit for Open-Collector Outputs

Voltage Waveforms Propagation Delay Times

TL/X/0005-18

Voltage Waveforms Setup and Hold Times

TL/X/0005-19

Voltage Waveforms Pulse Widths

Note: All input pulses are supplied by generators having the following characteristics: frequency $=1 \mathrm{MHz}, Z_{O U T}=50 \Omega, t_{r}=t_{f}=2 \mathrm{~ns}$.

Test Waveforms DM54ALS/74ALS, 54AS/74AS (Continued)

TL/X/0005-20

Voltage Waveforms
Enable and Disable Times, TRI-STATE Outputs

Parameter	S1 Switch Position
$T_{P L H}$	OPEN
$T_{P H L}$	OPEN
$T_{P H Z}$	OPEN
$T_{P Z H}$	OPEN
$T_{P L Z}$	CLOSED
$T_{P Z L}$	CLOSED

Voltage Waveforms Propagation Delay Times

TL/X/0005-21

TL/X/0005-23

NOTE: All input pulses are supplied by generators having the following characteristics: frequency $=1 \mathrm{MHz}, Z_{O U T}=50 \Omega, t_{f}=t_{f}=2 \mathrm{~ns}$.

Group 4 Test Waveforms DM54ALS/74ALS, 54AS/74AS

54ALS74, 109, 112, 113, 114, 131, 137, 160, 161, 162, 163, 168, 169, 174, 175, 273
54AS74, 109, 112, 113, 114, 160, 161, 162, 163, 168, 169, 174, 175, 273

Load CIrcult for Bl-State Totem-Pole Outputs

TL/X/0005-27

Voltage Waveforms Setup and Hold Times

NOTE: All input pulses are supplied by generators having the following characteristics: frequency $=1 \mathrm{MHz}, Z_{O U T}=50 \Omega, t_{r}=t_{f}=2 \mathrm{~ns}$.

Group 5 Test Waveforms DM54ALS/74ALS, 54AS/74AS
54ALS01, 03, 05, 09, 12, 15, 22, 33, 38, 518, 519, 522, 689, 1003, 1005, 1035
Load Circult for Open-Collector Outputs

TL/X/0005-31
NOTES: A. C_{L} includes probe and jig capacitance
B. $R_{L}=2 \mathrm{k} \Omega$ for standard outputs $R_{L}=667 \Omega$ for buffered outputs

Note: All input pulses are supplied by generators having the following characteristics: frequency $=1 \mathrm{MHz}, Z_{O U T}=50 \Omega, t_{r}=t_{f}=2 \mathrm{~ns}$.

Section 2
Low Power Schottky

Section 2 Contents

DM54/74LS00 Quad 2-Input NAND Gates 2-4
DM54/74LS02 Quad 2-Input NOR Gates 2-6
DM54/74LS03 QUAD 2-Input NAND Gates with Open-Collector Outputs 2-8
DM54/74LS04 Hex Inverters 2-10
DM54/74LS05 Hex Inverters with Open-Collector Outputs 2-12
DM54/74LS08 Quad 2-Input AND Gates 2-14
DM54/74LS09 Quad 2-Input AND Gates with Open-Collector Outputs 2-16
DM54/74LS10 Triple 3-Input NAND Gates 2-18
DM54/74LS11 Triple 3-Input AND Gates 2-20
DM54/74LS12 Triple 3-Input NAND Gates with Open-Collector Outputs 2-22
DM54/74LS14 Hex Schmitt Trigger Inverters 2-24
DM54/74LS20 Dual 4-Input NAND Gates 2-27
DM54/74LS21 Dual 4-Input AND Gates 2-29
DM54/74LS26 Quad 2-Input NAND Buffers with High-Voltage Open-Collector Outputs 2-31
DM54/74LS27 Triple 3-Input NOR Gates 2-33
DM54/74LS30 8-Input NAND Gate 2-35
DM54/74LS32 Quad 2-Input OR Gates 2-37
DM54/74LS37 Quad 2-Input NAND Buffers 2-39
DM54/74LS38 Quad 2-Input NAND Buffers with Open-Collector Outputs 2-41
DM54/74LS42 BCD to Decimal Decoder 2-43
DM54/74LS51 Dual 2-Wide 2-Input AND-OR-INVERT Gates 2-46
DM54/74LS73A Dual J-K Negative-Edge-Triggered Flip-Flops with Clear 2-48
DM54/74LS74A Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear 2-51
DM54/74LS75 4-Bit Bistable Latches 2-54
DM54/74LS83A 4-Bit Binary Adders with Fast Carry 2-57
DM54/74LS35 4-Bit Magnitude Comparators 2-61
DM54/74LS86 Quad Exclusive-OR Gates 2-65
DM54/74LS90 Decade Counter 2-68
DM54/74LS93 4-Bit Binary Counter. 2-68
DM54/74LS107A Dual J-K Negative-Edge-Triggered Master-Slave Flip-Flops with Clear 2-75
DM54/74LS109A Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear 2-78
DM54/74LS112A Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear 2-81
DM54/74LS122 Retriggerable Monostable Multivibrators with Clear 2-84
DM54/74LS123 Dual Retriggerable Monostable Multivibrators with Clear 2-88
DM54/74LS125A Quad TRI-STATE Buffers 2-92
DM54/74LS126A Quad TRI-STATE Buffers 2-95
DM54/74LS132 Quad 2-Input Schmitt Trigger NAND Gates 2-98
DM54/74LS138 3 to 8 Line Decoder/Demultiplexer 2-101
DM54/74LS139 Dual 2 to 4 Line Decoders/Demultiplexers 2-101
DM54/74LS151 1 of 8 Line Data Selector/Multiplexer 2-106
DM54/74LS153 Dual 1 of 4 Line Data Selectors/Multiplexers 2-109
DM54/74LS154 4 to 16 Line Decoder/Demultiplexer 2-112
DM54/74LS155 Dual 2 to 4 Line Decoders/ 1 to 4 Line Demultiplexers 2-115
DM54/74LS156 Dual 2 to 4 Line Decoders/1 to 4 Line Demultiplexers with Open-Collector Outputs 2-115
Section 2 Contents (Continued)
DM54/74LS157 Quad 2 to 1 Line Data Selectors/Multiplexers 2-119
DM54/74LS158 Quad 2 to 1 Line Inverting Data Selectors/Multiplexers 2-119
DM54/74L.S161A Synchronous 4-Bit Binary Counter with Asynchronous Clear 2-123
DM54/74LS163A Synchronous 4-Bit Binary Counter with Synchronous Clear 2-123
DM54/74LS164 8-Bit Serial In/Parallel Out Shift Register with Asynchronous Clear 2-130
DM54/74LS165 8-Bit Parallel In/Serial Out Shift Register with Complementary Outputs 2-133
DM54/74LS166 8-Bit Parallel or Serial In/Serial Out Shift Register with Complementary Outputs 2-137
DM54/74LS169A Synchronous 4-Bit Up/Down Binary Counter 2-141
DM54/74LS173A 4-Bit TRI-STATE D Register 2-146
DM54/74LS174 Hex D Flip-Flops with Clear 2-150
DM54/74LS175 Quad D Flip-Flops with Clear and Complementary Outputs 2-150
DM54/74LS190 Synchronous Up/Down Decade Counter with Mode Control 2-155
DM54/74LS191 Synchronous 4-Bit Up/Down Binary Counter with Mode Control 2-155
DM54/74LS193 Synchronous 4-Bit Up/Down Binary Counter with Dual Clock 2-161
DM54/74LS194A 4-Bit Bidirectional Universal Shift Register 2-166
DM54/74LS195A 4-Bit Parallel Access Shift Register 2-170
DM54/74LS221 Dual Monostable Multivibrators with Schmitt-Trigger Input 2-174
DM54/74LS240 Octal TRI-STATE Inverting Buffers/Line Drivers/Line Receivers 2-179
DM54/74LS241 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 2-179
DM54/74LS243 Octal TRI-STATE Bus Transceivers 2-182
DM54/74LS244 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 2-185
DM54/74LS245 Octal TRI-STATE Bus Transceivers 2-188
DM54/74LS251 TRI-STATE 1 of 8 Line Data Selector/Multiplexer with Complementary Outputs 2-191
DM54/74LS253 Dual TRI-STATE 1 of 4 Data Selectors/Multiplexers 2-194
DM54/74LS257B Quad TRI-STATE 2 to 1 Line Data Selectors/Multiplexers 2-197
DM54/74LS258B Quad TRI-STATE 2 to 1 Line Inverting Data Selectors/Multiplexers 2-197
DM54/74LS259 8-Bit Serial In to Parallel Out Addressable Latch 2-202
DM54/74LS279 Quad $\overline{\text { S }}-\overline{\mathrm{R}}$ Latches 2-205
DM54/74LS283 4-Bit Binary Adders with Fast Carry 2-208
DM54/74LS290 Decade Counter 2-212
DM54/74LS293 4-Bit Binary Counter 2-216
DM54/74LS352 Dual 1 of 4 Line Inverting Data Selectors/Multiplexers 2-220
DM54/74LS365A Hex TRI-STATE Buffers/Bus Drivers 2-223
DM54/74LS366A Hex TRI-STATE Inverting Buffers/Bus Drivers 2-226
DM54/74LS367A Hex TRI-STATE Buffers/Bus Drivers 2-229
DM54/74LS368A Hex TRI-STATE Inverting Buffers/Bus Drivers 2-232
DM54/74LS373 Octal TRI-STATE Transparent D Latches 2-235
DM54/74LS374 Octal TRI-STATE Positive-Edge-Triggered D Flip-Flops 2-235
DM54/74LS390 Dual Decade Counter 2-240
DM54/74LS393 Dual 4-Bit Binary Counter 2-244
DM54/74LS465 (DM71/81LS95A) Octal TRI-STATE Buffers/Bus Drivers 2-247
DM54/74LS466 (DM71/81LS96A) Octal TRI-STATE Inverting Buffers/Bus Drivers 2-247
DM54/74LS467 (DM71/81LS97A) Octal TRI-STATE Buffers/Bus Drivers 2-247
DM54/74LS468 (DM71/81LS98A) Octal TRI-STATE Inverting Buffers/Bus Drivers 2-247
DM54/74LS645 Octal TRI-STATE Bus Transceivers 2-251
DM54/74LS670 TRI-STATE 4 by 4 Register File 2-254
DM54/74LS952 Dual TRI-STATE 8-Bit Positive-Edge-Triggered Rank Shift Registers 2-258
DM54/74LS962 Dual TRI-STATE 8-Bit Positive-Edge-Triggered Rank Shift Registers 2-264

DM54LS00/DM74LS00 Quad 2-Input NAND Gates
General Description
This device contains four independent gates each of which performs the logic NAND function.

Connection Diagram

TL/F/6439-1
Order Number DM54LS00J, DM74LS00M or DM74LS00N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A B}}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

$\mathrm{H}=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS00			DM74LS00			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max}, \\ & V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$,	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IJH}^{\text {H }}$	High Level Input Current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{C C}=\mathrm{Max}$			0.8	1.6	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2.4	4.4	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
tPLH	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM54LS02/DM74LS02 Quad 2-Input NOR Gates

General Description
This device contains four independent gates each of which performs the logic NOR function.

Connection Diagram

Dual-In-Line Package

Order Number DM54LS02J, DM74LS02M or DM74LS02N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A}+\mathbf{B}}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	H
L	H	L
H	L	L
H	H	L

$H=$ High Logic Level
$L=$ Low Logic Level

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS02			DM74LS02			Units
		M ${ }^{\text {n }}$	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, I_{O H}=\text { Max, } \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{L L}=M a x, \\ & V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	v
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max} \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
${ }^{\text {cCCH }}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=$ Max			1.6	3.2	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=$ Max			2.8	5.4	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$C_{L}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
tpLH	Propagation Delay Time Low to High Level Output	3	13	4	18	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM54LS03/DM74LS03 Quad 2-Input NAND Gates with Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$\mathrm{R}_{\mathrm{MAX}}=\frac{\mathrm{V}_{\mathrm{CC}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{I}}\right)}$
$\mathrm{R}_{\mathrm{MIN}}=\frac{\mathrm{V}_{\mathrm{CC}}(\mathrm{Max})-\mathrm{V}_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}-\mathrm{N}_{3}\left(\mathrm{I}_{\mathrm{IL}}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{I}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{I L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

TL/F/6344-1
Order Number DM54LS03J, DM74LS03M or DM74LS03N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A B}}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

$\mathrm{H}=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings（Note）
Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the associated reliability electrical test specifications document．

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter	DM54LS03			DM74LS03			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lOL_{2}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	－55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating tree air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{J}}=-18 \mathrm{~mA}$				－1．5	V
ICEX	High Level Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current＠Max Input Voltage	$V_{C C}=M a x, V_{l}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				－0．36	mA
ICCH	Supply Current with Outputs High	$\mathrm{V}_{C C}=\mathrm{Max}$			0.8	1.6	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			2.4	4.4	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（See Section 1 for Test Waveforms and Output Load）

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	6	20	20	45	ns
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	15	4	20	ns

[^4]
DM54LS04/DM74LS04 Hex Inverting Gates

General Description

This device contains six independent gates each of which performs the logic INVERT function.

Connection Diagram

Order Number DM54LS04J, DM74LS04M or DM74LS04N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A}}$	
Input	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

$\mathrm{H}=$ High Logic Level
$\mathrm{L}=$ Low Logic Level

Absolute Maximum Ratings (Note)

Specifications for Milltary/Aerospace products are not contained In this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage
Input Voltage $7 V$
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS04			DM74LS04			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
l_{OL}	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{IIL}^{\text {L }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{C C}=\mathrm{Max}$			1.2	2.4	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			3.6	6.6	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

[^5]
DM54LS05/DM74LS05 Hex Inverters with Open-Collector Outputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$$
\begin{aligned}
R_{\mathrm{MAX}} & =\frac{V_{\mathrm{CC}}(\mathrm{Min})-V_{\mathrm{OH}}}{N_{1}\left(I_{\mathrm{OH}}\right)+N_{2}\left(I_{\mathrm{IH}}\right)} \\
R_{\mathrm{MIN}} & =\frac{V_{\mathrm{CC}}(\mathrm{Max})-V_{\mathrm{OL}}}{I_{\mathrm{OL}}-N_{3}\left(I_{\mathrm{IL}}\right)}
\end{aligned}
$$

Where: $\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{l}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(I_{1}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

Order Number DM54LS05J, DM74LS05M or DM74LS05N
See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A}}$	
Input	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

$\mathrm{H}=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contalned in this datasheet. Refer to the assoclated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS05			DM74LS05			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$V_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LL }}$	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-0.36	mA
ICCH	Supply Current with Outputs High	$\mathrm{V}_{C C}=\operatorname{Max}$			1.2	2.4	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=M a x$			3.6	6.6	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$C_{L}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	6	20	20	45	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	15	4	20	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DM54LS08/DM74LS08 Quad 2-Input AND Gates

General Description

This device contains four independent gates each of which performs the logic AND function.

Connection Diagram

TL/F/6347-1
Order Number DM54LS08J, DM74LS08M or DM74LS08N See NS Package Number J14A, M14A or N14A
Function Table

$Y=\mathbf{A B}$		
Inputs		Output
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	H

$H=$ High Logic Level
$L=$ Low Logic Level
Absolute Maximum Ratings (Note)
Specifications for Mllitary/Aerospace products are not
contained in thls datasheet. Refer to the assoclated
rellabllity electrical test speclficatlons document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS	7 V
DM74LS	7 V
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS08			DM74LS08			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max}, \\ & V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x, \\ & V_{\mathrm{IL}}=M a x \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$,	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
1 l	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{C C}=\mathrm{Max}$			2.4	4.8	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=$ Max			4.4	8.8	mA

Switching Characteristics at $V_{C C}=5 V_{\text {and }} T_{A}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tpl.H }}$	Propagation Delay Time Low to High Level Output	4	13	6	18	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	3	11	5	18	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM54LS09/DM74LS09 Quad 2-Input AND Gates with Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic AND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$$
\begin{aligned}
R_{M A X} & =\frac{V_{C C}(\mathrm{Min})-V_{O H}}{N_{1}\left(I_{O H}\right)+N_{2}\left(I_{\mathrm{H}}\right)} \\
R_{\mathrm{MIN}} & =\frac{V_{\mathrm{CC}}(\mathrm{Max})-V_{\mathrm{OL}}}{I_{\mathrm{OL}}-N_{3}\left(I_{\mathrm{IL}}\right)}
\end{aligned}
$$

Where: $\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{I L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

TL/F/6348-1
Order Number DM54LS09J, DM74LS09M or DM74LS09N
See NS Package Number J14A, M14A or N14A

Function Table

Y $=\mathbf{A B}$		
Onts Output A B Y L L L L H L H L L H H H		

[^6]| Absolute Maximum Ratings (Note)
 Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document. | |
| :---: | :---: |
| Supply Voltage | 7 V |
| Input Voltage | 7 V |
| Output Voltage | 7V |
| Operating Free Air Temperature Range | |
| DM54LS | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74LS | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS09			DM74LS09			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
$\mathrm{lOL}^{\text {L }}$	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & V_{C C}=M i n, V_{O}=5.5 \mathrm{~V} \\ & V_{\mathrm{IH}}=M \mathrm{Min} \end{aligned}$				100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.36	mA
ICCH	Supply Current With Outputs High	$V_{C C}=\operatorname{Max}$			2.4	4.8	mA
ICCL	Supply Current With Outputs Low	$V_{C C}=\operatorname{Max}$			4.4	8.8	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	5	20	8	30	ns
${ }_{\text {PPHL }}$	Propagation Delay Time High to Low Level Output	4	15	6	27	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DM54LS10/DM74LS10 Triple 3-Input NAND Gates

General Description

This device contains three independent gates each of which performs the logic NAND function.

Connection Diagram

TL/F/6349-1
Order Number DM54LS10J, DM74LS10M or DM74LS10N See NS Package Number J14A, M14A or N14A

Function Table

Inputs			Output
A	B	C	Y
X	X	L	H
X	L	X	H
L	X	X	H
H	H	H	L

$H=$ High Logic Level
$L=$ Low Logic Level
$X=$ Either Low or High Logic Level

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage

Input Voltage 7V
Operating Free Air Temperature Range
DM54LS $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Recommended Operating Conditions

Symbol	Parameter	DM54LS10			DM74LS10			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current			-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
VOH	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=M a x \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V ${ }_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=0.4 V$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
${ }^{\text {ICCH }}$	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$			0.6	1.2	mA
${ }^{\text {ICCL }}$	Supply Current with Outputs Low	$V_{C C}=$ Max			1.8	3.3	mA

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM54LS11/DM74LS11 Triple 3-Input AND Gates
 General Description
 This device contains three independent gates each of which performs the logic AND function.

Connection Diagram

Dual-In-Line Package

Function Table

Y ABC			
Inputs			Output
A	B	C	Y
X	X	L	L
X	L	X	L
L	X	X	L
H	H	H	H

[^7]Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The 'Recommended Operating Conditions'" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS11			DM74LS11			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
loL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		v
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{I L}=M a x \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
${ }^{\text {ICCH}}$	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$			1.8	3.6	mA
${ }^{\text {I CCL }}$	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			3.3	6.6	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	4	13	6	18	ns
tPHL	Propagation Delay Time High to Low Level Output	3	11	5	18	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM54LS12/DM74LS12 Triple 3-Input NAND Gates with Open-Collector Outputs

General Description

This device contains three independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{M A X}=\frac{V_{\mathrm{CC}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{IH}}\right)}$
$R_{\text {MIN }}=\frac{V_{C C}(\text { Max })-V_{O L}}{l_{\mathrm{OL}}-N_{3}\left(I_{\mathrm{IL}}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{l}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$\mathrm{N}_{3}\left(\mathrm{I}_{\mathrm{L}}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

Order Number DM54LS12J, DM74LS12M or DM74LS12N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A B}}$			
Inputs			Output
A	B	C	Y
X	X	L	H
X	L	X	H
L	X	X	H
H	H	H	L

[^8]Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contalned in this datasheet. Refer to the associated reliablity electrical test speclfications document.

Supply Voltage	7 V
Input Voltage	7 V
Output Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS12			DM74LS12			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lol	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\operatorname{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
${ }^{\text {ICEX }}$	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I/L.	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-0.36	mA
ICCH	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$			0.7	1.4	mA
${ }^{\text {I CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			1.8	3.3	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	6	20	20	45	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	3	15	4	20	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DM54LS14/DM74LS14 Hex Inverters with Schmitt Trigger Inputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

Connection Diagram

Dual-In-Line Package

TL/F/6353-1
Order Number DM54LS14J, DM74LS14M or DM74LS14N
See NS Package Number J14A, M14A or N14A
Function Table

$\mathbf{Y}=\overline{\mathbf{A}}$	
Input	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

$\mathrm{H}=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS14			DM74LS14			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Input Threshold Voltage (Note 1)	1.4	1.6	1.9	1.4	1.6	1.9	V
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Input Threshold Voltage (Note 1)	0.5	0.8	1	0.5	0.8	1	V
HYS	Input Hysteresis (Note 1)	0.4	0.8		0.4	0.8		V
$\mathrm{IOH}^{\text {a }}$	High Level Output Current			-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\text {I }}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$,	DM74		0.25	0.4	
I_{T+}	Input Current at Positive-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{T+}$			-0.14		mA
$\mathrm{I}_{\mathbf{T}-}$	Input Current at Negative-Going Threshold	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}-}$			-0.18		mA
1	Input Current @ Max Input Voltage	$V_{C C}=\operatorname{Max}, V_{l}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			8.6	16	mA
${ }^{\text {ICCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{C C}=\mathrm{Max}$			12	21	mA

Note 1: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Symbol	Parameter					Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PL }}$	Propagation Delay Time Low to High Level Output	5	22	8	25	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	5	22	10	33	ns

DM54LS20/DM74LS20 Dual 4-Input NAND Gates

General Description

This device contains two independent gates each of which performs the logic NAND function.

Connection Diagram

Order Number DM54LS20J, DM74LS20M or DM74LS20N See NS Package Number J14A, M14A or N14A

Function Table

Inputs				
ABCD				
A	B	C	D	Y
X	X	X	L	H
X	X	L	X	H
X	L	X	X	H
L	X	X	X	H
H	H	H	H	L

$H=$ High Logic Level
$L=$ Low Logic Level
$X=$ Either Low or High Logic Level

```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.
Supply Voltage
Input Voltage
7V
Operating Free Air Temperature Range
    DM54LS
-55}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+12\mp@subsup{5}{}{\circ}\textrm{C
    DM74LS }\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }+7\mp@subsup{0}{}{\circ}\textrm{C
Storage Temperature Range
-65*}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS20			DM74LS20			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {r }}$	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}_{\mathrm{O}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$,	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.4	0.8	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			1.2	2.2	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM54LS21／DM74LS21 Dual 4－Input AND Gates

General Description

This device contains two independent gates each of which performs the logic AND function．

Connection Diagram

Order Number DM54LS21J，DM74LS21M or DM74LS21N
See NS Package Number J14A，M14A or N14A
Function Table

Inputs				
O ABCD				
A	B	C	D	Y
X	X	X	L	L
X	X	L	X	L
X	L	X	X	L
L	X	X	X	L
H	H	H	H	H

[^9]| | |
| :---: | :---: |
| Specifications for Military/Aerospace products are not contalned in this datasheet. Refer to the assoclated rellability electrical test specifications document. | |
| Supply Voltage | 7 V |
| Input Voltage | 7V |
| Operating Free Air Temperature Range | |
| DM54LS | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74LS | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS21			DM74LS21			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
${ }^{1} \mathrm{OH}$	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\text { Max, } \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
1 lL	Low Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			1.2	2.4	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=$ Max			2.2	4.4	mA

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	4	13	6	18	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	3	11	5	18	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM54LS26/DM74LS26 Quad 2-Input NAND Gates with High Voltage Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.
These gates feature high-voltage output ratings (up to 15 V) for interfacing with 12 V systems. Although the outputs are rated for 15 V , the device supply is still rated for 5 V .

Pull-Up Resistor Equations

$$
\begin{aligned}
R_{\text {MAX }} & =\frac{V_{O}(\operatorname{Min})-V_{O H}}{N_{1}\left(I_{O H}\right)+N_{2}\left(l_{\mathrm{IH}}\right)} \\
R_{\text {MIN }} & =\frac{V_{O}(\text { Max })-V_{O L}}{I_{O L}-N_{3}\left(I_{I L}\right)}
\end{aligned}
$$

Where: $\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

TL/F/6358-1
Order Number DM54LS26J, DM74LS26M or DM74LS26N
See NS Package Number J14A, M14A or N14A

Function Table

$$
Y=\overline{A B}
$$

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High Logic Level
L = Low Logic Level
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.
Supply Voltage $7 V$Input Voltage$7 V$
Output Voltage 15 V
Operating Free Air Temperature Range
DM54LS

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

DM74LS

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS26			DM74LS26			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			15			15	V
loL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$I_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$			1000	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=12 \mathrm{~V}$			50	
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{l}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.36	mA
loch	Supply Current with Outputs High	$V_{C C}=$ Max			0.8	1.6	mA
${ }^{\text {l CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{C C}=\mathrm{Max}$			2.4	4.4	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	$\begin{aligned} & R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output			32	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output			28	ns

[^10]
DM54LS27/DM74LS27 Triple 3-Input NOR Gates

General Description

This device contains three independent gates each of which

Connection Diagram

TL/F/6359-1
Order Number DM54LS27J, DM74LS27M or DM74LS27N See NS Package Number J14A, M14A or N14A

Function Table

$Y=\overline{A+B}$		
Inputs		Output
\mathbf{A}	B	Y
L	L	H
L	H	L
H	L	L
H	H	L

$H=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)	
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.	
Supply Voltage	7V
Input Voltage	7
Operating Free Air Tempera	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS27			DM74LS27			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lol	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max}, \\ & V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2	4	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			3.4	6.8	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	13	5	18	ns
tPHL	Propagation Delay Time High to Low Level Output	3	10	4	15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National Semiconductor Corporation

DM54LS30/DM74LS30 8-Input NAND Gate

General Description

This device contains a single gate which performs the logic NAND function.

Connection Diagram

TL/F/6360-1
Order Number DM54LS30J, DM74LS30M or DM74LS30N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\text { ABCDEFGH }}$	
Inputs	Output
A thru H	\mathbf{Y}
All Inputs H	L
One or More	
Input L	

$H=$ High Logic Level
L = Low Logic Level

```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.
Supply Voltage 
Operating Free Air Temperature Range
\begin{tabular}{lr} 
DM54LS & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74LS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular}
Storage Temperature Range -65'C to +150 C
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS30			DM74LS30			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
	Low Level Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$V_{C C}=$ Max			0.35	0.5	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			0.6	1.1	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	4	12	5	18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	4	15	5	20	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM54LS32/DM74LS32 Quad 2-Input OR Gates

General Description

This device contains four independent gates each of which performs the logic OR function.

Connection Diagram

Dual-In-Line Package

See NS Package Number J14A, M14A or N14A
Function Table

$\mathbf{Y}=\mathbf{A}+\mathbf{B}$		
Inputs		Output
\mathbf{A}	B	Y
L	L	L
L	H	H
H	L	H
H	H	H

[^11]Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage
$7 V$
Operating Free Air Temperature Range

 \(\begin{array}{lr}\text { DM54LS } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { DM74LS } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}\end{array}\)
 Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS32			DM74LS32			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
${ }^{\mathrm{OH}}$	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}_{\mathrm{O}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
IIH_{1}	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}^{1} \mathrm{~V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
1 lL	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$			3.1	6.2	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			4.9	9.8	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	11	4	15	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	11	4	15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

DM54LS37/DM74LS37 Quad 2-Input NAND Buffers

General Description

This device contains four independent buffer gates each of which performs the logic NAND function.

Connection Diagram

Dual-In-LIne Package

Order Number DM54LS37J, DM74LS37M or DM74LS37N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A B}}$		
Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High Logic Level
$L=$ Low Logic Level

```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.
Supply Voltage
7V
Input Voltage
Operating Free Air Temperature Range
\begin{tabular}{lr} 
DM54LS & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74LS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular}
Storage Temperature Range \(\quad-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The 'Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS37			DM74LS37			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
${ }^{\mathrm{IOH}}$	High Level Output Current			-1.2			-1.2	mA
1 loL	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.9	2	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			6	12	mA

Switching Characteristics at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$C_{L}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	3	15	4	18	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	15	4	21	ns

[^12]
DM54LS38/DM74LS38 Quad 2-Input NAND Buffers with Open-Collector Outputs

General Description

This device contains four independent gates, each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{M A X}=\frac{V_{C C}(M i n)-V_{O H}}{N_{1}\left(I_{O H}\right)+N_{2}\left(I_{H}\right)}$
$R_{\text {MIN }}=\frac{V_{C C}(\text { Max })-V_{O L}}{I_{O L}-N_{3}\left(I_{L L}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{1 L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

TL/F/6363-1
Order Number DM54LS38J, DM74LS38M or DM74LS38N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A B}}$

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage 7V
Output Voltage 7V
Operating Free Air Temperature Range
\begin{tabular}{lr} 
DM54LS & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74LS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
Operating Free Air Temperature Range
```

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter	DM54LS38			DM74LS38			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lOL	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	－55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				－1．5	V
$I_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current＠Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				－0．36	mA
${ }^{\text {ICCH }}$	Supply Current with Outputs High	$V_{C C}=$ Max			0.9	2	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			6	12	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（See Section 1 for Test Waveforms and Output Load）

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		22		48	ns
tPHL	Propagation Delay Time High to Low Level Output		22		29	ns

Note 1：All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．

DM54LS42/DM74LS42 BCD/Decimal Decoders

General Description

These BCD-to-decimal decoders consist of eight inverters and ten, four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of input logic ensures that all outputs remain off for all invalid (10-15) input conditions.

Connection Diagram

Dual-In-Line Package

TL/F/6365-1
Order Number DM54LS42AJ, DM74LS42M or DM74LS42AN
See NS Package Number J16A, M16A or N16A

Features

- Diode clamped inputs
- Also for applications as 4-line-to-16-line decoders; 3-line-to-8-line decoders
- All outputs are high for invalid input conditions

Function Table

No.	BCD Inputs				Decimal Outputs									
	D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	H	H	H	H	H	H	H	H	H
1	L	L	L	H	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5		H	L	H	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	H	H	H	H	H	H	H	L
N		L		L	H	H	H	H	H	H	H	H	H	H
N		L	H	H	H	H	H	H	H	H	H	H	H	H
A	H	H	L	L	H	H	H	H	H	H	H	H	H	H
A	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	H	H	H	L	H	H	H	H	H	H	H	H	H	H
D	H	H	H	H	H	H	H	H	H	H	H	H	H	H

H = High Level
L = Low Level

Logic Diagram

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
Input Voltage
7V
Operating Free Air Temperature Range

DM54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS42			DM74LS42			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
1 OH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
1 LL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}($ Note 3)			7	13	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: Icc is measured with all outputs open and all inputs grounded.

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
				pF		pF	
			Min	Max	Min	Max	
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	A, B, C, or D (2 Levels of Logic) to Output		25		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A, B, C, or D (3 Levels of Logic) to Output		30		35	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	A, B, C, or D (2 Levels of Logic) to Output		25		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A, B, C, or D (3 Levels of Logic) to Output		30		35	ns

DM54LS51/DM74LS51 Dual 2-Wide 2-Input, 2-Wide 3-Input AND-OR-INVERT Gates

General Description

This device contains two independent combinations of gates each of which performs the logic AND-OR-INVERT function. Each package contains one 2-wide 2 -input and one 2 -wide 3 -input AND-OR-INVERT gates.

Connection Diagram

Dual-In-LIne Package

TL/F/6369-1
Order Number DM54LS51J, DM74LS51M or DM74LS51N See NS Package Number J14A, M14A or N14A

Function Table

$\mathrm{Y} 1=\overline{(A 1)(B 1)(C 1)+(D 1)(E 1)(F 1)}$						
Inputs	Output					
A1	B1	C1	D1	E1	F1	Y1
H	H	H	X	X	X	L
X	X	X	H	H	H	L
Other Combinations						H

$\mathrm{Y} 2=\overline{(\mathrm{A} 2)(\mathrm{B} 2)+(\mathrm{C} 2)(\mathrm{D} 2))}$

Inputs				Output
A2	B2	C2	D2	Y2
H	H	X	X	L
X	X	H	H	L
Other combinations				H

$H=$ High Logic Level
$\mathrm{L}=$ Low Logic Level
X $=$ Either Low or High Logic Level

Absolute Maximum Ratings（Note） Specifications for Military／Aerospace products are not contalned In this datasheet．Refer to the assoclated rellability electrical test specifications document．	
Supply Voltage	
Input Voltage	
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM7	$0^{\circ} \mathrm{C}$ to +70
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter	DM54LS51			DM74LS51			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			－0．4			－0．4	mA
lOL	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	－55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				－1．5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=M a x, \\ & V_{\mathrm{IL}}=M a x \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=M a x, \\ & V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l} \mathrm{OL}=4 \mathrm{~mA}$ ，	DM74		0.25	0.4	
11	Input Current © Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
1 H	High Level Input Current	$\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL．	Low Level Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				－0．36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	－20		－100	mA
			DM74	－20		－100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=$ Max			0.8	1.6	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=$ Max			1.4	2.8	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（See Section 1 for Test Waveforms and Output Load）

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	3	13	4	18	ns
tpHL	Propagation Delay Time High to Low Level Output	2	12	3	15	ns

Note 1：All typicals are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
Note 2：Not more than one output should be shorted at a time，and the duration should not exceed one second．

National
Semiconductor Corporation

DM54LS73A/DM74LS73A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flops with Clear and Complementary Outputs

General Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. The data on the J
and K inputs is allowed to change while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the clear input will reset the outputs regardless of the levels of the other inputs.

Connection Diagram

Dual-In-Line Package

TL/F/6372-1
Order Number DM54LS73AJ, DM74LS73AM or DM74LS73AN
See NS Package Number J14A, M14A or N14A

Function Table

Inputs				Outputs	
CLR	CLK	J	K	Q	$\overline{\text { Q }}$
L	X	X	X	L	H
H	\downarrow	L	L	Q_{0}	\bar{Q}_{0}
H	\downarrow	H	L	H	L
H	\downarrow	L	H	L	H
H	\downarrow	H	H	Toggle	
H	H	X	X	Q $_{0}$	\bar{Q}_{0}

H = High Logic Level
$L=$ Low Logic Level
$X=$ Either Low or High Logic Level
$\downarrow=$ Negative going edge of pulse.
$Q_{0}=$ The output logic level before the indicated input conditions were established.
Toggle $=$ Each output changes to the complement of its previous level on each falling edge of the clock pulse.

Absolute Maximum Ratings（Note）

Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the associated reliability electrical test specifications document．

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS73A			DM74LS73A			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				－0．4			－0．4	mA
lOL	Low Level Output Current				4			8	mA
fcLk	Clock Frequency（Note 2）		0		30	0		30	MHz
fCLK	Clock Frequency（Note 3）		0		25	0		25	MHz
tw	Pulse Width （Note 2）	Clock High	20			20			ns
		Preset Low	25			25			
		Clear Low	25			25			
tw	Pulse Width （Note 3）	Clock High	25			25			ns
		Preset Low	30			30			
		Clear Low	30			30			
tsu	Setup Time（Notes 1 and 2）		$20 \downarrow$			$20 \downarrow$			ns
tsu	Setup Time（Notes 1 and 3）		25 \downarrow			25 \downarrow			ns
t_{H}	Hold Time（Notes 1 and 2）		0】			$0 \downarrow$			ns
${ }_{\text {t }}^{\text {H }}$	Hoid Time（Notes 1 and 3）		$5 \downarrow$			5 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1：The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference．
Note 2：$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．
Note 3：$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=$ Min, $l_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VoL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{\mathrm{I}}=7 \mathrm{~V} \end{aligned}$	J, K			0.1	mA
			Clear			0.3	
			Clock			0.4	
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	J, K			20	$\mu \mathrm{A}$
			Clear			60	
			Clock			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	J, K			-0.4	mA
			Clear			-0.8	
			Clock			-0.8	
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			4	6	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear $\text { to } Q$		20		28	ns
tple	Propagation Delay Time Low to High Level Output	Clear to \bar{Q}		20		24	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or $\overline{\mathbf{Q}}$		20		24	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		20		28	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state, an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.
Note 3: With all outputs open, $I_{C C}$ is measured with the Q and \bar{Q} outputs high in turn. At the time of measurement, the clock is grounded.

National
Semiconductor

DM54LS74A/DM74LS74A Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

General Description

This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may
be changed while the clock is low or high without affecting the outputs as long as the data setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Connection Diagram

Dual-In-Line Package

Order Number DM54LS74AJ, DM74LS74AM or DM74LS74AN See NS Package Number J14A, M14A or N14A

Function Table

Inputs					Outputs	
PR	CLR	CLK	D	Q	$\overline{\mathbf{Q}}$	
L	H	X	X	H	L	
H	L	X	X	L	H	
L	L	X	X	H^{*}	H^{*}	
H	H	\uparrow	H	H	L	
H	H	\uparrow	L	L	H	
H	H	L	X	Q_{0}	\bar{Q}_{0}	

$H=$ High Logic Level
$X=$ Either Low or High Logic Level
L = Low Logic Level
$\uparrow=$ Positive-going Transition

* $=$ This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs return to their inactive (high) level.
$Q_{0}=$ The output logic level of Q before the indicated input conditions were established.

TL/F/6373-1

Absolute Maximum Ratings（Note）

Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the associated reliability electrical test specifications document．

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range

DM54LS
DM74LS
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter		DM54LS74A			DM74LS74A			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.7			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current				－0．4			－0．4	mA
lOL	Low Level Output Current				4			8	mA
${ }_{\text {f CLK }}$	Clock Frequency（Note 2）		0		25	0		25	MHz
$\mathrm{f}_{\text {CLK }}$	Clock Frequency（Note 3）		0		20	0		20	MHz
tw	Pulse Width （Note 2）	Clock High	18			18			ns
		Preset Low	15			15			
		Clear Low	15			15			
tw	Pulse Width （Note 3）	Clock High	25			25			ns
		Preset Low	20			20			
		Clear Low	20			20			
tsu	Setup Time（Notes 1 and 2）		$20 \uparrow$			$20 \uparrow$			ns
tsu	Setup Time（Notes 1 and 3）		$25 \uparrow$			$25 \uparrow$			ns
${ }_{\text {t }}$	Hold Time（Note 1 and 4）		$0 \uparrow$			$0 \uparrow$			ns
T_{A}	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1：The symbol（ \uparrow ）indicates the rising edge of the clock pulse is used for reference．
Note 2：$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．
Note 3：$C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega_{1} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．
Note 4：$T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$ ．

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=M a x \\ & V_{I L}=\operatorname{Max}, V_{I H}=M i n \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	Data			0.1	mA
			Clock			0.1	
			Preset			0.2	
			Clear		,	0.2	
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=2.7 V \end{aligned}$	Data			20	$\mu \mathrm{A}$
			Clock			20	
			Clear			40	
			Preset			40	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.4 V \end{aligned}$	Data			-0.4	mA
			Clock			-0.4	
			Preset			-0.8	
			Clear			-0.8	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			4	8	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.
Note 3: With all outputs open, $I_{C C}$ is measured with CLOCK grounded after setting the Q and \bar{Q} outputs high in turn.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		25		35	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or $\overline{\mathbf{Q}}$		30		35	ns
tply	Propagation Delay Time Low to High Level Output	Preset to Q		25		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		30		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		25		35	ns
$t_{\text {pHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \mathrm{Q} \end{aligned}$		30		35	ns

National Semiconductor Corporation

DM54LS75/DM74LS75 Quad Latches

General Description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable is high, and the Q output will follow the data input as long as the enable remains high. When the enable goes low,
the information (that was present at the data input at the time the transition occured) is retained at the Q output until the enable is permitted to go high.
These latches feature complementary Q and \bar{Q} outputs from a 4-bit latch, and are available in 16-pin packages.

Connection Diagram

Function Table (Each Latch)

Inputs		Outputs	
D	Enable	\mathbf{Q}	$\overline{\mathbf{Q}}$
L	H	L	H
H	H	H	L
X	L	Q_{0}	\bar{Q}_{0}

$H=$ High Level, L = Low Level, $X=$ Don't Care
$Q_{0}=$ The Level of Q Before the High-to-Low Transition of ENABLE

Logic Diagram (Each Latch)

Absolute Maximum Ratings (Note)	
Specifications for Military/Aerospace products are not contained in thls datasheet. Refer to the assoclated rellability electrical test specifications document.	
Supply Voltage	7
Input Voltage	
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to +150

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS75			DM74LS75			Units
		MIn	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lol	Low Level Output Current			4			8	mA
tw	Enable Pulse Width (Note 4)	20			20			ns
tSU	Setup Time (Note 4)	20			20			ns
t_{H}	Hold Time (Note 4)	0			0			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condltions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{VOH}^{\text {O }}$	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.5		V
			DM74	2.7	3.5		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$	D			0.1	mA
			Enable			0.4	
1 IH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	D			20	$\mu \mathrm{A}$
			Enable			80	
ILL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	D			-0.4	mA
			Enable			-1.6	
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			6.3	12	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all inputs grounded.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$D \text { to }$ Q		27		30	ns
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{D} \text { to } \\ \mathrm{Q} \end{gathered}$		17		25	ns
tPLH	Propagation Delay Time Low to High Level Output	$D \text { to }$ $\overline{\mathbf{Q}}$		20		25	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \hline \text { Dto } \\ \bar{Q} \\ \hline \end{gathered}$		15		20	ns
tpLH	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { Enable to } \\ \mathrm{Q} \\ \hline \end{gathered}$		27		30	ns
tpHL	Propagation Delay Time High to Low Level Output	Enable to Q		25		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to $\overline{\mathrm{Q}}$		30		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { Enable to } \\ \overline{\mathrm{Q}} \\ \hline \end{gathered}$		15		20	ns

National

DM54LS83A/DM74LS83A 4-Bit Binary Adders with Fast Carry

General Description

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial lookahead performance at the economy and reduced package count of a ripple-carry implementation.
The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Features

- Full-carry look-ahead across the four bits
- Systems achieve partial look-ahead performance with the economy of ripple carry
- Typical add times

Two 8-bit words 25 ns
Two 16-bit words 45 ns

- Typical power dissipation per 4-bit adder 95 mW

Dual-In-Line Package

TL/F/6378-1
Order Number DM54LS83AJ, DM74LS83AWM or DM74LS83AN See NS Package Number J16A, M16B or N16A

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V

Input Voltage
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS83A			DM74LS83A			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH^{2}	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=7 V \end{aligned}$	A or B			0.2	mA
			C0			0.1	
I_{iH}	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=2.7 V \end{aligned}$	A or B			40	$\mu \mathrm{A}$
			C0			20	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.4 V \end{aligned}$	A or B			-0.8	mA
			C0			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCl_{1}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			19	34	mA
ICC2	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 4)			22	39	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{I}_{\mathrm{CC} 1}$ is measured with all outputs open, all B inputs low and all other inputs at 4.5 V , or all inputs at 4.5 V .
Note 4: I_{CC} is measured with all outputs open and all inputs grounded.

TL/F/6378-2

DM54LS85/DM74LS85 4-Bit Magnitude Comparators

General Description

These 4-bit magnitude comparators perform comparison of straight binary or BCD codes. Three fully-decoded decisions about two, 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The $A>B, A<B$, and $A=B$ outputs of a stage handling less-significant bits are connected to the corresponding inputs of the next stage handling more-signif-
icant bits. The stage handling the least-significant bits must have a high-level voltage applied to the $\mathrm{A}=\mathrm{B}$ input. The cascading path is implemented with only a two-gate-level delay to reduce overall comparison times for long words.

Features

m Typical power dissipation 52 mW
■ Typical delay (4-bit words) 24 ns

Connection Diagram

Function Table

Comparing Inputs				Cascading Inputs			Outputs		
A3, B3	A2, B2	A1, B1	A0, BO	$A>B$	$A<B$	$A=B$	A > B	A < B	$A=B$
A3 $>$ B3	X	X	X	X	X	X	H	L	L
A3 < B3	X	X	X	x	X	X	L	H	L
$\mathrm{A} 3=\mathrm{B} 3$	A2 > B2	X	X	X	X	X	H	L	L
$A 3=B 3$	$\mathrm{A} 2<\mathrm{B} 2$	x	X	X	x	X	L	H	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	A1 > B1	x	X	X	X	H	L	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	A1 < B1	X	X	X	X	L	H	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$A 1=B 1$	$\mathrm{AO}>\mathrm{BO}$	X	X	X	H	L	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$A 1=B 1$	$A 0<B O$	X	X	X	L	H	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	H	L	L	H	L	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$A 1=B 1$	$A 0=B 0$	L	H	L	L	H	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$A 1=B 1$	$A 0=B 0$	L	L	H	L	L	H
$A 3=B 3$	$A 2=B 2$	$A 1=B 1$	$A 0=B 0$	X	X	H	L	L	H
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$A 1=B 1$	$A 0=B 0$	H	H	L	L	L	L
$\mathrm{A} 3=\mathrm{B3}$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B1}$	$A 0=B 0$	L	L	L	H	H	L

[^13]
Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the assoclated rellability electrical test specifications document.
Supply Voltage 7V
Input Voltage 7V
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will dofine the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS85			DM74LS85			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {cc }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
: V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\operatorname{Min}, l_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	$A<B$			0.1	mA
			$A>B$			0.1	
			Others			0.3	
$\mathrm{IIH}^{\text {H }}$	High Level input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	$A<B$			20	$\mu \mathrm{A}$
			A $>$ B			20	
			Others			60	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.4 V \end{aligned}$	$A<B$			-0.4	mA
			A $>$ B			-0.4	
			Others			-1.2	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
Icc	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 3)			10	20	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $I_{C C}$ is measured with all outputs open, $A=B$ grounded and all other inputs at 4.5 V .

Symbol	Parameter	From Input	To Output	Number of Gate Levels	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
					Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low-to-High Level Output	Any A or B Data Input	$\begin{aligned} & A<B_{1} \\ & A>B \end{aligned}$	3		36		42	ns
			$A=B$	4		40		40	
${ }_{\text {tPHL }}$	Propagation Delay Time High-to-Low Level Output	Any A or B Data Input	$\begin{aligned} & A<B, \\ & A>B \end{aligned}$	3		30		40	ns
			$A=B$	4		30		40	
${ }_{\text {tPLH }}$	Propagation Delay Time Low-to-High Level Output	$\begin{gathered} A<B \\ \text { or } A=B \end{gathered}$	$A>B$	1		22		26	ns
$t_{\text {PHL }}$	Propagation Delay Time High-to-Low Level Output	$\begin{gathered} A<B \\ \text { or } A=B \end{gathered}$	A $>$ B	1		17		26	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low-to-High Level Output	$A=B$	$A=B$	2		20		25	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High-to-Low Level Output	$A=B$	$A=B$	2		17		26	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low-to-High Level Output	$\begin{gathered} A>B \\ \text { or } A=B \end{gathered}$	A $<$ B	1		22		26	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High-to-Low Level Output	$\begin{gathered} A>B \\ \text { or } A=B \end{gathered}$	A $<$ B	1		17		26	ns

Logic Diagram

TL/F/6379-2

DM54LS86/DM74LS86 Quad 2-Input Exclusive-OR Gates

General Description

This device contains four independent gates each of which performs the logic exclusive-OR function:

Connection Diagram

TL/F/6380-1
Order Number DM54LS86J, DM74LS86M or DM74LS86N
See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y = A \oplus \mathbf { B } = \overline { \mathbf { A } } \mathbf { B } + \mathbf { A } \overline { \mathbf { B } }}$		
Inputs Output \mathbf{A} \mathbf{B} \mathbf{Y} L L L L H H H L H H H L		

$\mathrm{H}=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage 7V Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS86			DM74LS86			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-0.4			-0.4	mA
l_{OL}	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l} \mathrm{I}^{\prime}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=7 \mathrm{~V}$				0.2	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				40	$\mu \mathrm{A}$
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\begin{aligned} & V_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 3) } \end{aligned}$			6.1	10	mA
ICCL	Supply Current with Outputs Low	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 4) } \end{aligned}$			9	15	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{I}_{\mathbf{C C H}}$ is measured with all outputs open, one input at each gate at 4.5 V , and the other inputs grounded.
Note 4: $I_{C C L}$ is measured with all outputs open and all inputs grounded.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)							
Symbol	Parameter	Conditions	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Other		18		23	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Low		17		21	ns
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Other Input		10		15	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output			12		15	ns

National Semiconductor Corporation

DM54LS90/DM74LS90, DM54LS93/DM74LS93 Decade and Binary Counters

General Description

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five for the LS90 and divide-by-eight for the LS93.
All of these counters have a gated zero reset and the LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.
To use their maximum count length (decade or four bit binary), the B input is connected to the Q_{A} output. The input
count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical di-vide-by-ten count can be obtained from the LS90 counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_{A}.

Features

- Typical power dissipation 45 mW
- Count frequency 42 MHz

Connection Diagrams (Dual-In-Line Packages)

TL/F/6381-1
Order Number DM54LS90J, DM74LS90M or DM74LS90N See NS Package Number J14A, M14A or N14A

Order Number DM54LS93J, DM74LS93M or DM74LS93N
See NS Package Number J14A, M14A or N14A

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage
Input Voltage (Reset)
Input Voltage (A or B) 5.5V
Operating Free Air Temperature Range

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54LS90			DM74LS90			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$f_{\text {fle }}$	Clock Frequency (Note 1)	A to Q_{A}	0		32	0		32	MHz
		B to Q_{B}	0		16	0		16	
fCLK	Clock Frequency (Note 2)	A to Q_{A}	0		20	0		20	MHz
		B to Q_{B}	0		10	0		10	
tw	Pulse Width (Note 1)	A	15			15			ns
		B	30			30			
		Reset	15			15			
t_{W}	Pulse Width (Note 2)	A	25			25			ns
		B	50			50			
		Reset	25			25			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 1)		25			25			ns
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 2)		35			35			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS90 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V OH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \\ & \text { (Note 4) } \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$	Reset			0.1	mA
		$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=5.5 V \end{aligned}$	A			0.2	
			B			0.4	

'LS90 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	Reset			20	$\mu \mathrm{A}$
			A			40	
			B			80	
IIL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-3.2	
los	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}($ Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			9	15	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $I_{C C}$ is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 4: Q_{A} outputs are tested at $l_{O L}=$ Max plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.

'LS90 Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$C_{L}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	32		20		MHz
		B to Q_{B}	16		10		
tplit	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		20	ns
${ }_{\text {tpHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		24	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		48		52	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		50		60	ns
tpLH	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
tPHL	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		32		36	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		35		44	ns
tpLH	Propagation Delay Time Low to High Level Output	SET-9 to Q_{A}, Q_{D}		30		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	SET-9 to $\mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$		40		48	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Recommended Operating Conditions

Symbol	Parameter		DM54LS93			DM74LS93			Unlts
			MIn	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
lOH^{2}	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
fCLK	Clock Frequency (Note 1)	A to Q_{A}	0		32	0		32	MHz
		B to Q_{B}	0		16	0		16	
${ }_{\text {f CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		20	0		20	
		B to Q_{B}	0		10	0		10	
tw	Pulse Width (Note 1)	A	15			15			ns
		B	30			30			
		Reset	15			15			
t_{W}	Pulse Width (Note 2)	A	25			25			ns
		B	50			50			
		Reset	25			25			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 1)		25			25			ns
$t_{\text {REL }}$	Reset Release Time (Note 2)		35			35			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
'LS93 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}, \mathrm{l}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=M a x \\ & V_{I L}=M a x, V_{I H}=M i n \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\ & \text { (Note 4) } \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @Max Input Voltage	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{1}=7 \mathrm{~V} \\ & V_{C C}=M a x \\ & V_{1}=5.5 \mathrm{~V} \end{aligned}$	Reset			0.1	mA
			A			0.2	
			B			0.4	
${ }_{1} \mathrm{H}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	Reset			20	$\mu \mathrm{A}$
			A			40	
			B			80	

'LS93 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
ILL	Low Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	Reset			-0.4	mA
			A			-2.4	
			B			-1.6	
Ios	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}($ Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
Icc	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 3)			9	15	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: Icc is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 4: Q_{A} outputs are tested at $\mathrm{I}_{\mathrm{OL}}=$ max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

'LS93 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }_{\text {f max }}$	Maximum Clock Frequency	A to Q_{A}	32		20		MHz
		B to Q_{B}	16		10		
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		24	ns
${ }^{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70		85	ns
$t_{\text {P }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70		90	ns
tpLH	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
tplh	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
tpLH	Propagation Delay Time Low to High Level Output	B to Q_{D}		51		60	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		51		70	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Function Tables

LS90
BCD Count Sequence
(See Note A)

Count	Output			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

LS93
Count Sequence
(See Note C)

Count	Output			
	Q_{D}	Q_{C}	Q_{B}	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

Note A: Output Q_{A} is connected to input B for $B C D$ count.
Note B: Output Q_{D} is connected to input A for bi-quinary count.
Note C: Output Q_{A} is connected to input B.
Note D: $\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care.

LS93
Reset/Count Truth Table

Reset Inputs		Output			
$\mathbf{R O}(1)$	$\mathbf{R O}(2)$	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
H	H	L	L	L	L
L	X		COUNT		
X	L		COUNT		

Bi-Quinary (5-2)
(See Note B)

count	Output			
	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

Reset/Count Truth Table

Reset Inputs				Output			
RO(1)	R0(2)	R9(1)	R9(2)	Q $_{\mathbf{D}}$	Q $_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
H	H	L	X	L	L	L	L
H	H	X	L	L	L	L	L
X	X	H	H	H	L	L	H
X	L	X	L		COUNT		
L	X	L	X		COUNT		
L	X	X	L		COUNT		
X	L	L	X		COUNT		

Logic Diagrams

TL/F/6381-4

The J and K inputs shown without connection are for reference only and are functionally at a high level.

National
Semiconductor

DM54LS107A/DM74LS107A Dual Negative-EdgeTriggered Master-Slave J-K Flip-Flops with Clear, and Complementary Outputs

General Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. The data on the J
and K inputs may change while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the clear input will reset the outputs regardless of the logic levels of the other inputs.

Connection Diagram

Dual-In-Line Package

TL/F/6367-1
Order Number DM54LS107AJ, DM74LS107AM or DM74LS107AN See NS Package Number J14A, M14A or N14A

Function Table

Inputs				Outputs	
CLR	CLK	J	K	Q	$\overline{\mathbf{Q}}$
L	X	X	X	L	H
H	\downarrow	L	L	Q_{0}	\bar{Q}_{0}
H	\downarrow	H	L	H	L
H	\downarrow	L	H	L	H
H	\downarrow	H	H		
H	H	X	X	Q_{0}	\bar{Q}_{0}

$H=$ High Logic Level
$X=$ Either Low or High Logic Level
L = Low Logic Level
$\downarrow=$ Negative going edge of pulse.
$Q_{0}=$ The output logic level before the indicated input conditions were established.
Toggle $=$ Each output changes to the complement of its previous level on each falling edge of the clock pulse.

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS107A			DM74LS107A			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	- 5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 2)		0		30	0		30	MHz
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 3)		0		25	0		25	MHz
tw	Pulse Width (Note 2)	Clock High	20			20			ns
		Clear Low	25			25			
tw	Pulse Width (Note 3)	Clock High	25			25			ns
		Clear Low	30			30			
tsu	Setup Time (Notes 1 \& 2)		$20 \downarrow$			20 \downarrow			ns
$\mathrm{t}_{\text {SU }}$	Setup Time (Notes 1 \& 3)		25 \downarrow		.	25 \downarrow			ns
th_{H}	Hold Time (Notes 1 \& 2)		0】			0 \downarrow			ns
t_{H}	Hold Time (Notes 1 \& 3)		5 \downarrow			5 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.
Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
4
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$	J, K			0.1	mA
			Clear			0.3	
			Clock			0.4	

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol $\mathrm{IIH}_{\mathrm{H}}$	Parameter High Level Input Current	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Max } \\ \hline 20 \\ \hline \end{gathered}$	Units
${ }_{\mathrm{I} H}$	High Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{1}=2.7 \mathrm{~V} \end{aligned}$	J, K				$\mu \mathrm{A}$
			Clear			60	
			Clock			80	
IL	Low Level Input	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$	J, K			-0.4	
	Current	$\mathrm{V}_{1}=0.4 \mathrm{~V}$	Clear			-0.8	mA
			Clock			-0.8	
Ios	Short Circuit	$V_{C C}=M a x$	DM54	-20		-100	
	Output Current	(Note 2)	DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (N			4	6	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Preset to Q		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		20		28	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		20		24	ns
tphL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \end{aligned}$		20		28	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		20		24	ns
tpHL	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		20		28	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.
Note 3: With all inputs open, $I_{C C}$ is measured with the Q and \bar{Q} outputs high in turn. At the time of measurement the clock is grounded.

National
Semiconductor
Corporation

DM54LS109A/DM74LS109A Dual Positive-EdgeTriggered J-K Flip-Flops with Preset, Clear, and Complementary Outputs

General Description

This device contains two independent positive-edge-triggered J- \bar{K} flip-flops with complementary outputs. The J and \bar{K} data is accepted by the flip-flop on the rising edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of
the clock. The data on the J and $\overline{\mathrm{K}}$ inputs may be changed while the clock is high or low as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Connection Diagram

TL/F/6368-1
Order Number DM54LS109AJ, DM74LS109AM or DM74LS109AN See NS Package Number J16A, M16A or N16A

Function Table

Inputs					Outputs	
PR	CLR	CLK	J	$\overline{\mathbf{K}}$	Q	$\overline{\mathbf{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H^{*}	H^{*}
H	H	\uparrow	L	L	L	H
H	H	\uparrow	H	L		
H	H	\uparrow	L	H	Q_{0}	\bar{Q}_{0}
H	H	\uparrow	H	H	H	L
H	H	L	X	X	Q_{0}	\bar{Q}_{0}

H = High Logic Level
L = Low Logic Level
$X=$ Either Low or High Logic Level
$\uparrow=$ Rising Edge of Pulse

* = This configuration is nonstable; that is, it will not persist when preset and/or clear inputs return to their inactive (high) state.
$Q_{0}=$ The output logic level of Q before the indicated input conditions were established.
Toggle = Each output changes to the complement of its previous level on each active transition of the clock pulse.
Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS109A			DM74LS109A			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{\text {cc }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
${ }^{\mathrm{OH}}$	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 2)		0		25	0		25	MHz
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 3)		0		20	0		20	MHz
tw	Pulse Width (Note 2)	Clock High	18			18			ns
		Preset Low	15			15			
		Clear Low	15			15			
tw	Pulse Width (Note 3)	Clock High	25			25			ns
		Preset Low	20			20			
		Clear Low	20			20			
tsu	Setup Time (Notes 1 \& 2)	Data High	$30 \uparrow$			$30 \uparrow$			ns
		Data Low	$20 \uparrow$			$20 \uparrow$			
tsu	Setup Time (Notes 1 \& 3)	Data High	$35 \uparrow$			$35 \uparrow$			ns
		Data Low	$25 \uparrow$			$25 \uparrow$			
t_{H}	Hold Time (Note 4)		$0 \uparrow$			$0 \uparrow$			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{A}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	J, $\overline{\mathrm{K}}$			0.1	mA
			Clock			0.1	
			Preset			0.2	
			Clear			0.2	
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	J, \bar{K}			20	$\mu \mathrm{A}$
			Clock			20	
			Preset			40	
			Clear			40	
ILL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	J, \bar{K}			-0.4	mA
			Clock			-0.4	
			Preset			-0.8	
			Clear			-0.8	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			4	8	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		25		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		30		35	ns
tplH	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \bar{Q} \end{aligned}$		25		35	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \\ & \hline \end{aligned}$		30		35	ns
tpLH	Propagation Delay Time Low to High Level Output	Preset to Q		25		35	ns
tPHL	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		30		35	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.
Note 3: ICC is measured with all outputs open, with CLOCK grounded after setting the Q and \bar{Q} outputs high in turn.

General Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flop on the falling edge of the clock puise. The clock triggering occurs at a voltage level and is not directly related to the transition time of the falling edge of the clock pulse. Data on the J and K inputs
may be changed while the clock is high or low without affecting the outputs as long as the setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Connection Diagram

Dual-In-Line Package

Order Number DM54LS112AJ, DM74LS112AM or DM74LS112AN
See NS Package Number J16A, M16A or N16A

Function Table

Inputs						Outputs	
PR	CLR	CLK	J	K	Q	$\overline{\mathbf{Q}}$	
L	H	X	X	X	H	L	
H	L	X	X	X	L	H	
L	L	X	X	X	H*	H *	
H	H	\downarrow	L	L	Q_{0}	\bar{Q}_{0}	
H	H	\downarrow	H	L	H	L	
H	H	\downarrow	L	H	L	H	
H	H	\downarrow	H	H	Toggle		
H	H	H	X	X	Q $_{0}$	\bar{Q}_{0}	

$H=$ High Logic Level
L = Low Logic Level
$X=$ Either Low or High Logic Level
$\downarrow=$ Negative Going Edge of Pulse

* = This configuration is nonstable; that is, it will not persist when preset and/or clear inputs return to their inactive (high) level.
$Q_{0}=$ The output logic level before the indicated input conditions were established.
Toggle $=$ Each output changes to the complement of its previous level on each falling edge of the clock pulse.
Absolute Maximum Ratings （Note）

Specifications for Military／Aerospace products are not contained In this datasheet．Refer to the associated rellability electrical test specifications document．
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter		DM54LS112A			DM74LS112A			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current				－0．4			－0．4	mA
loL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency（Note 2）		0		30	0		30	MHz
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency（Note 3）		0		25	0		25	MHz
t_{W}	Pulse Width （Note 2）	Clock High	20			20			ns
		Preset Low	25			25			
		Clear Low	25			25			
${ }^{\text {w }}$ W	Pulse Width （Note 3）	Clock High	25			25			ns
		Preset Low	30			30			
		Clear Low	30			30			
$\mathrm{t}_{\text {SU }}$	Setup Time（Notes 1 and 2）		20】			$20 \downarrow$			ns
tsu	Setup Time（Notes 1 and 3）		25 \downarrow			25 \downarrow			ns
t_{H}	Hold Time（Notes 1 and 2）		0】			0 \downarrow			ns
t_{H}	Hold Time（Notes 1 and 3）		5 \downarrow			5】			ns
T_{A}	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1：The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference．
Note 2： $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．
Note 3： $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{A}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．

Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				－1．5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current＠Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$	J，K			0.1	mA
			Clear			0.3	
			Preset			0.3	
			Clock			0.4	

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
$\mathrm{IH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	J, K			20	$\mu \mathrm{A}$
			Clear			60	
			Preset			60	
			Clock			80	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	J, K			-0.4	mA
			Clear			-0.8	
			Preset			-0.8	
			Clock			-0.8	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
Icc	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 3)			4	6	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Preset to Q		20		24	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Preset } \\ & \text { to } \bar{Q} \end{aligned}$		20		28	ns
tplH	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \end{aligned}$		20		28	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to $\mathrm{Q} \text { or } \overline{\mathrm{Q}}$		20		28	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where $\mathrm{V}_{0}=2.25 \mathrm{~V}$ and 2.125 V for DM 54 and DM74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.
Note 3: With all outputs open, ICC is measured with the Q and \bar{Q} outputs high in turn. At the time of measurement the clock is grounded.

DM54LS122/DM74LS122 Retriggerable One-Shot with Clear and Complementary Outputs

General Description

The DM54/74LS122 is a retriggerable monostable multivibrator featuring both positive and negative edge triggering with complementary outputs. An internal $10 \mathrm{k} \Omega$ timing resistor is provided for design convenience minimizing component count and layout problems. This device can be used with a single external capacitor. The 'LS122 has two activelow transition triggering inputs (A), two active-high transition triggering inputs (B), and a CLEAR input that terminates the output pulse width at a predetermined time independent of the timing components. The clear (CLR) input also serves as a trigger input when it is pulsed with a low level pulse transition (ป). To obtain optimum and trouble free operation please read operating rules and NSC one-shot application notes carefully and observe recommendations.

- Retriggerable to 100% duty cycle
- Over-riding clear terminates output pulse
- Internal $10 \mathrm{k} \Omega$ timing resistor
- TL, DTL compatible
- Compensated for $V_{C C}$ and temperature variations
- Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of the internal resistor $\mathrm{R}_{\text {INT }}$ or an external resistor (R_{X}) and capacitor (C_{X}). Once triggered, the output pulse width may be extended by retriggering the gated active-low (A) transition inputs or the active-high transition (B) inputs or the CLEAR input. The output pulse width can be reduced or terminated by overriding it with the active-low CLEAR input.

Features

- DC triggered from active-high transition or active-low transition inputs

Connection Diagram

TL/F/6385-1
Order Number DM54LS122J, DM74LS122M or DM74LS122N
See NS Package Number J14A, M14A or N14A

Function Table

Inputs					Outputs	
CLEAR	A1	A2	B1	B2	Q	$\overline{\mathbf{Q}}$
L	X	X	X	X	L	H
X	H	H	X	X	L	H
X	X	X	L	X	L	H
X	X	X	X	L	L	H
H	L	X	\uparrow	H	Ω	บ
H	L	X	H	\uparrow	Ω	บ
H	X	L	\uparrow	H	Ω	บ
H	X	L	H	\uparrow	Ω	凹
H	H	\downarrow	H	H	Ω	บ
H	\downarrow	\downarrow	H	H	Ω	ษ
H	\downarrow	H	H	H	Ω	ษ
\uparrow	L	X	H	H	Ω	Ч
\uparrow	X	L	H	H	Ω	い

$H=$ High Logic Level
$L=$ Low Logic Level
X = Can Be Either Low or High
$\uparrow=$ Positive Going Transition
$\downarrow=$ Negative Going Transition
$\Omega=$ A Positive Pulse
$\tau=A$ Negative Pulse

Absolute Maximum Ratings (Note)	
Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.	Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The
Supply Voltage 7V	parametric values defined in the "Electrical Characteristics"
Input Voltage 7V	table are not guaranteed at the absolute maximum ratings.
Operating Free Air Temperature Range	the conditions for actual device operation.
Storage Temperature $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Recommended Operating Conditions

Symbol	Parameters		DM54LS122			DM74LS122			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 H}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
l_{OH}	High Level Output Current				-0.4			-0.4	mA
lol	Low Level Output Current				4			8	mA
tw	Pulse Width (Note 6)	A or B High	40			40			ns
		A or B Low	40			40			
		Clear Low	40			40			
$\mathrm{R}_{\text {EXT }}$	External Timing Resistor		5		180	5		260	k Ω
$\mathrm{C}_{\text {EXT }}$	External Timing Capacitance		No Restriction			No Restriction			$\mu \mathrm{F}$
CWIRE	Wiring Capacitance at $\mathrm{R}_{\mathrm{EXT}} / \mathrm{C}_{\mathrm{EXT}}$ Terminal				50			50	pF
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=$ Max, $V_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}($ Notes 3, 4 and 5)			6	11	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\begin{gathered} C_{L}=15 \mathrm{pF} \\ C_{E X T}=0 \mathrm{pF}, R_{\mathrm{EXT}}=5 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} C_{L}=15 \mathrm{pF} \\ C_{E X T}=1000 \mathrm{pF}, \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \end{gathered}$		
			Min	Max	Min	Max	
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	A to Q		33			ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q		44			ns
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to \bar{Q}		45			ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to \bar{Q}		56			ns
${ }_{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Clear to $\overline{\mathbf{Q}}$		45			ns
${ }_{\text {t }}{ }^{\text {PHL}}$	Propagation Delay Time High to Low Level Output	Clear to Q		27			ns
${ }^{\text {t }} \mathrm{WQ}$ (Min)	Minimum Width of Pulse at Output Q	A or B to Q		200			ns
${ }^{\text {t W }}$ (out)	Output Pulse Width	A or B to Q			4	5	$\mu \mathrm{s}$

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: Quiescent ICC is measured (after clearing) with 2.4 V applied to all clear and A inputs, B inputs grounded, all outputs open, $\mathrm{C}_{\mathrm{EXT}}=0.02 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{EXT}}=$ $25 \mathrm{k} \Omega$.
Note 4: ICC is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open, $\mathrm{C}_{\mathrm{EXT}}=0.02 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{EXT}}=25 \mathrm{k} \Omega$.
Note 5: With all outputs open and 4.5 V applied to all data and clear inputs, $\mathrm{I} C \mathrm{is}$ is measured after a momentary ground, then 4.5 V is applied to the clock.
Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Operating Rules

1. To use the internal $10 \mathrm{k} \Omega$ timing resistor, connect the $\mathrm{R}_{\mathrm{Int}}$ pin to V_{CC}.
2. An external resistor (R_{X}) or the internal resistor ($10 \mathrm{k} \Omega$) and an external capacitor (C_{X}) are required for proper operation. The value of C_{x} may vary from 0 to any necessary value. For small time constants use high-quality mica, glass, polypropylene, polycarbonate, or polystyrene capacitors. For large time constants use solid tantalum or special aluminum capacitors. If the timing capacitors have leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
3. The pulse width is essentially determined by external timing components R_{x} and C_{x}. For $\mathrm{C}_{\mathrm{x}}<1000 \mathrm{pF}$ see Figure 1; design curves on T_{W} as function of timing components value. For $\mathrm{C}_{x} \gg 1000 \mathrm{pF}$ the output is defined as:

$$
T_{W}=K R_{X} C_{X}
$$

where $\left[\mathrm{R}_{\mathrm{X}}\right.$ is in $\mathrm{k} \Omega$]
[C_{X} is in pF]
[T_{w} is in n s]
$\mathrm{K} \approx 0.37$

TL/F/6385-2
FIGURE 1

Operating Rules（Continued）

The K factor is not a constant，but，varies with C_{X} ．See Figure 2.

TL／F／6385－3
FIGURE 2
4．The switching diode required for most TTL one－shots when using an electrolytic timing capacitor is not needed for the＇LS122 and should not be used
5．To obtain variable pulse width by remote trimming，the following circuit is recommended：

TL／F／6385－4
Note：＂Rremote＂should be as close to the device pins as possible．
FIGURE 3
6．The retriggerable pulse width is calculated as shown be－ low：

$$
T=T_{W}+t_{P L H}=0.50 \times R_{X} \times C_{X}+T_{P L H}
$$

The retriggered pulse width is equal to the pulse width plus a delay time period（Figure 4）．

FIGURE 4
7．Output pulse width variation versus V_{CC} and operation temperatures：Figure 5 depicts the relationship between pulse width variation versus $V_{C c}$ ；and Figure 6 depicts pulse width variation versus temperatures．

TL／F／6385－6
FIGURE 5

TL／F／6385－7
FIGURE 6
8．Under any operating condition C_{X} and R_{X} must be kept as close to the one－shot device pins as possible to mini－ mize stray capacitance，to reduce noise pick－up，and to reduce I－R and Ldi／dt voltage developed along their con－ necting paths．If the lead length from C_{X} to pins（13）and （11）is greater than 3 cm ，for example，the output pulse width might be quite different from values predicted from the appropriate equations．A non－inductive and low ca－ pacitive path is necessary to ensure complete discharge of C_{X} in each cycle of its operation so that the output pulse width will be accurate．
9．$V_{C C}$ and ground wiring should conform to good high－fre－ quency standards and practices so that switching tran－ sients on the V_{CC} and ground return leads do not cause interaction between one－shots． $\mathrm{A} 0.01 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ by－ pass capacitor（disk ceramic or monolithic type）from $V_{C C}$ to ground is necessary on each device．Furthermore，the bypass capacitor should be located as close to the $V_{C C}$ pin as space permits．
－For further detalled device characteristics and output performance please refer to the NSC one－shot application note AN－366．

DM54LS123/DM74LS123 Dual Retriggerable One-Shot with Clear and Complementary Outputs

General Description

The DM54/74LS123 is a dual retriggerable monostable multivibrator capable of generating output pulses from a few nano-seconds to extremely long duration up to 100% duty cycle. Each device has three inputs permitting the choice of either leading edge or trailing edge triggering. Pin (A) is an active-low transition trigger input and pin (B) is an activehigh transition trigger input. The clear (CLR) input terminates the output pulse at a predetermined time independent of the timing components. The clear input also serves as a trigger input when it is pulsed with a low level pulse transition (L). To obtain the best trouble free operation from this device please read the operating rules as well as the NSC one-shot application notes carefully and observe recommendations.

- Compensated for V_{CC} and temperature variations
 - Triggerable from CLEAR input
 - DTL, TTL compatible
 - Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of an external resistor (R_{X}) and capacitor (C_{X}). Once triggered, the basic pulse width may be extended by retriggering the gated active-low transition or active-high transition inputs or be reduced by use of the active-low or CLEAR input. Retriggering to 100% duty cycle is possible by application of an input pulse train whose cycle time is shorter than the output cycle time such that a continuous "HIGH" logic state is maintained at the " Q " output.

Features

DC triggered from active-high transition or active-low transition inputs

- Retriggerable to 100% duty cycle

Connection Diagram

Function Table

Inputs			Outputs	
CLEAR	A	B	0	$\overline{\mathbf{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	Ч
H	\downarrow	H	Ω	Ч
\uparrow	L	H	Ω	บ

H = High Logic Level
L = Low Logic Level
$X=$ Can Be Either Low or High
$\uparrow=$ Positive Going Transition
$\downarrow=$ Negative Going Transition
$\Omega=$ A Positive Pulse
$工=A$ Negative Pulse

Absolute Maximum Ratings（Note）
Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the associated reliability electrical test specifications document．
Supply Voltage
$7 V$
Input Voltage
$7 V$
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter		DM54LS123			DM74LS123			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
${ }^{1} \mathrm{OH}$	High Level Output Current				－0．4			－0．4	mA
lOL	Low Level Output Current				4			8	mA
tw	Pulse Width （Note 6）	A or B High	40			40			ns
		A or B Low	40			40			
		Clear Low	40			40			
$\mathrm{R}_{\text {EXT }}$	External Timing Resistor		5		180	5		260	k Ω
$\mathrm{C}_{\text {EXT }}$	External Timing Capacitance		No Restriction			No Restriction			$\mu \mathrm{F}$
$C_{\text {WIRE }}$	Wiring Capacitance at $\mathrm{R}_{\mathrm{EXT}} / \mathrm{C}_{\text {EXT }}$ Terminal				50			50	pF
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				－1．5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current＠Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				－0．4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	－20		－100	mA
			DM74	－20		－100	
${ }^{\text {ICC }}$	Supply Current	$V_{C C}=\operatorname{Max}($ Notes 3，4 and 5）			12	20	mA

Note 1：All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
Note 2：Not more than one output should be shorted at a time，and the duration should not exceed one second．
Note 3：Quiescent $l_{C C}$ is measured（after clearing）with 2.4 V applied to all clear and A inputs，B inputs grounded，all outputs open，$C_{E X T}=0.02 \mu F$ ，and $R_{E X T}=25$ $\mathrm{k} \Omega$ ．

Note 4：$l_{C C}$ is measured in the triggered state with 2.4 V applied to all clear and B inputs，A inputs grounded，all outputs open，$C_{E X T}=0.02 \mu F$, and $R_{E X T}=25 k \Omega$ ．
Note 5 ：With all outputs open and 4.5 V applied to all data and clear inputs，${ }^{l} \mathrm{Cc}$ is measured after a momentary ground，then 4.5 V is applied to the clock．
Note 6：$T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$ ．

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameters	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\begin{gathered} C_{L}=15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{EXT}}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{EXT}}=5 \mathrm{k} \Omega \end{gathered}$		$\begin{gathered} C_{\mathrm{L}}=15 \mathrm{pF} \\ C_{\mathrm{EXT}}=1000 \mathrm{pF}, \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{~K} \Omega \end{gathered}$		
			Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	A to Q		33			ns
tpLH	Propagation Delay Time Low to High Level Output	B to Q		44			ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to \bar{Q}		45			ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	B to \bar{Q}		56			ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clear to \bar{Q}		45			ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clear to Q		27			ns
$t_{\text {WQ(Min) }}$	Minimum Width of Pulse at Output Q	A or B to Q		200			ns
tw(out)	Output Pulse Width	A or B to Q			4	5	$\mu \mathrm{S}$

Operating Rules

1. An external resistor (R_{X}) and an external capacitor (C_{X}) are required for proper operation. The value of C_{X} may vary from 0 to any necessary value. For small time constants high-grade mica, glass, polypropylene, polycarbonate, or polystyrene material capacitors may be used. For large time constants use tantalum or special aluminum capacitors. If the timing capacitors have leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
2. When an electrolytic capacitor is used for C_{x} a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current. This switching diode is not needed for the 'LS123 one-shot and should not be used. In general the use of the switching diode is not recommended with retriggerable operation.
3. For $C_{X} \gg 1000 \mathrm{pF}$ the output pulse width (T_{W}) is defined as follows:
$T_{W}=K R_{X} C_{X}$
where [R_{X} is in $k \Omega$]

$$
\begin{aligned}
& {\left[C_{X} \text { is in } \mathrm{pF}\right]} \\
& {\left[\mathrm{T}_{\mathrm{W}} \text { is in } \mathrm{ns}\right]} \\
& \mathrm{K} \approx 0.37
\end{aligned}
$$

4. The multiplicative factor K is plotted as a function of C_{X} below for design considerations:

TL/F/6386-2
FIGURE 1

Operating Rules (Continued)

5. For $C_{X}<1000 \mathrm{pF}$ see Figure 2 for T_{W} vs C_{X} family curves with R_{X} as a parameter:

TL/F/6386-3
FIGURE 2
6. To obtain variable pulse widths by remote trimming, the following circuit is recommended:

FIGURE 3
Note: "R remote" should be as close to the device pin as possible.
7. The retriggerable pulse width is calculated as shown below:

$$
T=T_{W}+t_{P L H}=K \times R_{X} \times C_{X}+t_{P L H}
$$

The retriggered pulse width is equal to the pulse width plus a delay time period (Figure 4).

FIGURE 4
8. Output pulse width variation versus V_{CC} and temperatures: Figure 5 depicts the relationship between pulse width variation versus V_{CC}, and Figure 6 depicts pulse width variation versus temperatures.

TL/F/6386-6
FIGURE 5

TL/F/6386-7
FIGURE 6
9. Under any operating condition C_{X} and R_{X} must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I-R and Ldi/dt voltage developed along their connecting paths. If the lead length from C_{X} to pins (6) and (7) or pins (14) and (15) is greater than 3 cm , for example, the output pulse width might be quite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_{X} in each cycle of its operation so that the output pulse width will be accurate.
10. The $\mathrm{C}_{\text {EXT }}$ pins of this device are internally connected to the internal ground. For optimum system performance they should be hard wired to the system's return ground plane.
11. V_{CC} and ground wiring should conform to good high-frequency standards and practices so that switching transients on the V_{CC} and ground return leads do not cause interaction between one-shots. A $0.01 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ bypass capacitor (disk ceramic or monolithic type) from $V_{C C}$ to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the V_{CC}-pin as space permits.
For further detalled device characteristics and output performance please refer to the NSC one-shot application note AN-336.

DM54LS125A／DM74LS125A Quad TRI－STATE® Buffers

General Description

This device contains four independent gates each of which performs a non－inverting buffer function．The outputs have the TRI－STATE feature．When enabled，the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors．When disabled，both the
output transistors are turned off presenting a high－imped－ ance state to the bus line．Thus the output will act neither as a significant load nor as a driver．To minimize the possibility that two outputs will attempt to take a common bus to oppo－ site logic levels，the disable time is shorter than the enable time of the outputs．

Connection Diagram

TL／F／6387－1
Order Number DM54LS125AJ，DM74LS125AM or DM74LS125AN
See NS Package Number J14A，M14A or N14A
Function Table

Y＝A		
Inputs		Output
A	C	Y
L	L	L
H	L	H
X	H	Hi－Z

$H=$ High Logic Level
L＝Low Logic Level
$X=$ Either Low or High Logic Level
$\mathrm{Hi}-\mathrm{Z}=$ TRI－STATE（Outputs are disabled）

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contalned in this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The 'Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS125A			DM74LS125A			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-1			-2.6	mA
lOL	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=M i n, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{IOL}=12 \mathrm{~mA}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
${ }_{I I H}$	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$1 / 1$	Low Level Input Current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
Iozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=M a x, V_{O}=2.4 V \\ & V_{I H}=M i n, V_{I L}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 \mathrm{~V} \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 3)			11	20	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with the data control (C) inputs at 4.5 V and the data inputs grounded.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output		15		21	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output		18		22	ns
$t_{\text {PZH }}$	Output Enable Time to High Level Output		25		35	ns
${ }^{\text {t }}$ PZL	Output Enable Time to Low Level Output		25		40	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 1)		20			ns
${ }_{\text {tplz }}$	Output Disable Time from Low Level Output (Note 1)		20			ns

Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

DM54LS126A/DM74LS126A Quad TRI-STATE® Buffers

General Description

This device contains four independent gates each of which performs a non-inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the
output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

Dual-In-LIne Package

Order Number DM54LS126AJ, DM74LS126AM or DM74LS126AN See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\mathbf{A}$		
Inputs		Output
A	C	\mathbf{Y}
L	H	L
H	H	H
X	L	Hi-Z

$H=$ High Logic Level
$L=$ Low Logic Level
$X=$ Either Low or High Logic Level
$\mathrm{Hi}-\mathrm{Z}=$ TRI-STATE (Outputs are disabled)

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage 7V

Input Voltage
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
rage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS126A			DM74LS126A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {O}}$	High Level Output Current			-1			-2.6	mA
lOL	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{IH}	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=M a x \end{aligned}$				20	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 3)			12	22	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{ICC}_{\mathrm{C}}$ is measured with both the output control and data inputs grounded.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$R_{L}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$C_{L}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tplh }}$	Propagation Delay Time Low to High Level Output		15		21	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		18		22	ns
$t_{\text {PZH }}$	Output Enable Time to High Level Output		30		36	ns
${ }_{\text {tPZL }}$	Output Enable Time to Low Level Output		30		42	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 1)		25			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 1)		25			ns

Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

DM54LS132/DM74LS132 Quad 2-Input NAND Gates with Schmitt Trigger Inputs

General Description

This device contains four independent gates each of which performs the logic NAND function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

Connection Diagram

TL/F/6389-1
Order Number DM54LS132J, DM74LS132M or DM74LS132N
See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A B}}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note) Specifications for Milltary/Aerospace products are not contalned in this datasheet. Refer to the associated reliability electrical test specificatlons document.	
Supply Voltage	V
Input Voltage	V
Operating Free Air Temperature Range DM54LS	$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS132			DM74LS132			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Input Threshold Voltage (Note 1)	1.4	1.6	1.9	1.4	1.6	1.9	V
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Input Threshold Voltage (Note 1)	0.5	0.8	1	0.5	0.8	1	V
HYS	Input Hysteresis (Note 1)	0.4	0.8		0.4	0.8		\checkmark
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
VOH	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\text { Min, } \mathrm{I}_{\mathrm{OH}}=\text { Max } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{T}-\mathrm{Min}} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min, } \mathrm{I}_{\mathrm{OL}}=\text { Max, } \\ & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{T}+} \mathrm{Max} \end{aligned}$	DM54		0.25	0.4	
			DM74		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$,	DM74		0.25	0.4	
$\mathrm{I}_{\mathrm{T}+}$	Input Current at Positive-Going Threshold	$V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}+}$			-0.14		mA
$\mathrm{I}_{\mathrm{T}-}$	Input Current at Negative-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{T}-}$			-0.18		mA
1	Input Current © Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
${ }_{1} \mathrm{H}$	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
${ }^{\text {ICCH}}$	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$			5.9	11	mA
${ }^{\text {I CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{C C}=\mathrm{Max}$			8.2	14	mA

Note 1: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 2: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	5	22	8	25	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	5	22	10	33	ns

DM54LS138/DM74LS138, DM54LS139/DM74LS139 Decoders/Demultiplexers

General Description

These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.
The LS138 decodes one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24 -line decoder can be implemented with no external inverters, and a 32 -line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.
The LS139 comprises two separate two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.

Features

- Designed specifically for high speed:

Memory decoders
Data transmission systems

- LS138 3-to-8-line decoders incorporates 3 enable inputs to simplify cascading and/or data reception
- LS139 contains two fully independent 2-to-4-line decoders/demultiplexers
■ Schottky clamped for high performance
- Typical propagation delay (3 levels of logic)
LS138 21 ns LS139 21 ns
- Typical power dissipation

LS138 32 mW LS139 34 mW

Connection Diagrams

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.
$\begin{array}{ll}\text { Supply Voltage } & 7 \mathrm{~V} \\ \text { Input Voltage } & 7 \mathrm{~V}\end{array}$
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS138			DM74LS138			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS138 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\text { Max }, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\text { Min } \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$1 / 2$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			6.3	10	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs enabled and open.

'LS138 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)								
Symbol	Parameter	From (Input) To (Output)	Levels of Delay	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
				$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
				Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output	2		18		27	ns
tPHL	Propagation Delay Time High to Low Level Output	Select to Output	2		27		40	ns
${ }^{\text {PLLH }}$	Propagation Delay Time Low to High Level Output	Select to Output	3		18		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output	3		27		40	ns
${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output	2		18		27	ns
tPHL	Propagation Delay Time High to Low Level Output	Enable to Output	2		24		40	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output	3		18		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output	3		28		40	ns

Recommended Operating Conditions

Symbol	Parameter	DM54LS139			DM74LS139			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS139 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\text { Max, } \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\text { Min } \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=0.4 V$				-0.36	mA
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			6.8	11	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs enabled and open.
'LS139 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output		18		27	ns
tpHL	Propagation Delay Time High to Low Level Output	Select to Output		27		40	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Enable to Output		18		27	ns
tPHL	Propagation Delay Time High to Low Level Output	Enable to Output		24		40	ns

Function Tables

LS138

Inputs					Outputs							
Enable		Select										
G1	G2*	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L.	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

[^14]$H=$ High Level, $L=$ Low Level, $X=$ Don't Care

LS139

Inputs			Outputs				
Enable	Select						
G	B	A	Y0	Y1	Y2	Y3	
H	X	X	H	H	H	H	
L	L	L	L	H	H	H	
L	L	H	H	L	H	H	
L	H	L	H	H	L	H	
L	H	H	H	H	H	L	

$H=$ High Level, $L=$ Low Level, $X=$ Don't Care

Logic Diagrams

National
Semiconductor Corporation

DM54LS151/DM74LS151 Data Selector/Multiplexer

General Description

This data selector/multiplexer contains full on-chip decoding to select the desired data source. The LS151 selects one-of-eight data sources. The LS151 has a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the W output high, and the Y output low.
The LS151 features complementary W and Y outputs.

Features

- Select one-of-eight data lines
- Performs parallel-to-serial conversion
- Permits multiplexing from N lines to one line
- Also for use as Boolean function generator
- Typical average propagation delay time data input to W output 12.5 ns
- Typical power dissipation 30 mW

Connection Diagram

TL/F/6392-1
Order Number DM54LS151J, DM74LS151M or DM74LS151N See NS Package Number J16A, M16A or N16A

Truth Table

Inputs				Outputs	
Select			Strobe	Y	W
C	B	A	S		
X	X	X	H	L	H
L	L	L	L	D0	$\overline{\text { D0 }}$
L	L	H	L	D1	$\overline{\text { D1 }}$
L	H	L	L	D2	$\overline{\text { D2 }}$
L	H	H	L	D3	$\overline{\text { D3 }}$
H	L	L	L	D4	$\overline{\text { D4 }}$
H	L	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	$\overline{\text { D6 }}$
H	H	H	L	D7	$\overline{\text { D7 }}$

[^15]Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
Input Voltage
$7 V$
Operating Free Air Temperature Range

DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
Storage Temperature Range

Recommended Operating Conditions

Symbol	Parameter	DM54LS151			DM74LS151			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V OH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
lcc	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 3)			6	10	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: I_{CC} is measured with all outputs open, strobe and data select inputs at 4.5 V , and all other inputs open.

	Parameter	From (Input) To (output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
Symbol			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select (4 Levels) to Y		43		46	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select (4 Levels) to Y		30		36	ns
tpLH	Propagation Delay Time Low to High Level Output	Select (3 Levels) to W		23		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select (3 Levels) to W		32		40	ns .
tpLH	Propagation Delay Time Low to High Level Output	Strobe to Y		42		44	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		32		40	ns
tpLH	Propagation Delay Time Low to High Level Output	Strobe to W		24		27	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to W		30		36	ns
$t_{\text {PLLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { D0 thru D7 } \\ \text { to } \mathrm{Y} \end{gathered}$		32		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{D} 0 \text { thru } \mathrm{D7} \\ \text { to } \mathrm{Y} \end{gathered}$		26		33	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { D0 thru D7 } \\ \text { to W } \end{gathered}$		21		25	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { D0 thru D7 } \\ & \text { to W } \end{aligned}$		20		27	ns

Logic Diagram

Address Buffers for 54LS151/74LS151

[^16]
DM54LS153/DM74LS153 Dual 4-Line to 1-Line Data Selectors/Multiplexers

General Description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

Features

- Permits multiplexing from N lines to 1 line

■ Performs at parallel-to-serial conversion

Connection Diagram

TL/F/6393-1
Order Number DM54LS153J, DM74LS153M or DM74LS153N
See NS Package Number J16A, M16A or N16A

Logic Diagram

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage
Input Voltage 7V
Operating Free Air Temperature Range
DM54L
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS153			DM74LS153			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {O}}$	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
${ }_{1 / \mathrm{H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			6.2	10	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $I_{C C}$ is measured with all outputs open and all other inputs grounded.

Symbol	Parameter	From (Input) to (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		15		20	ns
$t_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		26		35	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		29		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		38		45	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		24		30	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		32		40	ns

National Semiconductor Corporation

DM54LS154/DM74LS154 4-Line to 16-Line Decoders/Demultiplexers

General Description

Each of these 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

Features

- Decodes 4 binary-coded inputs into one of 16 mutually exclusive outputs
- Performs the demultiplexing function by distributing data from one input line to any one of 16 outputs
- Input clamping diodes simplify system design
- High fan-out, low-impedance, totem-pole outputs

E Typical propagation delay
3 levels of logic 23 ns
Strobe 19 ns

- Typical power dissipation 45 mW

Connection and Logic Diagrams

Order Number DM54LS154J, DM74LS154WM or DM74LS154N See NS Package Number J24A, M24B or N24A

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS154			DM74LS154			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}_{1} \mathrm{~V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			9	14	mA

Note 1: All typicals are at $V_{C C}=5 V_{,} T_{A}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all inputs grounded.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Output		30		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Output		30		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Output		20		25	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Output		25		35	ns

	Function Table																					
	Inputs						Outputs															
	G1	G2	D	c	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
	L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
	L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
	L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
	L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
	L	L.	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
	L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
	L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
	L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
	L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
	L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
	L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
	L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
	L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
	L	L	H	H	H	H	H	H	H	H	H	H	H	H.	H	H	H	H	H	H	H	L
	L	H	X	X	x	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
	H	L	x	X	x	x	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
	H	H	x	x	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
	$\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care																					

National
Semiconductor Corporation

DM54LS155/DM74LS155, DM54LS156/DM74LS156 Dual 2-Line to 4-Line Decoders/Demultiplexers

General Description

These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input C 1 is inverted at its outputs and data applied at C 2 is true through its outputs. The inverter following the C 1 data input permits use as a 3-to-8-line decoder, or 1-to-8-line demultiplexer, without external gating. Input clamping diodes are provided on these circuits to minimize transmission-line effects and simplify system design.

- Applications:

Dual 2-to-4-line decoder
Dual 1-to-4-line demultiplexer
3-to-8-line decoder
1-to-8-line demultiplexer

- Individual strobes simplify cascading for decoding or demultiplexing larger words
- Input clamping diodes simplify system design
- Choice of outputs:

Totem-pole (LS155)
Open-collector (LS156)

Connection Diagram and Function Tables

TL/F/6395-1
Order Number DM54LS155J, DM74LS155M, DM74LS155N, DM54LS156J, DM74LS156M or DM74LS156N See NS Package Number J16A, M16A or N16A

3-LIne-to-8-Line Decoder or 1-Line-to-8-LIne Demultiplexer

Inputs		Outputs							
Select	Strobe Or Data	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
C \dagger B A	G \ddagger	2YO	2 Y 1	2 Y 2	2 Y 3	1Y0	1 Y 1	1 Y 2	1Y3
$\mathrm{X} \times \mathrm{X}$	H	H	H	H	H	H	H	H	H
L L L	L	L	H	H	H	H	H	H	H
L L H	L	H	L	H	H	H	H	H	H
L H L	L	H	H	L	H	H	H	H	H
LHH	L	H	H	H	L	H	H	H	H
H L L	L	H	H	H	H	L	H	H	H
H L H	L	H	H	H	H	H	L	H	H
H H L	L	H	H	H	H	H	H	L	H
HHH	L	H	H	H	H	H	H	H	L

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage
7 V
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS155			DM74LS155			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {cc }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS155 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 3)			6.1	10	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: I_{CC} is measured with all outputs open, A, B, and C 1 inputs at 4.5 V , and $\mathrm{C} 2, \mathrm{G} 1$, and G 2 inputs grounded.

'LS155 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or } \mathrm{G} 2 \text { to } \mathrm{Y} \end{gathered}$		18		22	ns
tpHL	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { A, B, C2, G1 } \\ \text { or G2 to Y } \end{gathered}$		27		35	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{A} \text { or } \mathrm{B} \\ & \text { to } \mathrm{Y} \end{aligned}$		18		24	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{A} \text { or } \mathrm{B} \\ & \text { to } \mathrm{Y} \end{aligned}$		27		35	ns
tpLH	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C} 1 \\ & \text { to } \mathrm{Y} \end{aligned}$		20		24	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{C} 1 \\ & \text { to } \mathrm{Y} \end{aligned}$		27		35	ns

Recommended Operating Conditions

Symbol	Parameter	DM54LS156			DM74LS156			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS156 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$				100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{IIL}^{\text {L }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.36	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)			6.1	10	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: I_{CC} is measured with all outputs open, A, B, and C 1 inputs at 4.5 V , and $\mathrm{C} 2, \mathrm{G} 1$, and G 2 grounded.

Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or } \mathrm{G} 2 \text { to } \mathrm{Y} \end{gathered}$		28		53	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ & \text { or } \mathrm{G} 2 \text { to } \mathrm{Y} \end{aligned}$		33		43	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	A or B to Y		28		53	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A or B to Y		33		43	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C} 1 \\ & \text { to } \mathrm{Y} \end{aligned}$		28		53	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{C1} \\ & \text { to } \mathrm{Y} \end{aligned}$		34		43	ns

Logic Diagram

TL/F/6395-2

DM54LS157/DM74LS157, DM54LS158/DM74LS158 Quad 2-Line to 1-Line Data Selectors/Multiplexers

General Description

These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The LS157 presents true data whereas the LS158 presents inverted data to minimize propagation delay time.

Applications

- Expand any data input point
- Multiplex dual data buses
- Generate four functions of two variables (one variable is common)
- Source programmable counters

Features

- Buffered inputs and outputs
- Typical Propagation Time

LS157 9 ns LS158 7 ns
m Typical Power Dissipation
LS157 49 mW
LS158 24 mW

Connection Diagrams

TL/F/6396-1
Order Number DM54LS157J, DM74LS157M or DM74LS157N
See NS Package Number J16A, M16A or N16A

TL/F/6396-2
Order Number DM54LS158J, DM74LS158M or DM74LS158N
See NS Package Number J16A, M16A or N16A

Function Table

Inputs				Output Y		
Strobe	Select	A	B	LS157	LS158	
H	X	X	X	L	H	
L	L	L	X	L	H	
L	L	H	X	H	L	
L	H	X	L	L	H	
L	H	X	H	H	L	

H = High Level, L = Low Level, X = Don't Care

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage
$7 V$
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS157			DM74LS157			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS157 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, l_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	S or G			0.2	mA
			A or B			0.1	
I_{H}	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	S or G			40	$\mu \mathrm{A}$
			A or B			20	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.4 V \end{aligned}$	Sor G			-0.8	mA
			A or B			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			9.7	16	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with 4.5 V applied to all inputs and all outputs open.
'LS157 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$C_{L}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
tplH	Propagation Delay Time Low to High Level Output	Data to Y		14		18	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		14		23	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		20		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		21		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		23		28	ns
tPHL	Propagation Delay Time High to Low Level Output	Select to Y		27		32	ns

Recommended Operating Conditions

Symbol	Parameter	DM54LS158			DM74LS158			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{lOH}^{\text {O }}$	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS158 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\operatorname{Min}, Y_{1}=-18 \mathrm{~mA}$.	-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	S or G			0.2	mA
			A or B			0.1	
${ }^{1} \mathrm{H}$	High Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=2.7 \mathrm{~V} \end{aligned}$	S or G			40	$\mu \mathrm{A}$
			A or B			20	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.4 V \end{aligned}$	S or G			-0.8	mA
			A or B			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
Icc	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			4.8	8	mA

'LS158 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data $\text { to } \mathrm{Y}$		12		18	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data $\text { to } \mathrm{Y}$		12		21	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		17		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		18		28	ns
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		20		24	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		24		36	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: Icc is measured with 4.5 V applied to all inputs and all outputs open.

Logic Diagrams

LS157

TL/F/6396-3

LS158

DM54LS161A/DM74LS161A, DM54LS163A/DM74LS163A Synchronous 4-Bit Binary Counters

General Description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The LS161A and LS163A are 4-bit binary counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flipflops clocked simultaneously so that the outputs change coincident with each other when so instructed by the countenable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.
These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable input. Low-to-high transitions at the load input are perfectly acceptable, regardless of the logic levels on the clock or enable inputs. The clear function for the LS161A is asynchronous; and a low level at the clear input sets all four of the flip-flop outputs low, regardless of the levels of clock, load, or enable inputs. The clear function for the LS163A is synchronous; and a low level at the clear inputs sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily, as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to all low outputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output.
Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q_{A} output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs may occur, regardless of the logic level of the clock. These counters feature a fully independent clock circuit. Changes made to control inputs (enable P or T or load) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable set-up and hold times.

Features

- Synchronously programmable
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs
- Typical propagation time, clock to Q output 14 ns
- Typical clock frequency 32 MHz
- Typical power dissipation 93 mW

Connection Diagram

TL/F/6397-1
Order Numbers DM54LS161AJ, DM54LS163AJ, DM74LS161AM, DM74LS163AM, DM74LS161AN or DM74LS163AN See NS Package Number J16A, M16A or N16A

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\operatorname{Min}, I_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	Enable T			0.2	mA
			Clock			0.2	
			Load			0.2	
			Others			0.1	
IIH	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	Enable T			40	$\mu \mathrm{A}$
			Clock			40	
			Load			40	
			Others			20	
I/L	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=0.4 V \end{aligned}$	Enable T			-0.8	mA
			Clock			-0.8	
			Load			-0.8	
			Others			-0.4	
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 3) } \end{aligned}$			18	31	mA
ICCL	Supply Current with Outputs Low	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 4) } \end{aligned}$			19	32	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{I}_{\mathrm{CCH}}$ is measured with the load high, then again with the load low, with all other inputs high and all outputs open.
Note 4: $\mathrm{I}_{\mathrm{CCL}}$ is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.
'LS161 Switching Characteristics
at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Ripple Carry		24		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Ripple Carry		30		38	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q (Load High)		22		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q (Load High)		27		38	ns

'LS163 Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)										
Symbol	Parameter	Conditions			Min	Typ (Note 1)	Max	Unlts		
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, l_{I}=-18 \mathrm{~mA}$					-1.5	V	\rangle	
VOH	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$		DM54	2.5	3.4		V	3	
				DM74	2.7	3.4			$\stackrel{+}{8}$	
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		DM54		0.25	0.4	V	$\stackrel{\rightharpoonup}{\boldsymbol{\sigma}}$	
				DM74		0.35	0.5		$\underset{7}{ }$	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		DM74		0.25	0.4		O	
1	Input Current © Max Input Voltage	$\begin{aligned} & V_{C C} \\ & V_{1}= \end{aligned}$		Enable T			0.2	mA	H	
				Clock, Clear			0.2		CO	
				Load			0.2		-	
				Others			0.1		2	
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C} \\ & V_{1}= \end{aligned}$		Enable T			40	$\mu \mathrm{A}$	O	
				Load			40		$\underset{\sim}{ \pm}$	
				Clock, Clear			40		$\xrightarrow{\sim}$	
				Others			20		-	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C} \\ & V_{1}= \end{aligned}$		Enable T			-0.8	mA		
				Clock, Clear			-0.8			
				Load			-0.8			
				Others			-0.4			
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)		DM54	-20		-100	mA		
				DM74	-20		-100			
ICCH	Supply Current with Outputs High	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 3) } \end{aligned}$				18	31	mA		
ICCL	Supply Current with Outputs Low	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 4) } \end{aligned}$				18	32	mA		
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: $l_{\text {CCH }}$ is measured with the load high, then again with the load low, with all other inputs high and all outputs open. Note 4: ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open. 'LS163 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)										
Symbol	Parameter		From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units		
			$C_{L}=15 \mathrm{pF}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$						
			Min	Max	Min	Max				
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Freq	nncy			25		20		MHz	
tPLH	Propagation Delay T Low to High Level O			Clock to Ripple Carry		24		30	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay T High to Low Level O		Clock to Ripple Carry		30		38	ns		
tpLH	Propagation Delay T Low to High Level O		Clock to Any Q (Load High)		22		27	ns		
${ }_{\text {tPHL }}$	Propagation Delay T High to Low Level O		Clock to Any Q (Load High)		27		38	ns		

'LS163 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load) (Continued)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q (Load Low)		24		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q (Load Low)		29		38	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable T to Ripple Carry		18		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable T to Ripple Carry		15		27	ns
tpHL	Propagation Delay Time High to Low Level Output	Clear to Any Q (Note 1)		35		45	ns

Note 1: The propagation delay clear to output is measured from the clock input transition.
Logic Diagram
LS163A

TL/F/6397-2
The LS161A is similar, however, the clear buffer is connected directly to the flip flops.

Parameter Measurement Information

TL/F/6397-3
Note A: The input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%, Z_{\text {OUT }} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$. Vary PRR to measure fmax.
Note B: Outputs Q_{D} and carry are tested at t_{n+16} where t_{n} is the bit time when all outputs are low.
Note C: $V_{\text {REF }}=1.5 \mathrm{~V}$.

TL/F/6397-4
Note A: The input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%, Z_{\mathrm{OUT}} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$. Vary PRR to measure $\mathrm{f}_{\text {MAX }}$.
Note B: Enable P and enable T setup times are measured at t_{n+0}.
Note C: $V_{\text {REF }}=1.3 \mathrm{~V}$.

National Semiconductor Corporation

DM54LS164/DM74LS164 8-Bit Serial In/Parallel Out Shift Registers

General Description

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. A low logic level at either input inhibits entry of the new data, and resets the first flip-flop to the low level at the next clock pulse, thus providing complete control over incoming data. A high logic level on either input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup and hold time requirements will be entered. Clocking occurs on the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmis-sion-line effects.

Connection Diagram

Function Table

Inputs					Outputs			
Clear	Clock	\mathbf{A}	\mathbf{B}	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	\ldots	$\mathbf{Q}_{\mathbf{H}}$	
L	X	X	X	L	L	\ldots	L	
H	L	X	X	$\mathrm{Q}_{\mathbf{A O}}$	Q_{BO}	\ldots	Q_{HO}	
H	\uparrow	H	H	H	Q_{An}	\ldots	Q_{Gn}	
H	\uparrow	L	X	L	Q_{An}	\ldots	Q_{Gn}	
H	\uparrow	X	L	L	Q_{An}	\ldots	Q_{Gn}	

$H=$ High Level (steady state), $L=$ Low Level (steady state)
$X=$ Don't Care (any input, including transitions)
$\uparrow=$ Transition from low to high level
$Q_{A O}, Q_{B O}, Q_{H O}=$ The level of Q_{A}, Q_{B}, or Q_{H}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n}, Q_{G n}=$ The level of Q_{A} or Q_{G} before the most recent \uparrow transition of the clock; indicates a one-bit shift.

TL/F/6398-1
Order Number DM54LS164J, DM74LS164M or DM74LS164N
See NS Package Number J14A, M14A or N14A

Logic Diagram

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the assoclated reliability electrical test specifications document.

```
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
\begin{tabular}{cr} 
DM54LS & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74LS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" tables will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS164			DM74LS164			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
lOH	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 4)		0		25	0		25	MHz
t_{W}	Pulse Width (Note 4)	Clock	20			20			ns
		Clear	20			20			
tsu	Data Setup Time (Note 4)		15			15			ns
t_{H}	Data Hold Time (Note 4)		5			5			ns
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 4)		30			30			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			16	27	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $I_{C C}$ is measured with all outputs open, the SERIAL input grounded, the CLOCK input at $2.4 \mathrm{~V}_{\text {, }}$ and a momentary ground, then 4.5 V , applied to the CLEAR input.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25				MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output		27		30	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output		32		40	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		36		45	ns

Timing Diagram

TL/F/6398-3

DM54LS165/DM74LS165 8-Bit Parallel In/Serial Output Shift Registers

General Description

This device is an 8-bit serial shift register which shifts data in the direction of Q_{A} toward Q_{H} when clocked. Parallel-in access is made available by eight individual direct data inputs, which are enabled by a low level at the shift/load input. These registers also feature gated clock inputs and complementary outputs from the eighth bit.
Clocking is accomplished through a 2 -input NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with the load input high enables the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. Parallel loading is inhibited as long as the load input is high.

Data at the parallel inputs are loaded directly into the register on a high-to-low transition of the shift/load input, regardless of the logic levels on the clock, clock inhibit, or serial inputs.

Features

- Complementary outputs
- Direct overriding (data) inputs
- Gated clock inputs
- Parallel-to-serial data conversion
- Typical frequency 35 MHz

■ Typical power dissipation 105 mW

Connection Diagram

TL/F/6399-1
Order Number DM54LS165J, DM74LS165WM or DM74LS165N
See NS Package Number J16A, M16B or N16A

Function Table

Inputs					Internal Outputs		Output $\mathbf{Q}_{\mathbf{H}}$
Shift/ Load	Clock Inhiblt	Clock	Serial	Parallel			
				A...H	$\mathbf{Q}_{\mathbf{A}}$	$\mathrm{Q}_{\mathbf{B}}$	
L	X	X	X	a...h	a	b	h
H	L	L	X	X	$Q_{A 0}$	$Q_{B 0}$	$Q_{\text {Ho }}$
H	L	\uparrow	H	X	H	$Q_{\text {An }}$	$Q_{G n}$
H	L	\uparrow	L	X	L	$Q_{\text {An }}$	$Q_{G n}$
H	H	X	X	X	$Q_{A 0}$	Q_{BO}	Q_{HO}

$\mathrm{H}=$ High Level (steady state), $\mathrm{L}=$ Low Level (steady state)
$X=$ Don't Care (any input, including transitions)
$\uparrow=$ Transition from low-to-high level
a...h $=$ The level of steady-state input at inputs A through H_{1} respectively.
$Q_{A 0}, Q_{B O}, Q_{H 0}=$ The level of Q_{A}, Q_{B}, or Q_{H}, respectively, before the indicated steady-state input conditions were established.
$Q_{A n}, Q_{G n}=$ The level of Q_{A} or Q_{G}, respectively, before the most recent \uparrow transition of the clock.

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contalned In this datasheet. Refer to the assoclated rellabllity electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS165			DM74LS165			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.7			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current				-0.4			-0.4	mA
lOL^{2}	Low Level Output Current				4			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 1)		0		25	0		25	MHz
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 2)		0		20	0		20	MHz
tw	Pulse Width (Note 2)	Clock	25			25			ns
		Load	15			15			
tsu	Setup Time (Note 6)	Parallel	10			10			ns
		Serial	20			20			
		Enable	30			30			
		Shift	45			45			
t_{H}	Hold Time (Note 6)		0			0			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOH}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{l}=7 V \end{aligned}$	Shift/Load			0.3	mA
			Others			0.1	
${ }_{1} \mathrm{H}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	Shift/Load			60	$\mu \mathrm{A}$
			Others			20	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{l}}=0.4 \mathrm{~V} \end{aligned}$	Shift/Load			-1.2	mA
			Others			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & \text { (Note 4) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
Icc	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 5)			21	36	mA

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5: With all outputs open, clock inhibit and shift/load at 4.5 V , and a clock pulse applied to the CLOCK input, IcC is measured first with the parallel inputs at 4.5 V , then again grounded.

Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
tplH	Propagation Delay Time Low to High Level Output	Load to Any Q		35		37	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Load to Any Q		35		42	ns
tplH	Propagation Delay Time Low to High Level Output	Clock to Any Q		40		42	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		40		47	ns
${ }^{\text {tplH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{H} \\ \text { to } \mathrm{Q}_{\mathrm{H}} \end{gathered}$		25		27	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{gathered} H \\ \text { to } Q_{H} \\ \hline \end{gathered}$		30		37	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{H} \\ \text { to } \overline{\mathrm{Q}}_{\mathrm{H}} \end{gathered}$		30		32	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\underset{\text { to }}{\mathrm{H}} \overline{\mathrm{Q}}_{\mathrm{H}}$		25		32	ns

Timing Diagram

TL/F/6399-3

DM54LS166/DM74LS166 8-Bit Parallel-In/Serial-Out Shift Registers

General Description

These parallel-in or serial-in, serial-out shift registers feature gated clock inputs and an overriding clear input. All inputs are buffered to lower the drive requirements to one normalized load, and input clamping diodes minimize switching transients to simplify system design. The load mode is established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on
the low-to-high-level edge of the clock pulse through a twoinput NOR gate, permitting one input to be used as a clockenable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be free running, and the register can be stopped on command with the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. A buffered, direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero.

Connection Diagram

TL/F/6400-1
Order Number DM54LS166J, DM74LS166WM or DM74LS166N See NS Package Number J16A, M16B or N16A

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
Recommended Operating Conditions

Symbol	Parameter		DM54LS166			DM74LS166			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
${ }^{10 \mathrm{H}}$	High Level Output Current				-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current				4			8	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 1)		0		25	0		25	MHz
	Clock Frequency (Note 2)		0		20	0		20	MHz
${ }^{\text {tw }}$	Pulse Width (Note 6)	Clock	20			20			ns
		Clear	20			20			
tsu	Setup Time (Note 6)	Mode	30			30			ns
		Data	20			20			
t_{H}	Hold Time (Note 6)		0			0			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 3) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{VOH}^{\text {O }}$	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=M i n \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 4) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 5)			22	38	mA

Note 1: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Note 3: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5: With all outputs open, 4.5 V applied to the serial input, all other inputs except the CLOCK grounded, ICC is measured after a momentary ground, then 4.5 V is applied to the CLOCK.
Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics at $V_{C C}=5 V$ and $T_{A}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output	8	35		38	ns
tPHL	Propagation Delay Time High to Low Level Output	Clock to Output	8	35		41	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output	6	30		36	ns

Parameter Measurement Information

Note A: The clock pulse has the following characteristics: tw(clock) $^{2} 20 \mathrm{~ns}$ and PRR $=1 \mathrm{MHz}$. The clear pulse has the following characteristics: $\mathrm{t}_{\mathrm{W} \text { (clear) }} \geq 20 \mathrm{~ns}$ and $\mathrm{t}_{\text {HOLD }}=0 \mathrm{~ns}$. When testing $\mathrm{f}_{\text {MAX }}$, vary the clock PRR.
Note B: A clear pulse is applied prior to each test.
Note C: Propagation delay times ($t_{\text {LH }}$ and $t_{P H L}$ are measured at t_{n+1}. Proper shitting of data is verified at t_{n+8} with a functional test.
Note $\mathbf{D}: \mathrm{t}_{\mathrm{n}}=$ bit time before clocking transition
$t_{n+1}=$ bit time after one clocking transition
$t_{n+8}=$ bit time after eight clocking transitions
Note E: $\mathrm{V}_{\text {REF }}=1.3 \mathrm{~V}$.

Function Table

Inputs						Internal Outputs		Output $\mathbf{Q}_{\mathbf{H}}$
Clear	Shift/ Load	Clock Inhlbit	Clock	Serial	Parallel			
					A... H	Q_{A}	\mathbf{Q}_{B}	
L	X	X	X	X	X	L	L	L
H	X	L	L	x	X	$\mathrm{Q}_{\text {AO }}$	$\mathrm{Q}_{\text {B0 }}$	Q ${ }_{\text {Ho }}$
H	L	L	\uparrow	X	a...h	a	b	h
H	H	L	\uparrow	H	X	H	$Q_{\text {An }}$	$Q_{G n}$
H	H	L	\uparrow	L	X	L	$Q_{A n}$	$Q_{G n}$
H	X	H	\uparrow	X	X	$\mathrm{Q}_{\text {AO }}$	Q_{BO}	$Q_{\text {H0 }}$

$H=$ High Level (steady state), $L=$ Low Level (steady state)
$X=$ Don't Care (any input, including transitions)
$\uparrow=$ Transition from low to high level
a $. . . \mathrm{h}=$ The level of steady-state input at inputs A through H, respectively
$Q_{A O}, Q_{B O}, Q_{H 0}=$ The level of Q_{A}, Q_{B}, Q_{H}, respectively, before the indicated steady-state input conditions were established
$Q_{A n}, Q_{G \pi}=$ The level of Q_{A}, Q_{G}, respectively, before the most recent \uparrow transition of the clock

Logic Diagram

Timing Diagram

National
Semiconductor Corporation

DM54LS169A/DM74LS169A Synchronous 4-Bit Up/Down Binary Counter

General Description

This synchronous presettable counter features an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs all change at the same time when so instructed by the countenable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising edge of the clock waveform.
This counter is fully programmable; that is, the outputs may each be preset either high or low. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.
The carry look-ahead circuitry permits cascading counters for n-bit synchronous applications without additional gating. Both count-enable inputs ($\overline{\mathrm{P}}$ and $\overline{\mathrm{T}}$) must be low to count. The direction of the count is determined by the level of the up/down input. When the input is high, the counter counts up; when low, it counts down. Input T is fed forward to enable the carry outputs. The carry output thus enabled
will produce a low-level output pulse with a duration approximately equal to the high portion of the Q_{A} output when counting up, and approximately equal to the low portion of the Q_{A} output when counting down. This low-level overflow carry pulse can be used to enable successively cascaded stages. Transitions at the enable $\overline{\mathrm{P}}$ or $\overline{\mathrm{T}}$ inputs are allowed regardless of the level of the clock input. All inputs are diode clamped to minimize transmission-line effects, thereby simplifying system design.
This counter features a fully independent clock circuit. Changes at control inputs (enable $\overline{\mathrm{P}}$, enable $\overline{\mathrm{T}}$, load, up/ down), which modify the operating mode, have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

Features

- Fully synchronous operation for counting and programming.
■ Internal look-ahead for fast counting.
■ Carry output for n-bit cascading.
- Fully independent clock circuit

Connection Diagram

TL/F/6401-1
Order Number DM54LS169AJ, DM74LS169AM or DM74LS169AN See NS Package Number J16A, M16A or N16A

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage
Input Voltage 7V
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS169A			DM74LS169A			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$f_{\text {flk }}$	Clock Frequency (Note 1)		0		25	0		25	MHz
	Clock Frequency (Note 2)		0		20	0		20	MHz
tw	Clock Pulse Width (Note 3)		25			25			ns
tsu	Setup Time (Note 3)	Data	20			20			ns
		Enable \bar{T} or $\overline{\mathrm{P}}$	20			20			
		Load	25			25			
		U/D	30			30			
t_{H}	Hold Time (Note 3)		0			0			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	Enable $\bar{\top}$			0.2	mA
			Others			0.1	
lin	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	Enable T			40	$\mu \mathrm{A}$
			Others			20	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Enable $\overline{\text { T }}$			-0.8	mA
			Others			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note } 5) \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
Icc	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max (Note 6)			20	34	mA

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: ICC is measured after a momentary 4.5 V , then ground, is applied to the CLOCK with all other inputs grounded and all the outputs open.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Ripple Carry		35		39	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Ripple Carry		35		44	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		20		24	ns
$\mathrm{tPHL}^{\text {P }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		23		32	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable T to Ripple Carry		18		24	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Enable \bar{T} to Ripple Carry		18		28	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Up/Down to Ripple Carry (Note 1)		25		30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Up/Down to Ripple Carry (Note 1)		29		38	ns

Note 1: The propagation delay from UP/DOWN to RIPPLE CARRY must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum, the ripple carry output transition will be in phase. If the count is maximum, the ripple carry output will be out of phase.

Logic Diagram

Timing Diagram

LS169A Binary Counters Typlcal Load, Count, and Inhibit Sequences

TL/F/6401-3

DM54LS173A/DM74LS173A TRI-STATE ${ }^{\circledR}$ 4-Bit D-Type Register

General Description

This four-bit register contains D-type flip-flops with totempole TRI-STATE outputs, capable of driving highly capacitive or low-impedance loads. The high-impedance state and increased high-logic-level drive provide these flip-flops with the capability of driving the bus lines in a bus-organized system without need for interface or pull-up components.
Gated enable inputs are provided for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flipflops on the next positive transition of the buffered clock input. Gate output control inputs are also provided. When both are low, the normal logic states of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the truth table.

Connection Diagram

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable times are shorter than the average output enable times.

Features

- TRI-STATE outputs interface directly with system bus
- Gated output control lines for enabling or disabling the outputs
■ Fully independent clock eliminates restrictions for operating in one of two modes:

Parallel load
Do nothing (hold)

- For application as bus buffer registers

Function Table

Inputs					
Output					
	Clock	Data Enable		Data	Out Q
		G1	G2		
H	X	X	X	X	L
L	L	X	X	X	Q_{0}
L	\uparrow	H	X	X	Q_{0}
L	\uparrow	X	H	X	Q_{0}
L	\uparrow	L	L	L	L
L	\uparrow	L	L	H	H

When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however,
sequential operation of the flip-flops is not affected.
$\mathbf{H}=$ High Level (Steady State)
L = Low Level (Steady State)
$\uparrow=$ Low-to-High Level Transition
$\mathrm{X}=$ Don't Care (Any Input Including Transitions)
$\mathbf{Q}_{0}=$ The Level of Q Before the Indicated Steady State Input Conditions Were Established.

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the assoclated rellability electrical test specifications document.

```
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
\begin{tabular}{lr} 
DM54LS & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74LS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
orage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
Storage Temperature Range
\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS173A			DM74LS173A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
${ }_{\mathrm{IOH}}$	High Level Output Current				-1			-2.6	mA
lOL	Low Level Output Current				12			24	mA
fclek	Clock Frequency (Note 1)		0		30	0		30	MHz
	Clock Frequency (Note 2)		0		20	0		20	MHz
tw	Pulse Width (Note 3)	Clock	17			17			ns
		Clear	17			17			
tsu	Setup Time (Note 3)	Enable	17			17			ns
		Data	10			10			
t_{H}	Hold Time (Note 3)	Enable	0			0			ns
		Data	0			0			
trel $^{\text {d }}$	Clear Release Time		10			10			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $C_{L}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$.
Note 3: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V OH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
lozH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.7 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
IozL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{c c}=M a x \\ & \text { (Note 5) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 6)			17	30	mA

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency		30		20		ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output		25		34	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output		30		40	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		30		40	ns
$t_{\text {PZH }}$	Output Enable Time to High Level Output	Output Control (M or N) to Any Q	7	21	9	34	ns
${ }_{\text {PPZL }}$	Output Enable Time to Low Level Output	Output Control (M or N) to Any Q	7	27	9	45	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 7)	Output Control (M or N) to Any Q	3	17		,	ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 7)	Output Control (M or N) to Any Q	3	20			ns

Note 4: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: ICC is measured with all outputs open: Clear grounded after a momentary $4.5 \mathrm{~V} ; \mathrm{N}, \mathrm{G} 1, \mathrm{G} 2$ and all data inputs grounded: and the CLOCK and M input at 4.5 V .

Note 7: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

DM54LS174/DM74LS174, DM54LS175/DM74LS175 Hex/Quad D Flip-Flops with Clear

General Description

These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the quad (175) versions feature complementary outputs from each flip-flop.
Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

Features

- LS174 contains six flip-flops with single-rail outputs
- LS175 contains four flip-flops with double-rail outputs
- Buffered clock and direct clear inputs
- Individual data input to each flip-flop
- Applications include:

Buffer/storage registers
Shift registers
Pattern generators

- Typical clock frequency 40 MHz
- Typical power dissipation per flip-flop 14 mW

Connection Diagrams

Dual-In-Line Package

Order Number DM54LS175J,
DM74LS175M or DM74LS175N
See NS Package Number J16A, M16A or N16A

Function Table (Each Flip-Flop)

Inputs			Outputs	
Clear	Clock	D	Q	Q̈ \dagger
L	X	X	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	Q_{0}	\bar{Q}_{0}

H = High Level (steady state)
L = Low Level (steady state)
X = Don't Care
$\uparrow=$ Transition from low to high level
$Q_{0}=$ The level of Q before the indicated steady-state input conditions were established.
$\dagger=$ LS175 only

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contalned in this datasheet. Refer to the assoclated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS174			DM74LS174			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
l_{OH}	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 1)		0		30	0		30	MHz
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 2)		0		25	0		25	MHz
tw	Pulse Width (Note 6)	Clock	20			20			ns
		Clear	20			20			
$\mathrm{t}_{\text {SU }}$	Data Setup Time (Note 6)		20			20			ns
t_{H}	Data Hold Time (Note 6)		0			0			ns
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 6)		25			25			ns
TA	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS174 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condltions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
VOH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current@Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Clock			-0.4	mA
			Clear			-0.4	
			Data			-0.36	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 4) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 5)			16	26	mA

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, R_{L}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Note 3: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5: With all outputs open and 4.5 V applied to all data and clear inputs, I_{Cc} is measured after a momentary ground, then 4.5 V applied to the clock.
Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS174 Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output		30		32	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output		30		36	ns
${ }_{\text {tpHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		35		42	ns

Recommended Operating Conditions

Symbol	Parameter		DM54LS175			DM74LS175			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
$\mathrm{IOH}^{\text {r }}$	High Level Output Current				-0.4			-0.4	mA
${ }_{\mathrm{OL}}$	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {cLK }}$	Clock Frequency (Note 1)		0		30	0		30	MHz
${ }_{\text {flLK }}$	Clock Frequency (Note 2)		0		25	0		25	MHz
${ }^{\text {tw }}$	Pulse Width (Note 3)	Clock	20			20			ns
		Clear	20			20			
tsu	Data Setup Time (Note 3)		20			20			ns
t_{H}	Data Hold Time (Note 3)		0			0			ns
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 3)		25			25			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS175 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\operatorname{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current@Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Clock			-0.4	mA
			Clear			-0.4	
			Data			-0.36	
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			11	18	mA

'LS175 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
tple	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		30		32	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		30		36	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Clear to \bar{Q}		25		29	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clear to Q		35		42	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: With all outputs open and 4.5 V applied to all data and clear inputs, Icc is measured after a momentary ground, then 4.5 V applied to the clock input.

Logic Diagrams

LS174

TL/F/6404-3

LS175

TL/F/6404-4

National
Semiconductor
Corporation

DM54LS190/DM74LS190, DM54LS191/DM74LS191 Synchronous 4-Bit Up/Down Counters with Mode Control

General Description

These circuits are synchronous, reversible, up/down counters. The LS191 is a 4-bit binary counter and the LS190 is a BCD counter. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change simultaneously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.
The outputs of the four master-slave flip-flops are triggered on a low-to-high level transition of the clock input, if the enable input is low. A high at the enable input inhibits counting. Level changes at either the enable input or the down/ up input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.
These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock input. This feature allows the counters to be used as moduloN dividers by simply modifying the count length with the preset inputs.
The clock, down/up, and load inputs are buffered to lower the drive requirement; which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Features

- Counts 8-4-2-1 BCD or binary
- Single down/up count control line
- Count enable control input
- Ripple clock output for cascading
- Asynchronously presettable with load control
- Parallel outputs
- Cascadable for n-bit applications
- Average propagation delay 20 ns
- Typical clock frequency 25 MHz
- Typical power dissipation 100 mW

TL/F/6405-1
Order Number DM54LS190J, DM54LS191J, DM74LS190M, DM74LS191M, DM74LS190N, or DM74LS191N

See NS Package Number
J16A, M16A or N16A

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in thls datasheet. Refer to the associated
rellability electrical test specifications document.
Supply Voltage Input Voltage Operating Free Air Temperature Range DM54LS DM74LS Storage Temperature Range$\quad 7 \mathrm{~V}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS190, LS191			DM74LS190, LS 191			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				-0.4			-0.4	mA
IOL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 4)		0		20	0		20	MHz
tw	Pulse Width (Note 4)	Clock	25			25			ns
		Load	35			35			
${ }_{\text {t }}$	Data Setup Time (Note 4)		20			20			ns
${ }_{H}$	Data Hold Time (Note 4)		0			0			ns
t_{EN}	Enable Time to Clock (Note 4)		30			30			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS190 and 'LS191 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V OH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} V_{C C} & =M i n, I_{O L}=M a x \\ V_{\mathrm{IL}} & =M a x, V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	Enable			0.3	mA
			Others			0.1	
${ }_{1 / H}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	Enable			60	$\mu \mathrm{A}$
			Others			20	
IIL.	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Enable			-1.08	mA
			Others			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}($ Note 3)			20	35	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: Icc is measured with all inputs grounded and all outputs open.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

'LS190 and 'LS191 Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }_{\text {f MAX }}$	Maximum Clock Frequency		20		20		MHz
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Load to Any Q		33		43	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Load to Any Q		50		59	ns
${ }^{\text {PLLH }}$	Propagation Delay Time Low to High Level Output	Data to Any Q		22		26	ns
tpHL	Propagation Delay Time High to Low Level Output	Data to Any Q		50		62	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Ripple Clock		20		24	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Ripple Clock		24		33	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		24		29	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		36		45	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Max/Min		42		47	ns
tPHL	Propagation Delay Time High to Low Level Output	Clock to Max/Min		52		65	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Up/Down to Ripple Clock		45		50	ns
tPHL	Propagation Delay Time High to Low Level Output	Up/Down to Ripple Clock		45		54	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Down/Up to Max/Min		33		36	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Down/Up to Max/Min		33		42	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Ripple Clock		33		36	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Ripple Clock		33		42	ns

Logic Diagrams (Continued)
LS191 Binary Counters

LS190 Decade Counters
Typlcal Load, Count, and Inhlbit Sequences

TL/F/6405-4

LS191 Binary Counters
Typical Load, Count, and Inhiblt Sequences

TL/F/6405-5

DM54LS193/DM74LS193 Synchronous 4-Bit Up/Down Binary Counters with Dual Clock

General Description

This circuit is a synchronous up/down 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.
The outputs of the four master-slave flip-flops are triggered by a low-to-high level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is held high.
The counter is fully programmable; that is, each output may be preset to either level by entering the desired data at the inputs while the load input is low. The output will change independently of the count pulses. This feature allows the counters to be used as modulo- N dividers by simply modifying the count length with the preset inputs.
A clear input has been provided which, when taken to a high level, forces all outputs to the low level; independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements of clock drivers, etc., required for long words.

These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up and down counting functions. The borrow output produces a pulse equal in width to the count down input when the counter underflows.
Similarly, the carry output produces a pulse equal in width to the count down input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count down and count up inputs respectively of the succeeding counter.

Features

- Fully independent clear input
- Synchronous operation
- Cascading circuitry provided internally
- Individual preset each flip-flop

Connection Diagram

TL/F/6406-1
Order Number DM54LS193J, DM74LS193M or DM74LS193N
See NS Package Number J16A, M16A or N16A

```
Absolute Maximum Ratings (Note)
Specificatlons for Military/Aerospace products are not
contained In this datasheet. Refer to the assoclated
reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage
\(7 V\)
Operating Free Air Temperature Range
\begin{tabular}{lr} 
DM54LS & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74LS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS193			DM74LS193			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 1)	0		25	0		25	MHz
	Clock Frequency (Note 2)	0		20	0		20	MHz
$t_{\text {w }}$	Pulse Width of Any Input (Note 6)	20			20			ns
tsu	Data Setup Time (Note 6)	20			20			ns
t_{H}	Data Hold Time (Note 6)	0			0			ns
$t_{\text {REL }}$	Release Time (Note 6)	40			40			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
VOH	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{l}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 4). } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 5)			19	34	mA
Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 5: ICC is measured with all outputs open, CLEAR and LOAD inputs grounded, and all other inputs at 4.5 V . Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.							

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$C_{L}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Count Up to Carry		26		30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Count Up to Carry		24		36	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Count Down to Borrow		24		29	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Count Down to Borrow		24		32	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Either Count to Any Q		38		45	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Either Count to Any Q		47		54	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Load to Any Q		40		41	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Load to Any Q		40		47	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clear to Any Q		35		44	ns

Timing Diagrams

TL/F/6406-3
Note A: Clear overrides load, data, and count inputs.
Note B: When counting up, count-down input must be high; when counting down, count-up input must be high.

National Semiconductor Corporation

DM54LS194A/DM74LS194A 4-Bit Bidirectional Universal Shift Register

General Description

This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register; they feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

> Parallel (broadside) load
> Shift right (in the direction Q_{A} toward Q_{D})
> Shift left (in the direction Q_{D} toward Q_{A})

Inhibit clock (do nothing)
Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, SO and S1, high. The data is loaded into the associated flipflops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.
Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low.

Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.
Clocking of the flip-flop is inhibited when both mode control inputs are low.

Features

- Parallel inputs and outputs
- Four operating modes:

Synchronous parallel load Right shift
Left shift
Do nothing

- Positive edge-triggered clocking
- Direct overriding clear

Connection Diagram

TL/F/6407-1
Order Number DM54LS194AJ, DM74LS194AM or DM74LS194AN See NS Package Number J16A, M16A or N16A

```
Absolute Maximum Ratings (Note)
```

Specifications for Military/Aerospace products are not contained in thls datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
torage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS194A			DM74LS194A			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$V_{1 H}$	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 1)		0		25	0		25	MHz
	Clock Frequency (Note 2)		0		20	0		20	
${ }_{\text {tw }}$	Pulse Width (Note 3)	Clock	20			20			ns
		Clear	20			20			
tsu	Setup Time (Note 3)	Mode	30			30			ns
		Data	20			20			
t_{H}	Hold Time (Note 3)		0			0			ns
$t_{\text {REL }}$	Clear Release Time (Note 3)		25			25			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{O}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{l}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}_{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note } 5) \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 6)			15	23	mA

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: With all outputs open, inputs A through D grounded, and 4.5 V applied to $\mathrm{SO}, \mathrm{S} 1, \mathrm{CLEAR}$, and the serial inputs, I_{CC} is tested with momentary ground, then 4.5 V applied to CLOCK.

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=22^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$R_{L}=2 \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		20		MHz
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		22		26	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		22		35	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Output	Clear to Any Q		30		38	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: With all outputs open, inputs A through D grounded, and 4.5 V applied to $\mathrm{SO}, \mathrm{S} 1, \mathrm{CLEAR}$, and the serial inputs, ICC is tested with momentary ground, then 4.5 V applied to CLOCK.

Logic Diagram

TL/F/6407-2

Function Table

Inputs										Outputs			
Clear	Mode		Clock	Serial		Parallel				$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	Q_{C}	$\mathbf{Q}_{\mathbf{D}}$
	S1	S0		Left	Right	A	B	C	D				
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H	X	X	L	X	X	X	X	X	X	$Q_{\text {AO }}$	$Q_{B 0}$	$Q_{C 0}$	$Q_{\text {DO }}$
H	H	H	\uparrow	X	X	a	b	c	d	a	b	c	d
H	L	H	\uparrow	X	H	X	X	X	X	H	$Q_{\text {An }}$	Q_{Bn}	$Q_{C n}$
H	L	H	\uparrow	X	L	X	X	X	X	L	$Q_{A n}$	$Q_{B n}$	$Q_{C n}$
H	H	L	T	H	X	X	X	X	X	Q_{Bn}	$Q_{\text {cn }}$	$Q_{\text {Dn }}$	H
H	H	L	\uparrow	L	X	X	X	X	X	$Q_{B n}$	$Q_{\text {Cn }}$	$Q_{\text {Dn }}$	L
H	L	L	X	X	X	X	X	X	X	Q_{AO}	Q_{BO}	$Q_{\text {co }}$	$Q_{D 0}$

[^17]
Timing Diagram

National
Semiconductor Corporation

DM54LS195A/DM74LS195A 4-Bit Parallel Access Shift Register

General Description

This 4-bit register features parallel inputs, parallel outputs, $\mathrm{J}-\mathrm{K}$ serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The registers have two modes of operation:

Parallel (broadside) load
Shift (in the direction Q_{A} toward Q_{D})
Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.
Shitting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J-K inputs. These inputs permit the first stage to perform as a J-K, D, or T-type flip-flop as shown in the truth table.

Features

- Synchronous parallel load
- Positive-edge-triggered clocking
- Parallel inputs and outputs from each flip-flop
- Direct overriding clear
- J and \bar{K} inputs to first stage
- Complementary outputs from last stage
- For use in high-performance:
accumulators/processors
serial-to-parallel, parallel-to-serial converters
- Typical clock frequency 39 MHz
- Typical power dissipation 70 mW

Connection Diagram

Dual-In-Line Package
OUTPUTS

TL/F/6408-1
Order Number DM54LS195AJ, DM74LS195AM or DM74LS195AN See NS Package Number J16A, M16A or N16A

Absolute Maximum Ratings (Note)

Specifications for Milltary/Aerospace products are not contained In this datasheet. Refer to the assoclated rellabillty electrical test specifications document.
Supply Voltage
$7 V$
Input Voltage
$7 V$
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS195A			DM74LS195A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				-0.4			-0.4	mA
lol	Low Level Output Current				4			8	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 1)		0		30	0		30	MHz
	Clock Frequency (Note 2)		0		25	0		25	MHz
tw	Pulse Width (Note 3)	Clock	16			16			ns
		Clear	12			12			
tsu	Setup Time (Note 3)	Shift/Load	25			25			ns
		Data	15			15			
${ }_{4}$	Hold Time (Note 3)		0			0			ns
$\mathrm{t}_{\mathrm{REL}}$	Shift/Load Release Time (Note 3)		10			10			ns
	Clear Release Time (Note 3)		25			25			
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\operatorname{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
I_{L}	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & (\text { Note } 5) \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, (Note 6)			14	21	mA

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: With all inputs open, SHIFT/LOAD grounded, and 4.5 V applied to the $\mathrm{J}, \overline{\mathrm{K}}$, and data inputs, ICC is measured by applying a momentary ground, then 4.5 V to the CLEAR and then applying a momentary ground then 4.5 V to the CLOCK.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		25		MHz
tplh	Propagation Delay Time Low to High Level Output	Clock to Any Q		22		26	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		26		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Any Q		30		38	ns

Function Table

Inputs									Outputs				
Clear	Shift/ Load	Clock	Serial		Parallel				$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	Q_{C}	Q_{D}	$\overline{\mathbf{Q}}_{\mathbf{D}}$
			J	\bar{K}	A	B	C	D					
L	X	X	X	X	X	X	X	X	L	L	L	L	H
H	L	\uparrow	X	X	a	b	c	d	a	b	c	d	\bar{d}
H	H	L	X	X	X	X	X	X	$Q_{A 0}$	$Q_{B 0}$	$Q_{C 0}$	$Q_{\text {Do }}$	$\bar{Q}_{\text {D }}$
H	H	\uparrow	L	H	X	X	X	X	$Q_{A 0}$	$Q_{\text {AO }}$	Q_{Bn}	$Q_{C n}$	$\bar{Q}_{C n}$
H	H	\uparrow	L	L	X	X	X	X	L	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$	$\overline{\mathrm{Q}}_{\mathrm{Cn}}$
H	H	\uparrow	H	H	X	X	X	x	H	$Q_{A n}$	$Q_{B n}$	$Q_{C n}$	$\bar{Q}_{C n}$
H	H	\uparrow	H	L	X	X	X	X	$\bar{Q}_{\text {An }}$	$Q_{A n}$	$Q_{B n}$	$Q_{C n}$	$\bar{Q}_{C n}$

$H=$ High Level (steady state), L = Low Level (steady state), X = Don't Care (any input, including transitions)
$\uparrow=$ Transition from low to high level
$a, b, c, d=$ The level of steady state input at A, B, C, or D, respectively.
$Q_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=$ The level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady state input conditions were established.
$Q_{A n}, Q_{B n}, Q_{C n}=$ The level of Q_{A}, Q_{B}, Q_{C}, respectively, before the most recent transition of the clock.

Logic Diagram

TL/F/6408-2

Timing Diagram

DM54LS221／DM74LS221 Dual Non－Retriggerable One－Shot with Clear and Complementary Outputs

General Description

The DM54／74LS221 is a dual monostable multivibrator with Schmitt－trigger input．Each device has three inputs permit－ ting the choice of either leading－edge or trailing－edge trig－ gering．Pin（A）is an active－low trigger transition input and pin（B）is an active－high transition Schmitt－trigger input that allows jitter free triggering for inputs with transition rates as slow as 1 volt／second．This provides the input with excellent noise immunity．Additionally an internal latching circuit at the input stage also provides a high immunity to V_{CC} noise．The clear（CLR）input can terminate the output pulse at a prede－ termined time independent of the timing components．This （CLR）input also serves as a trigger input when it is pulsed with a low level pulse transition（乙）．To obtain the best and trouble free operation from this device please read op－ erating rules as well as the NSC one－shot application notes carefully and observe recommendations．

Features

－A dual，highly stable one－shot
－Compensated for $V_{C C}$ and temperature variations

Connection Diagram

－Pin－out identical to＇LS123（Note 1）
－Output pulse width range from 30 ns to 70 seconds
－Hysteresis provided at（B）input for added noise immunity
－Direct reset terminates output pulse
－Triggerable from CLEAR input
－DTL，TTL compatible
－Input clamp diodes
Note 1：The pin－out is identical to＇LS123 but，functionally it is not；refer to Operating Rules＊ 10 in this datasheet．

Functional Description

The basic output pulse width is determined by selection of an external resistor（ R_{X} ）and capacitor（ C_{X} ）．Once triggered， the basic pulse width is independent of further input tran－ sitions and is a function of the timing components，or it may be reduced or terminated by use of the active low CLEAR input．Stable output pulse width ranging from 30 ns to 70 seconds is readily obtainable．

Function Table

Inputs			Outputs	
CLEAR	A	B	Q	$\overline{\mathbf{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	U
H	\downarrow	H	Ω	$工$
＊	L	H	Ω	$工$

H＝High Logic Level
$L=$ Low Logic Level
$X=$ Can Be Either Low or High
$\uparrow=$ Positive Going Transition
$\uparrow=$ Negative Going Transition
$\Omega=$ A Positive Pulse
$\Psi=A$ Negative Pulse
＊This mode of triggering requires first the B input be set from a low to high level while the CLEAR input is maintained at logic low level．Then with the B input at logic high level，the CLEAR input whose positive transition from low to high will trigger an output pulse．

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS221			DM74LS221			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Input Threshold Voltage at the A Input ($V_{C C}=M i n$)			1	2		1	2	V
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Input Threshold Voltage at the A Input (VCC $=$ Min)		0.8	1		0.8	1		V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Input Threshold Voltage at the B Input (VCC $=$ Min)			1	2		1	2	V
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Input Threshold Voltage at the B Input (VCC $=$ Min)		0.8	0.9		0.8	0.9		V
lOH	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
t_{W}	Pulse Width (Note 1)	Data	40			40			ns
		Clear	40			40			
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 1)		15			15			ns
$\frac{d V}{d t}$	Rate of Rise or Fall of Schmitt Input (B) (Note 1)				1			1	$\frac{\mathrm{V}}{\mathrm{s}}$
$\frac{d V}{d t}$	Rate of Rise or Fall of Logic Input (A) (Note 1)				1			1	$\frac{\mathrm{V}}{\mu \mathrm{s}}$
$\mathrm{R}_{\text {EXT }}$	External Timing Resistor (Note 1)		1.4		70	1.4		100	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {EXt }}$	External Timing Capacitance (Note 1)		0		1000	0		1000	$\mu \mathrm{F}$
DC	Duty Cycle (Note 1)	$\mathrm{R}_{\mathrm{T}}=$			50			50	\%
		$\mathrm{R}_{\mathrm{T}}=$			90			60	
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unliss otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M \mathrm{Cn}, \mathrm{I}=-18 \mathrm{~mA}$				-1.5	V
$\mathrm{VOH}^{\text {O }}$	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{I L}=M a x, V_{I H}=M i n \\ & V_{C C}=M i n, I_{O L}=4 \mathrm{~mA} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
			DM74			0.4	
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA

Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=0.4 V \end{aligned}$	A1, A2			-0.4	mA
			B			-0.8	
			Clear			-0.8	
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & (\text { Note } 2) \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{l} C \mathrm{C}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	Quiescent		4.7	11	mA
			Triggered		19	27	

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	Conditions	Min	Max	Units
tpLH	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { A1, A2 } \\ & \text { to } Q \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{EXT}}=80 \mathrm{pF} \\ \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{gathered}$		70	ns
tpLH	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{B} \\ \text { to } \mathrm{Q} \end{gathered}$			55	ns
${ }_{\text {tpHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { A1, A2 } \\ & \text { to } \mathrm{Q} \end{aligned}$			80	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{B} \\ \text { to } \overline{\mathrm{Q}} \end{gathered}$			65	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Clear to $\overline{\mathrm{Q}}$			65	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \end{aligned}$			55	ns
${ }^{\text {tw}}$ (out)	Output Pulse Width Using Zero Timing Capacitance	$\begin{aligned} & \text { A1, } \mathrm{A} 2 \\ & \text { to }, \bar{Q} \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{EXT}}=0 \\ \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{gathered}$	20	70	ns
$t_{\text {W (out) }}$	Output Pulse Width Using External Timing Resistor	A1, A2 to $\mathrm{Q}, \overline{\mathrm{Q}}$	$\begin{gathered} C_{E X T}=100 \mathrm{pF} \\ \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \hline \end{gathered}$	600	750	ns
			$\begin{gathered} C_{\text {EXT }}=1 \mu \mathrm{~F} \\ \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{k} \Omega \\ \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \hline \end{gathered}$	6	7.5	ms
			$\begin{aligned} & \hline \mathrm{C}_{\mathrm{EXT}}=80 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{EXT}}=2 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	70	150	ns

Operating Rules

1．An external resistor（ R_{X} ）and an external capacitor（ C_{X} ） are required for proper operation．The value of C_{X} may vary from 0 to approximately $1000 \mu \mathrm{~F}$ ．For small time constants high－grade mica，glass，polypropylene，polycar－ bonate，or polystyrene material capacitor may be used． For large time constants use tantalum or special alumi－ num capacitors．If timing capacitor has leakages ap－ proaching 100 nA or if stray capacitance from either ter－ minal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates．
2．When an electrolytic capacitor is used for C_{X} a switching diode is often required for standard TTL one－shots to pre－ vent high inverse leakage current．This switching diode is not needed for the＇LS221 one－shot and should not be used．
3．For $C_{X} \gg 1000 \mathrm{pF}$ ，the output pulse width（ T_{W} ）is de－ fined as follows：
$T_{W}=K R_{X} C_{X}$
where［ R_{X} is in $k \Omega$ ］

$$
\text { [Cx is in } \mathrm{pF} \text {] }
$$

［ T_{W} is in ns ］
$K \approx \operatorname{Ln} 2=0.70$
4．The multiplicative factor K is plotted as a function of C_{X} below for design considerations：

FIGURE 1
5．For $C_{X}<1000 \mathrm{pF}$ see Figure 2 for T_{W} vs C_{X} family curves with R_{X} as a parameter：

TL／F／6409－4

6．To obtain variable pulse widths by remote trimming，the following circuit is recommended：

TL／F／6409－5
Note：＂Remote＂should be as close to the one－shot as possible．
FIGURE 3
7．Output pulse width versus V_{CC} and temperatures：Figure 4 depicts the relationship between pulse width variation versus $V_{\text {cc }}$ ．Figure 5 depicts pulse width variation versus temperatures．

TL／F／8409－6
FIGURE 4

TL／F／6409－7
FIGURE 5
8．Duty cycle is defined as $T_{W} / T \times 100$ in percentage，if it goes above 50% the output pulse width will become shorter．If the duty cycle varies between low and high values，this causes output pulse width to vary，or jitter（a function of the $R_{E X T}$ only）．To reduce jitter，$R_{E X T}$ should be as large as possible，for example，with $R_{E X T}=100 \mathrm{k}$ jitter is not appreciable until the duty cycle approaches 90\％．

Operating Rules (Continued)

9. Under any operating condition C_{X} and R_{X} must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I-R and Ldi/dt voltage developed along their connecting paths. If the lead length from C_{X} to pins (6) and (7) or pins (14) and (15) is greater than 3 cm , for example, the output pulse width might be quite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_{X} in each cycle of its operation so that the output pulse width will be accurate.
10. Although the 'LS221's pin-out is identical to the 'LS123 it should be remembered that they are not functionally identical. The 'LS123 is a retriggerable device such that the output is dependent upon the input transitions when
its output " Q " is at the "High" state. Furthermore, it is recommended for the 'LS123 to externally ground the $\mathrm{C}_{E X T}$ pin for improved system performance. However, this pin on the 'LS221 is not an internal connection to the device ground. Hence, if substitution of an 'LS221 onto an 'LS123 design layout where the C EXT pin is wired to the ground, the device will not function.
11. V_{CC} and ground wiring should conform to good high-frequency standards and practices so that switching transients on the $V_{C C}$ and ground return leads do not cause interaction between one-shots. A $0.01 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ bypass capacitor (disk ceramic or monolithic type) from V_{CC} to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the V_{CC}-pin as space permits.
For further detalled device characteristics and output performance, please refer to the NSC one-shot application note AN-366.

National
Semiconductor

DM54LS240/DM74LS240, DM54LS241/DM74LS241 Octal TRI-STATE ${ }^{\circledR}$ Buffers/Line Drivers/Line Receivers

General Description

These buffers/line drivers are designed to improve both the performance and PC board density of TRI-STATE buffers/ drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs and can be used to drive terminated lines down to 133Ω.

Features

- TRI-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at inputs improves noise margins
- Typical IOL (sink current)

54LS 12 mA 74LS 24 mA

- Typical I_{OH} (source current)

54LS $\quad-12 \mathrm{~mA}$
74LS $\quad-15 \mathrm{~mA}$

- Typical propagation delay times Inverting 10.5 ns Noninverting 12 ns
- Typical enable/disable time 18 ns
- Typical power dissipation (enabled) Inverting 130 mW Noninverting 135 mW

Connection Diagrams

Dual-In-Line Package

Order Number DM54LS240J, DM74LS240WM or DM74LS240N
See NS Package Number J20A, M20B or N20A

Dual-In-Line Package

Order Number DM54LS241J, DM74LS241WM or DM74LS241N See NS Package Number J20A, M20B or N20A

Function Tables

LS240

Inputs		Output
$\overline{\mathbf{G}}$	\mathbf{A}	\mathbf{Y}
L	L	H
L	H	L
H	X	Z

LS241

Inputs					Outputs		
G	\bar{G}	$\mathbf{1 A}$	$\mathbf{2 A}$	$\mathbf{1 Y}$	$\mathbf{2 Y}$		
X	L	L	X	L			
X	L	H	X	H			
X	H	X	X	Z			
H	X	X	L		L		
H	X	X	H		H		
L	X	X	X		Z		

[^18]```
Absolute Maximum Ratings (Note)
```

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage ..... 7V
Input Voltage ..... 7V
Operating Free Air Temperature Range
DM54LS

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54LS240, 241 |  |  | DM74LS240, 241 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.7 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -12 |  |  | -15 | mA |
| lOL | Low Level Output Current |  |  | 12 |  |  | 24 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  |  | Min | $\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 1) } \\ \hline \end{array}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$ |  |  |  |  | -1.5 | V |
| HYS | Hysteresis ( $\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$ ) | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$ |  |  | 0.2 | 0.4 |  | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=M i n, V_{I H}=M i n \\ & V_{\mathrm{IL}}=M a x, I_{O H}=-1 \mathrm{~mA} \end{aligned}$ |  | DM74 | 2.7 |  |  |  |
|  |  | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$ |  | DM54/DM74 | 2.4 | 3.4 |  | V |
|  |  | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \end{aligned}$ |  | DM54/DM74 | 2 |  |  |  |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min} \\ & V_{\mathrm{IL}}=M a x \\ & V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | $\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$ | DM74 |  |  | 0.4 | V |
|  |  |  | $\mathrm{l}_{\mathrm{OL}}=\mathrm{Max}$ | DM54 |  |  | 0.4 |  |
|  |  |  |  | DM74 |  |  | 0.5 |  |
| lozh | Off-State Output Current, High Level Voltage Applied | $\begin{aligned} & V_{C C}=M a x \\ & V_{i L}=M a x \\ & V_{I H}=\operatorname{Min} \end{aligned}$ | $V_{O}=2.7 \mathrm{~V}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| lozl | Off-State Output Current, Low Level Voltage Applied |  | $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ |  |  |  | -20 | $\mu \mathrm{A}$ |
| 1 | Input Current at Maximum Input Voltage | $V_{C C}=M a x, V_{1}=7 \mathrm{~V}$ |  |  |  |  | 0.1 | mA |
| $\mathrm{IIH}^{\text {H }}$ | High Level Input Current | $V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$ |  |  |  |  | 20 | $\mu \mathrm{A}$ |
| IfL | Low Level Input Current | $V_{C C}=M a x, V_{1}=0.4 V$ |  |  |  |  | -0.2 | mA |
| los | Short Circuit Output Current | $V_{C C}=$ Max (Note 2) |  |  | -40 |  | -225 | mA |
| Icc | Supply Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max},$Outputs Open | Outputs High | LS240, LS241 |  | 13 | 23 | mA |
|  |  |  | Outputs Low | LS240 |  | 26 | 44 |  |
|  |  |  |  | LS241 |  | 27 | 46 |  |
|  |  |  | Outputs Disabled | LS240 |  | 29 | 50 |  |
|  |  |  |  | LS241 |  | 32 | 54 |  |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | Conditions |  | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\text {tpLH }}$ | Propagation Delay Time Low to High Level Output | $\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & R_{\mathrm{L}}=667 \Omega \end{aligned}$ | LS240 | 3 | 14 | ns |
|  |  |  | LS241 | 5 | 18 |  |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & R_{L}=667 \Omega \end{aligned}$ | LS240 | 5 | 18 | ns |
|  |  |  | LS241 | 7 | 18 |  |
| tpzL | Output Enable Time to Low Level | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | LS240 | 10 | 30 | ns |
|  |  |  | LS241 | 10 | 30 |  |
| tpzH | Output Enable Time to High Level | $\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | LS240 | 5 | 23 | ns |
|  |  |  | LS241 | 10 | 23 |  |
| tplz | Output Disable Time from Low Level | $\begin{aligned} & C_{L}=5 \mathrm{pF} \\ & R_{L}=667 \Omega \end{aligned}$ | LS240 | 7 | 25 | ns |
|  |  |  | LS241 | 8 | 25 |  |
| $\mathrm{t}_{\text {PHz }}$ | Output Disable Time from High Level | $\begin{aligned} & C_{L}=5 \mathrm{pF} \\ & R_{L}=667 \Omega \end{aligned}$ | LS240 | 5 | 18 | ns |
|  |  |  | LS241 | 5 | 18 |  |
| ${ }_{\text {tpLH }}$ | Propagation Delay Time Low to High Level Output | $\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | LS240 | 5 | 18 | ns |
|  |  |  | LS241 | 6 | 21 |  |
| tpHL | Propagation Delay Time High to Low Level Output | $\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{L}=667 \Omega \end{aligned}$ | LS240 | 6 | 22 | ns |
|  |  |  | LS241 | 6 | 22 |  |
| tpzL | Output Enable Time to Low Level | $\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{L}=667 \Omega \end{aligned}$ | LS240 | 12 | 33 | ns |
|  |  |  | LS241 | 12 | 33 |  |
| tpzH | Output Enable Time to High Level | $\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | LS240 | 6 | 26 | ns |
|  |  |  | LS241 | 11 | 26 |  |

## DM54LS243/DM74LS243 Quadruple Bus Transceiver

## General Description

This four data line transceiver is designed for asynchronous two-way communications between data buses. It can be used to drive terminated lines down to $133 \Omega$.

## Features

- Two-way asynchronous communication between data buses
- P-N-P inputs reduce D-C loading
- Hysteresis (typically 400 mV ) at inputs improves noise margin


## Connection Diagram



TL/F/6412-1
Order Number DM54LS243J, DM74LS243WM or DM74LS243N See NS Package Number J14A, M14B or N14A

Function Table

| Control <br> Inputs |  | Data Port <br> Status |  |
| :---: | :---: | :---: | :---: |
| GAB | GBA | A | B |
| H | H | O | I |
| L | H | $*$ | $*$ |
| H | L | ISOLATED |  |
| L | L | I | O |

*Possibly destructive oscillation may occur if the transceivers are enabled in both directions at once.
$\mathrm{I}=$ Input, $\mathrm{O}=$ Output.
$H=$ High Logic Level, L = Low Logic Level.

| Absolute Maximum RatingS (Note) |  |
| :--- | ---: |
| Specificatlons for Milltary/Aerospace products are not |  |
| contained in thls datasheet. Refer to the associated |  |
| rellablity electrical test specifications document. |  |
| Supply Voltage | 7 V |
| Input Voltage |  |
| Any G | 7 V |
| A or B | 5.5 V |
| Operating Free Air Temperature Range |  |
| DM54LS | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74LS | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54LS243 |  |  | DM74LS243 |  |  | Units |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom | Max | Min | Nom |  |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |  |
| $\mathrm{~V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |  |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.7 |  |  | 0.8 | V |  |
| $\mathrm{IOH}_{\mathrm{OH}}$ | High Level Output Current |  |  | -12 |  |  | -15 | mA |  |
| $\mathrm{IOL}^{\mathrm{IL}}$ | Low Level Output Current |  |  | 12 |  |  | 24 | mA |  |
| $\mathrm{~T}_{\mathrm{A}}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |  |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  |  | -1.5 | V |
| HYS | Hysteresis ( $\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$ ) | $V_{C C}=$ Min |  |  | 0.2 | 0.4 |  | V |
| V OH | High Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=M i n \\ & V_{\mathrm{IL}}=M a x, I_{O H}=-1 \mathrm{~mA} \end{aligned}$ |  | DM74 | 2.7 |  |  |  |
|  |  | $\begin{aligned} & V_{C C}=M i n, V_{I H}=M i n \\ & V_{I L}=M a x, I_{O H}=-3 m \end{aligned}$ |  | DM54/DM74 | 2.4 | 3.4 |  | V |
|  |  | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{\mathrm{IH}}=\operatorname{Min} \\ & V_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$ |  | DM54/DM74 | 2 |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{\mathrm{IL}}=M a x \\ & V_{I H}=\operatorname{Min} \end{aligned}$ | $\mathrm{IOL}=12 \mathrm{~mA}$ | DM74 |  |  | 0.4 | V |
|  |  |  | $\mathrm{IOL}=\mathrm{Max}$ | DM54 |  |  | 0.4 |  |
|  |  |  |  | DM74 |  |  | 0.5 |  |
| lozh | Off-State Output Current, High Level Voltage Applied | $\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & V_{\mathrm{IL}}=M a x \\ & V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ |  |  |  | 40 | $\mu \mathrm{A}$ |
| Iozl | Off-State Output Current, Low Level Voltage Applied |  | $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ |  |  |  | -200 | $\mu \mathrm{A}$ |
| 1 | Input Current at Maximum Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ | A or B |  |  | 0.1 | mA |
|  |  |  | $\mathrm{V}_{1}=7 \mathrm{~V}$ | Any G |  |  | 0.1 | mA |
| $\mathrm{I}_{\mathrm{H}}$ | High Level Input Current | $V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  |  | 20 | $\mu \mathrm{A}$ |
| IIL | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  |  |  | -0.2 | mA |
| los | Short Circuit Output Current | $V_{C C}=\operatorname{Max}$ (Note 2) |  |  | -40 |  | -225 | mA |
| ICC | Supply Current | $V_{C C}=M a x$ <br> Outputs <br> Open | Outputs High |  |  | 22 | 38 |  |
|  |  |  | Outputs Low |  |  | 29 | 50 | mA |
|  |  |  | Outputs Disabled |  |  | 32 | 54 |  |

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | Conditions | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | 5 | 18 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | $\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$ | 7 | 18 | ns |
| $t_{\text {PZL }}$ | Output Enable Time to Low Level | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$ | 10 | 30 | ns |
| $t_{\text {PZH }}$ | Output Enable Time to High Level | $\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$ | 10 | 23 | ns |
| tplz | Output Disable Time from Low Level | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$ | 8 | 25 | ns |
| tPHZ | Output Disable Time from High Level | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$ | 5 | 18 | ns |
| tpLH | Propagation Delay Time Low to High Level Output | $\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | 6 | 21 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | 6 | 22 | ns |
| tpZL | Output Enable Time to Low Level | $\begin{aligned} & C_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$ | 12 | 33 | ns |
| tpZH | Output Enable Time to High Level | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | 11 | 26 | ns |

## DM54LS244/DM74LS244 Octal TRI-STATE ${ }^{\circledR}$ Buffers/Line Drivers/Line Receivers

## General Description

These buffers/line drivers are designed to improve both the performance and PC board density of TRI-STATE buffers/ drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs and can be used to drive terminated lines down to $133 \Omega$.

## Features

- TRI-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at inputs improves noise margins
- Typical IOL (sink current) 54LS 12 mA 74LS $\quad 24 \mathrm{~mA}$
- Typical $\mathrm{IOH}^{\text {(source current) }}$

$$
\begin{array}{ll}
\text { 54LS } & -12 \mathrm{~mA} \\
\text { 74LS } & -15 \mathrm{~mA}
\end{array}
$$

- Typical propagation delay times Inverting 10.5 ns Noninverting 12 ns
■ Typical enable/disable time 18 ns
- Typical power dissipation (enabled) Inverting 130 mW Noninverting 135 mW


## Connection Diagram

## Dual-In-LIne Package



Order Number DM54LS244J, DM74LS244WM or DM74LS244N See NS Package Number J20A, M20B or N20A

## Function Table

| Inputs |  | Output |
| :---: | :---: | :---: |
| $\overline{\mathbf{G}}$ | $\mathbf{A}$ | $\mathbf{Y}$ |
| L | L | L |
| L | H | H |
| $H$ | $X$ | $Z$ |

L = Low Logic Level
$H=$ High Logic Level
$\mathrm{X}=$ Either Low or High Logic Level
Z = High Impedance

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

| DM54LS | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| DM74LS | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| orage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54LS244 |  |  | DM74LS244 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{1 \mathrm{H}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.7 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -12 |  |  | -15 | mA |
| lOL | Low Level Output Current |  |  | 12 |  |  | 24 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  |  | -1.5 | V |
| HYS | Hysteresis ( $\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}_{-}}$) | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$ |  |  | 0.2 | 0.4 |  | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$ |  | DM74 | 2.7 |  |  |  |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$ |  | DM54/DM74 | 2.4 | 3.4 |  | V |
|  |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$ |  | DM54/DM74 | 2 |  |  |  |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{I L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$ | $\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$ | DM74 |  |  | 0.4 | V |
|  |  |  | $\mathrm{IOL}=\mathrm{Max}$ | DM54 |  |  | 0.4 |  |
|  |  |  |  | DM74 |  |  | 0.5 |  |
| lozh | Off-State Output Current, High Level Voltage Applied | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| Iozl | Off-State Output Current, Low Level Voltage Applied |  | $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ |  |  |  | -20 | $\mu \mathrm{A}$ |
| 1 | Input Current at Maximum Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ | $V_{1}=7 \mathrm{~V}$ |  |  |  | 0.1 | mA |
| $\mathrm{IIH}^{\text {H }}$ | High Level Input Current | $V_{C C}=$ Max | $\mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| I/L | Low Level Input Current | $V_{C C}=\operatorname{Max} \quad V_{1}=0.4 \mathrm{~V}$$V_{C C}=\operatorname{Max}$ (Note 2) |  |  |  |  | -0.2 | mA |
| los | Short Circuit Output Current |  |  |  | -40 |  | -225 | mA |
| ICC | Supply Current | $V_{C C}=M a x,$ <br> Outputs Open | Outputs High |  |  | 13 | 23 |  |
|  |  |  | Outputs Low |  |  | 27 | 46 | mA |
|  |  |  | Outputs Disabled |  |  | 32 | 54 |  |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | Conditions | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | $\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | 5 | 18 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & R_{\mathrm{L}}=667 \Omega \end{aligned}$ | 7 | 18 | ns |
| $\mathrm{t}_{\mathrm{PZL}}$ | Output Enable Time to Low Level | $\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | 10 | 30 | ns |
| tpZH | Output Enable Time to High Level | $\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | 10 | 23 | ns |
| $t_{\text {PLZ }}$ | Output Disable Time from Low Level | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$ | 8 | 25 | ns |
| ${ }^{\text {tPHZ }}$ | Output Disable Time from High Level | $\begin{aligned} & C_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | 5 | 18 | ns |
| ${ }_{\text {tpLH }}$ | Propagation Delay Time Low to High Level Output | $\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$ | 6 | 21 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$ | 6 | 22 | ns |
| $\mathrm{t}_{\text {PZL }}$ | Output Enable Time to Low Level | $\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \\ & \hline \end{aligned}$ | 12 | 33 | ns |
| ${ }_{\text {tPZH }}$ | Output Enable Time to High Level | $\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{L}=667 \Omega \end{aligned}$ | 11 | 26 | ns |

National
Semiconductor
Corporation

## DM54LS245/DM74LS245 TRI-STATE ${ }^{\circledR}$ Octal Bus Transceiver

## General Description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.
The device allows data transmission from the $A$ bus to the $B$ bus or from the $B$ bus to the $A$ bus depending upon the logic level at the direction control (DIR) input. The enable input ( $\overline{\mathrm{G}})$ can be used to disable the device so that the buses are effectively isolated.

## Features

- Bi-Directional bus transceiver in a high-density 20 -pin package
- TRI-STATE outputs drive bus lines directly


## Connection Diagram

## Dual-In-LIne Package



TL/F/6413-1
Order Number DM54LS245J, DM74LS245WM or DM74LS245N
See NS Package Number J20A, M20B or N20A
Function Table

| Enable <br> $\overline{\mathbf{G}}$ | Direction <br> Control <br> DIR | Operation |
| :---: | :---: | :---: |
| L | L | B data to $A$ bus |
| L | H | A data to $B$ bus |
| $H$ | X | Isolation |

[^19]
## Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.

| Supply Voltage | 7 V |
| :--- | ---: |
| Input Voltage | 7 V |
| DIR or $\overline{\mathrm{G}}$ | 5.5 V |
| A or B |  |
| Operating Free Air Temperature Range | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM54LS | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| DM74LS | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54LS245 |  |  | DM74LS245 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.7 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -12 |  |  | -15 | mA |
| lOL | Low Level Output Current |  |  | 12 |  |  | 24 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  |  | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$ |  |  |  |  | -1.5 | V |
| HYS | Hysteresis ( $\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$ ) | $V_{C C}=M i n$ |  |  | 0.2 | 0.4 |  | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=M i n, V_{I H}=M i n \\ & V_{I L}=M a x, I_{O H}=-1 \mathrm{~mA} \end{aligned}$ |  | DM74 | 2.7 |  |  |  |
|  |  | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Min} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{IOH}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$ |  | DM54/DM74 | 2.4 | 3.4 |  | V |
|  |  | $\begin{aligned} & V_{C C}=M i n, V_{I H}=\operatorname{Min} \\ & V_{I L}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \end{aligned}$ |  | DM54/DM74 | 2 |  |  |  |
| V OL | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ | $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$ | DM74 |  |  | 0.4 | V |
|  |  |  | $\mathrm{I}_{\mathrm{OL}}=\mathrm{Max}$ | DM54 |  |  | 0.4 |  |
|  |  |  |  | DM74 |  |  | 0.5 |  |
| lozh | Off-State Output Current, High Level Voltage Applied | $\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{I L}=M a x \\ & V_{I H}=M i n \end{aligned}$ | $\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| Iozl. | Off-State Output Current, Low Level Voltage Applied |  | $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ |  |  |  | -200 | $\mu \mathrm{A}$ |
| 1 | Input Current at Maximum Input Voltage | $\mathrm{V}_{C C}=$ Max | A or B | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  | 0.1 | mA |
|  |  |  | DIR or $\overline{\mathrm{G}}$ | $\mathrm{V}_{1}=7 \mathrm{~V}$ |  |  | 0.1 |  |
| $\mathrm{IIH}^{\text {H }}$ | High Level Input Current | $V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  |  | 20 | $\mu \mathrm{A}$ |
| ILL | Low Level Input Current | $V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$ |  |  |  |  | -0.2 | mA |
| los | Short Circuit Output Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2) |  |  | -40 |  | -225 | mA |
| $\mathrm{I}_{\mathrm{CC}}$ | Supply Current | Outputs High |  | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  | 48 | 70 |  |
|  |  | Outputs Low |  |  |  | 62 | 90 | mA |
|  |  | Outputs at Hi-Z |  |  |  | 64 | 95 |  |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, not to exceed one second duration

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | Conditions | $\begin{gathered} \hline \text { DM54/74 } \\ \hline \text { LS245 } \\ \hline \end{gathered}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time, Low-to-High-Level Output | $\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & R_{\mathrm{L}}=667 \Omega \end{aligned}$ |  | 12 | ns |
| tPHL | Propagation Delay Time, High-to-Low-Level Output |  |  | 12 | ns |
| tpZL | Output Enable Time to Low Level |  |  | 40 | ns |
| tpZH | Output Enable Time to High Level |  |  | 40 | ns |
| tplz | Output Disable Time from Low Level | $\begin{aligned} & C_{L}=5 p F \\ & R_{L}=667 \Omega \end{aligned}$ |  | 25 | ns |
| $t_{\text {PHZ }}$ | Output Disable Time from High Level |  |  | 25 | ns |
| tplH | Propagation Delay Time, Low-to-High-Level Output. | $\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{\mathrm{L}}=667 \Omega \end{aligned}$ |  | 16 | ns |
| tphL | Propagation Delay Time, High-to-Low-Level Output |  |  | 17 | ns |
| tpZL | Output Enable Time to Low Level |  |  | 45 | ns |
| ${ }^{\text {tpZH }}$ | Output Enable Time to High Level |  |  | 45 | ns |

## DM54LS251/DM74LS251 TRI-STATE ${ }^{\circledR}$ Data Selectors/Multiplexers

## General Description

These data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources, and feature a strobe-controlled TRI-STATE output. The strobe must be at a low logic level to enable these devices. The TRI-STATE outputs permit direct connection to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TiL totempole outputs.
To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time.

Features

- TRI-STATE version of LS151
- Interface directly with system bus
- Perform parallel-to-serial conversion
- Permit multiplexing from $N$-lines to one line
- Complementary outputs provide true and inverted data
- Maximum number of common outputs

54LS 49 74LS 129

- Typical propagation delay time ( D to Y ) 54LS 17 ns 74LS 17 ns
- Typical power dissipation 54LS 35 mW 74LS 35 mW


## Connection Diagram



## Function Table

| Inputs |  |  |  | Outputs |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Select | Strobe | Y | W |  |
| C | B | A | S |  |  |
| X | X | X | H | Z | Z |
| L | L | L | L | D0 | $\overline{\overline{D 0}}$ |
| L | L | H | L | D1 | $\overline{\text { D1 }}$ |
| L | H | L | L | D2 | $\overline{\text { D2 }}$ |
| L | H | H | L | D3 | $\overline{\overline{D 3}}$ |
| H | L | L | L | D4 | $\overline{\text { D4 }}$ |
| H | L | H | L | D5 | $\overline{\text { D5 }}$ |
| H | H | L | L | D6 | $\overline{\overline{D 6}}$ |
| H | H | H | L | D7 | $\overline{\text { D7 }}$ |

$H=$ High Logic Level, L = Low Logic Level,
X = Don't Care, Z = High Impedance (Off)
$D 0, D 1 \ldots D 7=$ The level of the respective $D$ input

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated reliability electrical test specifications document.

```
Supply Voltage
 7V
Input Voltage
7V
Operating Free Air Temperature Range
\begin{tabular}{lr}
DM54LS & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74LS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54LS251 |  |  | DM74LS251 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.7 |  |  | 0.8 | V |
| lOH | High Level Output Current |  |  | -1 |  |  | -2.6 | mA |
| loL | Low Level Output Current |  |  | 12 |  |  | 24 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | $\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.5 | V |
| VOH | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ | DM54 | 2.4 | 3.4 |  | V |
|  |  |  | DM74 | 2.4 | 3.1 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$ | DM54 |  | 0.25 | 0.4 | V |
|  |  |  | DM74 |  | 0.35 | 0.5 |  |
|  |  | $\mathrm{IOL}=12 \mathrm{~mA}$ | DM74 |  | 0.25 | 0.4 |  |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$ |  |  |  | 0.1 | mA |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| 1 l | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  |  | -0.4 | mA |
| lozh | Off-State Output Current with High Level Output Voltage Applied | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| Iozl. | Off-State Output Current with Low Level Output Voltage Applied | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, V_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | -20 | $\mu \mathrm{A}$ |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$ | DM54 | -20 |  | -100 | mA |
|  |  |  | DM74 | -20 |  | -100 |  |
| lCCl | Supply Current | $\mathrm{V}_{\mathrm{CC}}=$ Max (Note 3) |  |  | 6.1 | 10 | mA |
| ${ }^{\text {CCO2 }}$ | Supply Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4) |  |  | 7.1 | 12 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{I}_{\mathrm{CC}}$ is measured with the outputs open, STROBE grounded, and all other inputs at 4.5 V .
Note 4: $\mathrm{I}_{\mathrm{CC} 2}$ is measured with the outputs open and all inputs at 4.5 V .

| Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | From (Input) to (Output) | $\mathrm{R}_{\mathrm{L}}=\mathbf{6 6 7}$, |  |  |  | Units |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| ${ }_{\text {tpLH }}$ | Propagation Delay Time Low to High Level Output | $A, B, C$ (4 Levels) to $Y$ |  | 45 |  | 53 | ns |
| tpHL | Propagation Delay Time High to Low Level Output | A, B, C <br> (4 Levels) to $Y$ |  | 45 |  | 53 | ns |
| ${ }_{\text {tple }}$ | Propagation Delay Time Low to High Level Output | $A, B, C$ <br> (3 Levels) to W |  | 33 |  | 38 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{gathered} \text { A, B, C } \\ \text { (3 Levels) to W } \end{gathered}$ |  | 33 |  | 42 | ns |
| tpli | Propagation Delay Time Low to High Level Output | $\begin{aligned} & D \\ & \text { to } \mathrm{Y} \end{aligned}$ |  | 28 |  | 35 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{gathered} \mathrm{D} \\ \text { to } \mathrm{Y} \end{gathered}$ |  | 28 |  | 38 | ns |
| tpLH | Propagation Delay Time Low to High Level Output | $\begin{gathered} D \\ \text { to W } \end{gathered}$ |  | 15 |  | 25 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{gathered} D \\ \text { to } \mathrm{W} \end{gathered}$ |  | 15 |  | 25 | ns |
| tpzH | Output Enable Time to High Level Output | $\begin{aligned} & \text { Strobe } \\ & \text { to } Y \\ & \hline \end{aligned}$ |  | 45 |  | 60 | ns |
| tpzL | Output Enable Time to Low Level Output | $\begin{aligned} & \text { Strobe } \\ & \text { to } \mathrm{Y} \end{aligned}$ |  | 40 |  | 51 | ns |
| $\mathrm{t}_{\text {PHz }}$ | Output Disable Time from High Level Output (Note 1) | Strobe to $Y$ |  | 45 |  |  | ns |
| tpLz | Output Disable Time from Low Level Output (Note 1) | $\begin{aligned} & \text { Strobe } \\ & \text { to } \mathrm{Y} \end{aligned}$ |  | 25 |  |  | ns |
| ${ }_{\text {tpzH }}$ | Output Enable Time to High Level Output | $\begin{aligned} & \text { Strobe } \\ & \text { to W } \end{aligned}$ |  | 27 |  | 40 | ns |
| ${ }_{\text {tpzL }}$ | Output Enable Time to Low Level Output | Strobe $\text { to } \mathrm{W}$ |  | 40 |  | 47 | ns |
| $\mathrm{t}_{\text {PHz }}$ | Output Disable Time from High Level Output (Note 1) | Strobe to W |  | 55 |  |  | ns |
| tPLZ | Output Disable Time from Low Level Output (Note 1) | $\begin{aligned} & \text { Strobe } \\ & \text { to W } \end{aligned}$ |  | 25 |  |  | ns |

Note 1: $C_{L}=5 \mathrm{pF}$
Logic Diagram


TL/F/6415-2

## DM54LS253/DM74LS253 TRI-STATE ${ }^{\circledR}$ Data Selectors/Multiplexers

## General Description

Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR gates. Separate output control inputs are provided for each of the two four-line sections.
The TRI-STATE outputs can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level.

## Connection Diagram

Dual-In-LIne Package


TL/F/6416-1
Order Number DM54LS253J, DM74LS253M or DM74LS253N See NS Package Number J16A, M16A or N16A

## Features

- TRI-STATE version of LS153 with same pinout

E Schottky-diode-clamped transistors

- Permit multiplexing from N -lines to one line
- Performs parallel-to-serial conversion
- Strobe/output control
- High fanout totem-pole outputs
- Typical propagation delay

Data to output 12 ns
Select to output 21 ns

- Typical power dissipation 35 mW


## Function Table

| Select <br> Inputs | Data Inputs |  |  |  |  | Output <br> Control | Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | A | C0 | C1 | C2 | C3 | G | Y |
| X | X | X | X | X | X | H | Z |
| L | L | L | X | X | X | L | L |
| L | L | H | X | X | X | L | H |
| L | H | X | L | X | X | L | L |
| L | H | X | H | X | X | L | H |
| H | L | X | X | L | X | L | L |
| H | L | X | X | H | X | L | H |
| H | H | X | X | X | L | L | L |
| H | H | X | X | X | H | L | H |

Address Inputs $A$ and $B$ are common to both sections. $H=$ High Level, $L=$ Low Level, $X=$ Don't Care, $Z=$ High Impedance (off).

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellabillty electrical test specifications document.
$\begin{array}{lr}\text { Supply Voltage } & 7 \mathrm{~V} \\ \text { Input Voltage } & 7 \mathrm{~V} \\ \text { Operating Free Air Temperature Range } & \\ \text { DM54LS } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \text { DM74LS } & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \text { Storage Temperature Range } & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}\end{array}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54LS253 |  |  | DM74LS253 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.7 |  |  | 0.8 | V |
| ${ }_{\mathrm{OH}}$ | High Level Output Current |  |  | -1 |  |  | -2.6 | mA |
| IOL | Low Level Output Current |  |  | 12 |  |  | 24 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | $\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $V_{C C}=\operatorname{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.5 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | DM54 | 2.4 | 3.4 |  | V |
|  |  |  | DM74 | 2.4 | 3.1 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$ | DM54 |  |  | 0.4 |  |
|  |  |  | DM74 |  |  | 0.5 | V |
|  |  | $\mathrm{IOL}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$ | DM74 |  |  | 0.4 |  |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$ |  |  |  | 0.1 | mA |
| $\mathrm{IIH}_{\text {H }}$ | High Level Input Current | $V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{LL}}$ | Low Level Input Current | $V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  |  | -0.4 | mA |
| lozh | Off-State Output Current with High Level Output Voltage Applied | $\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.7 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| Iozl | Off-State Output Current with Low Level Output Voltage Applied | $\begin{aligned} & V_{C C}=M a x, V_{O}=0.4 \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$ |  |  |  | -20 | $\mu \mathrm{A}$ |
| los | Short Circuit Output Current | $V_{C C}=M a x$ <br> (Note 2) | DM54 | -20 |  | -100 | mA |
|  |  |  | DM74 | -20 |  | -100 |  |
| ICC | Supply Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3) |  |  | 7 | 12 | mA |
| $\mathrm{I}_{\mathrm{CC} 2}$ | Supply Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4) |  |  | 8.5 | 14 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{I}_{\mathrm{CC}}$ is measured with all outputs open, and all the inputs grounded.
Note 4: ICC2 is measured with the outputs open, OUTPUT CONTROL at 4.5 V and all other inputs grounded.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=667 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Data to $Y$ |  | 25 |  | 35 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | Data to $Y$ |  | 20 |  | 30 | ns |
| ${ }_{\text {tpLH }}$ | Propagation Delay Time Low to High Level Output | Select to $Y$ |  | 45 |  | 54 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | Select to $Y$ |  | 32 |  | 44 | ns |
| $t_{\text {PZH }}$ | Output Enable Time to High Level Output | Output Control to $Y$ |  | 18 |  | 32 | ns |
| ${ }_{\text {tpzL }}$ | Output Enable Time to Low Level Output | Output Control to $Y$ |  | 23 |  | 35 | ns |
| $t_{\text {PHZ }}$ | Output Disable Time from High Level Output (Note 1) | Output Control to $Y$ |  | 41 |  |  | ns |
| $t_{\text {PL }}$ | Output Disable Time from Low Level Output (Note 1) | Output Control to $Y$ |  | 27 |  |  | ns |

Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

## Logic Diagram



TL/F/6416-2

## DM54LS257B/DM74LS257B, DM54LS258B/DM74LS258B TRI-STATE ${ }^{\circledR}$ Quad 2-Data Selectors/Multiplexers

## General Description

These Schottky-clamped high-performance multiplexers feature TRI-STATE outputs that can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output enable circuitry is designed such that the output disable times are shorter than the output enable times.
This TRI-STATE output feature means that n -bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

## Connection Diagrams

TL/F/6417-1
Order Number DM54LS257BJ, DM74LS257BM or DM74LS257BN
See NS Package Number J16A, M16A or N16A


## Features

- TRI-STATE versions LS157 and LS158 with same pinouts
- Schottky-clamped for significant improvement in A-C performance
- Provides bus interface from multiple sources in highperformance systems
- Average propagation delay from data input 12 ns
- Typical power dissipation LS257B 50 mW LS258B 35 mW


TL/F/6417-2
Order Number DM54LS258BJ, DM74LS258BM or DM74LS258BN See NS Package Number J16A, M16A or N16A

## Function Table

| Inputs |  |  |  | Output Y |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output <br> Control | Select | A | B | LS257 | LS258 |  |
| H | X | X | X | Z | Z |  |
| L | L | L | X | L | H |  |
| L | L | H | X | H | L |  |
| L | H | X | L | L | H |  |
| L | H | X | H | H | L |  |

$H=$ High Level, $L=$ Low Level, $X=$ Don't Care,
Z = High Impedance (off)

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

```
Supply Voltage
 7V
Input Voltage
7V
Operating Free Air Temperature Range
\begin{tabular}{lr}
DM54LS & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74LS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54LS257B |  |  | DM74LS257B |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{\text {cc }}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.7 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -1 |  |  | -2.6 | mA |
| loL | Low Level Output Current |  |  | 12 |  |  | 24 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

## 'LS257B Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.5 | V |
| V OH | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | DM54 | 2.4 | 3.4 |  | V |
|  |  |  | DM74 | 2.4 | 3.1 |  |  |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$ | DM54 |  | 0.25 | 0.4 | V |
|  |  |  | DM74 |  | 0.35 | 0.5 |  |
|  |  | $\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$ | DM74 |  | 0.25 | 0.4 |  |
| 1 | Input Current @ Max Input Voltage | $\begin{aligned} & V_{C C}=M a x, \\ & V_{1}=7 V \end{aligned}$ | Select |  |  | 0.2 | mA |
|  |  |  | Other |  |  | 0.1 |  |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $\begin{aligned} & V_{C C}=M a x, \\ & V_{1}=2.7 V \end{aligned}$ | Select |  |  | 40 | $\mu \mathrm{A}$ |
|  |  |  | Other |  | . | 20 |  |
| I/L | Low Level Input Current | $\begin{aligned} & V_{C C}=M a x, \\ & V_{1}=0.4 V \end{aligned}$ | Select |  |  | -0.8 | mA |
|  |  |  | Other |  |  | -0.4 |  |
| lozh | Off-State Output Current with High Level Output Voltage Applied | $\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.7 V \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| lozl | Off-State Output Current with Low Level Output Voltage Applied | $\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | -20 | $\mu \mathrm{A}$ |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -20 |  | -100 | mA |
|  |  |  | DM74 | -20 |  | -100 |  |
| ${ }^{\mathrm{CCH}}$ | Supply Current with Outputs High | $\mathrm{V}_{\text {cC }}=$ Max (Note 3) |  |  | 5.9 | 10 | mA |
| lcCl | Supply Current with Outputs Low | $\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}($ Note 3) |  |  | 9.2 | 16 | mA |
| l ccz | Supply Current with Outputs Disabled | $\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}($ Note 3) |  |  | 12 | 19 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.
'LS257B Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) <br> To (Output) | $R_{L}=667 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Data to <br> Output |  | 18 |  | 27 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | Data to Output |  | 18 |  | 27 | ns |
| tple | Propagation Delay Time Low to High Level Output | Select to Output |  | 28 |  | 35 | ns |
| $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Time High to Low Level Output | Select to Output |  | 35 |  | 42 | ns |
| $t_{\text {PR }}$ | Output Enable Time to High Level Output | Output Control to $Y$ |  | 15 |  | 27 | ns |
| $t_{p Z L}$ | Output Enable Time to Low Level Output | Output Control to $Y$ |  | 28 |  | 38 | ns |
| $t_{\text {PHZ }}$ | Output Disable Time from High Level Output (Note 1) | Output Control to $Y$ |  | 26 |  |  | ns |
| $t_{\text {PLZ }}$ | Output Disable Time from Low Level Output (Note 1) | Output Control to $Y$ |  | 25 |  |  | ns |

Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
Recommended Operating Conditions

| Symbol | Parameter | DM54LS258B |  |  | DM74LS258B |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.7 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -1 |  |  | -2.6 | mA |
| lOL | Low Level Output Current |  |  | 12 |  |  | 24 | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

## 'LS258B Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.5 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$ | DM54 | 2.4 | 3.4 |  | V |
|  |  |  | DM74 | 2.4 | 3.1 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | DM54 |  | 0.25 | 0.4 | V |
|  |  |  | DM74 |  | 0.35 | 0.5 |  |
|  |  | $\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$ | DM74 |  | 0.25 | 0.4 |  |
| 1 | Input Current @ Max Input Voltage | $\begin{aligned} & V_{C C}=M a x, \\ & V_{I}=7 V \end{aligned}$ | Select |  |  | 0.2 | mA |
|  |  |  | Other |  |  | 0.1 |  |
| $\mathrm{I}_{\mathrm{IH}}$ | High Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$ | Select |  |  | 40 | $\mu \mathrm{A}$ |
|  |  |  | Other |  |  | 20 |  |


| 'LS258B Electrical Characteristics <br> over recommended operating free air temperature range (unless otherwise noted) (Continued) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| ILL | Low Level Input Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$ | Select |  |  | -0.8 | mA |
|  |  |  | Other |  |  | -0.4 |  |
| lozh | Off-State Output Current with High Level Output Voltage Applied | $\begin{aligned} & V_{C C}=\operatorname{Max}, V_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 20 | $\mu \mathrm{A}$ |
| lozl | Off-State Output Current with Low Level Output Voltage Applied | $\begin{aligned} & V_{C C}=M a x, V_{O}=0.4 V \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$ |  |  |  | -20 | $\mu \mathrm{A}$ |
| los | Short Circuit Output Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$ | DM54 | -20 |  | -100 | mA |
|  |  |  | DM74 | -20 |  | -100 |  |
| ICCH | Supply Current with Outputs High | $\mathrm{V}_{\text {CC }}=\mathrm{Max}$ ( Note 3 ) |  |  | 4.1 | 7 | mA |
| ${ }_{\text {ICCL }}$ | Supply Current with Outputs Low | $\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}($ Note 3) |  |  | 9 | 14 | mA |
| ICCz | Supply Current with Outputs Disabled | $\mathrm{V}_{\text {CC }}=\mathrm{Max}($ Note 3) |  |  | 12 | 19 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.

## 'LS258B Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=667 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| tplH | Propagation Delay Time Low to High Level Output | Data to Output |  | 18 |  | 27 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | Data to Output |  | 18 |  | 27 | ns |
| tplH | Propagation Delay Time Low to High Level Output | Select to Output |  | 28 |  | 35 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Select to Output |  | 35 |  | 42 | ns |
| ${ }_{\text {tpz }}$ | Output Enable Time to High Level Output | Output Control to $Y$ |  | 15 |  | 27 | ns |
| tpzL | Output Enable Time to Low Level Output | Output Control to $Y$ |  | 28 |  | 38 | ns |
| tpHz | Output Disable Time from High Level Output (Note 4) | Output Control to $Y$ |  | 26 |  |  | ns |
| tPLZ | Output Disable Time from Low Level Output (Note 4) | Output Control to $Y$ |  | 25 |  |  | ns |

Note 4: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

## Logic Diagrams

LS257B


TL/F/6417-3

LS258


National Semiconductor Corporation

## DM54LS259/DM74LS259 8-Bit Addressable Latches

## General Description

These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1-of-8 decoder or demultiplexer with active-high outputs.
Four distinct modes of operation are selectable by controlling the clear and enable inputs as enumerated in the function table. In the addressable-latch mode, data at the datain terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held high (inactive) while the address lines are changing. In the 1 -of- 8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

## Features

- 8-Bit parallel-out storage register performs serial-to-parallel conversion with storage
- Asynchronous parallel clear
- Active high decoder
- Enable/disable input simplifies expansion
- Direct replacement for Fairchild 9334
- Expandable for N -bit applications
- Four distinct functional modes
- Typical propagation delay times:

Enable-to-output 18 ns Data-to-output 16 ns Address-to-output 21 ns Clear-to-output 17 ns

- Fan-out

IOL (sink current) 54LS259 4 mA 74LS259 8 mA $\mathrm{I}_{\mathrm{OH}}$ (source current) -0.4 mA

- Typical Icc 22 mA


## Function Table

| Inputs |  | Output of <br> Addressed <br> Latch | Each <br> Other <br> Output | Function |
| :---: | :---: | :---: | :---: | :--- |
| Clear | $\bar{E}$ |  |  |  |
| H | L | D | $\mathrm{Q}_{i 0}$ | Addressable Latch |
| H | H | $\mathrm{Q}_{i 0}$ | $\mathrm{Q}_{i 0}$ | Memory |
| L | L | D | L | 8-Line Demultiplexer |
| L | H | L | L | Clear |

Latch Selection Table

| Select Inputs |  |  | Latch <br> Addressed |
| :---: | :---: | :---: | :---: |
| C | B | A |  |
| L | L | L | 1 |
| L | L | H | 2 |
| L | H | H | 3 |
| H | L | L | 4 |
| H | L | H | 5 |
| H | H | L | 6 |
| H | H | H | 7 |

[^20]```
Absolute Maximum Ratings (Note)
```

Specifications for Military/Aerospace products are not contalned in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS259			DM74LS259			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$V_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current				4			8	mA
tw	Pulse Width (Note 7)	Enable	15			15			ns
		Clear	15			15			
tsu	Setup Time (Notes 1, 2, 3 \& 7)	Data	$15 \uparrow$			$15 \uparrow$			ns
		Select	15 \downarrow			$15 \downarrow$			
t_{H}	Hold Time (Notes 1, $2 \& 7$)	Data	$0 \uparrow$			$0 \uparrow$			ns
		Select	$0 \uparrow$			$0 \uparrow$			
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}^{\prime}=4 \mathrm{~mA}$,	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
${ }_{1 H}$	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathbf{l}}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note } 5) \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 6)			22	36	mA

Note 1: The symbols (\downarrow, \uparrow) indicate the edge of the clock pulse used for reference: \uparrow for rising edge, \downarrow for falling edge.
Note 2: Setup and hold times are with reference to the enable input.
Note 3: The select-to-enable setup time is the time before the High-to-Low enable transition that the select must be stable so that the correct latch is selected and the others not affected.
Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: I_{CC} is measured with all inputs at 4.5 V , and all outputs open.
Note 7: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Symbol	Parameter	From (Input) To (Output)	$R_{L}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Output		35		38	ns
tphL	Propagation Delay Time High to Low Level Output	Enable to Output		24		32	ns
tpLH	Propagation Delay Time Low to High Level Output	Data to Output		32		35	ns
tpHL	Propagation Delay Time High to Low Level Output	Data to Output		21		30	ns
tpHL	Propagation Delay Time Low to High Level Output	Select to Output		38		41	ns
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output		29		38	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		27		36	ns

National
Semiconductor

DM54LS279/DM74LS279 Quad $\overline{\mathbf{S}}-\overline{\mathrm{R}}$ Latches

General Description

This device consists of four individual and independent SetReset Latches with active low inputs. Two of the four latches have an additonal $\overline{\mathrm{S}}$ input ANDed with the primary $\overline{\mathrm{S}}$ input. A low on any \bar{S} input while the $\overline{\mathrm{R}}$ input is high will be stored in the latch and appear on the corresponding Q out-
put as a high. A low on the $\overline{\mathrm{R}}$ input while the $\overline{\mathrm{S}}$ input is high will clear the Q output to a low. Simultaneous transistion of the \bar{R} and \bar{S} inputs from low to high will cause the Q output to be indeterminate. Both inputs are voltage level triggered and are not affected by transition time of the input data.

Connection Diagram

TL/F/6420-1
Order Number DM54LS279J, DM74LS279M or DM74LS279N
See NS Package Number J16A, M16A or N16A

Function Table

Inputs		Output
$\overline{\mathbf{S}}(1)$	$\overline{\mathbf{R}}$	\mathbf{Q}
L	L	H^{*}
L	H	H
H	L	L
H	H	Q_{0}

$H=$ High Level
L = Low Level
$Q_{0}=$ The Level of Q before the indicated input conditions were established.
*This output level is pseudo stable; that is, it may not persist when the \bar{S} and $\overline{\mathrm{A}}$ inputs return to their inactive (high) level.
Note 1: For latches with double \bar{S} inputs:
$H=$ both \bar{S} inputs high
$\mathrm{L}=$ one or both $\overline{\mathrm{S}}$ inputs low

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS279			DM74LS279			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
${ }^{1} \mathrm{OH}$	High Level Output Current			-0.4			-0.4	mA
$\mathrm{IOL}^{\text {L }}$	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=M i n, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.5		V
			DM74	2.7	3.5		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$,	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			3.8	7	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: Icc is measured with all $\overline{\mathrm{B}}$ inputs grounded, all $\overline{\mathrm{S}}$ inputs at 4.5 V and all outputs open.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$C_{L}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }_{\text {tplu }}$	Propagation Delay Time Low to High Level Output	$\bar{S} \text { to }$ Q		22		25	ns
tPHL	Propagation Delay Time High to Low Level Output	\bar{S} to Q		15		23	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\overline{\mathrm{B}}$ to Q		27		33	ns

National Semiconductor Corporation

DM54LS283/DM74LS283 4-Bit Binary Adders with Fast Carry

General Description

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit These adders feature full internal look ahead across all four bits. This provides the system designer with partial lookahead performance at the economy and reduced package count of a ripple-carry implementation.
The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Features

- Full-carry look-ahead across the four bits
- Systems achieve partial look-ahead performance with the economy of ripple carry
- Typical add times

Two 8-bit words 25 ns
Two 16 -bit words 45 ns

- Typical power dissipation per 4-bit adder 95 mW

Connection Diagram

Dual-In-LIne Package

TL/F/6421-1
Order Number DM54LS283J, DM74LS283M or DM74LS283N See NS Package Number J16A, M16A or N16A

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS283			DM74LS283			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, I_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	A, B			0.2	mA
			C0			0.1	
${ }_{1 / H}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	A, B			40	$\mu \mathrm{A}$
			C0			20	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.4 V \end{aligned}$	A, B			-0.8	mA
			C0			-0.4	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC1	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			19	34	mA
ICC2	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 4)			22	39	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{I}_{\mathrm{C}} 1$ is measured with all outputs open, all B inputs low and all other inputs at 4.5 V , or all inputs at 4.5 V .
Note 4: l_{CC} is measured with all outputs open and all inputs grounded.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { C0 to } \\ & \Sigma 1, \Sigma 2 \end{aligned}$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \Sigma 1, \Sigma 2 \end{gathered}$		24		30	ns
tplH	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \Sigma 3 \\ \hline \end{gathered}$		24		28	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \Sigma 3 \\ \hline \end{gathered}$		24		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \mathrm{\Sigma 4} \end{gathered}$		24		28	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \Sigma 4 \\ \hline \end{gathered}$		24		30	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	A_{i} or B_{i} to Σ_{i}		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A_{i} or B_{i} to Σ_{i}		24		30	ns
tplH	Propagation Delay Time Low to High Level Output	CO to C4		17		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \mathrm{C} 4 \\ \hline \end{gathered}$		17		25	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{A}_{i} \text { or } \mathrm{B}_{\mathrm{i}} \\ & \text { to } \mathrm{C} 4 \end{aligned}$		17		24	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{A}_{i} \text { or } \mathrm{B}_{\mathrm{i}} \\ & \text { to } \mathrm{C} 4 \end{aligned}$		17		26	ns

Function Table

(

[^21]National
Semiconductor
Corporation

DM54LS290/DM74LS290 4-Bit Decade Counter

General Description

The DM54LS290/DM74LS290 counter is electrically and functionally identical to the DM54LS90/DM74LS90. Only the arrangement of the terminals has been changed for the 'LS290.
Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five.
This counter has a gated zero reset and gated set-to-nine inputs for use in BCD nine's complement applications.
To use the maximum count length (decade) of this counter, the B input is connected to the Q_{A} output. The input count
pulses are applied to input A and the outputs are as described in the appropriate function table. A symmetrical di-vide-by-ten count can be obtained from the 'LS290 counter by connecting the Q_{D} output to the A input and applying the input count to the \mathbf{B} input which gives a divide-by-ten square wave at output Q_{A}.

Features

- GND and $V_{C C}$ on Corner Pins (Pins 7 and 14 respectively)
- Typical power dissipation 45 mW
- Count frequency 42 MHz

Connection Diagram

Dual-In-Line Package

> Order Number DM54LS290J, DM74LS290M or DM74LS290N

See NS Package Number J14A, M14A or N14A

```
Absolute Maximum Ratings (Note)
```

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS290			DM74LS290			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
$\mathrm{IOH}^{\text {I }}$	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
fCLK	Clock Freq. (Note 1)	A to Q_{A}	0		32	0		32	MHz
		B to Q_{B}	0		16	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Freq. (Note 2)	A to Q_{A}	0		20	0		20	MHz
		B to Q_{B}	0		10	0		10	
tw	Pulse Width (Note 6)	A	15			15			ns
		B	30			30			
		Reset	15			15			
$t_{\text {REL }}$	Reset Release Time (Note 6)		25			25			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{O}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$	Reset			0.1	mA
			A			0.2	
			B			0.4	
${ }_{1 / H}$	High Level Input Current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$	Reset			20	$\mu \mathrm{A}$
			A			40	
			B			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Reset			-0.4	mA
			A			-2.4	
			B			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & V_{c c}=\operatorname{Max} \\ & \text { (Note 4) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
Icc	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 5)			9	15	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {max }}$	Maximum Clock Frequency	A to Q_{A}	32		20		MHz
		B to Q_{B}	16		10		
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{array}{r} \text { A to } \\ Q_{A} \\ \hline \end{array}$		16		23	ns
tpHL	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { A to } \\ Q_{A} \end{gathered}$		18		30	ns
tpLH	Propagation Delay Time Low to High Level Output	A to Q_{D}		48		60	ns
tpHL	Propagation Delay Time High to Low Level Output	A to Q_{D}		50		68	ns
tplH	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{B} \text { to } \\ & \mathrm{Q}_{\mathrm{B}} \\ & \hline \end{aligned}$		16		23	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{B} \text { to } \\ & \mathrm{Q}_{\mathrm{B}} \\ & \hline \end{aligned}$		21		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & B \text { to } \\ & Q_{C} \end{aligned}$		32		48	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{B} \text { to } \\ & \mathrm{Q}_{\mathrm{C}} \end{aligned}$		35		53	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & B \text { to } \\ & Q_{D} \end{aligned}$		32		48	ns
$\mathrm{tPHL}^{\text {P }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & B \text { to } \\ & Q_{D} \end{aligned}$		35		53	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	SET-9 to Q_{A}, Q_{D}		30		38	ns
tpHL	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { SET-9 to } \\ Q_{B}, Q_{C} \end{gathered}$		40		53	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		53	ns

Note 1: $C_{L}=15 \mathrm{pF}, R_{L}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$.
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5: Icc is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C} 5 \mathrm{~V}$.

Function Tables
BCD Count Sequence
(See Note A)

Count	Output			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

Note A: Output Q_{A} is connected to input B for BCD count
$\mathrm{H}=$ High Logic Level
$\mathrm{L}=$ Low Logic Level
$X=$ Either Low or High Logic Level

Bl-Quinary (5-2)
(See Note B)

Count	Output			
	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{D}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

Note B: Output Q_{D} is connected to input A for biquinary count.

Logic Diagram

TL/F/6422-2
Reset/Count Truth Table

Reset Inputs				Outputs			
R0(1)	R0(2)	R9(1)	R9(2)	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
H	H	L	X	L	L	L	L
H	H	X	L	L	L	L	L
X	X	H	H	H	L	L	H
X	L	X	L		COUNT		
L	X	L	X		COUNT		
L	X	X	L		COUNT		
X	L	L	X		COUNT		

DM54LS293/DM74LS293 4-Bit Binary Counter

General Description

The DM54LS293/DM74LS293 counter is electrically and functionally identical to the DM54LS93/DM74LS93. Only the arrangement of the terminals has been changed for the 'LS293.
Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-eight.
All of these counters have a gated zero reset.

To use the maximum count length (four-bit binary) of these counters, the B input is connected to the Q_{A} output. The input count pulses are applied to input A and the outputs are as described in the appropriate function table.

Features

- GND and $V_{C C}$ on Corner Pins (Pins 7 and 14 respectively)
- Typical power dissipation 45 mW
- Count frequency 42 MHz

Connection Diagram

Order Number DM54LS293J, DM74LS293M or DM74LS293N See NS Package Number J14A, M14A or N14A

Absolute Maximum Ratings（Note）
Specificatlons for Military／Aerospace products are not contained in this datasheet．Refer to the associated reliability electrical test specifications document．
Supply Voltage
Input Voltage $7 V$
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DM74LS
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter		DM54LS293			DM74LS293			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
$\mathrm{lOH}^{\text {O }}$	High Level Output Current				－0．4			－0．4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency （Note 1）	A to Q_{A}	0		32	0		32	MHz
		B to Q_{B}	0		16	0		16	
${ }_{\text {f CLK }}$	Clock Frequency （Note 2）	A to Q_{A}	0		20	0		20	MHz
		B to Q_{B}	0		10	0		10	
tw	Pulse Width （Note 6）	A	15			15			ns
		B	30			30			
		Reset	15			15			
$t_{\text {REL }}$	Reset Release Time（Note 6）		25			25			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommendod operating free air temperature range（unless othemisen noted）

Symbol	Parameter	Conditions		Min	Typ （Note 3）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				－1．5	V
V OH	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VoL	Low Level Output Voltage	$\begin{aligned} V_{\mathrm{CC}} & =M i n, I_{\mathrm{OL}}=M a x \\ V_{\mathrm{IL}} & =M a x, V_{\mathrm{IH}}=M i n \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	Reset			0.1	mA
			A			0.2	
			B			0.2	
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	Reset			20	$\mu \mathrm{A}$
			A			40	
			B			40	
I／L	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Reset			－0．4	mA
			A			－2．4	
			B			－1．6	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 4) } \end{aligned}$	DM54	－20		－100	mA
			DM74	－20		－100	
Icc	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$（ Note 5）			9	15	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{tmax}^{\text {m }}$	Maximum Clock Frequency	A to Q_{A}	32		20		MHz
		B to Q_{B}	16		10		
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16		23	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18		30	ns
tpLH	Propagation Delay Time Low to High Level Output	A to Q_{D}		70		87	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70		93	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		53	ns
$t_{\text {PLL }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		51		71	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		51		71	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		53	ns

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5: Icc is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 6: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Function Tables

Count	Outputs			
	Q_{D}	a_{c}	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

Reset/Count Truth Table

Reset Inputs		Outputs			
RO(1)	RO(2)	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
H	H	L	L	L	L
L	X		COUNT		
X	L		COUNT		

$\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care.

Note C: Output Q_{A} is connected to input B.

Logic Diagram

TL/F/6423-2
Note: The J and K inputs shown without connection are for reference only and are functionally at a high level.

National
Semiconductor Corporation

DM54LS352/DM74LS352 Dual 4-Line to 1-Line Data Selectors/Multiplexers

General Description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

Features

■ Inverting version of DM54/74LS153
Permits multiplexing from \mathbf{N} lines to 1 line

- Performs parallel-to-serial conversion

E Strobe (enable) line provided for cascading (N lines to n lines)

- High fan-out, low-impedance, totem-pole outputs
- Typical average propagation delay times

From data 15 ns
From strobe 19 ns
From select 22 ns

- Typical power dissipation 31 mW

Function Table

Select Inputs	Data Inputs					Strobe	Output
B	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	X	H	H
L	L	L	X	X	X	L	H
L	L	H	X	X	X	L	L
L	H	X	L	X	X	L	H
L	H	X	H	X	X	L	L
H	L	X	X	L	X	L	H
H	L	X	X	H	X	L	L
H	H	X	X	X	L	L	H
H	H	X	X	X	H	L	L

Select inputs A and B are common to both sections.
$H=$ High Level, $L=$ Low Level, $X=$ Don't Care
Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not
contained in this datasheet. Refer to the assoclated
reliability electrical test specifications document.

Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54LS
DM74LS
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS352			DM74LS352			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-0.4			-0.4	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current			4			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=7 \mathrm{~V}$				0.1	mA
${ }_{1 / \mathrm{H}}$	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=0.4 V$				-0.4	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
Icc	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			6.2	10	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all other inputs at ground.

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$C_{L}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		20		24	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		26		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		29		33	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		38		47	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		24		29	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		32		41	ns

Logic Diagram

TL/F/6425-2

National Semiconductor Corporation

DM54LS365A/DM74LS365A Hex TRI-STATE ${ }^{\circledR}$ Buffers

General Description

This device contains six independent gates each of which performs a non-inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the
output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

TL/F/6427-1
Order Number DM54LS365AJ, DM74LS365AM or DM74LS365AN See NS Package Number J16A, M16A or N16A

Function Table

Input			
$\bar{G} \mathbf{1}$	$\bar{G} \mathbf{2}$	\mathbf{A}	Output
H	X	X	$\mathrm{Hi}-\mathrm{Z}$
X	H	X	$\mathrm{Hi}-\mathrm{Z}$
L	L	H	H
L	L	L	L

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

```
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
\begin{tabular}{cr} 
DM54LS & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74LS & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
\[
\begin{array}{r}
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
\end{array}
\]
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS365A			DM74LS365A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
IOH	High Level Output Current			-1			-2.6	mA
IOL_{2}	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max, } \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	A Input			-20	$\mu \mathrm{A}$
		$\begin{aligned} & V_{C C}=M a x, V_{l}=0.4 V \\ & \text { (Note 5) } \end{aligned}$	A Input			-0.4	mA
		$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	$\overline{\mathrm{G}}$ Input			-0.4	
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
IozL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
$\mathrm{l} C \mathrm{C}$	Supply Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$ (Note 3)			14	24	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.
Note 4: Both \bar{G} inputs are at 2 V .
Note 5: Both \bar{G} inputs at 0.4 V .

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$R_{L}=667 \Omega$				Units
		$C_{L}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
tPLH	Propagation Delay Time Low to High Level Output		16		25	ns
tPHL	Propagation Delay Time High to Low Level Output		16		25	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level Output		30		40	ns
$t_{\text {PzL }}$	Output Enable Time to Low Level Output		30		40	ns
${ }^{\text {tPHZ }}$	Output Disable Time from High Level Output (Note 6)		20			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 6)		20			ns

Note 6: $C_{L}=5 \mathrm{pF}$.

National
Semiconductor Corporation

DM54LS366A/DM74LS366A Hex TRI-STATE ${ }^{\circledR}$ Inverting Buffers

General Description

This device contains six independent gates each of which performs an inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output
transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

Dual-In-Line Package

Order Number DM54LS366AJ, DM74LS366AM or DM74LS366AN
See NS Package Number J16A, M16A or N16A

Function Table

$$
\mathbf{Y}=\overline{\mathbf{A}}
$$

Inputs			Output
$\overline{\text { G1 }}$	$\bar{G} \mathbf{2}$	A	Y
H	X	X	$\mathrm{Hi}-Z$
X	H	X	Hi-Z
L	L	L	H
L	L	H	L

$H=$ High Logic Level
L = Low Logic Level
X $=$ Either Low or High Logic Level
Hi-Z = TRI-STATE (Outputs are disabled)

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage
Input Voltage 7 V
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS366A			DM74LS366A			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.7			0.8	V
${ }^{1} \mathrm{OH}$	High Level Output Current			-1			-2.6	mA
l_{OL}	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{I L}=M a x, V_{I H}=M i n \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{I}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, V_{I}=0.5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	A Input			-20	$\mu \mathrm{A}$
		$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{I}=0.4 V \\ & \text { (Note 5) } \end{aligned}$	A Input			-0.4	mA
		$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$	$\overline{\mathrm{G}}$ Input			-0.4	
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{c c}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			12	21	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: lcc is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5 V .
Note 4: Both $\overline{\mathrm{G}}$ inputs are at 2 V .
Note 5: Both \bar{G} inputs at 0.4 V .

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
tpLH	Propagation Delay Time Low to High Level Output		15		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		16		25	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time to High Level Output		30		35	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output		30		40	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 6)		20			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 6)		20			ns

Note 6: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

DM54LS367A/DM74LS367A Hex TRI-STATE ${ }^{\circledR}$ Buffers

General Description

This device contains six independent gates each of which performs a non-inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the
output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

TL/F/6429-1
Order Number DM54LS367AJ, DM74LS367AM or DM74LS367AN
See NS Package Number J16A, M16A or N16A
Function Table

$\mathbf{Y}=\mathbf{A}$		
Inputs		Output
\mathbf{A}	$\overline{\mathbf{G}}$	\mathbf{Y}
L	L	L
H	L	H
X	H	$\mathrm{Hi}-\mathrm{Z}$

[^22]
Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.

Supply Voltage
 Input Voltage
 Operating Free Air Temperature Range
 DM54LS
 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
 DM74LS
 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
 Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS367A			DM74LS367A			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$V_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
${ }^{\mathrm{IOH}}$	High Level Output Current			-1			-2.6	mA
lOL	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x, V_{1}=0.5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	A Input			-20	$\mu \mathrm{A}$
		$\begin{aligned} & V_{C C}=M a x, V_{I}=0.4 V \\ & (\text { Note } 5) \end{aligned}$	A Input			-0.4	mA
		$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$	$\overline{\mathrm{G}}$ Input			-0.4	
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
lozL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 3)			14	24	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: lcc is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5 V .
Note 4: Both \bar{G} inputs are at 2 V .
Note 5: Both $\overline{\mathrm{G}}$ inputs at 0.4 V .

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$C_{L}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output		16		25	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		16		25	ns
tpzH	Output Enable Time to High Level Output		30		40	ns
${ }_{\text {tPZL }}$	Output Enable Time to Low Level Output		30		40	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 6)		20			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 6)		20			ns

National Semiconductor Corporation

DM54LS368A/DM74LS368A Hex TRI-STATE ${ }^{\circledR}$ Inverting Buffers

General Description

This device contains six independent gates each of which performs an inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output
transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

Dual-In-Line Package

TL/F/6430-1
Order Number DM54LS368AJ, DM74LS368AM or DM74LS368AN See NS Package Number J16A, M16A or N16A

Function Table

$\mathbf{Y}=\overline{\mathbf{A}}$		
Inputs		Output
\mathbf{A}	$\overline{\mathbf{G}}$	\mathbf{Y}
L	L	H
H	L	L
X	H	$\mathrm{Hi}-\mathrm{Z}$

$\mathrm{H}=$ High Logic Level
$\mathrm{L}=$ Low Logic Level
$X=$ Either Low or High Logic Level
$\mathrm{Hi}-\mathrm{Z}=$ TRI-STATE (Outputs are disabled)

```
Absolute Maximum Ratings (Note)
```

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS368A			DM74LS368A			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current			-1			-2.6	mA
loL	Low Level Output Current			12			24	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOH}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=0.5 \mathrm{~V} \\ & \text { (Note 4) } \end{aligned}$	A Input			-20	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1}=0.4 \mathrm{~V} \\ & \text { (Note 5) } \end{aligned}$	A Input			-0.4	mA
		$V_{C C}=\operatorname{Max}, V_{1}=0.4 \mathrm{~V}$	$\overline{\mathrm{G}}$ Input			-0.4	
l OZH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
Iozi	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
Icc	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 3)			12	21	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5 V .
Note 4: Both \bar{G} inputs are at 2 V .
Note 5: Both \bar{G} inputs at 0.4 V .

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		15		25	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output		18		25	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level Output		30		35	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output		30		40	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 6)		20			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 6)		20			ns

Note 6: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

DM54LS373/DM74LS373, DM54LS374/DM74LS374 TRI-STATE ${ }^{\circledR}$ Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

General Description

These 8-bit registers feature totem-pole TRI-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
(Continued)

Features

- Choice of 8 latches or 8 D-type flip-flops in a single package
- TRI-STATE bus-driving outputs
- Full parallel-access for loading
- Buffered control inputs
- Clock/Enable input has hysteresis to improve noise rejection
- P-N-P inputs reduce D-C loading on data lines

Connection Diagrams

Dual-In-LIne Packages

Order Number DM54LS373J, DM74LS373WM, DM74LS373N, DM54LS374J, DM74LS374WM or DM74LS374N See NS Package Number J20A, M20B or N20A

General Description (Continued)
The eight latches of the DM54/74LS373 are transparent Dtype latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.
The eight flip-flops of the DM54/74LS374 are edge-triggered D-type flip flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.

Function Tables
DM54/74LS373

Output Control	Enable G	D	Output
L	H	H	H
L	H	L	L
L	L	X	Q $_{0}$
H	X	X	Z

Schmitt-trigger buffered inputs at the enable/clock lines simplify system design as $A C$ and DC noise rejection is improved by typically 400 mV due to the input hysteresis. A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The output control does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are off.
$H=$ High Level (Steady State), $L=$ Low Level (Steady State), $X=$ Don't Care
$\uparrow=$ Transition from low-to-high level, $Z=$ High Impedance State
$Q_{0}=$ The level of the output before steady-state input conditions were established.

Logic Diagrams

DM54/74LS373
Transparent Latches

DM54/74LS374
Positive-Edge-Triggered Flip-Flops

Absolute Maximum Ratings (See Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
$7 V$
Input Voltage
$7 V$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS373			DM74LS373			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Votage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
l_{OH}	High Level Output Current				-1			-2.6	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current				12			24	mA
tw	Pulse Width (Note 2)	Enable High	15			15			ns
		Enable Low	15			15			
tsu	Data Setup Time (Notes 182)		5 \downarrow			5 \downarrow		.	ns
t_{H}	Data Hold Time (Notes 1 \& 2)		$20 \downarrow$			20 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference.
Note 2: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS373 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.4	3.4		
			DM74	2.4	3.1		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{l}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
			DM74			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
1 l	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-0.4	mA
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.7 \mathrm{~V} \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
Ios	Short Circuit Output Current	$\begin{aligned} & V_{c c}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$V_{C C}=M a x$			24	40	mA

\square	${ }^{\prime}$ 'LS373 Switching Characteristics at $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)							
	Symbol	Parameter	From (Input) To (Output)					Units
				$C_{L}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
				Min	Max	Min	Max	
	tple	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { Data } \\ \text { to } \\ \mathrm{Q} \end{gathered}$		18		26	ns
	$t_{\text {P }}^{\text {HL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { Data } \\ \text { to } \\ \mathrm{Q} \\ \hline \end{gathered}$		18		27	ns
	${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { Enable } \\ \text { to } \\ Q \end{gathered}$		30		38	ns
	tpHL	Propagation Delay Time High to Low Level Output	Enable to Q		30		36	ns
	tpzH	Output Enable Time to High Level Output	Output Control to Any Q		28		36	ns
	tpzL	Output Enable Time to Low Level Output	Output Control to Any Q		36		50	ns
	tpHz	Output Disable Time from High Level Output (Note 3)	Output Control to Any Q		20			ns
	tplz	Output Disable Time from Low Level Output (Note 3)	Output Control to Any Q		25			ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.
Recommended Operating Conditions

Symbol	Parameter		DM54LS374			DM74LS374			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				-1			-2.6	mA
IOL	Low Level Output Current				12			24	mA
flık	Clock Frequency (Note 2)		0		35	0		35	MHz
$\mathrm{fCLK}^{\text {frem }}$	Clock Frequency (Note 3)		0		20	0		20	MHz
${ }^{\text {tw }}$	Pulse Width (Note 4)	Clock High	15			15			ns
		Clock Low	15			15			
tsu	Data Setup Time (Notes 1 \& 4)		$20 \uparrow$			$20 \uparrow$			ns
t_{H}	Data Hold Time (Notes 1 \& 4)		$0 \uparrow$			$0 \uparrow$			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 2: $C_{L}=45 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $C_{L}=150 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=667 \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
'LS374 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & \mathrm{IOH}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{VH}_{\mathrm{H}}=\mathrm{Min} \end{aligned}$	DM54	2.4	3.4		
			DM74	2.4	3.1		v
VoL.	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n \\ & l_{L L}=M a x \\ & V_{I L}=M a x \\ & V_{\mathbb{H}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	v
			DM74		0.35	0.5	
		$\begin{aligned} & \text { loL }=12 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \\ & \hline \end{aligned}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=7 \mathrm{~V}$				0.1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$				-0.4	mA
1 OzH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=M a x, V_{O}=2.7 \mathrm{~V} \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$				20	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=M a x, V_{O}=0.4 V \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max			27	45	mA

'LS374 Switching Characteristics at $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=\mathbf{6 6 7 \Omega}$				Units
		$C_{L}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	35		20		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		28		32	ns
${ }_{\text {t }}$ HL	Propagation Delay Time High to Low Level Output		28		38	ns
$t_{\text {PZH }}$	Output Enable Time to High Level Output		28		44	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output		28		44	ns
${ }^{\text {t PHZ }}$	Output Disable Time from High Level Output (Note 3)		20			ns
${ }_{\text {PLL }}$	Output Disable Time from Low Level Output (Note 3)		25			ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

DM54LS390/DM74LS390 Dual 4-Bit Decade Counter

General Description

Each of these monolithic circuits contains eight masterslave flip-flops and additional gating to implement two individual four-bit counters in a single package. The 'LS390 incorporates dual divide-by-two and divide-by-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to di-vide-by-100. When connected as a bi-quinary counter, the separate divide-by-two circuit can be used to provide symmetry (a square wave) at the final output stage. The 'LS390 has parallel outputs from each counter stage so that any submultiple of the input count frequency is available for sys-tem-timing signals.

Features

- Dual version of the popular 'LS90
- 'LS390 ... individual clocks for A and B flip-flops provide dual $\div 2$ and $\div 5$ counters
- Direct clear for each 4-bit counter
- Dual 4-bit version can significantly improve system densities by reducing counter package count by 50%
- Typical maximum count frequency ... 35 MHz
- Buffered outputs reduce possibility of collector commutation

Connection Diagram

Order Number DM54LS390J, DM74LS390M or DM74LS390N
See NS Package Number J16A, M16A or N16A

Function Tables

BCD Count Sequence
 (Each Counter) (See Note A)

Count	Outputs			
	\mathbf{Q}_{D}	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

Bi-Quinary (5-2)
(Each Counter)
(See Note B)

Count	Outputs			
	\mathbf{Q}_{A}	\mathbf{Q}_{D}	\mathbf{Q}_{C}	$\mathbf{Q}_{\mathbf{B}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

Note A : Output Q_{A} is connected to input B for $B C D$ count. Note B: Output Q_{D} is connected to input A for Bi-quinary count. Note C: H = High Level, L = Low Level.

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	
Clear	7 V
A or B	5.5 V
Operating Free Air Temperature Range	
DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS390			DM74LS390			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{fc}_{\text {ch }}$	Clock Frequency (Note 1)	A to Q_{A}	0		25	0		25	MHz
		B to Q_{B}	0		20	0		20	
${ }_{\text {f CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		20	0		20	MHz
		B to Q_{B}	0		15	0		15	
tw	Pulse Width (Note 1)	A	20			20			ns
		B	25			25			
		Clear High	20			20			
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Notes 3 \& 4)		$25 \downarrow$			25 \downarrow			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, R_{L}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: The symbol (\downarrow) indicates the falling edge of the clear pulse is used for reference.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating tree air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\operatorname{Min}, I_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{lOL}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current © Max Input Voltage	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{1}= \\ & V_{C C}=\operatorname{Max} \\ & V_{1}=5.5 \mathrm{~V} \end{aligned}$	Clear			0.1	mA
			A			0.2	
			B			0.4	
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	Clear			20	$\mu \mathrm{A}$
			A			40	
			B			80	

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=0.4 \mathrm{~V}$	Clear			-0.4	mA
			A			-1.6	
			B			-2.4	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 3)			15	26	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open, both CLEAR inputs grounded following momentary connection to 4.5 and all other inputs grounded.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \boldsymbol{\Omega}$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	25		20		MHz
		B to Q_{B}	20		15		
${ }_{\text {PLLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		20		24	ns
tpHL	Propagation Delay Time High to Low Level Output	A to Q_{A}		20		30	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{C}		60		81	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{C}		60		81	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		21		27	ns
tPHL	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		33	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		39		51	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		39		54	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		21		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		21		33	ns
tpHL	Propagation Delay Time High to Low Level Output	Clear to Any Q		39		45	ns

National
Semiconductor Corporation

DM54LS393/DM74LS393 Dual 4-Bit Binary Counter

General Description

Each of these monolithic circuits contains eight masterslave flip-flops and additional gating to implement two individual four-bit counters in a single package. The 'LS393 comprises two independent four-bit binary counters each having a clear and a clock input. N-bit binary counters can be implemented with each package providing the capability of divide-by-256. The LS393 has parallel outputs from each counter stage so that any submultiple of the input count freqency is available for system-timing signals.

Features

- Dual version of the popular 'LS93
- 'LS393 dual 4-bit binary counter with individual clocks
- Direct clear for each 4-bit counter
- Dual 4-bit versions can significantly improve system densities by reducing counter package count by 50%
- Typical maximum count frequency 35 MHz
- Buffered outputs reduce possibility of collector commutation

Connection Diagram

Order Number DM54LS393J, DM74LS393M or DM74LS393N See NS Package Number J14A, M14A or N14A

Function Table
Count Sequence
(Each Counter)

Count	Outputs			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

$H=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage
Clear
7V
A
5.5 V

Operating Free Air Temperature Range
DM54LS
DM74LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54LS393			DM74LS393			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.7			0.8	V
$\mathrm{IOH}^{\text {O}}$	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				4			8	mA
$\mathrm{fCLK}^{\text {f }}$	Clock Frequency (Note 1)		0		25	0		25	MHz
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 2)		0		20	0		20	MHz
tw	Pulse Width (Note 7)	A	20			20			ns
		Clear High	20			20			
$t_{\text {REL }}$	Clear Release Time (Notes 3 \& 7)		25 \downarrow			25 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=7 \mathrm{~V}$	Clear			0.1	mA
		$V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$	A			0.2	
I_{I}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	Clear			20	$\mu \mathrm{A}$
			A			40	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$	Clear			-0.4	mA
			A			-1.6	
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & \text { (Note 5) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$V_{C C}=$ Max (Note 6)			15	26	mA

Note 1: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: The symbol (\downarrow) indicates that the falling edge of the clear pulse is used for reference.
Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: ICC is measured with all outputs open, both CLEAR inputs grounded following momentary connection to 4.5 V , and all other inputs grounded.
Note 7: $T_{A}=25^{\circ} \mathrm{C}$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Symbol	Parameter	From (Input) To (Output)					Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	25		20		MHz
tpLH	Propagation Delay Time Low to High Level Output	A to Q_{A}		20		24	ns
tPHL	Propagation Delay Time High to Low Level Output	A to Q_{A}		20		30	ns
tple	Propagation Delay Time Low to High Level Output	A to Q_{D}		60		87	ns
tPHL	Propagation Delay Time High to Low Level Output	A to Q_{D}		60		87	ns
tPHL	Propagation Delay Time High to Low Level Output	Clear to Any Q		39		45	ns

Logic Diagram

DM54LS465/DM74LS465, DM54LS466/DM74LS466, DM54LS467/DM74LS467, DM54LS468/DM74LS468 (DM71LS95A/DM81LS95A, DM71LS96A/DM81LS96A, DM71LS97A/DM81LS97A, DM71LS98A/DM81LS98A) TRI-STATE ${ }^{\circledR}$ Octal Buffers

General Description

These devices provide eight, two-input buffers in each package. All employ the newest low-power-Schottky TTL technology. One of the two inputs to each buffer is used as a control line to gate the output into the high-impedance state, while the other input passes the data through the buffer. The LS465 and LS467 present true data at the outputs, while the LS466 and LS468 are inverting. On the LS465 and LS466 versions, all eight TRI-STATE enable lines are common, with access through a 2 -input NOR gate. On the LS467 and LS468 versions, four buffers are enabled from one common line, and the other four buffers are enabled from another common line. In all cases the outputs are placed in the TRI-STATE condition by applying a high logic level to the enable pins. These devices represent octal, low power-Schottky versions of the very popular DM54/74365,

366, 367, and 368 (DM70/8095, 96, 97, and 98) TRI-STATE hex buffers.

Features

- Octal versions of popular DM54/74365, 366, 367, and 368 (DM70/8095, 96, 97 and 98)
- Typical power dissipation

DM54/74LS465, 46780 mW
DM54/74LS466, 46865 mW

- Typical propagation delay

DM54/74LS465, 46715 ns
DM54/74LS466, 46810 ns
■ Low power-Schottky, TRI-STATE technology

```
Absolute Maximum Ratings
(Note)
```

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V

Input Voltage
7V
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. the parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS465, 466, 467, 468			DM74LS465, 466, 467, 468			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
lOH^{2}	High Level Output Current			-2.6			-5.2	mA
lOL	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'LS465 and 'LS467 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions			Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$					-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		DM54	2.5			
				DM74	2.7			
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$		DM54			0.4	V
				DM74			0.5	
		$\mathrm{IOL}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		DM74			0.4	
1	Input Current @Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$					0.1	mA
$l_{1 / 1}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	$\mathrm{V}_{1}=0.5 \mathrm{~V}$	A (Note 3)			-20	$\mu \mathrm{A}$
			$\mathrm{V}_{1}=0.4 \mathrm{~V}$	A (Note 4)			-50	
				$\overline{\mathrm{G}}$			-50	
l OZH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$					20	$\mu \mathrm{A}$
IOZL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$					-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)		DM54	-20		-100	mA
				DM74	-20		-100	
Icc	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)				16	26	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: Both \bar{G} inputs are at 2 V .
Note 4: Both \bar{G} inputs are at 0.4 V .

'LS466 and 'LS468 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=667 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output		10		16	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		17		30	ns
tpZH	Output Enable Time to High Level Output		15		30	ns
$t_{\text {PzL }}$	Output Enable Time to Low Level Output		35		45	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 1)		20			ns
tplz	Output Disable Time from Low Level Output (Note 1)		27			ns

Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Function Tables

Inputs			Output Y
G1	$\overline{\mathbf{G} 2}$	A	
H	X	X	$\mathrm{Hi}-\mathrm{Z}$
X	H	X	$\mathrm{Hi}-\mathrm{Z}$
L	L	H	H
L	L	L	L

LS467

Inputs		Output
$\overline{\mathbf{G}}$	\mathbf{A}	
H	X	$\mathrm{Hi}-\mathrm{Z}$
L	H	H
L	L	L

Inputs		Output
$\overline{\mathbf{G}}$	\mathbf{A}	
\mathbf{H}	X	$\mathrm{Hi}-\mathrm{Z}$
L	H	L
L	L	H

[^23]
DM54LS645/DM74LS645 Octal Bus Transceivers

General Description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input (G) can be used to disable the device so that the buses are effectively isolated.

Features

■ Bi-directional bus transceivers in high-density 20-pin packages

- Hysteresis at bus inputs improves noise margins
- TRI-STATE ${ }^{\text {® }}$ outputs

Connection Diagram

TL/F/9056-1
Order Number DM54LS645J or DM74LS645N, DM74LS645WM See NS Package Number J20A, M20B or N20A

Function Table

Control Inputs		'LS645
$\overline{\mathbf{G}}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

$H=$ High Level
$L=$ Low Level
X = Irrelevant

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage
7V
Operating Free Air Temperature Range
DM54LS
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions' table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS645			DM74LS645			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage (Note 1)	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$V_{\text {IL }}$	Low Level Input Voltage			0.5			0.6	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-12			-15	mA
loL	Low Level Output Current			12			24	mA
T_{A}	Free Air Operating Temperature	-55		-125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions (Note 2)		DM54LS645			DM74LS645			Units
				Min	$\begin{array}{\|c\|} \text { Typ } \\ \text { (Note 3) } \end{array}$	Max	Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 3) } \\ \hline \end{array}$	Max	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=18 \mathrm{~mA}$				-1.5			-1.5	V
$\mathrm{H}_{Y S}$	Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{-}$) A or B Input	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		0.1	0.4		0.2	0.4		V
V OH	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=2 V, \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$	$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	2.4	3.4		2.4	3.4		V
			$\mathrm{IOH}_{\mathrm{OH}}=\mathrm{Max}$	2			2			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=2 V \\ & V_{I L}=M a x \end{aligned}$	$\mathrm{lOL}^{\prime}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$\mathrm{lOL}=24 \mathrm{~mA}$					0.35	0.5	
lozh	Off-State Output Current, High Level Voltage Applied	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{G} \text { at } 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \hline \end{aligned}$				20			20	$\mu \mathrm{A}$
lozL	Off-State Output Current, Low Level Voltage Applied	$\begin{aligned} & V_{C C}=\text { Max, } G \text { at } 2 V \\ & V_{O}=0.4 V \end{aligned}$				-400			-400	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$\mathrm{V}_{C C}=\operatorname{Max}$	$V_{1}=5.5 \mathrm{~V}$			0.1			0.1	mA
			$V_{1}=7 \mathrm{~V}$			0.1			0.1	
$\underline{\mathrm{lH}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
${ }_{\text {l/ }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}$				-0.4			-0.4	mA
los	Short Circuit Output Current (Note 4)	$\mathrm{V}_{C C}=\mathrm{Max}$		-40		-225	-40		-225	mA
ICC	Total Supply Current	Outputs High	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { Outputs Open } \end{aligned}$		48	70		48	70	
		Outputs Low			62	90		62	90	mA
		Outputs at $\mathrm{Hi}-\mathrm{Z}$			64	95		64	95	

Note 1: Voltage values are with respect to the network ground terminal.
Note 2: For conditions shown as Min or Max, use the appropriate value specified under Recommended Operating Conditions.
Note 3: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$R_{L}=667 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to B		15			ns
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to B		15			ns
${ }^{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	B to A		15			ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to A		15			ns
$t_{\text {PZL }}$	Output Enable Time to Low Level	$\begin{gathered} \overline{\mathrm{G}} \\ \text { to } \mathrm{A} \end{gathered}$		40			ns
${ }^{\text {tPZH }}$	Output Enable Time to High Level	$\begin{gathered} \overline{\mathrm{G}} \\ \text { to } \mathrm{A} \end{gathered}$		40			ns
$t_{\text {PZL }}$	Output Enable Time to Low Level	$\begin{gathered} \overline{\mathrm{G}} \\ \text { to } \mathrm{B} \end{gathered}$		40			ns
${ }^{\text {tPZH }}$	Output Enable Time to High Level	$\begin{gathered} \overline{\mathrm{G}} \\ \text { to } \mathrm{B} \end{gathered}$		40			ns
${ }^{\text {tpLZ }}$	Output Disable Time to Low Level	$\begin{gathered} \overline{\mathrm{G}} \\ \text { to } \mathrm{A} \end{gathered}$				25	ns
$t_{\text {PHZ }}$	Output Disable Time to High Level	$\begin{gathered} \overline{\mathrm{G}} \\ \text { to } \mathrm{A} \end{gathered}$				25	ns
$t_{\text {PLZ }}$	Output Disable Time to Low Level	$\begin{gathered} \overline{\mathrm{G}} \\ \text { to } \mathrm{B} \end{gathered}$				25	ns
${ }_{\text {tPHZ }}$	Output Disable Time to High Level	$\begin{gathered} \overline{\mathrm{G}} \\ \text { to } \mathrm{B} \end{gathered}$				25	ns

DM54LS670/DM74LS670 TRI-STATE ${ }^{\circledR}$ 4-by-4 Register Files

General Description

These register files are organized as 4 words of 4 bits each, and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits writing into one location, and reading from another word location, simultaneously.
Four data inputs are available to supply the word to be stored. Location of the word is determined by the write select inputs A and B , in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the write-enable input, G_{w}, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, G_{R}, is high, the data outputs are inhibited and go into the high impedance state. The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.
This arrangement-data entry addressing separate from data read addressing and individual sense line - eliminates
recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 ns typical) and the read time (24 ns typical). The register file has a nonvolatile readout in that data is not lost when addressed.
All inputs (except read enable and write enable) are buffered to lower the drive requirements to one normal Series 54LS/74LS load, and input clamping diodes minimize switching transients to simplify system design. High speed, double ended AND-OR-INVERT gates are employed for the read-address function and have high sink current, TRISTATE outputs. Up to 128 of these outputs may be wireAND connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length.

Features

- For use as:

Scratch pad memory
Buffer storage between processors
Bit storage in fast multiplication designs

- Separate read/write addressing permits simultaneous reading and writing
- Organized as 4 words of 4 bits
- Expandable to 512 words of n-bits
- TRI-STATE versions of DM54LS170/DM74LS170
- Fast access times 20 ns typ

Connection Diagram

Function Tables

WRITE TABLE (SEE NOTES A, B, AND C)

Write Inputs			Word				
$\mathrm{W}_{\mathbf{B}}$	$\mathrm{W}_{\mathbf{A}}$	$\mathbf{G}_{\mathbf{W}}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
L	L	L	$\mathrm{Q}=\mathrm{D}$	Q_{0}	Q_{0}	Q_{0}	
L	H	L	Q_{0}	$\mathrm{Q}=\mathrm{D}$	Q_{0}	Q_{0}	
H	L	L	Q_{0}	Q_{0}	$\mathrm{Q}=\mathrm{D}$	Q_{0}	
H	H	L	Q_{0}	Q_{0}	Q_{0}	$\mathrm{Q}=\mathrm{D}$	
X	X	H	Q_{0}	Q_{0}	Q_{0}	Q_{0}	

READ TABLE (SEE NOTES A AND D)

Read Inputs			Outputs			
$\mathbf{R}_{\mathbf{B}}$	$\mathbf{R}_{\mathbf{A}}$	$\mathbf{G}_{\mathbf{R}}$	Q1	Q2	Q3	Q4
L	L	L	WOB1	WOB2	WOB3	WOB4
L	H	L	W1B1	W1B2	W1B3	W1B4
H	L	L	W2B1	W2B2	W2B3	W2B4
H	H	L	W3B1	W3B2	W3B3	W3B4
X	X	H	Z	Z	Z	Z

Note $\mathbf{A}: \mathbf{H}=$ High Level, $\mathbf{L}=$ Low Level, $\mathbf{X}=$ Don't Care, $\mathbf{Z}=$ High Impedance (Off).
Note B: $(Q=D)=$ The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.
Note C : $Q_{0}=$ The level of Q before the indicated input conditions were established.
Note D: WOB1 = The first bit of word 0 , etc.

Absolute Maximum Ratings（Note）

Specifications for Military／Aerospace products are not contained in thls datasheet．Refer to the associated rellability electrical test specifications document．
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter		DM54S670			DM74S670			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.7			0.8	V
IOH	High Level Output Current				－1			－2．6	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current				12			24	mA
tw	Write Enable Pulse Width （Note 3）		25			25			ns
tsu	Setup Time （Notes 1 \＆3）	Data	10			10			ns
		$\mathrm{W}_{\text {A }}, \mathrm{W}_{\mathrm{B}}$	15			15			
${ }_{\text {t }}^{\mathrm{H}}$	Hold Time （Notes 1 \＆3）	Data	15			15			ns
		$W_{\text {A }}, W_{B}$	5			5			
t LATCH	Latch Time for New Data （Notes 2 \＆3）		25			25			ns
T_{A}	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1：Times are with respect to the Write－Enable input．Write－Select time will protect the data written into the previous address．If protection of data in the previous address，tseTUP（ W_{A}, W_{B} ）can be ignored．As any address selection sustained for the final 30 ns of the Write－Enable pulse and during $t_{H}\left(W_{A}, W_{B}\right)$ will result in data being written into that location．Depending on the duration of the input conditions，one or a number of previous addresses may have been written into． Note 2：Latch time is the time allowed for the internal output of the latch to assume the state of new data．This is important only when attempting to read from a location immediately after that location has received new data．
Note 3：$T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．
Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				－1．5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=M a x \\ & I_{O L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.34	0.5	
1	Input Current＠Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=7 V \end{aligned}$	D，R or W			0.1	mA
			G_{W}			0.2	
			G_{R}			0.3	
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	D，R or W			20	$\mu \mathrm{A}$
			G_{W}			40	
			G_{R}			60	

Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=0.4 V \end{aligned}$	D, R, or W			-0.4	mA
			G_{w}			-0.8	
			G_{R}			-1.2	
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				20	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-20	$\mu \mathrm{A}$
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	DM54	-20		-100	mA
			DM74	-20		-100	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 3)			30	50	mA

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=\mathbf{6 6 7 \Omega}$				Units
			$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Read Select to Q		40		50	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Read Select to Q		45		55	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Write Enable } \\ & \text { to } Q \end{aligned}$		45		55	ns
tpHL	Propagation Delay Time High to Low Level Output	Write Enable to Q		50		60	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data $\text { to } Q$		45		55	ns
tPHL	Propagation Delay Time High to Low Level Output	Data to Q		40		50	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level Output	Read Enable to Any Q		35		45	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output	Read Enable to Any Q		40		50	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 4)	Read Enable to Any Q		50			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output (Note 4)	Read Enable to Any Q		35			ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with 4.5 V applied to all DATA inputs and both ENABLE inputs, all ADDRESS inputs are grounded and all outputs are open.
Note 4: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Logic Diagram

National Semiconductor Corporation

DM54LS952/DM74LS952 Dual Rank 8-Bit TRI-STATE ${ }^{\oplus}$ Shift Registers

General Description

These circuits are TRI-STATE, edge-triggered, 8-bit I/O registers in parallel with 8 -bit serial shift registers which are capable of operating in any of the following modes: parallel load from I/O pins to register "A", parallel transfer down from register " A " to serial shift register " B ", parallel transfer up from shift register " B " to register " A ", serial shift of register " B ", synchronously clear. Since the registers are edgetriggered by the positive transition of the clock, the control lines which determine the mode or operation are completely independent of the logic level applied to the clock. Designed for bus-oriented systems, these circuits have their TRI-STATE inputs and outputs on the same pins.

Features

- Registers are edge-triggered by the positive transition of the clock
- All inputs are PNP transistors
- Input disable dominates over output disable

■ Output high impedance state does not impede any other mode of operation

- 8-bit I/O pins are TRI-STATE buffers
- Typical shift frequency is 36 MHz

■ Typical power dissipation is 305 mW

- All control inputs are active when in an "L" logic state
- Devices can be cascaded into N -bit word

Connection Diagram

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in thls datasheet. Refer to the assoclated rellabillty electrical test specifications document.
Supply Voltage 7V
Input Voltage
Operating Free Air Temperature Range

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS952			DM74LS952			Units
		Min	Typ	Max	Min	Typ	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High-Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage			0.7			0.8	V
IOH	High-Level Output Current			-2.6			-5.2	mA
$\mathrm{lOL}^{\text {l }}$	Low-Level Output Current			8			16	mA
$\mathrm{f}_{\text {CLOCK }}$	Clock Frequency (Note 5)	0		25	0		25	MHz
Clock Pulse	High Pulse Width (Note 5)	25	17		25	17		ns
	Low Pulse Width (Note 5)	15	7		15	7		ns
tset-up	Data Set-Up Time (Note 5)	10			10			ns
thold	Data Hold Time (Note 5)	0			0			ns
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions (1)		DM54LS952			DM74LS952			Units
				Min	Typ (2)	Max	Min	Typ (2)	Max	
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \operatorname{Max} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-2.6 \mathrm{~mA}$	2.4						V
			$\mathrm{I}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$				2.4			
V_{OL}	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \operatorname{Max} \end{aligned}$	$\mathrm{l} \mathrm{OL}=8 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$\mathrm{lOL}=16 \mathrm{~mA}$					0.35	0.5	
1	Input Current at Maximum Input Voltage	$V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{IIH}^{\text {H }}$	High-Level Input Current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
I_{LL}	Low-Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=0.4 \mathrm{~V}$				-50			-50	$\mu \mathrm{A}$
los	Short-Circuit Output Current	$V_{C C}=\operatorname{Max}(3)$		-20		-100	-20		-100	mA
ICC	Supply Current	$V_{C C}=\operatorname{Max}(4)$			61	99		61	99	mA
IoFF	TRI-STATE I/O Current	$V_{C C}=M a x, V_{I H}=2 V$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	$\mu \mathrm{A}$

Note 1: For conditions shown as min or max, use the appropriate value specified under recommended operating conditions.
Note 2: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
Note 4: lcc is measured with serial output open, the clock and shift disable input at 2.4 V . Alt other control inputs and I/O pins grounded.
Note 5: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	25		MHz
${ }_{\text {tplH }}$	Propagation Delay Time, Low-to-High-Level from Clock to Any Outputs		7	33	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level from Clock to Any Output		10	48	ns
tenable	Enable Time from Any Control Inputs		5	24	ns
t DISABLE	Disable Time from Any Control Inputs		6	27	ns
tzH	Output Enable Time to High Level		5	23	ns
t_{LL}	Output Enable to Low Level		4	18	ns
t_{HZ}	Output Disable Time from High Level	$C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	5	23	ns
tLZ	Output Disable Time from Low Level		6	27	ns

Logic Diagram

Function Table

X \equiv Don＇t Care
Hi－Z／Output／Input／\equiv High impedance state／output state／input state
$\mathrm{a} 1 \ldots \mathrm{a} / \mathrm{b} 1 \ldots \mathrm{~b} 8 \equiv$ The content of the upper register＂A＂／the lower serial shift register＂B＂before the most recent \uparrow transition of the clock
$I_{1} \ldots I_{8} \equiv$ The level of steady state inputs of the I／O pins
$D O R \equiv$＂Data ORing function＂ORing data from both $1 / O$ pins and register＂B＂，i．e．，$l_{1}+b 1, l_{2}+b 2, l_{3}+b 3 \ldots l_{8}+b 8$
$d \equiv$ Data of the serial input

Timing Diagram

$\begin{array}{llll}00 & 00 & 00 & 00\end{array}$
TL/F/6437-3

AC Test Circuit and Switching Time Waveforms

All diodes are 1 N916 or 1 N3064.
C_{L} includes probe and jig capacitance.

TL/F/6437-4

All input pulses are supplied by generators having $\mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}$, PRR $\leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$.

Cascading Packages

Cascading Packages for N -Bit Word

DM54LS962/DM74LS962 Dual Rank 8-Bit TRI-STATE ${ }^{\circledR}$ Shift Registers

General Description

These circuits are TRI-STATE, edge-triggered, 8 -bit I/O registers in parallel with 8 -bit serial shift registers which are capable of operating in any of the following modes: parallel load from I/O pins to register " A ", parallel transfer down from register " A " to serial shift register " B ", parallel transfer up from shift register " B " to register " A ", serial shift of register " B ", or exchange data between register " A " and shift register " B ". Since the registers are edge-triggered by the positive transition of the clock, the control lines which determine the mode or operation are completely independent of the logic level applied to the clock. Designed for bus-oriented systems, these circuits have their TRI-STATE inputs and outputs on the same pins.

Features

- Registers are edge-triggered by the positive transition of the clock
- All inputs are PNP transistors
- Input disable dominates over output disable
- Output high impedance state does not impede any other mode of operation
- 8-bit I/O pins are TRI-STATE buffers
- Typical shift frequency is 36 MHz
- Typical power dissipation is 305 mW
- All control inputs are active when in an " L " logic state

■ Devices can be cascaded into N -bit word

Connection Diagram

Dual-In-LIne Package

Top Vlew
Order Number DM54LS962J or DM74LS962N
See NS Package Number J18A or N18A

Pin Description
DIS ${ }_{\mathrm{O}}$-Output disable
IS-Serial input
DIS_-Input disable
DIS TU-Transfer up disable $^{\text {In }}$
DISTD-Transfer down disable
DIS ${ }_{S}$-Shift disable
O_{S}-Serial output
CLK-Clock
GND-Ground
I/O 1 . . I/O 8-8-bit I/O pins
V_{CC}-Supply Voltage

```
Absolute Maximum Ratings (Note)
```

Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	7 V

DM54LS	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74LS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS962			DM74LS962			Units
		Min	Typ	Max	Min	Typ	Max	
$V_{\text {CC }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High-Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage			0.8			0.8	V
$\mathrm{lOH}^{\text {l }}$	High-Level Output Current			-2.6			-5.2	mA
lOL	Low-Level Output Current			8			16	mA
$\mathrm{f}_{\text {clock }}$	Clock Frequency (Note 5)	0		25	0		25	MHz
Clock Pulse	High Pulse Width (Note 5)	25	17		25	17		ns
	Low Pulse Width (Note 5)	15	7		15	7		ns
$\mathrm{t}_{\text {SET-UP }}$	Data Set-Up Time (Note 5)	10			10			ns
thold	Data Hold Time (Note 5)	0			0			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions (1)		DM54LS962			DM74LS962			Units
				Min	Typ (2)	Max	Min	Typ (2)	Max	
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5			-1.5	V
V_{OH}	High-Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=2 V, \\ & V_{I L}=V_{I L} \operatorname{Max} \end{aligned}$	$\mathrm{IOH}^{\prime}=-2.6 \mathrm{~mA}$	2.4						\checkmark
			$\mathrm{l}_{\mathrm{OH}}=-5.2 \mathrm{~mA}$				2.4			
VOL	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{H}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}} \operatorname{Max} \end{aligned}$	$\mathrm{l} \mathrm{OL}^{2}=8 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V
			$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$					0.35	0.5	
1	Input Current at Maximum Input Voltage	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				0.1			0.1	mA
$\mathrm{IIH}^{\text {H }}$	High-Level Input Current	$V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$				20			20	$\mu \mathrm{A}$
ILL	Low-Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-50			-50	$\mu \mathrm{A}$
los	Short-Circuit Output Current	$V_{C C}=\operatorname{Max}$ (3)		-20		-100	-20		-100	mA
ICC	Supply Current	$V_{C C}=\operatorname{Max}(4)$			61	99		61	99	mA
IOFF	TRI-STATE I/O Current	$V_{C C}=M a x, V_{I H}=2 V$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			20			20	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	$\mu \mathrm{A}$

Note 1: For conditions shown as min or max, use the appropriate value specified under recommended operating conditions.
Note 2: All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
Note 4: ICC is measured with serial output open, the clock and shift disable input at 2.4 V . All other control inputs and I/O pins grounded.
Note 5: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$f_{\text {MAX }}$	Maximum Clock Frequency	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	25		MHz
${ }_{\text {tPLH }}$	Propagation Delay Time, Low-to-High-Level from Clock to Any Outputs		7	33	ns
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time, High-to-Low Level from Clock to Any Outputs		10	48	ns
tenable	Enable Time from Any Control Inputs		5	24	ns
t ${ }_{\text {IISABLE }}$	Disable Time from Any Control Inputs		6	27	ns
t_{ZH}	Output Enable Time to High Level		5	23	ns
tzL	Output Enable to Low Level		4	18	ns
t_{Hz}	Output Disable Time from High Level	$C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	5	23	ns
$t_{L Z}$	Output Disable Time from Low Level		6	27	ns

Logic Diagram

Function Table

$X \equiv$ Don't Care
Hi-Z/Output/Input/ \equiv High impedance state/output state/input state
$\mathrm{a} 1 \ldots \mathrm{a} / \mathrm{b} 1 \ldots \mathrm{~b} 8 \equiv$ The content of the upper register " A "/the lower serial shift register " B " before the most recent \uparrow transition of the clock
$l_{1} \ldots l_{8} \equiv$ The level of steady state inputs of the I/O pins
$D O R \equiv$ "Data ORing function" ORing data from both I / O pins and register " B ", i.e., $l_{1}+b 1, l_{2}+b 2, l_{3}+b 3 \ldots l_{8}+b 8$
$d \equiv$ Data of the serial input

Timing Diagram

AC Test Circuit and Switching Time Waveforms

TL/F/6438-5
All input pulses are supplied by generators having $\mathrm{t}_{\mathrm{r}} \leq 15 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 6 \mathrm{~ns}, \mathrm{PRR} \leq \mathrm{iMHz}, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$.

Cascading Packages

Cascading Packages for N -Bit Word

Section 3
Schottky

Section 3 Contents

DM54/74S00 Quad 2-Input NAND Gates 3-3
DM54/74S02 Quad 2-Input NOR Gates 3-5
DM54/74S03 Quad 2-Input NAND Gates with Open-Collector Outputs 3-7
DM54/74S04 Hex Inverters 3-9
DM54/74S05 Hex Inverters with Open-Collector Outputs 3-11
DM54/74S08 Quad 2-Input AND Gates 3-13
DM54/74S09 Quad 2-Input AND Gates with Open-Collector Outputs 3-15
DM54/74S10 Triple 3-Input NAND Gates 3-17
DM54/74S11 Triple 3-Input AND Gates 3-19
DM54/74S20 Dual 4-Input NAND Gates 3-21
DM54/74S30 8-Input NAND Gate 3-23
DM54/74S32 Quad 2-Input OR Gates 3-25
DM54/74S40 Dual 4-Input NAND Buffers 3-27
DM54/74S51 Dual 2-Wide 2-Input AND-OR-INVERT Gates 3-29
DM54/74S64 4-Wide AND-OR-INVERT Gates 3-31
DM54/74S74 Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 3-33
DM54/74S86 Quad Exclusive-OR Gates 3-36
DM54/74S112 Dual Negative-Edge-Triggered J-K Flip-Flops with Preset and Clear 3-38
DM54/74S113 Dual Negative-Edge-Triggered J-K Flip-Flops with Preset 3-41
DM54/74S133 13-Input NAND Gate 3-44
DM54/74S138 3 to 8 Line Decoder/Demultiplexer 3-46
DM54/74S139 Dual 2 to 4 Line Decoders/Demultiplexers 3-46
DM54/74S140 Dual 4-Input NAND 50Ω Line Driver 3-50
DM54/74S151 1 of 8 Line Data Selector/Multiplexer 3-52
DM54/74S153 Dual 1 of 4 Line Data Selectors/Multiplexers 3-56
DM54/74S157 Quad 2 to 1 Line Data Selectors/Multiplexers 3-59
DM54/74S158 Quad 2 to 1 Line Inverting Data Selectors/Multiplexers 3-59
DM54/74S161 Synchronous 4-Bit Binary Counter with Asynchronous Clear 3-64
DM54/74S163 Synchronous 4-Bit Binary Counter with Synchronous Clear 3-64
DM54/74S174 Hex D Flip-Flops with Clear 3-70
DM54/74S175 Quad D Flip-Flops with Clear and Complementary Outputs 3-70
DM54/74S181 Arithmetic Logic Unit/Function Generator 3-74
DM54/74S182 Look-Ahead Carry Generator 3-83
DM54/74S194 4-Bit Bidirectional Universal Shift Register 3-87
DM54/74S195 4-Bit Parallel Access Shift Register 3-91
DM54/74S240 Octal TRI-STATE Inverting Buffers/Line Drivers/Line Receivers 3-95
DM54/74S241 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 3-95
DM54/74S244 Octal TRI-STATE Buffers/Line Drivers/Line Receivers 3-95
DM54/74S251 TRI-STATE 1 of 8 Line Data Selector/Multiplexer with Complementary Outputs 3-98
DM54/74S253 Dual TRI-STATE 1 of 4 Data Selectors/Multiplexers 3-102
DM54/74S257 Quad TRI-STATE 2 to 1 Line Data Selectors/Multiplexers 3-105
DM54/74S258 Quad TRI-STATE 2 to 1 Line Inverting Data Selectors/Multiplexers 3-105
DM54/74S280 9-Bit Parity Generators/Checkers 3-110
DM54/74S283 4-Bit Binary Adders with Fast Carry 3-114
DM54/74S299 TRI-STATE 8-Bit Universal Shift/Storage Registers 3-118
DM54/74S373 Octal TRI-STATE Transparent D Latches 3-123
DM54/74S374 Octal TRI-STATE Positive-Edge-Triggered D Flip-Flops 3-123
DM54/74S381 Arithmetic Logic Unit/Function Generator 3-128
DM54/74S940 Octal TRI-STATE Inverting Buffer 3-132
DM54/74S941 Octal TRI-STATE Buffer 3-132

DM54S00/DM74S00 Quad 2-Input NAND Gates

General Description
This device contains four independent gates each of which performs the logic NAND function.

Connection Diagram

Dual-In-Line Package

TL/F/6489-1
Order Number DM54S00J, DM74S00M or DM74S00N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A B}}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

H = High Logic Level
L = Low Logic Level
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contalned In this datasheet. Refer to the assoclated
rellabillty electrical test speclfications document.
Supply Voltage
Input Voltage

Operating Free Air Temperature Range	7 V
DM54S	5.5 V
DM74S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S00			DM74S00			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-1			-1	mA
lOL	Low Level Output Current			20			20	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, _{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$				-2	mA
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$V_{C C}=M a x$			10	16	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			20	36	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	2	4.5	2	7	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	2	5	2	8	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time and the duration should not exceed one second.

DM54S02/DM74S02 Quad 2-Input NOR Gates

General Description

This device contains four independent gates each of which performs the logic NOR function.

Connection Diagram

Function Table

$\mathbf{Y}=\overline{\mathrm{A}+\mathrm{B}}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	H
L	H	L
H	L	L
H	H	L

[^24]```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the assoclated
rellability electrical test specifications document.
Supply Voltage
Operating Free Air Temperature Range
\begin{tabular}{lr}
DM54S & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74S & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular}
```


## Recommended Operating Conditions

| Symbol | Parameter | DM54S02 |  |  | DM74S02 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{IOH}^{\text {l }}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| $\mathrm{lOL}^{\text {l }}$ | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $V_{C C}=M i n, I_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{l}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}_{\text {H }}$ | High Level Input Current | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| I/L | Low Level Input Current | $V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| Icch | Supply Current with Outputs High | $V_{C C}=M a x$ |  |  | 17 | 29 | mA |
| ICCL | Supply Current with Outputs Low | $\mathrm{V}_{C C}=\mathrm{Max}$ |  |  | 26 | 45 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| tPLH | Propagation Delay Time Low to High Level Output | 1.5 | 5.5 | 2 | 7.5 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 1.5 | 5.5 | 2 | 7.5 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

## DM54S03/DM74S03 Quad 2-Input NAND Gates with Open-Collector Outputs

## General Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

## Pull-Up Resistor Equations

$R_{M A X}=\frac{V_{C C}(M i n)-V_{O H}}{N_{1}\left(I_{O H}\right)+N_{2}\left(I_{I H}\right)}$
$R_{\text {MIN }}=\frac{V_{C C}(M a x)-V_{O L}}{I_{O L}-N_{3}\left(I_{I L}\right)}$
Where: $\mathrm{N}_{1}(\mathrm{IOH})=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$\mathrm{N}_{3}\left(l_{I L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

## Connection Diagram



TL/F/6491-1
Order Number DM54S03J or DM74S03N
See NS Package Number J14A or N14A

## Function Table

| $\mathbf{Y}=\overline{\mathbf{A B}}$ |  |  |
| :---: | :---: | :---: |
| Inputs |  | Output |
| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{Y}$ |
| L | L | $H$ |
| L | $H$ | $H$ |
| $H$ | L | $H$ |
| $H$ | $H$ | L |

$H=$ High Logic Level
$L=$ Low Logic Level

```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contalned in this datasheet. Refer to the assoclated
reliability electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Output Voltage & 7 V \\
Operating Free Air Temperature Range & \\
DM54S & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74S & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S03 |  |  | DM74S03 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\text {CC }}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage |  |  | 5.5 |  |  | 5.5 | V |
| lOL | Low Level Output Current |  |  | 20. |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| ICEX | High Level Output Current | $\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{I L}=\operatorname{Max} \end{aligned}$ |  |  | 250 | $\mu \mathrm{A}$ |
| VOL | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$ |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$ |  |  | 50 | $\mu \mathrm{A}$ |
| $1 / 2$ | Low Level Input Current | $V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$ |  |  | -2 | mA |
| ${ }^{\text {ICCH }}$ | Supply Current with Outputs High | $\mathrm{V}_{\text {CC }}=$ Max |  | 6.0 | 13.2 | mA |
| ICCL | Supply Current with Outputs Low | $V_{C C}=$ Max |  | 20 | 36 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $C_{L}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| tple | Propagation Delay Time Low to High Level Output | 2 | 7.5 | 3 | 11 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | 2 | 7 | 3 | 11 | ns |

[^25]
## Connection Diagram



Function Table

| $\mathbf{Y}=\overline{\mathbf{A}}$ |  |
| :---: | :---: |
| Input | Output |
| $\mathbf{A}$ | $\mathbf{Y}$ |
| L | H |
| H | L |

$$
\begin{aligned}
& H=\text { High Logic Level } \\
& L=\text { Low Logic Level }
\end{aligned}
$$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S04 |  |  | DM74S04 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min |  | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=M i n, I_{O H}=M a x \\ & V_{I L}=M a x \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| 112 | Low Level Input Current | $\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICCH | Supply Current with Outputs High | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 15 | 24 | mA |
| ICCL | Supply Current with Outputs Low | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 30 | 54 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $R_{L}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| ${ }_{\text {tPL.H }}$ | Propagation Delay Time Low to High Level Output | 2 | 4.5 | 2 | 7 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 5 | 2 | 8 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National
Semiconductor
Corporation

## DM54S05/DM74S05 Hex Inverters with Open-Collector Outputs

## General Description

This device contains six independent gates each of which performs the logic INVERT function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations
$R_{\text {MAX }}=\frac{V_{C C}(\operatorname{Min})-V_{O H}}{N_{1}\left(I_{O H}\right)+N_{2}\left(I_{H}\right)}$
$R_{\text {MIN }}=\frac{V_{C C}(\text { Max })-V_{O L}}{I_{O L}-N_{3}\left(I_{L L}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{I}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

## Connection Diagram

## Dual-In-Line Package



Function Table

$H=$ High Logic Level
L = Low Logic Level

| Absolute Maximum Ratings (Note) |  |
| :--- | ---: |
| Specifications for Military/Aerospace products are not |  |
| contined In this datasheet. Refer to the assoclated |  |
| rellabillty electrical test specifications document. |  |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Output Voltage | 7 V |
| Operating Free Air Temperature Range |  |
| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S05 |  |  | DM74S05 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage |  |  | 5.5 |  |  | 5.5 | V |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| $I_{\text {CEX }}$ | High Level Output Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ |  |  | 250 | $\mu \mathrm{A}$ |
| VOL | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $V_{C C}=M a x, V_{l}=5.5 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$ |  |  | 50 | $\mu \mathrm{A}$ |
| 1 l | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$ |  |  | -2 | mA |
| ICCH | Supply Current with Outputs High | $\mathrm{V}_{\text {CC }}=\mathrm{Max}$ |  | 9 | 19.8 | mA |
| $\mathrm{I}_{\text {CCL }}$ | Supply Current with Outputs Low | $V_{C C}=\operatorname{Max}$ |  | 30 | 54 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| tplH | Propagation Delay Time Low to High Level Output | 2 | 7.5 | 3 | 11 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 7 | 3 | 11 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## DM54S08/DM74S08 Quad 2-Input AND Gates

## General Description

This device contains four independent gates each of which performs the logic AND function.

## Connection Diagram



Order Number DM54S08J or DM74S08N See NS Package Number J14A or N14A

Function Table

| Y $=\mathbf{A B}$ |  |  |
| :---: | :---: | :---: |
| Inputs |  | Output |
| $\mathbf{A}$ | B | $\mathbf{Y}$ |
| L | L | L |
| L | H | L |
| H | L | L |
| $H$ | $H$ | $H$ |

H = High Logic Level
L = Low Logic Level

| Absolute Maximum Ratings (Note) |  |
| :--- | ---: |
| Specifications for Military/Aerospace products are not |  |
| contained In this datasheet. Refer to the associated |  |
| reliability electrical test specifications document. |  |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range  <br> DM54S $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ <br> DM74S $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ <br> Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |  |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S08 |  |  | DM74S08 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIn | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $V_{I H}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| ${ }^{\mathrm{O}} \mathrm{H}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ <br> (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| VOH | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| VOL | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current © Max Input Voltage | $V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H }}$ | High Level Input Current | $V_{C C}=M_{\text {ax }}, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| 1 l | Low Level Input Current | $V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $V_{C C}=M a x$ <br> (Note 2) | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICCH | Supply Current with Outputs High | $V_{C C}=\operatorname{Max}$ |  |  | 18 | 32 | mA |
| $\mathrm{I}_{\mathrm{CCL}}$ | Supply Current with Outputs Low | $V_{C C}=M a x$ |  |  | 32 | 57 | mA |

Switching Characteristics $\mathrm{at} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ}$ ( (Soe Section 1 for Test Wavelorms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | 2.5 | 7 | 3 | 9 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 2.5 | 7.5 | 3 | 11 | ns |

[^26]
## DM54S09/DM74S09 Quad 2-Input AND Gates with Open-Collector Outputs

## General Description

This device contains four independent gates each of which performs the logic AND function. The open-collector outputs require an external pull-up resistor for proper logical operation.

Pull-Up Resistor Equations
$R_{M A X}=\frac{V_{C C}(M i n)-V_{O H}}{N_{1}\left(I_{O H}\right)+N_{2}\left(I_{I H}\right)}$
$R_{\text {MIN }}=\frac{V_{C C}(M a x)-V_{O L}}{I_{\mathrm{OL}}-N_{3}\left(I_{\mathrm{IL}}\right)}$
Where: $\mathrm{N}_{1}(\mathrm{IOH})=$ total maximum output high current for all outputs tied to pull-up resistor
$N_{2}\left(I_{\mid H}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{1 L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

## Connection Diagram

Dual-In-Line Package


TL/F/6465-1
Order Number DM54S09J or DM74S09N
See NS Package Number J14A or N14A

## Function Table

| $\mathbf{Y}=\mathbf{A B}$ |  |  |
| :---: | :---: | :---: |
| Inputs |  | Output |
| $\mathbf{A}$ | B | Y |
| L | L | L |
| L | H | L |
| $H$ | L | L |
| $H$ | $H$ | H |

H = High Logic Level
L = Low Logic Level

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Operating Free Air Temperature Range

| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.
Supply Voltage
Input Voltage 5.5 V
Output Voltage
Storage Tomporature Rango

| Symbol | Parameter | DM54S09 |  |  | DM74S09 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| VOH | High Level Output Voltage |  |  | 5.5 |  |  | 5.5 | V |
| $\mathrm{IOL}^{\text {l }}$ | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  | -1.2 | V |
| ICEX | High Level Output Current | $\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{I H}=\operatorname{Min} \end{aligned}$ |  |  | 250 | $\mu \mathrm{A}$ |
| VoL | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ |  |  | 0.5 | V |
| 1 | Input Current @ Max input Voltage | $\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$ |  |  | 50 | $\mu \mathrm{A}$ |
| 1 IL | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  | -2 | mA |
| ICCH | Supply Current with Outputs High | $\mathrm{V}_{C C}=\mathrm{Max}$ |  | 18 | 32 | mA |
| ICCL | Supply Current with Outputs Low | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  | 32 | 57 | mA |

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| ${ }_{\text {tPLH }}$ | Propagation Delay Time Low to High Level Output | 3 | 10 | 4 | 18 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 3 | 10 | 4 | 18 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

## DM54S10/DM74S10 Triple 3-Input NAND Gates

## General Description

This device contains three independent gates each of which performs the logic NAND function.

## Connection Diagram



Function Table

| Y $=\overline{\text { ABC }}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Inputs |  |  | Output |
| A | B | C | Y |
| X | X | L | H |
| X | L | X | H |
| L | X | X | H |
| H | H | H | L |

H = High Logic Level
$\mathrm{L}=$ Low Logic Level
$X=$ Either Low or High Logic Level

| Absolute Maximum Ratings (Note) |  |
| :--- | ---: |
| Specifications for Military/Aerospace products are not |  |
| contarned in this datasheet. Refer to the associated |  |
| reliablity electrical test specifications document. |  |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM54S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| DM74S | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S10 |  |  | DM74S10 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{l}^{\mathrm{OH}}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $V_{C C}=\operatorname{Min}, \_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| VOH | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{O H}=M a x \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}_{\mathrm{H}}$ | High Level Input Current | $V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{IL}}$ | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICCH | Supply Current with Outputs High | $\mathrm{V}_{C C}=\mathrm{Max}$ |  |  | 7.5 | 12 | mA |
| ICCL | Supply Current with Outputs Low | $V_{C C}=M a x$ |  |  | 15 | 27 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | 2 | 4.5 | 2 | 7 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 5 | 2 | 8 | ns |

[^27]
## DM54S11/DM74S11 Triple 3-Input AND Gates

## General Description

This device contains three independent gates each of which performs the logic AND function.

## Connection Diagram



Order Number DM54S11J or DM74S11N
See NS Package Number J14A or N14A

## Function Table

| Y $=$ ABC |  |  |  |
| :---: | :---: | :---: | :---: |
| Inputs |  |  | Output |
| A | B | C | Y |
| X | X | L | L |
| X | L | X | L |
| L | X | X | L |
| H | H | H | H |

$$
H=\text { High Logic Level }
$$

L = Low Logic Level
$X=$ Either Low or High Logic Level

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contalned in thls datasheet. Refer to the assoclated rellability electrical test specifications document.
Supply Voltage
7V
Input Voltage
5.5 V

Operating Free Air Temperature Range
DM54S
DM74S

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S11 |  |  | DM74S11 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{IOH}^{\text {l }}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| loL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| VoL | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H }}$ | High Level Input Current | $V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{IL}}$ | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=\text { Max } \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICCH | Supply Current with Outputs High | $V_{C C}=$ Max |  |  | 13.5 | 24 | mA |
| $\mathrm{I}_{\text {CCL }}$ | Supply Current with Outputs Low | $V_{C C}=\operatorname{Max}$ |  |  | 24 | 42 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $R_{L}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| tPLH | Propagation Delay Time Low to High Level Output | 2.5 | 7 | 3 | 9 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 2.5 | 7.5 | 3 | 11 | ns |

[^28]
## DM54S20/DM74S20 Dual 4-Input NAND Gates

## General Description

This device contains two independent gates each of which performs the logic NAND function.

## Connection Diagram



Function Table

$$
\mathbf{Y}=\overline{\mathrm{ABCD}}
$$

| Inputs |  |  |  | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | Y |
| X | X | X | L | H |
| X | X | L | X | H |
| X | L | X | X | H |
| L | X | X | X | H |
| H | H | H | H | L |

[^29]Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

```
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
\begin{tabular}{lr}
DM54S & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74S & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S20 |  |  | DM74S20 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{1 \mathrm{H}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Condltions |  | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{l}}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=M i n, I_{O H}=M a x \\ & V_{\mathrm{IL}}=M a x \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| VOL | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current © Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}_{\text {H }}$ | High Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{1 /}$ | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| lCCH | Supply Current with Outputs High | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 5 | 8 | mA |
| ICCL | Supply Current with Outputs Low | $\mathrm{V}_{C C}=\mathrm{Max}$ |  |  | 10 | 18 | mA |

Switching Characteristics at $V_{C C}=5 V_{\text {and }} T_{A}=25^{\circ} \mathrm{C}$ (see Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| ${ }_{\text {tPLH }}$ | Propagation Delay Time Low to High Level Output | 2 | 4.5 | 2 | 7 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 5 | 2 | 8 | ns |

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National
Semiconductor
Corporation

## DM54S30/DM74S30 8-Input NAND Gate

## General Description

This device contains a single gate which performs the logic NAND function.

## Connection Diagram



## Function Table

| $\mathbf{Y}=\overline{\text { ABCDEFGH }}$ |  |
| :---: | :---: |
| Inputs | Output |
| A thru H | $\mathbf{Y}$ |
| All Inputs H <br> One or More <br> Input L | $\mathbf{L}$ |

$H=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage
Input Voltage
5.5 V

Operating Free Air Temperature Range

| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S30 |  |  | DM74S30 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{lOH}^{\text {l }}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voliage | $\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H }}$ | High Level Input Current | $V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| IIL | Low Level Input Current | $V_{C C}=$ Max, $V_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=\operatorname{Max} \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICCH | Supply Current with Outputs High | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 3 | 5 | mA |
| ICCL | Supply Current with Outputs Low | $V_{C C}=\operatorname{Max}$ |  |  | 5.5 | 10 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | 2 | 6 | 2 | 8 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 7 | 3 | 10 | ns |

[^30]Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

## DM54S32/DM74S32 Quad 2-Input OR Gates

## General Description

This device contains four independent gates each of which performs the logic OR function.

Connection Diagram


Order Number DM54S32J or DM74S32N
See NS Package Number J14A or N14A
Function Table

| Inputs |  |  |
| :---: | :---: | :---: |
| A | B | Output |
| L | L | L |
| L | H | H |
| H | L | H |
| H | H | H |

$\mathrm{H}=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

```
Supply Voltage7 VInput Voltage 5.5 V
Operating Free Air Temperature Range
\begin{tabular}{lr}
DM54S & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74S & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S32 |  |  | DM74S32 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| ${ }_{\mathrm{OH}}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| IOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| 1 IH | High Level Input Current | $V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{IL}}$ | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICCH | Supply Current with Outputs High | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 18 | 32 | mA |
| ICCL | Supply Current with Outputs Low | $V_{C C}=$ Max |  |  | 38 | 68 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| tplH | Propagation Delay Time Low to High Level Output | 2 | 7 | 2 | 9 | ns |
| ${ }^{\text {PPHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 7 | 2 | 9 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

## DM54S40/DM74S40 Dual 4-Input NAND Buffers

## General Description

This device contains two independent gates each of which performs the logic NAND function.

## Connection Diagram



Order Number DM54S40J or DM74S40N
See NS Package Number J14A or N14A
Function Table

$$
\mathbf{Y}=\overline{\mathbf{A B C D}}
$$

| Inputs |  |  |  | Output |
| :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | Y |
| X | X | X | L | H |
| X | X | L | X | H |
| X | L | X | X | H |
| L | X | X | X | H |
| H | H | H | H | L |

$\mathrm{H}=$ High Logic Level
$\mathrm{L}=$ Low Logic Level
$X=$ Either Low or High Logic Level

| Absolute Maximum Ratings (Note) |  |
| :--- | ---: |
| Specifications for Milltary/Aerospace products are not |  |
| contained In thls datasheet. Refer to the associated |  |
| rellabillty electrical test specifications document. |  |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM54S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| DM74S | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S40 |  |  | DM74S40 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{IOH}^{\text {l }}$ | High Level Output Current |  |  | -3 |  |  | -3 | mA |
| lOL | Low Level Output Current |  |  | 60 |  |  | 60 | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{l}}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ |  |  |  | 0.5 | v |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{I}_{\mathrm{H}}$ | High Level Input Current | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  | 100 | $\mu \mathrm{A}$ |
| ILL | Low Level Input Current | $\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -4 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$ | DM54 | -50 |  | -225 | mA |
|  |  |  | DM74 | -50 |  | -225 |  |
| ICCH | Supply Current with Outputs High | $\mathrm{V}_{\mathrm{CC}}=$ Max |  |  | 10 | 18 | mA |
| lCCL | Supply Current with Outputs Low | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 25 | 44 | mA |

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=\mathbf{9 3} \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| tpLH | Propagation Delay Time Low to High Level Output | 2 | 6.5 | 3 | 9 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 6.5 | 3 | 9 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

## General Description

This device contains two independent combinations of gates each of which performs the logic AND-OR-INVERT
function.

## Connection Diagram



Function Table

| Inputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A | Output |  |  |  |
| A | B | C | D | Y |
| H | H | X | X | L |
| X | X | H | H | L |
| All other |  |  |  |  |
| Combinations |  |  |  |  |

[^31]Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S51 |  |  | DM74S51 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| loL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | $-1.2$ | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| VoL | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current © Max Input Voltage | $V_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H }}$ | High Level Input Current | $V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{1 /}$ | Low Level Input Current | $\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ${ }^{\text {ICCH }}$ | Supply Current with Outputs High | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 8.2 | 17.8 | mA |
| ICCL | Supply Current with Outputs Low | $V_{C C}=\operatorname{Max}$ |  |  | 14 | 22 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| $t_{\text {PLL }}$ | Propagation Delay Time Low to High Level Output | 2 | 5.5 | 3 | 8 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | 2 | 5.5 | 3 | 8 | ns |

Note 1: All typicals are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

## DM54S64/DM74S64 4-Wide AND-OR-INVERT Gates

## General Description

This device contains a combination of gates which performs the logic AND-OR-INVERT function.

## Connection Diagram



Function Table

| Inputs |  |  |  |  |  |  |  |  |  |  | Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | E | F | G | H | 1 | $J$ | K | Y |
| H | H | H | H | X | X | X | X | X | X | X | L |
| X | X | X | X | H | H | X | X | X | X | X | L |
| X | X | x | X | X | X | H | H | H | X | X | L |
| X | X | X | X | X | X | X | X | X | H | H | L |
| All other combinations |  |  |  |  |  |  |  |  |  |  | H |

$H=$ High Logic Level
$L=$ Low Logic Level
$X=$ Either Low or High Logic Level

## Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

```
Supply Voltage
 7V
Input Voltage
Operating Free Air Temperature Range
 DM54S
 DM74S
Storage Temperature Range
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

| Symbol | Parameter | DM54S64 |  |  | DM74S64 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $V_{\text {IH }}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $V_{C C}=\operatorname{Min}, I_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| VOH | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $V_{C C}=$ Max, $V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| IIL | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICCH | Supply Current with Outputs High | $V_{C C}=\operatorname{Max}$ |  |  | 7 | 12.5 | mA |
| ${ }^{\text {ICCL }}$ | Supply Current with Outputs Low | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 8.5 | 16 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| ${ }_{\text {tPLH }}$ | Propagation Delay Time Low to High Level Output | 2 | 5.5 | 3 | 8 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 5.5 | 3 | 8 | ns |

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

## DM54S74/DM74S74 <br> Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear, and Complementary Outputs

## General Description

This device contains two independent positive-edge-triggered D flip.flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may
be changed while the clock is low or high without affecting the outputs as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

## Connection Diagram



TL/F/6457-1
Order Number DM54S74J, DM74S74M or DM74S74N See NS Package Number J14A, M14A or N14A

## Function Table

| Inputs |  |  |  |  | Outputs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PR | CLR | CLK | D | Q | $\overline{\mathbf{Q}}$ |  |
| L | H | X | X | H | L |  |
| H | L | X | X | L | H |  |
| L | L | X | X | $H^{*}$ | $H^{*}$ |  |
| H | H | $\uparrow$ | $H$ | H | L |  |
| H | H | $\uparrow$ | L | L | H |  |
| H | H | L | X | $Q_{0}$ | $\bar{Q}_{0}$ |  |

## Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage
Operating Free Air Temperature Range

| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter |  | DM54S74 |  |  | DM74S74 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\text {CC }}$ | Supply Voltage |  | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{1 \mathrm{H}}$ | High Level Input Voltage |  | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  |  | 20 |  |  | 20 | mA |
| $\mathrm{f}_{\mathrm{CLK}}$ | Clock Frequency (Note 2) |  | 0 | 110 | 75 | 0 | 110 | 75 | MHz |
| fCLK | Clock Frequency (Note 3) |  | 0 | 95 | 65 | 0 | 95 | 65 | MHz |
| tw | Pulse Width (Note 2) | Clock High | 6 |  |  | 6 |  |  | ns |
|  |  | Clock Low | 7.3 |  |  | 7.3 |  |  |  |
|  |  | Clear Low | 7 |  |  | 7 |  |  |  |
|  |  | Preset Low | 7 |  |  | 7 |  |  |  |
| ${ }_{\text {tw }}$ | Pulse Width (Note 3) | Clock High | 8 |  |  | 8 |  |  | ns |
|  |  | Clock Low | 9 |  |  | 9 |  |  |  |
|  |  | Clear Low | 9 |  |  | 9 |  |  |  |
|  |  | Preset Low | 9 |  |  | 9 |  |  |  |
| tsu | Setup Time (Notes 1 \& 2) |  | $3 \uparrow$ |  |  | $3 \uparrow$ |  |  | ns |
| tsu | Setup Time (Notes 1 \& 3) |  | $3 \uparrow$ |  |  | $3 \uparrow$ |  |  | ns |
| $\mathrm{t}_{\mathrm{H}}$ | Input Hold Time (Notes 1 \& 2) |  | $2 \uparrow$ |  |  | $2 \uparrow$ |  |  | ns |
| $t_{H}$ | Input Hold Time (Notes 1 \& 3) |  | $2 \uparrow$ |  |  | $2 \uparrow$ |  |  | ns |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature |  | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Note 1: The symbol ( $\uparrow$ ) indicates the rising edge at the clock pulse is used for reference.
Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ <br> (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=M i n, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{I}_{\mathbf{H}}$ | High Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$ | D |  |  | 50 | $\mu \mathrm{A}$ |
|  |  |  | Clear |  |  | 150 |  |
|  |  |  | Preset |  |  | 100 |  |
|  |  |  | Clock |  |  | 100 |  |
| IIL | Low Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.5 \mathrm{~V} \\ & \text { (Note } 4) \end{aligned}$ | D |  |  | -2 | mA |
|  |  |  | Clear |  |  | -6 |  |
|  |  |  | Preset |  |  | -4 |  |
|  |  |  | Clock |  |  | -4 |  |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=\text { Max } \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| lcc | Supply Current | $\mathrm{V}_{\text {CC }}=$ Max, (Note 3) |  |  | 30 | 50 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: With a!l outputs open, ICC is measured with the $Q$ and $\bar{Q}$ outputs high in turn. At the time of measurement, the clock is grounded.
Note 4: Clear is tested with preset high and preset is tested with clear high.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency |  | 75 |  | 65 |  | MHz |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Preset to Q |  | 6 |  | 9 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | $\begin{aligned} & \text { Clear } \\ & \text { to } \bar{Q} \end{aligned}$ |  | 6 |  | 9 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output (Clock High) | Preset to $\bar{Q}$ |  | 13.5 |  | 16 | ns |
| tPHL | Propagation Delay Time High to Low Level Output (Clock Low) | Preset to $\bar{Q}$ |  | 8 |  | 12 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output (Clock High) | $\begin{gathered} \hline \text { Clear } \\ \text { to } \\ Q \\ \hline \end{gathered}$ |  | 13.5 |  | 16 | ns |
| $\mathrm{t}_{\mathrm{PHL}}$ | Propagation Delay Time High to Low Level Output (Clock Low) | Clear to Q |  | 8 |  | 12 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Clock to Q or $\overline{\mathrm{Q}}$ |  | 9 |  | 12 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | Clock to Q or $\bar{Q}$ |  | 9 |  | 13 | ns |

## Connection Diagram

Dual-In-LIne Package


TL/F/6458-1

Order Number DM54S86J or DM74S86N See NS Package Number J14A or N14A

Function Table

$$
\mathbf{Y}=\mathbf{A} \oplus \mathbf{B}=\overline{\mathbf{A}} \mathbf{B}+\mathbf{A} \overline{\mathbf{B}}
$$

| Inputs |  | Output |
| :---: | :---: | :---: |
| A | B | Y |
| L | L | L |
| L | H | H |
| H | L | H |
| $H$ | $H$ | L |

H = High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained In thls datasheet. Refer to the associated rellability electrical test specifications document.

| Supply Voltage | 7 V |
| :--- | ---: |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM54S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| DM74S | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S86 |  |  | DM74S86 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{iH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H }}$ | High Level Input Current | $\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| ILL | Low Level Input Current | $V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICCH | Supply Current with Outputs High | $\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 3) } \end{aligned}$ |  |  | 35 | 50 | mA |
| ICCL | Supply Current with Outputs Low | $\begin{aligned} & V_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 4) } \end{aligned}$ |  |  | 50 | 75 | mA |

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $l_{\mathrm{CCH}}$ is measured with all outputs open, one input of each gate at 4.5 V , and the other inputs grounded.
Note 4: $l_{C C L}$ is measured with all outputs open and all inputs grounded.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) to (Output) | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | $A$ or $B$ to $Y$ |  | 10.5 |  | 14 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output |  |  | 10 |  | 13 | ns |

## DM54S112/DM74S112 Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flops with Preset, Clear, and Complementary Outputs

## General Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. Data on the J and K
inputs can be changed while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

## Connection Diagram



TL/F/6459-1
Order Number DM54S112J or DM74S112N
See NS Package Number J16A or N16A

## Function Table

| Inputs |  |  |  |  | Outputs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PR | CLR | CLK | J | K | Q | $\overline{\mathbf{Q}}$ |
| L | H | X | X | X | H | L |
| H | L | X | X | X | L | H |
| L | L | X | X | X | $\mathrm{H}^{*}$ | $\mathrm{H}^{*}$ |
| H | H | $\downarrow$ | L | L | Q | $\bar{Q}_{0}$ |
| H | H | $\downarrow$ | H | L | H | L |
| H | H | $\downarrow$ | L | H | L | H |
| H | H | $\downarrow$ | H | H |  |  |
| H | H | H | X | X | $Q_{0}$ | $\overline{\mathrm{Q}}_{0}$ |

$H=$ High Logic Level
$\mathrm{X}=$ Either Low or High Logic Level
L = Low Logic Level
$\downarrow=$ Negative going edge of pulse.
$Q_{0}=$ The output logic level of $Q$ before the indicated input conditions were established.

* = This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs return to its inactive (high) level.
Toggle $=$ Each output changes to the complement of its previous level on each falling edge of the clock pulse.

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

| Supply Voltage | 7 V |
| :--- | ---: |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range |  |
| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Input Voltage
perating Free Air Temperature Range
DM74S
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter |  | DM54S112 |  |  | DM74S112 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage |  | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage |  | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  |  | 20 |  |  | 20 | mA |
| ${ }_{\text {f CLK }}$ | Clock Frequency (Note 2) |  | 0 | 125 | 80 | 0 | 125 | 80 | MHz |
| $\mathrm{f}_{\text {CLK }}$ | Clock Frequency (Note 3) |  | 0 | 80 | 60 | 0 | 80 | 60 | MHz |
| tw | Pulse Width (Note 2) | Clock High | 6 |  |  | 6 |  |  | ns |
|  |  | Clock Low | 6.5 |  |  | 6.5 |  |  |  |
|  |  | Clear Low | 8 |  |  | 8 |  |  |  |
|  |  | Preset Low | 8 |  |  | 8 |  |  |  |
| tw | Pulse Width (Note 3) | Clock High | 8 |  |  | 8 |  |  | ns |
|  |  | Clock Low | 8 |  |  | 8 |  |  |  |
|  |  | Clear Low | 10 |  |  | 10 |  |  |  |
|  |  | Preset Low | 10 |  |  | 10 |  |  |  |
| tsu | Setup Time (Notes 1 \& 4) |  | $7 \downarrow$ |  |  | $7 \downarrow$ |  |  | ns |
| $t_{H}$ | Input Hold Time (Notes 1 \& 4) |  | 0】 |  |  | 0 $\downarrow$ |  |  | ns |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature |  | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Note 1: The symbol ( $\downarrow$ ) indicates the falling edge at the clock pulse is used for reference.
Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | Input Clamp Voltage | $V_{C C}=M i n, l_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| IIH | High Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{I}=2.7 V \end{aligned}$ | J, K |  |  | 50 | $\mu \mathrm{A}$ |
|  |  |  | Clear |  |  | 100 |  |
|  |  |  | Preset |  |  | 100 |  |
|  |  |  | Clock |  |  | 100 |  |
| IIL | Low Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.5 \mathrm{~V} \\ & (\text { Note } 4) \end{aligned}$ | J, K |  |  | -1.6 | mA |
|  |  |  | Clear |  |  | -7 |  |
|  |  |  | Preset |  |  | -7 |  |
|  |  |  | Clock |  |  | -4 |  |
| los | Short Circuit Output Current | $V_{C C}=M a x$ <br> (Note 2) | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | $-100$ |  |
| ICC | Supply Current | $V_{C C}=\operatorname{Max}$ (Note 3) |  |  | 30 | 50 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: With all outputs open, $I_{C C}$ is measured with the $Q$ and $\bar{Q}$ outputs high in turn. At the time of measurement, the clock input is grounded.
Note 4: Clear is tested with preset high and preset is tested with clear high.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency |  | 80 |  | 60 |  | MHz |
| tPLH | Propagation Delay Time Low to High Level Output | Preset to Q |  | 7 |  | 9 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | Preset to $\bar{Q}$ |  | 7 |  | 12 | ns |
| tPLH | Propagation Delay Time Low to High Level Output | $\begin{aligned} & \text { Clear } \\ & \text { to } \bar{Q} \end{aligned}$ |  | 7 |  | 9 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{aligned} & \text { Clear } \\ & \text { to } \mathrm{Q} \\ & \hline \end{aligned}$ |  | 7 |  | 12 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Clock to Qor $\bar{Q}$ |  | 7 |  | 9 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Clock to Q or $\bar{Q}$ |  | 7 |  | 12 | ns |

## DM54S113/DM74S113 Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flops with Preset and Complementary Outputs

## General Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the
negative going edge of the clock pulse. Data on the $J$ and $K$ inputs may be changed while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the preset input will set the outputs regardless of the logic levels of the other inputs.

## Connection Diagram

## Dual-In-LIne Package



TL/F/6460-1
Order Number DM54S113J or DM74S113N
See NS Package Number J14A or N14A
Function Table

| Inputs |  |  |  | Outputs |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PR | CLK | $J$ | K | Q | $\overline{\mathbf{Q}}$ |
| L | X | X | X | H | L |
| H | $\downarrow$ | L | L | Q | $\bar{Q}_{0}$ |
| H | $\downarrow$ | H | L | H | L |
| H | $\downarrow$ | L | H | L | H |
| H | $\downarrow$ | H | H |  |  |
| H | H | X | X | $Q_{0}$ | $\bar{Q}_{0}$ |

$\mathrm{H}=$ High Logic Level
X = Either Low or High Logic Level
L = Low Logic Level
$\downarrow=$ Negative going edge of pulse.
$Q_{0}=$ The output logic level of $Q$ before the indicated input conditions were established.
Toggle $=$ Each output changes to the complement of its previous level on each falling edge of the clock pulse.

| Absolute Maximum Ratings (Note) |  |
| :---: | :---: |
| Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated reliability electrical test specifications document. |  |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Operating Free Air Temper |  |
| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter |  | DM54S113 |  |  | DM74S113 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage |  | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage |  | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  |  | -1 |  |  | -1 | mA |
| $\mathrm{IOL}^{2}$ | Low Level Output Current |  |  |  | 20 |  |  | 20 | mA |
| $\mathrm{fcLK}^{\text {cher }}$ | Clock Frequency (Note 2) |  | 0 | 125 | 80 | 0 | 125 | 80 | MHz |
| $\mathrm{fcLK}^{\text {f }}$ | Clock Frequency (Note 3) |  | 0 | 80 | 60 | 0 | 80 | 60 | MHz |
| tw | Pulse Width (Note 2) | Clock High | 6 |  |  | 6 |  |  | ns |
|  |  | Clock Low | 6.5 |  |  | 6.5 |  |  |  |
|  |  | Preset Low | 8 |  |  | 8 |  |  |  |
| tw | Pulse Width (Note 3) | Clock High | 8 |  |  | 8 |  |  | ns |
|  |  | Clock Low | 8 |  |  | 8 |  |  |  |
|  |  | Preset Low | 10 |  |  | 10 |  |  |  |
| tsu | Setup Time (Notes 1 \& 4) |  | $7 \downarrow$ |  |  | $7 \downarrow$ |  |  | ns |
| $t_{H}$ | Input Hold Time (Notes $1 \& 4$ ) |  | 0】 |  |  | 0 $\downarrow$ |  |  | ns |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature |  | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Note 1: The symbol $(\downarrow)$ indicates the falling edge at the clock pulse is used for reference.
Note 2: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $V_{C C}=M i n, l_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current © Max Input Voltage | $V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {r }}$ | High Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{I}=2.7 V \end{aligned}$ | J, K |  |  | 50 | $\mu \mathrm{A}$ |
|  |  |  | Preset |  |  | 100 |  |
|  |  |  | Clock |  |  | 100 |  |
| IIL | Low Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.5 V \end{aligned}$ | J, K |  |  | $-1.6$ | mA |
|  |  |  | Preset |  |  | -7 |  |
|  |  |  | Clock |  |  | -4 |  |
| los | Short Circuit Output Current | $\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICC | Supply Current | $V_{C C}=$ Max, $($ Note 3) |  |  | 30 | 50 | mA |

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: With all outputs open, $I_{C C}$ is measured with the $Q$ and $\bar{Q}$ outputs high in turn. At the time of measurement, the clock input is grounded.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency |  | 80 |  | 60 |  | MHz |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Preset to $Q$ |  | 7 |  | 9 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | Preset to $\bar{Q}$ |  | 7 |  | 12 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Clock to Q or $\bar{Q}$ |  | 7 |  | 9 | ns |
| tpHL | Propagation Delay Time High to Low Level Output | Clock to <br> Q or $\bar{Q}$ |  | 7 |  | 12 | ns |

## DM54S133/DM74S133 13-Input NAND Gate

## General Description

This device contains a single gate which performs the logic NAND function.

## Connection Diagram



Order Number DM54S133J, DM74S133M or DM74S133N See NS Package Number J16A, M14A or N16A

Function Table
$\mathbf{Y}=\overline{\text { ABCDEFGHIJKLM }}$

| Inputs | Output |
| :---: | :---: |
| A thru M | $\mathbf{Y}$ |
| All Inputs H | L |
| One or More <br> Input L | H |

$H=$ High Logic Level
$L=$ Low Logic Level

| Absolute Maximum Ratings (Note) <br> Specifications for Milltary/Aerospace products are not contained In this datasheet. Refer to the associated rellability electrical test specifications document. |  |
| :---: | :---: |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range |  |
| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S133 |  |  | DM74S133 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $V_{\text {IH }}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{lOH}^{2}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | Input Clamp Voltage | $V_{C C}=M \ln , I_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| ${ }_{1}{ }_{\text {H }}$ | High Level Input Current | $V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| IIL | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ${ }^{\text {ICCH }}$ | Supply Current with Outputs High | $\mathrm{V}_{C C}=\operatorname{Max}$ |  |  | 3 | 5 | mA |
| ICCL | Supply Current with Outputs Low | $V_{C C}=M a x$ |  |  | 5.5 | 10 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | 2 | 6 | 2 | 8 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 7 | 3 | 10 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National Semiconductor Corporation

## DM54S138/DM74S138, DM54S139/DM74S139 Decoders/Demultiplexers

## General Description

These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.
The S138 decodes one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24 -line decoder can be implemented with no external inverters, and a 32 -line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.
The S139 comprises two separate two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.
All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.

## Features

E Designed specifically for high speed: Memory decoders
Data transmission systems

- S138 3-to-8-line decoders incorporates 3 enable inputs to simplify cascading and/or data reception
- S139 contains two fully independent 2-to-4-line decoders/demultiplexers
- Schottky clamped for high performance
- Typical propagation delay time (3 levels of logic)

S138 8 ns
S139 7.5 ns

- Typical power dissipation

S138 245 mW
S139 300 mW

## Connection Diagrams



Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated reliability electrical test specifications document.

| Supply Voltage | 7 V |
| :--- | ---: |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM54S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| DM74S | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S138,S139 |  |  | DM74S138,S139 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{1}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| V OH | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{lOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current © Max Input Voltage | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| I/L | Low Level Input Current | $V_{C C}=\operatorname{Max}, V_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICC | Supply Current (S138) | $V_{C C}=\operatorname{Max}(\text { Note 3) }$ |  |  | 49 | 74 | mA |
| ICC | Supply Current (S139) | $V_{C C}=\operatorname{Max}$ (Note 3) |  |  | 60 | 90 | mA |

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs enabled and open.

## 'S138 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From <br> (Input) to (Output) | Levels of Delay | $R_{L}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  |  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Select to Output | 2 |  | 7 |  | 9 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Select to Output | 2 |  | 10.5 |  | 14 | ns |
| tpLH | Propagation Delay Time Low to High Level Output | Select to Output | 3 |  | 12 |  | 14 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Select to Output | 3 |  | 12 |  | 15 | ns |
| $\mathrm{tpLH}^{\text {l }}$ | Propagation Delay Time Low to High Level Output | Enable to Output | 2 |  | 8 |  | 10 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Enable to Output | 2 |  | 11 |  | 14 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Enable to Output | 3 |  | 11 |  | 13 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Enable to Output | 3 |  | 11 |  | 14 | ns |

'S139 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From <br> (Input) to (Output) | Levels of Delay | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  |  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Select to Output | 2 |  | 7.5 |  | 10 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Select to Output | 2 |  | 10 |  | 13 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Select to Output | 3 |  | 12 |  | 13 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Select to Output | 3 |  | 12 |  | 15 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Enable to Output | 2 |  | 8 |  | 10 | ns |
| ${ }^{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | Enable to Output | 2 |  | 10 |  | 13 | ns |

## Function Tables

| Inputs |  |  |  |  | Outputs |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Enable |  | Select |  |  |  |  |  |  |  |  |  |  |
| G1 | G2* | C | B | A | Yo | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 |
| X | H | X | X | $X$ | H | H | H | H | H | H | H | H |
| L | X | X | X | X | H | H | H | H | H | H | H | H |
| H | L | L | L | L | L | H | H | H | H | H | H | H |
| H | L | L | L | H | H | L | H | H | H | H | H | H |
| H | L | L | H | L | H | H | L | H | H | H | H | H |
| H | L | L | H | H | H | H | H | L | H | H | H | H |
| H | L | H | L | L | H | H | H | H | L | H | H | H |
| H | L | H | L | H | H | H | H | H | H | L | H | H |
| H | L | H | H | L | H | H | H | H | H | H | L | H |
| H | L | H | H | H | H | H | H | H | H | H | H | L |


| Inputs |  |  |  |  |  |  |  | Outputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Enable | Select |  |  |  |  |  |  |  |  |  |  |  |
| G | B | A | Y0 | Y1 | Y2 | Y3 |  |  |  |  |  |  |
| H | X | X | H | H | H | H |  |  |  |  |  |  |
| L | L | L | L | H | H | H |  |  |  |  |  |  |
| L | L | H | H | L | H | H |  |  |  |  |  |  |
| L | H | L | H | H | L | H |  |  |  |  |  |  |
| L | H | H | H | H | H | L |  |  |  |  |  |  |

$H=$ high level, $L=$ low level, $X=$ don't care (either low or high logic level)

## Logic Diagrams



TL/F/6466-3


National Semiconductor Corporation

## DM54S140/DM74S140 <br> Dual 4-Input NAND $50 \Omega$ Line Driver

## General Description

This device contains two independent line driver gates each of which performs the logic NAND function.

## Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
$\begin{array}{lr}\text { Supply Voltage } & 7 \mathrm{~V} \\ \text { Input Voltage } & 5.5 \mathrm{~V}\end{array}$

Operating Free Air Temperature Range
DM54S
DM74S
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Connection Diagram



Order Number DM54S140J or DM74S140N
See NS Package Number J14A or N14A
Function Table

$$
\mathbf{Y}=\overline{\mathbf{A B C D}}
$$

| Inputs |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | Y |
| X | X | X | L | H |
| X | X | L | X | H |
| X | L | X | X | H |
| L | X | X | X | H |
| H | H | H | H | L |

[^32]
## Recommended Operating Conditions

| Symbol | Parameter | DM54S140 |  |  | DM74S140 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -40 |  |  | -40 | mA |
| lOL | Low Level Output Current |  |  | 60 |  |  | 60 | mA |
| TA | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating tree air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
|  |  | $\mathrm{V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{O}}=50 \Omega$ to GND |  | 2.0 |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H }}$ | High Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  | 100 | $\mu \mathrm{A}$ |
| I/L | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -4 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=\operatorname{Max} \\ & \text { (Note 2) } \end{aligned}$ | DM54 | -50 |  | -225 | mA |
|  |  |  | DM74 | -50 |  | -225 |  |
| ICCH | Supply Current with Outputs High | $V_{C C}=\operatorname{Max}$ |  |  | 10 | 18 | mA |
| $\mathrm{I}_{\text {CCL }}$ | Supply Current with Outputs Low | $V_{C C}=$ Max |  |  | 25 | 44 | mA |

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=93 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| $\mathrm{t}_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | 2 | 6.5 | 3 | 9 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | 2 | 6.5 | 3 | 9 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

National Semiconductor Corporation

## DM54S151/DM74S151 1 of 8 Data Selector/Multiplexer with Complementary Outputs

## General Description

These data selectors/multiplexers contain full on-chip decoding to select the desired data source. The S 151 selects one-of-eight data sources. The S151 has a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the $W$ output high and the $Y$ output low.
The S151 features complementary W and Y outputs.

Features

- Select one-of-eight data lines
- Performs parallel-to-serial conversion
- Permits multiplexing from N lines to one line
- Also for use as Boolean function generator
- Typical average propagation delay time, data input to W output 4.5 ns
- Typical power dissipation 225 mW


## Connection Diagram



Function Table

| Inputs |  |  |  | Outputs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Select |  |  | Strobe | Y | W |  |
| C | B | A |  |  |  |  |
| X | X | X | H | L | H |  |
| L | L | L | L | D0 | $\overline{\text { D0 }}$ |  |
| L | L | H | L | D1 | $\overline{\text { D1 }}$ |  |
| L | H | L | L | D2 | $\overline{\text { D2 }}$ |  |
| L | H | H | L | D3 | $\overline{\text { D3 }}$ |  |
| H | L | L | L | D4 | $\overline{\text { D4 }}$ |  |
| H | L | H | L | D5 | $\overline{\text { D5 }}$ |  |
| H | H | L | L | D6 | $\overline{\text { D6 }}$ |  |
| H | H | H | L | D7 | $\overline{\text { D7 }}$ |  |

$H=$ high level, $L=$ low level, $X=$ don't care
D0, D1 $\ldots$ D7 = the level of the respective $D$ input

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained in thls datasheet. Refer to the associated reliability electrical test specifications document.

| Supply Voltage | 7 V |
| :--- | ---: |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range |  |
| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S151 |  |  | DM74S151 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $V_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{l}^{\mathrm{OH}}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| IOL | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ <br> (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $V_{C C}=M i n, I_{J}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  |  |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $I_{1 /}$ | High Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| IIL | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICC | Supply Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3) |  |  | 45 | 70 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with the strobe and data select inputs at 4.5 V , all other inputs and outputs open.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Select to Y <br> (4 Levels) |  | 18 |  | 21 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | Select to $Y$ <br> (4 Levels) |  | 18 |  | 21 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Select to W <br> (3 Levels) |  | 15 |  | 18 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | Select to W <br> (3 Levels) |  | 13.5 |  | 17 | ns |
| tplH | Propagation Delay Time Low to High Level Output | Strobe to $Y$ |  | 16.5 |  | 19 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Strobe to Y |  | 18 |  | 21 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Strobe <br> to W |  | 13 |  | 16 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | Strobe <br> to W |  | 12 |  | 16 | ns |
| tplh | Propagation Delay Time <br> Low to High Level Output | $\begin{aligned} & \text { D0 thru D7 } \\ & \text { to } \mathrm{Y} \end{aligned}$ |  | 12 |  | 15 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{aligned} & \text { D0 thru D7 } \\ & \text { to } Y \end{aligned}$ |  | 12 |  | 15 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | $\begin{aligned} & \text { D0 thru D7 } \\ & \text { to W } \end{aligned}$ |  | 7 |  | 9 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | $\begin{aligned} & \text { D0 thru D7 } \\ & \text { to W } \end{aligned}$ |  | 7 |  | 10 | ns |

## Logic Diagram



## DM54S153/DM74S153 Dual 1 of 4 Line Data Selectors/Multiplexers

## General Description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

## Features

- Permits multiplexing from N lines to 1 line
- Performs parallel-to-serial conversion
- Strobe (enable) line provided for cascading ( N lines to $n$ lines)
■ High fan-out, low-impedance, totem-pole outputs
- Typical average propagation delay times

From data 6 ns
From strobe 9.5 ns
From select 12 ns

- Typical power dissipation 225 mW


## Logic and Connection Diagrams



TL/F/6469-2
Order Number DM54S153J or DM74S153N See NS Package Number J16A or N16A

## Function Table

| Select <br> Inputs | Data Inputs |  |  |  |  | Strobe | Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | A | C0 | C1 | C2 | C3 | G | Y |
| X | X | X | X | X | X | H | L |
| L | L | L | X | X | X | L | L |
| L | L | H | X | X | X | L | H |
| L | H | X | L | X | X | L | L |
| L | H | X | H | X | X | L | H |
| H | L | X | X | L | X | L | L |
| H | L | X | X | H | X | L | H |
| H | H | X | X | X | L | L | L |

Select inputs $A$ and $B$ are common to both sections.
$H=$ High Level, $L=$ Low Level, $X=$ Don't Care

```
Absolute Maximum Ratings (Note)
```

Specificatlons for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.

| Supply Voltage | 7 V |
| :--- | ---: |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range |  |
| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperture Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S153 |  |  | DM74S153 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $V_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{IOH}^{\text {l }}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lol | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l} \mathrm{I}^{\prime}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $V_{C C}=\operatorname{Max}, V_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| ${ }_{1 / \mathrm{H}}$ | High Level Input Current | $V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| IIL | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$ | DM54 | $-40$ |  | $-100$ | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICC | Supply Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3) |  |  | 45 | 70 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all inputs grounded.

| Symbol | Parameter | From (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  |  |  | Min | Max | Min | Max |  |
| tpLH | Propagation Delay Time Low to High Level Output | Data to $Y$ |  | 9 |  | 12 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | Data to $Y$ |  | 9 |  | 12 | ns |
| ${ }_{\text {tplH }}$ | Propagation Delay Time Low to High Level Output | Select to $Y$ |  | 18 |  | 20 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | Select to Y |  | 18 |  | 21 | ns |
| ${ }_{\text {tplH }}$ | Propagtion Delay Time Low to High Level Output | Strobe to $Y$ |  | 15 |  | 18 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Strobe to Y |  | 13.5 |  | 17 | ns |

## DM54S157/DM74S157, DM54S158/DM74S158 <br> Quad 1 of 2 Line Data Selectors/Multiplexers

## General Description

These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The S157 presents true data whereas the S158 presents inverted data to minimize propagation delay time.

## Features

- Buffered inputs and outputs
- Typical propagation time S157 5 ns S158 4 ns
- Typical power dissipation

S157 250 mW
S158 195 mW

## Applications

- Expand any data input point
- Multiplex dual data buses
- Generate four functions of two variables (one variable is common)
- Source programmable counters

Connection Diagrams (Dual-In-Line Packages)


TL/F/6470-1
Order Number DM54S157J or DM74S157N
See NS Package Number J16A or N16A


TL/F/6470-2
Order Number DM54S158J or DM74S158N
See NS Package Number J16A or N16A

Function Table

| Inputs |  |  |  | Output Y |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Strobe | Select | A | B | S157 | S158 |
| H | X | X | X | L | H |
| L | L | L | X | L | H |
| L | L | H | X | H | L |
| L | H | X | L | L | H |
| L | H | X | H | H | L |

$H=$ High Level, $L=$ Low Level, $X=$ Don't Care

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

| Supply Voltage | 7 V |
| :--- | ---: |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range |  |
| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM54S157 |  |  | DM74S157 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| ${ }^{\mathrm{O}} \mathrm{OH}$ | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lol | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

## 'S157 Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| VOH | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  |  |
|  |  |  | DM74 | 2.7 | 3.4 |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$ | S or G |  |  | 100 | $\mu \mathrm{A}$ |
|  |  |  | A or B |  |  | 50 |  |
| I/L | High Level Input Current | $\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & V_{1}=0.5 \mathrm{~V} \end{aligned}$ | S or G |  |  | -4 | mA |
|  |  |  | A or B |  |  | -2 |  |
| los | Short Circuit Output Current | $V_{C C}=\operatorname{Max}$ <br> (Note 2) | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| Icc | Supply Current | $\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 3) } \end{aligned}$ |  |  | 50 | 78 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3 : $\mathrm{I}_{\mathrm{CC}}$ is measured 4.5 V applied to all inputs and all outputs open.
'S157 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From <br> (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $C_{L}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| tplH | Propagation Delay <br> Time Low to High Level Output | Data to Y |  | 7.5 |  | 10 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Data to $Y$ |  | 6.5 |  | 10 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Strobe to $Y$ |  | 12.5 |  | 15 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay <br> Time High to Low <br> Level Output | $\begin{gathered} \text { Strobe } \\ \text { to } \\ Y \\ \hline \end{gathered}$ |  | 12 |  | 15 | ns |
| ${ }_{\text {tPLH }}$ | Propagation Delay <br> Time Low to High Level Output | $\begin{gathered} \text { Select } \\ \text { to } \\ Y \\ \hline \end{gathered}$ |  | 15 |  | 17 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Select to Y |  | 15 |  | 17 | ns |

Recommended Operating Conditions

| Symbol | Parameter | DM54S158 |  |  | DM74S158 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $V_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  | -1 |  |  | -1 | mA |
| lol | Low Level Output Current |  |  | 20 |  |  | 20 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |


| 'S158 Electrical Characteristics <br> over recommended operating free air temperature (unless otherwise noted) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Conditions |  | Min | $\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$ | Max | Units |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | v |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | v |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| VOL | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=M a x \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| ${ }_{1 / H}$ | High Level Input Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=2.7 \mathrm{~V} \end{aligned}$ | S or G |  |  | 100 | $\mu \mathrm{A}$ |
|  |  |  | A or B |  |  | 50 |  |
| IL | Low Level Input Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.5 \mathrm{~V} \end{aligned}$ | Sor G |  |  | -4 | mA |
|  |  |  | A or B |  |  | -2 |  |
| los | Short Circuit Output Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICCl | Supply Current | $\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 3) |  |  | 39 | 61 | mA |
| $\mathrm{I}_{\mathrm{CC} 2}$ | Supply Current | $V_{\text {CC }}=\operatorname{Max}$ (Note 4) |  |  |  | 81 | mA |

'S158 Switching Characteristics at $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From <br> (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | $\begin{gathered} \hline \text { Data } \\ \text { to } \\ Y \\ \hline \end{gathered}$ |  | 6 |  | 9 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay <br> Time High to Low Level Output | Data to Y |  | 6 |  | 9 | ns |
| ${ }^{\text {tplH }}$ | Propagation Delay <br> Time Low to High Level Output | $\begin{gathered} \text { Strobe } \\ \text { to } \\ Y \end{gathered}$ |  | 11.5 |  | 12 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Strobe <br> to <br> Y |  | 12 |  | 14 | ns |
| ${ }^{\text {tpLH }}$ | Propagation Delay Time Low to High Level Output | Select to Y |  | 12 |  | 15 | ns |
| ${ }^{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output | Select to Y |  | 12 |  | 15 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{I}_{\mathrm{C}} 1$ is measured with all outputs open and all inputs at 4.5 V .
Note 4: $\mathrm{I}_{\mathrm{CC} 2}$ is measured with $\mathrm{B}, \mathrm{G}$, and S inputs grounded, A inputs at 4.5 V , and all outputs open.



National Semiconductor Corporation

## DM54S161/DM74S161, DM54S163/DM74S163 Synchronous 4-Bit Binary Counters

## General Description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. They are 4-bit binary counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having ali flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.
These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable input.

The carry look-ahead circuitry provides for cascading counters for $n$-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both countenable inputs ( P and T ) must be high to count, and input $T$ is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the $Q_{A}$ output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages.

## Features

- Synchronously programmable
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs


## Connection Diagram



TL/F/6471- $\dagger$
Order Number DM54S161J, DM54S163J, DM74S161N, or DM74S163N
See NS Package Number J16A or N16A

## Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contalned in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage 7V

Input Voltage
Operating Free Air Temperature Range

| DM54S | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| DM74S | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions See Section 1 for Test Waveforms and Output Load

| Symbol | Parameter |  | DM54S161/163 |  |  | DM74S161/163 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage |  | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage |  | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  |  | -1 |  |  | -1 | mA |
| lOL | Low Level Output Current |  |  |  | 20 |  |  | 20 | mA |
| $\mathrm{f}_{\mathrm{CLK}}$ | Clock Frequency (Note 1) |  | 0 |  | 40 | 0 |  | 40 | MHz |
|  | Clock Frequency (Note 2) |  | 0 |  | 35 | 0 |  | 35 |  |
| $t_{w}$ | Pulse Width (Note 1) | Clock | 10 |  |  | 10 |  |  | ns |
|  |  | Clear (Note 4) | 10 |  |  | 10 |  |  |  |
|  | Pulse Width (Note 2) | Clock | 12 |  |  | 12 |  |  |  |
|  |  | Clear (Note 4) | 12 |  |  | 12 |  |  |  |
| tsu | Setup Time (Note 1) | Data | 4 |  |  | 4 |  |  | ns |
|  |  | Enable P or T | 12 |  |  | 12 |  |  |  |
|  |  | Load | 14 |  |  | 14 |  |  |  |
|  |  | Clear (Note 3) | 14 |  |  | 14 |  |  |  |
|  | Setup Time ( Note 2) | Data | 5 |  |  | 5 |  |  |  |
|  |  | Enable P or T | 14 |  |  | 14 |  |  |  |
|  |  | Load | 16 |  |  | 16 |  |  |  |
|  |  | Clear (Note 3) | 16 |  |  | 16 |  |  |  |
| ${ }^{\text {t }} \mathrm{H}$ | Hold Time (Note 1) | Data | 3 |  |  | 3 |  |  | ns |
|  |  | Others | 0 |  |  | 0 |  |  |  |
|  | Hold Time ( Note 2) | Data | 5 |  |  | 5 |  |  |  |
|  |  | Others | 2 |  |  | 2 |  |  |  |
| $t_{\text {REL }}$ | Load or Clear Release Time (Note 1) |  | 12 |  |  | 12 |  |  | ns |
|  | Load or Clear Release Time (Note 2) |  | 14 |  |  | 14 |  |  |  |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature |  | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Note 1: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: Applies only to the 'S163 which has synchronous clear inputs.
Note 4: Applies only to the 'S161 which has asynchronous clear inputs.

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min} \\ & l_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$ | DM54 | 2.5 | 3.4 |  | V |
|  |  |  | DM74 | 2.7 | 3.4 |  |  |
| VOL | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$ |  |  |  | 0.5 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| ${ }_{1 / 2}$ | Low Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$ | CLK, Data |  |  | 50 | $\mu \mathrm{A}$ |
|  |  |  | Others | $-10$ |  | -200 |  |
| ILL | Low Level Input Current | $\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.5 \mathrm{~V} \end{aligned}$ | Enable T |  |  | -4 | mA |
|  |  |  | Others |  |  | -2 |  |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=\text { Max } \\ & (\text { Note 2) } \end{aligned}$ | DM54 | -40 |  | -100 | mA |
|  |  |  | DM74 | -40 |  | -100 |  |
| ICC | Supply Current | $V_{C C}=M a x$ |  |  | 95 | 160 | mA |

Switching CharacteristicS at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=280 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $C_{L}=15 \mathrm{pF}$ |  | $C_{L}=50 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency |  | 40 |  | 35 |  | MHz |
| ${ }_{\text {tplH }}$ | Propagation Delay Time Low to High Level Output | Clock to Ripple Carry |  | 25 |  | 25 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Clock to Ripple Carry |  | 25 |  | 28 | ns |
| tplH | Propagation Delay Time Low to High Level Output | Clock to Any Q |  | 15 |  | 15 | ns |
| tpHL | Propagation Delay Time High to Low Level Output | Clock to Any Q |  | 15 |  | 18 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Enable T to Ripple Carry |  | 15 |  | 18 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Enable T to Ripple Carry |  | 15 |  | 18 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output (Note 3) | Clear to Any Q |  | 20 |  | 24 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: Propagation delay for clearing is measured from clear input for the 'S161 and from the clock input transition for the 'S163.


Timing Diagram
S161, S163 Synchronous BInary Counters Typical Clear, Preset, Count and Inhiblt Sequences


## Parameter Measurement Information



TL/F/6471-4
Note A: The input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%$, $\mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega$. For S161/163, $\mathrm{t}_{\mathrm{t}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$. Vary PRR to measure $f_{\text {MAX }}$.
Note B: Outputs $Q_{D}$ and carry are tested at $t_{n}+16$ for $S 161, S 163$ where $t_{n}$ is the bit time when all outputs are low.
Note C: VREF $=1.5 \mathrm{~V}$.


TL/F/6471-5
Note A: The input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%, Z_{\text {OUT }} \approx 50 \Omega$. $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$. Vary PRR to measure fmAX.
Note B: Enable'P and enable $T$ setup times are measured at $t_{\mathrm{n}}+0$.
Note C: $V_{\text {REF }}=1.5 \mathrm{~V}$.

National Semiconductor Corporation

## DM54S174/DM74S174, DM54S175/DM74S175 Hex/Quad D Flip-Flops with Clear

## General Description

These positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the quad (175) versions feature complementary outputs from each flip-flop.
Information at the $D$ inputs meeting the setup time requirements is transferred to the $Q$ outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the $D$ input signal has no effect at the output.

## Features

- S174 contain six flip-flops with single-rail outputs.

■ S175 contain four flip-flops with double-rail outputs.

- Buffered clock and direct clear inputs
- Individual data input to each flip-flop
- Applications include:

Buffer/storage registers
Shift registers
Pattern generators

- Typical clock frequency 110 MHz
- Typical power dissipation per flip-flop 75 mW


## Connection Diagrams



Function Table (Each Filip-Flop)

| Inputs |  |  | Outputs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Clear | Clock | D | Q | $\overline{\mathbf{Q}} \dagger$ |  |
| L | X | X | L | H |  |
| H | $\uparrow$ | $H$ | $H$ | L |  |
| H | $\uparrow$ | L | L | H |  |
| $H$ | L | X | $Q_{0}$ | $\bar{Q}_{0}$ |  |

[^33]```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.
```

Supply Voltage
Input Voltage5.5 V

Operating Free Air Temperature Range

DM54S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions See Section 1 for Test Waveforms and Output Load

Symbol	Parameter		DM54S174			DM74S175			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				-1			-1	mA
lOL	Low Level Output Current				20			20	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 1)		0	110	75	0	110	75	MHz
fCLK	Clock Frequency (Note 2)		0	90	65	0	90	65	MHz
t_{w}	Pulse Width (Note 1)	Clock	7			7			ns
		Clear	10			10			
	Pulse Width (Note 2)	Clock	9			9			
		Clear	12			12			
${ }^{\text {tSu }}$	Data Setup Time (Note 1)		5			5			ns
	Data Setup Time (Note 2)		7			7			
${ }_{\text {t }}^{\mathrm{H}}$	Data Hold Time (Note 1)		3			3			ns
	Data Hold Time (Note 2)		5			5			
$t_{\text {REL }}$	Clear Release Time (Note 1)		5			5			ns
	Clear Release Time (Note 2)		7			7			
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voitage	$V_{C C}=M i n, l_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, l_{O L}=M a x \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
Icc	Supply Current (S174)	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 3) } \end{aligned}$			90	144	mA
ICC	Supply Current (S175)	$\begin{aligned} & V_{\mathrm{Cc}}=\text { Max } \\ & (\text { Note 3) } \end{aligned}$			60	96	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		75		65		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Output		12		15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output		17		21	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output (S175 Only)	Clear to $\overline{\mathbf{Q}}$		15		18	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \mathrm{Q} \end{aligned}$		22		23	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: With all outputs open and 4.5 V applied to all DATA and CLEAR inputs, ICC is measured after a momentary ground, then 4.5 V applied to the CLOCK input.

Logic Diagrams

S175

TL/F/6472-4

National
Semiconductor
Corporation

DM54S181/DM74S181 Arithmetic Logic Unit/Function Generators

General Description

These arithmetic logic units (ALU)/function generators perform 16 binary arithmetic operations on two 4-bit words, as shown in Tables 1 and 2. These operations are selected by the four function-select lines (S0,S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (P and G) for the four bits in the package. When used in conjunction with the DM54S182/DM74S182 full carry look-ahead circuits, highspeed arithmetic operations can be performed. The typical addition times shown below illustrate how little time is required for addition of longer words, when full carry lookahead is employed. The method of cascading 182 circuits with these ALU's to provide multi-level full carry look-ahead is illustrated under typical applications data for the DM54S182/DM74S182.
(Continued)

Features

- Arithmetic operating modes:

Addition
Subtraction
Shift operand A one position
Magnitude comparison
Plus twelve other arithmetic operations

- Logic function modes:

EXCLUSIVE-OR
Comparator
AND, NAND, OR, NOR
Plus ten other logic operations
■ Full look-ahead for high-speed operations on long words

Pin Designations

Designation	Pin Nos.	Function
A3, A2, A1, AO	$19,21,23,2$	Word A Inputs
B3, B2, B1, B0	$18,20,22,1$	Word B Inputs
S3, S2, S1, S0	$3,4,5,6$	Function-Select Inputs
C $_{n}$	7	Inv. Carry Input
M	8	Mode Control Input
F3, F2, F1, F0	$13,11,10,9$	Function Outputs
A = B	14	Comparator Output
P	15	Carry Propagate Output
C $_{n}+4$	16	Inv. Carry Output
G	17	Carry Generate Output
VCC $_{\text {GND }}$	24	Supply Voltage
	12	Ground

General Description (Continued)

If high speed is not important, a ripple-carry input $\left(C_{n}\right)$ and a ripple-carry output $\left(C_{n}+4\right)$ are available. However, the rip-ple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.
These circuits will accommodate active-high or active-low data, if the pin designations are interpreted as shown below.
Subtraction is accomplished by 1 's complement addition, where the 1 's complement of the subtrahend is generated internally. The resultant output is $A-B-1$, which requires an end-around or forced carry to provide A-B.
The S181 can also be utilized as a comparator. The $A=B$ output is internally decoded from the function outputs (FO, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality $(A=B)$. The ALU should be in the subtract mode with $C_{n}=H$ when performing this comparison. The A $=$ B output is open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output ($\mathrm{C}_{n}+4$) can also be used to supply
relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.
These circuits have been designed to not only incorporate all of the designer's requriements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the mode-control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusiveOR, NAND, AND, NOR, and OR functions.

ALU SIGNAL DESIGNATIONS

The DM54S181/DM74S181 can be used with the signal designations of either Figure 1 or Figure 2.
The logic functions and arithmetic operations obtained with signal designations as in Figure 1 are given in Table I; those obtained with the signal designations of Figure 2 are given in Table II.

General Description (Continued)

TL/F/6473-2
FIGURE 1

TABLE I

Selection				Active High Data		
				$\mathbf{M}=\mathbf{H}$ Logic Functions	$\mathrm{M}=\mathrm{L}$; Arithmetic Operations	
S3	S2	S1	S0		$\mathrm{C}_{\mathrm{n}}=\mathrm{H}$ (no carry)	$\mathrm{C}_{\mathrm{n}}=\mathrm{L}$ (with carry)
L	L	L	L	$F=\overline{\mathrm{A}}$	$F=A$	$F=A$ Plus 1
L	L	L	H	$F=\overline{A+B}$	$F=A+B$	$F=(A+B)$ Plus 1
L	L	H	L	$F=\overline{A B}$	$F=A+\bar{B}$	$F=(A+\bar{B})$ Plus 1
L	L	H	H	$\mathrm{F}=0$	$F=$ Minus 1 (2's Compl)	$F=$ Zero
L	H	L	L	$F=\overline{A B}$	$F=A$ Plus $A \bar{B}$	$F=A$ Plus $A \bar{B}$ Plus 1
L	H	L	H	$F=\bar{B}$	$F=(A+B)$ Plus $A \bar{B}$	$F=(A+B)$ Plus $A \bar{B}$ Plus 1
L	H	H	L	$F=A \oplus B$	$F=A$ Minus B Minus 1	$F=A$ Minus B
L	H	H	H	$F=A \bar{B}$	$F=A \bar{B}$ Minus 1	$F=A \bar{B}$
H	L	L	L	$F=\bar{A}+B$	$F=A$ Plus $A B$	$F=A$ Plus AB Plus 1
H	L	L	H	$F=\overline{A \oplus B}$	$F=A$ Plus B	$F=A$ Plus B Plus 1
H	L	H	L	$\mathrm{F}=\mathrm{B}$	$F=(A+\bar{B})$ Plus $A B$	$F=(A+\bar{B})$ Plus $A B$ Plus 1
H	L	H	H	$F=A B$	$F=A B$ Minus 1	$F=A B$
H	H	L	L	$F=1$	$F=A$ Plus A^{*}	$F=A$ Plus A Plus 1
H	H	L	H	$F=A+\bar{B}$	$F=(A+B)$ Plus A	$F=(A+B)$ Plus A Plus 1
H	H	H	L	$F=A+B$	$F=(A+\bar{B})$ Plus A	$F=(A+\bar{B})$ Plus A Plus 1
H	H	H	H	$F=A$	$F=A$ Minus 1	$F=A$

${ }^{*}$ Each bit is shifted to the next more significant position.

General Description (Continued)

TABLE II

Selection				Active Low Data		
				$\mathbf{M}=\mathbf{H}$ Logic Functions	$\mathrm{M}=\mathrm{L}$; Arithmetic Operations	
S3	S2	S1	S0		$C_{\text {n }}=\mathrm{L}$ (no carry)	$\mathrm{C}_{\mathrm{n}}=\mathrm{H}$ (with carry)
L	L	L	L	$F=\bar{A}$	$F=A$ Minus 1	$F=A$
L	L	L	H	$F=\overline{A B}$	$F=A B$ Minus 1	$F=A B$
L	L	H	L	$F=\bar{A}+B$	$F=A \bar{B}$ Minus 1	$F=A \bar{B}$
L	L	H	H	$F=1$	$F=$ Minus 1 (2's Compl)	$\mathrm{F}=$ Zero
L	H	L	L	$F=\overline{A+B}$	$F=A$ Plus $(A+\bar{B})$	$F=A$ Plus $(A+\bar{B})$ Plus 1
L	H	L	H	$F=\bar{B}$	$F=A B$ Plus ($A+B$)	$F=A B$ Plus $(A+\bar{B})$ Plus 1
L	H	H	L	$F=\overline{A \oplus B}$	$F=A$ Minus B Minus 1	$F=A$ Minus B
L	H	H	H	$F=A+\bar{B}$	$F=A+\bar{B}$	$F=(A+\bar{B})$ Plus 1
H	L	L	L	$F=\bar{A} B$	$F=A$ Plus $(A+B)$	$F=A$ Plus $(A+B)$ Plus 1
H	L	L	H	$F=A \oplus B$	$F=A$ Plus B	$F=A$ Plus B Plus 1
H	L	H	L	$F=B$	$F=A \bar{B}$ Plus $(A+B)$	$F=A \bar{B}$ Plus $(A+B)$ Plus 1
H	L	H	H	$F=A+B$	$F=A+B$	$F=(A+B)$ Plus 1
H	H	L	L	$F=0$	$F=A$ Plus A^{*}	$F=$ A Plus A Plus 1
H	H	L	H	$F=A+A \bar{B}$	$F=A B$ Plus A	$F=A B$ Plus A Plus 1
H	H	H	L	$F=A B$	$F=A \bar{B}$ Plus A	$F=A \bar{B}$ Plus A Plus 1
H	H	H	H	$F=A$	$\mathrm{F}=\mathrm{A}$	$F=A$ Plus 1

*Each bit is shifted to the next more significant position.

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
Input Voltage 5.5 V
Output Voltage ($\mathrm{A}=\mathrm{B}$ Output)
Operating Free Air Temperature Range

DM54S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S181			DM74S181			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage ($\mathrm{A}=\mathrm{B}$ Output)			5.5			5.5	V
lOH	High Level Output Current (All Except A = B)			-1			-1	mA
lOL	Low Level Output Current			20			20	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
ICEX	High Level Output Current ($\mathrm{A}=\mathrm{B}$ Output)	$\begin{aligned} & V_{C C}=M i n, V_{O}=5.5 \mathrm{~V} \\ & V_{\mathrm{IL}}=M a x, V_{\mathrm{IH}}=M i n \end{aligned}$				250	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage (All Except A = B)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=2.7 V \end{aligned}$	Mode			50	$\mu \mathrm{A}$
			A or B			150	
			S			200	
			Carry			250	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.5 \mathrm{~V} \end{aligned}$	Mode			-2	mA
			A or B			-6	
			S			-8	
			Carry			-10	
los	Short Circuit Output Current (Any Output Except A = B)	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 2)		-40		-100	mA
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			120	220	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured for the following conditions: A. SO through S3, M, and A inputs at 4.5V, all other inputs grounded and all outputs open. B. SO through S3 and M inputs at 4.5 V , all other inputs grounded and all outputs open.

Symbol	Parameter	Conditions	From (Input)	To (Output)	$\begin{gathered} \text { DM54/74 } \\ \text { S181 } \end{gathered}$				Units
					$\begin{aligned} & R_{\mathrm{L}}=280 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=280 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		
					Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output		C_{n}	$C_{n}+4$		10.5		14	ns
$t_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output					10.5		14	
${ }_{\text {tpLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & M=0 V, S 0= \\ & S 3=4.5 V \\ & S 1=S 2=0 V \\ & (\overline{S U M} \text { mode }) \end{aligned}$	Any A or B	$C_{n}+4$		18.5		22	ns
$t_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output					18.5		22	
${ }^{\text {tpLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & \begin{array}{l} M=O V, S 0= \\ S 3=O V \\ S 1=S 2=4.5 \mathrm{~V} \\ \text { (DIFF mode) } \end{array} \end{aligned}$	Any A or B	$C_{n}+4$		23		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output					23		27	
${ }^{\text {PPLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & M=0 V \\ & \text { (SUM or } \\ & \overline{\text { DIFF mode) }} \end{aligned}$	C_{n}	Any F		12		14	ns
${ }^{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output					12		14	
${ }_{\text {tpLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & M=0 V, S 0= \\ & S 3=4.5 V \\ & S 1=S 2=0 V \\ & (\overline{S U M} \text { mode }) \end{aligned}$	Any A or B	G		12		15	ns
${ }^{\text {t PHL }}$	Propagation Delay Time, High-to-Low Level Output					12		15	
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & M=O V, S 0= \\ & S 3=O V \\ & S 1=S 2=4.5 \mathrm{~V} \\ & \text { (DIFF mode) } \end{aligned}$	Any A or B	G		15		19	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time, High-to-Low Level Output					15		20	
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & M=0 V, S 0= \\ & S 3=4.5 V \\ & S 1=S 2=0 V \\ & (\overline{S U M} \text { mode }) \end{aligned}$	Any A or B	P		12		15	ns
${ }^{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output					12		15	
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & M=O V, S 0= \\ & S 3=O V \\ & S 1=S 2=4.5 \mathrm{~V} \\ & \text { (DIFF mode) } \end{aligned}$	Any A or B	P		15		19	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output					15		20	
$t_{\text {PLH }}$	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & M=0 V, S 0= \\ & S 3=4.5 V \\ & S 1=S 2=0 V \\ & (\overline{S U M} \text { mode }) \end{aligned}$	A_{i} or B_{i}	F_{i}		16.5		20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output					16.5		20	
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay Time, Low-to-High Level Output	$\begin{array}{\|l\|} \hline M=O V, S O= \\ S 3=O V \\ S 1=S 2=4.5 V \\ \text { (DIFF mode) } \end{array}$	A_{i} or B_{i}	F_{i}		20		24	ns
$t_{\text {PHL }}$	Propagation Delay Time, High-to-Low Level Output					22		24	
${ }_{\text {tPLH }}$	Propagation Delay Time, Low-to-High Level Output	$\left\{\begin{array}{l} \mathrm{M}=4.5 \mathrm{~V} \\ (\operatorname{logic} \text { mode) } \end{array}\right.$	A_{i} or B_{i}	F_{i}		20		24	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time, High-to-Low Level Output					22		24	
tpLH	Propagation Delay Time, Low-to-High Level Output	$\begin{aligned} & \mathrm{M}=\mathrm{OV}, \mathrm{~S} 0= \\ & \mathrm{S} 3=O \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=4.5 \mathrm{~V} \\ & \hline \overline{\mathrm{DIFF}} \text { mode }) \end{aligned}$	Any A or B	$A=B$		23		26	ns
${ }^{\text {tPHL }}$	Propagation Delay Time, High-to-Low Level Output					30		33	

Parameter Measurement Information
Loglc Mode Test Table
Function Inputs: $\mathbf{S 1}=\mathbf{S 2}=\mathbf{M}=\mathbf{4 . 5 V}, \mathbf{S 0}=\mathbf{S 3}=\mathbf{O V}$

Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test	Output Waveform
		Apply $4.5 \mathrm{~V}$	Apply GND	Apply $4.5 \mathrm{~V}$	Apply GND		
$\frac{t_{\mathrm{PLH}}}{t_{\mathrm{PHL}}}$	A_{i}	B_{i}	None	None	Remaining A and B, C_{n}	F_{i}	Out-of-Phase
$\frac{t_{\text {PLH }}}{t_{\text {PHL }}}$	B_{i}	A_{i}	None	None	Remaining A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	F_{i}	Out-of-Phase

SUM Mode Test Table
Function Inputs: $\mathbf{S O}=\mathbf{S 3}=\mathbf{4 . 5 V}, \mathbf{S} 1=\mathbf{S 2}=\mathbf{M}=\mathbf{O V}$

Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test	Output Waveform
		Apply 4.5V	Apply GND	$\begin{gathered} \text { Apply } \\ \text { 4.5V } \end{gathered}$	Apply GND		
$\frac{\mathrm{t}_{\mathrm{PLH}}}{\mathrm{t}_{\mathrm{PHL}}}$	A_{i}	B_{i}	None	Remaining A and B	C_{n}	F_{i}	In-Phase
$t_{\text {tpLH }}$	B_{i}	A_{i}	None	Remaining A and B	C_{n}	F_{i}	In-Phase
$\frac{\mathrm{t}_{\mathrm{PLH}}}{\mathrm{t}_{\mathrm{PHL}}}$	A_{i}	B_{i}	None	None	Remaining A and B, C_{n}	P	In-Phase
$\mathrm{t}_{\text {PLH }}$	B_{i}	A_{i}	None	None	Remaining A and B, C_{n}	P	In-Phase
$\frac{t_{\mathrm{PLH}}}{\mathrm{t}_{\mathrm{PHL}}}$	A_{i}	None	B_{i}	Remaining B	Remaining A, C_{n}	G	In-Phase
$t_{\text {tPLH }}$	B_{i}	None	A_{i}	Remaining B	Remaining $\mathrm{A}, \mathrm{C}_{\mathrm{n}}$	G	In-Phase
$\frac{t_{\text {PLH }}}{t_{\text {PHL }}}$	C_{n}	None	None	$\begin{gathered} \text { All } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { All } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { Any F } \\ \text { or } C_{n}+4 \end{gathered}$	In-Phase
$\frac{t_{\mathrm{PLH}}}{t_{\mathrm{PHL}}}$	A_{i}	None	B_{i}	Remaining B	Remaining A, C_{n}	$C_{n}+4$	Out-of-Phase
$\frac{t_{\text {PLH }}}{t_{\text {PHL }}}$	B_{i}	None	A_{i}	Remaining B	Remaining A, C_{n}	$C_{n}+4$	Out-of-Phase

Parameter Measurement Information (Continued)

$\overline{\text { DIFF }}$ Mode Test Table
Function Inputs: S1 $=\mathbf{S 2}=\mathbf{4 . 5 V}, \mathrm{SO}=\mathrm{S} 3=\mathrm{M}=\mathbf{O V}$

Parameter	Input Under Test	Other Input Same Blt		Other Data Inputs		Output Under Test	Output Waveform
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND		
tPLH $\mathrm{t}_{\text {PHL }}$	A_{i}	None	B_{i}	Remaining A	Remaining B, C_{n}	F_{i}	In-Phase
${ }_{\text {tpLH }}$	B_{i}	A_{i}	None	Remaining A	$\begin{aligned} & \text { Remaining } \\ & B, C_{n} \end{aligned}$	F_{i}	Out-of-Phase
${ }_{\text {tPLH }}$	A_{i}	None	B_{i}	None	Remaining A and B, C_{n}	P	In-Phase
${ }_{\text {tPLH }}$	B_{i}	A_{i}	None	None	Remaining A and B, C_{n}	P	Out-of-Phase
${ }_{\text {tPLH }}$	A_{i}	B_{i}	None	None	Remaining A and B, C_{n}	G	In-Phase
${ }_{\text {tpLH }}$	B_{i}	None	A_{i}	None	Remaining A and B, C_{n}	G	Out-of-Phase
$\mathrm{tpLH}^{\text {tpHL }}$	A_{i}	None	B_{i}	Remaining A	Remaining $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	$A=B$	In-Phase
$\frac{t_{\mathrm{PLH}}}{\mathrm{t}_{\mathrm{PHL}}}$	B_{i}	A_{i}	None	Remaining A	Remaining B, C_{n}	$A=B$	Out-ot-Phase
$\mathrm{tpLH}_{\text {tphL }}$	C_{n}	None	None	All A and B	None	$\begin{gathered} C_{n}+4 \\ \text { or any } F \end{gathered}$	In-Phase
$\frac{t_{\mathrm{PLH}}}{t_{\mathrm{PHL}}}$	A_{i}	B_{i}	None	None	Remaining A, B, C_{n}	$\mathrm{C}_{\mathrm{n}}+4$	Out-of-Phase
$\mathrm{t}_{\text {PLH }}$	B_{i}	None	A_{i}	None	Remaining A, B, C_{n}	$C_{n}+4$	In-Phase

Logic Diagram

National
Semiconductor

DM54S182/DM74S182 Look-Ahead Carry Generators

General Description

These circuits are high-speed, look-ahead carry generators, capable of anticipating a carry across four binary adders or groups of adders. They are cascadable to perform full lookahead across n-bit adders. Carry, generate-carry, and prop-agate-carry functions are provided as shown in the pin designation table.
When used in conjunction with the 181 arithmetic logic unit, these generators provide high-speed carry look-ahead capability for any word length. Each S182 generates the lookahead (anticipated carry) across a group of four ALU's and, in addition, other carry look-ahead circuits may be employed to anticipate carry across sections of four look-ahead packages up to n-bits. The method of cascading circuits to perform multi-level look-ahead is illustrated under typical application data.
Carry input and output of the ALU's are in their true form, and the carry propagate (P) and carry generate (G) are in negated form; therefore, the carry functions (inputs, outputs,
generate, and propagate) of the look-ahead generators are implemented in the compatible forms for direct connection to the ALU. Reinterpretations of carry functions, as explained on the 181 data sheet are also applicable to and compatible with the look-ahead generator. Positive logic equations for the S182 are:

```
\(\mathrm{C}_{\mathrm{n}}+\mathrm{x}=\overline{\mathrm{G}} 0+\overline{\mathrm{P}} 0 \mathrm{C}_{\mathrm{n}}\)
\(\mathrm{C}_{\mathrm{n}}+\mathrm{y}=\overline{\mathrm{G}} 1+\overline{\mathrm{P}} 1 \overline{\mathrm{G}} 0+\overline{\mathrm{P}} 1 \overline{\mathrm{P}} 0 \mathrm{C}_{\mathrm{n}}\)
\(\mathrm{C}_{\mathrm{n}}+\mathrm{z}=\overline{\mathrm{G}} 2+\overline{\mathrm{P}} 2 \overline{\mathrm{G}} 1+\overline{\mathrm{P}} 2 \overline{\mathrm{P}} 1 \overline{\mathrm{G}} 0+\mathrm{P} 2 \overline{\mathrm{P}} 1 \overline{\mathrm{P}} 0 \mathrm{C}_{\mathrm{n}}\)
    \(\overline{\mathrm{G}}=\overline{\mathrm{G}} 3(\overline{\mathrm{P}} 3+\overline{\mathrm{G}} 2)(\overline{\mathrm{P}} 3+\overline{\mathrm{P}} 2+\overline{\mathrm{G}} 1)\)
        \((\overline{\mathrm{P}} 3+\overline{\mathrm{P}} 2+\overline{\mathrm{P}} 1+\overline{\mathrm{G}} 0)\)
    \(\overline{\mathrm{P}}=\overline{\mathrm{P}} 3 \overline{\mathrm{P}} 2 \overline{\mathrm{P}} 1 \overline{\mathrm{P}} 0\)
```


Features

- Typical propagation delay time 7 ns
- Typical power dissipation 260 mW

Pin Designations

Designation	Pin Nos.	Functlon
G0, G1, G2, G3	$3,1,14,5$	Active Low Carry Generate Inputs
P0, P1, P2, P3	$4,2,15,6$	Active Low Carry Propagate Inputs
C_{n}	13	Carry Input
$C_{n}+x_{1} C_{n}+y$ $C_{n}+z$	$12,11,9$	Carry Outputs
G	10	Active Low Carry Generate Output
P	7	Active Low Carry Propagate Output
$V_{C C}$	16	Supply Voltage
GND	8	Ground

Connection Diagram

TL/F/6474-1
Order Number DM54S182J or DM74S182N
See NS Package Number J16A or N16A

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Operating Free Air Temperature Range

DM54S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM54S182			DM74S182			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-1			-1	mA
OL	Low Level Output Current			20			20	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, I_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
${ }_{1} \mathrm{H}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	P0, P1 or G3			200	$\mu \mathrm{A}$
			P3			100	
			P2			150	
			C_{n}			50	
			G0, G2			350	
			G1			400	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.5 V \end{aligned}$	P0, P1 or G3			-8	mA
			P3			-4	
			P2			-6	
			C_{n}			-2	
			G0, G2			-14	
			G1			-16	
los	Short Circuit Output Current	$\begin{aligned} & V_{c c}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
ICCH	Supply Current with Outputs High	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 3) } \end{aligned}$	DM54		39	55	mA
			DM74		39	55	
ICCL	Supply Currents with Outputs Low	$\begin{aligned} & V_{\mathrm{CC}}=M \mathrm{Mx} \\ & \text { (Note 4) } \end{aligned}$	DM54		69	99	mA
			DM74		69	109	

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{I}_{\mathrm{CCH}}$ is measured with all outputs open, inputs P3 and G3 at 4.5 V , and all other inputs grounded.
Note 4: $\mathrm{I}_{\mathrm{CCL}}$ is measured with all outputs open, inputs G0, G1, and G2 at 4.5 V , and all other inputs grounded.

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)							
Symbol	Parameter	From (Input) To (Output)					Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Min	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{GN} \text { or PN } \\ \text { to } \mathrm{C}_{\mathrm{n}}+x_{1}, \mathrm{y}, \mathrm{z} \end{gathered}$		7		10	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { GN or PN } \\ \text { to } C_{n}+x_{1} y_{1} z \end{gathered}$		7		11	ns
tpLH	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { GN or } \mathrm{PN} \\ & \text { to } \mathrm{G} \end{aligned}$		7.5		11	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { GN or PN } \\ \text { to } \mathrm{G} \end{gathered}$		10.5		14	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{PN} \\ & \text { to } \mathrm{P} \end{aligned}$		6.5		10	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{PN} \\ & \text { to } \mathrm{P} \end{aligned}$		10		14	ns
tpl	Propagation Delay Time Low to High Level Output	$\begin{gathered} C_{n} \text { to } \\ \text { to } C_{n}+x, y, z \\ \hline \end{gathered}$		10		13	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} C_{n} \text { to } \\ \text { to } C_{n}+x, y, z \\ \hline \end{gathered}$		10.5		14	ns

Logic Diagram

TL/F/6474-2

Typical Application
64-Bit ALU, Full-Carry Look Ahead in Three Levels

TL/F/6474-3
A and B inputs, and F outputs of 181 are not shown.

National Semiconductor Corporation

DM54S194/DM74S194
 4-Bit Bidirectional Universal Shift Registers

General Description

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register; they feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-modecontrol inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (broadside) load
Shift right (in the direction Q_{A} toward Q_{D})
Shift left (in the direction Q_{D} toward Q_{A})
Inhibit clock (do nothing)
Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, SO and S1, high. The data are loaded into the associated flipflops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and S 1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.
Clocking of the flip-flop is inhibited when both mode control inputs are low.

Features

- Parallel inputs and outputs

■ Four operating modes: Synchronous parallel load Right shift Left shift Do nothing
■ Positive edge-triggered clocking

- Direct overriding clear
- Typical clock frequency 105 MHz

国 Typical power dissipation 425 mW

Connection Diagram

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage 7V
Input Voltage
Operating Free Air Temperature Range

DM54S
DM74S
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54S194			DM74S194			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				-1			-1	mA
lOL	Low Level Output Current				20			20	mA
${ }^{\text {f CLK }}$	Clock Frequency (Note 1)		0	105	70	0	105	70	MHz
${ }^{\text {f CLK }}$	Clock Frequency (Note 2)		0	90	60	0	90	60	MHz
tw	Pulse Width (Note 3)	Clock	7			7			ns
		Clear	12			12			
tsu	Setup Time (Note 3)	Mode	11			11			ns
		Data	5			5			
t_{H}	Hold Time (Note 3)		3			3			ns
$t_{\text {REL }}$	Clear Release Time (Note 3)		9			9			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
If	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.5 \mathrm{~V}$				-2	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 5) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
ICC	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 6)			85	135	mA

Note 4: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: With all outputs open, inputs A through D grounded, and 4.5 V applied to $\mathrm{SO}, \mathrm{S} 1, \mathrm{CLEAR}$, and the SERIAL inputs, I_{CC} is tested with a momentary ground, then 4.5 V applied to CLOCK.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	MIn	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		70		60		MHz
tpLH	Propagation Delay Time Low to High Level Output	Clock to Q		12		15	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q		16.5		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Q		18.5		23	ns

Function Table

Inputs										Outputs			
Clear	Mode		Clock	Serial		Parallel				a_{A}	Q_{B}	a_{c}	$Q_{\text {D }}$
	S1	so		Left	Right	A	B	c	D				
L	x	x	X	X	X	x	X	X	X	L	L	L	L
H	X	x	L	X	X	x	x	x	x	Q_{AO}	Q BO	$\mathrm{Q}_{\mathrm{c} 0}$	$Q_{D 0}$
H	H	H	\uparrow	x	X	a	b	c	d	a	b	c	d
H	L	H	\uparrow	X	H	X	X	X	x	H	$Q_{\text {An }}$	$Q_{B n}$	Q_{C}
H	L	H	\uparrow	X	L	x	x	X	x	L	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$
H	H	L	\uparrow	H	x	X	x	x	x	$Q_{B n}$	$Q_{\text {cn }}$	$Q_{\text {Dn }}$	H
H	H	L	\uparrow	L	x	X	x	x	x	$Q_{B n}$	$Q_{\text {cn }}$	$Q_{\text {Dn }}$	L
H	L	L	x	x	x	x	x	x	x	$Q_{A 0}$	$Q_{B 0}$	$Q_{\text {co }}$	$Q_{D 0}$

$H=$ High Level (steady state). L = Low Level (steady state). $X=$ Don't Care (any input, including transitions).
$\uparrow=$ Transition from low to high level.
$a, b, c, d=$ The level of steady state input at inputs A, B, C, or D, respectively.
$Q_{A O}, Q_{B 0}, Q_{C O}, Q_{D O}=$ The level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady state input conditions were established.
$Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ The level of Q_{A}, Q_{B}, Q_{C} respectively, before the most recent \uparrow transition of the clock.

Logic Diagram

Typical Clear, Load, Right-Shift, Left-Shift, Inhibit, and Clear Sequences

DM54S195/DM74S195 4-Bit Parallel Access Shift Registers

General Description

These 4-bit registers feature parallel inputs, parallel outputs, $J-\bar{K}$ serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The registers have two modes of operation:

Parallel (broadside) load
Shift (in the direction Q_{A} toward Q_{D})
Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.
Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J-K inputs. These inputs permit the first stage to perform as a $J-\bar{K}, D$, or T-type flip-flop as shown in the truth table.

The high-performance S195, with a 105 MHz typical shift frequency, is particularly attractive for very high-speed data processing systems. In most cases existing systems can be upgraded merely by using this Schottky-clamped shift register.

Features

E Synchronous parallel load

- Positive-edge-triggered clocking
- Parallel inputs and outputs from each flip-flop
- Direct overriding clear
- J and \bar{K} inputs to first stage
- Complementary outputs from last stage
- For use in high-performance:
accumulators/processors
serial-to-parallel, parallel-to-serial converters
- Typical clock frequency 105 MHz

■ Typical power dissipation 350 mW

Connection Diagram

TL/F/6476-1
Order Number DM54S195J or DM74S195N See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note)

Specifications for Milltary/Aerospace products are not contalned in this datasheet. Refer to the associated rellability electrical test speclfications document.
Supply Voltage 7V
Input Voltage 5.5V
Operating Free Air Temperature Range

DM54S
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54S195			DM74S195			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.8			0.8	V
${ }^{10 \mathrm{H}}$	High Level Output Current				-1			-1	mA
lOL	Low Level Output Current				20			20	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 1)		0	105	70	0	105	70	MHz
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 2)		0	90	60	0	90	60	MHz
tw	Pulse Width (Note 3)	Clock	7			7			ns
		Clear	12			12			
tsu	Setup Time (Note 3)	Shift/Load	11			11			ns
		Data	5			5			
t_{H}	Data Hold Time (Note 3)		3			3			ns
$t_{\text {REL }}$	Shift/Load Release Time (Note 3)		6			6			ns
	Clear Release Time (Note 3)		9			9			
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 5) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 6)			70	109	mA

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 6: With all inputs open, SHIFT/LOAD grounded, and 4.5 V applied to the J, K, and data inputs, ICc is measured by applying a momentary ground, then 4.5 V to the CLEAR and then applying a momentary ground then 4.5 V to the CLOCK.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		70		60		MHz
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		12		15	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		16.5		20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clear to Any Q		18.5		23	ns

Function Table

Inputs									Outputs				
Clear	Shift/ Load	Clock	Serial		Parallel				\mathbf{a}_{A}	Q_{B}	Q_{c}	$Q_{\text {D }}$	$\overline{\mathbf{Q}}_{\mathbf{D}}$
			J	\bar{K}	A	B	c	D					
L	x	X	x	x	X	X	x	x	L	L	L	L	H
H	L	\uparrow	x	x	a	b	c	d	a	b	c	d	d
H	H	L	x	x	x	x	x	x	$\mathrm{Q}_{\text {AO }}$	$\mathrm{Q}_{\text {B0 }}$	$Q_{C 0}$	$Q_{\text {D }}$	$\overline{\mathrm{Q}}_{\mathrm{D}}$
H	H	,	L	H	x	x	x	x	$Q_{\text {AO }}$	$\mathrm{Q}_{\text {A0 }}$	Q_{Bn}	$Q_{\text {cn }}$	$\overline{\mathrm{Q}}_{\mathrm{C}}$
H	H	\uparrow	L	L	x	X	X	x	1	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	$Q_{C n}$	$\overline{\mathrm{Q}}_{\mathrm{C}}$
H	H	\uparrow	H	H	x	x	x	x	H	$Q_{\text {An }}$	Q_{Bn}	$Q_{C n}$	$\overline{\mathrm{Q}}_{\mathrm{C}}$
H	H	\uparrow	H	L	X	X	x	X	$\overline{\mathrm{Q}}_{\text {An }}$	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	$Q_{C n}$	$\overline{\mathrm{Q}}_{\mathrm{C}}$

$H=$ High Level (steady state), $L=$ Low Level (steady state), $X=$ Don't Care (any input, including transitions)
$\uparrow \Rightarrow$ Transition from low to high level
$a, b, c, d=$ The level of steady state input at A, B, C, or D, respectively.
$Q_{A 0}, Q_{B 0}, Q_{C 0}, Q_{D 0}=$ The level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady state input conditions were established.
$Q_{A n}, Q_{B n}, Q_{C n}=$ The level of Q_{A}, Q_{B}, Q_{C}, respectively, before the most recent transition of the clock.

Logic Diagram

TL/F/6476-2

Timing Diagram

DM54S240/DM74S240, DM54S241/DM74S241, DM54S244/DM74S244 Octal TRI-STATE ${ }^{\circledR}$ Buffers/Line Drivers/Line Receivers

General Description

These buffers/line drivers are designed to improve both the performance and PC board density of TRI-STATE buffers/ drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs, and can be used to drive terminated lines down to 133Ω.

Features

- TRI-STATE outputs drive bus lines directly
- PNP inputs reduce DC loading on bus lines
- Hysteresis at inputs improves noise margins
- Typical lol (sink current)

54 S 48 mA
74S 64 mA

- Typical I_{OH} (source current)

54S - 12 mA
$74 \mathrm{~S}-15 \mathrm{~mA}$

- Typical propagation delay times Inverting 4.5 ns Noninverting 6 ns
- Typical enable/disable times 9 ns
- Typical power dissipation (enabled)

Inverting 450 mW
Noninverting 538 mW

Connection Diagrams

Dual-In-Line Package

Order Number DM54S240J, DM74S240WM or DM74S240N

See NS Package Number J20A, M14B or N20A

Dual-In-Line Package

TL/F/6478-2
Order Number DM54S241J or DM74S241N
See NS Package Number J20A or N20A

Dual-In-Line Package

Order Number DM54S244J, DM74S244WM or DM74S244N
See NS Package Number
J20A, M14B or N20A

Absolute Maximum Ratings (Note)	
Specifications for Military/Aerospace products are not	
contained in this datasheet. Refer to the associated	
reliability electrical test specifications document.	
Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM54S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DM74S	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S			DM74S			Units
		Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-12			-15	mA
lOL	Low Level Output Current			48			64	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V
H_{ys}	Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$		0.2	0.4		V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	DM74	2.7			
		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$		2.4	3.4		V
		$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{I H}=2 \mathrm{~V} \\ & V_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$		2			
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min} \quad \mathrm{l}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$	DM54			0.55	V
			DM74			0.55	
lozh	Off-State Output Current, High Level Voltage Applied	$\begin{aligned} & V_{C C}=M a x \\ & V_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
lozl	Off-State Output Current, Low Level Voltage Applied		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$V_{C C}=\operatorname{Max} \quad V_{1}=5.5 \mathrm{~V}$				1	mA
${ }^{1 H}$	High Level Input Current	$V_{C C}=\operatorname{Max} \quad V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max} \quad V_{1}=0.5 \mathrm{~V}$	Any A			-400	$\mu \mathrm{A}$
			Any G			-2	mA

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 2)		-50		-225	mA
ICC	Supply Current	Outputs High	DM54S240		80	123	mA
			DM74S240		80	135	
			DM54S241, 244		95	147	
			DM74S241, 244		95	160	
		Outputs Low	DM54S240		100	145	
			DM74S240		100	150	
			DM54S241, 244		120	170	
			DM74S241, 244		120	180	
		Outputs Disabled	DM54S240		100	145	
			DM74S240		100	150	
			DM54S241, 244		120	170	
			DM74S241, 244		120	180	

Note 1: All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time and duration should not exceed one second.
Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions		Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S240	2	7	ns
			DM54/74S241, 244	2	9	
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S240	2	7	ns
			DM54/74S241, 244	2	9	
$t_{\text {PZL }}$	Output Enable Time to Low Level	$\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S240	3	15	ns
			DM54/74S241, 244	3	15	
$t_{\text {PZH }}$	Output Enable Time to High Level	$\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S240	2	10	ns
			DM54/74S241, 244	3	12	
$t_{\text {PLZ }}$	Output Disable Time from Low Level	$\begin{aligned} & C_{L}=5 \mathrm{pF} \\ & R_{L}=90 \Omega \end{aligned}$	DM54/74S240	4	15	ns
			DM54/74S241, 244	2	15	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time from High Level	$\begin{aligned} & C_{L}=5 \mathrm{pF} \\ & R_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S240	2	9	ns
			DM54/74S241, 244	2	9	
${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S240	3	10	ns
			DM54/74S241, 244	4	12	
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{L}=90 \Omega \end{aligned}$	DM54/74S240	3	10	ns
			DM54/74S241, 244	4	12	
$t_{\text {PZL }}$	Output Enable Time to Low Level	$\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{L}=90 \Omega \end{aligned}$	DM54/74S240	6	21	ns
			DM54/74S241, 244	6	21	
$t_{\text {PZH }}$	Output Enable Time to High Level	$\begin{aligned} & C_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S240	4	12	ns
			DM54/74S241, 244	4	15	

National Semiconductor Corporation

DM54S251/DM74S251 TRI-STATE® 1 of 8 Line Data Selector/Multiplexer

General Description

These data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources, and feature a strobe-controlled TRI-STATE output. The strobe must be at a low logic level to enable these devices. The TRI-STATE outputs permit direct connection to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totempole outputs.
To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time.

Features

- TRI-STATE version of S151
- Interface directly with system bus
- Perform parallel-to-serial conversion

■ Permit multiplexing from N -lines to one line

- Complementary outputs provide true and inverted data
- Max no. of common outputs 54S 39 74S 129
- Typical propagation delay time (D to Y) 8 ns

■ Typical power dissipation 275 mW

Function Table

Inputs				Outputs	
Select			Strobe	Y	W
C	B	A	S		
X	X	X	H	Z	Z
L	L	L	L	D0	$\overline{\text { D0 }}$
L	L	H	L	D1	$\overline{\text { D1 }}$
L	H	L	L	D2	$\overline{\text { D2 }}$
L	H	H	L	D3	$\overline{\text { D3 }}$
H	L	L	L	D4	$\overline{\text { D4 }}$
H	L	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	$\overline{\text { D6 }}$
H	H	H	L	D7	$\overline{\text { D7 }}$

$H=$ High Logic Level, $L=$ Low Logic Level
$X=$ Don't Care, $Z=$ High Impedance (Off)
D0, D1 \ldots D7 = The Level of the respective D input

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S251			DM74S251			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
IOH^{2}	High Level Output Current			-2			-6.5	mA
loL	Low Level Output Current			20			20	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.4	3.4		V
			DM74	2.4	3.2		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{I}_{\text {IH }}$	High Level Input	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				50	$\mu \mathrm{A}$
lozl.	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.5 \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-50	$\mu \mathrm{A}$
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-40		-100	mA
			DM74	-40		-100	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$ (Note 3)			55	85	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: I_{CC} is measured with the outputs open and all inputs at 4.5 V .

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
tpLH	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { A, B, or C } \\ (4 \text { Levels) to } Y \end{gathered}$		18		21	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { A, B, or C } \\ (4 \text { Levels) to } Y \end{gathered}$		19.5		23	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	A, B, or C (3 Levels) to W		15		18	ns
${ }_{\text {tphL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { A, B, or C } \\ \text { (3 Levels) to W } \end{gathered}$		13.5		17	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	D to Y		12		15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	D to Y		12		15	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	D to W		7		10	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	D to W		7		10	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level Output	Strobe to Y				19.5	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output	Strobe to Y				21	ns
${ }_{\text {tPHZ }}$	Output Disable Time to High Level Output (Note 1)	Strobe to Y		8.5			ns
${ }_{\text {tpLZ }}$	Output Disable Time to Low Level Output (Note 1)	Strobe to Y		14			ns
tpzH	Output Enable Time to High Level Output	Strobe to W				19.5	ns
tpZL	Output Enable Time to Low Level Output	Strobe to W				21	ns
tPHZ	Output Disable Time to High Level Output (Note 1)	Strobe to W		8.5			ns
${ }_{\text {tpLZ }}$	Output Disable Time to Low Level Output (Note 1)	Strobe to W		14			ns

Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Logic Diagram

DM54S253/DM74S253
 Dual TRI-STATE ${ }^{\circledR} 1$ of 4 Line Data Selectors/Multiplexers

General Description

Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR gates. Separate output control inputs are provided for each of the two four-line sections.
The TRI-STATE outputs can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enable output will drive the bus line to a high or low logic level.

Features

- TRI-STATE version of S153 with same pin-out
- Schottky-diode-clamped transistors
- Permits multiplexing from \mathbf{N} lines to 1 line
- Performs parallel-T-serial conversion
- Strobe/output control
- High fan-out totem-pole outputs
- Typical propagation delay

From data to output 6 ns
From select to output 12 ns
■ Typical power dissipation 275 mW

Connection Diagram

Order Number DM54S253J or DM74S253N NS Package Number J16A or N16A

Function Table

Select Inputs	Data Inputs					Output Control	Output
B	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	X	H	Z
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Address inputs A and B are common to both sections. H = High Level, $L=$ Low Level, $X=$ Don't Care, $\mathbf{Z}=$ High Impedance

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contalned in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage 5.5 V
Operating Free Air Temperature Range
DM54S
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S253			DM74S253			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-2			-6.5	mA
$\mathrm{IOL}^{\text {a }}$	Low Level Output Current			20			20	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$,		-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.4	3.4		V
			DM74	2.4	3.2		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, l_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$V_{C C}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
l OZH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				50	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-50	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$ (Note 3)			55	70	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		9		12	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		9		12	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Select to Y		18		21	ns
tphL	Propagation Delay Time High to Low Level Output	Select to Y		18		21	ns
tpzH	Output Enable Time to High Level Output	Output Control to Y		16.5		19.5	ns
${ }_{\text {tPZL }}$	Output Enable Time to Low Level Output	Output Control to Y		18		21	ns
$t_{\text {PHZ }}$	Output Disable Time to High Level Output (Note 1)	Output Control to Y		9.5			ns
${ }_{\text {tpLz }}$	Output Disable Time to Low Level Output (Note 1)	Output Control to Y		15			ns

Note 1: $C_{L}=5 \mathrm{pF}$.

Logic Diagram

DM54S257/DM74S257, DM54S258/DM74S258 TRI-STATE® Quad 1 of 2 Data Selectors/Multiplexers

General Description

These Schottky-clamped high-performance multiplexers feature TRI-STATE outputs that can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output enable circuitry is designed such that the output disable times are shorter than the output enable times.
This TRI-STATE output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

Features

- TRI-STATE versions S157, S158, with same pin-outs
- Schottky-clamped for significant improvement in A-C performance
- Provides bus interface from multiple sources in highperformance systems
- Average propagation delay from data input S257 4.8 ns
S258 4 ns
- Typical power dissipation S257 320 mW S258 280 mW

Connection Diagrams

TL/F/6482-1

Function Table

Inputs					Output Y	
Output Control	Select	A	B	S257	S258	
H	X	X	X	Z	Z	
L	L	L	X	L	H	
L	L	H	X	H	L	
L	H	X	L	L	H	
L	H	X	H	H	L	

[^34]
Absolute Maximum Ratings

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
7V
Input Voltage
5.5 V

Operating Free Air Temperature Range

DM54S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S257			DM74S257			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
l_{OH}	High Level Output Current			-2			-6.5	mA
lOL	Low Level Output Current			20			20	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'S257 Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.4	3.4		V
			DM74	2.4	3.2		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=2.7 V \end{aligned}$	Select			100	$\mu \mathrm{A}$
			Other			50	
I_{IL}	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x, \\ & V_{1}=0.5 V \end{aligned}$	Select			-4	mA
			Other			-2	
IOZH	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				50	$\mu \mathrm{A}$
IozL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.5 \mathrm{~V} \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-50	$\mu \mathrm{A}$
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	DM54	-40		-100	mA
			DM74	-40		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{C C}=$ Max (Note 3)			44	68	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$ (Note 3)			60	93	mA
ICCZ	Supply Current with Outputs Disabled	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			64	99	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.

'S257 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
tpLH	Propagation Delay Time Low to High Level Output	Data to Output		7.5		11	ns
tPHL	Propagation Delay Time High to Low Level Output	Data to Output		6.5		10	ns
tpLH	Propagation Delay Time Low to High Level Output	Select to Output		15		16	ns
tPHL	Propagation Delay Time High to Low Level Output	Select to Output		15		16	ns
tpzH	Output Enable Time to High Level Output	Output Control to Y		19.5		23	ns
tpzL.	Output Enable Time to Low Level Output	Output Control to Y		21		24	ns
$t_{\text {PHZ }}$	Output Disable Time to High Level Output (Note 1)	Output Control to Y		8.5			ns
tpLz	Output Disable Time to Low Level Output (Note 1)	Output Control to Y		14			ns

Note 1: $C_{L}=5 \mathrm{pF}$.
Recommended Operating Conditions

Symbol	Parameter	DM54S258			DM74S258			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{H}	High Level Input Voltage	2			2			V
$V_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-2			-6.5	mA
lOL	Low Level Output Current			20			20	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'S258 Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Unlts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$	DM54	2.4	3.4		V
			DM74	2.4	3.2		
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x, \\ & V_{1}=2.7 V \end{aligned}$	Select			100	$\mu \mathrm{A}$
			Other			50	
ILL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x, \\ & V_{1}=0.5 V \end{aligned}$	Select			-4	mA
			Other			-2	

'S258 Electrical Characteristics over recommended operating free air temperature (unless otherwise noted) (Continued)							
Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Unlts
${ }^{1} \mathrm{OzH}$	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, V_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				50	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=M a x, V_{O}=0.5 \mathrm{~V} \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$				-50	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
${ }^{\text {ICCH }}$	Supply Current with Outputs High	$\begin{aligned} & \mathrm{V}_{C C}=\text { Max } \\ & \text { (Note 3) } \end{aligned}$			36	56	mA
ICCL	Supply Current with Outputs Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 3) } \end{aligned}$			52	81	mA
Iccz	Supply Current with Outputs Disabled	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 3) } \\ & \hline \end{aligned}$			56	87	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.

'S258 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Data to Output		6		9	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Output		6		9	ns
${ }^{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	Select to Output		12		15	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Select to Output		12		15	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level Output	Output Control to Y		19.5		23	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output	Output Control to Y		21		24	ns
$t_{\text {PHZ }}$	Output Disable Time to High Level Output (Note 1)	Output Control to Y		8.5			ns
${ }^{\text {tpLZ }}$	Output Disable Time to Low Level Output (Note 1)	Output Control to Y		14			ns

Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$.

Logic Diagrams

TL/F/6482-4

National Semiconductor Corporation

DM54S280/DM74S280 9-Bit Parity Generators/Checkers

General Description

These universal, nine-bit parity generators/checkers utilize Schottky-clamped TTL high-performance circuitry, and feature odd/even outputs to facilitate operation of either odd or even parity applications. The word-length capability is easily expanded by cascading.
The S280 can be used to upgrade the performance of most systems utilizing the DM74180 parity generator/checker. Although the S280 is implemented without expander inputs, the corresponding function is provided by the availability of all input at pin 4, and no internal connection at pin 3. This permits the S280 to be substituted for the 180 in existing designs to produce an identical function, even if S280's are mixed with existing 180's.

Input buffers are provided so that each input represents only one normal 74 S load, and full fan-out to 10 normal Series 74S loads is available from each of the outputs at low logic levels. A fan-out to 20 normal Series 74 S loads is provided at high logic levels, to facilitate connection of unused inputs to used inputs.

Features

- Generates either odd or even parity for nine data lines
- Cascadable for N -bits
- Can be used to upgrade existing systems using MSI parity circuits
- Typical data-to-output delay-14 ns

Connection Diagram

TL/F/6483-1
Order Number DM54S280J, DM74S280M or DM74S280N See NS Package Number J14A, M14A or N14A

Function Table

Number of Inputs (A Thru I) that are High	Outputs	
$0,2,4,6,8$	H	L
$1,3,5,7,9$	L	H

Absolute Maximum Ratings (Note)

Specifications for Milltary/Aerospace products are not contained In this datasheet. Refer to the assoclated reliability electrical test specifications document.

Supply Voltage

Input Voltage
Operating Free Air Temperature Range

DM54S

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S280			DM74S280			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-1			-1	mA
lOL	Low Level Output Current			20			20	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
V OH	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=M i n \end{aligned}$		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & V_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
1 H	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
$1 / 2$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-2	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
ICC	Supply Current	$V_{C C}$ Max (Note 3)			67	105	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all inputs grounded and all outputs open.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=280 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		$\begin{aligned} & R_{\mathrm{L}}=280 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		Units
			Min	Max	Min	Max	
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Data to Σ Even		21		24	ns
tPHL	Propagation Delay Time High to Low Level Output	Data to Σ Even		18		21	ns
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Data to Σ Odd		21		24	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Σ Odd		18		21	ns

Logic Diagram

TL/F/6483-2

Typical Applications

Three S280's can be used to implement a 25 -line parity generator/checker. This arrangement will provide parity in typically 25 ns . (See Figure 1.)
As an alternative, the outputs of two or three parity generators/checkers can be decoded with a 2-input (S86) or

TL/F/6483-3
FIGURE 1. 25-Line Parity/Generator Checker

3-input (S135) exclusive-OR gate for 18 or 27 -line parity applications.
Longer word lengths can be implemented by cascading S280's. As shown in Figure 2, parity can be generated for word lengths up to 81 bits in typically 25 ns .

National Semiconductor Corporation

DM54S283/DM74S283 4-Bit Binary Adders with Fast Carry

General Description

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial lookahead performance at the economy and reduced package count of a ripple-carry implementation.
The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Features

- Full-carry look-ahead across the four bits
- Systems achieve partial look-ahead performance with the economy of ripple carry
- Typical add times

Two 8-bit words 15 ns
Two 16-bit words 30 ns

- Typical power dissipation 510 mW

Connection Diagram

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage $7 V$
Input Voltage 5.5 V

Operating Free Air Temperature Range

DM54S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S283			DM74S283			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
lOH	High Level Output Current (Output C4)			-0.5			-0.5	mA
	High Level Output Current (Other Outputs)			-1			-1	
IOL	Low Level Output Current (Output C4)			10			10	mA
	Low Level Output Current (Other Outputs)			20			20	
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
VOH	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & l_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{l}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
L_{L}	Low Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=0.5 \mathrm{~V}$				-2	mA
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	C4 Output	-20		-100	mA
			Other Outputs	-40		-100	
ICC1	Supply Current	$V_{C C}=$ Max (Note 3)			80	120	mA
ICC2	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 4)			95	160	mA

Note 1: All typicals are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: $\mathrm{I}_{\mathrm{C} 1}$ is measured with all outputs open, all B inputs low and all other inputs at 4.5 V .
Note 4: $\mathrm{I}_{\mathrm{CC} 2}$ is measured with all outputs open and all inputs at 4.5 V .

Symbol	Parameter	From (Input) To (Output)	$R_{L}=280 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \Sigma 1 \text { or } \Sigma 2 \\ \hline \end{gathered}$		18		20	ns
tphL	Propagation Delay Time High to Low Level Output	$\begin{gathered} C 0 \text { to } \\ \Sigma 1 \text { or } \Sigma 2 \\ \hline \end{gathered}$		18		20	ns
tplH $^{\text {l }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \Sigma 3 \\ \hline \end{gathered}$		18		20	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \Sigma 3 \\ \hline \end{gathered}$		18		20	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{CO} \text { to } \\ \Sigma 4 \\ \hline \end{gathered}$		18		20	ns
tphL	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { C0 to } \\ \Sigma 4 \\ \hline \end{gathered}$		18		20	ns
tple	Propagation Delay Time Low to High Level Output	$\begin{aligned} & A_{i}, B_{i} \\ & \text { to } S_{i} \end{aligned}$		18		20	ns
$\mathrm{tPHL}^{\text {P }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & A_{i}, B_{i} \\ & \text { to } S_{i} \\ & \hline \end{aligned}$		18		20	ns
$\mathrm{tpLH}^{\text {l }}$	Propagation Delay Time Low to High Level Output (Note 1)	$\begin{gathered} \hline \mathrm{CO} \text { to } \\ \Sigma 4 \\ \hline \end{gathered}$		11		15	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output (Note 1)	$\begin{gathered} \mathrm{CO} \text { to } \\ \Sigma 4 \\ \hline \end{gathered}$		11		15	ns
tpLH	Propagation Delay Time Low to High Level Output (Note 1)	$\begin{aligned} & A_{i}, B_{i} \\ & \text { to } C 4 \end{aligned}$		12		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output (Note 1)	$\begin{aligned} & \mathrm{A}_{\mathrm{j}}, \mathrm{~B}_{\mathrm{i}} \\ & \text { to } \mathrm{C} 4 \end{aligned}$		12		16	ns

Note $1: \mathrm{R}_{\mathrm{L}}=560 \mathrm{n}$.
Function Table
(

National Semiconductor Corporation

DM54S299/DM74S299
 TRI-STATE ${ }^{\circledR}$ 8-Bit Universal Shift/Storage Registers

Description

This Schottky TTL eight-bit universal register features multiplexed inputs/outputs to achieve full eight bit data handling in a single 20-pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table.
Synchronous parallel loading is accomplished by taking both function-select lines, S 0 and S 1 , high. This places the TRI-STATE outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off.

Features

- Multiplexed inputs/outputs provide improved bit density
- Four modes of operation: Hold (Store) Shift Left Shift Right Load Data
- TRI-STATE outputs drive bus lines directly ■ Can be cascaded for N -bit word lengths
- Operates with outputs enabled or at high Z
- Guaranteed shift (clock) frequency 50 MHz

■ Typical power dissipation 700 mW

TL/F/6485-1
Order Number DM54S299J or DM74S299N See NS Package Number J20A or N20A

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter		DM54S299			DM74S299			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
lOH	High Level Output Current (Q_{A} thru Q_{H})				-2			-6.5	mA
	High Level Output Current ($\mathrm{Q}_{\mathrm{A}^{\prime}}, \mathrm{Q}_{H^{\prime}}$)				-0.5			-0.5	
lOL	Low Level Output Current (Q_{A} thru Q_{H})				20			20	mA
					6			6	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)		0	70	50	0	70	50	MHz
fCLK	Clock Frequency (Note 3)		0	60	40	0	60	40	MHz
tw	Pulse Width (Note 5)	Clock High	10			10			ns
		Clock Low	10			10			
		Clear Low	10			10			
${ }^{\text {tsu }}$	Setup Time (Notes 4 \& 5)	Select	$15 \uparrow$			$15 \uparrow$			ns
		Data High	$7 \uparrow$			$7 \uparrow$			
		Data Low	$5 \uparrow$			$5 \uparrow$			
t_{H}	Hold Time (Notes 4 \& 5)		$5 \uparrow$			$5 \uparrow$			ns
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 5)		$10 \uparrow$			$10 \uparrow$			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 2: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: Data includes the two serial inputs and the eight input/output data lines.
Note 5: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	Q_{A} thru Q_{H}	2.4	3.2		V
			$Q_{A^{\prime}}, Q_{H^{\prime}}$	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.5	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	A thru H , SO, S1			100	$\mu \mathrm{A}$
			Any Other			50	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
ILL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.5 \mathrm{~V} \end{aligned}$	Clock, Clear			-2	mA
			S0, S1			-0.5	
			Other			-0.25	
lozh	Off-State Output Current with High Level Output Voltage Applied $\left(Q_{A}\right.$ thru $\left.Q_{H}\right)$	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				100	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied $\left(Q_{A}\right.$ thru $\left.Q_{H}\right)$	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, V_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				-250	$\mu \mathrm{A}$
los	Short Circuit Output Current (Q_{A} thru Q_{H})	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
	Short Circuit Output Current ($\mathrm{Q}_{\mathrm{A}^{\prime}}, \mathrm{Q}_{\mathrm{H}^{\prime}}$)	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-100	
			DM74	-20		-100	
ICC	Supply Current	$V_{C C}=M a x$			140	225	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$ (Note 2)				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency	(Note 3)	50		40		MHz
tplH	Propagation Delay Time Low to High Level Output (Note 2)	$\begin{aligned} & \text { Clock to } \\ & Q_{A^{\prime}} \text { or } Q_{H^{\prime}} \end{aligned}$		20		22	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output (Note 2)	$\begin{gathered} \text { Clock to } \\ Q_{A^{\prime}} \text { or } Q_{H^{\prime}} \end{gathered}$		20		23	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clock to } \\ & Q_{A} \text { thru } Q_{H} \end{aligned}$				21	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clock to } \\ & Q_{A} \text { thru } Q_{H} \end{aligned}$				21	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output (Note 2)	$\begin{gathered} \text { Clear to } \\ \mathrm{Q}_{\mathrm{A}^{\prime}} \text { or } \mathrm{Q}_{\mathrm{H}^{\prime}} \end{gathered}$		21		24	ns
tphL	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { Clear to } \\ Q_{A} \text { thru } Q_{H} \end{gathered}$				24	ns
tpzH	Output Enable Time to High Level Output	$\overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2$ to Q_{A} thru Q_{H}				18	ns
tpzL	Output Enable Time to Low Level Output	$\overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2$ to Q_{A} thru Q_{H}				18	ns
$t_{\text {PHZ }}$	Output Disable Time to High Level Output (Note 1)	$\begin{aligned} & \overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2 \text { to } \\ & \mathrm{Q}_{\mathrm{A}} \text { thru } \mathrm{Q}_{\mathrm{H}} \end{aligned}$		12			ns
tplz	Output Disable Time to Low Level Output (Note 1)	$\overline{\mathrm{G}} 1, \overline{\mathrm{G}} 2$ to Q_{A} thru Q_{H}		12			ns

Note 1: $C_{L}=5 \mathrm{pF}$.
Note 2: $R_{L}=1 \mathrm{~K} \Omega$ for delays measured to $Q_{A^{\prime}}$ and $Q_{H^{\prime}}$.
Note 3: For testing $f_{\text {MAX }}$ all outputs are loaded simultaneously.

Function Table

Mode	Inputs								Inputs/Outputs								Outputs	
	Clear	Function Select		Output Control		Clock	$\begin{aligned} & \text { Serial } \\ & \text { SL SR } \end{aligned}$		$\mathrm{A}^{\prime} \mathrm{Q}_{\mathrm{A}}$	B / Q_{B}	c/ac	D/Q ${ }_{\text {d }}$	E / Q_{E}	$\mathrm{F}^{\text {/ }}$ F	$\mathrm{G} / \mathrm{Q}_{\mathrm{G}}$	H/Q H	$\mathrm{a}_{A^{\prime}}$	Q_{H}
		S1	so	G/ \dagger	$\overline{\mathrm{G}} 2 \dagger$													
Clear	L	\times	L		L	X			L	L	L	L	L	L	L	L	L	L
	L	L	x		L	x			L	L	L	L	L	L	L	L	L	L
Hold	H	L	L			X			$\mathrm{Q}_{\text {AO }}$	Q_{B0}	$Q_{\text {co }}$	$Q_{\text {Do }}$	$\mathrm{Q}_{\mathrm{E} 0}$	$\mathrm{Q}_{\text {Fo }}$	Q_{Go}	Q H	$\mathrm{Q}_{\text {AO }}$	Q ${ }_{\text {Ho }}$
	H	X	X		L	L			$Q_{\text {AO }}$	$\mathrm{Q}_{\text {B0 }}$	$Q_{\text {co }}$	$Q_{\text {Do }}$	Q_{E}	$\mathrm{Q}_{\text {Fo }}$	$Q_{G 0}$	Qно		$Q_{\text {HO }}$
Shift Right	H	,	H		L	\uparrow			H	$Q_{\text {An }}$	$Q_{\text {Bn }}$	$Q_{C n}$	QDn	QEn	$\mathrm{Q}_{\text {F }}$	Q_{Gn}	H	Q_{Gn}
	H	L	H	L	L	\uparrow	X	L	L	$Q_{\text {An }}$	Q_{Bn}	$Q_{C n}$	$Q_{\text {D }}$	Q_{E}	$Q_{F n}$	Q_{Gn}	L	Q_{Gn}
Shift Left									Q_{Bn}	$Q_{C n}$	$Q_{\text {Dn }}$	$Q_{\text {En }}$	$\mathrm{Q}_{\text {Fn }}$		Q_{Hn}	H	Q_{Bn}	H
	H	H	L		L	\uparrow			Q ${ }_{\text {n }}$	$Q_{\text {cn }}$	$Q_{\text {Dn }}$	Q_{En}	$\mathrm{Q}_{\text {Fn }}$	Q_{Gn}	Q_{Hn}	L	Q_{Bn}	L
Load	H	H	H	x	X	\uparrow	X	x	a	b	c	d	e	f	g	h	a	h

tWhen one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected
a...h $=$ the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.
$\mathrm{Q}_{\mathrm{A} 0} \ldots \mathrm{Q}_{\mathrm{HO}}=$ The output logic level of Q_{X} before the indicated input conditions were established.
$H=$ high level, $L=$ low logic level, $X=$ either low or high logic level
$\mathrm{Q}_{\mathrm{An}} \ldots \mathrm{Q}_{\mathrm{Hn}}=$ The output logic level before the active transition (\uparrow) of the clock input.

DM54S373/DM74S373, DM54S374/DM74S374 TRI-STATE® Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

General Description

These 8-bit registers feature totem-pole TRI-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight latches of the DM54/74S373 are transparent D-type latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up.
The eight flip-flops of the DM54/74S374 are edge-triggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs.
Schmitt-trigger buffered inputs at the enable/clock lines simplify system design as ac and dc noise rejection is im-
proved by typically 400 mV due to the input hysteresis. A buffered output control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.
The output control does not affect the internal operation of the latches or flip-flops. That is, the old data can be retained or new data can be entered even while the outputs are off.

Features

■ Choice of 8 latches or 8 D-type flip-flops in a single package

- TRI-STATE bus-driving outputs
- Full parallel-access for loading
- Buffered control inputs
- Clock/Enable input has hysteresis to improve noise rejection
■ P-N-P input reduce D-C loading on data lines

Connection Diagrams

Absolute Maximum Ratings (Note)

Specificatlons for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage 7V

Input Voltage 5.5 V
Operating Free Air Temperature Range

DM54S	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74S	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

DM74S $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Function Tables

Logic Diagrams

DM54/74S373
Transparent Latches

TL/F/6486-3

DM54/74S374
Positive-Edge-Triggered Flip-Flops

＇S373 Recommended Operating Conditions（See Section 1 for Test Waveforms and Output Load）

Symbol	Parameter		DM54S373			DM74S373			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{iH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				－2			－6．5	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current				20			20	mA
tw	Pulse Width （Note 2）	Enable High	6			6			ns
		Enable Low	7.3			7.3			
tsu	Data Setup Time（Notes 1 and 3）		0 \downarrow			0】			ns
t_{H}	Data Hold Time（Notes 1 and 3）		$10 \downarrow$			10】			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1：The symbol (\downarrow) indicates the falling edge of the clock pulse is used for reference．
Note 2：$C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．
Note 3： $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$ ．
＇S373 Electrical Characteristics over recommended operating free air temperature（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 4）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				－1．2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & l_{\mathrm{OH}}=M a x \\ & V_{\mathrm{IL}}=M a x \\ & V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.4	3.4		
			DM74	2.4	3.2		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.5	V
1	Input Current＠Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=M a x, V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				－250	$\mu \mathrm{A}$
lozh	Off－State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				50	$\mu \mathrm{A}$
lozh	Off－State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.5 \mathrm{~V} \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				－50	$\mu \mathrm{A}$
los	Short Circuit Output Current	$V_{C C}=M a x$ （Note 5）	DM54	－40		－100	mA
			DM74	－40		－100	
ICC	Supply Current	$V_{C C}=M a x$	Outputs High or Low		105	160	mA
			Outputs Disabled			190	

Note 4：All typicals are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$ ．
Note 5：Not more than one output should be shorted at a time，and the duration should not exceed one second．

'S373 Switching Characteristics ${ }_{\text {at }} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Any Q		12		14	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Any Q		12		16	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable to Any Q		14		14	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time High to Low Level Output	Enable to Any Q		18		21	ns
${ }_{\text {tPZH }}$	Enable Time to High Level Output	Output Control to Any Q		15		17	ns
$t_{\text {tPL }}$	Output Enable Time to Low Level Output	Output Control to Any Q		18		23	ns
${ }_{\text {tPHZ }}$	Output Disable Time to High Level Output (Note 1)	Output Control to Any Q		9			ns
$t_{\text {PLZ }}$	Output Disable Time to Low Level Output (Note 1)	Output Control to Any Q		12			ns

Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$
'S374 Recommended Operating Conditions
(See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter		DM54S374			DM74S374			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2						V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current				-2			-6.5	mA
IOL	Low Level Output Current				20			20	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 2)		0	100	75	0	100	75	MHz
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 3)		0	100	75	0	100	75	MHz
t_{W}	Pulse Width (Note 2)	Clock High	6			6			ns
		Clock Low	7.3			7.3			
	Pulse Width (Note 3)	Clock High	15			15			
		Clock Low	15			15			
t_{SU}	Data Setup Time (Notes 1 and 4)		$5 \uparrow$			$5 \uparrow$			ns
t_{H}	Data Hold Time (Notes 1 and 4)		$2 \uparrow$			$2 \uparrow$			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 2: $C_{L}=15 \mathrm{pF}, R_{L}=280 \Omega, T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{C C}=5 \mathrm{~V}$.
Note 3: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=280 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'S374 Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Unlts
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{l}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54	2.4	3.4		
			DM74	2.4	3.2		v
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.5	V
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
H	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-250	$\mu \mathrm{A}$
Iozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=M a x, V_{O}=2.4 V \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$				50	$\mu \mathrm{A}$
IozL	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=M a x, V_{O}=0.5 \mathrm{~V} \\ & V_{I H}=\operatorname{Min}, V_{I L}=M a x \end{aligned}$				-50	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-40		-100	mA
			DM74	-40		-100	
${ }^{\text {ccc }}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	Outputs High			110	mA
			Outputs Low		90	140	
			Outputs Disabled			160	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
'S374 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$C_{L}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency			75		75	MHz
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		15		15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		17		20	ns
tPZH	Output Enable Time to High Level Output	Output Control to Any Q		15		17	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time to Low Level Output	Output Control to Any Q		18		23	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output (Note 1)	Output Control to Any Q		9			ns
tplz	Output Disable Time from Low Level Output (Note 1)	Output Control to Any Q		12			ns

Note 1: $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$

National
Semiconductor

DM54S381/DM74S381 Arithmetic Logic Unit/Function Generator

General Description

The 'S381 is a Schottky TTL arithmetic logic unit (ALU)/ function generator that performs eight binary arithmetic/logic operations on two 4-bit words as shown in the function table. These operations are selected by the three functionselect lines (S0, S1, S2). A full carry look-ahead circuit is provided for fast, simultaneous carry generation by means of two cascade outputs ($\overline{\mathrm{P}}$ and $\overline{\mathrm{G}}$) for the four bits in the package. The method of cascading 54S182/74S182 lookahead carry generators with these ALU's to provide multilevel full carry look-ahead is illustated under typical applications data for the 'S182. The typical addition times shown illustrate the short delay time required for addition of longer words when full look-ahead is employed. The exclusive-OR, AND, or OR function of two Boolean variables is provided without the use of external circuitry. Also, the outputs can be either cleared (low) or preset (high) as desired.

Features

- A fully parallel 4-Bit ALU in 20-pin package for 0.300inch row spacing
- Ideally suited for high-density economical processors
- Parallel inputs and outputs and full look-ahead provide system flexibility
- Arithmetic and logic operations selected specifically to simplify system implementation:

A minus B
B minus A
A plus B and five other functions

- Schottky-clamped for high performance

16-bit add time ... 26 ns typ using look-ahead 32-bit add time . . . 34 ns typ using look-ahead

Connection Diagram

Order Number DM54S381J or DM74S381N See NS Package Number J20A or N20A

Function Table

Selection			Arithmetic/Loglc Operation
S2	S1	S0	
L	L	L	B MINUS A
L	L	H	A MINUS B
L	H	L	A PLUS B
H	H	H	A \oplus B
H	L	L	A + B
H	H	H	AB
H	H	H	PRESET

Pin Designations

Designation	Pin Nos.	Function
A3, A2, A1, A0	$17,19,1,3$	Word A Inputs
B3, B2, B1, B0	$16,18,2,4$	Word B Inputs
S2, S1, S0	$7,6,5$	Function-Select Inputs
C $_{n}$	15	Carry Input for Addition, Inverted Carry Input for Subtraction
F3, F2, F1, F0	$12,11,9,8$	Function Outputs
$\overline{\text { P }}$	14	Inverted Carry Propagate Output
$\overline{\text { G }}$	13	Inverted Carry Generated Output
VCC	20	Supply Voltage
GND	10	Ground

$H=$ high level, $L=$ low level

Absolute Maximum Ratings (Note)	
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.	Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The
Supply Voltage 7V	parametric values defined in the "Electrical Characteristics"
Input Voltage 5.5 V	table are not guaranteed at the absolute maximum ratings.
Operating Free Air Temperature Range DM54S $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ DM74S $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

Recommended Operating Conditions

Symbol	Parameter	DM54S381			DM74S381			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-1			-1	mA
l_{OL}	Low Level Output Current			20			20	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-18 \mathrm{~mA}$				-1.2	V
V OH	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min} \\ & \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM54	2.4	3.4		V
			DM74	2.7	3.4		
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=M a x \end{aligned}$				0.5	V
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
IIH	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	Any S			50	$\mu \mathrm{A}$
			Cn			250	
			Any Other			200	
ILL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.5 \mathrm{~V} \end{aligned}$	Any S			-2	mA
			Cn			-8	
			Any Other			-6	
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-40		-100	mA
			DM74	-40		-100	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$			105	160	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=280 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Cn to Any F		17		19	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Cn to Any F		17		19	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & A \text { or } B \\ & \text { to } \bar{G} \end{aligned}$		20		23	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & A \text { or } B \\ & \text { to } \bar{G} \end{aligned}$		20		23	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A or B to \bar{P}	.	18		21	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	A or B to \bar{P}		18		21	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A_{i} or B_{i} to Fi_{i}		27		30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	A_{i} or B_{i} to F_{i}		25		27	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	S to Any		30		33	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	S to Any		30		33	ns

Logic Diagram

DM54S940／DM74S940，DM54S941／DM74S941 Octal TRI－STATE ${ }^{\circledR}$ Buffers／Line Drivers／Line Receivers

General Description

These buffers／line drivers are designed to improve both the performance and PC board density of TRI－STATE buffers／ drivers employed as memory－address drivers，clock drivers， and bus－oriented transmitters／receivers．Featuring 400 mV of hysteresis at each low current PNP data line input，they provide improved noise rejection and high fanout outputs， and can be used to drive terminated lines down to 133Ω ．

Features

－TRI－STATE outputs drive bus lines directly
－PNP inputs reduce DC loading on bus lines
－Hysteresis at inputs improves noise margins
－Typical lol（sink current） 54S 48 mA 74 S 64 mA
－Typical I_{OH}（source current） 54S－ 12 mA $74 \mathrm{~S}-15 \mathrm{~mA}$
－Typical propagation delay times Inverting 4.5 ns Noninverting 6 ns
－Typical enable／disable times 9 ns
－Typical power dissipation（enabled） Inverting 450 mW Noninverting 538 mW

Connection Diagrams

Dual－In－Line Package

Order Number DM54S940J or 74S940N
See NS Package Number J20A or N20A

Dual－In－Line Package

Order Number DM54S941J or 74S941N
See NS Package Number J20A or N20A

Note: The "Absoulte Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54S			DM74S			Units
		Min	Typ	Max	Min	Typ	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-12			-15	mA
lOL	Low Level Output Current			48			64	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
Hys	Hysteresis ($\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$)	$V_{C C}=M$ in		0.2	0.4		V
$\mathrm{VOH}^{\text {O }}$	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$	DM74	2.7			V
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$		2.4	3.4		
		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$		2			
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & \mathrm{IOL}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=2 \mathrm{~V} \end{aligned}$	DM54			0.55	V
			DM74			0.55	
lozh	Off-State Output Current, High Level Voltage Applied	$\begin{aligned} & V_{C C}=M a x \\ & V_{I L}=0.8 V \\ & V_{I H}=2 V \end{aligned}$	$\mathrm{V}_{0}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
lozl	Off-State Output Current, Low Level Voltage Applied		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-50	$\mu \mathrm{A}$
1	Input Current at Maximum Input Voltage	$V_{C C}=\operatorname{Max} V_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$V_{C C}=\operatorname{Max} V_{1}=2.7 \mathrm{~V}$				50	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max} V_{1}=0.5 \mathrm{~V}$	Any A			-400	$\mu \mathrm{A}$
			Any G			-2	mA
los	Short Circuit Output Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 2)		-50		-225	mA

DM54S940/DM74S940/DM54S941/DM74S941

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
Icc	Supply Current	Outputs High	DM54S940		80	123	mA
			DM74S940		80	135	
			DM54S941		95	147	
			DM74S941		95	160	
		Outputs Low	DM54S940		100	145	
			DM74S940		100	150	
			DM54S941		120	170	
			DM74S941		120	180	
		Outputs Disabled	DM54S940		100	145	
			DM74S940		100	150	
			DM54S941		120	170	
			DM74S941		120	180	

Note 1: All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time and duration should not exceed one second.
Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions		Min	Max	Units
tpLH	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & R_{L}=90 \Omega \end{aligned}$	DM54/74S940	2	7	ns
			DM54/74S941	2	9	
tpHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & C_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S940	2	7	ns
			DM54/74S941	2	9	
tpZL	Output Enable Time to Low Level	$\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S940	3	15	ns
			DM54/74S941	3	15	
$t_{\text {PZH }}$	Output Enable Time to High Level	$\begin{aligned} & C_{L}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S940	2	10	ns
			DM54/74S941	3	12	
tplz	Output Disable Time from Low Level	$\begin{aligned} & C_{L}=5 \mathrm{pF} \\ & R_{L}=90 \Omega \end{aligned}$	DM54/74S940	4	15	ns
			DM54/74S941	2	15	
$t_{\text {PHZ }}$	Output Disable Time from High Level	$\begin{aligned} & C_{L}=5 \mathrm{pF} \\ & R_{L}=90 \Omega \end{aligned}$	DM54/74S940	2	9	ns
			DM54/74S941	2	9	
${ }^{\text {tplH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S940	3	10	ns
			DM54/74S941	4	12	
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{L}=90 \Omega \end{aligned}$	DM54/74S940	3	10	ns
			DM54/74S941	4	12	
$t_{\text {PZL }}$	Output Enable Time to Low Level	$\begin{aligned} & C_{\mathrm{L}}=150 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S940	6	21	ns
			DM54/74S941	6	21	
tpzH	Output Enable Time to High Level	$\begin{aligned} & C_{L}=150 \mathrm{pF} \\ & R_{\mathrm{L}}=90 \Omega \end{aligned}$	DM54/74S940	4	12	ns
			DM54/74S941	4	15	

Section 4 TTL

Section 4 Contents

DM2502 8-Bit Successive Approximation Register 4-4
DM2503 8-Bit Expandable Successive Approximation Register 4-4
DM2504 12-Bit Expandable Successive Approximation Register 4-4
DM54/7400 Quad 2-Input NAND Gates 4-14
DM54/7401 Quad 2-Input NAND Gates with Open-Collector Outputs 4-16
DM54/7402 Quad 2-Input NOR Gates 4-18
DM54/7403 Quad 2-Input NAND Gates with Open-Collector Outputs 4-20
DM54/7404 Hex Inverters 4-22
DM54/7405 Hex Inverters with Open-Collector Outputs 4-24
DM54/7406 Hex Inverting Buffers/Drivers with High-Voltage Open-Collector Outputs 4-26
DM54/7407 Hex Buffers/Drivers with High-Voltage Open-Collector Outputs 4-28
DM54/7408 Quad 2-Input AND Gates 4-30
DM54/7409 Quad 2-Input AND Gates with Open-Collector Outputs 4-32
DM54/7410 Triple 3-Input NAND Gates 4-34
DM54/7414 Hex Schmitt Trigger Inverters 4-36
DM54/7416 Hex Inverting Buffers/Drivers with High-Voltage Open-Collector Outputs 4-39
DM54/7417 Hex Buffers/Drivers with High-Voltage Open-Collector Outputs 4-41
DM54/7420 Dual 4-Input NAND Gates 4-43
DM54/7426 Quad 2-Input NAND Buffers wtih High-Voltage Open-Collector Outputs 4-45
DM54/7427 Triple 3-Input NOR Gates 4-47
DM54/7430 8-Input NAND Gate 4-49
DM54/7432 Quad 2-Input OR Gates 4-51
DM54/7437 Quad 2-Input NAND Buffers 4-53
DM54/7438 Quad 2-Input NAND Buffers with Open-Collector Outputs 4-55
DM54/7441A BCD to Decimal Decoder/Driver (NIXIE Drivers) 4-57
DM54/7442 BCD to Decimal Decoder 4-60
DM54/7445 BCD to Decimal Decoder/Driver 4-63
DM54/7446A BCD to 7-Segment Decoder/Driver with Open-Collector Outputs 4-66
DM54/7447A BCD to 7-Segment Decoder/Driver with Open-Collector Outputs 4-66
DM54/7473 Dual J-K Flip-Flops with Clear 4-71
DM54/7474 Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 4-74
DM54/7475 4-Bit Bistable Latches 4-77
DM54/7476 Dual J-K Flip-Flops with Preset and Clear 4-80
DM54/7485 4-Bit Magnitude Comparators 4-83
DM54/7486 Quad Exclusive-OR Gates 4-87
DM54/7490A Decade Counter 4-90
DM54/7493A 4-Bit Binary Counter 4-90
DM54/7495 4-Bit Parallel Access Shift Register 4-97
DM54/74107 Dual Master-Slave J-K Flip-Flops with Clear 4-100
DM54/74109 Dual Positive-Edge-Triggered J-K Flip-Flops with Preset and Clear 4-103
DM54/74121 Monostable Multivibrator with Schmitt-Trigger Input 4-106
DM54/74123 Dual Retriggerable Monostable Multivibrators with Clear 4-110
DM54/74125 Quad TRI-STATE Buffers 4-114
DM54/74132 Quad 2-Input Schmitt Trigger NAND Gates 4-117
DM54/74141 BCD to Decimal Decoder/Driver 4-120

Section 4 Contents (Continued)

DM54/74145 BCD to Decimal Decoder/Driver 4-123
DM54/74148 8-Line Decimal to 3-Line Octal Priority Encoder 4-126
DM54/74150 1 of 16 Line Data Selector/Multiplexer 4-130
DM54/74151A 1 of 8 Line Data Selector/Multiplexer 4-130
DM54/74153 Dual 1 of 4 Line Data Selectors/Multiplexers 4-136
DM54/74154 4 to 16 Line Decoder/Demultiplexer 4-139
DM54/74155 Dual 2 to 4 Line Decoders/1 to 4 Line Demultiplexers 4-142
DM54/74157 Quad 2 to 1 Line Data Selectors/Multiplexers 4-145
DM54/74161A Synchronous 4-Bit Binary Counter with Asynchronous Clear 4-148
DM54/74162A Synchronous 4-Bit Decade Counter with Synchronous Clear 4-148
DM54/74163A Synchronous 4-Bit Binary Counter with Synchronous Clear 4-148
DM54/74164 8-Bit Serial In/Parallel Out Shift Register with Asynchronous Clear 4-158
DM54/74166 8-Bit Parallel or Serial In/Serial Out Shift Register with Complementary Outputs 4-161
DM54/74173 4-Bit TRI-STATE D Register 4-165
DM54/74174 Hex D Flip-Flops with Clear 4-169
DM54/74175 Quad D Flip-Flops with Clear and Complementary Outputs 4-169
DM54/74180 9-Bit Parity Generator/Checker 4-174
DM54/74181 Arithmetic Logic Unit/Function Generator 4-177
DM54/74184 BCD-to-Binary Converter 4-185
DM54/74185A Binary-to-BCD Converter 4-185
DM54/74191 Synchronous 4-Bit Up/Down Binary Counter with Mode Control 4-193
DM54/74193 Synchronous 4-Bit Up/Down Binary Counter with Dual Clock 4-198
DM54/74194 4-Bit Bidirectional Universal Shift Register 4-203
DM54/74259 8-Bit Serial In to Parallel Out Addressable Latch 4-207
DM54/74365 Hex TRI-STATE Buffers/Bus Drivers 4-210
DM54/74367 Hex TRI-STATE Buffers/Bus Drivers 4-213
DM54/74368 Hex TRI-STATE Inverting Buffers/Bus Drivers 4-216
DM7123/8123 Quad TRI-STATE 1 of 2 Line Data Selectors/Multiplexers 4-219
DM7130/8130 10-Bit Magnitude Comparator with Open-Collector Outputs 4-222
DM7131/8131 6-Bit Unified Bus Comparators 4-224
DM7136/8136 6-Bit Unified Bus Comparator with Open-Collector Output 4-227
DM7160/8160 6-Bit Magnitude Comparator with Open-Collector Outputs 4-230
DM7556/8556 TRI-STATE Programmable 4-Bit Binary Counter 4-232
DM7875A/8875A TRI-STATE 4-Bit Parallel Binary Multipliers 4-238
DM7875B/8875B TRI-STATE 4-Bit Parallel Binary Multipliers 4-238
DM8898 TRI-STATE 6-Bit BCD to Binary Converters 4-243
DM8899 TRI-STATE 6-Bit Binary to BCD Converters 4-243
DM9002C Quad 2-Input NAND Gates 4-249
DM9024/8024 Dual Positive-Edge-Triggered J-K Flip-Flops with Preset and Clear 4-251
DM9300/8300 4-Bit Positive-Edge-Triggered Parallel or Serial Access Shift Registers 4-254
DM9301/8301 1 of 10 Line Decoders 4-258
DM9309/8309 Dual 1 of 4 Line Data Selectors/Multiplexers with Complementary Outputs 4-261
DM9310/8310 Synchronous 4-Bit Decade Counter 4-264
DM9311/8311 4 to 16-Line Decoders/Demultiplexers 4-271
DM9312/8312 1 of 8 Line Data Selector/Multiplexer 4-275
DM9316/8316 Synchronous 4-Bit Binary Counter 4-279
DM9318/8318 8 to 3 Line Priority Encoders 4-286
DM9322/8322 Quad 1 of 2 Line Data Selectors/Multiplexers 4-290
DM9334/8334 8-Bit Addressable Latches 4-293
DM9601/8601 Retriggerable Monostable Multivibrators with Complementary Outputs 4-297
DM9602/8602 Dual Retriggerable, Resettable Monostable Multivibrators withComplementary Outputs4-301

National Semiconductor Corporation

DM2502/DM2502C, DM2503/DM2503C, DM2504/DM2504C Successive Approximation Registers

General Description

The DM2502, DM2503 and DM2504 are 8-bit and 12-bit TTL registers designed for use in successive approximation A/D converters. These devices contain all the logic and control circuits necessary (in combination with a D/A converter) to perform successive approximation analog-to-digital conversions.
The DM2502 has 8 bits with serial capability and is not expandable.
The DM2503 has 8 bits and is expandable without serial capability.
The DM2504 has 12 bits with serial capability and expandability.
All three devices are available in ceramic DIP and molded Epoxy-B DIPs. The DM2502, DM2503 and DM2504 operate over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the DM2502C, DM2503C and DM2504C operate over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Features

- Complete logic for successive approximation A/D converters
■ 8-bit and 12-bit registers
- Capable of short cycle or expanded operation
- Continuous or start-stop operation
- Compatible with D/A converters using any logic code
- Active low or active high logic outputs

■ Use as general purpose serial-to-parallel converter or ring counter

Connection Diagrams

Dual-In-LIne Package

TL/F/6612-2
Order Number DM2504J or DM2504CN See NS Package Number J24A or N24A

Order Number DM2502J, DM2503J, DM2502CN or DM2503CN
See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
$2502,3,4$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$2502 \mathrm{C}, 3 \mathrm{C}, 4 \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM2502			DM2502C			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
lOH^{\prime}	High Level Output Current				-0.48			-0.48	mA
lOL	Low Level Output Current				9.6			9.6	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 3)		0		15	0		15	MHz
t_{W}	Pulse Width (Note 3)	Clock Low	42	30		42	30		ns
		Clock High	24	17		24	17		
tsu	Setup Time (Note 3)	$\overline{\text { S }}$ Input	16	9		16	9		ns
		D Input	8	4		8	4		
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

DM2502 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
$\mathrm{VOH}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.6		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
${ }_{I H}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	CP Input			40	$\mu \mathrm{A}$
			Others			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	CP Input			-1.6	mA
			Others			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	2502	-10		-45	mA
			2502C	-10		-45	
Icc	Supply Current	$V_{C C}=M a x$	2502		65	85	mA
			2502C		65	95	

Note 1: All typicals are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

DM2502 Switching Characteristics
at $V_{C C}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, C_{L}=15 \mathrm{pF}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		15		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	CP to Output	10	38	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	CP to Output	10	28	ns

Recommended Operating Conditions

Symbol	Parameter		DM2503			DM2503C			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$V_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
${ }^{10 H}$	High Level Output Current				-0.48			-0.48	mA
lOL	Low Level Output Current				9.6			9.6	mA
fclk	Clock Frequency (Note 1)		0		15	0		15	MHz
t_{W}	Pulse Width (Note 1)	CP Low	42	30		42	30		ns
		CP High	24	17		24	17		
tsu	Setup Time (Note 1)	$\overline{\mathrm{S}}$	16	9		16	9		ns
		D	8	4		8	4		
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.
DM2503 Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=$ Min, $\mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.6		V
Vol	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	CP Input			40	$\mu \mathrm{A}$
			Others			80	
ILL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=0.4 \mathrm{~V} \end{aligned}$	CP Input			-1.6	mA
			Others			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 3) } \end{aligned}$	2503	-10		-45	mA
			2503C	-10		-45	
Icc	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	2503		60	80	mA
			2503C		60	90	

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		15		MHz
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	CP to Output	10	38	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	CP to Output	10	28	ns
$t_{\text {PLL }}$	Propagation Delay Time Low to High Level Output (Note 1)	\bar{E} to Q7		19	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output (Note 1)	E to Q7		24	ns

Note 1: $\mathrm{CP}=$ high logic level, $\mathrm{S}=$ low logic level.
Recommended Operating Conditions

Symbol	Parameter		DM2504			DM2504C			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
${ }^{\mathrm{OH}}$	High Level Output Current				-0.48			-0.48	mA
lOL	Low Level Output Current				9.6			9.6	mA
${ }^{\text {f CLK }}$	Clock Frequency (Note 2)		0		15	0		15	MHz
tw	Pulse Width (Note 2)	CP Low	42	30		42	30		
		CP High	24	17		24	17		ns
tsu	Setup Time (Note 2)	$\overline{\mathrm{S}}$	16	9		16	9		ns
		D	8	4		8	4		
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 2: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

DM2504 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.6		V
V OL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	CP Input			40	$\mu \mathrm{A}$
			Others			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{c c}=M a x \\ & V_{I}=0.4 V \end{aligned}$	CP Input			-1.6	mA
			Others			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	2504	-10		-45	mA
			2504C	-10		-45	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max	2504		90	110	mA
			2504C		90	124	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time

DM2504 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		15		MHz
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	CP to Output	10	38	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	CP to Output	10	28	ns
tplH	Propagation Delay Time Low to High Level Output (Note 3)	$\begin{aligned} & \hline \bar{E} \text { to } \\ & \text { Q11 } \end{aligned}$		19	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output (Note 3)	$\begin{aligned} & \hline \overline{\mathrm{E}} \text { to } \\ & \text { Q11 } \end{aligned}$		24	ns

Note 3: $\mathrm{CP}=$ high logic level, $\overline{\mathrm{S}}=$ low logic level.

Function Table

Time	Inputs			Outputs (4)									
t_{n}	D	$\overline{\mathbf{S}}$	$\bar{E}(5)$	D0 (6)	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	$Q_{C C}$
0	X	L	L	X	X	X	X	X	X	X	X	X	X
1	D7	H	L	X	L	H	H	H	H	H	H	H	H
2	D6	H	L	D7	D7	L	H	H	H	H	H	H	H
3	D5	H	L	D6	D7	D6	L	H	H	H	H	H	H
4	D4	H	L	D5	D7	D6	D5	L	H	H	H	H	H
5	D3	H	L	D4	D7	D6	D5	D4	L	H	H	H	H
6	D2	H	L	D3	D7	D6	D5	D4	D3	L	H	H	H
7	D1	H	L	D2	D7	D6	D5	D4	D3	D2	L	H	H
8	D0	H	L	D1	D7	D6	D5	D4	D3	D2	D1	L	H
9	X	H	L	D0	D7	D6	D5	D4	D3	D2	D1	D0	L
10	X	X	L	X	D7	D6	D5	D4	D3	D2	D1	D0	L
	X	X	H	X	H	NC							

Note 4: Function table for DM2504 is extended to include 12 outputs.
Note 5: Function table for DM2502 does not include \bar{E} column or last line in function table shown.
Note 6: Function table for DM2503 does not include D0 column.

L = Low Level
$\mathrm{X}=$ Don't Care
$\mathrm{NC}=$ No Change

Timing Diagram

TL/F/6612-4

Application Information

operation

The registers consist of a set of master latches that act as the control elements in the device and change state on the input clock high-to-low transition and a set of slave latches that hold the register data and change on the input clock low-to-high transition. Externally the device acts as a special purpose serial-to-parallel converter that accepts data at the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the DM2502 and DM2504 when the clock goes from low-to-high. There are no restrictions on the data input; it can change state at any time except during a short interval centered about the clock low-to-high transition. At the same time that data enters the register bit the next less significant bit register is set to a low ready for the next iteration.
The register is reset by holding the $\overline{\mathrm{S}}$ (Start) signal low during the clock low-to-high transition. The register synchronously resets to the state Q7 (11) low, and all the remaining register outputs high. The Q CC (Conversion Complete) signal is also set high at this time. The $\overline{\mathrm{S}}$ signal should not be brought back high until after the clock low-to-high transition in order to guarantee correct resetting. After the clock has gone high resetting the register, the $\overline{\mathrm{S}}$ must be removed. On the next clock low-to-high transition the data on the D input is set into the Q7 (11) register bit and the Q6 (10) register bit is set to a low ready for the next clock cycle. On the next clock low-to-high transition data enters the Q6 (10) register bit and Q5 (9) is set to a low. This operation is repeated for each register bit in turn until the register has been filled. When the data goes into Q 0 , the Q_{CC} signal goes low, and the register is inhibited from further change until reset by a Start signal.
The DM2502, DM2503 and DM2504 have a specially tailored two-phase clock generator to provide non-overlapping two-phase clock pulses (i.e., the clock waveforms intersect below the thresholds of the gates they drive). Thus, even at very slow dV/dt rates at the clock input (such as from relatively weak comparator outputs), improper logic operation will not result.

LOGIC CODES

All three registers can be operated with various logic codes. Two's complement code is used by offsetting the comparator $1 / 2$ full range $+1 / 2$ LSB and using the complement of the MSB ($\overline{\mathrm{Q}} 7$ or $\overline{\mathrm{Q}} 11$) with a binary D/A converter. Offset binary is used in the same manner but with the MSB (Q7 or Q11). BCD D/A converters can be used with the addition of illegal code suppression logic.

ACTIVE HIGH OR ACTIVE LOW LOGIC

The register can be used with either D/A converters that require a low voltage level to turn on, or D/A converters that require a high voltage level to turn the switch on. If D/A converters are used which turn on with a low logic level, the resulting digital output from the register is active low. That is, a logic " 1 " is represented as a low voltage level. If D/A converters are used that turn on with a high logic level then the digital output is active high; a logic " 1 " is represented as a high voltage level.

EXPANDED OPERATION

An active low enable input, \vec{E}, on the DM2503 and DM2504 allows registers to be connected together to form a longer register by connecting the clock, D , and $\overline{\mathrm{S}}$ inputs in parallel and connecting the Q_{CC} output of one register to the \bar{E} input of the next less significant register. When the start signal resets the register, the \bar{E} signal goes high, forcing the Q7 (11) bit high and inhibiting the register from accepting data until the previous register is full and its Q_{CC} goes low. If only one register is used the \bar{E} input should be held at a low logic level.

SHORT CYCLE

If all bits are not required, the register may be truncated and conversion time saved by using a register output going low rather than the QCC signal to indicate the end of conversion. If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on power turn-on. This condition can be avoided by making the start input the OR function of $Q_{C C}$ and the appropriate register output.

COMPARATOR BIAS

To minimize the digital error below $\pm 1 / 2$ LSB, the comparator must be biased. If a D/A converter is used which requires a low voltage level to turn on, the comparator should be biased $+1 / 2$ LSB. If the D/A converter requires a high logic level to turn on, the comparator must be biased $-1 / 2$ LSB.

Definition of Terms (See Timing Dlagram)

CP: The clock input of the register.
D: The serial data input of the register.
DO: The serial data out. (The D input delayed one bit).
E: The register enable. This input is used to expand the length of the register and when high forces the Q7 (11) register output high and inhibits conversion. When not used for expansion the enable is held at a low logic level (ground).
$Q_{1} I=7(11)$ to 0 : The outputs of the register.
Qcc: The conversion complete output. This output remains high during a conversion and goes low when a conversion is complete.
Q7 (11): The true output of the MSB of the register.
The complement output of the MSB of the register.
$\overline{\mathbf{S}} \quad \quad$ The start input. If the start input is held low for at least a clock period the register will be reset to Q7 (11) low and all the remaining outputs high. A start pulse that is low for a shorter period of time can be used if it meets the set-up time requirements of the $\overline{\mathrm{S}}$ input.

Typical Applications

TL/F/6612-5
HIgh Speed 12-BIT A/D Converter

TL/F/6612-7

DM5400/DM7400 Quad 2-Input NAND Gates

General Description
This device contains four independent gates each of which performs the logic NAND function.

Connection Diagram

Dual-In-LIne Package

Order Number DM5400J or DM7400N
See NS Package Number J14A or N14A

Function Table

Inputs		
A	B	Output
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5400			DM7400			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
l_{OH}	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{J}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V.
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-20		-55	mA
			DM74	-18		-55	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{C C}=\operatorname{Max}$			4	8	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			12	22	mA

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $R_{L}=400 \Omega$	22	ns	
tPHL	Propagation Delay Time High to Low Level Output			15	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

DM5401/DM7401 Quad 2-Input NAND Gates with Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{\text {MAX }}=\frac{V_{\mathrm{CC}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{IH}}\right)}$
$R_{\text {MIN }}=\frac{V_{C C}(\text { Max })-V_{O L}}{l_{O L}-N_{3}\left(I_{\mathrm{IL}}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

Function Table

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

[^35]Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contalned in this datasheet. Refer to the assoclated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	7 V
Operating Free Air Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DM74	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5401			DM7401			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {cc }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
$\mathrm{IOL}^{\text {L }}$	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			250	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
1 H	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
I/L	Low Level Input Current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICCH	Supply Current with Outputs High	$\mathrm{V}_{C C}=\mathrm{Max}$		4	8	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		12	22	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=4 \mathrm{k} \Omega\left(t_{P L H}\right) \\ & R_{\mathrm{L}}=400 \Omega\left(t_{P H L}\right) \end{aligned}$		45	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output			15	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DM5402/DM7402 Quad 2-Input NOR Gates

General Description

This device contains four independent gates each of which performs the logic NOR function.

Connection Diagram

Function Table

$\mathbf{Y}=\overline{\mathbf{A}+\mathbf{B}}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	H
L	H	L
H	L	L
H	H	L

$H=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5402			DM7402			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.2	0.4	V
1	Input Current © Max Input Voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	DM54	-20		-55	mA
			DM74	-18		-55	
ICCH	Suppiy Current with Outputs High	$V_{C C}=M a x$			8	16	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=$ Max			14	27	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=400 \Omega \end{aligned}$		22	ns
tPHL	Propagation Delay Time High to Low Level Output			15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

DM5403/DM7403 Quad 2-Input NAND Gates with Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{\text {MAX }}=\frac{V_{C C}(\text { Min })-V_{O H}}{N_{1}\left(I_{O H}\right)+N_{2}\left(I_{I H}\right)}$
$R_{\text {MIN }}=\frac{V_{C C}(M a x)-V_{O L}}{l_{O L}-N_{3}\left(l_{\mathrm{IL}}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$\mathrm{N}_{3}\left(\mathrm{I}_{1}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

TL/F/6493-1
Order Number DM5403J or DM7403N
See NS Package Number J14A or N14A

Function Table

$$
\mathbf{Y}=\overline{\mathbf{A B}}
$$

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

$H=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	7 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5403			DM7403			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			250	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$		0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=$ Max, $V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{1 / 2}$	Low Level Input Current	$V_{C C}=M_{\text {ax }}, V_{1}=0.4 V$			-1.6	mA
${ }^{\text {ICCH }}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		4	8	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		12	22	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=4 \mathrm{k} \Omega\left(t_{p L H}\right) \\ & R_{\mathrm{L}}=400 \Omega\left(t_{\mathrm{PHL}}\right) \end{aligned}$		45	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output			15	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DM5404/DM7404 Hex Inverting Gates

General Description

This device contains six independent gates each of which performs the logic INVERT function.

Connection Diagram

TL/F/6494-1
Order Number DM5404J, DM7404M or DM7404N
See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A}}$	
Inputs	Output
A	\mathbf{Y}
L	H
H	L

$H=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note)	
Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated rellability electrical test specifications document.	
Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperat	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5404			DM7404			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
lOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\text { Max } \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$I_{\text {IH }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-20		-55	mA
			DM74	-18		-55	
ICCH	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$			6	12	mA
$\mathrm{I} C \mathrm{CL}$	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			18	33	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
tPLH	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $R_{L}=400 \Omega$	22	ns	
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

National Semiconductor Corporation

DM5405/DM7405 Hex Inverters with Open-Collector Outputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{\text {MAX }}=\frac{V_{\mathrm{CC}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(\mathrm{l}_{\mathrm{IH}}\right)}$
$R_{\text {MIN }}=\frac{v_{C C}(\text { Max })-V_{\mathrm{OL}}}{l_{\mathrm{OL}}-N_{3}\left(I_{\mathrm{IL}}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$N_{2}\left(l_{1 H}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(I_{I L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

TL/F/6495-1
Order Number DM5405J or DM7405N
See NS Package Number J14A or N14A
Function Table
$\mathbf{Y}=\overline{\mathbf{A}}$

Input	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

$H=$ High Logic Level
L = Low Logic Level

```
Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not
contained In this datasheet. Refer to the associated
rellability electrical test specifications document.
\begin{tabular}{lr} 
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Output Voltage & 7 V
\end{tabular}
Operating Free Air Temperature Range
\begin{tabular}{cr} 
DM54 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safoty of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5405			DM7405			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$V_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lOL	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
$I_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			250	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$V_{C C}=$ Max, $V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=$ Max, $\mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICCH	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$		6	12	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=$ Max		18	33	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega\left(\mathrm{t}_{\mathrm{PL}}\right) \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega\left(\mathrm{t}_{\mathrm{PHL}}\right) \end{aligned}$		55	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output			15	ns

DM5406/DM7406 Hex Inverting Buffers with High Voltage Open-Collector Outputs

General Description

This device contains six independent buffers each of which performs the logic INVERT function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{M A X}=\frac{V_{\mathrm{O}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)}$
$R_{\mathrm{MIN}}=\frac{V_{\mathrm{O}}(\mathrm{Max})-\mathrm{V}_{\mathrm{OL}}}{\mathrm{l}_{\mathrm{OL}}-\mathrm{N}_{3}\left(\mathrm{I}_{\mathrm{IL}}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{H}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(I_{L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

TL/F/6496-1
Order Number DM5406J, DM7406M or DM7406N
See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A}}$	
Input	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

$H=$ High Logic Level
$L=$ Low Logic Level

```
Absolute Maximum Ratings (Note)
```

Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the assoclated rellabllity electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	30 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5406			DM7406			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			30			30	V
lOL	Low Level Output Current			30			40	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condltions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$			-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=30 V \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			250	$\mu \mathrm{A}$
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.7	V
		$\mathrm{IOL}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICCH	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$		30	42	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$		27	38	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Mln	Max	Units
tpLH	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $R_{\mathrm{L}}=110 \Omega$		15	ns
				23	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DM5407/DM7407 Hex Buffers with High Voltage Open-Collector Outputs

General Description

This device contains six independent gates each of which performs a buffer function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{\text {MAX }}=\frac{V_{\mathrm{O}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{IH}}\right)}$
$\mathrm{R}_{\mathrm{MIN}}=\frac{\mathrm{V}_{\mathrm{O}}(\mathrm{Max})-\mathrm{V}_{\mathrm{OL}}}{\mathrm{IOL}_{\mathrm{OL}}-\mathrm{N}_{3}\left(I_{\mathrm{IL}}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{l}_{1 \mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{1 L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

TL/F/6497-1
Order Number DM5407J, DM7407M or DM7407N
See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\mathbf{A}$	
Input	Output
\mathbf{A}	\mathbf{Y}
L	L
H	H

$H=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)	
Specifications for Military/Aerospace products are not	
contained in this datasheet. Refer to the associated	
reliability electrical test specifications document.	
Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	30 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5407			DM7407			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			30			30	V
loL	Low Level Output Current			30			40	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, I_{1}=-12 \mathrm{~mA}$			-1.5	V
$I_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{\mathrm{O}}=30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{I L}=M a x \end{aligned}$			0.7	V
		$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$1 / 12$	Low Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICCH	Supply Current with Outputs High	$V_{C C}=M a x$		29	41	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$		21	30	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
tplH	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega \end{aligned}$		10	ns
tPHL	Propagation Delay Time High to Low Level Output			30	ns

[^36]
DM5408/DM7408 Quad 2-Input AND Gates

General Description
This device contains four independent gates each of which performs the logic AND function.

Connection Diagram

Function Table

$Y=A B$		
Inputs		Output
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	H

$H=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in thls datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5408			DM7408			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
$\mathrm{IOH}^{\text {r }}$	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
$\mathrm{VOH}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
1 H	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICCH	Supply Current with Outputs High	$V_{C C}=$ Max			11	21	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{C C}=\mathrm{Max}$			20	33	mA

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=400 \Omega$		27	ns
			19	ns	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

DM5409/DM7409 Quad 2-Input AND Gates with Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic AND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{M A X}=\frac{V_{C C}(M i n)-V_{O H}}{N_{1}\left(l_{O H}\right)+N_{2}\left(I_{H}\right)}$
$R_{\text {MIN }}=\frac{V_{C C}(\text { Max })-V_{O L}}{I_{O L}-N_{3}\left(I_{L L}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{I L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

TL/F/6499-1
Order Number DM5409J or DM7409N See NS Package Number J14A or N14A

Function Table

Y = AB		
Inputs		Output
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	H

$\mathrm{H}=$ High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)								
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.				Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The				
Supply Vo		7V paras						
Input Volt		5.5 V						
Output Vo		7 V th		the conditions for actual device operation.				
$\begin{gathered} \text { Operating } \\ \text { DM54 } \\ \text { DM74 } \end{gathered}$	e Air Temperature Range	125° $+70^{\circ}$						
Storage Temperature Range		150°						
Recommended Operating Conditions								
Symbol	Parameter	DM5409			DM7409			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
$I_{\text {cex }}$	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{I H}=\operatorname{Min} \end{aligned}$			250	$\mu \mathrm{A}$
VoL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$		0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$1 / \mathrm{L}$	Low Level Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICCH	Supply Current with Outputs High	$V_{C C}=$ Max		11	21	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\text {CC }}=$ Max		20	33	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $R_{\mathrm{L}}=400 \Omega$	32	ns	
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time High to Low Level Output		24	ns	

[^37]
DM5410/DM7410 Triple 3-Input NAND Gates

General Description
This device contains three independent gates each of which performs the logic NAND function.

Connection Diagram

Function Table

$Y=\overline{\text { ABC }}$			
Inputs			Output
A	B	C	Y
X	X	L	H
X	L	X	H
L	X	X	H
H	H	H	L

$H=$ High Logic Level
L = Low Logic Level
$X=$ Either Low or High Logic Level

```
Absolute Maximum Ratings (Note)
```

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5410			DM7410			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
IOL^{2}	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating tree air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V OH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
${ }^{\text {ICCH }}$	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$			3	6	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			9	16.5	mA

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
tpLH	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $R_{\mathrm{L}}=40 \Omega$		22	ns
tPHL	Propagation Delay Time High to Low Level Output			15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

DM5414/DM7414 Hex Inverter with Schmitt Trigger Inputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

Connection Diagram

Dual-In-Line Package

TL/F/6503-1
Order Number DM5414J or DM7414N
See NS Package Number J14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A}}$	
Input	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

H = High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained in thls datasheet. Refer to the assoclated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5414			DM7414			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Input Threshold Voltage (Note 1)	1.5	1.7	2	1.5	1.7	2	V
$\mathrm{V}_{\text {T- }}$	Negative-Going Input Threshold Voltage (Note 1)	0.6	0.9	1.1	0.6	0.9	1.1	V
HYS	Input Hysteresis (Note 1)	0.4	0.8		0.4	0.8		V
${ }^{\mathrm{OH}}$	High Level Output Current			-0.8			-0.8	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, l_{1}=-12 \mathrm{~mA}$				-1.5	V
$\mathrm{VOH}^{\text {O }}$	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{1}=V_{T-M i n} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{l}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{T}}+\mathrm{Max} \end{aligned}$			0.2	0.4	V
$\mathrm{I}_{\mathbf{T}+}$	Input Current at Positive-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}+}$			-0.43		mA
$\mathrm{I}_{\mathrm{T}-}$	Input Current at Negative-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}-}$			-0.56		mA
1	Input Current © Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
1 IH	High Level Input Current	$V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.2	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 3) } \end{aligned}$	DM54	-18		-55	mA
			DM74	-18		-55	
ICCH	Supply Current with Outputs High	$V_{C C}=$ Max			22	36	mA
${ }^{\text {ICCL }}$	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			39	60	mA

Note 1: $V_{C C}=5 \mathrm{~V}$
Note 2: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
tpLH $^{\text {tPHL }}$	Propagation Delay Time Low to High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=400 \Omega$	22	ns	
	Propagation Delay Time High to Low Level Output		22	ns	

National

DM5416/DM7416 Hex Inverting Buffers with High Voltage Open-Collector Outputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{M A X}=\frac{V_{\mathrm{O}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{J}}\right)}$
$R_{M I N}=\frac{V_{O}(M a x)-V_{O L}}{I_{O L}-N_{3}\left(l_{I L}\right)}$
Where: $\mathrm{N}_{1}(\mathrm{IOH})=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{l}_{1 H}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(l_{I L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

TL/F/6504-1
Order Number DM5416J or DM7416N
See NS Package Number J14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A}}$	
Input	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

H = High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellabillty electrical test specifications document.
Supply Voltage 7V
Input Voltage 5.5 V
Output Voltage 15V
Operating Free Air Temperature Range
DM54
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5416			DM7416			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			15			15	V
$\mathrm{IOL}^{\text {L }}$	Low Level Output Current			30			40	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
$I_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			250	$\mu \mathrm{A}$
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{l}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.7	V
		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICCH	Supply Current with Outputs High	$V_{C C}=M a x$		30	42	mA
${ }^{\text {CCCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		27	38	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	. Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=110 \Omega$		15	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		23	ns	

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DM5417/DM7417 Hex Buffers with High Voltage Open-Collector Outputs

General Description

This device contains six independent gates each of which performs a buffer function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{M A X}=\frac{V_{\mathrm{O}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(I_{\mathrm{I}}\right)}$

$$
R_{\text {MIN }}=\frac{V_{O}(M a x)-V_{O L}}{I_{O L}-N_{3}\left(I_{L L}\right)}
$$

Where: $\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{l}_{1 H}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(I_{I L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-LIne Package

Order Number DM5417J or DM7417N
See NS Package Number J14A or N14A

Function Table

Input	Output
\mathbf{A}	\mathbf{Y}
L	L
H	H

$H=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contalned in this datasheet. Refer to the assoclated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	15 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5417			DM7417			Units
		MIn	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			15			15	V
$\mathrm{lOL}^{\text {L }}$	Low Level Output Current			30			40	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$			-1.5	V
Icex	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=15 V \\ & V_{I H}=\operatorname{Min} \end{aligned}$			250	$\mu \mathrm{A}$
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{I L}=M a x \end{aligned}$			0.7	V
		$\mathrm{IOL}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
1 IH	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICCH	Supply Current with Outputs High	$V_{C C}=$ Max		29	41	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=$ Max		21	30	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=110 \Omega \end{aligned}$		10	ns
${ }_{\text {t }}$ HL	Propagation Delay Time High to Low Level Output			30	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DM5420/DM7420 Dual 4-Input NAND Gates

General Description

This device contains two independent gates each of which performs the logic NAND function.

Connection Diagram

Order Number DM5420J or DM7420N
See NS Package Number J14A or N14A

Function Table

Y $=\overline{\text { ABCD }}$				
Inputs				Output
A	B	C	D	Y
X	X	X	L	H
X	X	L	X	H
X	L	X	X	H
L	X	X	X	H
H	H	H	H	L

$H=$ High Logic Level
$L=$ Low Logic Level
$X=$ Either Low or High Logic Level

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellabillity electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5402			DM7402			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH^{2}	High Level Output Current			-0.4			-0.4	mA
loL	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
IH_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, ~ \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{IIL}^{\text {L }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICCH	Supply Current with Outputs High	$V_{C C}=$ Max			2	4	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			6	11	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{\mathrm{L}}=400 \Omega \end{aligned}$		22	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output			15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

DM5426/DM7426 Quad 2-Input NAND Gates with High Voltage Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{M A X}=\frac{V_{\mathrm{O}}(\mathrm{Min})-\mathrm{V}_{\mathrm{OH}}}{\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)+\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{I}}\right)}$
$R_{\text {MIN }}=\frac{V_{O}(\text { Max })-V_{O L}}{I_{O L}-N_{3}\left(I_{L L}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{I}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{IH}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(I_{L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

Dual-In-Line Package

TL/F/6508-1
Order Number DM5426J or DM7426N
See NS Package Number J14A or N14A
Function Table

$$
Y=\overline{A B}
$$

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

[^38]| Absolute Maximum Ratings (Note) | |
| :--- | ---: |
| Specifications for Military/Aerospace products are not | |
| contalned in this datasheet. Refer to the assoclated | |
| reliability electrical test specifications document. | |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Output Voltage | 15 V |
| Operating Free Air Temperature Range | |
| DM54 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM74 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5426			DM7426			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$V_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			15			15	V
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & V_{\mathrm{IL}}=M a x \end{aligned}$	$V_{0}=15 \mathrm{~V}$			1000	$\mu \mathrm{A}$
			$V_{O}=12 \mathrm{~V}$			50	
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\text {cC }}=\mathrm{Max}$			4	8	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=$ Max			12	22	mA

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=1 \mathrm{k} \Omega\left(t_{P L H}\right) \end{aligned}$		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			17	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

DM5427/DM7427 Triple 3-Input NOR Gates

General Description

This device contains three independent gates each of which performs the logic NOR function.

Connection Diagram

Dual-In-Line Package

Function Table
$\mathbf{Y}=\overline{\mathbf{A}+\mathbf{B}+\mathbf{C}}$

Inputs			Output
A	B	C	Y
L	L	L	H
X	X	H	L
X	H	X	L
H	X	X	L

[^39]Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5427			DM7427			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{C C}=\operatorname{Max}$			10	16	mA
ICCL	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$			16	26	mA

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $R_{L}=400 \Omega$		11	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			15	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

National
Semiconductor
Corporation

DM5430/DM7430 8-Input NAND Gate

General Description

This device contains a single gate which performs the logic NAND function.

Connection Diagram

Dual-In-Line Package

Function Table

$\mathbf{Y}=\overline{\text { ABCDEFGH }}$	
Inputs	Output
A thru H	\mathbf{Y}
All Inputs H	L
One or More	\mathbf{H}
Input L	

$$
H=\text { High Logic Level }
$$

$L=$ Low Logic Level

Absolute Maximum Ratings (Note)	
Specifications for Milltary/Aerospace products are not	
contaned In thls datasheet. Refer to the assoclated	
rellability electrical test specifications document.	
Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM54	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
DM74	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safoty of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5430			DM7430			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {cc }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2	-		2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
OH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}_{\mathrm{O}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{lOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$1 / 12$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
${ }^{\text {ICCH }}$	Supply Current with Outputs High	$V_{C C}=$ Max			1	2	mA
${ }^{\text {I CCL }}$	Supply Current with Outputs Low	$V_{C C}=M a x$			3	6	mA

Switching CharacteristicS at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=400 \Omega$	22	ns	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		nn		

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

DM5432／DM7432 Quad 2－Input OR Gates

General Description

This device contains four independent gates each of which performs the logic OR function．

Connection Diagram

Function Table

$\mathbf{Y}=\mathbf{A}+\mathbf{B}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	L
L	H	H
H	L	H
H	H	H

$\mathrm{H}=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings (Note) Specifications for Milltary/Aerospace products are not contained in thls datasheet. Refer to the assoclated reliability electrical test specifications document.	
Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$
Storage Temperature Range	-65

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5432			DM7432			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	\checkmark
$\mathrm{IOH}^{\text {}}$	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOH}_{\mathrm{O}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
VOL	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
l_{IH}	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$1 / 2$	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\text { Max } \\ & (\text { Note } 2) \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICCH	Supply Current with Outputs High	$V_{C C}=\operatorname{Max}$			15	22	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			23	38	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=40 \Omega$		15	ns
			22	ns	

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

Function Table

$\mathbf{Y}=\overline{\mathbf{A B}}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

H = High Logic Level
L = Low Logic Level

```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained In this datasheet. Refer to the associated
reliability electrical test specifications document.
\begin{tabular}{lr} 
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM54 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5437			DM7437			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$V_{I H}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-1.2			-1.2	mA
lOL	Low Level Output Current			48			48	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.3		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-70	mA
			DM74	-18		-70	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			9	15.5	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			34	54	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
tpLH	Propagation Delay Time Low to High Level Output	$C_{L}=45 \mathrm{pF}$ $R_{\mathrm{L}}=133 \Omega$	22	ns	
			15	ns	

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

DM5438/DM7438 Quad 2-Input NAND Buffers with Open-Collector Outputs

General Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Pull-Up Resistor Equations

$R_{\text {MAX }}=\frac{V_{C C}(M i n)-V_{O H}}{N_{1}\left(I_{O H}\right)+N_{2}\left(I_{H H}\right)}$
$R_{\text {MIN }}=\frac{V_{C C}(M a x)-V_{O L}}{I_{O L}-N_{3}\left(I_{L}\right)}$
Where: $\mathrm{N}_{1}\left(\mathrm{l}_{\mathrm{OH}}\right)=$ total maximum output high current for all outputs tied to pull-up resistor
$\mathrm{N}_{2}\left(\mathrm{I}_{\mathrm{H}}\right)=$ total maximum input high current for all inputs tied to pull-up resistor
$N_{3}\left(I_{I L}\right)=$ total maximum input low current for all inputs tied to pull-up resistor

Connection Diagram

TL/F/6513-1
Order Number DM5438J, DM7438M or DM7438N See NS Package Number J14A, M14A or N14A

Function Table

$\mathbf{Y}=\overline{\mathbf{A B}}$

Inputs		Output
A	B	\mathbf{Y}
L	L	H
L	H	H
H	L	H
H	H	L

[^40]| Absolute Maximum Ratings (Note) | |
| :--- | ---: |
| Specifications for Military/Aerospace products are not | |
| contained in this datasheet. Refer to the associated | |
| reliability electrical test specifications document. | |
| Supply Voltage | 7 V |
| Input Voltage | 5.5 V |
| Output Voltage | 7 V |
| Operating Free Air Temperature Range | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM54 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| DM 74 | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5438			DM7438			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 H}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
loL	Low Level Output Current			48			48	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 V \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			250	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.4	V
1	Input Current @Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
I_{L}	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICCH	Supply Current with Outputs High	$V_{C C}=M a x$		5	8.5	mA
ICCL	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		34	54	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=133 \Omega$		22	ns
				18	ns

[^41]
DM5441A／DM7441A BCD to Decimal Decoders／Drivers

General Description

The DM5441A／DM7441A is a BCD－to－decimal decoder de－ signed to drive gas－filled NIXIE tubes．The device is also capable of driving other types of low－current lamps and re－ lays．
An over－range decoding feature provides that if binary num－ bers between 10 and 15 are applied to the input，the least significant bit（0－5）will be decoded on the output．
Input clamp diodes are also provided to clamp negative－ voltage transitions in order to minimize transmission－line ef－ fects．

Connection Diagram

Dual－In－Line Package

TL／F／6515－1
Order Number DM5441AJ or DM7441AN See NS Package Number J16A or N16A

Features
－Drive cold－cathode，numeric indicator tubes directly
m Fully decoded inputs
－Low leakage current $1.8 \mu \mathrm{~A} @ 50 \mathrm{~V}$
－Low power dissipation 105 mW typical

Function Table

5441A／7441A

Inputs				
Output On＊				
	C	B	A	
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	L	L	L	8
H	L	L	H	9
H Over Range）				
H	L	H	L	0
H	L	H	H	1
H	H	L	L	2
H	H	H	H	3
H	H	H	H	4

H＝High Level，L＝Low Level
－All other outputs are off

```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
rellability electrical test specifications document.
Supply Voltage 有 (V 
Operating Free Air Temperature Range
\begin{tabular}{lr} 
DM54 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter	DM5441A			DM7441A			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
loL	Low Level Output Current			7			7	mA
T_{A}	Free Air Operating Temperature	－55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		70			V
IOH	Off－State Reverse Current	$\begin{aligned} & V_{C C}=M i n \\ & V_{O}=50 V \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			60	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			40	
			$\mathrm{T}_{\mathrm{A}}=-55$ to $70^{\circ} \mathrm{C}$			1.8	
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & \mathrm{l}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $70^{\circ} \mathrm{C}$			2.5	
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			3	V
1	Input Current＠Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
I_{LL}	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				－1．6	mA
ICC	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}$（Note 2）			21	36	mA

Note 1：All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
Note 2：ICC is measured with all outputs open and all inputs grounded．

TL/F/6515-2

National Semiconductor Corporation

DM5442/DM7442 BCD to Decimal Decoders

General Description

These BCD-to-decimal decoders consist of eight inverters and ten, four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of input logic ensures that all outputs remain off for all invalid (10-15) input conditions.

Features

- Diode clamped inputs
- Also for application as 4-line-to-16-line decoders; 3-line-to-8-line decoders
- All outputs are high for invalid input conditions
- Typical power dissipation 140 mW
- Typical propagation delay 17 ns

Connection Diagram

Order Number DM5442J or DM7442N
See NS Package Number J16A or N16A
Function Table

No.	BCD Input				Decimal Output									
	D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	H	H	H	H	H	H	H	H	H
1	L	L	L	H	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	H	H	H	H	H	H	H	L
1	H	L	H	L	H	H	H	H	H	H	H	H	H	H
N	H	L	H	H	H	H	H	H	H	H	H	H	H	H
V	H	H	L	L	H	H	H	H	H	H	H	H	H	H
A	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	H	H	H	L	H	H	H	H	H	H	H	H	H	H
1	H	H	H	H	H	H	H	H	H	H	H	H	H	H
D														

[^42]Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5442			DM7442			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
$\mathrm{IOH}^{\text {H}}$	High Level Output Current			-0.8			-0.8	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$				1	mA
1 IH	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
1 IL	Low Level Input Current	$\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 3) } \end{aligned}$	DM54		28	41	mA
			DM74		28	56	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I_{CC} is measured with all outputs open and all inputs grounded.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output from A, B, C or D through 2 Levels of Logic	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		25	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output from A, B, C or D through 3 Levels of Logic			30	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output from A, B, C or D through 2 Levels of Logic			25	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output from A, B, C or D through 3 Levels of Logic			30	ns

Logic Diagram

National
 Semiconductor
 Corporation

DM5445/DM7445 BCD to Decimal Decoders/Drivers

General Description

These BCD-to-decimal decoders/drivers consist of eight inverters and ten, four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of BCD input logic ensures that all outputs remain off for all invalid (10-15) binary input conditions. These decoders feature high-performance, NPN output transistors designed for use as indicator/relay drivers, or as open-collector logic-circuit drivers. The high-breakdown output transistors are compatible for interfacing with most MOS integrated circuits.

Features

- Full decoding of input logic
- 80 mA sink-current capability
- All outputs are off for invalid BCD input conditions

Connection Diagram

Dual-In-Line Package

TL/F/6517-1
Order Number DM5445J or DM7445N See NS Package Number J16A or N16A

Function Table

No.	Inputs				Outputs									
	D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	H	H	H	H	H	H	H	H	H
1	L	L	L	H	H	L	H	H	H	H	H	H	H	H
2		L	H	L	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	H	H	H	H	L	H	H	H	H
6	L	H	H	L	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	H	H	H	H	H	H	H	L
1	H	L	H	L	H	H	H	H	H	H	H	H	H	H
N	H	L	H	H	H	H	H	H	H	H	H	H	H	H
V	H	H	L	L	H	H	H	H	H	H	H	H	H	H
A	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	H	H	H	L	H	H	H	H	H	H	H	H	H	H
1	H	H	H	H	H	H	H	H	H	H	H	H	H	H
D														

$H=$ High Level (Off), L = Low Level (On)

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage 7V
Input Voltage 5.5 V
Output Voltage 30V
Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5445			DM7445			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			30			30	V
lOL	Low Level Output Current			20			20	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
$I_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & V_{C C}=M i n, V_{O}=30 V \\ & V_{I L}=M a x, V_{I H}=M i n \end{aligned}$				250	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
		$\begin{aligned} & \mathrm{IOL}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$			0.5	0.9	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
IH	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
ICC	Supply Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54		43	62	mA
			DM74		43	70	

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Unlts
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=100 \Omega$		30	ns
				30	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: IcC is measured with all inputs grounded and all outputs open.

Logic Diagram

DM5446A/DM7446A, DM5447A/DM7447A BCD to 7-Segment Decoders/Drivers

General Description

The 46A and 47A feature active-low outputs designed for driving common-anode LEDs or incandescent indicators directly. All of the circuits have full ripple-blanking input/output controls and a lamp test input. Segment identification and resultant displays are shown on a following page. Display patterns for BCD input counts above nine are unique symbols to authenticate input conditions.
All of the circuits incorporate automatic leading and/or trail-ing-edge, zero-blanking control (RBI and RBO). Lamp test (LT) of these devices may be performed at any time when the $\mathrm{BI} /$ RBO node is at a high logic level. All types contain
an overriding blanking input (BI) which can be used to control the lamp intensity (by pulsing) or to inhibit the outputs.

Features

- All circuit types feature lamp intensity modulation capability
- Open-collector outputs drive indicators directly
- Lamp-test provision
- Leading/trailing zero suppression

Connection Diagram

Dual-In-LIne Package

TL/F/6518-1
Order Number DM5446AJ, DM5447AJ, DM7446AN or DM7447AN
See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contalned in thls datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5446A			DM7446A			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
VOH	High Level Output Voltage (a thru g)			30			30	V
lOH	High Level Output Current (BI/RBO)			-0.2			-0.2	$\mu \mathrm{A}$
loL	Low Level Output Current (a thru g)			40			40	mA
loL	Low Level Output Current (BI/RBO)			8			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'46A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditlons		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
VOH	High Level Output Voltage (BI/RBO)	$\begin{aligned} & V_{C C}=\operatorname{Min} \\ & \mathrm{l}_{\mathrm{OH}}=\mathrm{Max} \end{aligned}$		2.4	3.7		V
ICEX	High Level Output Current (a thru g)	$\begin{aligned} & V_{C C}=M a x, V_{O}=30 V \\ & V_{I L}=M a x, V_{I H}=M i n \end{aligned}$				250	$\mu \mathrm{A}$
VoL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{\mathrm{IH}}=M i n, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.3	0.4	V
1	Input Current © Max Input Voltage	$V_{C C}=M a x, V_{1}=5.5 V$ (Except BI/RBO)				1	mA
I_{IH}	High Level Input Current	$\begin{aligned} & V_{C C}=M a x, V_{1}=2.4 V \\ & \text { (Except BI/RBO) } \end{aligned}$				40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	BI/RBO			-4	mA
			Others			-1.6	
los	Short Circuit Output Current	$\mathrm{V}_{C C}=\operatorname{Max}(\mathrm{BI} / \mathrm{RBO})$				-4	mA
Icc	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54		60	85	mA
			DM74		60	103	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: ICC is measured with all outputs open and all inputs at 4.5 V .
'46A Switching Characteristics
at $V_{C C}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
tPLH	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $R_{L}=120 \Omega$		100	ns
tPHL	Propagation Delay Time High to Low Level Output			100	ns

Recommended Operating Conditions

Symbol	Parameter	DM5447A			DM7447A			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage (a thru g)			15			15	V
IOH	High Level Output Current (BI/RBO)			-0.2			-0.2	$\mu \mathrm{A}$
lOL	Low Level Output Current (a thru g)			40			40	mA
lOL	Low Level Output Current (BI/RBO)			8			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'47A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, l_{1}=-12 \mathrm{~mA}$				-1.5	V
VOH	High Level Output Voltage (BI/RBO)	$\begin{aligned} & V_{C C}=M i n \\ & l_{O H}=M a x \end{aligned}$		2.4	3.7		V
$I_{\text {CEX }}$	High Level Output Current (a thru g)	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=15 \mathrm{~V} \\ & V_{I L}=\operatorname{Max}, V_{I H}=\operatorname{Min} \end{aligned}$				250	$\mu \mathrm{A}$
Vol	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.3	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	BI/RBO			-4	mA
			Others			-1.6	
los	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}(\mathrm{BI} / \mathrm{RBO})$				-4	mA
ICC	Supply Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54		60	85	mA
			DM74		60	103	

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: ICC is measured with all outputs open and all inputs at 4.5 V .

'47A Switching Characteristics

at $V_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
t $_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=120 \Omega$		100	ns
				100	ns

Function Table
46A, 47A

Decimal or Function	Inputs						BI/RBO (Note 1)	Outputs							Note
	LT	RBI	D	C	B	A		a	b	c	d	e	1	g	
0	H	H	L	L	L	L	H	L	L	L	L	L	L	H	(2)
1	H	X	L	L	L	H	H	H	L	L	H	H	H	H	
2	H	X	L	L	H	L	H	L	L	H	L	L	H	L	
3	H	X	L	L	H	H	H	L	L	L	L	H	H	L	
4	H	X	L	H	L	L	H	H	L	L	H	H	L	L	
5	H	X	L	H	L	H	H	L	H	L	L	H	L	L	
6	H	X	L	H	H	L	H	H	H	L	L	L	L	L	
7	H	x	L	H	H	H	H	L	L	L	H	H	H	H	
8	H	X	H	L	L	L	H	L	L	L	L	L	L	L	
9	H	X	H	L	L	H	H	L	L	L	H	H	L	L	
10	H	x	H	L	H	L	H	H	H	H	L	L	H	L	
11	H	X	H	L	H	H	H	H	H	L	L	H	H	L	
12	H	x	H	H	L	L	H	H	L	H	H	H	L	L	
13	H	X	H	H	L	H	H	L	H	H	1	H	L	L	
14	H	X	H	H	H	L	H	H	H	H	L	L	L	L	
15	H	X	H	H	H	H	H	H	H	H	H	H	H	H	
BI	X	X	X	X	X	X	L	H	H	H	H	H	H	H	(3)
RBI	H	L	L	L	L	L	L	H	H	H	H	H	H	H	(4)
LT	L	X	X	X	X	X	H	L	L	L	L	L	L	L	(5)

Note 1: BI/RBO is a wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).
Note 2: The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be open or high if blanking of a decimal zero is not desired.
Note 3: When a low logic level is applied directly to the blanking input (BI), all segment outputs are high regardless of the level of any other input.
Note 4: When ripple-blanking input (RBI) and inputs A, B, C, and D are at a low level with the lamp test input high, all segment outputs go H and the rippleblanking output (RBO) goes to a low level (response condition).
Note 5: When the blanking input/ripple-blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment outputs are L. $H=$ High level, $L=$ Low level, $X=$ Don't Care

TL/F/6518-2

National
Semiconductor
Corporation

DM5473/DM7473 Dual Master-Slave J-K Flip-Flops with Clear, and Complementary Outputs

General Description

This device contains two independent positive pulse triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops after a complete clock pulse. While the clock is low the slave is isolated from the master. On the positive transition of the clock, the data from the J and K inputs is transferred to the master. While the
clock is high the J and K inputs are disabled. On the negative transition of the clock, the data from the master is transferred to the slave. The logic states of the J and K inputs must not be allowed to change while the clock is high. Data transfers to the outputs on the falling edge of the clock pulse. A low logic level on the clear input will reset the outputs regardless of the logic states of the other inputs.

Connection Diagram

TL/F/6525-1
Order Number DM5473J or DM7473N See NS Package Number J14A or N14A

Function Table

Inputs				Outputs	
CLR	CLK	J	K	Q	$\overline{\mathbf{Q}}$
L	X	X	X	L	H
H	Ω	L	L	Q_{0}	\bar{Q}_{0}
H	Ω	H	L	H	L
H	Ω	L	H	L	H
H	Ω	H	H	Toggle	

$H=$ High Logic Level
L = Low Logic Level
$\mathrm{X}=$ Either Low or High Logic Level
$\Omega=$ Positive pulse data. the J and K inputs must be held constant while the clock is high. Data is transferred to the outputs on the falling edge of the clock pulse.
$Q_{0}=$ The output logic level before the indicated input conditions were established.
Toggle $=$ Each output changes to the complement of its previous level on each high level clock pulse.

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
$7 V$
Input Voltage
5.5 V

Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM5473			DM7473			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$V_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
${ }^{\mathrm{IOH}}$	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				16			16	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 5)		0		15	0		15	MHz
tw	Pulse Width (Note 5)	Clock High	20			20			ns
		Clock Low	47			47			
		Clear Low	25			25			
$\mathrm{t}_{\text {SU }}$	Input Setup Time (Note 1 \& 5)		$0 \uparrow$			$0 \uparrow$			ns
t_{H}	Input Hold Time (Note 1 \& 5)		$0 \downarrow$			0 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, l_{l}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1	mA
${ }_{1 / H}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	J, K			40	$\mu \mathrm{A}$
			Clock			80	
			Clear			80	
I/L	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=0.4 V \end{aligned}$	J, K			-1.6	mA
			Clock			-3.2	
			Clear			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note } 3) \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$\mathrm{V}_{C C}=$ Max, (Note 4)			18	34	mA

Note 1: The symbol (\uparrow, \downarrow) indicates the edge of the clock pulse is used for reference: (\uparrow) for rising edge, (\downarrow) for falling edge.
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.
Note 4: With all outputs open, $I_{C C}$ is measured with the Q and \bar{Q} outputs high in turn. At the time of measurement the clock input grounded.
Note 5: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		15		MHz
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \end{aligned}$		40	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \bar{Q} \end{aligned}$		25	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		40	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		25	ns

DM5474／DM7474 Dual Positive－Edge－Triggered D Flip－ Flops with Preset，Clear and Complementary Outputs

General Description

This device contains two independent positive－edge－trig－ gered D flip－flops with complementary outputs．The informa－ tion on the D input is accepted by the flip－flops on the posi－ tive going edge of the clock pulse．The triggering occurs at a voltage level and is not directly related to the transition
time of the rising edge of the clock．The data on the D input may be changed while the clock is low or high without af－ fecting the outputs as long as the data setup and hold times are not violated．A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs．

Connection Diagram

Dual－In－Line Package

TL／F／6526－1
Order Number DM5474J，DM7474M or DM7474N See NS Package Number J14A，M14A or N14A

Function Table

Inputs					Outputs	
PR	CLR	CLK	D	Q	Q	
L	H	X	X	H	L	
H	L	X	X	L	H	
L	L	X	X	H^{*}	H^{*}	
H	H	\uparrow	H	H	L	
H	H	\uparrow	L	L	H	
H	H	L	X	Q $_{0}$	\bar{Q}_{0}	

$H=$ High Logic Level
$X=$ Either Low or High Logic Level
L＝Low Logic Level
$\uparrow=$ Positive－going transition of the clock．
＊$=$ This configuration is nonstable；that is，it will not persist when either the preset and／or clear
inputs return to their inactive（high）level．
$Q_{0}=$ The output logic level of Q before the indicated input conditions were established．

Absolute Maximum Ratings
 (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM5474			DM7474			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-0.4			-0.4	mA
$\mathrm{lOL}^{\text {L }}$	Low Level Output Current				16			16	mA
${ }^{\text {f CLK }}$	Clock Frequency (Note 2)		0		15	0		15	MHz
tw	Pulse Width (Note 2)	Clock High	30			30			ns
		Clock Low	37			37			
		Clear Low	30			30			
		Preset Low	30			30			
tsu	Input Setup Time (Notes 1 \& 2)		$20 \uparrow$			$20 \uparrow$			ns
t_{H}	Input Hold Time (Notes 1 \& 2)		$5 \uparrow$			$5 \uparrow$			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 2: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{L}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	D			40	$\mu \mathrm{A}$
			Clock			80	
			Clear			120	
			Preset			40	
IIL	Low Level Input Current	$\begin{aligned} & V_{c c}=M a x \\ & V_{1}=0.4 V \\ & (\text { Note } 6) \end{aligned}$	D			-1.6	mA
			Clock			-3.2	
			Clear			-3.2	
			Preset			-1.6	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 4) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 5)			17	30	mA

Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time.
Note 5: With all outputs open, $I_{C C}$ is measured with the Q and \bar{Q} outputs high in turn. At the time of measurement the clock is grounded.
Note 6: Clear is tested with preset high and preset is tested with clear high.

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		15		MHz
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Preset } \\ & \text { to } \overline{\mathbf{Q}} \end{aligned}$		40	ns
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Preset to Q		25	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \\ & \hline \end{aligned}$		40	ns
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \bar{Q} \end{aligned}$		25	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		40	ns
tplH	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		25	ns

National Semiconductor Corporation

DM5475/DM7475 Quad Latches

General Description

These latches are ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (D) input is transferred to the Q input when the enable (G) is high, and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the
information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high.
These latches feature complementary Q and \bar{Q} outputs from a 4-bit latch and are available in 16-pin packages.

Connection Diagram

Logic Diagram (Each Latch)

TL/F/6527-2

Absolute Maximum Ratings (Note)	
Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.	
Supply Voltage	
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to +1

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5475			DM7475			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-0.4			-0.4	mA
${ }_{\mathrm{OL}}$	Low Level Output Current			16			16	mA
tw	Enable Pulse Width (Note 4)	20			20			ns
${ }_{\text {t }}$ U	Setup Time (Note 4)	20			20			ns
${ }_{H}$	Hold Time (Note 4)	5			5			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{l}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, l_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				80	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-3.2	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & (\text { Note } 2) \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
Icc	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)	DM54		32	46	mA
			DM74		32	50	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: $I_{c c}$ is measured with all inputs grounded and all outputs open.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	D to Q		25	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	D to Q		30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	D to $\overline{\mathbf{Q}}$		15	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	D to $\overline{\mathbf{Q}}$		40	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	G to Q		15	ns
${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	G to Q		30	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	G to $\overline{\mathbf{Q}}$		15	ns
tplH	Propagation Delay Time Low to High Level Output	G to $\overline{\mathbf{Q}}$		30	ns

DM5476/DM7476 Dual Master-Slave J-K Flip-Flops with Clear, Preset, and Complementary Outputs

General Description

This device contains two independent positive pulse triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flop after a complete clock pulse. While the clock is low the slave is isolated from the master. On the positive transition of the clock, the data from the J and K inputs is transferred to the master. While the clock is high the J and K inputs are disabled. On the negative transition of the clock, the data from the master is trans-
ferred to the slave. The logic state of J and K inputs must not be allowed to change while the clock is high. The data is transfered to the outputs on the falling edge of the clock pulse. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Connection Diagram

Order Number DM5476J or DM7476N See NS Package Number J16A or N16A

Function Table

Inputs					Outputs	
PR	CLR	CLK	J	K	Q	$\overline{\mathbf{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H^{*}	H^{*}
H	H	Ω	L	L	Q_{0}	\bar{Q}_{0}
H	H	Ω	H	L	H	L
H	H	Ω	L	H	L	H
H	H	Ω	H	H		

$H=$ High Logic Level
L = Low Logic Level
$\mathrm{X}=$ Either Low or High Logic Level
Ω = Positive pulse data. The J and K inputs must be held constant while the clock is high. Data is transfered to the outputs on the falling edge of the clock pulse.

* = This configuration is nonstable; that is, it will not persist when the preset and/or clear inputs return to their inactive (high) level.
$Q_{0}=$ The output logic level before the indicated input conditions were established.
Toggle $=$ Each output changes to the complement of its previous level on each complete active high level clock pulse.

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained in thls datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM5476			DM7476			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				16			16	mA
flck	Clock Frequency (Note 6)		0		15	0		15	MHz
tw	Pulse Width (Note 6)	Clock High	20			20			ns
		Clock Low	47			47			
		Preset Low	25			25			
		Clear Low	25			25			
tsu	Input Setup Time (Notes 1 \& 6)		$0 \uparrow$			$0 \uparrow$			ns
t_{H}	Input Hold Time (Notes 1 \& 6)		0 \downarrow			0 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}$$\mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{H}}=\operatorname{Min}$		2.4	3.4		V
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
IIH^{\prime}	High Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=2.4 V \end{aligned}$	J, K			40	$\mu \mathrm{A}$
			Clock			80	
			Clear			80	
			Preset			80	
ILL	Low Level Input Current	$\begin{gathered} \mathrm{V}_{C C}=\text { Max } \\ \mathrm{V}_{1}=0.4 \mathrm{~V} \\ \text { (Note 5) } \end{gathered}$	J, K			-1.6	mA
			Clock			-3.2	
			Clear			-3.2	
			Preset			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$\mathrm{V}_{C \mathrm{C}}=\mathrm{Max}$ (Note 4)			18	34	mA

Note 1: The symbol (\uparrow, \downarrow) indicates the edge of the clock pulse is used for reference (\uparrow) for rising edge, (\downarrow) for falling edge.
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.
Note 4: With all outputs open, Icc is measured with the Q and $\overline{\mathrm{Q}}$ outputs high in turn. At the time of measurement the clock input is grounded.
Note 5: Clear is measured with preset high and preset is measured with clear high.
Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency		15		MHz
${ }^{\text {tpHL }}$	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		40	ns
${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	Preset to Q		25	ns
${ }_{\text {t PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \\ & \hline \end{aligned}$		40	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \bar{Q} \end{aligned}$		25	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or \bar{Q}		40	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		25	ns

National Semiconductor Corporation

DM5485/DM7485 4-Bit Magnitude Comparators

General Description

These 4-bit magnitude comparators perform comparison of straight binary or BCD codes. Three fully-decoded decisions about two 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The $A>B, A<B$, and $A=B$ outputs of a stage handling less-significant bits are connected to the corresponding inputs of the next stage handling more-signi-
ficant bits. The stage handling the least-significant bits must have a high-level voltage applied to the $A=B$ input. The cascading paths are implemented with only a two-gate-level delay to reduce overall comparison times for long words.

Features

- Typical power dissipation 275 mW
- Typical delay (4-bit words) 23 ns

Connection Diagram

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.
$\begin{array}{lr}\text { Supply Voltage } & 7 \mathrm{~V} \\ \text { Input Voltage } & 5.5 \mathrm{~V}\end{array}$
Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5485			DM7485			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {cc }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
$\mathrm{lOH}^{\text {r }}$	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	$A<B$			40	$\mu \mathrm{A}$
			$A>B$			40	
			Others			120	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	$A<B$			-1.6	mA
			A > B			-1.6	
			Others			-4.8	
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
Icc	Supply Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & (\text { Note 3) } \end{aligned}$			55	88	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I CC is measured with all outputs open, $\mathrm{A}=\mathrm{B}$ input grounded and all other inputs at 4.5 V .

Symbol	Parameter	From Input	To Output	Number of Gate Levels	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
					Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low-to-High Level Output	Any A or B Data Input	$\begin{aligned} & A<B \\ & A>B \end{aligned}$	3		26	ns
			$A=B$	4		35	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High-to-Low Level Output	Any A or B Data Input	$\begin{aligned} & A<B \\ & A>B \end{aligned}$	3		30	ns
			$A=B$	4		30	
$t_{\text {PLH }}$	Propagation Delay Time Low-to-High Level Output	$\begin{gathered} A<B \\ \text { or } A=B \end{gathered}$	$A>B$	1		11	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High-to-Low Level Output	$\begin{gathered} A<B \\ \text { or } A=B \end{gathered}$	$A>B$	1		17	ns
$t_{\text {PLH }}$	Propagation Delay Time Low-to-High Level Output	$A=B$	$A=B$	2		20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High-to-Low Level Output	$A=B$	$A=B$	2		17	ns
$t_{\text {PLH }}$	Propagation Delay Time Low-to-High Level Output	$\begin{gathered} \mathrm{A}>\mathrm{B} \\ \text { or } \mathrm{A}=\mathrm{B} \end{gathered}$	$A<B$	1		11	ns
tphL	Propagation Delay Time High-to-Low Level Output	$\begin{gathered} A>B \\ \text { or } A=B \end{gathered}$	$A<B$	1		17	ns

Function Table

Comparing Inputs				Cascading Inputs			Outputs		
A3, B3	A2, B2	A1, B1	A0, B0	A $>$ B	$\mathbf{A}<\mathbf{B}$	$A=B$	A $>$ B	A $<$ B	$A=B$
A3 $>$ B3	X	X	X	X	X	X	H	L	L
A3 < B3	X	X	X	X	X	X	L	H	L
A3 $=$ B3	$\mathrm{A} 2>\mathrm{B} 2$	X	X	X	X	X	H	L	L
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2<\mathrm{B} 2$	X	X	X	X	X	L	H	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	A1 > B1	X	X	X	X	H	L	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	A1 < B1	X	X	X	X	L	H	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$\mathrm{AO}>\mathrm{BO}$	X	X	X	H	L	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	AO < B0	X	X	X	L	H	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$A 1=B 1$	$A O=B 0$	H	L	L	H	L	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	L	H	L	L	H	L
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	L	L	H	L	L	H
$A 3=B 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	X	X	H	L	L	H
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 1=\mathrm{B} 1$	$A 0=B 0$	H	H	L	L	L	L
$\mathrm{A} 3=\mathrm{B} 3$	$\mathrm{A} 2=\mathrm{B} 2$	$A 1=B 1$	$A O=B 0$	L	L	L	H	H	L

[^43]
DM5485/DM7485

Logic Diagram

TL/F/6530-2

DM5486/DM7486 Quad 2-Input Exclusive-OR Gates

General Description

This device contains four independent gates each of which performs the logic exclusive-OR function.

Connection Diagram

TL/F/6531-1
Order Number DM5486J or DM7486N See NS Package Number J14A or N14A

Function Table

$\mathbf{Y}=\mathbf{A} \oplus \mathbf{B}$		
Inputs		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
L	L	L
L	H	H
H	L	H
H	H	L

$\mathrm{H}=$ High Logic Level
$\mathrm{L}=$ Low Logic Level

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM5486			DM7486			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
${ }^{\mathrm{OH}}$	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=M a x \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
I/L	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
${ }^{\text {CCH }}$	Supply Current with Outputs High	$V_{C C}=M a x$ (Note 3)	DM54		30	43	mA
			DM74		30	50	
1 CCL	Supply Current with Outputs Low	$\mathrm{V}_{C C}=\mathrm{Max}($ Note 4)			36	57	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: $\mathrm{I}_{\mathrm{CCH}}$ is measured with all outputs open, one input of each gate at 4.5 V , and the other inputs grounded.
Note 4: ICCL is measured with all outputs open, and all inputs at ground.

Symbol	Parameter	Conditions	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & R_{L}=400 \Omega \end{aligned}$		Units
			Min	Max	
tpLH	Propagation Delay Time Low to High Level Output	Other Input Low		23	ns
tPHL	Propagation Delay Time High to Low Level Output			17	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Other Input High		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			22	ns

National
Semiconductor Corporation

DM5490A/DM7490A, DM5493A/DM7493A Decade, and Binary Counters

General Description

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five for the 90A and divide-by-eight for the 93A.
All of these counters have a gated zero reset and the 90A also has gated set-to-nine inputs for use in BCD nine's complement applications.
To use their maximum count length (decade or four-bit binary), the B input is connected to the Q_{A} output. The input count pulses are applied to input A and the outputs are as
described in the appropriate truth table. A symmetrical di-vide-by-ten count can be obtained from the 90A counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_{A}.

Features

- Typical power dissipation

$$
-90 \mathrm{~A} \quad 145 \mathrm{~mW}
$$

$$
-93 A \quad 130 \mathrm{~mW}
$$

■ Count frequency 42 MHz

Connection Diagrams

Dual-In-Line Package

TL/F/6533-1
Order Number DM5490AJ or DM7490AN
See NS Package Number J14A or N14A
Dual-In-LIne Package

TL/F/6533-2

[^44]
Absolute Maximum Ratings (Note)

Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specificatlons document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM5490A			DM7490A			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				-0.8			-0.8	mA
lol	Low Level Output Current				16			16	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 5)	A	0		32	0		32	MHz
		B	0		16	0		16	
tw	Pulse Width (Note 5)	A	15			15			ns
		B	30			30			
		Reset	15			15			
$t_{\text {REL }}$	Reset Release Time (Note 5)		25			25			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

'90A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \end{aligned}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max}(\text { Note } 4) \end{aligned}$			0.2	0.4	V
1	Input Current © Max Input Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.7 V \end{aligned}$	A			80	$\mu \mathrm{A}$
			Reset			40	
			B			120	
IIL	Low Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{l}}=0.4 \mathrm{~V} \end{aligned}$	A			-3.2	mA
			Reset			-1.6	
			B			-4.8	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-57	mA
			DM74	-18		-57	
lc	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			29	42	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: ICc is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V, and all other inputs grounded.
Note 4: Q_{A} outputs are tested at $l_{O L}=$ Max plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.
Note 5: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation

'90A Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$f_{\text {MAX }}$	Maximum Clock Frequency	A to Q_{A}	32		MHz
		B to Q_{B}	16		
tpLH	Propagation Delay Time Low to High Level Output	A to Q_{A}		16	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18	ns
tplH	Propagation Delay Time Low to High Level Output	A to Q_{D}		48	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		50	ns
tpLH	Propagation Delay Time Low to High Level Output	B to Q_{B}		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35	ns
$\mathrm{tplH}^{\text {l }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		32	ns
tpHL	Propagation Delay Time High to Low Level Output	B to Q_{D}		35	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { SET-9 to } \\ & Q_{A}, Q_{D} \end{aligned}$		30	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { SET-9 to } \\ & Q_{B}, Q_{C} \\ & \hline \end{aligned}$		40	ns
tPHL	Propagation Delay Time High to Low Level Output	SET-0 Any Q		40	ns

Recommended Operating Conditions

Symbol	Parameter		DM5493A			DM7493A			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
$\mathrm{IOH}^{\text {O }}$	High Level Output Current				-0.8			-0.8	mA
lOL	Low Level Output Current				16			16	mA
${ }^{\text {f CLK }}$	Clock Frequency (Note 5)	A	0		32	0		32	MHz
		B	0		16	0		16	
tw	Pulse Width (Note 5)	A	15			15			ns
		B	30			30			
		Reset	15			15			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 5)		25			25			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

'93A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}(\text { Note } 4) \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=\operatorname{Max}, V_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	Reset			40	$\mu \mathrm{A}$
			A			80	
			B			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=0.4 V \end{aligned}$	Reset			-1.6	mA
			A			-3.2	
			B			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-57	mA
			DM74	-18		-57	
ICC	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 3)			26	39	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I CC is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 4: Q_{A} outputs are tested at $I_{C L}=$ Max plus the limit value of $I_{I L}$ for the B input. This permits driving the B input while maintaining full fan-out capability.
Note 5: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'93A Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)					
Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$f_{\text {max }}$	Maximum Clock Frequency	A to Q_{A}	32		MHz
		B to Q_{B}	16		
$t_{\text {PLLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{A}		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{A}		18	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{B} \text { to } \\ & \mathrm{Q}_{\mathrm{B}} \end{aligned}$		16	ns
${ }_{\text {t }}{ }_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{B} \text { to } \\ & \mathrm{Q}_{\mathrm{B}} \end{aligned}$		21	ns
tplh	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{B} \text { to } \\ & \mathrm{Q}_{\mathrm{C}} \end{aligned}$		32	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		51	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & B \text { to } \\ & Q_{D} \end{aligned}$		51	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { SET-0 } \\ & \text { to } \\ & \text { Any Q } \end{aligned}$		40	ns

Function Tables (Note D)

90A
BCD Count Sequence
(See Note A)

Count	Outputs			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

Reset/Count Function Table

Reset Inputs				Outputs			
R0(1)	R0(2)	R9(1)	R9(2)	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
H	H	L	X	L	L	L	L
H	H	X	L	L	L	L	L
X	X	H	H	H	L	L	H
X	L	X	L		COUNT		
L	X	L	X		COUNT		
L	X	X	L		COUNT		
X	L	L	X		COUNT		

90A
BCD Bl-Quinary (5-2)
(See Note B)

Count	Outputs			
	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{a}_{\mathbf{B}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	H	L	L	L
6	H	L	L	H
7	H	L	H	L
8	H	L	H	H
9	H	H	L	L

93A
Count Sequence
(See Note C)

Count	Outputs			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L
13	H	H	L	H
14	H	H	H	L
15	H	H	H	H

93A
Reset/Count Function Table

Reset inputs		Outputs			
RO(1)	RO(2)	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
H	H	L	L	L	L
L	X		COUNT		
X	L	COUNT			

Note A : Output Q_{A} is connected to input B for $B C D$ count.
Note B: Output Q_{D} is connected to input A for bi-quinary count.
Note C: Output Q_{A} is connected to input B.
Note D: $\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care.

Logic Diagrams

93A

TL/F/6533-4

The J and K inputs shown without connection are for reference only and are functionally at a high level.

National
Semiconductor Corporation

DM5495/DM7495 4-Bit Parallel Access Shift Registers

General Description

These 4-bit registers feature parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The registers have three modes of operation.

Parallel (broadside) load
Shift right (the direction Q_{A} toward Q_{D})
Shift left (the direction Q_{D} toward Q_{A})
Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.
Shift right is accomplished on the high-to-low transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock 2 when the
mode control is high by connecting the output of each flipflop to the parallel input of the previous flip-flop (Q_{D} to input C, etc.) and serial data is entered at input D. The clock input may be applied simultaneously to clock 1 and clock 2 if both modes can be clocked from the same source.
Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the truth table will also ensure that register contents are protected.

Features

■ Typical maximum clock frequency 36 MHz

- Typical power dissipation 250 mW

Connection Diagram

Absolute Maximum Ratings (Note)

Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM5495			DM7495			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
lOH	High Level Output Current				-0.8			-0.8	mA
lOL	Low Level Output Current				16			16	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 4)		0		25	0		25	MHz
tw	Clock Pulse Width (Note 4)		15	11		15			ns
tsu	Data Setup Time (Note 4)		20	10		20	10		ns
$t_{E N}$	Time to Enable Clock (Note 4)	Clock 1	20			20			ns
		Clock 2	15			15			
t_{H}	Data Hold Time (Note 4)		0	-10		0	-10		ns
t_{N}	Time to Inhibit Clock 1 or Clock 2 (Note 4)		10			10			ns
$T_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
Vol	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=2.4 V \end{aligned}$	Mode			80	$\mu \mathrm{A}$
			Others			40	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=0.4 V \end{aligned}$	Mode			-3.2	mA
			Others			-1.6	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-18		-57	mA
			DM74	-18		-57	
Icc	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			50	75	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: Icc is measured with all outputs and serial input open; $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D inputs grounded: Mode Control at 4.5 V : and a momentary 3 V , then ground, applied to both clock inputs.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		MHz
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output		35	ns
tpLH	Propagation Delay Time Low to High Level Output	Clock to Output		35	ns

Function Table

Inputs								Outputs			
Mode Control	Clocks		Serial	Parallel				Q_{A}	$\mathbf{Q}_{\mathbf{B}}$	a_{c}	$Q_{\text {D }}$
	2(L)	1(R)		A	B	c	D				
H	H	X	X	X	X	X	X	$Q_{\text {A0 }}$	$Q_{B 0}$	$Q_{\text {co }}$	$Q_{\text {Do }}$
H	\downarrow	X	x	a	b	c	d	a	b	c	d
H	\downarrow	X	X	$\mathrm{Q}_{\text {B }}$	$\mathrm{Q}_{\mathrm{C}+}$	$Q_{\text {D } \dagger}$	d	Q_{Bn}	$Q_{C n}$	$Q_{\text {Dn }}$	d
L	L	H	x	x	x	X	x	$Q_{\text {A0 }}$	$Q_{B 0}$	Q ${ }_{\text {co }}$	$Q_{\text {D }}$
L	x	\downarrow	H	x	X	X	x	H	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	$Q_{C n}$
L	x	\downarrow	L	X	X	X	x	L	$\mathrm{Q}_{\text {An }}$	Q_{Bn}	$Q_{\text {cn }}$
\uparrow	L	L	x	X	X	x	x	$Q_{A 0}$	Q_{BO}	Q ${ }_{\text {co }}$	Q 0
\downarrow	L	L	x	X	X	x	x	$Q_{\text {A0 }}$	$\mathrm{Q}_{\text {B0 }}$	Q_{co}	Q DO
\downarrow	L	H	X	x	x	x	x	$\mathrm{Q}_{\text {A0 }}$	$Q_{\text {B0 }}$	Q_{co}	$Q_{\text {Do }}$
\uparrow	H	L	x	x	x	X	\times	$\mathrm{Q}_{\text {AO }}$	Q_{BO}	Q_{co}	$Q_{\text {D }}$
\uparrow	H	H	X	x	X	X	x	$\mathrm{Q}_{\text {A0 }}$	Q QO	Q_{C0}	$Q_{\text {D }}$

\dagger Shifting left requires external connection of Q_{B} to A, Q_{C} to B, Q_{D} to C. Serial data is entered at input D.
$H=$ High Level (Steady State), $L=$ Low Level (Steady State), $X=$ Don't Care (Any input, including transitions)
$\downarrow=$ Transition from high to low level, $\uparrow=$ Transition from low to high level
$a, b, c, d=$ The level of steady, state input at inputs A, B, C, or D, respectively.
$Q_{A O}, Q_{B 0}, Q_{C 0}, Q_{D 0}=$ The level of $Q_{A}, Q_{B}, Q_{C}, Q_{D}$, respectively, before the indicated steady state input conditions were established.
$Q_{A n} Q_{B n}, Q_{C n}, Q_{D n}=$ The level of $Q_{A}, Q_{B}, Q_{C}, Q_{D}$, respectively, before the most recent \downarrow transition of the clock.
Logic Diagram

DM54107/DM74107 Dual Master-Slave J-K Flip-Flops with Clear and Complementary Outputs

General Description

This device contains two independent positive pulse triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops after a complete clock pulse. While the clock is low the slave is isolated from the master. On the positive transition of the clock, the data from the J and K inputs is transferred to the master. While the
clock is high the J and K inputs are disabled. On the negative transition of the clock, the data from the master is transferred to the slave. The logic states of the J and K inputs must not be allowed to change while the clock is high. Data is transferred to the outputs on the falling edge of the clock pulse. A low logic level on the clear input will reset the output regardiess of the logic states of the other inputs.

Connection Diagram

TL/F/6536-1

Function Table

Inputs				Outputs	
CLR	CLK	J	K	Q	$\overline{\text { Q }}$
L	X	X	X	L	H
H	Ω	L	L	Q_{0}	\bar{Q}_{0}
H	Ω	H	L	H	L
H	Ω	L	H	L	H
	H	H	H	Toggle	

$H=$ High Logic Level
$X=$ Either Low or High Logic Level
$\mathrm{L}=$ Low Logic Level
$\Omega=$ Positive pulse data. The J and K inputs must be held constant while the clock is high. Data is transferred to the outputs on the falling edge of the clock pulse.
$Q_{0}=$ The output logic level of Q before the Indicated input conditions were established.
Toggle $=$ Each output changes to the complement of its previous level on each complete positive clock pulse.

Absolute Maximum Ratings (Note)

Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation

Recommended Operating Conditions

Symbol	Parameter		DM54107			DM74107			Units
			Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
$\mathrm{lOH}^{\text {l }}$	High Level Output Current				-0.4			-0.4	mA
lOL^{2}	Low Level Output Current				16			16	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency (Note 5)		0	20	15	0	20	15	MHz
${ }_{\text {t }}$ W	Pulse Width (Note 5)	Clock High	20			20			
		Clock Low	47			47			ns
		Clear Low	25			25			
tsu	Input Setup Time (Notes 1 \& 5)		$0 \uparrow$			$0 \uparrow$			ns
t_{H}	Input Hold Time (Notes 1 \& 5)		0 \downarrow			$0 \downarrow$			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, l_{1}=-12 \mathrm{~mA}$				-1.5	V
$\mathrm{VOH}^{\text {O }}$	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	J, K			40	$\mu \mathrm{A}$
			Clock			80	
			Clear			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{\mathrm{Cc}}=\mathrm{Max} \\ & V_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	J, K			-1.6	mA
			Clock			-3.2	
			Clear			-3.2	
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 3)	DM54	-20		-55	mA
			DM74	-18		-55	
Icc	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max, (Note 4)			18	34	mA

Note 1: The symbols (\uparrow, \downarrow) indicate the edge of the clock pulse is used for reference: (\uparrow) for rising edge, (\downarrow) for falling edge.
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.
Note 4: With all outputs open, $I_{C C}$ is measured with the Q and \bar{Q} outputs high in turn. At the time of measurement the clock input is grounded.
Note 5: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		15		MHz
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \mathrm{Q} \end{aligned}$		40	ns
tpLH	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \bar{Q} \end{aligned}$		25	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or $\overline{\mathbf{Q}}$		40	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Qor \bar{Q}		25	ns

National
Semiconductor
Corporation

DM54109/DM74109 Dual Positive-Edge-Triggered J-K Flip-Flops with Preset, Clear, and Complementary Outputs

General Description

This device contains two independent positive-edge-triggered J-K flip-flops with complementary outputs. The J and \bar{K} data is accepted by the flip-flop on the rising edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of
the clock. The data on the J and $\overline{\mathrm{K}}$ inputs may be changed while the clock is high or low as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Connection Diagram

TL/F/6537-1
Order Number DM54109J or DM74109N
See NS Package Number J16A or N16A

Function Table

Inputs					Outputs	
PR	CLR	CLK	J	$\overline{\mathbf{K}}$	Q	$\overline{\mathbf{Q}}$
L	H	X	X	X	H	L
H	L	X	X	X	L	H
L	L	X	X	X	H^{*}	H^{*}
H	H	\uparrow	L	L	L	H
H	H	\uparrow	H	L		
H	H	\uparrow	L	H	Q_{0}	\bar{Q}_{0}
H	H	\uparrow	H	H	H	L
H	H	L	X	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$

H = High Logic Level
$L=$ Low Logic Level
$\uparrow=$ Rising Edge of Pulse.

* = This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.
$Q_{0}=$ The output logic level of Q before the indicated input conditions were established.
Toggle $=$ Each output changes to the complement of its previous level on each active transition of the clock pulse.

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54109			DM74109			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {l }}$	Low Level Input Voltage				0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-1.2			-1.2	mA
lOL	Low Level Output Current				16			16	mA
fCLK	Clock Frequency (Note 6)		0		30	0		30	MHz
tw	Pulse Width (Note 6)	Clock High	20			20			ns
		Clock Low	20			20			
		Preset Low	20			20			
		Clear Low	20			20			
tsu	Input Setup Time (Notes 1 \& 6)		$15 \uparrow$			$15 \uparrow$			ns
t_{H}	Input Hold Time (Notes 1 \& 6)		10 \downarrow			10 \downarrow			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \\ & \hline \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
${ }_{1 / \mathrm{H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	J, \bar{K}			40	$\mu \mathrm{A}$
			Preset			80	
			Clock			80	
			Clear			160	
IIL	Low Level Input Current	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \\ \text { (Note 5) } \end{gathered}$	J, $\overline{\mathrm{K}}$			-1.6	mA
			Preset			-3.2	
			Clock			-3.2	
			Clear			-4.8	
los	Short Circuit Output Current	$\begin{aligned} & V_{c c}=M a x \\ & \text { (Note 3) } \end{aligned}$	DM54	-30		-85	mA
			DM74	-30		-85	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 4)			20	30	mA

Note 1: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.
Note 4: With all outputs open, ICC is measured with the Q and $\overline{\mathrm{Q}}$ outputs high in turn. At the time of measurement the clock input grounded.
Note 5: Clear is tested with preset high and preset is tested with clear high.
Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega \\ & C_{L}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		MHz
tpLH	Propagation Delay Time Low to High Level Output	Preset to Q		14	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Preset to \bar{Q}		29	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } \overline{\mathrm{Q}} \end{aligned}$		14	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \\ & \hline \end{aligned}$		25	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Q or \bar{Q}		18	ns
${ }^{\text {PrHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q or $\overline{\mathbf{Q}}$		28	ns

DM54121/DM74121 One-Shot with Clear and Complementary Outputs

General Description

The DM54/74121 is a monostable multivibrator featuring both positive and negative edge triggering with complementary outputs. An internal $2 \mathrm{k} \Omega$ timing resistor is provided for design convenience minimizing component count and layout problems. This device can be used with a single external capacitor. Inputs (A) are active-low trigger transition inputs and input (B) is an active-high transition Schmitt-trigger input that allows jitter-free triggering from inputs with transition rates as slow as 1 volt/second. A high immunity to $V_{C C}$ noise of typically 1.5 V is also provided by internal circuitry at the input stage.
To obtain optimum and trouble free operation please read operating rules and NSC one-shot application notes carefully and observe recommendations.

Features

- Triggered from active-high transition or active-low transition inputs
- Variable pulse width from 30 ns to 28 seconds

Connection Diagram

TL/F/6538-1
Order Number DM54121J or DM74121N See NS Package Number J14A or N14A

- Jitter free Schmitt-trigger input
- Excellent noise immunity typically 1.2 V
- Stable pulse width up to 90% duty cycle.
- TTL, DTL compatible
- Compensated for $V_{C C}$ and temperature variations
- Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of an internal resistor RINT or an external resistor (R_{X}) and capacitor (C_{x}). Once triggered the output pulse width is independent of further transitions of the inputs and is a function of the timing components. Pulse width can vary from a few nano-seconds to 28 seconds by choosing appropriate R_{X} and C_{X} combinations. There are three trigger inputs from the device, two negative edge-triggering (A) inputs, one positive edge Schmitt-triggering (B) input.

Function Table

Inputs			Outputs		
A1	A2	B	Q	$\overline{\text { Q }}$	
L	X	H	L	H	
X	L	H	L	H	
X	X	L	L	H	
H	H	X	L	H	
H	\downarrow	H	Ω	U	
\downarrow	H	H	Ω	U	
\downarrow	\downarrow	H	Ω	U	
L	X	\uparrow	Ω	U	
X	L	\uparrow	Ω	工	

H $=$ High Logic Level
L = Low Logic Level
$\mathrm{X}=\mathrm{Can} \mathrm{Be}$ Either Low or High
$\uparrow=$ Positive Going Transition
$\downarrow=$ Negative Going Transition
$\Omega=$ A Positive Pulse
$\Psi=A$ Negative Pulse

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
DM54
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM54121			DM74121			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Input Threshold Voltage at the A Input ($\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$)			1.4	2		1.4	2	V
$\mathrm{V}_{\mathrm{T} \text { - }}$	Negative-Going Input Threshold Voltage at the A Input ($\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$)		0.8	1.4		0.8	1.4		V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Input Threshold Voltage at the B Input $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)$			1.5	2		1.5	2	V
$\mathrm{V}_{\text {T- }}$	Negative-Going Input Threshold Voltage at the B Input $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)$		0.8	1.3		0.8	1.3		V
${ }^{\mathrm{OH}}$	High Level Output Current				-0.4			-0.4	mA
OL	Low Level Output Current				16			16	mA
tw	Input Pulse Width (Note 1)		50			50			ns
$\mathrm{dV} / \mathrm{dt}$	Rate of Rise or Fall of Schmidt Input (B) (Note 1)				1			1	V/s
dV/dt	Rate of Rise or Fall of Logic Input (A) (Note 1)				1			1	$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{R}_{\text {EXT }}$	External Timing Resistor (Note 1)		1.4		30	1.4		40	$\mathrm{k} \Omega$
$\mathrm{C}_{\text {EXT }}$	External Timing Capacitance (Note 1)		0		1000	0		1000	$\mu \mathrm{F}$
DC	Duty Cycle (Note 1)	$\mathrm{R}_{\mathrm{T}}=2 \mathrm{k} \Omega$			67			67	\%
		$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{\mathrm{EXT}}$ (Max)			90			90	
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 1) } \\ & \hline \end{aligned}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\text { Max } \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{\mathrm{Cc}}=M a x \\ & V_{1}=2.4 \mathrm{~V} \end{aligned}$	A1, A2			40	$\mu \mathrm{A}$
			B			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	A1, A2			-1.6	mA
			B			-3.2	
los	Short Circuit Output Current	$\begin{aligned} & V_{c c}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$	Quiescent		13	25	mA
			Triggered		23	40	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.

Operating Rules

1. To use the internal $2 \mathrm{k} \Omega$ timing resistor, connect the $\mathrm{R}_{\text {INT }}$ pin to $V_{C C}$.
2. An external resistor (R_{X}) or the internal resistor (2 $k \Omega$) and an external capacitor (C_{x}) are required for proper operation. The value of C_{X} may vary from 0 to any necessary value. For small time constants use high-quality mica, glass, polypropylene, polycarbonate, or polystyrene capacitors. For large time constants use solid tantalum or special aluminum capacitors. If the timing capacitors have leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
3. The pulse width is essentially determined by external timing components R_{X} and C_{X}. For $\mathrm{C}_{\mathrm{X}}<1000 \mathrm{pF}$ see Figure 1 design curves on TW as function of timing components value. For $\mathrm{C}_{X}>1000 \mathrm{pF}$ the output is defined as:
$t_{w}=K R_{X} C_{X}$
where [R_{X} is in Kilo-ohm]
[C_{x} is in pico Farad]
[T_{W} is in nano second]
[$K \approx 0.7$]

TL/F/6538-2
FIGURE 1
4. If C_{X} is an electrolytic capacitor a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current (Figure 2).

TL/F/6538-3
FIGURE 2

Operating Rules（Continued）

5．Output pulse width versus V_{CC} and operation tempera－ tures：Figure 3 depicts the relationship between pulse width variation versus V_{CC} ．Figure 4 depicts pulse width variation versus ambient temperature．

TL／F／6538－4
FIGURE 3

FIGURE 4

6．The＂K＂coefficient is not a constant，but varies as a function of the timing capacitor C_{X} ．Figure 5 details this characteristic．

TL／F／6538－6
FIGURE 5
7．Under any operating condition C_{X} and R_{X} must be kept as close to the one－shot device pins as possible to mini－ mize stray capacitance，to reduce noise pick－up，and to reduce $I \times R$ and $\mathrm{Ldi} / \mathrm{dt}$ voltage developed along their connecting paths．If the lead length from C_{X} to pins（10） and（11）is greater than 3 cm ，for example，the output pulse width might be quite different from values predicted from the appropriate equations．A non－inductive and low capacitive path is necessary to ensure complete dis－ charge of C_{X} in each cycle of its operation so that the output pulse width will be accurate．
8．$V_{C C}$ and ground wiring should conform to good high－fre－ quency standards and practices so that switching tran－ sients on the V_{CC} and ground return leads do not cause interaction between one－shots． $\mathrm{A} 0.01 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ by－ pass capacitor（disk ceramic or monolithic type）from $V_{C C}$ to ground is necessary on each device．Furthermore，the bypass capacitor should be located as close to the $\mathrm{V}_{\mathrm{CC}}-$ pin as space permits．
For further detailed device characteristics and output performance please refer to the NSC one－shot application note，AN－366．

National Semiconductor Corporation

DM54123/DM74123 Dual Retriggerable One-Shot with Clear and Complementary Outputs

General Description

The DM54/74123 is a dual retriggerable monostable multivibrator capable of generating output pulses from a few nano-seconds to extremely long duration up to 100% duty cycle. Each device has three inputs permitting the choice of either leading-edge or trailing edge triggering. Pin (A) is an active-low transition trigger input and pin (B) is an activehigh transition trigger input. The clear (CLR) input terminates the output pulse at a predetermined time independent of the timing components.
National's '123 device features a unique logic realization not implemented by other manufacturers. The "Clear" input will not trigger the device, a design tailored for applications where it shall only terminate or reduce a timing pulse.
To obtain the best and trouble free operation from this device please read the operating rules as well as the NSC one-shot application notes carefully and observe recommendations.

Connection Diagram

Dual-In-Line Package

TL/F/6539-1
Order Number DM54123J or DM74123N
See NS Package Number J16A or N16A

Features

- DC triggered from active-high transition or active-low transition inputs
- Retriggerable to 100% duty cycle
- Direct reset terminates output pulse
- Compensated for $V_{C C}$ and temperature variations
- DTL, TTL compatible
- Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of an external resistor (R_{X}) and capacitor (C_{X}). Once triggered, the basic pulse width may be extended by retriggering the gated active-low transition or active-high transition inputs or be reduced by use of the active-low transition clear input. Retriggering to 100% duty cycle is possible by application of an input pulse train whose cycle time is shorter than the output cycle time such that a continuous "HIGH" logic state is maintained at the " Q " output.

Function Table

Inputs			Outputs		
CLEAR	A	B	Q	$\overline{\mathbf{Q}}$	
L	X	X	L	H	
H	H	X	L	H	
H	X	L	L	H	
H	L	\uparrow	Ω	I	
H	\downarrow	H	Ω	I	

$\mathrm{H}=$ High Logic Level
L = Low Logic Level
X = Can Be Either Low or High
$\uparrow=$ Positive Going Transition
$\downarrow=$ Negative Golng Transition
$\Omega=$ A Positive Pulse
$工=A$ Negative Pulse

Recommended Operating Conditions

Symbol	Parameter		DM54123			DM74123			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{\text {cc }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
${ }^{\mathrm{IOH}}$	High Level Output Current				-0.8			-0.8	mA
lOL	Low Level Output Current				16			16	mA
tw	Pulse Width (Note 5)	A or B High	40			40			
		A or B Low	40			40			ns
		Clear Low	40			40			
TWQ (Min)	Minimum Width of Pulse at Q (Note 5)	A or B			76			65	ns
$\mathrm{R}_{\text {EXT }}$	External Timing Resistor		5		25	5		50	k Ω
$\mathrm{C}_{\text {EXT }}$	External Timing Capacitance		No Restriction			No Restriction			$\mu \mathrm{F}$
CWIRE	Wiring Capacitance at $\mathrm{R}_{\mathrm{EXT}} / \mathrm{C}_{\mathrm{EXT}}$ Terminal (Note 5)				50			50	pF
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.5	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
1 IH	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	Data			40	$\mu \mathrm{A}$
			Clear			80	
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-10		-40	mA
			DM74	-10		-40	
ICC	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Notes 3 and 4)			46	66	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: Quiescent $I_{C C}$ is measured (after clearing) with 2.4 V applied to all clear and A inputs, B inputs grounded, all outputs open, $\mathrm{C}_{\mathrm{EXT}}=0.02 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{EXT}}=$ $25 \mathrm{~K} \Omega$.
Note 4: I_{CC} is measured in the triggered state with 2.4 V applied to all clear and B inputs, A inputs grounded, all outputs open, $\mathrm{C}_{\mathrm{EXT}}=0.02 \mu \mathrm{~F}$, and $\mathrm{R}_{\mathrm{EXT}}=25 \mathrm{k} \Omega$.
Note 5: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega$				Units
			$\begin{gathered} C_{L}=15 \mathrm{pF} \\ \mathrm{C}_{\mathrm{EXT}}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{EXT}}=5 \mathrm{k} \Omega \\ \hline \end{gathered}$		$\begin{gathered} C_{L}=15 \mathrm{pF} \\ C_{E X T}=1000 \mathrm{pF}, \mathrm{R}_{\mathrm{EXT}}=10 \mathrm{~K} \Omega \end{gathered}$		
			Min	Max	Min	Max	
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	A to Q		33			ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q		28			ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	A to $\overline{\mathrm{Q}}$		40			ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	B to \bar{Q}		36			ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clear to \bar{Q}		40			ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Q		27			ns
tw(out)	Output Pulse Width	A or B to Q			3.08	3.76	$\mu \mathrm{S}$

Operating Rules

1. An external resistor (R_{X}) and external capacitor (C_{X}) are required for proper operation. The value of C_{X} may vary from 0 to any necessary value. For small time constants high-grade mica, glass, polypropylene, polycarbonate, or polystyrene material capacitors may be used. For large time constants use tantalum or special aluminum capacitors. If the timing capacitors have leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
2. When an electrolytic capacitor is used for C_{x} a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current (Figure 2). However, its use in general is not recommended with retriggerable operation.
3. The output pulse width (T_{W}) for $C_{X}>1000 \mathrm{pF}$ is defined as follows:

$$
\begin{aligned}
& T_{W}=K R_{X} C_{X}\left(1+0.7 / R_{X}\right) \\
& \text { where }\left[R_{X} \text { is in Kilo-ohm }\right] \\
& {\left[C_{X}\right. \text { is in pico Farad] }} \\
& {\left[T_{W} \text { is in nano second }\right]} \\
& {[K \approx 0.34]}
\end{aligned}
$$

4. The multiplicative factor K is plotted as a function of C_{X} below for design considerations:

TL/F/6539-2
FIGURE 1

Operating Rules
 （Continued）

7．The retriggerable pulse width is calculated as shown be－ low：

$$
T=T_{W}+t_{P L H}=K \times R_{X} \times C_{X}+t_{\text {PLH }}
$$

The retriggered pulse width is equal to the pulse width plus a delay time period（Figure 5）．

8．Output pulse width versus $V_{C C}$ and Temperatures：Figure 6 depicts the relationship between pulse width variation versus operating $V_{c c}$ ．Figure 7 depicts pulse width varia－ tion versus ambient temperatures．

TL／F／6539－7
FIGURE 6

TL／F／6539－8
FIGURE 7
9．Under any operating condition C_{X} and R_{X} must be kept as close to the one－shot device pins as possible to mini－ mize stray capacitance，to reduce noise pick－up，and to reduce $I \times R$ and $\mathrm{Ldi} / \mathrm{dt}$ voltage developed along their connecting paths．If the lead iength from C_{X} to pins（6） and（7）or pins（14）and（15）is greater than 3 cm ，for example，the output pulse width might be quite different from values predicted from the appropriate equations．A non－inductive and low capacitive path is necessary to ensure complete discharge of C_{X} in each cycle of its operation so that the output pulse width will be accurate．
10．The CEXT pins of this device are internally connected to the internal ground．For optimum system performance they should be hard wired to the system＇s return ground plane．
＊However，it should be noted that although the 74221 series one－shot is pin－for－pin compatiable with the ＇123 device，its $\mathrm{C}_{\text {EXT }}$ pin is not an internal connection to ground．Hence，if substitution of an＇221 on to an ＇123 design layout whose $\mathrm{C}_{\text {EXT }}$ pin is wired to the ground is attempted，the＇ 221 device will not function！
11． V_{CC} and ground wiring should conform to good high－fre－ quency standards and practices so that switching tran－ sients on the $V_{C C}$ and ground return leads do not cause interaction between one－shots．A $0.01 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ bypass capacitor（disk ceramic or monolithic type）from $V_{C C}$ to ground is necessary on each device．Further－ more，the bypass capacitor should be located as close to the V_{CC} pin as space permits．
＊For further detalled device characteristics and output performance please refer to the NSC one－shot application note，AN－366．

National Semiconductor Corporation

DM54125/DM74125 Quad TRI-STATE ${ }^{\circledR}$ Buffers

General Description

This device contains four independent gates each of which performs a non-inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard TTL output with additional drive capability at the high Logic level to permit the driving of bus lines without external pull-up resistors.

When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

Dual-In-LIne Package

Order Number DM54125J or DM74125N See NS Package Number J14A or N14A

Function Table

Y=A		
Inputs		Output
\mathbf{A}	\mathbf{C}	\mathbf{Y}
L	L	L
H	L	H
X	H	$\mathrm{Hi}-\mathrm{Z}$

$H=$ High Logic Level
L = Low Logic Level
$X=$ Either Low or High Logic Level
Hi-Z = TRI-STATE (Outputs are disabled)

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
\quad DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Free Air Temperature Range

Recommended Operating Conditions

Symbol	Parameter	DM54125			DM74125			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-2			-5.2	mA
lOL	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOH}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.3		V
VoL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{l}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}$				-1.6	mA
IIZL	Off-State Input Current with Low Level Input Voltage Applied	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-40	$\mu \mathrm{A}$
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				40	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-30		-70	mA
			DM74	-28		-70	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$ (Note 3)			36	54	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with the output control (C) inputs at 4.5 V , the data inputs grounded, and the outputs open.

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=400 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
tpLH	Propagation Delay Time Low to High Level Output				15	ns
tPHL	Propagation Delay Time High to Low Level Output				18	ns
$t_{\text {tPZH }}$	Output Enable Time to High Level Output				18	ns
tpzL	Output Enable Time to Low Level Output				25	ns
tPHZ	Output Disable Time from High Level Output		8			ns
tplz	Output Disable Time from Low Level Output		14			ns

National
 Semiconductor
 Corporation

DM54132/DM74132 Quad 2-Input NAND Gates with Schmitt Trigger Inputs

General Description

This device contains four independent gates each of which performs the logic NAND function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter-free output.

Connection Diagram

Order Number DM54132J or DM74132N See NS Package Number J14A or N14A

Function Table

Y $=\mathbf{A B}$		
Inputs Output A B Y L L H L H H H L H H H L		

$H=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings（Note）
Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the associated reliability electrical test specifications document．
Supply Voltage
$7 V$
Input Voltage
5.5 V

Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter	DM54132			DM74132			Units
		Min	Typ	Max	Min	Typ	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\mathrm{T}+}$	Positive－Going Input Threshold Voltage（Note 1）	1.5	1.7	2	1.5	1.7	2	V
$\mathrm{V}_{\mathrm{T}-}$	Negative－Going Input Threshold Voltage（Note 1）	0.6	0.9	1.1	0.6	0.9	1.1	V
HYS	Input Hysteresis（Note 1）	0.4	0.8		0.4	0.8		V
IOH	High Level Output Current			－0．8			－0．8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	－55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 2）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				－1．5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}_{\mathrm{O}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{T}-\mathrm{Min}} \end{aligned}$	DM54	2.4	3.4		V
			DM74	2.4	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\text { Min, } I_{O L}=\operatorname{Max} \\ & V_{1}=V_{T+} \text { Max } \end{aligned}$			0.2	0.4	V
${ }^{1} \mathbf{T}+$	Input Current at Positive－Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}+}$			－0．43		mA
${ }^{1}$ T－	Input Current at Negative－Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}-}$			－0．56		mA
1	Input Current＠Max Input Voltage	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
IH_{1}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			－0．8	－1．2	mA
Ios	Short Circuit Output Current	$V_{C C}=M a x$ （Note 3）	DM54	－18		－55	mA
			DM74	－18		－55	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			15	24	mA
${ }^{\text {I CCL }}$	Supply Current with Outputs Low	$V_{C C}=$ Max			26	40	mA

Note 1：$V_{C C}=5 \mathrm{~V}$ ．
Note 2：All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
Note 3：Not more than one output should be shorted at a time．

Symbol	Parameter	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
		Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output		22	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output		22	ns

National Semiconductor Corporation

DM54141/DM74141 BCD to Decimal Decoders/Drivers

General Description

The DM54141/DM74141 is a BCD-to-decimal decoder designed to drive cold-cathode indicator tubes.

Full decoding is provided for all possible input states. For binary inputs 10 through 15, all the outputs are off. Therefore the DM54141/DM74141, combined with a minimum of external circuitry, can use these invalid codes in blanking leading- and/or trailing-edge zeros in a display.
Input clamp diodes are also provided to clamp negativevoltage transitions in order to minimize transmission-line effects.

Connection Diagram

Dual-In-Line Package

TL/F/6543-1
Order Number DM54141J or DM74141N See NS Package Number J16A or N16A

Features

- Drive cold-cathode, numeric indicator tubes directly
- Fully decoded inputs
- Low leakage current $50 \mu \mathrm{~A}$ @ 55 V
- Low power dissipation 55 mW typical

Function Table

Inputs				
Output On*				
	C	B	A	${ }^{*}$
L	L	L	L	0
L	L	L	H	1
L	L	H	L	2
L	L	H	H	3
L	H	L	L	4
L	H	L	H	5
L	H	H	L	6
L	H	H	H	7
H	L	L	L	8
H	L	L	H	9
(Over Range)				
H	L	H	L	
H	L	H	H	None
H	H	L	L	None
H	H	L	H	None
H	H	H	L	None
H	H	H	H	None

$H=$ High Level, L = Low Level

* All other outputs are off

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54141			DM74141			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
loL	Low Level Output Current			7			7	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=0.5 \mathrm{~mA}$		60			V
$\mathrm{IOH}^{\text {I }}$	Off-State Reverse Current for Input Counts 10-15	$\begin{aligned} & V_{C C}=M i n \\ & V_{O}=30 V \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$			5	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$			15	
${ }^{\mathrm{IOH}}$	Off-State Reverse Current for Input Counts 0-9	$\begin{aligned} & V_{C C}=M i n \\ & V_{O}=55 V \end{aligned}$				50	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			2.5	V
			$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$			3	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	A Input			40	$\mu \mathrm{A}$
			B, C, D Inputs			80	
ILL	Low Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.4 V \end{aligned}$	A Input			-1.6	mA
			B, C, D Inputs			-3.2	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 2)			11	25	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: ICC is measured with all inputs grounded and all outputs open.

Logic Diagram

TL／F／6543－2

National Semiconductor Corporation

DM54145／DM74145 BCD to Decimal Decoders／Drivers

General Description

These BCD－to－decimal decoders／drivers consist of eight in－ verters and ten，four－input NAND gates．The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates．Full decoding of BCD input logic ensures that all outputs remain off for all invalid（10－ 15）binary input conditions．These decoders feature high－ performance，NPN output transistors designed for use as indicator／relay drivers，or as open－collector logic－circuit driv－ ers．The high－breakdown output transistors are compatible for interfacing with most MOS integrated circuits．

Features

－Full decoding of input logic
－ 80 mA sink－current capability
－All outputs are off for invalid BCD input conditions

Connection Diagram

TL／F／6544－1
Order Number DM54145J or DM74145N
See NS Package Number J16A or N16A

Function Table

No．	Inputs				Outputs									
	D	C	B	A	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	H	H	H	H	H	H	H	H	H
1	L	L	L	H	H	L	H	H	H	H	H	H	H	H
2	L	L	H	L	H	H	L	H	H	H	H	H	H	H
3	L	L	H	H	H	H	H	L	H	H	H	H	H	H
4	L	H	L	L	H	H	H	H	L	H	H	H	H	H
5	L	H	L	H	H	H	H	H	H	L	H	H	H	H
6	L．	H	H	L	H	H	H	H	H	H	L	H	H	H
7	L	H	H	H	H	H	H	H	H	H	H	L	H	H
8	H	L	L	L	H	H	H	H	H	H	H	H	L	H
9	H	L	L	H	H	H	H	H	H	H	H	H	H	L
1	H	L	H	L	H	H	H	H	H	H	H	H	H	H
N	H	L	H	H	H	H	H	H	H	H	H	H	H	H
V	H	H	L	L	H	H	H	H	H	H	H	H	H	H
A	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	H	H	H	L	H	H	H	H	H	H	H	H	H	H
1	H	H	H	H		H	H	H	H	H	H	H	H	H
D														

$H=$ High Level（Off），L＝Low Level（On）

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage 7V

Input Voltage
5.5 V

Operating Free Air Temperature Range

DM54
DM74
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54145			DM74145			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			15			15	V
lOL	Low Level Output Current			20			20	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=M i n, l_{l}=-12 \mathrm{~mA}$				-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, V_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$				250	$\mu \mathrm{A}$
VOL	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
		$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=80 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$			0.5	0.9	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
l / L	Low Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
ICC	Supply Current	$V_{C C}=M a x$ (Note 2)	DM54		43	62	mA
			DM74		43	70	

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$C_{L}=15 \mathrm{pF}$ $R_{L}=100 \Omega$		30	ns
				30	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: $I_{C C}$ is measured with all outputs open and all inputs grounded.

Logic Diagram

Semiconductor Corporation

DM54148/DM74148 Priority Encoders

General Description

This TTL encoder features priority decoding of the input data to ensure that only the highest-order data line is encoded. The DM54148 and DM74148 encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input E1 and enable output E0) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level.

Features

- Encodes 8 data lines to 3 -line binary (octal)
- Applications include:

N -bit encoding
Code converters and generators

Connection Diagram

TL/F/6545-1
Order Number DM54148J or DM74148N
See NS Package Number J16A or N16A

Function Table

54148/74148

Inputs									Outputs				
E1	0	1	2	3	4	5	6	7	A2	A1	A0	GS	E0
H	X	X	X	X	X	X	X	X	H	H	H	H	H
L	H	H	H	H	H	H	H	H	H	H	H	H	L
L	X	X	X	X	X	X	X	L	L	L	L	L	H
L	X	X	X	X	X	X	L	H	L.	L	H	L	H
L	X	X	X	X	X	L	H	H	L	H	L	L	H
L	X	X	X	X	L	H	H	H	L	H	H	L	H
L	X	X	X	L	H	H	H	H	H	L	L	L	H
L	X	X	L	H	H	H	H	H	H	L	H	L	H
L	X	L	H	H	H	H	H	H	H	H	L	L	H
L	L	H	H	H	H	H	H	H	H	H	H	L	H

$H=$ High Logic Level, $L=$ Low Logic Level, $X=$ Don't Care

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Input Voltage 5.5 V perating Free Air Temperature Range

Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54148			DM74148			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.8			-0.8	mA
$\mathrm{IOL}^{\text {L }}$	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current @Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
${ }_{\mathrm{IJH}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=2.4 V \end{aligned}$	0 Input			40	$\mu \mathrm{A}$
			Others			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	0 Input			-1.6	mA
			Others			-3.2	
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	DM54	-35		-85	mA
			DM74	-35		-85	
ICC1	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 3)			40	60	mA
ICC2	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 4)			35	55	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I_{CC} is measured with inputs E1 and 7 grounded, other inputs and outputs open.
Note 4: $\mathrm{I}_{\mathrm{CC} 2}$ is measured with all inputs and all outputs open.

Switching CharacteristicS at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	Waveform	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
				Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} 0 \text { thru } 9 \\ \text { to } \mathrm{AO}, 1,2 \end{gathered}$	In-Phase Output		15	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} 0 \text { thru } 9 \\ \text { to } A 0,1,2 \end{gathered}$			14	ns
$t_{\text {PL }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} 0 \text { thru } 9 \\ \text { to } A 0,1,2 \\ \hline \end{gathered}$	Out-of-Phase Output		19	ns
tpHL	Propagation Delay Time High to Low Level Output	$\begin{gathered} 0 \text { thru } 9 \\ \text { to } \mathrm{AO}, 1,2 \\ \hline \end{gathered}$			19	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	0 thru 7 to EO	Out-of-Phase Output		10	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	0 thru 7 to E0			25	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	0 thru 7 to GS	In-Phase Output		30	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	0 thru 7 to GS			25	ns
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	E1 to AO, 1, 2	In-Phase Output		15	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	E1 to AO, 1, 2			15	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	E1 to GS	In-Phase Output		12	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	E1 to GS			15	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	E1 to E0	In-Phase Output		15	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	E1 to E0			30	ns

National Semiconductor Corporation

DM54150/DM74150, DM54151A/DM74151A Data Selectors/Multiplexers

General Description

These data selectors/multiplexers contain full on-chip decoding to select the desired data source. The 150 selects one-of-sixteen data sources; the 151A selects one-of-eight data sources. The 150 and 151A have a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the W output high and the Y output (as applicable) low.
The 151A features complementary W and Y outputs, whereas the 150 has an inverted (W) output only.
The 151A incorporates address buffers which have symmetrical propagation delay times through the complementary paths. This reduces the possibility of transients occurring at the output(s) due to changes made at the select inputs, even when the 151A outputs are enabled (i.e., strobe low).

Features

- 150 selects one-of-sixteen data lines
- 151A selects one-of-eight data lines
- Performs parallel-to-serial conversion
- Permits multiplexing from N lines to one line
- Also for use as Boolean function generator

■ Typical average propagation delay time, data input to W output
$150 \quad 11 \mathrm{~ns}$ 151A 9 ns

- Typical power dissipation
$150 \quad 200 \mathrm{~mW}$ 151A 135 mW

Connection Diagrams

TL/F/6546-1
Order Number DM54150J or DM74150N See NS Package Number J24A or N24A

Dual-In-LIne Package

TL/F/6546-2
Order Number DM54151AJ or DM74151AN See NS Package Number J16A or N16A

'150 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\operatorname{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
$\mathrm{VOH}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max},($ Note 3)			40	68	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with the strobe and data select inputs at 4.5 V , all other inputs and outputs open.
DM54150/DM74150, DM54151A/DM74151A

'150 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)					
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
tpLH	Propagation Delay Time Low to High Level Output	Select to W		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Select to W		33	ns
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Strobe to W		24	ns
tPHL	Propagation Delay Time High to Low Level Output	Strobe to W		30	ns
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{E} 0-\mathrm{E} 15 \\ \text { to } \mathrm{W} \end{gathered}$		20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \mathrm{EO}-\mathrm{E} 15 \\ \text { to } \mathrm{W} \end{gathered}$		14	ns

Recommended Operating Conditions

Symbol	Parameter	DM54151A			DM74151A			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'151A Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max, (Note 3)			27	48	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: $I_{C C}$ is measured with the strobe and data select inputs at 4.5 V , all other inputs and outputs open.
'151A Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select (4 Levels) to Y		38	ns
tPHL	Propagation Delay Time High to Low Level Output	Select (4 Levels) to Y		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select (3 Levels) to W		26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select (3 Levels) to W		30	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		33	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		30	ns
tple	Propagation Delay Time Low to High Level Output	Strobe to W		21	ns
${ }^{\text {PPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to W		25	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { D0-D7 } \\ & \text { to } Y \end{aligned}$		24	ns
tPHL	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { DO-D7 } \\ & \text { to } Y \end{aligned}$		24	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { DO-D7 } \\ \text { to W } \end{gathered}$		14	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { DO-D7 } \\ & \text { to W } \end{aligned}$		14	ns

TL/F/6546-3

Logic Diagrams

See Address Buffers Below

Function Tables

Inputs					$\begin{aligned} & \text { Outputs } \\ & \mathrm{W} \end{aligned}$
Select				Strobe S	
D	C	B	A		
X	X	X	X	H	H
L	L	L	L	L	E0
L	L	L	H	L	E1
L	L	H	L	L	E2
L	L	H	H	L	E3
L	H	L	L	L	E4
L	H	L	H	L	E5
L	H	H	L	L	E6
L	H	H	H	L	E7
H	L	L	L	L	E8
H	L	L	H	L	E9
H	L	H	L	L	$\overline{\text { E10 }}$
H	L	H	H	L	$\overline{\text { E11 }}$
H	H	L	L	L	E12
H	H	L	H	L	$\overline{\text { E13 }}$
H	H	H	L	L	$\overline{\mathrm{E} 4}$
H	H	H	H	L	E15

54151A/75151A

Inputs				Outputs	
Select			Strobe	Y	W
C	B	A	S		
X	X	X	H	L	H
L	L	L	L	D0	$\overline{\text { D0 }}$
L	L	H	L	D1	$\overline{\text { D1 }}$
L	H	L	L	D2	$\overline{\text { D2 }}$
L	H	H	L	D3	$\overline{\text { D3 }}$
H	L	L	L	D4	$\overline{\text { D4 }}$
H	L	H	L	D5	$\overline{\text { D5 }}$
H	H	L	L	D6	$\overline{\text { D6 }}$
H	H	H	L	D7	$\overline{\text { D7 }}$

[^45]$H=$ High Level, $L=$ Low Level, $X=$ Don't Care
$\overline{\mathrm{EO}}, \overline{\mathrm{E} 1} \ldots \overline{\mathrm{E} 15}=$ the complement of the level of the respective E input

DM54153/DM74153 Dual 4-Line to 1-Line Data Selectors/Multiplexers

General Description

Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR-invert gates. Separate strobe inputs are provided for each of the two four-line sections.

Features

- Permits multiplexing from N lines to 1 line
- Performs parallel-to-serial conversion
- Strobe (enable) line provided for cascading (N lines to n lines)
- High fan-out, low-impedance, totem-pole outputs
- Typical average propagation delay times

From data 11 ns
From strobe 18 ns
From select 20 ns

- Typical power dissipation 170 mW

Function Table

Select Inputs	Data Inputs					Strobe	Output
B	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	X	H	L
L	L	L	X	X	X	L	L
L	L	H	X	X	X	L	H
L	H	X	L	X	X	L	L
L	H	X	H	X	X	L	H
H	L	X	X	L	X	L	L
H	L	X	X	H	X	L	H
H	H	X	X	X	L	L	L
H	H	X	X	X	H	L	H

Select inputs A and B-are common to both sections.
$H=$ High Level, $L=$ Low Level, $X=$ Don't Care

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54153			DM74153			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditlons		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.2		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
${ }_{1} \mathrm{H}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$1 / \mathrm{L}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-57	
ICC	Supply Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54		34	52	mA
			DM74		34	60	

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with the outputs open and all inputs grounded.

DM54153/DM74153

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)					
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		Units
			Min	Max	
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		18	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		23	ns
tply	Propagation Delay Time Low to High Level Output	Select to Y		34	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Select to Y		34	ns
tplH	Propagation Delay Time Low to High Level Output	Strobe to Y		30	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Y		23	ns

Logic Diagram

TL/F/6547-2

National Semiconductor Corporation

DM54154/DM74154 4-Line to 16-Line Decoders/Demultiplexers

General Description

Each or these 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

Features

- Decodes 4 binary-coded inputs into one of 16 mutually exclusive outputs
- Performs the demultiplexing function by distributing data from one input line to any one of 16 outputs
- Input clamping diodes simplify system design

■ High fan-out, low-impedance, totem-pole outputs

- Typical propagation delay

3 levels of logic 19 ns
Strobe 18 ns
■ Typical power dissipation 170 mW

Connection Diagram

Absolute Maximum Ratings （Note）

Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the associated reliability electrical test specifications document．
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter	DM54154			DM74154			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current			－0．8			－0．8	mA
loL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	－55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, l_{1}=-12 \mathrm{~mA}$				－1．5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOH}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.2		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\ & \hline \end{aligned}$			0.25	0.4	V
1	Input Current＠Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
I／L	Low Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				－1．6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	－20		－55	mA
			DM74	－18		－57	
Icc	Supply Current	$\begin{aligned} & V_{\mathrm{Cc}}=\mathrm{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54		34	49	mA
			DM74		34	56	

Note 1：All typicals are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$ ．
Note 2：Not more than one output should be shorted at a time．
Note 3：ICC is measured with all outputs open and all inputs grounded．
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（See Section 1 for Test Waveforms and Output Load）

Symbol	Parameter	From（Input） To（Output）	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Data to Output		36	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Output		33	ns
tPLH	Propagation Delay Time Low to High Level Output	Strobe to Output		30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Output		27	ns

Function Table

Inputs						Outputs															
G1	G2	D	C	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L
L	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

$H=$ High Level, $L=$ Low Level, $X=$ Don't Care

Logic Diagram

DM54155/DM74155 Dual 2-Line to 4-Line Decoders/Demultiplexers

General Description

These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16 -pin package. When both sections are enabled by the strobes, the common address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input C1 is inverted at its outputs and data applied at C2 is true through its outputs. The inverter following the C1 data input permits use as a 3 -to-8-line decoder, or 1-to-8-line demultiplexer, without external gating.

Input clamping diodes are provided on these circuits to minimize transmission-line effects and simplify system design.

Features

- Applications:

Dual 2-to-4-line decoder
Dual 1-to-4-line demultiplexer
3-to-8-line decoder
1-to-8-line demultiplexer

- Individual strobes simplify cascading for decoding or demultiplexing larger words
- Input clamping diodes simplify system design

Connection Diagram and Function Tables

TL/F/6549-1
Order Number DM54155J or DM74155N See NS Package Number J16A or N16A
†C $=$ inputs $C 1$ and $C 2$ connected together
$\ddagger \mathrm{G}=$ inputs G 1 and G 2 connected together
$H=$ high level, $L=$ low level, $X=$ don't care

2-Line-to-4-Line Decoder or
1-Line-to-4-Line Demultiplexer

Inputs				Outputs			
Select		Strobe	Data				
B	A	G1	C1	1Y0	1Y1	1Y2	1Y3
X	X	H	X	H	H	H	H
L	L	L	H	L	H	H	H
L	H	L	H	H	L	H	H
H	L	L	H	H	H	L	H
H	H	L	H	H	H	H	L
X	X	X	L	H	H	H	H

Inputs				Outputs			
Select	Strobe	Data					
B	A	G2	C2	2Yo	2Y1	2Y2	2Y3
X	X	H	X	H	H	H	H
L	L	L	L	L	H	H	H
L	H	L	L	H	L	H	H
H	L	L	L	H	H	L	H
H	H	L	L	H	H	H	L
X	X	X	H	H	H	H	H

3-Line-to-8-Line Decoder or 1-Line-to-8-Line Demultiplexer

Inputs				Outputs								
Select	Strobe Or Data	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)			
C \dagger B A	G \ddagger	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3			
X	X	X	H	H	H	H	H	H	H	H		
L	H											
L	L	H	L	L	H	H	H	H	H	H		
H												
L	H	L	L	H	H	L	H	H	H	H		
H	H	H	H	H								
H	L	L	L	H	H	H	L	H	H	H		
H H	L	H	H	H	L	H	H	H				
H	H	L	L	H	H	H	H	H	L	H		
H	H	H	L	H	H	H	H	H	H	L		
H												

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54155			DM74155			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
${ }^{\mathrm{IOH}}$	High Level Output Current			-0.8			-0.8	mA
IOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
VOH	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, I_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=M a x \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$V_{C C}=M a x$ (Note 3)	DM54		25	35	mA
			DM74		25	40	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I_{CC} is measured with the outputs open, A, B, and C 1 inputs at 4.5 V , and $\mathrm{C} 2, \mathrm{G} 1$, and G 2 inputs grounded.

Symbol	Parameter	From (Input) To (Output)	$\mathbf{R}_{\mathrm{L}}=$	15 pF	Units
			Min	Max	
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	$\begin{gathered} \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ \text { or } \mathrm{G} 2 \text { to } \mathrm{Y} \end{gathered}$		20	ns
${ }_{\text {t }}^{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{C} 2, \mathrm{G} 1 \\ & \text { or } \mathrm{G} 2 \text { to } \mathrm{Y} \end{aligned}$		27	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A or B to Y		27	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A or B to Y		26	ns
${ }^{\text {PLLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C1} \\ & \text { to } \mathrm{Y} \end{aligned}$		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \mathrm{C} 1 \\ & \text { to } \mathrm{Y} \end{aligned}$		26	ns

Logic Diagram

TL/F/6549-2

National
Semiconductor
Corporation

DM54157/DM74157 Quad 2-Line to 1-Line Data Selectors/Multiplexers

General Description

These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs.

Applications

- Expand any data input point

■ Multiplex dual data buses

- Generate four functions of two variables (one variable is common)
- Source programmable counters

Features

- Buffered inputs and outputs
- Typical propagation time 9 ns
- Typical power dissipation 150 mW

Connection Diagram

TL/F/6550-1
Order Number DM54157J or DM74157N
See NS Package Number J16A or N16A
Function Table

Inputs				
Output Y				
	Select	A	B	
H	X	X	X	L
L	L	L	X	L
L	L	H	X	H
L	H	X	L	L
L	H	X	H	H

$H=$ High Level, $L=$ Low Level, $X=$ Don't Care

```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained In this datasheet. Refer to the associated
reliability electrical test specifications document.
Supply Voltage
Input Voltage
5.5V
Operating Free Air Temperature Range
\begin{tabular}{lr} 
DM54 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular}
```


Recommended Operating Conditions

Symbol	Parameter	DM54157			DM74157			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$V_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-0.8			-0.8	mA
lOL	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
$V_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, ~_{1} \mathrm{~V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 3)			30	48	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with 4.5 V applied to all inputs and all outputs open.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Data to Y		14	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Y		14	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Y		20	ns
tPHL	Propagation Delay Time High to Low Level Output	Strobe to Y		21	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Y		23	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Seclect to Y		27	ns

Logic Diagram

TL/F/6550-2

National Semiconductor Corporation

DM54161A/DM74161A, DM54162A/DM74162A DM54163A/DM74163A Synchronous 4-Bit Counters

General Description

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The 162A is a decade counter and the 161A and 163A are 4-bit binary counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.
These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable input. Low-to-high transitions at the load input of the 161A through 163A are perfectly acceptable, regardless of the logic levels on the clock or enable inputs. The clear function for the 161A is asynchronous; and a low level at the clear input sets all four of the flip-flop outputs low, regardless of the levels of clock, load, or enable inputs. The clear function for the 162A and 163A is synchronous; and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be
modified easily, as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to all low outputs. Low-to-high transitions at the clear input of the 162A and 163A are also permissible, regardless of the logic levels on the clock, enable, or load inputs.
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both countenable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q_{A} output. This high-level overflow ripple carry puise can be used to enable successive cascaded stages. High-to-low-level transitions at the enable P or T inputs of the 161A through 163A may occur, regardless of the logic level on the clock.

Features

Synchronously programmable
Internal look-ahead for fast counting
Carry output for n-bit cascading
Synchronous counting
Load control line

- Diode-clamped inputs

Connection Diagram

TL/F/6551-1
Order Number DM54161AJ, DM54162AJ or DM54163AJ, or DM74161AN, DM74162AN, or DM74163AN

See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54161A thru 163A			DM74161A thru 163A			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
${ }^{1} \mathrm{OH}$	High Level Output Current				-0.8			-0.8	mA
$\mathrm{IOL}^{\text {l }}$	Low Level Output Current				16			16	mA
fCLK	Clock Frequency (Note 6)		0		25	0		25	MHz
${ }^{\text {tw }}$	Pulse Width (Note 6)	Clock	25			25			ns
		Clear	20			20			
tsu	Setup Time (Note 6)	Data	20			20			ns
		Enable P	34			34			
		Load	25			25			
		Clear (Note 5)	20			20			
t_{H}	Hold Time (Note 6)		0			0			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.4		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
${ }_{1 / 2}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	Enable T			80	
			Clock			80	$\mu \mathrm{A}$
			Others			40	
ILL	Low Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.4 V \end{aligned}$	Enable T			-3.2	
			Clock			-3.2	mA
			Others			-1.6	

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol los	Parameter Short Circuit Output Current	Conditions		$\frac{\text { Min }}{-20}$		$\frac{\operatorname{Max}}{-57}$	Units
	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 2) } \end{aligned}$	DM54				mA
			DM74	-20		-57	
ICCH	Supply Current	$V_{C C}=$ Max	DM54		59	85	A
	h	(Note 3)	DM74		59	94	
${ }^{\text {ICCL }}$	Supply Current	$V_{C C}=M a x$	DM54		63	91	mA
	with Outputs Low	(Note 4)	DM74		63	101	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: ICCH is measured with the LOAD high, then again with the LOAD low, with all inputs high and all outputs open.
Note 4: ICCL is measured with the CLOCK high, then again with the CLOCK input low, with all inputs low and all outputs open.
Note 5: Applies to '162A and '163A which have synchronous clear inputs.
Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock to Ripple Carry		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Ripple Carry		24	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock (Load High) to Q		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock (Load High) to Q		32	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Clock (Load Low) to Q		21	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock (Load Low) to Q		32	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Enable T to Ripple Carry		16	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Enable T to Ripple Carry		16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{gathered} \text { Clear (Note } 7 \text {) } \\ \text { to } Q \end{gathered}$		36	ns

Note 7: Propagation delay for clearing is measured from the clear input for the 161A or from the clock input transition for the 162A and 163A.
Logic Diagrams

Logic Diagrams (Continued)

Logic Diagrams (Continued)

Timing Diagrams
162A Synchronous Decade Counters Typical Clear, Preset, Count and Inhlbit Sequences

TL/F/6551-4

Timing Diagrams (Continued)

161A, 163A Synchronous Binary Counters Typlcal Clear, Preset, Count and Inhibit Sequences

TL/F/6551-5

Parameter Measurement Information

Switching Time Waveforms

TL/F/6551-6
Note A: The input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%, \mathrm{Z}_{\mathrm{O}}$, $\approx 50 \Omega$. For 161 A through 163 A , $\mathrm{t}_{\mathrm{p}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$. Vary PRR to measure f_{MAX}.
Note B: Outputs Q_{D} and carry are tested at t_{n+10} for $162 A$ and at t_{n+16} for 161A, 163A where t_{n} is the bit time when all outputs are low.
Note C: For 161A through 163A, $V_{\text {REF }}=1.5 \mathrm{~V}$.

Parameter Measurement Information (Continued)

Note A: The input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}$, duty cycle $\leq 50 \%$, Zout $\approx 50 \Omega$. For 161 A through 163 A , $\mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}$. Vary PRR to measure $\mathrm{f}_{\text {MAX }}$.
Note B : Enable P and enable T setup times are measured at t_{n+0}.
Note C: For 161A through 163A, $V_{\text {REF }}=1.5 \mathrm{~V}$.

National
Semiconductor Corporation

DM54164/DM74164 8-Bit Serial In/Parallel Out Shift Registers

General Description

These 8-bit shift registers feature gated serial inputs and an asynchronous clear. A low logic level at either serial input inhibits entry of the new data, and resets the first flip-flop to the low level at the next clock pulse, thus providing complete control over incoming data. A high logic level on either input enables the other input, which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup and hold time requirements will be entered. Clocking occurs on the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

Connection Diagram

TL/F/6552-1
Order Number DM54164J or DM74164N
See NS Package Number J14A or N14A

Features

- Gated (enable/disable) serial inputs
- Fully buffered clock and serial inputs
- Asynchronous clear
- Typical clock frequency 36 MHz

■ Typical power dissipation 185 mW

Function Table

Inputs					Outputs				
Clear	Clock	\mathbf{A}	\mathbf{B}	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	\ldots	$\mathbf{Q}_{\mathbf{H}}$		
L	X	X	X	L	L	\ldots	L		
H	L	X	X	Q_{AO}	Q_{BO}	\ldots	$\mathrm{Q}_{\mathrm{H} O}$		
H	\uparrow	H	H	H	Q_{An}	\ldots	Q_{Gn}		
H	\uparrow	L	X	L	Q_{An}	\ldots	Q_{Gn}		
H	\uparrow	X	L	L	Q_{An}	\ldots	Q_{Gn}		

$H=$ High Level (steady state), L = Low Level (steady state)
$X=$ Don't Care (any input, including transitions)
$\uparrow=$ Transition from low to high level
$\mathrm{Q}_{\mathrm{AO}}, \mathrm{Q}_{\mathrm{B} 0}, \mathrm{Q}_{\mathrm{HO}}=$ The level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}$, or Q_{H}, respectively, before the indicated steady-state input conditions were established.
$\mathrm{Q}_{\mathrm{An}}, \mathrm{Q}_{\mathrm{G} \boldsymbol{n}}=$ The level of Q_{A} or Q_{G} before the most recent \uparrow transition of the clock; indicates a one-bit shift.

Absolute Maximum Ratings（Note）	
Specifications for Military／Aerospace contained in this datasheet．Refer to reliability electrical test specifications	products are not o the associated document．
Supply Voltage	7V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Recommended Operating Conditions

Symbol	Parameter		DM54164			DM74164			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				－0．4			－0．4	mA
lOL	Low Level Output Current				8			8	mA
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency（Note 4）		0	36	25	0	36	25	MHz
${ }^{\text {tw }}$	Pulse Width （Note 4）	Clock	20			20			ns
		Clear	20			20			
tsu	Data Setup Time（Note 4）		15			15			ns
t_{H}	Data Hold Time（Note 4）		5			5			ns
T_{A}	Free Air Operating Temperature		－55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating tree air temperature range（unless otherwise noted）

Symbol	Parameter	Conditions		Min	Typ （Note 1）	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				－1．5	V
V OH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.2		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current © Max Input Voltage	$V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
I_{L}	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				－1．6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	－10		－27．5	mA
			DM74	－9		－27．5	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$（ Note 3）			37	54	mA

Note 1：All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．
Note 2：Not more than one output should be shorted at a time．
Note 3： I_{Cc} is measured with all outputs open，SERIAL inputs grounded，the CLOCK input at 2.4 V ，and a momentary ground，then 4.5 V ，applied to the CLEAR input．
Note 4： $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ ．

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=800 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25				MHz
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Clock to Output	8	27	10	30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output	10	32	10	37	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		36		42	ns

Logic Diagram

Timing Diagram

TL/F/6552-3

DM54166/DM74166 8-Bit Parallel In/Serial Out Shift Registers

General Description

These parallel-in or serial-in, serial-out shift registers feature gated clock inputs and an overriding clear input. All inputs are buffered to lower the drive requirements to one normalized load, and input clamping diodes minimize switching transients to simplify system design. The load mode is established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on
the low-to-high-level edge of the clock pulse through a twoinput NOR gate, permitting one input to be used as a clockenable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be freerunning, and the register can be stopped on command with the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. A buffered, direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero.

Connection Diagram

TL/F/6554-1
Order Number DM54166J or DM74166N See NS Package Number J16A or N16A

Function Table

Inputs						Internal Outputs		Output \mathbf{Q}_{H}
Clear	Shift/ Load	Clock Inhiblt	Clock	Serial	Parallel			
					A...H	$\mathbf{Q}_{\mathbf{A}}$	Q_{B}	
L	X	X	X	X	X	L	L	L
H	X	L	L	X	X	$Q_{A 0}$	Q_{BO}	Q Ho
H	L	L	\uparrow	X	a...h	a	b	h
H	H	L	\uparrow	H	X	H	$Q_{\text {An }}$	$Q_{G n}$
H	H	L	\uparrow	L	X	L	$Q_{\text {An }}$	Q_{Gn}
H	X	H	\uparrow	X	X	$Q_{A 0}$	$\mathrm{Q}_{\text {B }}$	Q_{HO}

$H=$ High Level (steady state), L = Low Level (steady state)
$X=$ Don't Care (any input, including transitions)
$\uparrow=$ Transition from Low to High Level
$\mathrm{a} \ldots \mathrm{h}=$ The level of stead-state input at inputs A through H , respectively
$Q_{A O}, Q_{B 0}, Q_{H 0}=$ The level of Q_{A}, Q_{B}, Q_{H}, respectively, before the indicated steady-state input conditions were established
$Q_{A n}, Q_{\mathrm{Gn}}=$ The level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{G}}$, respectively, before the most recent \uparrow transition of the clock

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54166			DM74166			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				-0.8			-0.8	mA
lOL^{2}	Low Level Output Current				16			16	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 4)		0		25	0		25	MHz
t_{W}	Pulse Width (Note 4)	Clock	24			24			ns
		Clear	20			20			
tsu	Setup Time (Note 4)	Mode	30			30			ns
		Data	20			20			
t_{H}	Data Hold Time (Note 4)		0			0			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \\ \hline \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$V_{C C}=\operatorname{Max}, V_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
I_{LL}	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-57	mA
			DM74	-18		-57	
Icc	Supply Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 3) } \end{aligned}$	DM54		72	104	mA
			DM74		72	116	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: With all outputs open, 4.5 V applied to the SERIAL input, all other inputs except CLOCK grounded, Icc is measured after a momentary ground, then 4.5 V , is applied to the CLOCK.
Note 4: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{L}=15 \mathrm{pF}$		Units
Symbol			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		MHz
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Clock to Output	8	26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output	8	30	ns
tphL	Propagation Delay Time High to Low Level Output	Clear to Output		35	ns

Logic Diagram

Timing Diagram

Typical Clear, Shift, Load, Inhiblt, and Shift Sequences

TL/F/6554-3
Parameter Measurement Information

Voltage Waveforms

TL/F/6554-4
Test Table for Synchronous Inputs

Data Input For Test	Shift/Load	Output Tested (See Note C)
H	0 V	Q_{H} at $\mathrm{T}_{\mathrm{N}}+1$
Serial Input	4.5 V	Q_{H} at $\mathrm{T}_{\mathrm{N}}+8$

Note A: The clock pulse has the following characteristics:
$t_{\text {W(clock) }} \geq 20 \mathrm{~ns}$ and PRR $=1 \mathrm{MHz}$.
The clear pulse has the following characteristics:
${ }^{\text {tw }}$ (clear) $\geq 20 \mathrm{~ns}$ and thold $=0 \mathrm{~ns}$.
When testing $\mathrm{f}_{\mathrm{MAX}}$, vary the clock PRR.
Note B: A clear pulse is applied prior to each test.
Note C: Propagation delay times ($\mathrm{tpLH}_{\mathrm{H}}$ and $\mathrm{t}_{\mathrm{PHL}}$) are measured at $\mathrm{t}_{\mathrm{n}}+\mathbf{1}$.
Proper shifting of data is verified at $\mathrm{t}_{\mathrm{n}}+8$ with a functional test.
Note $\mathbf{D}: \mathrm{t}_{\mathrm{n}}=$ bit time before clocking transition.
$t_{n}+1=$ bit time after one clocking transition.
$\mathrm{t}_{\mathrm{n}}+\mathrm{s}=$ bit time after eight clocking transitions.
Note $E: V_{\text {REF }}=1.5 \mathrm{~V}$ for 166.

DM54173/DM74173 TRI-STATE ${ }^{\circledR}$ Quad D Registers

General Description

These four-bit registers contain D-type flip-flops with totempole TRI-STATE outputs, capable of driving highly capacitive or low-impedance loads. The high-impedance state and increased high-logic-level drive provide these flip-flops with the capability of driving the bus lines in a bus-organized system without need for interface or pull-up components.
Gated enable inputs are provided for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flipflops on the next positive transition of the buffered clock input. Gate output control inputs are also provided. When both are low, the normal logic states of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the function table.

To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable times are shorter than the average output enable times.

Features

- TRI-STATE outputs interface directly with system bus
- Gated output control lines for enabling or disabling the outputs
- Fully independent clock elminates restrictions for operating in one of two modes:

Parallel load Do nothing (hold)

- For application as bus buffer registers
- Typical propagation delay 18 ns
- Typical frequency 30 MHz
- Typical power dissipation 250 mW

Connection Diagram

Function Table

Output					
	Clock	Data Enable			Output Q
		G1	G2		
H	X	X	X	X	L
L	L	X	X	X	Q_{0}
L	\uparrow	H	X	X	Q_{0}
L	\uparrow	X	H	X	Q_{0}
L	\uparrow	L	L	L	L
L	\uparrow	L	L	H	H

When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however, sequential operation of the flip-flops is not affected.
$\mathrm{H}=$ high level (steady state)
$L=$ low level (steady state)
$\uparrow=$ low-to-high level transition
$X=$ don't care (any input including transitions)
$Q_{0}=$ the level of \mathbf{Q} before the indicated steady state input conditions were established

TL/F/6556-1

Order Number DM54173J or DM74173N
 See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

\section*{Supply Voltage $7 V$
 Input Voltage
 Operating Free Air Temperature Range
 | DM54 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| DM74 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| torage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54173			DM74173			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$V_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
l_{OH}	High Level Output Current				-2			-5.2	mA
lOL	Low Level Output Current				16			16	mA
$\mathrm{fcLK}^{\text {che }}$	Clock Frequency (Note 4)		0		25	0		25	MHz
tw	Pulse Width (Note 4)	Clock	20			20			ns
		Clear	20			20			
tsu	Setup Time (Note 4)	Enable	17			17			ns
		Data	10			10			
${ }_{\text {th }}$	Hold Time (Note 4)	Enable	2			2			ns
		Data	10			10			
$t_{\text {REL }}$	Clear Release Time (Note 4)		10			10			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
${ }_{1 / \mathrm{H}}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{1 /}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
Iozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				40	$\mu \mathrm{A}$
Iozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-30		-70	mA
			DM74	-30		-70	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			50	72	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: $\mathrm{ICC}_{\mathrm{C}}$ is measured with all outputs open, CLEAR grounded after a momentary connection to 4.5 V : $\mathrm{N}, \mathrm{G1}, \mathrm{G} 2$ and all DATA inputs grounded: and the CLOCK input and M input at 4.5 V .
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（See Section 1 for Test Waveforms and Output Load）

Symbol	Parameter	From（Input） To（Output）	$\mathrm{R}_{\mathrm{L}}=400 \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency				25		MHz
tpLH	Propagation Delay Time Low to High Level Output	Clock to Output				25	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Output				28	ns
tpHL	Propagation Delay Time High to Low Level Output	Clear to Output				27	ns
tpzH	Output Enable Time to High Level Output	$\begin{gathered} \text { Output Control } \\ \text { to Q } \\ \hline \end{gathered}$			7	30	ns
tpzL	Output Enable Time to Low Level Output	Output Control to Q			7	30	ns
tphz	Output Disable Time from High Level Output	$\begin{gathered} \text { Output Control } \\ \text { to } Q \end{gathered}$	3	14			ns
tpLz	Output Disable Time from Low Level Output	$\begin{aligned} & \text { Output Control } \\ & \text { to } Q \end{aligned}$	3	20			ns

Logic Diagram

TL/F/6556-2

National
Semiconductor
Corporation

DM54174/DM74174, DM54175/DM74175 Hex/Quad D Flip-Flops with Clear

General Description

These positive-edge triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the quad (175) version features complementary outputs from each flip-flop.
Information at the D inputs meeting the setup and hold time requirements is transferred to the Q outputs on the positivegoing edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the \mathbf{D} input signal has no effect at the output.

Features

- 174 contains six flip-flops with single-rail outputs
- 175 contains four flip-flops with double-rail outputs
- Buffered clock and direct clear inputs
- Individual data input to each flip-flop
- Applications include:

Buffer/storage registers
Shift registers
Pattern generators

- Typical clock frequency 40 MHz

■ Typical power dissipation per flip-flop 38 mW

Connection Diagrams

Order Number DM54174J or DM74174N
See NS Package Number J16A or N16A

Order Number DM54175J or DM74175N See NS Package Number J16A or N16A

Function Table (Each Flip-Flop)

Inputs			Outputs		
Clear	Clock	D	\mathbf{Q}	$\overline{\mathbf{Q}} \dagger$	
L	X	X	L	H	
H	\uparrow	H	H	L	
H	\uparrow	L	L	H	
H	L	X	Q_{0}	$\overline{\mathrm{Q}}_{0}$	

H = High Level (steady state)
$L=$ Low Level (steady state)
X = Don't Care
$\uparrow=$ Transition from low to high level
$Q_{0}=$ The level of Q before the indicated steady-state input conditions were established.
$t=175$ only

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.
Supply Voltage 7V

Input Voltage
Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54174			DM74174			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-0.8			-0.8	mA
lOL	Low Level Output Current				16			16	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 4)		0		30	0		30	MHz
tw	Pulse Width (Note 4)	Clock Low	25			25			ns
		Clock High	10			10			
		Clear	20			20			
tsu	Data Setup Time (Note 4)		20			20			ns
t_{H}	Data Hold Time (Note 4)		0			0			ns
$t_{\text {REL }}$	Clear Release Time (Note 4)		30			30			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

'174 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \hline \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-57	mA
			DM74	-18		-57	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			45	65	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: With all outputs open and all DATA and CLEAR inputs at 4.5 V , I_{CC} is measured after a momentary ground, then 4.5 V applied to the CLOCK input.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

'174 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)					
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			MIn	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		30		MHz
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		25	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		25	ns
${ }_{\text {tpHL }}$	Propagation Delay Time High to Low Level Output	Clear to Any Q		40	ns

Symbol	Parameter		DM54175			DM74175			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				-0.8			-0.8	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current				16			16	mA
flıK	Clock Frequency (Note 1)		0		30	0		30	MHz
t_{W}	Pulse Width (Note 1)	Clock Low	25			25			ns
		Clock High	10			10			
		Clear	20			20			
tSU	Data Setup Time (Note 1)		20			20			ns
t_{H}	Data Hold Time (Note 1)		0			0			ns
$t_{\text {REL }}$	Clear Release Time (Note 1)		30			30			ns
T_{A}	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'175 Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=$ Min, $l_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=M a x, V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
1	Input Current © Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\text {cC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-20		-57	mA
	Output Current		DM74	-18		-57	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 3)			30	45	mA

'175 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$f_{\text {max }}$	Maximum Clock Frequency		30		MHz
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q or \bar{Q}		25	ns
tphL	Propagation Delay Time High to Low Level Output	Clock to Any Q or \bar{Q}		25	ns
tple	Propagation Delay Time Low to High Level Output	Clear to Any \bar{Q}		25	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clear to Any Q		40	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: With all outputs open and 4.5 V applied to all DATA and CLEAR inputs, Icc is measured after a momentary ground then 4.5 V applied to the CLOCK.

DM54180/DM74180 9-Bit Parity Generators/Checkers

General Description

These universal 9-bit (8 data bits plus 1 parity bit) parity generators/checkers feature odd/even outputs and control inputs to facilitate operation in either odd or even parity applications. Depending on whether even or odd parity is being generated or checked, the even or odd input can be utilized as the parity or 9th-bit input. The word-length capability is easily expanded by cascading.

Input buffers are provided so that each data input represents only one normalized series 54/74 load. A full fan-out to 10 normalized series $54 / 74$ loads is available from each of the outputs at a low logic level. A fan-out to 20 normalized loads is provided at a high logic level to facilitate the connection of unused inputs to used inputs.

Connection Diagram

TL/F/6559-1
Order Number DM54180J or DM74180N See NS Package Number J14A or N14A

Function Table

Inputs			Outputs	
Σ of H's at A thru H	Even	Odd	Σ Even	Σ Odd
Even	H	L	H	L
Odd	H	L	L	H
Even	L	H	L	H
Odd	L	H	H	L
X	H	H	L	L
X	L	L	H	H

$H=$ High Level, $L=$ Low Level, $X=$ Don't Care

Absolute Maximum Ratings (Note)

Specificatlons for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54
DM74
Storage Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54180			DM74180			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-0.8			-0.8	mA
l_{OL}	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	Odd or Even			80	$\mu \mathrm{A}$
			Data			40	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Odd or Even			-3.2	mA
			Data			-1.6	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-55	
Icc	Supply Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & (\text { Note } 3) \end{aligned}$	DM54		34	49	mA
			DM74		34	56	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with EVEN and ODD inputs at 4.5V, all other inputs and outputs open.

Switching CharacteristicS at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Σ Even	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ Odd Input Low		60	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Σ Even			68	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Σ Odd			48	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Σ Odd			38	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Data to Σ Even	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$ Odd Input High		48	ns
tPHL	Propagation Delay Time High to Low Level Output	Data to Σ Even			38	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Data to Σ Odd			60	ns
tPHL	Propagation Delay Time High to Low Level Output	Data to Σ Odd			68	ns
tpLH	Propagation Delay Time Low to High Level Output	Even or Odd to Σ Even or Σ Odd	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		20	ns
tPHL	Propagation Delay Time High to Low Level Output	Even or Odd to Σ Even or Σ Odd			10	ns

Logic Diagram

TL/F/6559-2

National
Semiconductor
Corporation

DM54181/DM74181 Arithmetic Logic Unit/Function Generators

General Description

These arithmetic logic units (ALU)/function generators perform 16 binary arithmetic operations on two 4-bit words, as shown in Tables I and II. These operations are selected by the four function-select lines (S0, S1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (P and G) for the four bits in the package. When used in conjunction with the DM54S182/DM74S182 full carry look-ahead circuits, highspeed arithmetic operations can be performed. The typical addition times shown below illustrate how little time is required for addition of longer words, when full carry lookahead is employed. The method of cascading 182 circuits with these ALU's to provide multi-level full carry look-ahead is illustrated under typical applications data for the DM54S182/DM74S182.
(Continued)

Features

- Arithmetic operating modes:

Addition
Subtraction
Shift operand A one position
Magnitude comparison
Plus twelve other arithmetic operations
\square Logic function modes:
EXCLUSIVE-OR
Comparator
AND, NAND, OR, NOR
Plus ten other logic operations
■ Full look-ahead for high-speed operations on long words

Connection Diagram

Dual-In-Line Package

TL/F/6560-1
Order Number DM54181J or DM74181N See NS Package Number J24A or N24A

Pin Designations

Designation	Pin Nos.	Function
A3, A2, A1, A0	$19,21,23,2$	Word A Inputs
B3, B2, B1, B0	$18,20,22,1$	Word B Inputs
S3, S2, S1, S0	$3,4,5,6$	Function-Select Inputs
C $_{n}$	7	Inv. Carry Input
M	8	Mode Control Input
F3, F2, F1, F0	$13,11,10,9$	Function Outputs
A = B	14	Comparator Output
P	15	Carry Propagate Output
C +4	16	Inv. Carry Output
G	17	Carry Generate Output
VCC $_{\text {GND }}$	24	Supply Voltage
	Ground	

Number of Blts	Typical Addition Times	Package Count		Carry Method Between ALU's
		Arithmetic/ Logic Units	Look Ahead Carry Generators	
1 to 4	20 ns	1	0	None
5 to 8	30 ns	2	0	Ripple
9 to 16	30 ns	3 or 4	1	Full Look-Ahead
17 to 64	50 ns	5 to 16	2 to 5	Full Look-Ahead

Absolute Maximum Ratings (Note)	
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.	
Supply Voltage	7 V
Input Voltage	5.5
Output Voltage ($\mathrm{A}=\mathrm{B}$ Output)	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54181			DM74181			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{\text {CC }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage ($\mathrm{A}=\mathrm{B}$ Output)			5.5			5.5	V
IOH	High Level Output Current (All Except A = B)			-800			-800	$\mu \mathrm{A}$
loL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
$I_{\text {CEX }}$	High Level Output Current ($\mathrm{A}=\mathrm{B}$ Output)	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$				250	$\mu \mathrm{A}$
VOH	High Level Output Voltage (All Except A = B)	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{\mathrm{IL}}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=$ Max, $\mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}$				1	mA
${ }_{1 / H}$	High Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=2.4 V \end{aligned}$	Mode			40	$\mu \mathrm{A}$
			A or B			120	
			S			160	
			Carry			200	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Mode			-1.6	mA
			A or B			-4.8	
			S			-6.4	
			Carry			-8	
Ios	Short Circuit Output Current (All Except A = B)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-55	mA
			DM74	-18		-57	
ICCH	Supply Current with Outputs High	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 3) } \end{aligned}$	DM54		88	127	mA
			DM74		88	140	
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs Low	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 4) } \end{aligned}$	DM54		92	135	mA
			DM74		92	150	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I ICH is measured with SO through $\mathrm{S3}, \mathrm{M}$, and A inputs at 4.5 V , all other inputs grounded and all outputs open.
Note 4: $\mathrm{I}_{\mathrm{CCL}}$ is measured with S0 through S3 and M inputs at 4.5 V , all other inputs grounded and all outputs open.

Switching Characteristics $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$（See Section 1 for Test Waveforms and Output Load）

Symbol	Parameter	From （Input）	To （Output）	Conditions	$\begin{gathered} \text { DM54/74 } \\ 181 \\ \hline \end{gathered}$		Units
					$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
					Min	Max	
${ }_{\text {tpLH }}$	Propagation Delay Time， Low－to－High Level Output	C_{n}	$c_{n}+4$			18	ns
tpHL	Propagation Delay Time， High－to－Low Level Output					19	
$t_{\text {PLH }}$	Propagation Delay Time， Low－to－High Level Output	Any A or B	$C_{n}+4$	$\begin{aligned} & M=0 V, S 0= \\ & S 3=4.5 \mathrm{~V} \\ & S 1=\mathrm{S} 2=0 \mathrm{~V} \\ & (\overline{\mathrm{SUM}} \text { mode }) \end{aligned}$		30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time， High－to－Low Level Output					33	
tPLH	Propagation Delay Time， Low－to－High Level Output	Any A or B	$C_{n}+4$	$\begin{aligned} & M=0 V, S 0= \\ & S 3=O V \\ & S 1=S 2=4.5 \mathrm{~V} \\ & \text { (DIFF mode) } \end{aligned}$		30	ns
$t_{\text {PHL }}$	Propagation Delay Time， High－to－Low Level Output					33	
$t_{\text {PLH }}$	Propagation Delay Time， Low－to－High Level Output	C_{n}	Any F	$\mathrm{M}=0 \mathrm{~V}$ （SUM or DIFF mode）		19	ns
${ }_{\text {tPHL }}$	Propagation Delay Time， High－to－Low Level Output					18	
${ }_{\text {tpLH }}$	Propagation Delay Time， Low－to－High Level Output	Any A or B	G	$\begin{aligned} & M=O V, S 0= \\ & S 3=4.5 V \\ & S 1=S 2=O V \\ & (\overline{S U M} \text { mode }) \end{aligned}$		19	ns
${ }^{\text {tPHL }}$	Propagation Delay Time， High－to－Low Level Output					19	
${ }_{\text {tpLH }}$	Propagation Delay Time， Low－to－High Level Output	Any A or B	G	$\begin{aligned} & M=O V, S 0= \\ & S 3=O V \\ & S 1=S 2=4.5 V \\ & (\overline{D I F F} \text { mode }) \end{aligned}$		20	ns
${ }_{\text {tPHL }}$	Propagation Delay Time， High－to－Low Level Output					25	
$t_{\text {PLH }}$	Propagation Delay Time， Low－to－High Level Output	Any A or B	P	$\begin{aligned} & M=0 V, S 0= \\ & S 3=4.5 \mathrm{~V} \\ & S 1=S 2=0 V \end{aligned}$ （SUM mode）		19	ns
$t_{\text {PHL }}$	Propagation Delay Time， High－to－Low Level Output					25	
$t_{\text {PLH }}$	Propagation Delay Time， Low－to－High Level Output	Any A or B	P	$\begin{aligned} & M=O V, S O= \\ & S 3=O V \\ & S 1=S 2=4.5 \mathrm{~V} \\ & \text { (DIFF mode) } \end{aligned}$		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time， High－to－Low Level Output					25	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time， Low－to－High Level Output	A_{i} or B_{i}	F_{i}	$\begin{aligned} & M=0 \mathrm{~V}, \mathrm{SO}= \\ & \mathrm{S} 3=4.5 \mathrm{~V} \\ & \mathrm{~S} 1=\mathrm{S} 2=0 \mathrm{~V} \end{aligned}$ （SUM mode）		30	ns
$t_{\text {PHL }}$	Propagation Delay Time， High－to－Low Level Output					30	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time， Low－to－High Level Output	A_{i} or B_{i}	F_{i}	$\begin{aligned} & M=O V, S O= \\ & S 3=O V \\ & S 1=S 2=4.5 \mathrm{~V} \\ & \text { (DIFF mode) } \end{aligned}$		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time， High－to－Low Level Output					24	
$t_{\text {PLH }}$	Propagation Delay Time， Low－to－High Level Output	A_{i} or B_{i}	F_{i}	$\begin{aligned} & \mathrm{M}=4.5 \mathrm{~V} \\ & \text { (logic mode) } \end{aligned}$		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time， High－to－Low Level Output					30	
$t_{\text {PLH }}$	Propagation Delay Time， Low－to－High Level Output	Any A or B	$A=B$	$\begin{aligned} & M=O V, S O= \\ & S 3=O V \\ & S 1=S 2 ;=4.5 \mathrm{~V} \\ & \text { (DIFF mode) } \end{aligned}$		40	ns
tPHL	Propagation Delay Time， High－to－Low Level Output					40	

General Description (Continued)

If high speed is not important, a ripple-carry input $\left(C_{n}\right)$ and a ripple-carry output $\left(\mathrm{C}_{n}+4\right)$ are available. However, the rip-ple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry.

These circuits will accommodate active-high or active-low data, if the pin designations are interpreted as shown below.
Subtraction is accomplished by 1 's complement addition, where the 1 's complement of the subtrahend is generated internally. The resultant output is $A-B-1$, which requires an end-around or forced carry to provide A-B.
The 181 can also be utilized as a comparator. The $A=B$ output is internally decoded from the function outputs (FO, F1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality $(A=B)$. The ALU should be in the subtract mode with $\mathrm{C}_{\mathrm{n}}=\mathrm{H}$ when performing this comparison. The A $=B$ output is open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output $\left(C_{n}+4\right)$ can also be used to supply
relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S1, S0 at L, H, H, L, respectively.
These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (S0, S1, S2, S3) with the mode-control input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exclusiveOR, NAND, AND, NOR, and OR functions.

ALU SIGNAL DESIGNATIONS

The DM54181/DM74181 can be used with the signal designations of either Figure 1 or Figure 2.
The logic functions and arithmetic operations obtained with signal designations as in Figure 1 are given in Table l; those obtained with the signal designations of Figure 2 are given in Table II.

Pin Number	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 3}$	$\mathbf{7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 7}$
Active-High Data (Table I)	A 0	B 0	A 1	B 1	A 2	B 2	A 3	B 3	F 0	F 1	F 2	F 3	$\overline{\mathrm{C}}_{\mathrm{n}}$	$\overline{\mathrm{C}}_{\mathrm{n}}+4$	X	Y
Active-Low Data (Table II)	$\overline{\mathrm{A}} 0$	$\overline{\mathrm{~B}} 0$	$\overline{\mathrm{~A}} 1$	$\overline{\mathrm{~B}} 1$	$\overline{\mathrm{~A}} 2$	$\overline{\mathrm{~B}} 2$	$\overline{\mathrm{~A}} 3$	$\overline{\mathrm{~B}} 3$	$\overline{\mathrm{~F}} 0$	$\overline{\mathrm{~F}} 1$	$\overline{\mathrm{~F}} 2$	$\overline{\mathrm{~F}} 3$	C_{n}	$\mathrm{C}_{\mathrm{n}}+4$	$\overline{\mathrm{P}}$	$\overline{\mathrm{G}}$

Input $C_{\boldsymbol{n}}$	Output $\mathrm{C}_{\boldsymbol{n}}+\mathbf{4}$	Active-High Data (Figure 1)	Active-Low Data (Figure 2)
H	H	$A \leq B$	$A \geq B$
H	L	$\mathrm{~A}>\mathrm{B}$	$\mathrm{A}<\mathrm{B}$
L	H	$\mathrm{A}<\mathrm{B}$	$\mathrm{A}>\mathrm{B}$
L	L	$\mathrm{A} \geq \mathrm{B}$	$\mathrm{A} \leq \mathrm{B}$

General Description (Continued)

FIGURE 1

FIGURE 2

TABLE I

Selection				Active High Data		
				$\mathbf{M}=\mathbf{H}$ Logic Functions	$\mathbf{M}=\mathrm{L}$; Arithmetic Operations	
S3	S2	S1	SO		$\mathrm{C}_{\mathrm{n}}=\mathrm{H}$ (no carry)	$\mathrm{C}_{\mathrm{n}}=\mathrm{L}$ (with carry)
L	L	L	L	$F=\bar{A}$	$F=A$	$F=A$ Plus 1
L	L	L	H	$F=\overline{A+B}$	$F=A+B$	$F=(A+B)$ Plus 1
L	L	H	L	$F=\bar{A} B$	$F=A+\bar{B}$	$F=(A+\bar{B})$ Plus 1
L	L	H	H	$F=0$	$\mathrm{F}=$ Minus 1 (2's Compl)	$F=$ Zero
L	H	L	L	$F=\overline{A B}$	$F=A$ Plus $A \bar{B}$	$F=A$ Plus $A \bar{B}$ Plus 1
L	H	L	H	$\mathrm{F}=\overline{\mathrm{B}}$	$F=(A+B)$ Plus $A \bar{B}$	$F=(A+B)$ Plus $A \bar{B}$ Plus 1
L	H	H	L	$F=A \oplus B$	$F=A$ Minus B Minus 1	$F=A$ Minus B
L	H	H	H	$F=A \bar{B}$	$F=A \bar{B}$ Minus 1	$F=A \bar{B}$
H	L	L	L	$F=\bar{A}+B$	$F=A$ Plus $A B$	$F=A$ Plus AB Plus 1
H	L	L	H	$F=\overline{A \oplus B}$	$F=A$ Plus B	$F=A$ Plus B Plus 1
H	L	H	L	$F=B$	$F=(A+\bar{B})$ Plus $A B$	$F=(A+\bar{B})$ Plus $A B$ Plus 1
H	L	H	H	$F=A B$	$F=A B$ Minus 1	$F=A B$
H	H	L	L	$F=1$	$F=A$ Plus A^{*}	$F=A$ Plus A Plus 1
H	H	L	H	$F=A+\bar{B}$	$F=(A+B)$ Plus A	$F=(A+B)$ Plus A Plus 1
H	H	H	L	$F=A+B$	$F=(A+\bar{B})$ Plus A	$F=(A+\bar{B})$ Plus A Plus 1
H	H	H	H	$F=A$	$\mathrm{F}=\mathrm{A}$ Minus 1	$\mathrm{F}=\mathrm{A}$

-Each bit is shifted to the next more significant position.

General Description（Continued）
TABLE II

Selection				Actlve Low Data		
				$M=H$ Logic Functions	M＝L；Arithmetic Operations	
S3	S2	S1	S0		$\mathrm{C}_{\mathrm{n}}=\mathbf{L}$（ no carry）	$\mathrm{C}_{\mathrm{n}}=\mathrm{H}$（with carry）
L	L	L	L	$F=\bar{A}$	$F=A$ Minus 1	$F=A$
L	L	L	H	$F=\overline{A B}$	$F=A B$ Minus 1	$F=A B$
L	L	H	L	$F=\bar{A}+B$	$F=A \bar{B}$ Minus 1	$F=A \bar{B}$
L	L	H	H	$F=1$	$F=$ Minus 1 （2＇s Compl）	$F=$ Zero
L	H	L	L	$F=\overline{A+B}$	$F=A$ Plus $(A+\bar{B})$	$F=A$ Plus $(A+\bar{B})$ Plus 1
L	H	L	H	$\mathrm{F}=\overline{\mathrm{B}}$	$F=A B$ Plus $(A+B)$	$F=A B$ Plus $(A+\bar{B})$ Plus 1
L	H	H	L	$F=\overline{A \oplus B}$	$F=A$ Minus B Minus 1	$F=A$ Minus B
L	H	H	H	$F=A+\bar{B}$	$F=A+\bar{B}$	$F=(A+\bar{B})$ Plus 1
H	L	L	L	$F=\bar{A} B$	$F=A$ Plus $(A+B)$	$F=A$ Plus $(A+B)$ Plus 1
H	L	L	H	$F=A \oplus B$	$F=A$ Plus B	$F=A$ Plus B Plus 1
H	L	H	L	$F=B$	$F=A \bar{B}$ Plus $(A+B)$	$F=A \bar{B}$ Plus $(A+B)$ Plus 1
H	L	H	H	$F=A+B$	$F=A+B$	$F=(A+B)$ Plus 1
H	H	L	L	$F=0$	$F=A$ Plus ${ }^{*}{ }^{*}$	$F=$ A Plus A Plus 1
H	H	L	H	$F=A \bar{B}$	$F=A B$ Plus A	$F=A B$ Plus A Plus 1
H	H	H	L	$F=A B$	$F=A \bar{B}$ Plus A	$F=A \bar{B}$ Plus A Plus 1
H	H	H	H	$F=A$	$F=A$	$F=A$ Plus 1

＊Each bit is shifted to the next more significant position．

Parameter Measurement Information

Logic Mode Test Table
Function Inputs： $\mathbf{S 1}=\mathbf{S 2}=\mathbf{M}=\mathbf{4 . 5 V}, \mathbf{S O}=\mathbf{S 3}=\mathbf{O V}$

Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test	Output Waveform
		$\begin{aligned} & \text { Apply } \\ & 4.5 \mathrm{l} \end{aligned}$	Apply GND	$\begin{gathered} \text { Apply } \\ 4.5 \mathrm{~V} \end{gathered}$	Apply GND		
$\mathrm{t}_{\text {PLH }}$	A_{i}	B_{i}	None	None	Remaining A and B, C_{n}	F_{i}	Out－of－Phase
$\mathrm{t}_{\text {PHL }}$							
tpLH	B_{i}	A_{i}	None	None	Remaining A and B, C_{n}	F_{i}	Out－of－Phase
$\mathrm{t}_{\text {PHL }}$							

$\overline{\text { SUM Mode Test Table }}$
Function Inputs： $\mathbf{S O}=\mathbf{S 3}=\mathbf{4 . 5 V}, \mathbf{S 1}=\mathbf{S 2}=\mathbf{M}=\mathbf{O V}$

Parameter	Input Under Test	Other Input Same BIt		Other Data Inputs		Output Under Test	Output Waveform
		Apply 4．5V	Apply GND	Apply $4.5 \mathrm{~V}$	Apply GND		
$t_{\text {PLH }}$	A_{i}	$\mathrm{B}_{\mathbf{i}}$	None	Remaining A and B	C_{n}	F_{i}	In－Phase
$t_{\text {PHL }}$							
$t_{\text {PLH }}$	B_{i}	A_{i}	None	Remaining A and B	C_{n}	F_{i}	In－Phase
$t_{\text {PHL }}$							
tPLH	A_{i}	B_{i}	None	None	Remaining A and B, C_{n}	P	In－Phase
$t_{\text {PHL }}$							
$t_{\text {PLH }}$	B_{i}	A_{i}	None	None	Remaining A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	P	In－Phase
$\mathrm{t}_{\mathrm{PHL}}$							

Parameter Measurement Information (Continued)

SUM Mode Test Table
Function Inputs: S0 $=\mathbf{S 3}=\mathbf{4 . 5 V}, \mathrm{S} 1=\mathrm{S} 2=\mathrm{M}=\mathbf{O V}$ (Continued)

Parameter	Input Under Test	Other Input Same Blt		Other Data Inputs		Output Under Test	Output Waveform
		Apply $4.5 \mathrm{~V}$	Apply GND	Apply $4.5 \mathrm{~V}$	Apply GND		
${ }_{\text {tPLH }}$	A_{i}	None	B_{i}	Remaining B	Remaining A, C_{n}	G	In-Phase
${ }_{\text {tPLH }}$	B_{i}	None	A_{i}	Remaining B	Remaining A, C_{n}	G	In-Phase
$\mathrm{t}_{\text {PLH }}$	C_{n}	None	None	$\begin{gathered} \text { All } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { All } \\ \text { B } \end{gathered}$	Any F or $\mathrm{C}_{\mathrm{n}}+4$	In-Phase
${ }_{\text {tPLH }}$	A_{i}	None	B_{i}	Remaining B	Remaining A, C_{n}	$C_{n}+4$	Out-of-Phase
$\frac{t_{\text {PLH }}}{\mathrm{t}_{\text {PHL }}}$	B_{i}	None	A_{i}	Remaining B	$\begin{aligned} & \text { Remaining } \\ & \qquad A, C_{n} \end{aligned}$	$\mathrm{C}_{\mathrm{n}}+4$	Out-of-Phase

DIFF Mode Test Table
Function Inputs: $\mathrm{S} 1=\mathbf{S 2}=\mathbf{4 . 5 V}, \mathrm{SO}=\mathbf{S 3}=\mathrm{M}=\mathbf{O V}$

Parameter	Input Under Test	Other Input Same Bit		Other Data Inputs		Output Under Test	Output Waveform
		Apply 4.5V	Apply GND	Apply 4.5V	Apply GND		
$\mathrm{tPLH}^{\text {tpHL }}$	A_{i}	None	$\mathrm{B}_{\boldsymbol{i}}$	Remaining A	Remaining B, C_{n}	F_{i}	In-Phase
$t_{\text {tPLH }}$	B_{i}	A_{i}	None	$\begin{gathered} \text { Remaining } \\ \hline \end{gathered}$	Remaining B, C_{n}	F_{i}	Out-of-Phase
$t_{\text {PLH }}$	A_{i}	None	B_{i}	None	Remaining A and B, C_{n}	P	In-Phase
tpHL							
$t_{\text {PLH }}$	B_{i}	A_{i}	None	None	Remaining A and $\mathrm{B}, \mathrm{C}_{\mathrm{n}}$	P	Out-of-Phase
$t_{\text {PHL }}$							
$t_{\text {PLH }}$	A_{i}	B_{i}	None	None	Remaining A and B, C_{n}	G	In-Phase
$\mathrm{t}_{\text {PHL }}$							
$t_{\text {PLH }}$	B_{i}	None	A_{i}	None	Remaining A and B, C_{n}	G	Out-of-Phase
$\mathrm{t}_{\mathrm{pHL}}$							
$\mathrm{t}_{\text {PLH }}$	A_{i}	None	B_{i}	Remaining A	Remaining B, C_{n}	$A=B$	In-Phase
$\mathrm{t}_{\mathrm{PHL}}$							
$t_{\text {PLH }}$	B_{i}	A_{i}	None	$\begin{gathered} \text { Remaining } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Remaining } \\ & B, C_{n} \end{aligned}$	$A=B$	Out-of-Phase
$\mathrm{t}_{\mathrm{PHL}}$							
tpLH	C_{n}	None	None	All A and B	None	$\begin{gathered} C_{n}+4 \\ \text { or any } F \end{gathered}$	In-Phase
$t_{\text {PHL }}$							
$t_{\text {PLH }}$	A_{i}	B_{i}	None	None	Remaining A, B, C_{n}	$C_{n}+4$	Out-of-Phase
$\mathrm{t}_{\mathrm{PHL}}$							
$t_{\text {PLH }}$	B_{i}	None	A_{i}	None	Remaining A, B, C_{n}	$C_{n}+4$	In-Phase
$\mathrm{t}_{\mathrm{PHL}}$							

DM54184/DM74184, DM54185A/DM74185A BCD-to-Binary and Binary-to-BCD Converters

General Description

These monolithic converters are derived from the 256-bit read only memories, DM5488, and DM7488. Emitter connections are made to provide direct read-out of converted codes at outputs Y8 through Y1, as shown in the function tables. These converters demonstrate the versatility of a read only memory in that an unlimited number of reference tables or conversion tables may be built into a system. Both of these converters comprehend that the least significant bits (LSB) of the binary and BCD codes are logically equal, and in each case the LSB bypasses the converter as illustrated in the typical applications. This means that a 6-bit converter is produced in each case. Both devices are cascadable to N bits.
An overriding enable input is provided on each converter which when taken high inhibits the function, causing all outputs to go high. For this reason, and to minimize power consumption, unused outputs Y 7 and Y 8 of the 185A and all "don't care" conditions of the 184 are programmed high. The outputs are of the open-collector type.

DM54184 AND DM74184 BCD-TO-BINARY

 CONVERTERSThe 6-bit BCD-to-binary function of the DM54184 and DM74184 is analogous to the algorithm:
a. Shift BCD number right one bit and examine each decade. Subtract three from each 4-bit decade containing a binary value greater than seven.
b. Shift right, examine, and correct after each shift until the least significant decade contains a number smaller than eight and all other converted decades contain zeros.
In addition to BCD-to-binary conversion, the DM54184 and DM74184 are programmed to generate BCD 9's complement or BCD 10's complement. Again, in each case, one bit of the complement code is logically equal to one of the BCD bits; therefore, these complements can be produced on three lines. As outputs Y6, Y7 and Y8 are not required in the BCD-to-binary conversion, they are utilized to provide these complement codes as specified in the function table when the devices are connected as shown.

DM54185A AND DM74185A BINARY-TO-BCD CONVERTERS

The function performed by these 6-bit binary-to-BCD converters is analogous to the algorithm:
a. Examine the three most significant bits. If the sum is greater than four, add three and shift left one bit.
b. Examine each BCD decade. If the sum is greater than four, add three and shift left one bit.
c. Repeat step b until the least-significant binary bit is in the least-significant BCD location.
(Continued)

Connection Diagram

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	7 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54184, 185A			DM74184, 185A			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {c }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
${ }_{\mathrm{OL}}$	Low Level Output Current			12			12	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

'184 and '185A Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$			-1.5	V
$\mathrm{I}_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{\mathrm{IL}}=\operatorname{Max}, V_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$			0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			25	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-1	mA
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		65	95	mA
${ }^{\text {ICCL }}$	Supply Current with Outputs Low	$V_{C C}=\operatorname{Max}$		80	99	mA

'184 and '185A Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{gathered} R_{L 1}=400 \Omega, R_{L 2}=600 \Omega \\ C_{L}=15 \mathrm{pF} \text { (See Test Circuit) } \end{gathered}$		Units
			Min	Max	
${ }^{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Enable G to Output		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Enable G to Output		35	ns
${ }_{\text {tplH }}$	Propagation Delay Time Low to High Level Output	Binary Select to Output		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Binary Select to Output		35	ns

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

General Description (Continued)

DM54184 and DM74184 BCD-to-Binary
TABLE I. Package Count and Delay Times
for BCD-to-Binary Conversion

Input (Decades)	Packages Required	Total Delay Times (ns)	
		Typ	Max
2	2	56	80
3	6	140	200
4	12	196	280
5	19	280	400
6	28	364	520

BCD 9's
Complement Converter

TL/F/6561-3

DM54185A and DM74185A Binary-to-BCD

TABLE II. Package Count and Delay TImes for Binary-to-BCD Conversion

Input (Blts)	Packages Required	Total Delay Times (ns)	
		Typ	Max
4 to 6	1	25	40
7 or 8	3	50	80
9	4	75	120
10	6	100	160
11	7	125	200
12	8	125	200
13	10	150	240
14	12	175	280
15	14	175	280
16	16	200	320
17	19	225	360
18	21	225	360
19	24	250	400
20	27	275	440

BCD's 10's Complement Converter

TL/F/6561-4

TL/F/6561-5

Function Tables

Binary Words		Inputs						Outputs							
		Binary Select					Enable\mathbf{G}	Y8	Y7	Y6	Y5	Y4	Y3	Y2	Y1
		E	D	C	B	A									
0	1	L	L	L	L	L	L	H	H	L	L.	L.	L.	L.	L
2	3	L	L	L	L	H	L	H	H	L	L	L	L	L	H
4	5	L	L	L	H	L	L	H	H	L	L	L	L	H	L
6	7	L	L	L	H	H	L	H	H	L	L	L	L	H	H
8	9	L	L	H	L	L	L	H	H	L	L	L	H	L	L
10	11	L	L	H	L	H	L	H	H	L	L	H	L	L	L
12	13	L	L	H	H	L	L	H	H	L	L	H	L	L	H
14	15	L	L	H	H	H	L	H	H	L	L	H	L	H	L
16	17	L	H	L	L	L	L	H	H	L	L	H	L	H	H
18	19	L	H	L	L	H	L	H	H	L	L	H	H	L	L
20	21	L	H	L	H	L	L	H	H	L	H	L	L	L	L
22	23	L	H	L	H	H	L	H	H	L	H	L	L	L	H
24	25	L	H	H	L	L	L	H	H	L	H	L	L	H	L
26	27	L	H	H	L	H	L	H	H	L	H	L	L	H	H
28	29	L	H	H	H	L	L	H	H	L	H	L	H	L	L
30	31	L	H	H	H	H	L	H	H	L	H	H	L	L	L
32	33	H	L	L	L	L	L	H	H	L	H	H	L	L	H
34	35	H	L	L	L	H	L	H	H	L	H	H	L	H	L
36	37	H	L	L	H	L	L	H	H	L	H	H	L	H	H
38	39	H	L	L	H	H	L	H	H	L	H	H	H	L	L
40	41	H	L	H	L	L	L	H	H	H	L	L	L	L	L
42	43	H	L	H	L	H	L	H	H	H	L	L	L	L	H
44	45	H	L	H	H	L	L	H	H	H	L	L	L	H	L
46	47	H	L	H	H	H	L	H	H	H	L	L	L	H	H
48	49	H	H	L	L	L	L	H	H	H	L	L	H	L	L
50	51	H	H	L	L	H	L	H	H	H	L	H	L	L	L
52	53	H	H	L	H	L	L	H	H	H	L	H	L	L	H
54	55	H	H	L	H	H	L	H	H	H	L	H	L	H	L
56	57	H	H	H	L	L	L	H	H	H	L	H	L	H	H
58	59	H	H	H	L	H	L	H	H	H	L	H	H	L	L
60	61	H	H	H	H	L	L	H	H	H	H	L	L	L	L
62	63	H	H	H	H	H	L	H	H	H	H	L	L.	L	H
All		X	X	X	X	X	H	H	H	H	H	H	H	H	H

Function Tables (Continued)

BCD-to-Binary Converter														BCD 9's or BCD 10's Complement Converter									
BCD Words		Inputs (See Note A)						Outputs (See Note B)						BCD Word	Inputs (See Note C)						Outputs (See Note D)		
		E	D 0	C B	3 A	G	G	Y5	Y	4	Y3	Y2	Y1		E \dagger	D	C	B	A	G	Y8	Y7	Y6
0	1	L	L	L L	L L		L	L		L	L	L	L	0	L	L	L	1.	L	L	H	L	H
2	3	L	L	L	H		L	L		L	L	L	H	1	L	L	L	L	H	L	H	L	L
4	5	L	L	H	H L		L	L		L	L	H	L	2	L	L	L	H	L	L	L	H	H
6	7	L	L	H	H		L	L		L	L	H	H	3	L	L	L	H	H	L	L	H	L
8	9	L	H	H L	L L		L	L	L	L	H	L	L	4	L	L	H	L	L	L	L	H	H
10	11		H L	L L	L L		L	L		L	H	L	H	5	L	L	H	L	H	L	L	H	L
12	13	L	H L	L	H		L	L	L	L	H	H	L	6	L	L	H	H	L	L	L	L	H
14	15	L	H L	H	H L		L	L	L	L	H	H	H	7	L	L	H	H	H	L	L	L	L
16	17	L	H L	H	H		L	L	H	H	L	L	L	8	L	H	L	L	L	L	L	L	H
18	19	L	H	H L	L		L	L	H	H	L	L	H	9	L	H	L	L	H	L	L	L	L
20	21		L	L	L		L	L		H	L	H	L	0	H	L	L	L	L	L	L	L	L
22	23	H	L	L	L		L	L	H	H	L	H	H	1	H	L	L	L	H	L	H	L	L
24	25	H	L	L	H L		L	L		H	H	L	L	2	H	L	L	H	L	L	H	L	L
26	27	H	L	H	H		L	L	H	H	H	L	H	3	H	L	L	H	H	L	L	H	H
28	29	H	H	H L	L		L	L	H	H	H	H	L	4	H	L	H	L	L.	L	L	H	H
30	31	H	H L	L	L		L	L		H	H	H	H	5	H	L	H	L	H	L	L	H	L
32	33	H	H L	L	H		L	H		L	L	L	L	6	H	L	H	H	L	L	L	H	L
34	35	H	H L	L	H L		L	H		L	L	L	H	7	H	L	H	H	H	L	L	L	H
36	37	H	H L	L	H		L	H	L	L	L	H	L	8	H	H	L	L.	L	L	L	L	H
38	39	H	H	H L	L		L	H	L	L	L	H	H	9	H	H	L	L	H	L	L	L	L
		X	\times	$\times \mathrm{X}$	X X		H	H	H	H	H	H	H	Any	X	X	X	X	X	H	H	H	H

$H=$ High Level, $L=$ Low Level, $X=$ Don't Care
Note \mathbf{A} : Input Conditions other than those shown produce highs at outputs Y 1 through Y 5.
Note B: Output Y6, Y7, and Y8 are not used for BCD-to-Binary conversion.
Note C: Input conditions other than those shown produce highs at outputs $Y 6, Y 7$, and $Y 8$.
Note D: Outputs $Y 1$ through $Y 5$ are not used for BCD 9's or BCD 10's complement conversion.
tWhen these devices are used as complement converters, input E is used as a mode control. With this input low, the BCD 9's complement is generated; when it is high, the BCD 10's complement is generated.

Test Circuit

TL/F/6561-6
C_{L} includes probe and jig capacitance

Typical Applications

TL/F/6561-7
FIGURE 1. BCD-to-Binary Converter for Two BCD Decades
MSD—Most significant decade
LSD-Least significant decade
Each rectangle represents a DM54184 or DM74184

Typical Applications (Continued)

Typical Applications (Continued)

FIGURE 3. BCD-to-Binary Converter for Three BCD Decades
MSD—Most significant decade
LSD-Least significant decade
Each rectangle represents a DM54184 or DM74184

FIGURE 5. 8-BIt Binary-to-BCD Converter
MSD-Most significant decade
LSD-Least significant decade
Note A: Each rectangle represents a DM54185A or a DM74185A.
Note B: All unused E inputs are grounded.

TL/F/6561-10
FIGURE 4. 6-Bit Binary-to-BCD Converter
MSD—Most significant decade
LSD-Least significant decade
Note A: Each rectangle represents a DM54185A or a DM74185A. Note B: All unused E inputs are grounded.

TL/F/6561-12
FIGURE 6. 9-Bit Binary-to-BCD Converter
MSD-Most significant decade
LSD-Least significant decade
Note A: Each rectangle represents a DM54185A or a DM74185A. Note B: All unused E inputs are grounded.

Typical Applications (Continued)

FIGURE 7. 12-Bit Binary-to-BCD Converter (See Note B)

FIGURE 8. 16-Bit Binary-to-BCD Converter (See Note B)
MSD-Most significant decade LSD-Least significant decade

Note A: Each rectangle represents a DM54185A or a DM74185A.
Note B: All unused E inputs are grounded.

National Semiconductor Corporation

DM54191／DM74191 Synchronous Up／Down 4－Bit Binary Counter with Mode Control

General Description

This circuit is a synchronous，reversible，up／down counter． The 191 is a 4－bit binary counter．Synchronous operation is provided by having all flip－flops clocked simultaneously so that the outputs change simultaneously when so instructed by the steering logic．This mode of operation eliminates the output counting spikes normally associated with asynchro－ nous（ripple clock）counters．
The outputs of the four master－slave flip－flops are triggered on a low－to－high level transition of the clock input，if the enable input is low．A high at the enable input inhibits count－ ing．Level changes at either the enable input or the down／ up input should be made only when the clock input is high． The direction of the count is determined by the level of the down／up input．When low，the counter counts up and when high，it counts down．
This counter is fully programmable；that is，the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs．The output will change independent of the level of the clock input．This feature allows the counters to be used as modulo－N dividers by simply modifying the count length with the preset inputs．
The clock，down／up，and load inputs are buffered to lower the drive requirement；which significantly reduces the num－ ber of clock drivers，etc．，required for long parallel words．

Two outputs have been made available to perform the cas cading function：ripple clock and maximum／minimum count． The latter output produces a high－level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows．The ripple clock output produces a low－level output pulse equal in width to the low－level portion of the clock input when an overflow or underflow condition exists．The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used，or to the clock input if parallel enabling is used．The maximum／minimum count output can be used to accom－ plish look－ahead for high－speed operation．

Features

－Single down／up count control line
－Count enable control input
－Ripple clock output for cascading
－Asynchronously presettable with load control
－Parallel outputs
－Cascadable for n－bit applications

Connection Diagram

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54191			DM74191			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
${ }^{\mathrm{OH}}$	High Level Output Current				-0.8			-0.8	mA
lOL	Low Level Output Current				16			16	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 4)		0		20	0		20	MHz
tw	Pulse Width (Note 4)	Clock	25			25			
		Load	35			35			
tsu	Data Setup Time (Note 4)		28			28			ns
t_{H}	Hold Time (Note 4)		0			0			ns
$\mathrm{t}_{\text {REL }}$	Load Release Time (Note 4)		30			30			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
VOL	Low Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}_{\mathrm{H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=2.4 V \end{aligned}$	Enable			120	$\mu \mathrm{A}$
			Others			40	
I/L	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	Enable			-4.8	mA
			Others			-1.6	
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-20		-65	mA
			DM74	-18		-65	
Icc	Supply Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 3) } \end{aligned}$	DM54		65	99	mA
			DM74		65	105	

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: lcc is measured with all inputs grounded and all outputs open.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$f_{\text {max }}$	Maximum Clock Frequency		20		MHz
$t_{\text {PLL }}$	Propagation Delay Time Low to High Level Output	Load to Any Q		33	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Load to Any Q		70	ns
tPLH	Propagation Delay Time Low to High Level Output	Data to Any Q		22	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Any Q		70	ns
${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	Clock to Ripple Carry		20	ns
tPHL	Propagation Delay Time High to Low Level Output	Clock to Ripple Carry		24	ns
${ }_{\text {PLLH }}$	Propagation Delay Time Low to High Level Output	Clock to Any Q		24	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Clock to Any Q		36	ns
tPLH	Propagation Delay Time Low to High Level Output	Clock to Max/Min		42	ns
tPHL	Propagation Delay Time High to Low Level Output	Clock to Max/Min		52	ns
tpLH	Propagation Delay Time Low to High Level Output	Down/Up to Ripple Carry		45	ns
${ }^{\text {tPHL}}$	Propagation Delay Time High to Low Level Output	Down/Up to Ripple Carry		45	ns
tpLH	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { Down/Up to } \\ \text { Max/Min } \\ \hline \end{gathered}$		33	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Down/Up to Max/Min		33	ns
$t_{\text {PLL }}$	Propagation Delay Time Low to High Level Output	Enable G to Ripple Carry		24	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable G to Ripple Carry		24	ns

Logic Diagram

Timing Diagrams

National Semiconductor Corporation

DM54193/DM74193 Synchronous Up/Down 4-Bit Binary Counter with Dual Clock

General Description

This circuit is a synchronous up/down 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.
The outputs of the four master-slave flip-flops are triggered by a low-to-high level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed, while the other count input is held high.
This counter is fully programmable; that is, each output may be preset to either level by entering the desired data at the inputs while the load input is low. The output will change independently of the count pulses. This feature allows the counter to be used as modulo-N divider by simply modifying the count length with the preset inputs.
A clear input has been provided which, when taken to a high level, forces all outputs to the low level; independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements of clock drivers, etc., required for long words.

This counter was designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up and down counting functions. The borrow output produces a pulse equal in width to the count down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count up input when an overflow condition exists. The counter can then be easily cascaded by feeding the borrow and carry outputs to the count down and count up inputs respectively of the succeeding counter.

Features

- Fully independent clear input
- Synchronous operation
- Cascading circuitry provided internally
- Individual preset each flip-flop

Connection Diagram

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range

DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54193			DM74193			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 \mathrm{H}}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
${ }^{\mathrm{OH}}$	High Level Output Current				-0.4			-0.4	mA
lOL	Low Level Output Current				16			16	mA
${ }^{\text {f CLK }}$	Clock Frequency (Note 4)		0	25	20	0	25	20	MHz
tw	Pulse Width (Note 4)	Clock Low	30			30			
		Clock, Clear High Load Low	20			20			ns
tsu	Data Setup Time (Note 4)		20			20			ns
t_{H}	Hold Time (Note 4)		0			0			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$				1	mA
IIH^{1}	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
I_{IL}	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$V_{C C}=\operatorname{Max}$ (Note 2)	DM54	-20		-55	mA
			DM74	-18		-55	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)	DM54		65	89	mA
			DM74		65	102	

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I_{CC} is measured with all outputs open, CLEAR and LOAD inputs grounded, and all other inputs at 4.5 V .
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

			$\mathbf{R}_{\mathbf{L}}$	5 pF	Units
		To (Output)	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		20		MHz
${ }_{\text {tpLH }}$	Propagation Delay Time Low to High Level Output	Count Up to Carry		26	ns
${ }^{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Count Up to Carry		24	ns
tpLH	Propagation Delay Time Low to High Level Output	Count Down to Borrow		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Count Down to Borrow		24	ns
tpLH	Propagation Delay Time Low to High Level Output	$\begin{gathered} \text { Either Count } \\ \text { to Q } \end{gathered}$		38	ns
tpHL	Propagation Delay Time High to Low Level Output	Either Count $\text { to } Q$		47	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Load $\text { to } Q$		40	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Load to Q		40	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	$\begin{aligned} & \text { Clear } \\ & \text { to } Q \end{aligned}$		35	ns

Timing Diagram

193 BInary Counter Typical Clear, Load, and Count Sequences

Note A: Clear overrides load, data, and count inputs
Note B: When counting up, count-down input must be high, when counting down, count-up input must be high.

National
Semiconductor
Corporation

DM54194／DM74194 4－Bit Bidirectional Universal Shift Registers

General Description

This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register；it features parallel inputs，parallel outputs， right－shift and left－shift serial inputs，operating－mode－control inputs，and a direct overriding clear line．The register has four distinct modes of operation，namely：
Parallel（broadside）load
Shift right（in the direction Q_{A} toward Q_{D} ）
Shift left（in the direction Q_{D} toward Q_{A} ）
Inhibit clock（do nothing）
Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs，S0 and S1，high．The data is loaded into the associated flip－ flops and appears at the outputs after the positive transition of the clock input．During loading，serial data flow is inhibit－ ed．
Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low． Serial data for this mode is entered at the shift－right data input．When S0 is low and S1 is high，data shifts left syn－ chronously and new data is entered at the shift－left serial input．

Clocking of the flip－flop is inhibited when both mode control inputs are low．The mode controls of the DM54194／ DM74194 should be changed only while the clock input is high．

Features

－Parallel inputs and outputs
－Four operating modes：
Synchronous parallel load
Right shift
Left shift
Do nothing
－Positive edge－triggered clocking
－Direct overriding clear
－Typical clock frequency 36 MHz
－Typical power dissipation 195 mW

Connection Diagram

TL／F／6564－1
Order Number DM54194J or DM74194N
See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

```
Supply Voltage
\begin{tabular}{cr} 
DM54 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54194			DM74194			Units
			Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{1 H}$	High Level Input Voltage		2			2			V
V_{IL}	Low Level Input Voltage				0.8			0.8	V
IOH	High Level Output Current				-0.8			-0.8	mA
lOL	Low Level Output Current				16			16	mA
${ }_{\text {f CLK }}$	Clock Frequency (Note 4)		0	36	25	0	36	25	MHz
t_{W}	Pulse Width (Note 4)	Clock	20			20			ns
		Clear	20			20			
${ }_{\text {t }} \mathrm{U}$	Setup Time (Note 4)	Mode	30			30			ns
		Data	20			20			
t_{H}	Hold Time (Note 4)		0			0			ns
$t_{\text {REL }}$	Clear Release Time (Note 4)		25			25			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\ & V_{I L}=M a x, V_{I H}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=M a x \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{IIL}^{\text {L }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-20		-57	mA
			DM74	-18		-57	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			39	63	mA

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: With all outputs open, inputs A through D grounded, and 4.5 V applied to SO, S1, CLEAR and the serial inputs, Icc is tested with a momentary ground, then 4.5 V applied to CLOCK.

Note 4: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		25		MHz
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \text { Clock } \\ & \text { to } \mathrm{Q} \\ & \hline \end{aligned}$		22	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clock to Q		22	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Q		30	ns

Function Table

Inputs										Outputs			
Clear	Mode		Clock	Serial		Parallel				Q_{A}	Q_{B}	Q_{C}	Q_{D}
	S1	S0		Left	RIght	A	B	C	D				
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H	X	X	L	X	X	X	X	X	X	$Q_{\text {AO }}$	$Q_{B 0}$	$Q_{C 0}$	$Q_{\text {Do }}$
H	H	H	\uparrow	X	X	a	b	c	d	a	b	c	d
H	L	H	\uparrow	x	H	X	X	X	X	H	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$
H	L	H	\uparrow	X	L	X	X	X	x	L	$Q_{\text {An }}$	$Q_{B n}$	$Q_{C n}$
H	H	L	\uparrow	H	X	x	x	X	x	$Q_{B n}$	$Q_{C n}$	$Q_{D n}$	H
H	H	L	\uparrow	L	X	X	X	X	X	$Q_{B n}$	$Q_{C n}$	$Q_{\text {Dn }}$	L
H	L	L	X	X	X	X	X	X	X	$Q_{A O}$	$Q_{B O}$	$Q_{C 0}$	$Q_{D O}$

$H=$ High Level (steady state), $L=$ Low Level (steady state), $X=$ Don't Care (any input, Including transitions)
$\uparrow=$ Transition from low to high level; $a, b, c, d=$ The level of steady state input at inputs A, B, C, or D, respectively
$Q_{A 0}, Q_{B 0}, Q_{C 0}, Q_{D O}=$ The level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady state input conditions were established.
$Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ The level of Q_{A}, Q_{B}, Q_{C}, respectively, before the most recent \uparrow transition of the clock.

Timing Diagram

Typical Clear, Load, Right-Shift, Left-Shift, Inhibit and Clear Sequences

TL/F/6564-3

DM54259/DM74259 8-Bit Addressable Latches

General Description

These 8 -bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1-of-8 decoder or demultiplexer with active-high outputs.
Four distinct modes of operation are selectable by controlling the clear and enable inputs as enumerated in the function table. In the addressable-latch mode, data at the datain terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held high (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

Features

- 8-bit parallel-out storage register performs serial-to-parallel conversion with storage
- Asynchronous parallel clear
- Active high decoder
- Enable/disable input simplifies expansion
- Direct replacement for Fairchild 9334
- Expandable for N -bit applications
- Four distinct functional modes
- Typical propagation delay times: Enable-to-output 18 ns Data-to-output 21 ns Address-to-output 22 ns Clear-to-output 21 ns
- Fan-Out
l_{OL} (sink current) 16 mA I_{OH} (source current) -0.8 mA
- Typical Icc 60 mA

Connection Diagram


```
Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
reliability electrical test specifications document.
Supply Voltage
7V
Input Voltage
5.5V
Operating Free Air Temperature Range
\begin{tabular}{cr} 
DM54 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM54259			DM74259			Units
			Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage		4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current				-0.8			-0.8	mA
lOL^{2}	Low Level Output Current				16			16	mA
tw	Pulse Width (Note 6)	Enable	19	13		19	13		ns
		Clear	19	13		19	13		
tsu	Setup Time (Notes 1, 2, 3 \& 6)	Data	20	13		20	13		ns
		Select	10	5		10	5		
${ }_{\text {t }}^{\text {H }}$	Hold Time (Notes 1 \& 6)	Data	0	-10		0	-10		ns
		Select	0	-13		0	-13		
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}$				-1.5	V
VOH	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit	$\begin{aligned} & V_{C C}=\text { Max } \\ & (\text { Note 4) } \end{aligned}$	DM54	-20		-55	mA
	Output Current		DM74	-20		-55	
ICC	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 5)				90	mA

Note 1: Setup and hold times are with reference to the enable input.
Note 2: The select-to-enable setup time is the time before the High-to-Low enable transition that the select must be stable so that the correct latch is selected and the others not affected.
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time.
Note 5: ICC is measured with 4.5 V applied to all inputs and all outputs open.
Note 6: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 \mathrm{~V}$.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
tplH	Propagation Delay Time Low to High Level Output	Enable to Output		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Enable to Output		27	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Data to Output		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Data to Output		28	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output		35	ns
tPHL	Propagation Delay Time High to Low Level Output	Select to Output		35	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Clear to Output		31	ns

Function Tables

Inputs		Output of Addressed Latch	Each Other Output	Function
Clear	$\overline{\mathrm{E}}$			
H	L	D	$\mathrm{Q}_{i 0}$	Addressable Latch
H	H	$\mathrm{Q}_{i 0}$	$\mathrm{Q}_{i 0}$	Memory
L	L	D	L	8-Line Demultiplexer
L	H	L	L	Clear

Latch Selection Table

Select Inputs			Latch
C	B	A	
L	L	L	0
L	L	H	1
L	H	L	2
L	H	H	3
H	L	L	4
H	L	H	5
H	H	L	6
H	H	H	7

H = High Level, L = Low Level
$D=$ The level of the data input
$Q_{i 0}=$ The level of $Q_{i}(i=0,1, \ldots 7$, as appropriate $)$ before the indicated steady-state input conditions were established.

DM54365/DM74365 Hex TRI-STATE ${ }^{\circledR}$ Buffers

General Description

This device contains six independent gates each of which performs a non-inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard TTL output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the
output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

Order Number DM54365J or DM74365N
See NS Package Number J16A or N16A

Function Table

Y $=\mathbf{A}$			
Input			Output
$\overline{\mathbf{G}} \mathbf{1}$	$\overline{\mathbf{G}} \mathbf{2}$	\mathbf{A}	Y
L	L	L	L
L	L	H	H
H	X	X	$\mathrm{Hi}-\mathrm{Z}$
X	H	X	$\mathrm{Hi}-\mathrm{Z}$

[^46]Absolute Maximum Ratings (Note)

Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54365			DM74365			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current			-2			-5.2	mA
lOL	Low Level Output Current			32			32	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 1) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.4	3.1		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=$ Max, $V_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.5 V(\text { Note } 4) \end{aligned}$	A			-40	mA
		$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V}(\text { Note } 5) \end{aligned}$	A			-1.6	
		$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	$\overline{\mathrm{G}}$			-1.6	
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, V_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				40	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & \text { (Note 2) } \end{aligned}$	DM54	-40		-115	mA
			DM74	-40		-115	
ICC	Supply Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 3)			59	85	mA

Note $8:$ Bant \bar{a} input areate 2 V.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)						
Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=400 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output				16	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output				22	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level Output				35	ns
${ }^{\text {tpzL }}$	Output Enable Time to Low Level Output				37	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output		11			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output		27			ns

National
Semiconductor
Corporation

DM54367/DM74367 Hex TRI-STATE® Buffers

General Description

This device contains six independent gates each of which performs a non-inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard TTL output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the
output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a signficant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

Dual-In-Line Package

Function Table

Y=A		
Input		Output
\bar{G}	A	Y
L	L	L
L	H	H
H	X	Hi-Z

[^47]
Absolute Maximum Ratings (Note)

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM54	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54367			DM74367			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$V_{\text {IH }}$	High Level Input Voltage	2			2			V
$V_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
1 OH	High Level Output Current			-2			-5.2	mA
$\mathrm{lOL}^{\text {L }}$	Low Level Output Current			32			32	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\text { Min } \end{aligned}$		2.4	3.1		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$				1	mA
I_{H}	High Level Input Current	$V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
ILL	Low Level Input Current	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max} \\ & V_{\mathrm{I}}=0.5 \mathrm{~V}(\text { Note 4) } \end{aligned}$	A			-40	mA
		$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V(\text { Note } 5) \end{aligned}$	A			-1.6	
		$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	$\overline{\mathrm{G}}$			-1.6	
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				40	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-40		-115	mA
			DM74	-40		-115	
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			65	85	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I_{CC} is measured with the data inputs grounded and the output controls at 4.5 V .
Note 4: Both \bar{G} inputs are at 2 V .
Note 5: Both $\overline{\mathrm{G}}$ inputs are at 0.4 V .

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=400 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }^{\text {tPLH }}$	Propagation Delay Time Low to High Level Output				16	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output				22	ns
${ }_{\text {tpzH }}$	Output Enable Time to High Level Output				35	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output				37	ns
${ }^{\text {tPHZ }}$	Output Disable Time from High Level Output		11			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output		27			ns

DM54368/DM74368 Hex TRI-STATE ${ }^{\circledR}$ Inverting Buffers

General Description

This device contains six independent gates each of which performs an inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard TTL output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the
output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Connection Diagram

Dual-In-Line Package

Order Number DM54368J or DM74368N See NS Package Number J16A or N16A

Function Table

$\mathbf{Y}=\overline{\mathbf{A}}$		
Inputs		Output
\mathbf{G}	\mathbf{A}	\mathbf{Y}
L	L	H
L	H	L
H	X	$\mathrm{Hi}-\mathrm{Z}$

H = High Logic Level
L = Low Logic Level
$X=$ Either Low or High Logic Level
$\mathrm{Hi}-\mathrm{Z}=$ TRI-STATE (Outputs are disabled)

```
Absolute Maximum Ratings
(Note)
Specificatlons for Mllitary/Aerospace products are not
contained in this datasheet. Refer to the associated
rellability electrical test specifications document.
\begin{tabular}{lr} 
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM54 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54368			DM74368			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
${ }_{\mathrm{OH}}$	High Level Output Current			-2			-5.2	mA
lOL	Low Level Output Current			32			32	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condltions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{\mathrm{l}}=-12 \mathrm{~mA}$				-1.5	V
$\mathrm{VOH}_{\mathrm{OH}}$	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4	3.1		V
V OL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
ItL	Low Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.5 \mathrm{~V} \text { (Note 4) } \end{aligned}$	A			-40	mA
		$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{1}=0.4 V(\text { Note } 5) \end{aligned}$	A			-1.6	
		$\begin{aligned} & V_{c c}=M a x \\ & V_{1}=0.4 V \end{aligned}$	$\overline{\mathrm{G}}$			-1.6	
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				40	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 \mathrm{~V} \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$				-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=\text { Max } \\ & (\text { Note } 2) \end{aligned}$	DM54	-40		-115	mA
			DM74	-40		-115	
IcC	Supply Current	$\mathrm{V}_{C C}=\operatorname{Max}$ (Note 3)			59	77	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: I_{CC} is measured with the data inputs grounded, and the output controls at 4.5 V .
Note 4: Both $\overline{\mathrm{G}}$ inputs are at 2 V .
Note 5: Both $\overline{\mathrm{G}}$ inputs are at 0.4 V .

Symbol	Parameter	$R_{L}=400 \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=\mathbf{5 0} \mathrm{pF}$		
		Min	Max	Min	Max	
$\mathrm{tpLH}^{\text {d }}$	Propagation Delay Time Low to High Level Output				17	ns
tPHL	Propagation Delay Time High to Low Level Output				16	ns
$t_{\text {PZH }}$	Output Enable Time to High Level Output				35	ns
tPZL	Output Enable Time to Low Level Output				37	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output		11			ns
$t_{\text {PLZ }}$	Output Disable Time from Low Level Output		27			ns

DM7123/DM8123 Quad 2-Input Data Selectors/Multiplexers

General Description

This device contains four 2-input multiplexers with common input select logic and common output disable circuitry. The DM7123/8123 provides TRI-STATE ${ }^{\otimes}$ outputs. When the enable/strobe input is at a low logic level, the outputs of all devices are conventional TTL. However, when the enable/ strobe input is raised to a high logic level, the outputs of the DM7123/8123 go to the high-impedance third state. This device provides the designer with TRI-STATE and/or low power pin/pin replacements for the popular 9322 and 54/74157 multiplexers.

Features

■ Pin equivalents popular 9322 and 54/74157 multiplexers
■ Both conventional TTL and TRI-STATE outputs available

- Typical propagation delay 9.5 ns

■ Typical power dissipation 200 mW

Connection Diagram

TL/F/6574-1
Order Number DM7123J or DM8123N
See NS Package Number J16A or N16A
Function Table

Enable	Select	Inputs		Outputs
		A	B	
L	L	L	X	L
L	L	H	X	H
L	H	X	L	L
L	H	X	H	H
H	X	X	X	Hi-Z

Absolute Maximum Ratings (Note)	
Specifications for Military/Aerospace products are not contalned in this datasheet. Refer to the assoclated reliability electrical test specifications document.	
Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM71	$-55^{\circ} \mathrm{C}$ to $+125^{\circ}$
DM81	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to +

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM7123			DM8123			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.8			0.8	V
IOH	High Level Output Current			-2			-5.2	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	DM71	2.4			V
			DM81	2.4			
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=M i n, I_{O L}=M a x \\ & V_{\mathrm{IH}}=M i n, V_{\mathrm{IL}}=M a x \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$V_{C C}=M a x, V_{l}=5.5 \mathrm{~V}$				1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
I_{LL}	Low Level Input Current	$\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
lozh	Off-State Output Current with High Level Output Voltage Applied	$\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				40	$\mu \mathrm{A}$
lozl	Off-State Output Current with Low Level Output Voltage Applied	$\begin{aligned} & V_{C C}=M a x, V_{O}=0.4 V \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$				-40	$\mu \mathrm{A}$
los	Short Circuit Output Current	$V_{C C}=M a x$ (Note 2)	DM71	-30		-70	mA
			DM81	-30		-70	
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)			40	51	mA

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: I IC is measured with the inputs grounded, and all outputs open.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega$				Units
			$C_{L}=5 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Data to Output			4	15	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Output			5	18	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Select to Output			5	23	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Select to Output			8	24	ns
${ }_{\text {tPZH }}$	Output Enable Time to High Level Output	Enable to Q			9	25	ns
$t_{\text {PZL }}$	Output Enable Time to Low Level Output	Enable to Q			10	30	ns
$t_{\text {PHZ }}$	Output Disable Time from High Level Output	Enable to Q	4	11			ns
tplz	Output Disable Time from Low Level Output	Enable to Q	9	27			ns

Logic Diagram

TL/F/6574-2

National

DM7130/DM8130 Magnitude Comparators

General Description

This device offers comparisons to determine equality between two binary words. The DM7130/DM8130 compares two ten-bit words. A strobe override is provided. When the strobe is taken to a high logic level, the output is forced to a high logic level. The device also features open collector outputs for expansion.

Features

- Typical propagation delay 21 ns
- Typical power dissipation 240 mW
- Open-collector outputs for expansion

Connection Diagram

Dual-In-Line Package

TL/F/6575-1
Order Number DM7130J or DM8130N
See NS Package Number J24A or N24A

Function Table

Condition	STROBE \mathbf{S}	Output \mathbf{Y}
$A=B, A \neq B$	H	H
$A=B$	L	H
$A \neq B$	L	L

$H=$ High Logic Level
$L=$ Low Logic Level

Absolute Maximum Ratings
 (Note)

Specifications for Military/Aerospace products are not contained in thls datasheet. Refer to the associated rellabillty electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM71	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM81	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM7130			DM8130			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{1}	High Level Input Voltage	2			2			V
V_{lL}	Low Level Input Voltage			0.8			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
lOL	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$V_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5	V
$I_{\text {CEX }}$	High Level Output Current	$\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{I H}=\operatorname{Min} \end{aligned}$			100	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-1.6	mA
ICC	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 2)		48	70	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
			Min	Max	
${ }^{\text {PPLH }}$	Propagation Delay Time Low to High Level Output	Data to Output		25	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Data to Output		40	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Output		18	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Output		30	ns

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: ICC is measured with all inputs grounded and all outputs open.

National Semiconductor Corporation

DM7131/DM8131 6-Bit Unified Bus Comparator

General Description

The DM7131/DM8131 compares two binary words of two-to-six bits in length and indicates matching (bit-for-bit) of the two words. Inputs for one word are 54/74 series-compatible TTL inputs, whereas those of the second word are high-impedance receivers driven by a terminated data bus. These bus inputs include 0.65 V typical hysteresis, which provides 1.4 V noise immunity. The DM7131/DM8131 has active pullup outputs and goes to the low state upon equality. The device has an output latch which is strobe controlled.
The transfer of information to the output occurs when the STROBE input goes from a logic " 1 " to a logic " 0 " state. Inputs may be changed while the STROBE is at the logic "1" level, without affecting the state of the output. These devices are useful as address comparators in computer systems utilizing unified data bus organization.

Features

- Low bus input current $15 \mu \mathrm{~A}$ typ
- High bus input noise immunity 1.4 V typ
- Bus inputs comply with IEEE 488-1975
- TTL-compatible output
- Output latch provision

Connection Diagram

Dual-In-Line Package

(BUS INPUT) (TTL INPUT)
TL/F/6576-1
Order Number DM7131J or DM8131N See NS Package Number J16A or N16A

Function Table

Condition	STROBE	Output
		$D_{M 71 / 8131}$
$\mathrm{~T}=\mathrm{B}, \mathrm{T} \neq \mathrm{B}$	H	$\mathrm{Q}_{\mathrm{N}}-$ 1 *
$\mathrm{~T}=\mathrm{B}$	L	L
$\mathrm{T} \neq \mathrm{B}$	L	H

*Latched in a previous state.
$\mathrm{H}=$ High Logic Level.
$L=$ Low Logic Level.

```
Absolute Maximum Ratings (Note)
Specificatlons for Military/Aerospace products are not
contalned In thls datasheet. Refer to the associated
reliability electrical test specifications document.
\begin{tabular}{lr} 
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM71 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
DM81 & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM7131			DM8131			Unlts
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Input Threshold Voltage for Bus Inputs (Note 1)	1.4	1.75	2	1.45	1.75	1.95	V
V_{T-}	Negative-Going Input Threshold Voltage for Bus Inputs (Note 1)	0.9	1.1	1.35	0.95	1.1	1.3	V
V_{IH}	High Level Input Voltage for Strobe and TTL Inputs	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage for Strobe and TTL Inputs			0.8			0.8	V
IOH	High Level Output Current			-0.4			-0.4	mA
lOL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.4			V
VOL	Low Level Output Voltage	$\begin{aligned} & V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$				0.4	V
1	Input Current © Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=5.5 \mathrm{~V} \end{aligned}$	TTL			1	mA
			Strobe			2	
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=2.4 V \end{aligned}$	TTL			40	$\mu \mathrm{A}$
			Strobe			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{1}=0.4 V \end{aligned}$	TTL			-1.6	mA
			Strobe			-2.4	
IN	Bus Input Current	$V_{1}=4 \mathrm{~V}$	$V_{C C}=\operatorname{Max}$		15	50	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		1	50	
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 3) } \end{aligned}$	DM71	-18		-55	mA
			DM81	-18		-55	
Icc	Supply Current	$\mathrm{V}_{C C}=\mathrm{Max}$ (Note 4)			50	74	mA

Note 1: $V_{C C}=5 \mathrm{~V}$
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.
Note 4: ICC is measured with all inputs grounded and all outputs open.

		Fr	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		Units
Symbol	Parameter	To (Output)	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	TTL to Output		30	ns
tPHL	Propagation Delay Time High to Low Level Output	TTL to Output		30	ns
tpLH	Propagation Delay Time Low to High Level Output	Bus to Output		45	ns
tPHL	Propagation Delay Time High to Low Level Output	Bus to Output		45	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Output		30	ns
${ }_{\text {tPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Output		30	ns

Logic Diagram

DM71/8131

$\overline{\text { STROBE }}$
TL/F/6576-2
$R=$ High Impedance
Bus Recelver

DM7136/DM8136 6-Bit Unified Bus Comparator with Open-Collector Outputs

General Description

The DM7136/DM8136 compares two binary words of two-to-six bits in length and indicates matching (bit-for-bit) of the two words. Inputs for one word are 54/74 series-compatible TTL inputs, whereas those of the second word are high-impedance receivers driven by a terminated data bus. These bus inputs include 0.65 V typical hysteresis which provides 1.4 V noise immunity. The DM7136/DM8136 has open-collector outputs which go to the high state upon equality and is expandable to n bits by collector-ORing. The device has an output latch which is strobe controlled.
The transfer of information to the output occurs when the STROBE input goes from a logic " 1 " to a logic " 0 " state. Inputs may be changed while the STROBE is at the logic " 1 " level, without affecting the state of the output. These devices are useful as address comparators in computer systems utilizing unified data bus organization.

Features

- Low bus input current $15 \mu \mathrm{~A}$ typ
- High bus input noise immunity 1.4 V typ
- Bus inputs comply with IEEE 488-1975
- TTL-compatible output
- Output latch provision

Connection Diagram

Function Table

Condition	STROBE	Output
		$D^{2} 71 / 8136$
$\mathrm{~T}=\mathrm{B}, \mathrm{T} \neq \mathrm{B}$	H	$\mathrm{Q}_{\mathrm{N}-1}{ }^{*}$
$\mathrm{~T}=\mathrm{B}$	L	H
$\mathrm{T} \neq \mathrm{B}$	L	L

[^48]Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	
DM71	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM81	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM7136			DM8136			Units
		Min	Nom	Max	Min	Nom	Max	
$V_{C C}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\mathrm{T}+}$	Positive-Going Input Threshold Voltage for Bus Inputs (Note 1)	1.4	1.75	2	1.45	1.75	1.95	V
$\mathrm{V}_{\mathrm{T}-}$	Negative-Going Input Threshold Voltage for Bus Inputs (Note 1)	0.9	1.1	1.35	0.95	1.1	1.3	V
V_{IH}	High Level Input Voltage for TTL and Strobe Inputs	2			2			V
VIL	Low Level Input Voltage for TTL and Strobe Inputs			0.8			0.8	V
V_{OH}	High Level Output Voltage			5.5			5.5	V
loL	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
ICEX	High Level Output Current	$\begin{aligned} & V_{C C}=M i n, V_{O}=5.5 \mathrm{~V} \\ & V_{\mathrm{IL}}=M a x, V_{I H}=M i n \end{aligned}$				250	$\mu \mathrm{A}$
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$				0.4	V
1	Input Current @ Max Input Voltage	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=5.5 V \end{aligned}$	TTL			1	mA
			Strobe			2	
$\mathrm{IIH}^{\text {H}}$	High Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=2.4 V \end{aligned}$	TTL			40	$\mu \mathrm{A}$
			Strobe			80	
IIL	Low Level Input Current	$\begin{aligned} & V_{C C}=M a x \\ & V_{I}=0.4 V \end{aligned}$	TTL			-1.6	mA
			Strobe			-2.4	
I_{N}	Bus Input Current	$\mathrm{V}_{1}=4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		15	50	$\mu \mathrm{A}$
			$V_{C C}=0 \mathrm{~V}$		1	50	
Icc	Supply Current	$V_{C C}=\operatorname{Max}$ (Note 3)			50	74	mA

Note 1: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 2: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: ICC is measured with all inputs grounded and all outputs open.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	From (Input) To (Output)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		Units
			Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	TTL to Output		30	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time High to Low Level Output	TTL to Output		30	ns
${ }_{\text {tPLH }}$	Propagation Delay Time Low to High Level Output	Bus to Output		45	ns
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay Time High to Low Level Output	Bus to Output		45	ns
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	Strobe to Output		30	ns
${ }^{\text {PPHL }}$	Propagation Delay Time High to Low Level Output	Strobe to Output		30	ns

Logic Diagram

DM7160/DM8160 Magnitude Comparators

General Description

This device offers comparisons to determine equality between two binary words. The DM7160/DM8160 compares two six-bit words. A strobe override is provided. When the strobe is taken to a high logic level, the output is forced to a high logic level. The device also features open-collector outputs for expansion.

Features

- Typical propagation delay 21 ns
- Typical power dissipation 205 mW
- Open-collector outputs for expansion

Connection Diagram

Dual-In-Line Package

Order Number DM7160J or DM8160N
See NS Package Number J16A or N16A
Function Table

Condition	STROBE \mathbf{S}	Output \mathbf{Y}
$A=B, A \neq B$	H	H
$A=B$	L	H
$A \neq B$	L	L

[^49]```
Absolute Maximum Ratings (Note)
```

Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the assoclated reliability electrical test specifications document.
Supply Voltage
Input Voltage
5.5 V

Operating Free Air Temperature Range

| DM71 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| :--- | ---: |
| DM81 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM7160 |  |  | DM8160 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\text {CC }}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\text {IH }}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage |  |  | 5.5 |  |  | 5.5 | V |
| $\mathrm{lOL}^{\text {l }}$ | Low Level Output Current |  |  | 16 |  |  | 16 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{1}$ | Input Clamp Voltage | $V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$ |  |  | -1.5 | V |
| $I_{\text {CEX }}$ | High Level Output Current | $\begin{aligned} & V_{C C}=\operatorname{Min}, V_{O}=5.5 \mathrm{~V} \\ & V_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  | 100 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ |  | 0.2 | 0.4 | V |
| 1 | Input Current @ Max Input Voltage | $V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$ |  |  | 1 | mA |
| $\mathrm{IIH}^{\text {H}}$ | High Level Input Current | $V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}$ |  |  | 40 | $\mu \mathrm{A}$ |
| IIL | Low Level Input Current | $V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  | -1.6 | mA |
| ICC | Supply Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ ( Note 2) |  | 41 | 60 | mA |

Switching Characteristics at $\mathrm{V}_{C C}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) <br> To (Output) | $\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max |  |
| ${ }_{\text {tPLH }}$ | Propagation Delay Time Low to High Level Output | Data to Output |  | 25 | ns |
| tPHL | Propagation Delay Time High to Low Level Output | Data to Output |  | 40 | ns |
| ${ }_{\text {tplH }}$ | Propagation Delay Time Low to High Level Output | Strobe to Output |  | 18 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Strobe to Output |  | 30 | ns |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: ICC is measured with all inputs grounded and all outputs open.

## DM7556/DM8556 TRI-STATE ${ }^{\circledR}$ Programmable Binary Counters

## General Description

These circuits are synchronous, edge-sensitive, fully-programmable 4-bit counters. The counters feature both conventional totem-pole and TRI-STATE outputs; such that when the outputs are in the high impedance mode, they can be used to enter data from the bus lines. In addition, the clear input operates completely independent of all other inputs. During the programming operation, data is loaded into the flip-flops on the positive-going edge of the clock pulse. To facilitate cascading of these counters, the MAX COUNT output can be tied directly into the count enable input of the next counter.

## Features

- Typical clock frequency 35 MHz
- TRI-STATE outputs
- Fully independent clear
- Synchronous loading
- Cascading circuitry provided internally


## Connection Diagram



Function Table

| Control Inputs |  |  |  |  | I/O Ports |  |  |  | Active Outputs |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOAD | $\overline{\text { CE }}$ | CLK | OD | Reset | $1 / 0_{\text {A }}$ | $1 / \mathrm{O}_{\mathrm{B}}$ | $1 / 0_{c}$ | 1/0D | $Q_{A}$ | $\mathbf{Q}_{\mathbf{B}}$ | $a_{c}$ | $Q_{D}$ |
| H | x | x | L | H | L | L | L | L | L | L | L | L |
| H | x | x | H | H | $z$ | z | z | z | L | L | L | L |
| H | x | L | L | L | $Q_{\text {AO }}$ | $Q_{B 0}$ | $Q_{\text {co }}$ | $Q_{\text {D }}$ | $Q_{A 0}$ | $\mathrm{Q}_{\mathrm{BO}}$ | Q ${ }_{\text {co }}$ | $Q_{D O}$ |
| H | x | L | H | L | z | z | z | z | $Q_{A 0}$ | $Q_{B 0}$ | Q 0 | $Q_{\text {DO }}$ |
| L | H | $\uparrow$ | L | L | a | b | c | d | A | B | c | D |
| H | L | $\uparrow$ | L | L |  | CO |  |  |  |  | NT |  |
| H | L | $\uparrow$ | H | L | $z$ | z | $z$ | z |  |  |  |  |

The I/O pins are used as inputs when they are TRI-STATED, and the $\overline{\text { LOAD }}$ input is Low. They are outputs and active when LOAD input is High and OD is Low.
H = High Level (Steady State)
L = Low Level (Steady State)
$X=$ Don't Care including transitions
$a, b, c, d=$ The level of the steady state input at inputs $A, B, C, D$ respectively
$Q_{A 0}, Q_{B 0}, Q_{C O}, Q_{D O}=$ The level of $Q_{A}, Q_{B}, Q_{C}, Q_{D}$ respectively, before the indicated steady state input conditions were established.

Absolute Maximum Ratings (Note)
Specifications for Milltary/Aerospace products are not contained In this datasheet. Refer to the assoclated rellability electrical test specifications document.

| Supply Voltage | 7 V |
| :--- | ---: |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range |  |
| DM75 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM85 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter |  | DM7556 |  |  | DM8556 |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Nom | Max | Min | Nom | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | Supply Voltage |  | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage |  | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Low Level Input Voltage |  |  |  | 0.8 |  |  | 0.8 | V |
| IOH | High Level Output Current |  |  |  | -2 |  |  | -5.2 | mA |
| 1 OL | Low Level Output Current |  |  |  | 16 |  |  | 16 | mA |
| ${ }_{\text {f CLK }}$ | Clock Frequency (Note 1) |  | 0 |  | 25 | 0 |  | 25 | MHz |
| tw | Pulse Width (Note 1) | Clock | 25 |  |  | 25 |  |  | ns |
|  |  | Clear | 20 |  |  | 20 |  |  |  |
|  |  | Load | 30 |  |  | 30 |  |  |  |
| tce | Count Enable Time (Note 1) | Setup | 30 |  |  | 30 |  |  | ns |
|  |  | Hold | $-10$ |  |  | $-10$ |  |  |  |
| tSETUP(1) | Setup Time High Logic Level (Note 1) | Data | 25 |  |  | 25 |  |  | ns |
|  |  | Load | 30 |  |  | 30 |  |  |  |
| ${ }^{\text {thold }}$ (1) | Hold Time High Logic Level (Note 1) | Data | 5 |  |  | 5 |  |  | ns |
|  |  | Load | -10 |  |  | -10 |  |  |  |
| tsetup(0) | Setup Time Low Logic Level (Note 1) | Data | 30 |  |  | 30 |  |  | ns |
|  |  | Load | 25 |  |  | 25 |  |  |  |
| ${ }^{\text {thold }}$ (0) | Hold Time Low Logic Level (Note 1) | Data | 5 |  |  | 5 |  |  | ns |
|  |  | Load | -10 |  |  | -10 |  |  |  |
| $\mathrm{T}_{\mathrm{A}}$ | Free Air Operating Temperature |  | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

Note 1: $T_{A}=25^{\circ} \mathrm{C}$ and $V_{C C}=5 V$.

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ <br> (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}$ |  |  |  | -1.5 | V |
| VOH | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ |  | 2.4 |  |  | V |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$ |  |  |  | 0.4 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{I}_{\mathbf{H}}$ | High Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$ |  |  |  | 40 | $\mu \mathrm{A}$ |
| $1 / 2$ | Low Level Input Current | $V_{C C}=$ Max, $V_{1}=0.4 \mathrm{~V}$ |  |  |  | -1.6 | mA |
| lozH | Off-State Output Current with High Level Output Voltage Applied | $\begin{aligned} & V_{C C}=M a x, V_{O}=2.4 V \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$ |  |  |  | 40 | $\mu \mathrm{A}$ |
| Iozl | Off-State Output Current with Low Level Output Voltage Applied | $\begin{aligned} & V_{C C}=M a x, V_{O}=0.4 V \\ & V_{I H}=M i n, V_{I L}=M a x \end{aligned}$ |  |  | . | -40 | $\mu \mathrm{A}$ |
| los | Short Circuit Output Current | $V_{C C}=\operatorname{Max}$ <br> (Note 2) | DM75 | -25 |  | -70 | mA |
|  |  |  | DM85 | -25 |  | -70 |  |
| lCC | Supply Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 75 | 100 | mA |

Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | From (Input) To (Output) | $\mathrm{R}_{\mathrm{L}}=400 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  |  | Min | Max | Min | Max |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum Clock Frequency |  |  |  | 25 |  | MHz |
| ${ }_{\text {tplH }}$ | Propagation Delay Time Low to High Level Output | Clock to Output |  |  |  | 22 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Clock to Output |  |  |  | 44 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time Low to High Level Output | Clock to MAX-CNT |  |  |  | 33 | ns |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Clock to MAX-CNT |  |  |  | 33 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output | Reset to Output |  |  |  | 44 | ns |
| ${ }_{\text {tpZH }}$ | Output Enable Time to High Level Output | Output Disable to Q |  |  |  | 20 | ns |
| $t_{\text {PZL }}$ | Output Enable Time to Low Level Output | Output Disable to Q |  |  |  | 20 | ns |
| $\mathrm{t}_{\text {PHZ }}$ | Output Disable Time from High Level Output | Output Disable to Q |  | 12 |  |  | ns |
| $t_{\text {PLZ }}$ | Output Disable Time from Low Level Output | Output Disable to Q |  | 20 |  |  | ns |



## Timing Diagram



## Switching Time Waveforms



TL/F/6588-4
Count Enable and Clock


OUTPUT
TL/F/6588-5

## Load, Data and Clock



OUTPUT


Output Disable


TL/F/6588-7

National Semiconductor Corporation

## DM7875A/DM8875A, DM7875B/DM8875B TRI-STATE® 4-Bit Parallel Binary Multipliers

## General Description

These circuits are capable of multiplying together two 4-bit binary numbers when used together in pairs. The DM7875A/8875A provides the most significant four bits, and the DM7875B/8875B provides the least significant four bits. Since the largest number that can be obtained by multiplying two 4-bit numbers is $225(15 \times 15)$, the eight output pins (four from each package) are sufficient to produce this number. Both the multiplier and the multiplicand must be connected to the eight input pins of each device. These devices are pin compatible with the SN54284/74284, and SN54285/74285; but have the advantage that these circuits provide either standard totem-pole TTL or TRI-STATE outputs. A gated two-input strobe control is provided. When either one, or both, of the strobe inputs is raised to a high logic level the outputs are forced into the high-impedance state. Thus, multiple devices may be connected to a common bus line.

## Features

- Pin compatible replacements for SN54284/74284 (DM7875A/8875A)
SN54285/74285 (DM7875B/8875B)
- TRI-STATE outputs
- Typical propagation delay 35 ns


## Connection Diagram



AC Test Circuit


Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.

| Supply Voltage | 7 V |
| :--- | ---: |
| Input Voltage | 5.5 V |
| Operating Free Air Temperature Range |  |
| DM78 | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| DM88 | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

## Recommended Operating Conditions

| Symbol | Parameter | DM7875A |  |  | DM8875A |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| ${ }^{1} \mathrm{OH}$ | High Level Output Current |  |  | -2 |  |  | -5.2 | mA |
| lOL | Low Level Output Current |  |  | 16 |  |  | 16 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

DM78/8875A Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$ |  |  |  | -1.5 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ |  | 2.4 |  |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & V_{C C}=\operatorname{Min}, I_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 0.4 | V |
| 1 | Input Current @ Max Input Voltage | $V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| 1 IH | High Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$ |  |  |  | 40 | $\mu \mathrm{A}$ |
| IIL | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  |  | -1 | mA |
| lozh | Off-State Output Current with High Level Output Voltage Applied | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 40 | $\mu \mathrm{A}$ |
| lozl | Off-State Output Current with Low Level Output Voltage Applied | $\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$ |  |  |  | -40 | $\mu \mathrm{A}$ |
| los | Short Circuit Output Current | $\begin{aligned} & V_{C C}=\text { Max } \\ & (\text { Note 2) } \end{aligned}$ | DM78 | -20 |  | -70 | mA |
|  |  |  | DM88 | -20 |  | -70 |  |
| Icc | Supply Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ |  |  | 75 | 110 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with all inputs grounded.

## DM78/8875A Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=400 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=5 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | Min | Max |  |
| tpLH | Propagation Delay Time Low to High Level Output |  |  |  | 60 | ns |
| $t_{\text {PHL }}$ | Propagation Delay Time High to Low Level Output |  |  |  | 60 | ns |
| $t_{\text {PZH }}$ | Output Enable Time to High Level Output |  |  |  | 30 | ns |
| $t_{\text {PZL }}$ | Output Enable Time to Low Level Output |  |  |  | 30 | ns |
| tphz | Output Disable Time from High Level Output |  | 30 |  |  | ns |
| $t_{\text {PLZ }}$ | Output Disable Time from Low Level Output |  | 30 |  |  | ns |

Recommended Operating Conditions

| Symbol | Parameter | DM7875B |  |  | DM8875B |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Nom | Max | Min | Nom | Max |  |
| $V_{C C}$ | Supply Voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High Level Input Voltage | 2 |  |  | 2 |  |  | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low Level Input Voltage |  |  | 0.8 |  |  | 0.8 | V |
| 1 OH | High Level Output Current |  |  | -2 |  |  | -5.2 | mA |
| lOL | Low Level Output Current |  |  | 16 |  |  | 16 | mA |
| $\mathrm{T}_{\text {A }}$ | Free Air Operating Temperature | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

DM78/8875B Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

| Symbol | Parameter | Conditions |  | Min | Typ (Note 1) | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | Input Clamp Voltage | $V_{C C}=M i n, l_{I}=-12 \mathrm{~mA}$ |  |  |  | -1.5 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\begin{aligned} & V_{\mathrm{CC}}=M i n, I_{O H}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$ |  | 2.4 |  |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Low Level Output Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{C}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 0.4 | V |
| 1 | Input Current @ Max Input Voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $\mathrm{I}_{\mathrm{H}}$ | High Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$ |  |  |  | 40 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{IL}}$ | Low Level Input Current | $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$ |  |  |  | -1 | mA |
| $\mathrm{l}^{\text {OZH }}$ | Off-State Output Current with High Level Output Voltage Applied | $\begin{aligned} & V_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max} \end{aligned}$ |  |  |  | 40 | $\mu \mathrm{A}$ |
| Iozl | Off-State Output Current with Low Level Output Voltage Applied | $\begin{aligned} & V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\ & V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max} \end{aligned}$ |  |  |  | -40 | $\mu \mathrm{A}$ |
| los | Short Circuit | $V_{C C}=M a x$ <br> (Note 2) | DM78 | -20 |  | $-70$ | mA |
|  | Output Current |  | DM88 | -20 |  | -70 |  |
| ICC | Supply Current | $\mathrm{V}_{\text {CC }}=\mathrm{Max}($ Note 3) |  |  | 75 | 110 | mA |

Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 2: Not more than one output should be shorted at a time.
Note 3: $\mathrm{ICC}_{\mathrm{C}}$ is measured with all inputs grounded.
DM78/8875B Switching Characteristics
at $V_{C C}=5 \mathrm{~V}$ and $T_{A}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

| Symbol | Parameter | $\mathrm{R}_{\mathrm{L}}=400 \Omega$ |  |  |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C_{L}=5 \mathrm{pF}$ |  | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ |  |  |
|  |  | Min | Max | MIn | Max |  |
| ${ }^{\text {tpLH }}$ | Propagation Delay Time Low to High Level Output |  |  |  | 60 | ns |
| ${ }_{\text {tPHL }}$ | Propagation Delay Time High to Low Level Output |  |  |  | 60 | ns |
| tpzH | Output Enable Time to High Level Output |  |  |  | 30 | ns |
| $\mathrm{t}_{\text {PZL }}$ | Output Enable Time to Low Level Output |  |  |  | 30 | ns |
| $t_{\text {PHZ }}$ | Output Disable Time from High Level Output |  | 30 |  |  | ns |
| $t_{\text {PLZ }}$ | Output Disable Time from Low Level Output |  | 30 |  |  | ns |

## Typical Application



## Switching Time Waveforms



National Semiconductor Corporation

## DM8898/DM8899 TRI-STATE ${ }^{\circledR}$ BCD to Binary/Binary to BCD Converters

## General Description

These circuits are the TRI-STATE versions of the popular BCD to binary and binary to BCD converters, DM74184 and DM74185A respectively. They are derived from the 256-bit ROM, DM8598. Emitter connections are made to provide direct read out of converted codes at outputs Y8 through Y1, as shown in the truth tables. Both converters comprehend the fact that the least significant bits (LSB) of the binary and BCD codes are logically equal, and in each case the LSB bypasses the converter. Thus a 6 -bit converter is produced in each case, and both devices are cascadable.
An overriding enable input is provided on each converter which, when taken high, inhibits the function, causing all outputs to go into the high-impedance state. For this reason, and to minimize power consumption, unused outputs Y7 and Y8 of the 185A and all "don't care" conditions of the 184 are programmed high.

## DM8898 BCD-TO-BINARY CONVERTERS

The 6-bit BCD-to-binary function of the DM8898 is analogous to the algorithm:
a. Shift BCD number right one bit and examine each decade. Subtract three from each 4-bit decade containing a binary value greater than seven.
b. Shift right, examine, and correct after each shift until the least significant decade contains a number smaller than eight and all other converted decades contain zeros.
In addition to BCD-to-binary conversion, the DM8898 is programmed to generate BCD 9's complement or BCD 10's complement. In each case, one bit of the complement code is logically equal to one of the BCD bits; therefore, these complements can be produced on three lines. As outputs $Y 6, Y 7$ and $Y 8$ are not required in the BCD-to-binary conversion, they are utilized to provide these complement codes as specified in the function table when the devices are connected as shown.

## DM8899A BINARY-TO-BCD CONVERTERS

The function performed by these 6-bit binary-to-BCD converters is analogous to the algorithm:
a. Examine the three most significant bits. If the sum is greater than four, add three and shift left one bit.
b. Examine each BCD decade. If the sum is greater than four, add three and shift left one bit.
c. Repeat step b until the least-significant binary bit is in the least-significant BCD location.

## Features

TRI-STATE versions of DM74184, DM74185A

- Typical propagation delay 30 ns

Connection Diagram


Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the assoclated reliability electrical test specifications document.

```
Supply Voltage
Input Voltage 5.5V
Operating Free Air Temperature Range
```

DM88
Storage Temperature Range

```7 V
```

    0.C}\mathrm{ to }+7\mp@subsup{0}{}{\circ}\textrm{C
    ```
 0.C}\mathrm{ to }+7\mp@subsup{0}{}{\circ}\textrm{C
 -65}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
```

```
 -65}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
```

```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions
\begin{tabular}{c|c|c|c|c|c}
\hline \multirow{2}{*}{ Symbol } & \multirow{2}{|c|}{ Parameter } & \multicolumn{2}{|c|}{ DM8898 } & \multirow{2}{*}{ Units } \\
\cline { 3 - 4 } & & Min & Nom & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply Voltage & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{~V}_{\mathrm{IH}}\) & High Level Input Voltage & 2 & & & V \\
\hline \(\mathrm{~V}_{\mathrm{IL}}\) & Low Level Input Voltage & & & 0.8 & V \\
\hline \(\mathrm{I}_{\mathrm{OH}}\) & High Level Output Current & & & -5.2 & mA \\
\hline \(\mathrm{I}_{\mathrm{OL}}\) & Low Level Output Current & & & 12 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Free Air Operating Temperature & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{DM8898 Electrical Characteristics}
over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Min & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 1) }
\end{gathered}
\] & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \(\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}\) & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \[
\begin{aligned}
& V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\] & 2.4 & & & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Low Level Output Voltage & \[
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}
\end{aligned}
\] & & & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \(I_{1 H}\) & High Level Input Current & \(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{I}_{\text {IL }}\) & Low Level Input Current & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline lozh & Off-State Output Current with High Level Output Voltage Applied & \[
\begin{aligned}
& V_{C C}=\operatorname{Max}, V_{O}=2.4 V \\
& V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max}
\end{aligned}
\] & & & 40 & \(\mu \mathrm{A}\) \\
\hline lozl & Off-State Output Current with Low Level Output Voltage Applied & \[
\begin{aligned}
& V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\
& V_{\mathbb{I H}}=\operatorname{Min}, V_{I L}=\operatorname{Max}
\end{aligned}
\] & & & -40 & \(\mu \mathrm{A}\) \\
\hline los & Short Circuit Output Current & \(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}\) (Note 2) & -20 & & -70 & mA \\
\hline ICC & Supply Current & \(\mathrm{V}_{\mathrm{CC}}=\) Max & & 70 & 99 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.

\section*{DM8898 Switching Characteristics}
at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{4}{|c|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega\)} & \multirow{3}{*}{Units} \\
\hline & & \multicolumn{2}{|c|}{\(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\)} & \multicolumn{2}{|c|}{\(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \\
\hline & & Min & Max & Min & Max & \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & & & & 50 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & & & & 50 & ns \\
\hline \({ }_{\text {tpZH }}\) & Output Enable Time to High Level Output & & & & 25 & ns \\
\hline \(t_{\text {PZL }}\) & Output Enable Time to Low Level Output & & & & 40 & ns \\
\hline \({ }_{\text {tpHZ }}\) & Output Disable Time from High Level Output & & 20 & & & ns \\
\hline \(t_{\text {PLZ }}\) & Output Disable Time from Low Level Output & & 36 & & & ns \\
\hline
\end{tabular}

Recommended Operating Conditions
\begin{tabular}{c|c|c|c|c|c}
\hline \multirow{2}{*}{ Symbol } & \multirow{2}{|c|}{ Parameter } & \multicolumn{2}{|c|}{ DM8899 } & \multirow{2}{*}{ Units } \\
\cline { 3 - 4 } & & Min & Nom & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply Voltage & 4.75 & 5.0 & 5.25 & V \\
\hline \(\mathrm{~V}_{\mathrm{IH}}\) & High Level Input Voltage & 2 & & & V \\
\hline \(\mathrm{~V}_{\mathrm{IL}}\) & Low Level Input Voltage & & & 0.8 & V \\
\hline \(\mathrm{I}_{\mathrm{OH}}\) & High Level Output Current & & & -5.2 & mA \\
\hline \(\mathrm{I}_{\mathrm{OL}}\) & Low Level Output Current & & & 12 & mA \\
\hline \(\mathrm{~T}_{\mathrm{A}}\) & Free Air Operating Temperature & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{DM8899 Electrical Characteristics}
over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Min & Typ (Note 1) & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}\) & & & -1.5 & V \\
\hline VOH & High Level Output Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\] & 2.4 & & & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Low Level Output Voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}
\end{aligned}
\] & & & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & High Level Input Current & \(\mathrm{V}_{\text {CC }}=\) Max, \(\mathrm{V}_{1}=2.4 \mathrm{~V}\) & & & 40 & \(\mu \mathrm{A}\) \\
\hline 1 lL & Low Level Input Current & \(V_{C C}=M a x, V_{1}=0.4 \mathrm{~V}\) & & & -1.6 & mA \\
\hline lozH & Off-State Output Current with High Level Output Voltage Applied & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}
\end{aligned}
\] & & & 40 & \(\mu \mathrm{A}\) \\
\hline lozl & Off-State Output Current with Low Level Output Voltage Applied & \[
\begin{aligned}
& V_{C C}=\operatorname{Max}, V_{O}=0.4 V \\
& V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max}
\end{aligned}
\] & & & -40 & \(\mu \mathrm{A}\) \\
\hline los & Short Circuit Output Current & \(\mathrm{V}_{\text {CC }}=\) Max (Note 2) & -20 & & -70 & mA \\
\hline ICC & Supply Current & \(\mathrm{V}_{\mathrm{CC}}=\) Max & & 70 & 99 & mA \\
\hline
\end{tabular}

\section*{DM8899 Switching Characteristics}
at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multirow{3}{*}{Parameter} & \multicolumn{4}{|c|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega\)} & \multirow{3}{*}{Units} \\
\hline & & \multicolumn{2}{|c|}{\(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\)} & \multicolumn{2}{|c|}{\(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \\
\hline & & Min & Max & Min & Max & \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & & & & 50 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & & & & 50 & ns \\
\hline \(\mathrm{t}_{\text {PZH }}\) & Output Enable Time to High Level Output & & & & 25 & ns \\
\hline \(t_{\text {PZL }}\) & Output Enable Time to Low Level Output & & & & 40 & ns \\
\hline \(t_{\text {PHZ }}\) & Output Disable Time from High Level Output & & 20 & & & ns \\
\hline \(t_{\text {fl }}\) & Output Disable Time from Low Level Output & & 36 & & & ns \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.

Function Tables
CD-to-Binary Converter
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
BCD \\
Words
\end{tabular}}} & \multicolumn{7}{|c|}{Inputs (See Note A)} & \multicolumn{5}{|c|}{Outputs (See Note B)} \\
\hline & & & D & C & B & 3 A & G & a & Y5 & Y4 & Y3 & Y2 & Y1 \\
\hline 0 & 1 & L & L & L & L & L & L & L & L & L & L & L & L \\
\hline 2 & 3 & L & L & L & L & H & L & L & L & L & L & L & H \\
\hline 4 & 5 & L & L & L & H & H L & L & L & L & L & L & H & L \\
\hline 6 & 7 & L & L & L & H & H & L & L & L & L & L & H & H \\
\hline 8 & 9 & L & L & H & L & L & L & L & L & L. & H & L & L \\
\hline 10 & 11 & L & H & L & L & L L & L & L & L & L. & H & L & H \\
\hline 12 & 13 & L & H & L & L & H & L & L & L & L & H & H & L \\
\hline 14 & 15 & L & H & L & H & H L & L & L & L & L & H & H & H \\
\hline 16 & 17 & L & H & L & H & H & L & L & L & H & L & L & L \\
\hline 18 & 19 & L & H & H & L & L & L & L & L & H & L & L & H \\
\hline 20 & 21 & & L & L & L & L & L & & L & H & L & H & L \\
\hline 22 & 23 & H & L & L & L & H & L & L & L & H & L & H & H \\
\hline 24 & 25 & H & L & L & H & H L & L & L & L & H & H & L & L \\
\hline 26 & 27 & H & L & L & H & H & L & L & L & H & H & L & H \\
\hline 28 & 29 & H & L & H & L & L & L & L & L & H & H & H & L \\
\hline 30 & 31 & H & H & L & L & L & L & & L & H & H & H & H \\
\hline 32 & 33 & H & H & L & L & H & L & L & H & L & L & L & L \\
\hline 34 & 35 & H & H & L & H & H L & L & & H & L & L & L & H \\
\hline 36 & 37 & H & H & L & H & H & L & & H & L & L & H & L \\
\hline 38 & 39 & H & H & H & L & L & L & & H & L & L & H & H \\
\hline \multicolumn{2}{|c|}{Any} & X & X & X & X & \(\times\) X & H & & Z & Z & Z & Z & Z \\
\hline
\end{tabular}

BCD 9's or BCD 10's Complement Converter
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { BCD } \\
& \text { Word }
\end{aligned}
\]} & \multicolumn{6}{|c|}{Inputs (See Note C)} & \multicolumn{3}{|l|}{Outputs (See Note D)} \\
\hline & E \(\dagger\) & D & C & B & A & G & Y8 & Y7 & Y6 \\
\hline 0 & L & L & L & L & L & L & H & L & H \\
\hline 1 & L & L & L & L & H & L & H & L & L \\
\hline 2 & L & L & L & H & L & L & L & H & H \\
\hline 3 & L & L & L & H & H & L & L & H & L \\
\hline 4 & L & L & H & L & L & L & L & H & H \\
\hline 5 & L & L & H & L & H & L & L & H & L \\
\hline 6 & L & L & H & H & L & L & L & L & H \\
\hline 7 & L & L & H & H & H & L & L & L & L \\
\hline 8 & L & H & L & L & L & L & L & L & H \\
\hline 9 & L & H & L & L & H & L & L & L & L \\
\hline 0 & H & L & L & L & L & L & L & L & L \\
\hline 1 & H & L & L & L & H & L & H & L & L \\
\hline 2 & H & L & L & H & L & L & H & L & L \\
\hline 3 & H & L & L & H & H & L & L & H & H \\
\hline 4 & H & L & H & L & L & L & L & H & H \\
\hline 5 & H & L & H & L & H & L & L & H & L \\
\hline 6 & H & L & H & H & L & L & L & H & L \\
\hline 7 & H & L & H & H & H & L & L & L & H \\
\hline 8 & H & H & L & L & L & L & L & L & H \\
\hline 9 & H & H & L & L & H & L & L & L & L \\
\hline Any & X & X & X & X & X & H & Z & Z & Z \\
\hline
\end{tabular}
\(H=\) High Level, L = Low Level, \(Z=\) High Impedance
Note A: Input conditions other than those shown produce highs at outputs Y 1 through Y 5 .
Note B: Outputs Y6, Y7, and Y8 are not used for BCD-to-binary conversion.
Note C: Input conditions other than those shown produce highs at outputs \(\mathrm{Y} 6, \mathrm{Y} 7\), and Y 8 .
Note D: Outputs Y1 through Y5 are not used for BCD 9's or BCD 10's complement conversion.
†When these devices are used as complement converters, input E is used as a mode control. With this input low, the BCD 9's complement is generated; when it is high, the BCD 10's complement is generated.

TL/F/6593-4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|l|}{Function Tables (Continued)} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{Binary Words}} & \multicolumn{6}{|c|}{Inputs} & \multicolumn{8}{|c|}{Outputs} \\
\hline & & \multicolumn{5}{|c|}{Binary Select} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Enable } \\
\mathbf{G} \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Y8} & \multirow[b]{2}{*}{Y7} & \multirow[b]{2}{*}{Y6} & \multirow[b]{2}{*}{Y5} & \multirow[b]{2}{*}{Y4} & \multirow[b]{2}{*}{Y3} & \multirow[b]{2}{*}{Y2} & \multirow[b]{2}{*}{Y1} \\
\hline & & E & D & c & B & A & & & & & & & & & \\
\hline 0 & 1 & L & L & L & L & L & L & H & H & L & L & L & L & L & L \\
\hline 2 & 3 & L & L & L & L & H & L & H & H & L & L & L & L & L & H \\
\hline 4 & 5 & L & L & L & H & L & L & H & H & L & \(L\) & L & L & H & L \\
\hline 6 & 7 & L & L & L & H & H & L & H & H & L & L & L & L & H & H \\
\hline 8 & 9 & L & L & H & L & L & L & H & H & L & L & L & H & L & L \\
\hline 10 & 11 & L & L & H & L & H & L & H & H & L & L & H & L & L & L \\
\hline 12 & 13 & L & L & H & H & L & L & H & H & L & L & H & L & L & H \\
\hline 14 & 15 & L & L & H & H & H & L & H & H & L & L & H & L & H & L \\
\hline 16 & 17 & L & H & L & L & L & L & H & H & L & L & H & L & H & H \\
\hline 18 & 19 & L & H & L & L & H & L & H & H & L & L & H & H & L & L \\
\hline 20 & 21 & L & H & L & H & L & L & H & H & L & H & L & L & L & L \\
\hline 22 & 23 & L & H & L & H & H & L & H & H & L & H & L & L & L & H \\
\hline 24 & 25 & L & H & H & L & L & L & H & H & L & H & L & L & H & L \\
\hline 26 & 27 & L & H & H & L & H & L & H & H & L & H & L & L & H & H \\
\hline 28 & 29 & L & H & H & H & L & L & H & H & L & H & L & H & L & L \\
\hline 30 & 31 & L & H & H & H & H & L & H & H & L & H & H & L & L & L \\
\hline 32 & 33 & H & L & L & L & L & L & H & H & L & H & H & L & L & H \\
\hline 34 & 35 & H & L & L & L & H & L & H & H & L & H & H & L & H & L \\
\hline 36 & 37 & H & L & L & H & L & L & H & H & L & H & H & L & H & H \\
\hline 38 & 39 & H & L & L & H & H & L & H & H & L & H & H & H & , & L \\
\hline 40 & 41 & H & L & H & L & L & L & H & H & H & 1 & L & L & L & L \\
\hline 42 & 43 & H & L & H & L & H & L & H & H & H & L & L & L & L & H \\
\hline 44 & 45 & H & \(L\) & H & H & L & L & H & H & H & L & L & L & H & L \\
\hline 46 & 47 & H & L & H & H & H & L & H & H & H & 1 & L & L & H & H \\
\hline 48 & 49 & H & H & L & L & L & L & H & H & H & L & L & H & L & L \\
\hline 50 & 51 & H & H & L & L & H & & H & H & H & L & H & L & L & L \\
\hline 52 & 53 & H & H & L & H & L & L & H & H & H & L & H & L & L & H \\
\hline 54 & 55 & H & H & L & H & H & L & H & H & H & L & H & & H & L \\
\hline 56 & 57 & H & H & H & L & L & L & H & H & H & L & H & L & H & H \\
\hline 58 & 59 & H & H & H & L & H & L & H & H & H & L & H & H & L & L \\
\hline 60 & 61 & H & H & H & H & L & L & H & H & H & H & L & L & L & L \\
\hline 62 & 63 & H & H & H & H & H & L & H & H & H & H & L & L & L & H \\
\hline & & X & X & X & X & X & H & z & 2 & z & z & z & z & z & z \\
\hline
\end{tabular}
\(H=\) High Level, \(L .=\) Low Level, \(X=\) Don't Care, \(Z=\) High Impedance

TL/F/6593-5

National
Semiconductor
Corporation

\section*{DM9002C Quad 2-Input NAND Gates}

\section*{General Description}

The DM9002C device is designed to be used in existing systems as replacements for Fairchild 9000 -type circuits. The DM9002C circuit offers several significant advantages over 9000 type circuits, some of which are:
- Input clamp diodes
- Output short-circuit current specified to guarantee the high-level impedance.
- Power-dissipation of DM9002C circuit is in most cases lower than that for the equivalent 9002 type.

The DM9002C circuit is characterized for operation over the industrial temperature range of \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\).
For the new designs, the 54/74 families of TTL circuits offer the industry's broadest choice of high-performance digital circuits. Series 54/74 pin-for-pin equivalent is available for the following SSI type:
\[
\text { DM9000C Series Equivalent Series } 74
\]

DM9002C
DM7400

\section*{Connection Diagrams}

```

Absolute Maximum Ratings (Note)
Speclfications for Military/Aerospace products are not
contained in this datasheet. Refer to the associated
rellability electrical test specifications document.
Supply Voltage 7V
Input Voltage 5.5 V
Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

```

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM9002C} & \multirow{2}{*}{Units} \\
\hline & & & Min & Nom & Max & \\
\hline \(V_{C C}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.75 & 5 & 5.25 & V \\
\hline \multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} & \multirow[t]{3}{*}{High Level Input Voltage} & \(0^{\circ} \mathrm{C}\) & 1.9 & & & \multirow{3}{*}{V} \\
\hline & & \(25^{\circ} \mathrm{C}\) & 1.8 & & & \\
\hline & & \(75^{\circ} \mathrm{C}\) & 1.6 & & & \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.85 & V \\
\hline \(\mathrm{lOH}^{\text {l }}\) & \multicolumn{2}{|l|}{High Level Output Current} & & & -1.2 & mA \\
\hline lOL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 50 & mA \\
\hline \(\mathrm{T}_{\text {A }}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & 0 & & 75 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 1) } \\
\hline
\end{gathered}
\] & Max & Units \\
\hline \(\mathrm{V}_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOH}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}
\end{aligned}
\]} & 2.4 & & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{IOL}^{2}=16 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & & & 0.45 & v \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{IOL}_{\text {O }}=14.1 \mathrm{~mA}, \mathrm{~V}_{\text {CC }}=\mathrm{Min}\)} & & & 0.45 & \\
\hline \({ }^{1 / \mathrm{H}}\) & High Level Input Current & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline V_{C C}=M a x, V_{1}=4.5 \mathrm{~V} \\
& \text { Other Input at OV }
\end{aligned}
\]} & & & 60 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{ILL} & \multirow[t]{2}{*}{Low Level Input Current} & \multirow[t]{2}{*}{\(\mathrm{V}_{1}=4.5 \mathrm{~V}\)} & \(\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}\) & & & -1.6 & mA \\
\hline & & & \(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\) & & & -1.41 & \\
\hline los & Short Circuit Output Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{Max}\) (Note 2)} & -18 & & -55 & mA \\
\hline \({ }^{\text {ICCH }}\) & Supply Current with Outputs High & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=5 \mathrm{~V}\)} & & & 1.7 & mA \\
\hline \({ }^{\text {c CcL }}\) & Supply Current with Outputs Low & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\)} & & & 6.1 & mA \\
\hline
\end{tabular}

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Min & Typ & Max & Unlts \\
\hline \({ }^{\text {tpLH }}\) & Propagation Delay Time Low to High Level Output & \multirow[t]{2}{*}{\[
\begin{aligned}
& C_{L}=15 \mathrm{pF} \\
& R_{L}=400 \Omega
\end{aligned}
\]} & 3 & & 13 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & & 3 & & 15 & ns \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

\section*{DM9024／DM8024 Dual J－K Flip－Flops with Preset and Clear}

\section*{General Description}

The DM9024 series device is designed to be used in exist－ ing systems as replacements for Fairchild 9000－type cir－ cuits．These DM9024 circuits offer several significant ad－ vantages over 9024 type circuits，some of which are：
－Input clamp diodes
－Output short－circuit current specified to guarantee the high－level impedance．

The DM9024 circuit is characterized for operation over the industrial temperature range of \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) ．
For the new designs，the 54／74 families of TTL circuits offer the industry＇s broadest choice of high－performance digital circuits．Series 54／74 pin－for－pin equivalents are available for the following SSI types：

DM9000 Series
Equivalent Series 74
DM74109

\section*{Connection Diagram}

\section*{Function Table}

24
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Inputs} & \multicolumn{2}{|c|}{Outputs} \\
\hline Preset & Clear & Clock & J & \(\overline{\mathbf{K}}\) & Q & \(\overline{\mathbf{Q}}\) \\
\hline L & H & X & X & X & H & L \\
\hline H & L & \(x\) & X & X & L & H \\
\hline L & L & \(x\) & X & X & \(\mathrm{H}^{*}\) & \(\mathrm{H}^{*}\) \\
\hline H & H & \(\uparrow\) & L & L & L & H \\
\hline H & H & \(\uparrow\) & H & L & & \\
\hline H & H & \(\uparrow\) & L & H & \(Q_{0}\) & \(\bar{Q}_{0}\) \\
\hline H & H & \(\uparrow\) & H & H & H & L \\
\hline H & H & L & X & X & \(Q_{0}\) & \(\overline{\mathrm{Q}}_{0}\) \\
\hline
\end{tabular}

\footnotetext{
\(H=\) High Level（Steady State），\(L=\) Low Level（Steady State）．
\(X=\) Don＇t Care
\(\uparrow=\) Transition from low to high level
\(Q_{0}=\) The level of \(Q\) before the indicated input conditions were established．
TOGGLE：Each output changes to the complement of its previous level on each active transition of the clock．
＊This configuration is nonstable．That is，it will not persist when preset and clear inputs return to their inactive（high）level．
}

Absolute Maximum Ratings（Note）
Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the associated rellability electrical test specifications document．
\begin{tabular}{lr}
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM90 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM80 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM9024} & \multicolumn{3}{|c|}{DM8024} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5.0 & 5.5 & 4.75 & 5.0 & 5.25 & V \\
\hline \multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{H}}\)} & \multirow[t]{3}{*}{High Level Input Voltage} & \(\mathrm{T}_{\mathrm{A}}=\mathrm{Min}\) & 2.0 & & & 1.9 & & & \multirow{3}{*}{V} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 1.7 & & & 1.8 & & & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=\mathrm{Max}\) & 1.4 & & & 1.6 & & & \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.9 & & & 0.85 & V \\
\hline IOH & \multicolumn{2}{|l|}{High Level Output Current} & & & －1．2 & & & －1．2 & mA \\
\hline lOL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 12.4 & & & 14.1 & mA \\
\hline fcLK & \multicolumn{2}{|l|}{Clock Frequency（Note 2）} & 0 & 40 & 30 & 0 & 40 & 30 & MHz \\
\hline \multirow[t]{3}{*}{tw} & \multirow[t]{3}{*}{Pulse Width （Note 2）} & Clock High & 20 & & & 20 & & & \multirow{3}{*}{ns} \\
\hline & & Clock Low & 20 & & & 20 & & & \\
\hline & & PR，CLR Low & 20 & & & 20 & & & \\
\hline \({ }_{\text {t }}^{\text {SU }}\) & \multicolumn{2}{|l|}{Setup Time（Notes 1 \＆2）} & \(15 \uparrow\) & & & \(15 \uparrow\) & & & ns \\
\hline \(\mathrm{T}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Hold Time（Notes 1 \＆2）} & \(10 \uparrow\) & & & \(10 \uparrow\) & & & ns \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & －55 & & 125 & 0 & & 75 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1：The symbol（ \(\uparrow\) ）indicates rising edge of clock pulse is used for reference．
Note 2：\(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) ．
Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|l|}{Conditions} & Min & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 1) }
\end{gathered}
\] & Max & Unlts \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}\)} & & & －1．5 & V \\
\hline VOH & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Min}, I_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & 2.4 & & & V \\
\hline \multirow[t]{4}{*}{VoL} & \multirow[t]{4}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M i n \\
& \mathrm{IOL}^{\prime}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & DM90 & & & 0.4 & \\
\hline & & & DM80 & & & 0.45 & v \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{IOL}^{2}=16 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}
\end{aligned}
\]} & DM90 & & & 0.4 & ， \\
\hline & & & DM80 & & & 0.45 & \\
\hline \multirow[t]{4}{*}{\(\mathrm{IH}^{\text {H}}\)} & \multirow[t]{4}{*}{High Level Input Current} & \multirow[t]{4}{*}{\begin{tabular}{l}
\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=4.5 \mathrm{~V}
\end{aligned}
\] \\
Other Inputs at Ground
\end{tabular}} & J，K & & & 60 & \multirow{4}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Clock & & & 120 & \\
\hline & & & Preset & & & 120 & \\
\hline & & & Clear & & & 240 & \\
\hline
\end{tabular}

\section*{Electrical Characteristics}
over recommended operating free air temperature range (unless otherwise noted) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|l|}{Condiltions} & Min & Typ (Note 1) & Max & Units \\
\hline \multirow[t]{12}{*}{IIL} & \multirow[t]{12}{*}{Low Level Input Current} & \multirow[t]{4}{*}{\begin{tabular}{l}
\[
\begin{aligned}
& V_{C C}=\operatorname{Max} \\
& V_{1}=0.40 V(D M 90) \\
& V_{1}=0.45 V(D M 80)
\end{aligned}
\] \\
Other Inputs \\
at 4.5 V
\end{tabular}} & J, K & & & -1.6 & \multirow{12}{*}{mA} \\
\hline & & & Clock & & & -3.2 & \\
\hline & & & Preset & & & -3.2 & \\
\hline & & & Clear & & & -4.8 & \\
\hline & & \multirow[t]{4}{*}{\begin{tabular}{l}
\[
\begin{aligned}
& V_{C C}=\operatorname{Min} \\
& V_{\mathrm{I}}=0.40 \mathrm{~V}(\mathrm{DM} 90)
\end{aligned}
\] \\
Other Inputs \\
at 4.5 V
\end{tabular}} & J, K & & & -1.24 & \\
\hline & & & Clock & & & -2.48 & \\
\hline & & & Preset & & & -2.48 & \\
\hline & & & Clear & & & -3.72 & \\
\hline & & \multirow[t]{4}{*}{\begin{tabular}{l}
\[
\begin{aligned}
& V_{C C}=M i n \\
& V_{1}=0.40 V(D M 80)
\end{aligned}
\] \\
Other Inputs \\
at 4.5 V
\end{tabular}} & J, K & & & -1.41 & \\
\hline & & & Clock & & & -2.82 & \\
\hline & & & Preset & & & -2.82 & \\
\hline & & & Clear & & & -4.23 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Max} \\
& \text { (Note 2) } \\
& \hline
\end{aligned}
\]} & DM90 & -30 & & -85 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM80 & -30 & & -85 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{Max}\) (Note 3)} & & & 28 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 3: ICC is measured with all inputs open, first with PRESET at 4.5 V and all other inputs grounded, then with CLEAR at 4.5 V and all other inputs grounded.
Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & & 30 & & MHz \\
\hline \({ }_{\text {tplH }}\) & Propagation Delay Time Low to High Level Output & Preset to Q & & 14 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Preset to \(\overline{\mathrm{Q}}\) & & 29 & ns \\
\hline \({ }_{\text {tplH }}\) & Propagation Delay Time Low to High Level Output & Clear to \(\overline{\mathrm{Q}}\) & & 14 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & Clear to
Q & & 25 & ns \\
\hline \({ }^{\text {PLLH }}\) & Propagation Delay Time Low to High Level Output & Clock to Q, \(\overline{\mathrm{Q}}\) & & 18 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & Clock to \(Q, \bar{Q}\) & & 28 & ns \\
\hline
\end{tabular}

\section*{DM9300/DM8300 4-Bit Parallel-Access Shift Registers General Description}

These 4-bit registers feature parallel inputs, parallel outputs, \(J \bar{K}\) serial inputs, shift/load control input, and a direct overriding clear. The registers have two modes of operation: parallel (broadside) load and shift (in direction \(Q_{A}\) toward \(Q_{D}\)). Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flops, and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.
Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the \(\sqrt{\bar{K}}\) inputs. These inputs permit the first stage to perform as a \(\mathrm{JK}, \mathrm{D}\) or T-type flip-flop as shown in the function table.

These shift registers are fully compatible with most other TTL and DTL families. All inputs, including the clock, are buffered to lower the drive requirements to one normalized Series 54/74 load.

\section*{Features}
- Direct replacement for Fairchild 9300
- Fully buffered inputs
- Direct overriding clear
- Synchronous parallel load
- Parallel inputs and outputs from each flip-flop
m Positive edge-triggered clocking
- J and \(\bar{K}\) inputs to first stage
- Typical shift frequency- 39 MHz

\section*{Connection Diagram}

Order Number DM9300J or DM8300N See NS Package Number J16A or N16A

TL/F/6600-1
Function Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Inputs} & \multicolumn{5}{|c|}{Outputs} \\
\hline \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Shift/ Load} & \multirow[t]{2}{*}{Clock} & \multicolumn{2}{|l|}{Serial} & \multicolumn{4}{|c|}{Parallel} & \multirow[t]{2}{*}{\(\mathbf{Q}_{\mathbf{A}}\)} & \multirow[t]{2}{*}{\(\mathbf{Q}_{B}\)} & \multirow[t]{2}{*}{\(Q_{C}\)} & \multirow[t]{2}{*}{\(Q_{D}\)} & \multirow[t]{2}{*}{\(\overline{\mathbf{Q}}_{\mathbf{D}}\)} \\
\hline & & & J & \(\overline{\mathbf{K}}\) & PO & P1 & P2 & P3 & & & & & \\
\hline L & X & X & X & X & X & X & X & X & L & L & L & L & H \\
\hline H & 1 & \(\uparrow\) & X & X & a & b & c & d & a & b & c & d & d \\
\hline H & H & L & X & X & X & X & X & X & \(\mathrm{Q}_{\text {AO }}\) & \(Q_{B 0}\) & \(Q_{\text {co }}\) & \(Q_{\text {DO }}\) & \(\overline{\mathrm{Q}}_{\mathrm{D} 0}\) \\
\hline H & H & \(\uparrow\) & L & H & X & X & X & X & \(Q_{A 0}\) & \(Q_{A 0}\) & \(Q_{B n}\) & \(Q_{C n}\) & \(\bar{Q}_{\text {Cn }}\) \\
\hline H & H & 1 & L & L & X & X & X & X & L & \(Q_{\text {An }}\) & \(\mathrm{Q}_{\mathrm{Bn}}\) & \(Q_{C n}\) & \(\bar{Q}_{\underline{C}}\) \\
\hline H & H & \(\uparrow\) & H & H & X & X & X & X & H & \(Q_{\text {An }}\) & \(Q_{B n}\) & \(Q_{C n}\) & \(\overline{\mathrm{Q}}_{\mathrm{Cn}}\) \\
\hline H & H & \(\uparrow\) & H & L & X & X & X & X & \(\bar{Q}_{A n}\) & \(Q_{\text {An }}\) & \(Q_{B n}\) & \(Q_{B n}\) & \(\bar{Q}_{C n}\) \\
\hline
\end{tabular}
\(\mathrm{H}=\) High Level (Steady State)
\(\mathrm{L}=\) Low Level (Steady State)
\(\mathrm{X}=\) Don't Care
\(\uparrow=\) Transition from low-to-high level
\(a, b, c, d,=\) The level of steady state input at P0, P1, P2, or P3 respectively.
\(Q_{A 0}, Q_{B 0}, Q_{C 0}, Q_{D 0}=\) The level of \(Q_{A}, Q_{B}, Q_{C}\), or \(Q_{D}\), respectively before the indicated steady state input conditions were established.
\(Q_{A n}, Q_{B n}, Q_{C n}=\) The level of \(Q_{A}, Q_{B}, Q_{C}\), respectively, before the most recent \(\uparrow\) transition of the clock.

\section*{Absolute Maximum Ratings \\ (Note)}

Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the assoclated rellability electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Operating Free Air Temperature Range & \\
DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM83 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM9300} & \multicolumn{3}{|c|}{DM8300} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {IH }}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.8 & & & 0.8 & V \\
\hline lOH & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.8 & & & -0.8 & mA \\
\hline 1 OL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 16 & & & 16 & mA \\
\hline \(\mathrm{f}_{\mathrm{CLK}}\) & \multicolumn{2}{|l|}{Clock Frequency (Note 5)} & 0 & & 30 & 0 & & 30 & MHz \\
\hline \multirow[t]{2}{*}{tw} & \multirow[t]{2}{*}{Pulse Width (Note 5)} & Clock & 16 & 11 & & 16 & 11 & & \multirow[t]{2}{*}{ns} \\
\hline & & Clear & 30 & 15 & & 30 & 15 & & \\
\hline \multirow[t]{3}{*}{tsu} & \multirow[t]{3}{*}{Setup Time (Note 5)} & S/L & 30 & 13 & & 30 & 13 & & \multirow{3}{*}{ns} \\
\hline & & Data & 20 & 13 & & 20 & 13 & & \\
\hline & & Clear & 30 & 13 & & 30 & 13 & & \\
\hline \(\mathrm{t}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Data Hold Time (Note 5)} & 0 & -11 & & 0 & -11 & & ns \\
\hline \(\mathrm{t}_{\text {REL }}\) & \multicolumn{2}{|l|}{S/L Release Time (Notes 1 and 5)} & 10 & & & 10 & & & ns \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ (Note 2) & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(V_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & 2.4 & & & V \\
\hline VoL & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}
\end{aligned}
\]} & & & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}\)} & & & 1 & mA \\
\hline \(\mathrm{IIH}^{\text {H }}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}\)} & & & 40 & \(\mu \mathrm{A}\) \\
\hline 112 & Low Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}\)} & & & -1.6 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& (\text { Note 3) }
\end{aligned}
\]} & DM93 & -18 & & -55 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & -18 & & -55 & \\
\hline \multirow[t]{2}{*}{ICC} & \multirow[t]{2}{*}{Supply Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\text { Max } \\
& \text { (Note 4) }
\end{aligned}
\]} & DM93 & & & 86 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & & & 92 & \\
\hline
\end{tabular}

Note 1: RELEASE TIME: \(t_{\text {RELEASE }}\) is defined as the maximum time allowed for the logic level to be present at the logic input prior to the clock transition from low to high in order for the flip-flop(s) not to respond.
Note 2: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 3: Not more than one output should be shorted at a time.
Note 4: With all outputs open, SHIFT/LOAD grounded, and 4.5 V applied to \(\mathrm{J}, \mathrm{K}\), and data inputs, I CC is measured by applying momentary ground, then 4.5 V to CLEAR, and then to CLOCK.
Note 5: \(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & & 30 & & MHz \\
\hline \({ }_{\text {tplH }}\) & Propagation Delay Time Low to High Level Output & Clock to Output & & 22 & ns \\
\hline \(\mathrm{tPHL}^{\text {P }}\) & Propagation Delay Time High to Low Level Output & Clock to Output & & 26 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & Clear to Output & & 30 & ns \\
\hline
\end{tabular}

\section*{DM9301/DM8301 1 of 10 Decoders}

\section*{General Description}

These BCD-to-decimal decoders consist of eight inverters and ten 4 -input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain "OFF" for all invalid input conditions.
These circuits provide familiar TTL inputs and outputs which are compatible for use with other TTL and DTL circuits. DC noise margins are typically 1 V and power dissipation is typically 125 mW . The diode-clamped, buffered inputs represent only one normalized Series 54/74 load.

\section*{Connection Diagram}

Dual-In-Line Package

Order Number DM9301J or DM8301N See NS Package Number J16A or N16A

\section*{Features}
- Direct replacement for Fairchild 9301 and Signetics 8252
- Diode-clamped inputs
- All outputs are high for invalid BCD input conditions
- Typical power dissipation 125 mW
- Typical propagation delay 20 ns

Function Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{No.} & \multicolumn{4}{|l|}{BCD Inputs} & \multicolumn{10}{|c|}{Decimal Outputs} \\
\hline & D & C & B & A & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 0 & L & L & L & L & L & H & H & H & H & H & H & H & H & H \\
\hline 1 & L & L & L & H & H & L & H & H & H & H & H & H & H & H \\
\hline 2 & L & L & H & L & H & H & L & H & H & H & H & H & H & H \\
\hline 3 & L & L & H & H & H & H & H & L & H & H & H & H & H & H \\
\hline 4 & L & H & L & L. & H & H & H & H & L & H & H & H & H & H \\
\hline 5 & L & H & L & H & H & H & H & H & H & L & H & H & H & H \\
\hline 6 & L & H & H & L & H & H & H & H & H & H & L & H & H & H \\
\hline 7 & L & H & H & H & H & H & H & H & H & H & H & L & H & H \\
\hline 8 & H & L & L & L & H & H & H & H & H & H & H & H & L & H \\
\hline 9 & H & L & L & H & H & H & H & H & H & H & H & H & H & L \\
\hline 1 & H & L & H & L & H & H & H & H & H & H & H & H & H & H \\
\hline N & H & L & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline V & H & H & L & L & H & H & H & H & H & H & H & H & H & H \\
\hline A & H & H & L & H & H & H & H & H & H & H & H & H & H & H \\
\hline L & H & H & H & L & H & H & H & H & H & H & H & H & H & H \\
\hline 1 & H & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline D & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the associated reliability electrical test specifications document.
Supply Voltage
Operating Free Air Temperature Range
\begin{tabular}{lr}
DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM83 & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
Drage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM9301} & \multicolumn{3}{|c|}{DM8301} & \multirow[t]{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Low Level Input Voltage & & & 0.8 & & & 0.8 & V \\
\hline \(\mathrm{l}_{\mathrm{OH}}\) & High Level Output Current & & & -0.8 & & & -0.8 & mA \\
\hline lOL & Low Level Output Current & & & 16 & & & 16 & mA \\
\hline \(\mathrm{T}_{\text {A }}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|r|}{Conditions} & Min & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 1) }
\end{gathered}
\] & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(V_{C C}=M i n, I_{1}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline VOH & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\
& V_{\text {IL }}=\operatorname{Max}, V_{I H}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & & & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\
& V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max}
\end{aligned}
\]} & & & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}\)} & & & 1 & mA \\
\hline \(\mathrm{IIH}^{\text {H }}\) & High Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}, V_{1}=2.4 \mathrm{~V}\)} & & & 40 & \(\mu \mathrm{A}\) \\
\hline IIL & Low Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}\)} & & & -1.6 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Max} \\
& (\text { Note 2) }
\end{aligned}
\]} & DM93 & -20 & & -55 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & -20 & & -55 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) (Note 3)} & & 25 & 41 & mA \\
\hline
\end{tabular}

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{c|c|c|c|c|c}
\hline Symbol & \multicolumn{1}{c|}{ Parameter } & Conditions & Min & Max & Unlts \\
\hline t \(_{\text {PLH }}\) & \begin{tabular}{l}
Propagation Delay Time \\
Low to High Level Output
\end{tabular} & \begin{tabular}{l}
\(C_{L}=15 \mathrm{pF}\) \\
\(R_{L}=400 \Omega\)
\end{tabular} & 30 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & \begin{tabular}{l}
Propagation Delay Time \\
High to Low Level Output
\end{tabular} & & 30 & ns \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: \(I_{C C}\) is measured with the outputs open and all inputs grounded.

TL/F/6601-2

\section*{DM9309/DM8309 Dual 4-Bit Data Selectors/Multiplexers}

\section*{General Description}

These data selectors/multiplexers contain inverter/drivers to supply full complementary, on-chip, binary decoded data selection.

The DM9309/8309 contains two separate 4-bit multiplexers with complementary \(Y\) and \(\bar{Y}\) outputs; however, the two sections have common address select inputs.

\section*{Features}

DM9309/8309
- Direct replacement for Fairchild 9309
- Complementary outputs
- Dual one-of-four data selectors

\section*{Connection Diagram}

\section*{Dual-In-LIne Package}

TL/F/6602-1
Order Number DM9309J or DM8309N
See NS Package Number J16A or N16A

\section*{Function Table}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ Inputs } & \multicolumn{3}{c|}{ Outputs } \\
\hline \multicolumn{2}{|c|}{ Select } & \multicolumn{4}{c|}{ Data } & Y \\
\hline B & A & Co & C1 & C2 & C3 & & \\
\hline L & L & L & X & X & X & L & H \\
L & L & H & X & X & X & H & L \\
L & H & X & L & X & X & L & H \\
L & H & X & H & X & X & H & L \\
H & L & X & X & L & X & L & H \\
H & L & X & X & H & X & H & L \\
H & H & X & X & X & L & L & H \\
H & H & X & X & X & H & H & L \\
\hline
\end{tabular}

Select inputs A and B are common to both sections.
\(H=\) High Level, L = Low Level, X = Don't Care.

\section*{Absolute Maximum Ratings (Note)}

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage
Input Voltage
Operating Free Air Temperature Range
\begin{tabular}{lr}
DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM83 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM9309} & \multicolumn{3}{|c|}{DM8309} & \multirow[t]{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Low Level Input Voltage & & & 0.8 & & & 0.8 & V \\
\hline IOH & High Level Output Current & & & -0.8 & & & -0.8 & mA \\
\hline IOL & Low Level Output Current & & & 16 & & & 16 & mA \\
\hline \(\mathrm{T}_{\text {A }}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ (Note 1) & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=M i n, I_{O H}=M a x \\
& V_{I L}=M a x, V_{I H}=M i n
\end{aligned}
\]} & 2.4 & 3.4 & & V \\
\hline VoL & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max}
\end{aligned}
\]} & & 0.2 & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}\)} & & & 1 & mA \\
\hline \(\mathrm{IIH}^{\text {H }}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}\)} & & & 40 & \(\mu \mathrm{A}\) \\
\hline IIL & Low Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}\)} & & & -1.6 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
V_{C C}=\operatorname{Max}
\] \\
(Note 2)
\end{tabular}} & DM93 & \(-30\) & & -85 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & -30 & & -85 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) (Note 3)} & & 27 & 44 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with the outputs open and all inputs at 4.5 V .

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \({ }_{\text {tpLH }}\) & Propagation Delay Time Low to High Level Output & Select to \(Y\) & & 40 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Select to \(Y\) & & 36 & ns \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & Select to \(\bar{Y}\) & & 24 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Select to \(\bar{Y}\) & & 29 & ns \\
\hline \(\mathrm{t}_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Data to \(Y\) & & 27 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Data to \(Y\) & & 34 & ns \\
\hline \({ }^{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & Data to \(\bar{Y}\) & & 21 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & Data to \(\bar{Y}\) & & 13 & ns \\
\hline
\end{tabular}

\section*{Logic Diagram}

National Semiconductor Corporation

\section*{DM9310/DM8310 Synchronous 4-Bit Counters}

\section*{General Description}

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The DM9310/DM8310 are decade counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flipflops clocked simultaneously so that the outputs change coincident with each other when so instructed by the countenable inputs and internal gating. This mode of operating eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.
These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable input. Low-to-high transitions at the load input are perfectly acceptable regardless of the logic levels on the clock or enable inputs. The clear function is asynchronous and a low level at the clear input sets of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs.

The carry look-ahead circuitry provides for cascading counters for \(n\)-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both countenable inputs (P and T) must be high to count, and input T is fed-forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the \(Q_{A}\) output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs may occur regardless of the logic level in the clock.

\section*{FEATURES}
- Direct replacement for Fairchild 9310
- Internal look-ahead for fast counting

■ Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs
- Typical clock frequency 35 MHz

E Pin-for-pin replacements popular 54/74 counters 9310-54160A/74160A (decade)

\section*{Connection Diagram}

TL/F/6603-1
Order Number DM9310J or DM8310N
See NS Package Number J16A or N16A

Absolute Maximum Ratings (Note)
Speciflcations for Milltary/Aerospace products are not contained In thls datasheet. Refer to the assoclated rellabillty electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM83 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM9310} & \multicolumn{3}{|c|}{DM8310} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & MIn & Nom & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.8 & & & 0.8 & V \\
\hline \({ }_{\mathrm{IO}}\) & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.8 & & & -0.8 & mA \\
\hline loL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 16 & & & 16 & mA \\
\hline \({ }_{\text {f CLK }}\) & \multicolumn{2}{|l|}{Clock Frequency (Note 5)} & 0 & & 25 & 0 & & 25 & MHz \\
\hline \multirow[t]{2}{*}{tw} & \multirow[t]{2}{*}{Pulse Width (Note 5)} & Clock & 25 & & & 25 & & & \multirow[t]{2}{*}{ns} \\
\hline & & Clear & 20 & & & 20 & & & \\
\hline \multirow[t]{4}{*}{tsu} & \multirow[t]{4}{*}{Setup Time (Note 5)} & Data & 20 & & & 20 & & & \multirow{4}{*}{ns} \\
\hline & & Enable P & 20 & & & 20 & & & \\
\hline & & Load & 25 & & & 25 & & & \\
\hline & & Clear & 20 & & & 20 & & & \\
\hline \({ }_{\text {t }}\) & \multicolumn{2}{|l|}{Any Hold Time (Notes 1 \& 5)} & 0 & & & 0 & & & ns \\
\hline \(\mathrm{T}_{\text {A }}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ (Note 1) & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(V_{C C}=M i n, l_{1}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & 2.4 & 3.4 & & V \\
\hline VOL & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\
& V_{I H}=M i n, V_{I L}=\operatorname{Max}
\end{aligned}
\]} & & 0.2 & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}\)} & & & 1 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{IH}}\)} & \multirow[t]{2}{*}{High Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=2.4 V
\end{aligned}
\]} & CLK, EN T & & & 80 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Other & & & 40 & \\
\hline \multirow[t]{2}{*}{IIL} & \multirow[t]{2}{*}{Low Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=0.4 V
\end{aligned}
\]} & CLK, EN T & & & -3.2 & \multirow[t]{2}{*}{mA} \\
\hline & & & Other & & & -1.6 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\text { Max } \\
& \text { (Note 2) }
\end{aligned}
\]} & DM93 & -20 & & -57 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & -18 & & -57 & \\
\hline \multirow[t]{2}{*}{ICCH} & \multirow[t]{2}{*}{Supply Current with Outputs High} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\text { Max } \\
& \text { (Note 3) }
\end{aligned}
\]} & DM93 & & 59 & 85 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & & 59 & 94 & \\
\hline \multirow[t]{2}{*}{ICCL} & \multirow[t]{2}{*}{Supply Current with Outputs Low} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{c c}=M a x \\
& \text { (Note 4) }
\end{aligned}
\]} & DM93 & & 63 & 91 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & & 63 & 101 & \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: \(I_{C C H}\) is measured with the LOAD input high, then again with the LOAD input low, with all other inputs high and all outputs open.
Note 4: ICCL is measured with the CLOCK input high, then again with the CLOCK input low, with all other inputs low and all outputs open.
Note 5: \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & & 25 & & MHz \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Clock to Ripple Carry & & 27 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Clock to Ripple Carry & & 24 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \[
\begin{aligned}
& \text { Clock } \\
& \text { to Q }
\end{aligned}
\] & & 20 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Clock to Q & & 23 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \[
\begin{aligned}
& \text { Clock } \\
& \text { to } \mathrm{Q}
\end{aligned}
\] & & 21 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Clock to Q & & 25 & ns \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & Enable T to Ripple Carry & & 15 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & Enable T to Ripple Carry & & 16 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \[
\begin{aligned}
& \text { Clear } \\
& \text { to } \mathrm{Q}
\end{aligned}
\] & & 36 & ns \\
\hline
\end{tabular}

Timing Diagram

Sequence:
(1) Clear outputs to zero.
(2) Preset to BCD seven.
(3) Count to eight, nine, zero, one, two, and three.
(4) Inhibit

\section*{Parameter Measurement Information}

Note A: The input pulses are supplied by a generator having the following characteristics: PRR \(\leq 1 \mathrm{MHz}\), duty cycle \(\leq 50 \%, \mathrm{Z}_{\mathrm{OUT}} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}\). Vary PRR to measure \(\mathrm{f}_{\text {MAX }}\).
Note B: Outputs \(Q_{D}\) and carry are tested at \(t_{n}+10\) for 9310/8310, where \(t_{n}\) is the bit time when all outputs are low.
Note \(C: V_{\text {REF }}=1.5 \mathrm{~V}\).

\section*{Parameter Measurement Information (Continued)}

TL/F/6603-5
Note A: The input pulses are supplied by generators having the following characteristics: PRR \(\leq M H z\), duty cycle \(\leq 50 \%, Z_{\text {Out }} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}\). Note B: Enable P and enable T setup times are measured at \(t_{n}+10\) for 8310/9310.
Note C: \(\mathrm{V}_{\text {REF }}=1.5 \mathrm{~V}\).

National Semiconductor corporation

\section*{DM9311/DM8311 4-Line to 16-Line Decoders/Demultiplexers}

\section*{General Description}

Each of these 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G1 and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing high-performance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission-line effects and thereby simplify system design.

\section*{Features}
- Direct replacement for Fairchild 9311
- Pin for pin with popular DM54154/74154

■ Decodes 4 binary-coded inputs into one of 16 mutually exclusive outputs
- Performs the demultiplexing function by distributing data from one input line to any one of 16 outputs
- Input clamping diodes simplify system design

■ High fan-out, low-impedance, totem-pole outputs
- Typical propagation delay 19 ns
- Typical power dissipation 170 mW

\section*{Connection Diagram}

Dual-In-LIne Package

TL/F/6604-1
Order Number DM9311J or DM8311N
See NS Package Number J24A or N24A

\section*{Absolute Maximum Ratings（Note）}

Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the associated reliability electrical test specifications document．
\begin{tabular}{lr}
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM83 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM9311} & \multicolumn{3}{|c|}{DM8311} & \multirow{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low Level Input Voltage & & & 0.8 & & & 0.8 & V \\
\hline \({ }_{\mathrm{OH}}\) & High Level Output Current & & & －0．8 & & & －0．8 & mA \\
\hline lol & Low Level Output Current & & & 16 & & & 16 & mA \\
\hline \(\mathrm{T}_{\text {A }}\) & Free Air Operating Temperature & －55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range（unless otherwise noted）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ （Note 1） & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}\)} & & & －1．5 & V \\
\hline VOH & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & 3.4 & & V \\
\hline VoL & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}
\end{aligned}
\]} & & 0.25 & 0.4 & V \\
\hline 1 & Input Current＠Max Input Voltage & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}\)} & & & 1 & mA \\
\hline \({ }_{1 / \mathrm{H}}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}\)} & & & 40 & \(\mu \mathrm{A}\) \\
\hline IIL & Low Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}\)} & & & －1．6 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& (\text { Note 2) }
\end{aligned}
\]} & DM93 & －20 & & －55 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & －18 & & －57 & \\
\hline \multirow[t]{2}{*}{Icc} & \multirow[t]{2}{*}{Supply Current} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
V_{C C}=M a x
\] \\
（Note 3）
\end{tabular}} & DM93 & & 34 & 49 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & & 34 & 56 & \\
\hline
\end{tabular}

Note 1：All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) ．
Note 2：Not more than one output should be shorted at a time．
Note 3： ICC is measured with all inputs grounded and all outputs open．

Switching Characteristics at \(\mathrm{V}_{C C}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{\begin{tabular}{l}
From (Input) \\
To (Output)
\end{tabular}} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Data to Output & & 27 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & Data to Output & & 30 & ns \\
\hline \({ }_{\text {tplH }}\) & Propagation Delay Time Low to High Level Output & Strobe to Output & & 25 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Strobe to Output & & 27 & ns \\
\hline
\end{tabular}

\section*{Function Table}
\begin{tabular}{|c|}
\hline \multicolumn{6}{|c|}{Inputs} & \multicolumn{16}{|c|}{Outputs} \\
\hline G1 & G2 & D & C & B & A & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline L & L & L & L & L & L & L & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline L & L & L & L & L & H & H & L & H & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline L & L & L & L & H & L & H & H & L & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline L & L & L & L & H & H & H & H & H & L & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline L & L & L & H & L & L & H & H & H & H & L & H & H & H & H & H & H & H & H & H & H & H \\
\hline L & L & L & H & L & H & H & H & H & H & H & L & H & H & H & H & H & H & H & H & H & H \\
\hline L & L & L & H & H & L & H & H & H & H & H & H & L & H & H & H & H & H & H & H & H & H \\
\hline L & L & L & H & H & H & H & H & H & H & H & H & H & L & H & H & H & H & H & H & H & H \\
\hline L & L & H & L & L & L & H & H & H & H & H & H & H & H & L & H & H & H & H & H & H & H \\
\hline L & L & H & L & L & H & H & H & H & H & H & H & H & H & H & L & H & H & H & H & H & H \\
\hline L & L & H & L & H & L & H & H & H & H & H & H & H & H & H & H & L & H & H & H & H & H \\
\hline L & L & H & L & H & H & H & H & H & H & H & H & H & H & H & H & H & L & H & H & H & H \\
\hline L & L & H & H & L & L & H & H & H & H & H & H & H & H & H & H & H & H & L & H & H & H \\
\hline L & L & H & H & L & H & H & H & H & H & H & H & H & H & H & H & H & H & H & L & H & H \\
\hline L & L & H & H & H & L & H & H & H & H & H & H & H & H & H & H & H & H & H & H & L & H \\
\hline L & L & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & L \\
\hline L & H & X & \(X\) & X & X & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline H & L & X & X & X & X & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline H & H & X & X & X & X & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H & H \\
\hline
\end{tabular}

Logic Diagram
DM93/8311

TL/F/6604-2

\section*{DM9312／DM8312 One of Eight Line Data Selectors／Multiplexers}

\section*{General Description}

These data selectors／multiplexers contain inverter／drivers to supply full complementary，on－chip，binary decoded data selection．

The DM9312／8312 is a single 8 －bit multiplexer with comple－ mentary outputs and a strobe control．When the strobe is low，the function is enabled．When a high logic level is ap－ plied to the strobe，the output is forced to the logic zero state regardless of the logic level of the data inputs．

Features
－Direct replacement for Fairchild 9312
－Selects one－of－eight data sources
－Performs parallel to serial conversion
■ Strobe controlled outputs
■ Complementary outputs

\section*{Connection Diagram}

Function Table
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Inputs } & \multicolumn{2}{c|}{ Outputs } \\
\hline \multicolumn{3}{|c|}{ Select } & Strobe & \multirow{2}{*}{ Y } & \(\overline{\text { Y }}\) \\
\hline C & B & A & G & & \\
\hline X & X & X & H & L & H \\
L & L & L & L & D0 & \(\overline{\text { DO }}\) \\
L & L & H & L & D1 & \(\overline{D 1}\) \\
L & H & L & L & D2 & \(\overline{D 2}\) \\
L & H & H & L & D3 & \(\overline{D 3}\) \\
H & L & L & L & D4 & \(\overline{\text { D4 }}\) \\
H & L & H & L & D5 & \(\overline{D 5}\) \\
H & H & L & L & D6 & \(\overline{D 6}\) \\
H & H & H & L & D7 & \(\overline{D 7}\) \\
\hline
\end{tabular}
\(\mathrm{H}=\) High Level， \(\mathrm{L}=\) Low Level， \(\mathrm{X}=\) Don＇t Care．
D0，D1 \(\ldots D 7=\) The level of the respective \(D\) input．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Absolute Maximum Ratings (Note)} \\
\hline \multicolumn{2}{|l|}{Specifications for Milltary/Aerospace products are not contalned in this datasheet. Refer to the assoclated rellability electrical test specifications document.} \\
\hline Supply Voltage & 7 V \\
\hline Input Voltage & 5.5 V \\
\hline Operating Free Air Temperature Range & \\
\hline DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline DM83 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM9312} & \multicolumn{3}{|c|}{DM8312} & \multirow[t]{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Low Level Input Voltage & & & 0.8 & & & 0.8 & V \\
\hline IOH & High Level Output Current & & & -0.8 & & & -0.8 & mA \\
\hline IOL & Low Level Output Current & & & 16 & & & 16 & mA \\
\hline \(\mathrm{T}_{\text {A }}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|r|}{Conditions} & Min & Typ (Note 1) & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{l}}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & 3.4 & & V \\
\hline VOL & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, I_{O L}=\operatorname{Max} \\
& V_{I H}=\operatorname{Min}, V_{I L}=\operatorname{Max}
\end{aligned}
\]} & & 0.2 & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}\)} & & & 1 & mA \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}\)} & & & 40 & \(\mu \mathrm{A}\) \\
\hline IIL & Low Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}\)} & & & -1.6 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& (\text { Note 2) }
\end{aligned}
\]} & DM93 & -30 & & -85 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & -30 & & -85 & \\
\hline 1 Cc & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\) Max, ((\({ }^{\text {ate 3) }}\)} & & 27 & 44 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: I CC is measured with the STROBE and DATA SELECT inputs 4.5 V and all other inputs and outputs open

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Select to \(Y\) & & 33 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Select to \(Y\) & & 35 & ns \\
\hline \(\mathrm{tpLH}^{\text {l }}\) & Propagation Delay Time Low to High Level Output & Select to \(\bar{Y}\) & & 28 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Select to \(\bar{Y}\) & & 25 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Data to \(Y\) & & 23 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Data to \(Y\) & & 25 & ns \\
\hline \({ }_{\text {tpLH }}\) & Propagation Delay Time Low to High Level Output & \[
\begin{aligned}
& \text { Data } \\
& \text { to } \bar{Y}
\end{aligned}
\] & & 13 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \[
\begin{aligned}
& \text { Data } \\
& \text { to } \bar{Y}
\end{aligned}
\] & & 13 & ns \\
\hline \({ }_{\text {tpLH }}\) & Propagation Delay Time Low to High Level Output & Strobe to \(Y\) & & 33 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Strobe to \(Y\) & & 32 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Strobe to \(\bar{Y}\) & & 19 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & Strobe to \(\bar{Y}\) & & 21 & ns \\
\hline
\end{tabular}

TL/F/6605-2

\section*{DM9316/DM8316 Synchronous 4-Bit Counters}

\section*{General Description}

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The DM9316/DM8316 is a 4-bit binary counter. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flipflops clocked simultaneously so that the outputs change coincident with each other when so instructed by the countenables inputs and internal gating. This mode of operating eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform.
These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable input. Low-to-high transitions at the load input are perfectly acceptable regardless of the logic levels on the clock or enable inputs. The clear function is asynchronous and a low level at the clear input sets of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs.

The carry look-ahead circuitry provides for cascading counters for \(n\)-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both countenable inputs (P and T) must be high to count, and input T is fed-forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the \(Q_{A}\) output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low level transitions at the enable P or T inputs may occur regardless of the logic level in the clock.

\section*{Features}
- Direct replacement for Fairchild 9316
- Internal look-ahead for fast counting
- Carry output for n-bit cascading
- Synchronous counting
- Load control line
- Diode-clamped inputs
- Typical clock frequency 35 MHz

■ Pin-for-pin replacements popular 54/74 counters 9316-5416A/7416A (binary)

\section*{Connection Diagram}

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM83 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM9316} & \multicolumn{3}{|c|}{DM8316} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(\mathrm{V}_{\text {CC }}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.8 & & & 0.8 & V \\
\hline \({ }^{\mathrm{OH}}\) & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.8 & & & -0.8 & mA \\
\hline \(\mathrm{l}_{\mathrm{OL}}\) & \multicolumn{2}{|l|}{Low Level Output Current} & & & 16 & & & 16 & mA \\
\hline \(\mathrm{f}_{\mathrm{CLLK}}\) & \multicolumn{2}{|l|}{Clock Frequency (Note 6)} & 0 & & 25 & 0 & & 25 & MHz \\
\hline \multirow[t]{2}{*}{tw} & \multirow[t]{2}{*}{Pulse Width (Note 6)} & Clock & 25 & & & 25 & & & \multirow[t]{2}{*}{ns} \\
\hline & & Clear & 20 & & & 20 & & & \\
\hline \multirow[t]{4}{*}{tsu} & \multirow[t]{4}{*}{Setup Time (Note 6)} & Data & 20 & & & 20 & & & \multirow{4}{*}{ns} \\
\hline & & Enable P & 20 & & & 20 & & & \\
\hline & & Load & 25 & & & 25 & & & \\
\hline & & Clear & 20 & & & 20 & & & \\
\hline \({ }_{\text {t }}^{\text {H }}\) & \multicolumn{2}{|l|}{Any Hold Time (Notes 1 \& 6)} & 0 & & & 0 & & & ns \\
\hline \(\mathrm{T}_{\text {A }}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 2) }
\end{gathered}
\] & Max & Units \\
\hline \(\mathrm{V}_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\
& \hline
\end{aligned}
\]} & 2.4 & 3.4 & & V \\
\hline V \({ }_{\text {OL }}\) & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{IOL}_{\mathrm{OL}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\operatorname{Max}
\end{aligned}
\]} & & 0.2 & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}\)} & & & 1 & mA \\
\hline \multirow[t]{3}{*}{\({ }_{1} \mathrm{H}\)} & \multirow[t]{3}{*}{High Level Input Current} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=2.4 \mathrm{~V}
\end{aligned}
\]} & Clock & & & 80 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Enable T & & & 80 & \\
\hline & & & Other & & & 40 & \\
\hline \multirow[t]{3}{*}{IIL} & \multirow[t]{3}{*}{Low Level Input Current} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{C c}=\operatorname{Max} \\
& V_{\mathrm{I}}=0.4 \mathrm{~V}
\end{aligned}
\]} & Clock & & & -3.2 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Enable T & & & -3.2 & \\
\hline & & & Other & & & -1.6 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{c c}=M a x \\
& \text { (Note 3) }
\end{aligned}
\]} & DM93 & -20 & & -57 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & -18 & & -57 & \\
\hline \multirow[t]{2}{*}{ICCH} & \multirow[t]{2}{*}{Supply Current with Outputs High} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{cc}}=\mathrm{Max} \\
& \text { (Note 4) }
\end{aligned}
\]} & DM93 & & 59 & 85 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM84 & & 59 & 94 & \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\text {CCL }}\)} & \multirow[t]{2}{*}{Supply Current with Outputs Low} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{c c}=\operatorname{Max} \\
& \text { (Note 5) }
\end{aligned}
\]} & DM93 & & 63 & 91 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & & 63 & 101 & \\
\hline
\end{tabular}

Note 1: The minimum HOLD time is as specified or as long as the CLOCK input takes to rise from 0.8 V to 2 V , whichever is longer.
Note 2: All typicals are at \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 3: Not more than one output should be shorted at a time.
Note 4: \(\mathrm{I}_{\mathrm{CCH}}\) is measured with the LOAD input high, then again with the LOAD input low, with all other inputs high and all outputs open.
Note 5: ICCL is measured with the CLOCK input high, then again with the CLOCK input low, with all other inputs low and all outputs open.
Note 6: \(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{C C}=5 \mathrm{~V}\).

Switching Characteristics at \(\mathrm{V}_{C C}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{\begin{tabular}{l}
From (Input) \\
To (Output)
\end{tabular}} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & & 25 & & MHz \\
\hline \({ }^{\text {PPLH }}\) & Propagation Delay Time Low to High Level Output & \begin{tabular}{l}
Clock \\
to RC
\end{tabular} & & 27 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \[
\begin{aligned}
& \text { Clock } \\
& \text { to RC }
\end{aligned}
\] & & 24 & ns \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & \[
\begin{aligned}
& \text { Clock } \\
& \text { to } \mathrm{Q}
\end{aligned}
\] & & 20 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \[
\begin{gathered}
\text { Clock } \\
\text { to } \mathrm{Q} \\
\hline
\end{gathered}
\] & & 23 & ns \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & \[
\begin{aligned}
& \text { Clock } \\
& \text { to } Q
\end{aligned}
\] & & 21 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \[
\begin{aligned}
& \text { Clock } \\
& \text { to } \mathrm{Q}
\end{aligned}
\] & & 25 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \[
\begin{aligned}
& \mathrm{ENT} \\
& \text { to } \mathrm{RC}
\end{aligned}
\] & & 15 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \[
\begin{aligned}
& \text { ENT } \\
& \text { to RC }
\end{aligned}
\] & & 16 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \[
\begin{aligned}
& \text { Clear } \\
& \text { to } Q
\end{aligned}
\] & & 36 & ns \\
\hline
\end{tabular}

Logic Diagram

\section*{Parameter Measurement Information}

Note A: The input pulses are supplied by a generator having the following characteristics: PRR \(\leq 1 \mathrm{MHz}\), duty cycle \(\leq 50 \%, Z_{\text {OUT }} \approx 50 \Omega\), \(t_{r} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}\). Vary PRR to measure fmax.
Note B: Outputs \(Q_{D}\) and carry are tested at \(t_{n}+16\) for \(9316 / 8316\), where \(t_{n}\) is the bit time when all outputs are low.
Note C: \(\mathrm{V}_{\text {REF }}=1.5 \mathrm{~V}\).

\section*{Parameter Measurement Information (Continued)}

TL/F/6606-5
Note A: The input pulses are supplied by generators having the following characteristics: PRR \(\leq 1 \mathrm{MHz}\), duty cycle \(\leq 50 \%, Z_{O U T} \approx 50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 10 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 10 \mathrm{~ns}\). Note B: Enable \(P\) and Enable \(T\) setup times are measured at \(t_{n}+16\) for 8316/9316.
Note C: \(\mathrm{V}_{\mathrm{REF}}=1.5 \mathrm{~V}\).

\section*{DM9318/DM8318 Priority Encoders}

\section*{General Description}

These TTL encoders feature priority decoding of the input data to ensure that only the highest-order data line is encoded. All inputs are buffered to represent one normalized Series 54/74 load. The DM9318 and DM8318 encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input E1 and enable output E0) has been provided to allow octal expansion without the need for external circuitry. For all types, data inputs and outputs are active at the low logic level.

\section*{Features}
- Direct replacement for Fairchild 9318
- Pin for pin with popular DM54148/74148
- Encodes 8 data lines to 3-line binary (octal)
- Applications include: N -bit encoding Code converters and generators
- Typical data delay 10 ns
- Typical power dissipation 190 mW

\section*{Connection Diagram}

Function Table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Inputs} & \multicolumn{5}{|c|}{Outputs} \\
\hline E1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & A2 & A1 & A0 & GS & EO \\
\hline H & X & X & X & X & X & X & X & X & H & H & H & H & H \\
\hline L & H & H & H & H & H & H & H & H & H & H & H & H & L \\
\hline L & X & X & X & X & X & X & X & L & L & L & L & L & H \\
\hline L & X & X & X & X & X & X & L & H & L & L & H & L & H \\
\hline L & X & X & X & X & X & L & H & H & L & H & L & L & H \\
\hline L & X & X & X & X & L & H & H & H & L & H & H & L & H \\
\hline L & X & X & X & L & H & H & H & H & H & L & L & L & H \\
\hline L & X & X & L & H & H & H & H & H & H & L & H & L & H \\
\hline L & X & L & H & H & H & H & H & H & H & H & L & L & H \\
\hline L & L & H & H & H & H & H & H & H & H & H & H & L & H \\
\hline
\end{tabular}
\(H=\) High Logic Level, L = Low Logic Level, \(X=\) Don't Care

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contalned in this datasheet. Refer to the assoclated rellabillty electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM83 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}
```

DM93
0.
-65}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C

```

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM9318} & \multicolumn{3}{|c|}{DM8318} & \multirow{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low Level Input Voltage & & & 0.8 & & & 0.8 & V \\
\hline IOH & High Level Output Current & & & -0.8 & & & -0.8 & mA \\
\hline lOL & Low Level Output Current & & & 16 & & & 16 & mA \\
\hline \(\mathrm{T}_{\text {A }}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ
(Note 1) & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{1}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{HH}}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & & & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}, \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}
\end{aligned}
\]} & & & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}\)} & & . & 1 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{IIH}^{\text {H }}\)} & \multirow[t]{2}{*}{High Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=2.4 V
\end{aligned}
\]} & 0 Input & & & 40 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Others & & & 80 & \\
\hline \multirow[t]{2}{*}{IIL} & \multirow[t]{2}{*}{Low Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Max} \\
& V_{1}=0.4 V
\end{aligned}
\]} & 0 Input & & & -1.6 & \multirow[t]{2}{*}{mA} \\
\hline & & & Others & & & -3.2 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& (\text { Note 2) }
\end{aligned}
\]} & DM93 & -35 & & -85 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & -35 & & -85 & \\
\hline ICC1 & Supply Current Condition 1 & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max},(\) Note 3)} & & 35 & 55 & mA \\
\hline ICC2 & Supply Current Condition 2 & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max},(\) Note 4)} & & 40 & 60 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: \(\mathrm{ICCl}_{1}\) is measured with all inputs and outputs open.
Note 4: \(\mathrm{lCC}_{2}\) is measured with inputs 7 and El grounded and outputs open.

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Switching Characteristics at \(\mathrm{V}_{C C}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & 0 thru 7 to ABCD In Phase & & 15 & ns \\
\hline \(\mathrm{tPHL}^{\text {P }}\) & Propagation Delay Time High to Low Level Output & 0 thru 7 to ABCD In Phase & & 14 & ns \\
\hline \({ }_{\text {tplH }}\) & Propagation Delay Time Low to High Level Output & \[
\begin{gathered}
0 \text { thru } 7 \text { to } \\
\text { ABCD Out of Phase }
\end{gathered}
\] & & 19 & ns \\
\hline tpHL & Propagation Delay Time High to Low Level Output & 0 thru 7 to ABCD Out of Phase & & 19 & ns \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & 0 thru 7 to EO Out of Phase & & 9 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & 0 thru 7 to EO Out of Phase & & 21 & ns \\
\hline tplH & Propagation Delay Time Low to High Level Output & 0 thru 7 to GS In Phase & & 27 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & 0 thru 7 to GS In Phase & & 21 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \begin{tabular}{l}
El to AO, 1, 2 \\
In Phase
\end{tabular} & & 15 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & \begin{tabular}{l}
El to AO, 1, 2 \\
In Phase
\end{tabular} & & 15 & ns \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & \begin{tabular}{l}
El to GS \\
In Phase
\end{tabular} & & 12 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & El to GS In Phase & & 15 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \begin{tabular}{l}
El to EO \\
In Phase
\end{tabular} & & 15 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & El to EO In Phase & & 26 & ns \\
\hline
\end{tabular}

\section*{Logic Diagram}

\section*{DM9322/DM8322 Quad 2-Line to 1-Line Data Selectors/Multiplexers}

\section*{General Description}

These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four out put gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. True data is presented at the outputs.

\section*{Applications}
- Expand any data input point
- Multiplex dual-data buses
- Generate four functions of two variables (one variable is common)
- Source programmable counters

\section*{Features}
- Direct replacement for Fairchild 9322
- Pin-for-pin with popular DM54157/74157
- Buffered inputs and outputs

\section*{Connection Diagram}

Order Number DM9322J or DM8322N
See NS Package Number J16A or N16A

\section*{Function Table}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Inputs } \\
\multirow{2}{*}{ Output } \\
\hline Strobe & Select & A & B & Y \\
\hline H & X & X & X & L \\
L & L & L & X & L \\
L & L & H & X & H \\
L & H & X & L & L \\
L & H & X & H & H \\
\hline
\end{tabular}

\footnotetext{
\(H=\) High Level, \(L=\) Low Level, X = Don't Care.
}

\section*{Absolute Maximum Ratings (Note)}

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated rellabillty electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM83 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM9322} & \multicolumn{3}{|c|}{DM8322} & \multirow{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low Level Input Voltage & & & 0.8 & & & 0.8 & V \\
\hline IOH & High Level Output Current & & & -0.8 & & & -0.8 & mA \\
\hline loL & Low Level Output Current & & & 16 & & & 16 & mA \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline V OH & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, \mathrm{IOH}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & 3.4 & & V \\
\hline \(V_{\text {OL }}\) & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}
\end{aligned}
\]} & & 0.2 & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(V_{C C}=M a x, V_{1}=5.5 \mathrm{~V}\)} & & & 1 & mA \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}\)} & & & 40 & \(\mu \mathrm{A}\) \\
\hline IIL & Low Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}\)} & & & -1.6 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& \text { (Note 2) }
\end{aligned}
\]} & DM93 & -20 & & -55 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & -18 & & -55 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}\) (Note 3)} & & 30 & 48 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: \(I_{C C}\) is measured with 4.5 V applied to all inputs and all outputs open.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Parameter & \begin{tabular}{l}
From (Input) \\
To (Output)
\end{tabular} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & TO (Output) & Min & Max & \\
\hline tpLH & Propagation Delay Time Low to High Level Output & Data to Output & & 14 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & Data to Output & & 14 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Strobe to Output & & 20 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & Strobe to Output & & 21 & ns \\
\hline \(\mathrm{tpLH}^{\text {l }}\) & Propagation Delay Time Low to High Level Output & Select to Output & & 23 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Select to Output & & 27 & ns \\
\hline
\end{tabular}

\section*{Logic Diagram}

\section*{DM9334/DM8334 8-Bit Addressable Latches}

\section*{General Description}

The DM9334/DM8334 is a high speed 8-bit Addressable Latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and being a one-of-eight decoder and demultiplexer with active level high outputs. The device also incorporates an active level low common clear for resetting all latches, as well as an active level low enable.

The DM9334/DM8334 has four modes of operation which are shown in the mode selection table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs.
In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the \(D\) input with all other inputs in the low state. In the clear mode all outputs are low and unaffected by the address and data inputs.

When operating the device as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.
The function tables summarize the operation of the product.

\section*{Features}
- Direct replacement for Fairchild 9334
- Common clear
- Easily expandable
- Random (addressable) data entry
- Serial to parallel capability
m 8 bits of storage/output of each bit available
- Active high demultiplexing/decoding capability

\section*{Connection Diagram}

\section*{Dual-In-Line Package}

Order Number DM9334J or DM8334N See NS Package Number J16A or N16N
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Absolute Maximum Ratings (Note)} \\
\hline \multicolumn{2}{|l|}{Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.} \\
\hline Supply Voltage & \\
\hline Input Voltage & 5.5 V \\
\hline Operating Free Air Temperature Range & \\
\hline DM93 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline DM83 & to \(+70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ}\) \\
\hline
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM9334} & \multicolumn{3}{|c|}{DM8334} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.8 & & & 0.8 & V \\
\hline IOH & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.8 & & & -0.8 & mA \\
\hline lOL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 16 & & & 16 & mA \\
\hline \(\mathrm{t}_{\mathrm{w}}\) & \multicolumn{2}{|l|}{\begin{tabular}{l}
ENABLE Pulse Width \\
(Fig. 1) (Note 4)
\end{tabular}} & 19 & 13 & & 19 & 13 & & ns \\
\hline \multirow[t]{3}{*}{tsu} & \multirow[t]{3}{*}{Setup Time (Note 4)} & Data 1 (Fig. 4) & 20 & 13 & & 20 & 13 & & \multirow{3}{*}{ns} \\
\hline & & Data 0 (Fig. 4) & 20 & 14 & & 20 & 14 & & \\
\hline & & Address (Fig. 6) (Note 1) & 10 & 5 & & 10 & 5 & & \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{H}}\)} & \multirow[t]{2}{*}{Hold Time (Note 4)} & Data 1 (Fig. 4) & 0 & -10 & & 0 & -10 & & \multirow[t]{2}{*}{ns} \\
\hline & & Data 0 (Fig. 4) & 0 & -13 & & 0 & -13 & & \\
\hline \(\mathrm{T}_{\text {A }}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 2) } \\
\hline
\end{gathered}
\] & Max & Units \\
\hline \(V_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & 3.6 & & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Low Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}, \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}
\end{aligned}
\]} & & 0.2 & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}\)} & & & 1 & mA \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{H}}\)} & \multirow[t]{2}{*}{High Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=2.4 V
\end{aligned}
\]} & E Input & & & 60 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Others & & & 40 & \\
\hline \multirow[t]{2}{*}{IIL} & \multirow[t]{2}{*}{Low Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=0.4 V
\end{aligned}
\]} & \(\bar{E}\) Input & & & -2.4 & \multirow[t]{2}{*}{mA} \\
\hline & & & Others & & & -1.6 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& (\text { Note 3) }
\end{aligned}
\]} & DM93 & -30 & & -100 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM83 & -30 & & -100 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}\)} & & 56 & 86 & mA \\
\hline
\end{tabular}

Note 1: The ADDRESS setup time is the time before the negative ENABLE transition that the ADDRESS must be stable so that the correct latch is addressed without affecting the other latches.
Note 2: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{\begin{tabular}{l}
From (Input) \\
To (Output)
\end{tabular}} & \multicolumn{2}{|l|}{\(R_{L}=400 \Omega, C_{L}=15 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & Enable to Output, Fig. 1 & & 28 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Enable to Output, Fig. 1 & & 27 & ns \\
\hline \({ }_{\text {tplH }}\) & Propagation Delay Time Low to High Level Output & Data to Output, Fig. 2 & & 35 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Data to Output, Fig. 2 & & 28 & ns \\
\hline tpLH & Propagation Delay Time Low to High Level Output & Address to Output, Fig. 3 & & 35 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & Address to Output, Fig. 3 & & 35 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & Clear to Output, Fig. 5 & & 31 & ns \\
\hline
\end{tabular}

\section*{Function Tables}
\begin{tabular}{|l|l|l|}
\hline\(\overline{\mathbf{E}}\) & \(\overline{\mathbf{C}}\) & \multicolumn{1}{|c|}{ Mode } \\
\hline L & H & Addressable Latch \\
H & H & Memory \\
L & L & Active High Eight \\
& & Channel Demultiplexer \\
H & L & Clear \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Inputs} & \multicolumn{8}{|c|}{Present Output States} & \multirow[t]{2}{*}{Mode} \\
\hline \(\overline{\mathbf{C}}\) & E & D & AO & A1 & A2 & Q0 & Q1 & Q2 & Q3 & Q4 & Q5 & Q6 & Q7 & \\
\hline L & H & X & X & X & X & L & L & L & L & L & L & L & L & Clear \\
\hline & L & L & L & L & L & L & L & \(L\) & L & L & L & L & L & \\
\hline L & L & H & L & L & L & H & \(L\) & \(L\) & L & L & L & L & L & \\
\hline L & L & L & H & L & L & L & L & L & L & L & L & \(L\) & L & \\
\hline L & L & H & H & L & L & L & H & L & L & L & L & \(L\) & L & \\
\hline \(\bullet\) & \(\bullet\) & - & & - & & & & & \(\bullet\) & & & & & Demultiplex \\
\hline \(\stackrel{-}{\bullet}\) & \(\bullet\) & \(\stackrel{-}{\bullet}\) & & \(\bullet\) & & & & & \(\bullet\) & & & & & \\
\hline L & L & H & H & H & H & L & L & L & L & L & L & L & H & \\
\hline H & H & X & X & X & X & \(Q_{N-1}\) & & & & & & & & Memory \\
\hline H & L & L & L & L & L & L & \(\mathrm{Q}_{\mathrm{N}-1}\) & \(\mathrm{Q}_{\mathrm{N}-1}\) & \(\mathrm{Q}_{\mathrm{N}-1}\) & & & & & \\
\hline H & L & H & L & L & L & H & \(Q_{N-1}\) & \(Q_{N-1}\) & & & & & & \\
\hline H & L & L & H & L & L & \(Q_{N-1}\) & L & \(\mathrm{Q}_{\mathrm{N}-1}\) & & & & & & \\
\hline H & L & H & H & L & L & \(Q_{N-1}\) & H & \(Q_{N-1}\) & & & & & & Addressable \\
\hline \(\bullet\) & \(\bullet\) & \(\bullet\) & & \(\bullet\) & & & & - & & & & & & Latch \\
\hline \(\stackrel{-}{\bullet}\) & \(\stackrel{\bullet}{\bullet}\) & \(\stackrel{-}{\bullet}\) & & \(\bullet\) & & & & & & & & & & \\
\hline H & L & L & H & H & H & \(\mathrm{Q}_{\mathrm{N}-1}\) & & & & & & \(Q_{N-1}\) & L & \\
\hline H & L & H & H & H & H & \(\mathrm{Q}_{\mathrm{N}-1}\) & & & & & & \(\mathrm{Q}_{\mathrm{N}-1}\) & H & \\
\hline
\end{tabular}

X = Don't Care Condition
L = Low Voltage Level
\(\mathrm{H}=\) High Voltage Level
\(Q_{N-1}=\) Previous Output State

\section*{Logic Diagram}

DM93/8334

TL/F/6609-2

\section*{Switching Time Waveforms}

TL/F/6609-4
\[
\text { Other Conditions: } E=L, \bar{C}=H, A=\text { Stable }
\]

Figure 2
TL/F/6609-3
Other Conditions: \(C=H, A=\) Stable
Figure 1

TL/F/6609-5
Other Conditions: \(E=L, \bar{C}=L, D=H\)
Figure 3

Other Conditions: \(\mathrm{C}=\mathrm{H}, \mathrm{A}=\) Stable
Figure 4

Other Conditions: \(\mathbf{C}=\mathbf{H}\)
Figure 6

Note: The shaded areas indicate when the inputs are permitted to change for predictable output performance.

National
Semiconductor

\section*{DM9601／DM8601 Retriggerable One Shots}

\section*{General Description}

These retriggerable one shots provide the designer with four inputs；two active high and two active low．This permits a choice of either leading－edge or trailing－edge triggering， independent of input transition times．When input conditons for triggering are met，a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge again．The retriggerable feature allows for output pulse widths to be expanded．In fact a continuous true output can be maintained by having an input cycle time which is shorter than the output cycle time．Retriggering may be inhibited by tying the \(\bar{Q}\) output to an active low input．

\section*{Features}
－High speed operation－input repetition rate \(>10 \mathrm{MHz}\)
■ Flexibility of operation－optional retriggering／lock－out capability
－Output pulse width range－50 ns to \(\infty\)
－Leading or trailing edge triggering
－Complementary outputs／inputs
－Input clamping diodes
－DTL／TTL compatible logic levels

\section*{Connection Diagram}

Function Table
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Inputs} & \multicolumn{2}{|l|}{Outputs} \\
\hline A1 & A2 & B1 & B2 & Q & \(\overline{\mathbf{Q}}\) \\
\hline H & H & X & X & L & H \\
\hline X & X & L & X & L & H \\
\hline X & X & X & L & L & H \\
\hline L & X & H & H & L & H \\
\hline L & X & \(\uparrow\) & H & \(\Omega\) & 工 \\
\hline L & X & H & \(\uparrow\) & \(\Omega\) & Ч \\
\hline X & L & H & H & L & H \\
\hline X & L & \(\uparrow\) & H & \(\Omega\) & 凹 \\
\hline X & L & H & \(\uparrow\) & \(\Omega\) & บ \\
\hline H & \(\downarrow\) & H & H & \(\Omega\) & Ч \\
\hline \(\downarrow\) & \(\downarrow\) & H & H & \(\Omega\) & － \\
\hline \(\downarrow\) & H & H & H & \(\Omega\) & 75 \\
\hline
\end{tabular}
\[
\begin{aligned}
H= & \text { High Logic Level } \\
L= & \text { Low Logic Level } \\
X= & \text { Either Low or } \\
& \text { High Logic Level } \\
\uparrow= & \text { Low to High Level } \\
& \text { Transition } \\
\downarrow= & \text { High to Low Level } \\
& \text { Transition } \\
\Omega= & \text { Positive Pulse } \\
工= & \text { Negative Pulse }
\end{aligned}
\]

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.
\begin{tabular}{|c|c|}
\hline Supply Voltage & 7V \\
\hline Input Voltage & 5.5 V \\
\hline Operating Free Air Temperature Range & \\
\hline DM96 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline DM86 & \(0^{\circ}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ}\) \\
\hline
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM9601} & \multicolumn{3}{|c|}{DM8601} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \multirow[t]{5}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} & \multirow[t]{5}{*}{High Level Input Voltage} & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 2 & & & & & & \multirow{5}{*}{V} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & & & & 1.9 & & & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 1.7 & & & 1.8 & & & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & & & 1.6 & & & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.5 & & & & & & \\
\hline \multirow[t]{5}{*}{\(\mathrm{V}_{\text {IL }}\)} & \multirow[t]{5}{*}{Low Level Input Voltage} & \(T_{A}=-55^{\circ} \mathrm{C}\) & & & 0.85 & & & & \multirow{5}{*}{V} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & & & & & & 0.85 & \\
\hline & & \(T_{A}=25^{\circ} \mathrm{C}\) & & & 0.9 & & & 0.85 & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & & & & & 0.85 & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & 0.85 & & & & \\
\hline IOH & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.72 & & & -0.96 & mA \\
\hline \(\mathrm{l}_{\mathrm{OL}}\) & \multicolumn{2}{|l|}{Low Level Output Current} & & & 10 & & & 12.8 & mA \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 75 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions (Note 3)} & Min & Typ (Note 1) & Max & Units \\
\hline \(\mathrm{V}_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=M i n, I_{O H}=M a x \\
& V_{I L}=M a x, V_{I H}=M i n,(\text { Note 4) }
\end{aligned}
\]} & 2.4 & & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, \mathrm{IOL}=\operatorname{Max} \\
& V_{I L}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \\
& \text { (Note 4) }
\end{aligned}
\]} & DM96 & & & 0.4 & \multirow[b]{2}{*}{V} \\
\hline & & & DM86 & & & 0.45 & \\
\hline \(\mathrm{IIH}^{\text {H}}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}\)} & & & 60 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{IIL} & \multirow[t]{2}{*}{Low Level Input Current} & \multirow[t]{2}{*}{\(V_{C C}=\operatorname{Max}\)} & DM96 \(\mathrm{V}_{\mathrm{IN}}=0.40 \mathrm{~V}\) & & & -1.6 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM96 \(\mathrm{V}_{\text {IN }}=0.45 \mathrm{~V}\) & & & -1.6 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\
& (\text { Notes } 2 \text { and 4) }
\end{aligned}
\]} & DM96 & -10 & & -40 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM86 & -10 & & -40 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(V_{C C}=\) Max} & & & 25 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: Unless otherwise noted, \(R_{X}=10 \mathrm{k}\) between PIN 13 and \(V_{C C}\) on all tests.
Note 4: Ground PIN 11 for \(V_{O L}\) test on PIN 6, \(V_{O H}\) and los tests on PIN 8. Open PIN 11 for \(V_{O L}\) test on PIN 8, \(V_{O H}\) and los tests on PIN 6.

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & From (Input) To (Output) & Conditions & Min & Max & Units \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & Negative Trigger Input to True Output & \multirow[t]{3}{*}{\[
\begin{aligned}
& C_{L}=15 \mathrm{pF} \\
& C_{X}=0 \\
& R_{X}=5 \mathrm{k} \Omega
\end{aligned}
\]} & & 40 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \multirow[t]{6}{*}{Negative Trigger Input to Complement Output} & & & 40 & ns \\
\hline trw(min) & Minimum True Output Pulse Width & & & & 65 & ns \\
\hline tpw & Pulse Width & & \[
\begin{aligned}
& \mathrm{RXX}_{\mathrm{x}}=10 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{X}}=1000 \mathrm{pF}
\end{aligned}
\] & 3.08 & 3.76 & \(\mu \mathrm{s}\) \\
\hline \(\mathrm{C}_{\text {StRAY }}\) & Maximum Allowable Wiring Capacitance & & Pin 13 to GND & & 50 & pF \\
\hline \(\mathrm{R}_{\mathrm{X}}\) & External Timing Resistor & & DM96 & & 25 & k \(\Omega\) \\
\hline \(\mathrm{R}_{\mathrm{X}}\) & External Timing Resistor & & DM86 & & 50 & k \(\Omega\) \\
\hline
\end{tabular}

\section*{Operating Rules}
1. An external resistor \(R_{X}\) and an external capacitor \(C_{X}\) are required for operation. The value of \(R_{X}\) can vary between the limits shown in switching characteristics. The value of \(C_{x}\) is optional and may be adjusted to achieve the required output pulse width.
2. Output pulse width tpw may be calculated as follows:
\(t_{P W}=K R_{X} C_{X}\left[1+\frac{0.7}{R_{X}}\right]_{K \approx 0.34}^{\left(\text {for } C_{X}>103 p F\right)}\)
\(R_{X}\) in \(k \Omega, C_{X}\) in \(p F\) and \(t_{p W}\) in \(n s\).
(For \(C_{X}<10^{3} \mathrm{pF}\), see curve.)
3. \(R_{X}\) and \(C_{X}\) must be kept as close as possible to the circuit in order to minimize stray capacitance and noise pickup. If remote trimming is required, \(R_{X}\) may be split up such that at least \(\mathrm{R}_{\mathrm{X}(\mathrm{MIN})}\) must be as close as possible to the circuit and the remote portion of the trimming resistor \(\mathrm{R}<\mathrm{R}_{\mathrm{X}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{X}}\).
4. Set-up time \(\left(\mathrm{t}_{1}\right)\) for input trigger pulse must be \(>40 \mathrm{~ns}\). (See Figure 1).
Release time (\(\mathrm{t}_{2}\)) for input trigger pulse must be \(>40 \mathrm{~ns}\). (See Figure 2).

TL/F/6610-2
FIGURE 1

TL/F/6610-3
FIGURE 2
5. Retrigger pulse width (see Figure 3) is calculated as follows:
\[
t_{W}=t_{P W}+t_{P L H}=K R_{X} C_{X}\left[1+\frac{0.7}{R_{X}}\right]+t_{P L H}
\]

TL/F/6610-4
FIGURE 3
Typlcal "K" Coefficient Variation vs Timing Capacitance The multiplicative factor " K " varies as a function of the timing capacitor, \(\mathrm{C}_{\mathrm{X}}\). The graph below details this characteristic:

TL/F/6610-5
*For further detailed device characteristics and output performance, please refer to the NSC one-shot application note, AN-366.

\section*{Typical Performance Characteristics}

Output Pulse Width vs

TL/F/6610-6

\section*{Schematic Diagram}

TL/F/6610-7

\section*{DM9602/DM8602 Dual Retriggerable, Resettable One Shots}

\section*{General Description}

These dual resettable, retriggerable one shots have two inputs per function; one which is active high, and one which is active low. This allows the designer to employ either lead-ing-edge or trailing-edge triggering, which is independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is allowed to rapidly discharge and then charge again. The retriggerable feature permits output pulse widths to be extended. In fact a continuous true output can be maintained by having an input cycle time which is shorter than the output cycle time. The output pulse may then be terminated at any time by applying a low logic level to the RESET pin. Retriggering may be inhibited by either connecting the Q output to an active high input, or the \(\bar{Q}\) output to an active low input.

\section*{Features}
- 70 ns to \(\infty\) output width range
- Resettable and retriggerable-0\% to \(100 \%\) duty cycle
- TTL input gating-leading or trailing edge triggering
- Complementary TTL outputs
- Optional retrigger lock-out capability
- Pulse width compensated for \(\mathrm{V}_{\mathrm{CC}}\) and temperature variations

\section*{Connection Diagram}

Dual-In-Line Package

Order Number DM9602J or DM8602N See NS Package Number J16A or N16A

\section*{Function Table}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Pin No's. } & \multirow{2}{*}{ Operation } \\
\cline { 1 - 3 }\(A\) & \(B\) & CLR & \\
\cline { 1 - 3 }\(H \rightarrow\) L & L & \(H\) & Trigger \\
H & L H & \(H\) & Trigger \\
\(X\) & \(X\) & L & Reset \\
\hline
\end{tabular}

TL/F/6611-1

\footnotetext{
H = High Voltage Level
L = Low Voltage Level
X = Don't Care
}
```

Absolute Maximum Ratings (Note)

```

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliablity electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 7 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM96 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
DM86 & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM9602} & \multicolumn{3}{|c|}{DM8602} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(\mathrm{V}_{\text {CC }}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \multirow[t]{5}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} & \multirow[t]{5}{*}{High Level Input Voltage} & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & 2 & & & & & & \multirow{5}{*}{V} \\
\hline & & \(T_{A}=0^{\circ} \mathrm{C}\) & & & & 1.9 & & & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & 1.7 & & & 1.8 & & & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & & & 1.65 & & & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & 1.5 & & & & & & \\
\hline \multirow[t]{5}{*}{VIL} & \multirow[t]{5}{*}{Low Level Input Voltage} & \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) & & & 0.85 & & & & \multirow{5}{*}{V} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) & & & & & & 0.85 & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & & 0.9 & & & 0.85 & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}\) & & & & & & 0.85 & \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}\) & & & 0.85 & & & & \\
\hline \({ }^{\mathrm{IOH}}\) & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.8 & & & -0.8 & mA \\
\hline loL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 16 & & & 16 & mA \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 75 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|l|}{Conditions (Note 3)} & Min & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 1) }
\end{gathered}
\] & Max & Units \\
\hline \(\mathrm{V}_{1}\) & Input Clamp Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}\)} & & & -1.5 & V \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=M i n, I_{O H}=M a x \\
& V_{\mathrm{IL}}=M a x, V_{\mathrm{IH}}=M i n \\
& \text { (Note 4) }
\end{aligned}
\]} & 2.4 & & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M i n, I_{O L}=M a x \\
& V_{I L}=M a x, V_{I H}=M i n \\
& \text { (Note 4) }
\end{aligned}
\]} & DM96 & & & 0.4 & \multirow[b]{2}{*}{V} \\
\hline & & & DM86 & & & 0.45 & \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=4.5 \mathrm{~V}\)} & & & 60 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{4}{*}{IIL} & \multirow[t]{4}{*}{Low Level Input Current} & \multirow[t]{2}{*}{\(V_{C C}=\) Max} & DM96 \(\mathrm{V}_{1}=0.40 \mathrm{~V}\) & & & -1.6 & \multirow{4}{*}{mA} \\
\hline & & & DM86 \(\mathrm{V}_{1}=0.45 \mathrm{~V}\) & & & -1.6 & \\
\hline & & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\)} & DM96 \(\mathrm{V}_{1}=0.40 \mathrm{~V}\) & & & -1.24 & \\
\hline & & & DM86 \(\mathrm{V}_{1}=0.45 \mathrm{~V}\) & & & -1.41 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x, V_{O U T}=1 V \\
& (\text { Notes } 2 \text { and 4) }
\end{aligned}
\]} & DM96 & & & -25 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM86 & & & -35 & \\
\hline \multirow[t]{2}{*}{Icc} & \multirow[t]{2}{*}{Supply Current} & \multirow[t]{2}{*}{\(V_{C C}=\) Max} & DM96 & & 39 & 45 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM86 & & 39 & 50 & \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: Uniess otherwise noted, \(R_{X}=10 \mathrm{k}\) for all tests.
Note 4: Ground PIN 1(15) for \(V_{O L}\) on PIN 7(9) or \(V_{O H}\) and IOS on PIN 6(10) and apply momentary ground to PIN 4(12). Open PIN 1(15) for \(V_{O L}\) on PIN 6(10) or \(V_{O H}\) and los on PIN 7(9).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Symbol} & \multicolumn{2}{|l|}{\multirow{3}{*}{Parameter}} & \multirow{3}{*}{Conditions} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
DM96 \\
02
\end{tabular}}} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\begin{tabular}{l}
DM86 \\
02
\end{tabular}}} & \multirow{3}{*}{Units} \\
\hline & & & & & & & & \\
\hline & & & & Min & Max & Min & Max & \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time, Low-to-High Level Output & Negative Trigger Input to True Output & \multirow{4}{*}{\[
\begin{aligned}
& C_{\mathrm{L}}=15 \mathrm{pF} \\
& \mathrm{C}_{\mathrm{X}}=0 \\
& \mathrm{R}_{\mathrm{X}}=5 \mathrm{k} \Omega
\end{aligned}
\]} & & 35 & & 40 & ns \\
\hline \({ }^{\text {t }}\) HL & Propagation Delay Time, High-to-Low Level Output & Negative Trigger Input To Complement Output & & & 43 & & 48 & ns \\
\hline \multirow[t]{2}{*}{\(t_{\text {PW }}(\) MIN \()\)} & Minimum True Output Pulse Width & & & & 90 & & 100 & \multirow[b]{2}{*}{ns} \\
\hline & Minimum Complement Pulse Width & & & & 100 & & 110 & \\
\hline tpw & Pulse Width & & \[
\begin{aligned}
& \mathrm{RXX}_{\mathrm{X}}=10 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{X}}=1000 \mathrm{pF}
\end{aligned}
\] & 3.08 & 3.76 & 3.08 & 3.76 & \(\mu \mathrm{S}\) \\
\hline \(\mathrm{C}_{\text {StRAY }}\) & Maximum Allowable Wiring Capacitance & & Pins 2, 14 to GND & & 50 & & 50 & pF \\
\hline \(\mathrm{R}_{\mathrm{X}}\) & External Timing Resistor & & & 5 & 25 & 5 & 50 & k \(\Omega\) \\
\hline
\end{tabular}

\section*{Logic Diagrams}

TL/F/6611-2

TL/F/66:1-3

\section*{Operating Rules}
1. An external resistor (\(R_{x}\)) and external capacitor (\(C_{X}\)) are required as shown in the Logic Diagram.
2. The value of \(\mathrm{C}_{X}\) may vary from 0 to any necessary value available. If, however, the capacitor has leakages approaching \(3.0 \mu \mathrm{~A}\) or if stray capacitance from either terminal to ground is more than 50 pF , the timing equations may not represent the pulse width obtained.
3. The output pulse with (\(t\)) is defined as follows:
\(t=K R_{X} C_{X}\left[1+\frac{1}{R_{X}}\right] \quad \begin{aligned} & \text { for } C_{X}>10^{3} p F \\ & K \approx 0.34\end{aligned}\)
where: \(\quad R_{X}\) is in \(k \Omega, C_{X}\) is in \(p F\)
\(t\) is in ns
for \(\mathrm{C}_{\mathrm{x}}<10^{3} \mathrm{pF}\), see Figure 1.
for K vs \(\mathrm{C}_{\mathrm{X}}\) see Figure 6.
4. If electrolytic type capacitors are to be used, the following three configurations are recommended:
A. Use with low leakage capacitors:

The normal RC configuration can be used predictably only if the forward capacitor leakage at 5.0 V is less than \(3 \mu \mathrm{~A}\), and the inverse capacitor leakage at 1.0 V is less than \(5 \mu \mathrm{~A}\) over the operational temperature range.

B. Use with high inverse leakage current electrolytic capacitors:
The diode in this configuration prevents high inverse leakage currents through the capacitor by preventing an inverse voltage across the capacitor. The use of this configuration is not recommended with retriggerable operation.

TL/F/6611-5
C. Use to obtain extended pulse widths:

This configuration can be used to obtain extended pulse widths, because of the larger timing resistor allowed by beta multiplication. Electrolytics with high inverse leakage currents can be used.
\(R<R_{X}(0.7)\left(h_{F E} Q 1\right)\) or \(<2.5 \mathrm{M} \Omega\), whichever is the lesser
\(R_{X}(\) min \()<R_{Y}<R_{X}(\max)\)
(\(5 \mathrm{k} \Omega \leq \mathrm{R}_{Y} \leq 10 \mathrm{k} \Omega\) is recommended)
Q1: NPN silicon transistor with \(h_{\text {FE }}\) requirements of above equations, such as 2N5961 or 2N5962.

TL/F/6611-6
This configuration is not recommended with retriggerable operation.
5. To obtain variable pulse width by remote trimming, the following circuit is recommended:

6. Under any operating condition, \(\mathrm{C}_{X}\) and \(\mathrm{R}_{X}(\mathrm{~min})\) must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup.
7. Input Trigger Pulse Rules (See Triggering Truth Table)

Input to Pin 5(11),
\((\operatorname{Pin} 3(13)=\mathrm{HIGH})\)
Pin 4(12) \(=\) LOW
\(\mathrm{t}_{1}, \mathrm{t}_{3}=\) Min. Positive Input Pulse Width \(>40 \mathrm{~ns}\)
\(\mathrm{t}_{2}, \mathrm{t}_{4}=\) Min. Negative Input Pulse Width \(>40 \mathrm{~ns}\)

Input to Pin 4(12)
\((\operatorname{Pin} 3(13)=H I G H)\)
Pin 5(11) = HIGH
8. The retriggerable pulse width is calculated as shown below:
\(t_{W}=t+t_{P L H}=K R_{X} C_{X}\left(1+\frac{1}{R_{X}}\right)+t_{P L H}\)

The retrigger pulse width is equal to the pulse width (t) plus a delay time. For pulse widths greater than \(500 \mathrm{~ns}, t_{W}\) can be approximated as \(t\). Retriggering will not occur if the retrigger pulse comes within \(\approx 0.3 \mathrm{C}_{\mathrm{X}}(\mathrm{ns})\) after the initial trigger pulse (i.e., during the discharge cycle).
9. Reset Operation-An overriding clear (active LOW level) is provided on each one shot. By applying a LOW to the reset, any timing cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW.

10. \(V_{C C}\) and Ground wiring should conform to good high frequency standards so that switching transients on \(V_{C C}\) and Ground leads do not cause interaction between one shots. Use of a 0.01 to \(0.1 \mu \mathrm{~F}\) bypass capacitor between \(\mathrm{V}_{\mathrm{CC}}\) and Ground located near the DM9602/ DM8602 is recommended.
*For further detailed device characteristics and output performance, please refer to the NSC one-shot application note, AN-366.

\section*{Typical Performance Characteristics}

TL/F/6611-12
FIGURE 1. Output Pulse Width vs TIming Reslstance and Capacitance for \(\mathrm{C}_{\mathrm{x}}<10^{3} \mathrm{pF}\)

TL/F/6611-14
FIGURE 3. Pulse Width vs Timing Resistor

TL/F/6611-16
FIGURE 5. MInImum Output Pulse Width vs Amblent Temperature

FIGURE 2. Normalized Output Pulse Width vs Ambient Temperature

TL/F/6611-15
FIGURE 4. Normalized Output Pulse Width vs Supply Voltage

TL/F/6611-17
FIGURE 6. Typical "K" Coefficlent Varlation vs TIming Capacitance

\section*{Section 5}

Low Power
Section 5 Contents
DM54/74L00 Quad 2-Input NAND Gates 5-3
DM54/74L02 Quad 2-Input NOR Gates 5-5
DM54/74L04 Hex Inverters 5-7
DM54/74L10 Triple 3-Input NAND Gates 5-9
DM54/74L20 Dual 4-Input NAND Gates 5-11
DM54/74L72 AND-Gated Master-Slave J-K Flip-Flop with Preset and Clear 5-13
DM54/74L73 Dual J-K Flip-Flops with Clear 5-16
DM54/74L74 Dual Positive-Edge-Triggered D Flip-Flops with Preset and Clear 5-19
DM54/74L93 4-Bit Binary Counter 5-22
DM54/74L95 4-Bit Parallel Access Shift Register 5-25
DM54/74L98 4-Bit Data Selector/Storage Register 5-28
DM75/85L60 Synchronous 4-Bit Up/Down BCD Counter 5-30
DM75/85L63 Synchronous 4-Bit Up/Down Binary Counter 5-30
DM76/86L90 8-Bit Parallel In/Serial Out Shift Register with Complementary Outputs 5-37

\section*{DM54L00/DM74L00 Quad 2-Input NAND Gates}

\section*{General Description}

This device contains four independent gates each of which performs the logic NAND function.

\section*{Absolute Maximum Ratings (Note)}

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the assoclated reliability electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 8 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM57L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Function Table
\[
\mathbf{Y}=\overline{\mathbf{A B}}
\]
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{ Inputs } & Output \\
\hline A & B & Y \\
\hline L & L & H \\
L & H & H \\
H & L & H \\
H & H & L \\
\hline
\end{tabular}

\footnotetext{
H = High Logic Level
L = Low Logic Level
}

Order Number DM54L00J or DM74L00N
See NS Package Number J14A or N14A

Recommended Operating Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM54L00} & \multicolumn{3}{|c|}{DM74L00} & \multirow{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(V_{\text {IL }}\) & Low Level Input Voltage & & & 0.7 & & & 0.7 & V \\
\hline lOH & High Level Output Current & & & -0.2 & & & -0.2 & mA \\
\hline loL & Low Level Output Current & & & 2 & & & 3.6 & mA \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ
(Note 1) & Max & Units \\
\hline V OH & High Level Ouput Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}
\end{aligned}
\]} & 2.4 & 3.3 & & V \\
\hline \multirow[t]{2}{*}{V OL} & \multirow[t]{2}{*}{Low Voltage Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min} \\
& l_{O L}=M a x \\
& V_{I H}=\operatorname{Min}
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \\
\hline & & & DM74 & & 0.2 & 0.4 & V \\
\hline 1 & Input Current © Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}\)} & & & 0.1 & mA \\
\hline \(\mathrm{I}_{\mathrm{H}}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline IIL & Low Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.3 \mathrm{~V}\)} & & & -0.18 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
V_{C C}=M a x
\] \\
(Note 2)
\end{tabular}} & DM54 & -3 & & -15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline \(\mathrm{I}_{\mathrm{CCH}}\) & Supply Current with Outputs High & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}\)} & & 0.44 & 0.8 & mA \\
\hline \(\mathrm{I}_{\mathrm{CCL}}\) & Supply Current with Outputs Low & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}\)} & & 1.16 & 2.04 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one should be shorted at a time.
Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Min & Max & Units \\
\hline \(t_{\text {plH }}\) & \begin{tabular}{l}
Propagation Delay \\
Low to High Level Output
\end{tabular} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{aligned}
\]} & & 60 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay High to Low Level Output & & & 60 & ns \\
\hline
\end{tabular}

\section*{DM54L02/DM74L02 Quad 2-Input NOR Gates}

\section*{General Description}

This device contains four independent gates each of which performs the logic NOR function.

\section*{Connection Diagram}

TL/F/6656-1
Order Number DM54L02J or DM74L02N
See NS Package Number J14A or N14A

\section*{Function Table}
\begin{tabular}{|c|c|c|}
\multicolumn{3}{c|}{\(\mathbf{Y}=\overline{\mathbf{A}+\mathbf{B}}\)} \\
\hline \multicolumn{2}{|c|}{ Inputs } & Output \\
\hline \(\mathbf{A}\) & \(\mathbf{B}\) & \(\mathbf{Y}\) \\
\hline L & L & H \\
L & H & L \\
H & L & L \\
H & H & L \\
\hline
\end{tabular}
\(H=\) High Logic Level
L = Low Logic Level

\section*{Absolute Maximum Ratings (Note)}

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 8 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM54L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM54L02} & \multicolumn{3}{|c|}{DM74L02} & \multirow[t]{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(V_{\text {IL }}\) & Low Level Input Voltage & & & 0.7 & & & 0.7 & V \\
\hline IOH & High Level Output Current & & & -0.2 & & & -0.2 & mA \\
\hline lOL & Low Level Output Current & & & 2 & & & 3.6 & mA \\
\hline \(\mathrm{T}_{\text {A }}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ (Note 1) & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}
\end{aligned}
\]} & 2.4 & 3.3 & & V \\
\hline \multirow[t]{2}{*}{VOL} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \\
\hline & & & DM74 & & 0.2 & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\) Max, \(\mathrm{V}_{1}=5.5 \mathrm{~V}\)} & & & 0.1 & mA \\
\hline \(\mathrm{IIH}^{\text {H }}\) & High Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=\) Max, \(V_{1}=2.4 \mathrm{~V}\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline I/L & Low Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=M a x, V_{1}=0.3 \mathrm{~V}\)} & & & -0.18 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\text { Max } \\
& \text { (Note 2) }
\end{aligned}
\]} & DM54 & -3 & & -15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline ICCH & Supply Current with Outputs High & \multicolumn{2}{|l|}{\(V_{C C}=\) Max} & & 0.8 & 1.6 & mA \\
\hline ICCL & Supply Current with Outputs Low & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}\)} & & 1.4 & 2.6 & mA \\
\hline
\end{tabular}

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Parameter & Condlitions & Min & Max & Units \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{aligned}
\]} & & 60 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & & & 60 & ns \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.

National
Semiconductor
Corporation

\section*{DM54L04／DM74L04 Hex Inverting Gates}

\section*{General Description}

This device contains six independent gates each of which performs the logic INVERT function．

\section*{Absolute Maximum Ratings（Note）}

Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the associated rellability electrical test specifications document．
\(\begin{array}{lr}\text { Supply Voltage } & 8 \mathrm{~V} \\ \text { Input Voltage } & 5.5 \mathrm{~V}\end{array}\)

Operating Free Air Temperature Range DM54L \(\quad-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) DM74L
\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

\section*{Connection Diagram}

TL／F／6616－1
Order Number DM54L04J or DM74L04N
See NS Package Number J14A or N14A

\section*{Function Table}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{c|}{\(\mathbf{Y}=\overline{\mathbf{A}}\)} \\
\hline Input & Output \\
\hline \(\mathbf{A}\) & \(\mathbf{Y}\) \\
\hline L． & H \\
H & L \\
\hline
\end{tabular}
\(H=\) High Logic Level
\(\mathrm{L}=\) Low Logic Level

Recommended Operating Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM54L04} & \multicolumn{3}{|c|}{DM74L04} & \multirow[t]{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(\mathrm{V}_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low Level Input Voltage & & & 0.7 & & & 0.7 & V \\
\hline \(\mathrm{IOH}^{\text {l }}\) & High Level Output Current & & & -0.2 & & & -0.2 & mA \\
\hline \(\mathrm{lOL}^{\text {l }}\) & Low Level Output Current & & & 2 & & & 3.6 & mA \\
\hline \(\mathrm{T}_{\text {A }}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & \begin{tabular}{l}
Typ \\
(Note 1)
\end{tabular} & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Min}, I_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}
\end{aligned}
\]} & 2.4 & 3.3 & & V \\
\hline \multirow[t]{2}{*}{Vol} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min} \\
& \mathrm{l}_{\mathrm{OL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \\
\hline & & & DM74 & & 0.2 & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}\)} & & & 0.1 & mA \\
\hline \(\mathrm{IH}_{\mathrm{H}}\) & High Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline 112 & Low Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.3 \mathrm{~V}\)} & & & -0.18 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\text { Max } \\
& \text { (Note 2) }
\end{aligned}
\]} & DM54 & -3 & & -15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline ICCH & Supply Current with Outputs High & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}\)} & & 0.6 & 1.2 & mA \\
\hline ICCL & Supply Current with Outputs Low & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}\)} & & 1.7 & 3.06 & mA \\
\hline
\end{tabular}

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditions & Min & Max & Units \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{aligned}
\]} & & 60 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & & & 60 & ns \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.

\section*{DM54L10／DM74L10 Triple 3－Input NAND Gates}

\section*{General Description}

This device contains three independent gates each of which performs the logic NAND function．

\section*{Absolute Maximum Ratings（Note）}

Specifications for Military／Aerospace products are not contained in this datasheet．Refer to the assoclated reliability electrical test specifications document．
Supply Voltage
V
Input Voltage
5．5V

Storage Temperature Range
Note：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaran－ teed．The device should not be operated at these limits．The parametric values defined in the＂Electrical Characteristics＂ table are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

\section*{Connection Diagram}

\section*{Dual－In－Line Package}

TL／F／6619－1
Order Number DM54L10J or DM74L10N
See NS Package Number J14A or N14A
Function Table
\(\mathbf{Y}=\overline{\mathbf{A B C}}\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ Inputs } & Output \\
\hline A & B & C & Y \\
\hline X & X & L & H \\
X & L & X & H \\
L & X & X & H \\
H & H & H & L \\
\hline
\end{tabular}
\(H=\) High Logic Level
L＝Low Logic Level
\(X=\) Either Low or High Logic Level

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM54L10} & \multicolumn{3}{|c|}{DM74L10} & \multirow[t]{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(V_{\text {IL }}\) & Low Level Input Voltage & & & 0.7 & & & 0.7 & V \\
\hline IOH & High Level Output Current & & & -0.2 & & & -0.2 & mA \\
\hline lOL & Low Level Output Current & & & 2 & & & 3.6 & mA \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ (Note 1) & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}
\end{aligned}
\]} & 2.4 & 3.3 & & V \\
\hline \multirow[t]{2}{*}{VOL} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min} \\
& l_{O L}=M a x \\
& V_{I H}=M i n
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \\
\hline & & & DM74 & & 0.2 & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}\)} & & & 0.1 & mA \\
\hline \(\mathrm{IIH}^{\text {H }}\) & High Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=M a x, V_{1}=2.4 \mathrm{~V}\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline ILL & Low Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}\)} & & & -0.18 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
V_{C C}=M a x
\] \\
(Note 2)
\end{tabular}} & DM54 & -3 & & -15 & \multirow[b]{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline I'CH & Supply Current with Outputs High & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\)} & & 0.33 & 0.6 & mA \\
\hline ICCL & Supply Current with Outputs Low & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}\)} & & 0.87 & 1.53 & mA \\
\hline
\end{tabular}

Switching Characteristics at \(\mathrm{V}_{C C}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{c|c|c|c|c|c}
\hline Symbol & Parameter & Conditions & Min & Max & Units \\
\hline\(t_{\text {PLH }}\) & \begin{tabular}{l}
Propagation Delay Time \\
Low to High Level Output
\end{tabular} & \begin{tabular}{l}
\(\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega\), \\
\(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)
\end{tabular} & & 60 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & \begin{tabular}{l}
Propagation Delay Time \\
High to Low Level Output
\end{tabular} & & 60 & ns \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.

National
Semiconductor
Corporation

\section*{DM54L20/DM74L20 Dual 4-Input NAND Gates}

\section*{General Description}

This device contains two independent gates each of which performs the logic NAND function.

\section*{Absolute Maximum Ratings (Note)}

Specifications for Milltary/Aerospace products are not contained in this datasheet. Refer to the assoclated rellability electrical test specifications document.
Supply Voltage
Input Voltage

Operating Free Air Temperature Range DM54L \(\quad-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) DM74L \(\quad 0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature Range
N 1 : "Absoluto Maximum Rating"" ara thoso valuas
Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Connection Diagram}

Order Number DM54L20J or DM74L20N
See NS Package Number J14A or N14A

Function Table
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Inputs \(=\overline{\text { ABCD }}\)} \\
\hline A & B & C & D & Output \\
\hline\(X\) & \(X\) & \(X\) & \(L\) & \(H\) \\
\(X\) & \(X\) & \(L\) & \(X\) & \(H\) \\
\(X\) & \(L\) & \(X\) & \(X\) & \(H\) \\
L & \(X\) & \(X\) & \(X\) & \(H\) \\
\(H\) & \(H\) & \(H\) & \(H\) & \(L\) \\
\hline
\end{tabular}
\(H=\) High Logic Level
L = Low Logic Level
\(X=\) Either Low or High Logic Level
0てาヤLWの／OZ7ヶSWの

Recommended Operating Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM54L20} & \multicolumn{3}{|c|}{DM74L20} & \multirow{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low Level Input Voltage & & & 0.7 & & & 0.7 & V \\
\hline \(\mathrm{IOH}^{\text {l }}\) & High Level Output Current & & & －0．2 & & & －0．2 & mA \\
\hline lOL & Low Level Output Current & & & 2 & & & 3.6 & mA \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & Free Air Operating Temperature & －55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature（unless otherwise noted）
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ （Note 1） & Max & Units \\
\hline V OH & High Level Ouput Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Min}, I_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}
\end{aligned}
\]} & 2.4 & 3.3 & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Low Voltage Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \multirow[b]{2}{*}{V} \\
\hline & & & DM74 & & 0.2 & 0.4 & \\
\hline 1 & Input Current＠Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}\)} & & & 0.1 & mA \\
\hline \({ }_{1 / H}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline IIL & Low Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=0.3 \mathrm{~V}\)} & & & －0．18 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\text { Max } \\
& \text { (Note 2) }
\end{aligned}
\]} & DM54 & －3 & & －15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM74 & －3 & & －15 & \\
\hline ICCH & Supply Current with Outputs High & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}\)} & & 0.22 & 0.4 & mA \\
\hline ICCL & Supply Current with Outputs Low & \multicolumn{2}{|l|}{\(V_{C C}=\) Max} & & 0.58 & 1.02 & mA \\
\hline
\end{tabular}

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)（See Section 1 for Test Waveforms and Output Load）
\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol & Parameter & Conditlons & Min & Max & Units \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
\end{aligned}
\]} & & 60 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & & & 60 & ns \\
\hline
\end{tabular}

Note 1：All typicals are at \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C}\) ．
Note 2：Not more than one output should be shorted at a time．

\section*{DM54L72／DM74L72 AND－Gated Master－Slave J－K Flip－Flop with Preset，Clear and Complementary Outputs}

\section*{General Description}

This device contains a positive pulse triggered master－slave J－K flip－flop with complementary outputs．Multiple J and K inputs are ANDed together to produce the internal J and K function for the flip－flop．The \(J\) and \(K\) data is processed by the flip－flop after a complete clock pulse．While the clock is low the slave is isolated from the master．On the positive transition of the clock，the data from the AND gates is trans－ ferred to the master．While the clock is high the AND gate
inputs are disabled．On the negative transition of the clock the data from the master is transferred to the slave．The logic state of the J and K inputs must not be allowed to change while the clock is in the high state．Data is trans－ ferred to the outputs on the falling edge of the clock pulse． A low logic level on the preset or clear inputs sets or resets the outputs regardless of the logic levels of the other inputs．

\section*{Connection Diagram}

\section*{Dual－In－Line Package}

TL／F／6629－1
Order Number DM54L72J or DM74L72N See NS Package Number J14A or NJ14A

\section*{Function Table}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Inputs} & Outputs \\
\hline PR & CLR & CLK & （Note 1） & \[
\begin{gathered}
K \\
\text { (Note 1) } \\
\hline
\end{gathered}
\] & Q \(\overline{\mathbf{Q}}\) \\
\hline L & H & X & \(X\) & \(X\) & H L \\
\hline H & L & X & X & X & L H \\
\hline L & L & X & X & X & \(\mathrm{H}^{*} \mathrm{H}^{*}\) \\
\hline H & H & 几 & L & L & \(\mathrm{Q}_{0} \quad \bar{Q}_{0}\) \\
\hline H & H & \(\Omega\) & H & L & H L \\
\hline H & H & \(\Omega\) & L & H & L H \\
\hline H & H & \(\Omega\) & H & H & Toggle \\
\hline
\end{tabular}

Note 1：\(J=(\mathrm{J} 1)(\mathrm{J} 2)(\mathrm{J} 3), \mathrm{K}=(\mathrm{K} 1)(\mathrm{K} 2)(\mathrm{K} 3)\)
\(H=\) High Logic Level
\(\mathrm{X}=\) Either Low or High Logic Level
\(\mathrm{L}=\) Low Logic Level
\(\Omega=\) Positive pulse．The J and K inputs must be held constant while the clock is high．Data is transferred to the outputs on the falling edge of the clock pulse．
\(Q_{0}=\) The output logic level before the indicated input conditions were es－ tablished．
＊＝This configuration is nonstable；that is，it will not persist when the preset and／or clear inputs return to their inactive（high）level．
Toggle＝Each output changes to the complement of its previous level on each complete high level clock pulse．

\section*{Absolute Maximum Ratings (Note)}

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 8 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM54L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guarateed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM54L72} & \multicolumn{3}{|c|}{DM74L72} & \multirow{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {IL }}\)} & \multirow[t]{2}{*}{Low Level Input Voltage} & Clock & & & 0.6 & & & 0.6 & \multirow[t]{2}{*}{V} \\
\hline & & Others & & & 0.7 & & & 0.7 & \\
\hline \(\mathrm{IOH}^{\text {ren }}\) & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.2 & & & -0.2 & mA \\
\hline lOL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 2 & & & 3.6 & mA \\
\hline \({ }_{\text {f CLK }}\) & \multicolumn{2}{|l|}{Clock Frequency (Note 2)} & 0 & & 6 & 0 & & 6 & MHz \\
\hline \multirow[t]{4}{*}{\({ }^{\text {W }}\) W} & \multirow[t]{4}{*}{Pulse Width (Note 2)} & Clock High & 100 & & & 100 & & & \multirow{4}{*}{ns} \\
\hline & & Clock Low & 100 & & & 100 & & & \\
\hline & & Preset Low & 100 & & & 100 & & & \\
\hline & & Clear Low & 100 & & & 100 & & & \\
\hline tsu & \multicolumn{2}{|l|}{Input Setup Time (Notes 1 \& 2)} & \(0 \uparrow\) & & & \(0 \uparrow\) & & & ns \\
\hline \(t_{H}\) & \multicolumn{2}{|l|}{Input Hold Time (Notes 1 \& 2)} & 0 \(\downarrow\) & & & 0】 & & & ns \\
\hline \(\mathrm{T}_{\text {A }}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: The symbols (\(\uparrow, \downarrow\)) indicate the edge of the clock pulse used for reference: \(\uparrow\) for rising edge, \(\downarrow\) for falling edge.
Note 2: \(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & \begin{tabular}{l}
Тур \\
(Note 1)
\end{tabular} & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\
& V_{\mathrm{IL}}=\operatorname{Max}, V_{I H}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & 3.3 & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min} \\
& l_{\mathrm{OL}}=M a x \\
& V_{\mathrm{IL}}=M a x \\
& \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \multirow[b]{2}{*}{V} \\
\hline & & & DM74 & & 0.2 & 0.4 & \\
\hline \multirow[t]{4}{*}{1} & \multirow[t]{4}{*}{Input Current @ Max Input Voltage} & \multirow[t]{4}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{I}=5.5 V
\end{aligned}
\]} & J, K & & & 100 & \multirow{4}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Clear & & & 200 & \\
\hline & & & Preset & & & 200 & \\
\hline & & & Clock & & & 200 & \\
\hline \multirow[t]{4}{*}{\(\mathrm{IIH}^{\text {H}}\)} & \multirow[t]{4}{*}{High Level Input Current} & \multirow[t]{4}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{I}=2.4 V
\end{aligned}
\]} & J, K & & & 10 & \multirow{4}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Clear & & & 20 & \\
\hline & & & Preset & & & 20 & \\
\hline & & & Clock & & & -200 & \\
\hline \multirow[t]{4}{*}{ILL} & \multirow[t]{4}{*}{Low Level Input Current} & \multirow[t]{4}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=0.3 V
\end{aligned}
\]} & J, K & & & -0.18 & \multirow{4}{*}{mA} \\
\hline & & & Clear & & & -0.36 & \\
\hline & & & Preset & & & -0.36 & \\
\hline & & & Clock & & & -0.36 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\(V_{C C}=M a x\)} & DM54 & -3 & & -15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\) (Note 2)} & & 0.76 & 1.44 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: With all outputs open, \(I_{C C}\) is measured with the \(Q\) and \(\bar{Q}\) outputs high in turn. At the time of measurement the clock input is grounded.
Switching Characteristics at \(\mathrm{V}_{C C}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow[t]{2}{*}{\begin{tabular}{l}
From (Input) \\
To (Output)
\end{tabular}} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & & 6 & & MHz \\
\hline \({ }_{\text {tplH }}\) & Propagation Delay Time Low to High Level Output & Preset to Q & & 75 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & Preset to \(\bar{Q}\) & & 150 & ns \\
\hline tpLH & Propagation Delay Level Output Low to High Level Output & \[
\begin{aligned}
& \text { Clear } \\
& \text { to } \overline{\mathrm{Q}}
\end{aligned}
\] & & 75 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \[
\begin{aligned}
& \text { Clear } \\
& \text { to } \mathrm{Q} \\
& \hline
\end{aligned}
\] & & 150 & ns \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & Clock to Q or \(\bar{Q}\) & 10 & 75 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Clock to Q or \(\bar{Q}\) & 10 & 150 & ns \\
\hline
\end{tabular}

National
Semiconductor corporation

\section*{DM54L73/DM74L73 Dual Master-Slave J-K Flip-Flops with Clear and Complementary Outputs}

\section*{General Description}

This device contains two independent positive pulse triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops after a complete clock pulse. While the clock is low the slave is isolated from the master. On the positive transition of the clock, the data from the J and K inputs is transferred to the master. While the clock is high, the data from the J and K inputs are
disabled. On the negative transition of the clock, the data from the master is transferred to the slave. The logic states of the J and K inputs must not be allowed to change while the clock is high. Data is transferred to the outputs on the falling edge of the clock pulse. A low logic level on the clear input will reset the outputs regardless of the logic states of the other inputs.

Connection Diagram

\section*{Dual-In-LIne Package}

Order Number DM54L73J or DM74L73N
See NS Package Number J14A or N14A
Function Table
\begin{tabular}{|c|c|c|c|cc|}
\hline \multicolumn{4}{|c|}{ Inputs } & \multicolumn{2}{c|}{ Outputs } \\
\hline CLR & CLK & J & K & \(\mathbf{Q}\) & \(\overline{\mathbf{Q}}\) \\
\hline L & X & X & X & L & \(H\) \\
\(H\) & \(\Omega\) & \(L\) & \(L\) & \(Q_{O}\) & \(\bar{Q}_{O}\) \\
\(H\) & \(\Omega\) & \(H\) & \(L\) & \(H\) & L \\
\(H\) & \(\Omega\) & L & \(H\) & L & \(H\) \\
\(H\) & \(\Omega\) & \(H\) & \(H\) & \multicolumn{2}{|c|}{ Toggle } \\
\hline
\end{tabular}
\(H=\) High Logic Level
X = Either Low or High Logic Level
\(L=\) Low Logic Level
\(\Omega=\) Positive pulse data. The \(J\) and \(K\) inputs must be held constant while the clock is high. Data is transferred to the outputs on the falling edge of the clock pulse.
\(Q_{0}=\) The output logic level before the indicated input conditions were established.
Toggle = Each output changes to the complement of its previous level on each complete high level clock puise.

\section*{Absolute Maximum Ratings \\ (Note)}

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 8 V \\
Input Voltage & 5.5 V \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
Operating Free Air Temperature Range & \\
DM54L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular}
input Voltage 5.5 V
Storage Temperature Range \(\quad-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Operating Free Air Temperature Range
DM74L

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device can not be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM54L73} & \multicolumn{3}{|c|}{DM74L73} & \multirow{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{IL}}\)} & \multirow[t]{2}{*}{Low Level Input Voltage} & Clock & & & 0.6 & & & 0.6 & \multirow[b]{2}{*}{V} \\
\hline & & Others & & & 0.7 & & & 0.7 & \\
\hline IOH & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.2 & & & -0.2 & mA \\
\hline loL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 2 & & & 3.6 & mA \\
\hline \({ }^{\text {t CLK }}\) & \multicolumn{2}{|l|}{Clock Frequency (Note 2)} & 0 & & 6 & 0 & & 6 & MHz \\
\hline \multirow[t]{3}{*}{tw} & \multirow[t]{3}{*}{Pulse Width (Note 2)} & Clock High & 100 & & & 100 & & & \multirow{3}{*}{ns} \\
\hline & & Clock Low & 100 & & & 100 & & & \\
\hline & & Clear Low & 100 & & & 100 & & & \\
\hline tsu & \multicolumn{2}{|l|}{Input Setup Time (Notes 1 \& 2)} & \(0 \uparrow\) & & & \(0 \uparrow\) & & & ns \\
\hline \(\mathrm{t}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Input Hold Time (Notes 1 \& 2)} & 0 \(\downarrow\) & & & 0】 & & & ns \\
\hline \(\mathrm{T}_{\text {A }}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: The symbols (\(\uparrow, \downarrow\)) indicate the edge of the clock pulse used for reterence: \(\uparrow\) for rising edge, \(\downarrow\) for falling edge.
Note 2: \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & \begin{tabular}{l}
Typ \\
(Note 1)
\end{tabular} & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & 3.3 & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Low Level Voltage Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min} \\
& l_{\mathrm{OL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \multirow[b]{2}{*}{V} \\
\hline & & & DM74 & & 0.2 & 0.4 & \\
\hline \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{Input Current @ Max Input Voltage} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{\mathrm{I}}=5.5 \mathrm{~V}
\end{aligned}
\]} & J, K & & & 100 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Clear & & & 200 & \\
\hline & & & Clock & & & 200 & \\
\hline \multirow[t]{3}{*}{\(\mathrm{IIH}^{\text {H }}\)} & \multirow[t]{3}{*}{High Level Input Current} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{I}=2.4 V
\end{aligned}
\]} & J, K & & & 10 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Clear & & & 20 & \\
\hline & & & Clock & & & -200 & \\
\hline \multirow[t]{3}{*}{IIL} & \multirow[t]{3}{*}{Low Level Input Current} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=0.3 V
\end{aligned}
\]} & J, K & & & -0.18 & \multirow{3}{*}{mA} \\
\hline & & & Clear & & & -0.36 & \\
\hline & & & Clock & & & -0.36 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}\)} & DM54 & -3 & & -15 & \multirow[b]{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}\) (Note 2)} & & 1.5 & 2.88 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: With all outputs open, ICC is measured with the \(Q\) and \(\bar{Q}\) outputs high in turn. At the time of measurement, the clock is grounded.
Switching Characteristics \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \multirow[b]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & & 6 & & MHz \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & Clear to Q & & 150 & ns \\
\hline \({ }_{\text {tpLH }}\) & Propagation Delay Time Low to High Level Output & Clear to \(\overline{\mathbf{Q}}\) & & 75 & ns \\
\hline \({ }_{\text {tplH }}\) & Propagation Delay Time Low to High Level Output & Clock to Q or \(\overline{\mathrm{Q}}\) & 10 & 75 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & Clock to Q or \(\overline{\mathbf{Q}}\) & 10 & 150 & ns \\
\hline
\end{tabular}

\title{
DM54L74/DM74L74 Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear, and Complementary Outputs
}

\section*{General Description}

This device contains two independent positive-edge-triggered \(D\) flip-flops with complementary outputs. The information on the \(D\) input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D
input may be changed while the clock is low or high without affecting the outputs as long as the data setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

\section*{Connection Diagram}

\section*{Function Table}
\begin{tabular}{|c|c|c|c|cc|}
\hline \multicolumn{5}{|c|}{ Inputs } & \multicolumn{2}{c|}{ Outputs } \\
\hline PR & CLR & CLK & \(\mathbf{D}\) & \(\mathbf{Q}\) & \(\overline{\mathbf{Q}}\) \\
\hline L & H & X & X & H & L \\
H & L & X & X & L & H \\
L & L & X & X & H \(^{*}\) & \(H^{*}\) \\
H & H & \(\uparrow\) & H & H & L \\
H & H & \(\uparrow\) & L & L & H \\
H & H & L & X & \(Q_{O}\) & \(\bar{Q}_{O}\) \\
\hline
\end{tabular}

\footnotetext{
H = High Logic Level
\(X=\) Either Low or High Logic Level
L = Low Logic Level
\(\uparrow=\) Positive-going transition.
\(Q_{O}=\) The output logic level of \(Q\) before the indicated input conditions were established.
* = This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs returned to their inactive (high) level.
}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM54L74} & \multicolumn{3}{|c|}{DM74L74} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.7 & & & 0.7 & V \\
\hline IOH & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.2 & & & -0.2 & mA \\
\hline lO & \multicolumn{2}{|l|}{Low Level Output Current} & & & 2 & & & 3.6 & mA \\
\hline folk & \multicolumn{2}{|l|}{Clock Frequency (Note 2)} & 0 & & 6 & 0 & & 6 & MHz \\
\hline \multirow[t]{4}{*}{tw} & \multirow[t]{4}{*}{Pulse Width (Note 2)} & Clock High & 75 & & & 75 & & & \multirow{4}{*}{ns} \\
\hline & & Clock Low & 75 & & & 75 & & & \\
\hline & & Preset Low & 75 & & & 75 & & & \\
\hline & & Clear Low & 75 & & & 75 & & & \\
\hline \({ }_{\text {t }}\) & \multicolumn{2}{|l|}{Input Setup Time (Notes 1 \& 2)} & \(50 \uparrow\) & & & \(50 \uparrow\) & & & ns \\
\hline \(\mathrm{t}_{\mathrm{H}}\) & \multicolumn{2}{|l|}{Input Hold Time (Notes 1 \& 2)} & \(15 \uparrow\) & & & \(15 \uparrow\) & & & ns \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: The symbol (\(\uparrow\)) indicates the rising edge of the clock pulse is used for reference.
Note 2: \(T_{A}=25^{\circ} \mathrm{C}\) and \(V_{C C}=5 \mathrm{~V}\).

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ (Note 1) & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min}, \mathrm{IOH}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & 3.3 & & V \\
\hline \multirow[t]{2}{*}{VoL} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} \\
& \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \multirow[b]{2}{*}{V} \\
\hline & & & DM74 & & 0.2 & 0.4 & \\
\hline \multirow[t]{4}{*}{1} & \multirow[t]{4}{*}{Input Current @ Max Input Voltage} & \multirow[t]{4}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=5.5 V
\end{aligned}
\]} & D & & & 100 & \multirow{4}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Clear & & & 300 & \\
\hline & & & Preset & & & 200 & \\
\hline & & & Clock & & & 200 & \\
\hline \multirow[t]{4}{*}{\(\mathrm{IIH}^{\text {H }}\)} & \multirow[t]{4}{*}{High Level Input Current} & \multirow[t]{4}{*}{\[
\begin{aligned}
& V_{\mathrm{CC}}=M a x \\
& V_{1}=2.4 V
\end{aligned}
\]} & D & & & 10 & \multirow{4}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Clear & & & 30 & \\
\hline & & & Preset & & & 20 & \\
\hline & & & Clock & & & 20 & \\
\hline \multirow[t]{4}{*}{IIL} & \multirow[t]{4}{*}{Low Level Input Current} & \multirow[t]{4}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=0.3 V
\end{aligned}
\]} & D & & & -0.18 & \multirow{4}{*}{mA} \\
\hline & & & Clear & & & -0.36 & \\
\hline & & & Preset & & & -0.18 & \\
\hline & & & Clock & & & -0.36 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\(V_{C C}=\operatorname{Max}\)} & DM54 & -3 & & -15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\operatorname{Max}\) (Note 2)} & & 1.6 & 3 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: With all outputs open, \(I_{c c}\) is measured with the \(Q\) and \(\bar{Q}\) outputs high in turn. At the time of measurement, the clock input is grounded.
Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & & 6 & & MHz \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Preset to Q & & 60 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Preset to \(\bar{Q}\) & & 120 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \[
\begin{aligned}
& \text { Clear } \\
& \text { to } \overline{\mathrm{Q}}
\end{aligned}
\] & & 60 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & \[
\begin{aligned}
& \text { Clear } \\
& \text { to } Q
\end{aligned}
\] & & 120 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Clock to Q or \(\bar{Q}\) & 10 & 90 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Clock to Q or \(\bar{Q}\) & 10 & 120 & ns \\
\hline
\end{tabular}

National Semiconductor Corporation

\section*{DM54L93/DM74L93 Decade, Divide-by-12, and Binary Counters}

\section*{General Description}

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-eight.
To use their maximum count length (decade, divide-bytwelve, or four-bit binary), the \(B\) input is connected to the \(Q_{A}\) output. The input count pulses are applied to input \(A\) and the outputs are as described in the appropriate truth table.

\section*{Connection Diagram}

Dual-In-Line Package

TL/F/6637-1
Order Number DM54L93J or DM74L93N
See NS Package Number J14A or N14A

\section*{Features}
- Typical power dissipation 16 mW
- Count frequency 15 MHz

\section*{Function Tables}

COUNT SEQUENCE
(See Note A)
\begin{tabular}{|c|cccc|}
\hline \multirow{2}{*}{ Count } & \multicolumn{4}{|c|}{ Output } \\
\cline { 2 - 5 } & \(\mathbf{Q}_{\mathbf{D}}\) & \(\mathbf{Q}_{\mathbf{C}}\) & \(\mathbf{Q}_{\mathbf{B}}\) & \(\mathbf{Q}_{\mathbf{A}}\) \\
\hline 0 & L & L & L & L \\
1 & L & L & L & H \\
2 & L & L & H & L \\
3 & L & L & H & H \\
4 & L & H & L & L \\
5 & L & H & L & H \\
6 & L & H & H & L \\
7 & L & H & H & H \\
8 & H & L & L & L \\
9 & H & L & L & H \\
10 & H & L & H & L \\
11 & H & L & H & H \\
12 & H & H & L & L \\
13 & H & H & L & H \\
14 & H & H & H & L \\
15 & H & H & H & H \\
\hline
\end{tabular}

RESET/COUNT TRUTH TABLE (Note B)
\begin{tabular}{|cc|cccc|}
\hline \multicolumn{2}{|c|}{ Reset Inputs } & \multicolumn{4}{c|}{ Output } \\
\hline RO(1) & \(\mathbf{R O}(2)\) & \(\mathbf{Q}_{\mathbf{D}}\) & \(\mathbf{Q}_{\mathbf{C}}\) & \(\mathbf{Q}_{\mathbf{B}}\) & \(\mathbf{Q}_{\mathbf{A}}\) \\
\hline H & H & L & L & L & L \\
L & X & & COUNT & \\
X & L & & COUNT & \\
\hline
\end{tabular}

Note \(A\) : Output \(Q_{A}\) is connected to input \(B\)
Note B: H = High Level, L = Low Level, X = Don't Care.

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 8 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM54L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\multirow{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM54L93} & \multicolumn{3}{|c|}{DM74L93} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.7 & & & 0.7 & V \\
\hline IOH & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.2 & & & -0.2 & mA \\
\hline lOL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 2 & & & 3.6 & mA \\
\hline \(\mathrm{f}_{\mathrm{CLK}}\) & \multicolumn{2}{|l|}{Clock Frequency (Note 5)} & 0 & & 6 & 0 & & 6 & MHz \\
\hline \multirow[t]{3}{*}{tw} & \multirow[t]{3}{*}{Pulse Width (Note 5)} & A & 90 & & & 90 & & & \multirow{3}{*}{ns} \\
\hline & & B & 90 & & & 90 & & & \\
\hline & & Reset & 200 & & & 200 & & & \\
\hline \(\mathrm{t}_{\text {REL }}\) & \multicolumn{2}{|l|}{Reset Release time (Note 5)} & 200 & & & 200 & & & ns \\
\hline \(\mathrm{T}_{\text {A }}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|l|}{Conditions} & Min & \begin{tabular}{l}
Typ \\
(Note 1)
\end{tabular} & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & 2.4 & 3.4 & & V \\
\hline \multirow[t]{2}{*}{VOL} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M i n, I_{O L}=M a x \\
& V_{\mathrm{IL}}=M a x, V_{I H}=\operatorname{Min} \\
& (\text { Note 4) }
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \multirow[t]{2}{*}{V} \\
\hline & & & DM74 & & 0.25 & 0.4 & \\
\hline \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{Input Current @ Max Input Voltage} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=5.5 V
\end{aligned}
\]} & Reset & & & 0.1 & \multirow{3}{*}{mA} \\
\hline & & & A & & & 0.2 & \\
\hline & & & B & & & 0.2 & \\
\hline \multirow[t]{3}{*}{\(\mathrm{IIH}^{\text {H}}\)} & \multirow[t]{3}{*}{High Level Input Current} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=2.4 V
\end{aligned}
\]} & Reset & & & 10 & \multirow{3}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & A & & & 20 & \\
\hline & & & B & & & 20 & \\
\hline \multirow[t]{3}{*}{IIL} & \multirow[t]{3}{*}{Low Level Input Current} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=0.3 V
\end{aligned}
\]} & Reset & & & -0.18 & \multirow{3}{*}{mA} \\
\hline & & & A & & & -0.36 & \\
\hline & & & B & & & -0.36 & \\
\hline \multirow[t]{2}{*}{Ios} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Max} \\
& \text { (Note 2) }
\end{aligned}
\]} & DM54 & -3 & & -15 & \multirow{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline Icc & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}\) (Note 3)} & & & 5.5 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with all outputs open, R0 inputs grounded following momentary connection to 4.5 V and all other inputs grounded.
Note 4: \(Q_{A}\) outputs are tested at \(l_{O L}=\) max plus the limit value of \(l_{L}\) for the \(B\) input. This permits driving the \(B\) input while maintaining full fan-out capability.
Note 5: \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & \(A\) to \(Q_{A}\) & 6 & & MHz \\
\hline tply & Propagation Delay Time Low to High Level Output & \(A\) to \(Q_{D}\) & & 400 & ns \\
\hline \({ }_{\text {tPHL }}\) & Propagation Delay Time High to Low Level Output & \(A\) to \(Q_{D}\) & & 400 & ns \\
\hline
\end{tabular}

\section*{Logic Diagram}

TL/F/6637-2
The \(J\) and \(K\) inputs shown without connection are for reference only and are functionally at a high level.

\section*{DM54L95/DM74L95 4-Bit Parallel Access Shift Registers}

\section*{General Description}

These 4-bit registers feature parallel and serial inputs, parallel output, mode control, and two clock inputs. The registers have three modes of operation.

> Parallel (broadside) load
> Shift right (the direction \(Q_{A}\) toward \(Q_{D}\))
> Shift left (the direction \(Q_{D}\) toward \(Q_{A}\))

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high-to-low transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock 2 when the
mode control is high by connecting the output of each flipflop to the parallel input of the previous flip-flop (\(Q_{D}\) to input C , etc.) and serial data is entered at input D . The clock input may be applied simultaneously to clock 1 and clock 2 if both modes can be clocked from the same source.
Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the truth table will also ensure that register contents are protected.

\section*{Features}

Typical maximum clock frequency 14 MHz
- Typical power dissipation mW

\section*{Connection Diagram}

Dual-In-Line Package

Order Number DM54L95J
or DM74L95N See NS Package Number J14A or N14A

\section*{Function Table}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Inputs} & \multicolumn{4}{|c|}{Outputs} \\
\hline \multirow[t]{2}{*}{Mode Control} & \multicolumn{2}{|l|}{Clocks} & \multirow[t]{2}{*}{Serial} & \multicolumn{4}{|c|}{Parallel} & \multirow[t]{2}{*}{\(Q_{A}\)} & \multirow{2}{*}{\(\mathbf{Q}_{\mathbf{B}}\)} & \multirow[t]{2}{*}{\(Q_{C}\)} & \multirow{2}{*}{\(Q_{D}\)} \\
\hline & 2 (L) & 1 (R) & & A & B & c & D & & & & \\
\hline H & H & X & X & X & X & X & X & \(Q_{A O}\) & \(Q_{B O}\) & Qco & \(Q_{\text {DO }}\) \\
\hline H & \(\downarrow\) & X & X & a & b & c & d & a & b & c & d \\
\hline H & \(\downarrow\) & X & X & \(\mathrm{Q}_{\mathrm{B}}{ }^{\dagger}\) & \(Q_{C}{ }^{\dagger}\) & QD \({ }^{\dagger}\) & d & \(Q_{B n}\) & \(Q_{C n}\) & \(Q_{\text {Dn }}\) & d \\
\hline L & L & H & X & X & X & X & X & \(Q_{\text {AO }}\) & Q BO & Qco & \(Q_{\text {DO }}\) \\
\hline L & X & \(\downarrow\) & H & X & X & X & X & H & \(Q_{\text {An }}\) & \(Q_{B n}\) & \(Q_{C n}\) \\
\hline L & X & \(\downarrow\) & L & X & X & X & X & L & \(Q_{\text {An }}\) & \(Q_{B n}\) & \(Q_{C n}\) \\
\hline \(\uparrow\) & L & L & X & X & X & \(x\) & X & \(Q_{A O}\) & \(Q_{B n}\) & Qco & \(Q_{\text {DO }}\) \\
\hline \(\downarrow\) & L & L & X & \(x\) & X & X & X & \(Q_{\text {AO }}\) & \(Q_{B O}\) & Qco & \(Q_{\text {DO }}\) \\
\hline \(\downarrow\) & L & H & X & X & X & \(x\) & X & \(Q_{A O}\) & Q \({ }_{\text {BO }}\) & Qco & QDO \\
\hline \(\uparrow\) & H & L & X & X & X & \(x\) & X & \(Q_{\text {AO }}\) & \(Q_{B O}\) & \(Q_{\text {co }}\) & QDO \\
\hline \(\uparrow\) & H & H & X & X & X & X & X & \(Q_{A O}\) & \(Q_{B O}\) & \(Q_{\mathrm{CO}}\) & \(Q_{\text {DO }}\) \\
\hline
\end{tabular}
\(\dagger\) Shifting left requires external connection of \(Q_{B}\) to \(A, Q_{C}\) to \(B, Q_{D}\) to \(C\). Serial data is entered at input \(D\).
\(H=\) High Level (Steady State), L = Low Level (Steady State), \(X=\) Don't Care (Any input, including transitions).
\(\downarrow=\) Transition from high to low level. \(\uparrow=\) Transition from low to high level.
\(a, b, c, d,=\) The level of steady state input at inputs \(A, B, C\), or \(D\), respectively.
\(Q_{A O}, Q_{B O}, Q_{C O}, Q_{D O}=\) The level of \(Q_{A}, Q_{B}, Q_{C}\), or \(Q_{D}\), respectively, before the indicated steady state input conditions were established.
\(Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=\) The level of \(Q_{A}, Q_{B}, Q_{C}\), or \(Q_{D}\), respectively, before the most recent \(\downarrow\) transition of the clock.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Absolute Maximum Ratings (Note)} \\
\hline \multicolumn{2}{|l|}{Specifications for Military/Aerospace products are not contained In this datasheet. Refer to the assoclated rellability electrical test specifications document.} \\
\hline Supply Voltage & \\
\hline Input Voltage & 5.5 V \\
\hline Operating Free Air Temperature Range & \\
\hline DM54L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline DM74L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{Ct}\) \\
\hline
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Recommended Operating Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM54L95} & \multicolumn{3}{|c|}{DM74L95} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(\mathrm{V}_{\mathrm{CC}}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\text {IH }}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.7 & & & 0.7 & V \\
\hline \(\mathrm{l}_{\mathrm{OH}}\) & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.2 & & & -0.2 & mA \\
\hline lOL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 2 & & & 3.6 & mA \\
\hline \(\mathrm{f}_{\mathrm{CLK}}\) & \multicolumn{2}{|l|}{Clock Frequency (Note 1)} & 0 & & 6 & 0 & & 6 & MHz \\
\hline \({ }^{\text {tw(CLK) }}\) & \multicolumn{2}{|l|}{Pulse Width of Clock (Note 1)} & 90 & & & 90 & & & ns \\
\hline \(\mathrm{t}_{\text {SU }}\) & \multicolumn{2}{|l|}{Data Setup Time (Note 1)} & 50 & & & 50 & & & ns \\
\hline \multirow[t]{2}{*}{\(\mathrm{t}_{\mathrm{E}}\)} & \multirow[t]{2}{*}{Time to Enable Clock (Note 1)} & Clock 1 & 120 & & & 120 & & & ns \\
\hline & & Clock 2 & 100 & & & 100 & & & ns \\
\hline \(t_{H}\) & \multicolumn{2}{|l|}{Data Hold Time (Note 1)} & 0 & & & 0 & & & ns \\
\hline \(\mathrm{t}_{\mathrm{IN}}\) & \multicolumn{2}{|l|}{Time to Inhibit Clock 1 or Clock 2 (Note 1)} & 0 & & & 0 & & & ns \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note t: \(T_{A}=25^{\circ} \mathrm{C}\) and \(V_{C C}=5 V\).
Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|l|}{Conditions} & Min & Typ (Note 1) & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Min}, I_{O H}=\operatorname{Max} \\
& V_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & 3.1 & & V \\
\hline \multirow[t]{2}{*}{VOL} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & DM54 & & 0.13 & 0.3 & \multirow{2}{*}{V} \\
\hline & & & DM74 & & 0.2 & 0.4 & \\
\hline \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{Input Current @ Max Input Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=5.5 V
\end{aligned}
\]} & Mode & & & 0.2 & \multirow[t]{2}{*}{mA} \\
\hline & & & Others & & & 0.1 & \\
\hline \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{H}}\)} & \multirow[t]{2}{*}{High Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\mathrm{Max} \\
& V_{1}=2.4 \mathrm{~V}
\end{aligned}
\]} & Mode & & & 20 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Others & & & 10 & \\
\hline \multirow[t]{2}{*}{IIL} & \multirow[t]{2}{*}{Low Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{\mathrm{CC}}=M a x \\
& V_{1}=0.3 V
\end{aligned}
\]} & Mode & & & -0.36 & \multirow[t]{2}{*}{mA} \\
\hline & & & Others & & & -0.18 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\text { Max } \\
& \text { (Note 2) }
\end{aligned}
\]} & DM54 & -3 & & -15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}\) (Note 3)} & & 4.8 & 8 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} 25^{\circ} \mathrm{C}\)
Note 2: Not more than one output should be shorted at a time.
Note 3: ICc is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5V; and a momentary 3V, then ground, applied to both clock inputs.

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}} 25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{\begin{tabular}{l}
From (Input) \\
To (Output)
\end{tabular}} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(f_{\text {maX }}\) & Maximum Clock Frequency & & 6 & & MHz \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & Clock to Output & & 90 & ns \\
\hline tPHL & Propagation Delay Time High to Low Level Output & Clock to Output & & 90 & ns \\
\hline
\end{tabular}

\section*{Logic Diagram}

National Semiconductor Corporation

\section*{DM54L98/DM74L98 4-Bit Storage Registers}

\section*{General Description}

These data selectors/storage registers are composed of four S-R master-slave flip-flops, four AND-OR INVERT gates, one buffer, and six inverter/drivers.
When the word select input is low, word 1 (A1, B1, C1, D1) is applied to the flip-flops. A high level input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is shifted to the output terminals on the nega-tive-going edge of the clock pulse.
Typical clock frequency is 12 MHz .

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
Supply Voltage 8V
Input Voitage 5.5 V
Operating Free Air Temperature Range
\begin{tabular}{lr}
DM54L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

\section*{Connection Diagram}

TL/F/6639-1
Order Number DM54L98J or DM74L98N See NS Package Number J16A or N16A

\section*{Logic Diagram}

Recommended Operating Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multicolumn{2}{|l|}{\multirow{2}{*}{Parameter}} & \multicolumn{3}{|c|}{DM54L98} & \multicolumn{3}{|c|}{DM74L98} & \multirow[t]{2}{*}{Units} \\
\hline & & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & \multicolumn{2}{|l|}{Supply Voltage} & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(V_{\text {IH }}\) & \multicolumn{2}{|l|}{High Level Input Voltage} & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & \multicolumn{2}{|l|}{Low Level Input Voltage} & & & 0.7 & & & 0.7 & V \\
\hline 1 OH & \multicolumn{2}{|l|}{High Level Output Current} & & & -0.2 & & & -0.2 & mA \\
\hline 1 OL & \multicolumn{2}{|l|}{Low Level Output Current} & & & 2 & & & 3.6 & mA \\
\hline fCLK & \multicolumn{2}{|l|}{Clock Frequency (Note 4)} & 0 & & 6 & 0 & & 6 & MHz \\
\hline tw & \multicolumn{2}{|l|}{Clock Pulse Width (Note 4)} & 100 & 65 & & 100 & 65 & & ns \\
\hline \multirow[t]{4}{*}{tsu} & \multirow[t]{4}{*}{Setup Time (Note 4)} & Data High & 100 & & & 100 & & & \multirow{4}{*}{ns} \\
\hline & & Data Low & 120 & & & 120 & & & \\
\hline & & Select High & 150 & & & 150 & & & \\
\hline & & Select Low & 100 & & & 100 & & & \\
\hline \(\mathrm{T}_{\mathrm{A}}\) & \multicolumn{2}{|l|}{Free Air Operating Temperature} & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|l|}{Conditions} & Min & Typ
(Note 1) & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OL }}\)} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M i n, I_{O L}=M a x, \\
& V_{\mathrm{IL}}=M a x, V_{I H}=M i n
\end{aligned}
\]} & DM54 & & 0.15 & 0.3 & \multirow[t]{2}{*}{V} \\
\hline & & & DM74 & & 0.2 & 0.4 & \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}\)} & & & 0.1 & mA \\
\hline \(\mathrm{I}_{\mathrm{IH}}\) & High Level Input Current & \multicolumn{2}{|l|}{\(V_{C C}=\operatorname{Max}, V_{1}=2.4 V\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline IIL & Low Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{\mathrm{l}}=0.3 \mathrm{~V}\)} & & & -0.18 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Max} \\
& (\text { Note 3) }
\end{aligned}
\]} & DM54 & -3 & & -15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM74 & -3 & & -15 & \\
\hline Icc & Supply Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=\mathrm{Max}\) (Note 2)} & & 6 & 8 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: ICC is measured with all outputs open and all inputs grounded.
Note 3: Not more than one output should be shorted at a time.
Note 4: \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).
Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow[t]{2}{*}{\begin{tabular}{l}
From (Input) \\
To (Output)
\end{tabular}} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \multirow{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & & 6 & & MHz \\
\hline \({ }_{\text {tPLH }}\) & Propagation Delay Time Low to High Level Output & Clock to Output & & 80 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Clock to Output & & 100 & ns \\
\hline
\end{tabular}

\title{
DM75L60/DM85L60, DM75L63/DM85L63 Synchronous 4-Bit Up/Down Decade/Binary Counters
}

\section*{General Description}

These circuits are synchronous up/down counters; the L60 circuit is a BCD counter and the L63 is a 4-bit binary counter. Synchronous operation is provided by having all flipflops clocked simultaneously so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.
The outputs of the four master-slave flip-flops are triggered by a low-to-high level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed, while the other count input is held high.
All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the inputs while the load input is low. The output will change independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which, when taken to a high level, forces all outputs to the low level; independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements of clock drivers, etc., required for long words.

\section*{Features}
- Fully independent clear input
- Synchronous operation
- Cascading circuitry provided internally
- Individual preset for each flip-flop
- Typical count frequency 12 MHz
- Typical power dissipation 40 mW

\section*{Connection Diagram}

Absolute Maximum Ratings (Note)
Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated rellability electrical test specifications document.
```

Supply Voltage
Input Voltage
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

```

Operating Free Air Temperature Range
\begin{tabular}{lr}
DM75L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM85L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM75L60, L63} & \multicolumn{3}{|c|}{DM85L60, L63} & \multirow{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(\mathrm{V}_{\text {CC }}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\text {IL }}\) & Low Level Input Voltage & & & 0.7 & & & 0.7 & V \\
\hline IOH & High Level Output Current & & & -0.2 & & & -0.2 & mA \\
\hline loL & Low Level Output Current & & & 2 & & & 3.6 & mA \\
\hline fCLK & Clock Frequency (Note 4) & 0 & & 6 & 0 & & 6 & MHz \\
\hline tw & Pulse Width of Any Input (Note 4) & 70 & & & 70 & & & ns \\
\hline tsu & Data Setup Time (Note 4) & 30 & & & 30 & & & ns \\
\hline \(t_{H}\) & Data Hold Time (Note 4) & 0 & & & 0 & & & ns \\
\hline \(\mathrm{T}_{\text {A }}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & \[
\begin{gathered}
\text { Typ } \\
\text { (Note 1) }
\end{gathered}
\] & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min}
\end{aligned}
\]} & 2.4 & & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{\mathrm{CC}}=\operatorname{Min} \\
& \mathrm{IOL}^{\prime}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & DM75 & & 0.15 & 0.3 & \multirow[b]{2}{*}{V} \\
\hline & & & DM85 & & 0.2 & 0.4 & \\
\hline 1 & Input Current @Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}\)} & & & 0.1 & mA \\
\hline \(\mathrm{IIH}_{\text {H }}\) & High Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}\)} & & & 10 & \(\mu \mathrm{A}\) \\
\hline IIL & Low Level Input Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=\operatorname{Max}, \mathrm{V}_{1}=0.3 \mathrm{~V}\)} & & & -0.18 & mA \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& (\text { Note 2) }
\end{aligned}
\]} & DM75 & -3 & & -15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM85 & -3 & & -15 & \\
\hline ICC & Supply Current & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=M a x \\
& (\text { Note 3) }
\end{aligned}
\]} & & 8 & 13 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: ICC is measured with all outputs open, CLEAR and LOAD inputs grounded, and all other inputs at 4.5 V .

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
(See Section 1 for Test Waveforms and Output Load)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|c|}{\[
\begin{aligned}
& R_{\mathrm{L}}=4 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{Units} \\
\hline & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) Maximum Clock Frequency & & 6 & & ns \\
\hline \(t_{\text {th }}\) Propagation Delay Time Low to High Level Output & Count Up to Carry & & 60 & ns \\
\hline \(t_{\text {PHL }}\) Propagation Delay Time High to Low Level Output & Count Up to Carry & & 120 & ns \\
\hline \(t_{\text {tLH }}\) Propagation Delay Time Low to High Level Output & Count Down to Borrow & & 60 & ns \\
\hline tphL Propagation Delay Time High to Low Level Output & Count Down to Borrow & & 100 & ns \\
\hline \(t_{\text {PLH }}\) Propagation Delay Time Low to High Level Output & \[
\begin{gathered}
\text { Either Count } \\
\text { to Q } \\
\hline
\end{gathered}
\] & & 90 & ns \\
\hline tphL \(^{\text {Propagation Delay Time }}\) High to Low Level Output & \[
\begin{gathered}
\text { Either Count } \\
\text { to Q } \\
\hline
\end{gathered}
\] & & 150 & ns \\
\hline tpLH Propagation Delay Time Low to High Level Output & Load
\[
\text { to } Q
\] & & 110 & ns \\
\hline tphL \(^{\text {Propagation Delay Time }}\) High to Low Level Output & \begin{tabular}{l}
Load \\
to Q
\end{tabular} & & 200 & ns \\
\hline tphL Propagation Delay Time High to Low Level Output & Clear
\[
\text { to } Q
\] & & 190 & ns \\
\hline
\end{tabular}

TL/F/6649-2

Logic Diagrams (Continued)

Timing Diagrams
L60 Decade Counters
Typical Clear, Load and Count Sequences

\section*{Sequence:}
(1) Clear outputs to zero.
(2) Load (preset) to BCD seven.
(3) Count up to eight, nine, carry, zero, one, and two.
(4) Count down to one, zero, borrow, nine, eight, and seven.

Note A: Clear overrides, load, data, and count inputs.
Note B: When counting up, count-down input must be high; when counting
down, count-up input must be high

Timing Diagrams (Continued)
L63 Binary Counters
Typleal Clear, Load and Count Sequences

Sequence:
(1) Clear outputs to zero.
(2) Load (preset) to binary thirteen.
(3) Count up to fourteen, fifteen, carry, zero, one, and two.
(4) Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

Note A: Clear overrides load, data, and count inputs.
Note B: When counting up, count-down input must be high; when counting
down, count-up input must be high.

National Semiconductor Corporation

\section*{DM76L90/DM86L90 8-Bit Parallel In/Serial Out Shift Registers}

\section*{General Description}

These are 8-bit serial shift registers which shift the data in the direction of \(Q_{A}\) toward \(Q_{H}\) when clocked. Parallel-in access is made available by eight individual direct data inputs, which are enabled by a low level at the shift/load input. These registers also feature gated clock inputs and complementary outputs from the eighth bit.
Clocking is accomplished through a 2 -input NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with the load input high enables the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. Parallel loading is inhibited as long as the load input is high. Data at the parallel inputs are loaded directly into the register on a high-to-low transition of the shift/load input, regardless of the logic levels on the clock, clock inhibit, or serial inputs.

\section*{Features}
- Complementary outputs
- Direct overriding load (data) inputs
- Gated clock inputs
- Parallel-to-serial data conversion
- Typical frequency 14 MHz
- Typical power dissipation 80 mW

\section*{Connection Diagram}

TL/F/6652-1
Order Number DM76L90J or DM86L90N
See NS Package Number J16A or N16A

\section*{Absolute Maximum Ratings (Note)}

Specifications for Military/Aerospace products are not contalned In this datasheet. Refer to the associated reliability electrical test specifications document.
\begin{tabular}{lr}
Supply Voltage & 8 V \\
Input Voltage & 5.5 V \\
Operating Free Air Temperature Range & \\
DM54L & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
DM74L & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
\end{tabular}

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guarantoed. The device should not be operated at these limits. The teed. The device should not be operated at these limits. The
parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings.
The "Recommended Operating Conditions" table will define table are not guaranteed at the absolute maximum ratings.
The "Recommended Operating Conditions" table will define the conditions for actual device operation.

8 V
Input Voltage 5.5 V
Operating Free Air Temperature Range
DM54L \(\quad-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
OM74L \(15^{\circ} \mathrm{C}\) to

Recommended Operating Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{Parameter} & \multicolumn{3}{|c|}{DM76L90} & \multicolumn{3}{|c|}{DM86L90} & \multirow[t]{2}{*}{Units} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \(V_{C C}\) & Supply Voltage & 4.5 & 5 & 5.5 & 4.75 & 5 & 5.25 & V \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & High Level Input Voltage & 2 & & & 2 & & & V \\
\hline \(\mathrm{V}_{\mathrm{IL}}\) & Low Level Input Voltage & & & 0.7 & & & 0.7 & V \\
\hline IOH & High Level Output Current & & & -0.2 & & & -0.2 & mA \\
\hline loL & Low Level Output Current & & & 2 & & & 3.6 & mA \\
\hline \({ }_{\text {f CLK }}\) & Clock Frequency (Note 1) & 0 & & 6 & 0 & & 6 & MHz \\
\hline tw & Pulse Width (Clock, Load)(Note 1) & 100 & & & 100 & & & ns \\
\hline tsu & Data Setup Time (Note 1) & 44 & 22 & & 44 & 22 & & ns \\
\hline \({ }_{\text {th }}\) & Data Hold Time (Note 1) & 10 & & & 10 & & & ns \\
\hline \(\mathrm{T}_{\text {A }}\) & Free Air Operating Temperature & -55 & & 125 & 0 & & 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: \(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\).
Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{2}{|c|}{Conditions} & Min & Typ (Note 1) & Max & Units \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & High Level Output Voltage & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=M i n, I_{O H}=\operatorname{Max} \\
& V_{I L}=M a x, V_{I H}=\operatorname{Min}
\end{aligned}
\]} & 2.4 & & & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \multirow[t]{2}{*}{Low Level Output Voltage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Min} \\
& I_{\mathrm{CL}}=\operatorname{Max} \\
& \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \\
& \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min}
\end{aligned}
\]} & DM76 & & & 0.3 & \\
\hline & & & DM86 & & & 0.4 & V \\
\hline 1 & Input Current @ Max Input Voltage & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=5.5 \mathrm{~V}\)} & & & 0.1 & mA \\
\hline \multirow[t]{2}{*}{\({ }_{1 / H}\)} & \multirow[t]{2}{*}{High Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& V_{1}=2.4 V
\end{aligned}
\]} & Load & & & 30 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & Others & & & 10 & \\
\hline \multirow[t]{2}{*}{IIL} & \multirow[t]{2}{*}{Low Level Input Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\operatorname{Max} \\
& V_{1}=0.3 V
\end{aligned}
\]} & Load & & & -0.54 & \multirow[t]{2}{*}{mA} \\
\hline & & & Others & & & -0.18 & \\
\hline \multirow[t]{2}{*}{los} & \multirow[t]{2}{*}{Short Circuit Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=M a x \\
& (\text { Note 2) }
\end{aligned}
\]} & DM76 & -3 & & -15 & \multirow[t]{2}{*}{mA} \\
\hline & & & DM86 & -3 & & -15 & \\
\hline Icc & Supply Current & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=M a x \\
& (\text { Note 3) }
\end{aligned}
\]} & & & 9.5 & mA \\
\hline
\end{tabular}

Note 1: All typicals are at \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\).
Note 2: Not more than one output should be shorted at a time.
Note 3: With the outputs open, CLOCK INHIBIT and SHIFT/LOAD at 4.5 V , and a clock pulse applied to the CLOCK input, lcC is measured first with the parallel inputs at 4.5 V , then with them at OV .

Switching Characteristics at \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\text {and }} \mathrm{T}_{\mathrm{A}}=25^{\circ}\) ((Soe Soction 1 for Test Waveiorms and Output Lood)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Symbol} & \multirow{2}{*}{Parameter} & \multirow[t]{2}{*}{From (Input) To (Output)} & \multicolumn{2}{|l|}{\(\mathrm{R}_{\mathrm{L}}=4 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\)} & \multirow{2}{*}{Units} \\
\hline & & & Min & Max & \\
\hline \(\mathrm{f}_{\text {MAX }}\) & Maximum Clock Frequency & & 6 & & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \begin{tabular}{l}
Load to \\
Any Q
\end{tabular} & & 88 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Load to Any Q & & 124 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & Clock to Any Q & & 70 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & Clock to Any Q & & 100 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & \[
\begin{aligned}
& \mathrm{H} \text { to } \\
& \mathrm{Q}_{\mathrm{H}}
\end{aligned}
\] & & 66 & ns \\
\hline \(\mathrm{t}_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & H to
\[
Q_{H}
\] & & 112 & ns \\
\hline \(t_{\text {PLH }}\) & Propagation Delay Time Low to High Level Output & H to
\[
\bar{Q}_{H}
\] & & 66 & ns \\
\hline \(t_{\text {PHL }}\) & Propagation Delay Time High to Low Level Output & H to
\[
\bar{Q}_{H}
\] & & 112 & ns \\
\hline
\end{tabular}

\section*{Timing Diagram}

TL/F/6652-3

\section*{Section 6 \\ Physical Dimensions/ Appendices}

\section*{Section 6 Contents}
Physical Dimensions 6-3
Data BookshelfSales and Distribution Offices

NS Package J16A

NS Package J18A

NS Package J20A

NS Package M14B

NS Package M16A

NS Package M16B

N24A (REV E)
NS Package N24A

National Semiconductor Corporation

\section*{Bookshelf of Technical Support Information}

National Semiconductor Corporation recognizes the need to keep you informed about the availability of current technical literature.
This bookshelf is a compilation of books that are currently available. The listing that follows shows the publication year and section contents for each book.
Please contact your local National sales office for possible complimentary copies. A listing of sales offices follows this bookshelf.
We are interested in your comments on our technical literature and your suggestions for improvement.
Please send them to:
Technical Communications Dept. M/S 23-200
2900 Semiconductor Drive
P.O. Box 58090

Santa Clara, CA 95052-8090
For a recorded update of this listing plus ordering information for these books from National's Literature Distribution operation, please call (408) 749-7378.

\section*{DATA CONVERSION/ACQUISITION DATABOOK—1984}

Selection Guides • Active Filters • Amplifiers • Analog Switches • Analog-to-Digital Converters
Analog-to-Digital Display (DVM) • Digital-to-Analog Converters • Sample and Hold • Sensors/Transducers
Successive Approximation Registers/Comparators • Voltage References

\section*{HYBRID PRODUCTS DATABOOK—1982}

Operational Amplifiers • Buffers • Instrumentation Amplifiers • Sample \& Hold Amplifiers • Comparators
Non-Linear Functions • Precision Voltage Regulators and References • Analog Switches
MOS Clock Drivers • Digital Drivers • A-D Converters • D-A Converters • Fiber-Optic Products
Active Filters \& Telecommunication Products • Precision Networks • 883/RETS

\section*{INTERFACE DATABOOK—1986}

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral/Power Drivers • Display Controllers/Drivers Memory Support • Microprocessor Support • Level Translators/Buffers • Frequency Synthesis

\section*{INTERFACE/BIPOLAR LSI/BIPOLAR MEMORY/PROGRAMMABLE LOGIC DATABOOK—1983}

Transmission Line Drivers/Receivers • Bus Transceivers • Peripheral/Power Drivers Level Translators/Buffers • Display Controllers/Drivers • Memory Support • Dynamic Memory Support Microprocessor Support • Data Communications Support • Disk Support • Frequency Synthesis Interface Appendices • Bipolar PROMs • Bipolar and ECL. RAMs • 2900 Family/Bipolar Microprocessor Programmable Logic

\section*{INTUITIVE IC CMOS EVOLUTION—1984}

Thomas M. Frederiksen's new book targets some of the most significant transitions in semiconductor technology since the change from germanium to silicon. Intuitive IC CMOS Evolution highlights the transition in the reduction in defect densities and the development of new circuit topologies. The author's latest book is a vital aid to engineers, and industry observers who need to stay abreast of the semiconductor industry.

\section*{INTUITIVE IC OP AMPS-1984}

Thomas M. Frederiksen's new book, Intuitive IC Op Amps, explores the many uses and applications of different IC op amps. Frederiksen's detailed book differs from others in the way he focuses on the intuitive groundwork in the basic functioning concepts of the op amp. Mr. Frederiksen's latest book is a vital aid to engineers, designers, and industry observers who need to stay abreast of the computer industry.

\section*{LINEAR APPLICATIONS HANDBOOK—1986}

The purpose of this handbook is to provide a fully indexed and cross-referenced collection of linear integrated circuit applications using both monolithic and hybrid circuits from National Semiconductor.
Individual application notes are normally written to explain the operation and use of one particular device or to detail various methods of accomplishing a given function. The organization of this handbook takes advantage of this innate coherence by keeping each application note intact, arranging them in numerical order, and providing a detailed Subject Index.

\section*{LINEAR SUPPLEMENT DATABOOK—1984}

Amplifiers • Comparators • Voltage Regulators • Voltage References • Converters • Analog Switches Sample and Hold • Sensors • Filters • Building Blocks • Motor Controllers • Consumer Circuits
Telecommunications Circuits • Speech • Special Analog Functions

\section*{LOGIC DATABOOK VOLUME I-1984}

CMOS AC Switching Test Circuits and Timing Waveforms • CMOS Application Notes • MM54HC/MM74HC MM54HCT/MM74HCT • CD4XXX • MM54CXXX/MM74CXXX • LSI/VLSI

\section*{LOGIC DATABOOK VOLUME II-1984}

Introduction to Bipolar Logic • Advanced Low Power Schottky • Advanced Schottky • Low Power Schottky Schottky • TTL • Low Power

\section*{MASS STORAGE HANDBOOK-1986}

Disk Interface Design Guide and User Manual • Winchester Disk Support • Winchester Disk Data Controller Floppy Disk Support • Drive Interface Support Circuits

\section*{MEMORY SUPPORT HANDBOOK—1986}

Dynamic Memory Control • Error Checking and Correction • Microprocessor Interface and Applications Memory Drivers and Support

\section*{MOS MEMORY DATABOOK—1984}

Standard Terminology • MOS Memory Cross Reference Guide • Dynamic RAMs • NMOS Static RAMs CMOS Static RAMs • EPROMs • EEPROMs • Military/Aerospace • Reliability

\section*{THE NSC800 MICROPROCESSOR FAMILY DATABOOK—1985 \\ CPU • Peripherals • Evaluation Board • Logic Devices • MA2000 Macrocomponent Family}

\section*{SERIES 32000 DATABOOK-1986}

Introduction • CPU-Central Processing Unit • Slave Processors • Peripherals • Data Communications and LAN's Disk Control and Interface • DRAM Interface • Development Tools • Software Support • Application Notes

\section*{RELIABILITY HANDBOOK—1986}

Reliability and the Die • Internal Construction • Finished Package • MIL-STD-883 • MIL-M-38510 The Specification Development Process • Reliability and the Hybrid Device • VLSI/VHSIC Devices Radiation Environment • Electrostatic Discharge • Discrete Device • Standardization Quality Assurance and Reliability Engineering • Reliability and Documentation • Commercial Grade Device European Reliability Programs • Reliability and the Cost of Semiconductor Ownership Reliability Testing at National Semiconductor • The Total Military/Aerospace Standardization Program 883B/RETSTM Products • MILS/RETSTM Products • 883/RETSTM Hybrids • MIL-M-38510 Class B Products Radiation Hardened Technology • Wafer Fabrication • Semiconductor Assembly and Packaging Semiconductor Packages • Glossary of Terms • Key Government Agencies • AN/ Numbers and Acronyms Bibliography • MIL-M-38510 and DESC Drawing Cross Listing

\section*{THE SWITCHED-CAPACITOR FILTER HANDBOOK-1985}

Introduction to Filters • National's Switched-Capacitor Filters • Designing with Switched-Capacitor Filters Application Circuits • Filter Design Program • Nomographs and Tables

\section*{TRANSISTOR DATABOOK—1982}

NPN Transistors • PNP Transistors • Junction Field Effect Transistors • Selection Guides • Pro Electron Series Consumer Series • NA/NB/NR Series • Process Characteristics Double-Diffused Epitaxial Transistors
Process Characteristics Power Transistors • Process Characteristics JFETs • JFET Applications Notes

\section*{VOLTAGE REGULATOR HANDBOOK—1982}

Product Selection Procedures • Heat Flow \& Thermal Resistance • Selection of Commercial Heat Sink Custom Heat Sink Design • Applications Circuits and Descriptive Information • Power Supply Design Data Sheets

\section*{48-SERIES MICROPROCESSOR HANDBOOK—1980}

The 48-Series Microcomputers • The 48-Series Single-Chip System • The 48-Series Instruction Set Expanding the 48 -Series Microcomputers • Applications for the 48-Series • Development Support Analog I/O Components • Communications Components • Digital I/O Components • Memory Components Peripheral Control Components

NATIONAL SEMICONDUCTOR CORPORATION AUTHORIZED DISTRIBUTORS
\begin{tabular}{|c|c|c|c|}
\hline ALABAMA & San Diego & Orlando & MARYLAND \\
\hline Huntsville & Anthem Electronics & Hall-Mark & Columbia \\
\hline Arrow & (619) 279-5200 & (305) 855-4020 & Arrow \\
\hline (205) 837-6955 & Arrow & Palm Bay & (301) 995-0003 \\
\hline Hall-Mark & (618) 565-4800 & Arrow & Hamilton/Avnet \\
\hline (205) 837-8700 & Hamilton/Avnet & (305) 725-1480 & (301) 995-3500 \\
\hline Hamilton/Avnet & (619) 571-7510 & Pompano Beach & Lionex \\
\hline (205) 837-7210 & Schweber & Hall-Mark & (301) 964-0040 \\
\hline Pioneer & (619) 450-0454 & (305) 971-9280 & Gaithersburg \\
\hline (205) 837-9300 & San Jose & St. Petersburg & Pioneer Washington \\
\hline Schweber & Anthem Electronics & Hamilton/Avnet & (301) 921-0660 \\
\hline (205) 882-2200 & (408) 295-4200 & (813) 576-3930 & Schweber \\
\hline ARIZONA & Hall-Mark & Winter Park & (301) 840-5900 \\
\hline Phoenix & (408) 946-0900 & Hamilton-Avnet & MASSACHUSETTS \\
\hline Schweber & Schweber & (305) 628-3888 & Bedford \\
\hline (602) 997-4874 & (408) 946-7171 & GEORGIA & Schweber \\
\hline Tempe & Sunnyvale & Norcross & (617) 275-5100 \\
\hline Anthem Electronics & Arrow & Arrow & Lexington \\
\hline (602) 966-6600 & (408) 745-6600 & (404) 449-8252 & Pioneer Northeast \\
\hline Arrow & Bell Industries & Hamilton-Avnet & (617) 861-9200 \\
\hline (602) 968-4800 & (408) 734-8570 & (404) 447-7500 & Peabody \\
\hline Bell Industries & Hamilton/Avnet & Pioneer & Hamilton/Avnet \\
\hline (602) 966-7800 & (408) 743-33 & (404) 448-1711 & (617) 531-7430 \\
\hline Hamilton/Avnet & Thousand Oaks & Schweber & Wilmington \\
\hline (602) 231-5100 & Bell Industries & (404) 449-9170 & Lionex \\
\hline CALIFORNIA & (805) 49 & ILLINOIS & (617) 657-5170 \\
\hline Canoga Park & Arrow & Bensenville & Woburn \\
\hline Schweber & Arrow
(714) 838-5422 & Hamilton/Avnet & \begin{tabular}{l}
Arrow \\
(617) 933-8130
\end{tabular} \\
\hline Chatsworth & COLORADO & Elk Grove Village & MICHIGAN \\
\hline Anthem Electronics & Aurora & Bell Industries & Grand Rapids \\
\hline (818) 700-1000 & Arrow (303) 758-4585 & (312) 640-1910 & Arrow \\
\hline Arrow & Englewood & Pioneer & (616) 243-0912 \\
\hline (818) 701-7500 & Anthem Electronics & (312) 952-8440 & Hamilton/Avnet \\
\hline Avnet Electronics & (303) 790-4500 & Schweber & (616) 243-8805 \\
\hline (818) 700-8668 & Hamilton/Avnet & (312) 364-3750 & R-M Michigan \\
\hline Hamilton Electro Sales & (303) 779-9998 & Schaumberg & (616) 531-9300 \\
\hline (818) 700-0440 & Wheatridge & Arrow & Livonia \\
\hline Costa Mesa & Bell Industries & (312) 397-3440 & Hamilton/Avnet \\
\hline Avnet Electronics & (303) 424-1985 & Woodale & (313) 522-4700 \\
\hline (714) 754-6050 & CONNECTICUT & Hall-Mark & Pioneer \\
\hline Hamilton Electro Sales & Danbury & (312) 860-3800 & (313) 525-1800 \\
\hline (714) 641-4159 & Hamilton/Avnet & INDIANA & MINNESOTA \\
\hline Culver City & (203) 797-2800 & Carmel & Bloomington \\
\hline Hamilton Electro Sales & Schweber & Hamilton/Avnet & Hall-Mark \\
\hline (213) 558-2121 & (203) 748-7080 & (317) 844-9333 & (612) 854-3223 \\
\hline Garden Grove & Meridian & Indianapolis & Edina \\
\hline Bell Industries & Lionex Inc. & Advent & Arrow \\
\hline (714)895-7801 & (203) 237-2282 & (317) 872-4910 & (612) 830-1800 \\
\hline Gardena & Norwalk & Arrow & Schweber \\
\hline Bell Industries & Pioneer Northeast & (319) 395-7230 & (612) 941-5280 \\
\hline (213) 515-1800 & (203) 853-1515 & Graham Electronics & Minnetonka \\
\hline Schweber & Wallingford & (317) 634-8202 & Hamilton/Avnet \\
\hline (213) 327-8409 & Arrow & Pioneer & (612) 932-0600 \\
\hline Hayward & (203) 265-7741 & (317) 849-7300 & Pioneer \\
\hline Arrow (415) 487-8416 & FLORIDA & 10WA & (612) 935-5444 \\
\hline Arrow (415) 487-4300 & Altamonte Springs & Cedar Rapids & MISSOURI \\
\hline Irvine & Pioneer & Advent Electronics & Earth City \\
\hline Anthem Electronics
(714) \(768-4444\) & (305) 834-9090 & (319) 363-0221 & Hamilton/Avnet \\
\hline (714) 768-4444 & Schweber & Arrow & (314) 344-1200 \\
\hline (714) 863-0200 & (305) 331-7555 & (319) 395-7230 & Schweber \\
\hline Ontario & Clearwater & Bell Industries & (314) 739-0526 \\
\hline Hamilton/Avnet (714) 989-4602 & Arrow & (319) 395-0730 & St. Louis \\
\hline Roseville & Hall-Mark & Hamilton/Avnet & Arrow \\
\hline Bell Industries & (813) 530-4543 & (319) 362-4757 & (314) 567.6888 \\
\hline (916) 969-3100 & Deerfield Beach & Schweber & NEW HAMPSHIRE \\
\hline Sacramento & Arrow & (319) 373-1417 & Manchester \\
\hline Hamilton/Avnet & (305) 429-8200 & KANSAS & Arrow \\
\hline (916) 925-2216 & Pioneer & Lenexa & (603) 668-6968 \\
\hline Schweber & (305) 428-8877 & Arrow & Hamilton/Avnet \\
\hline (916) 929-9732 & Ft. Lauderdale & (913) 541-9542 & (603) 624-9400 \\
\hline & Hamilton/Avnet & Overland Park & Schweber \\
\hline & (305) 971-2900 & Hamilton/Avnet & (603) 625-2250 \\
\hline & (305) 971-2900 & (913) 888-8900 & \\
\hline & & Schweber & \\
\hline & & (913) 492-2921 & \\
\hline
\end{tabular}

\section*{NATIONAL SEMICONDUCTOR CORPORATION AUTHORIZED DISTRIBUTORS (Continuod)}

NEW JERSEY
Cherry Hill
Hamilton/Avnet
(609) 424-0100

Fairfield
Arrow
(201) 575-5300

Hamilton/Avnet
(201) 575-3390

Lionex
(201) 227.7960

Schweber
(201) 227-7880

Marlton
Arrow
(609) 596-8000

Pine Brook
Pioneer Northeast
(201) 575-3510

NEW MEXICO
Albuquerque
Alliance Electronics
(505) 292-3360

Arrow
(505) 243-4566

Bell/Century
(505) 292-2700

Hamilton/Avnet
(505) 765-1500

NEW YORK
Brookhaven
Arrow
(516) 924-0700

Buffalo
Summit Distributors
(716) 887-2800

Fairport
Pioneer
(716) 381-7070

Farmingdale
Arrow
(516) 293-6363

Hauppauge
Arrow
(516) 231-1000

Hamilton/Avnet
(516) 434-7413

Lionex
(516) 273-1660

Liverpool
Arrow
(315) 545-0230

Melville
Arrow
(516) 391-1300

Rochester
Arrow
(716) 427-0300

Hamilton/Avnet
(716) 475-9130

Summit Electronics
(716) 334-8110

Ronkonkoma
Arrow
(516) 467-1000

Syracuse
Hamilton/Avnet
(315) 437-2641

Vestal
Pioneer
(607) 748.8211

Westbury
Hamilton/Avnet
(516) 997-6868

Schweber
(516) 334-7474

Woodbury
Pioneer (516) 921-8700

NORTH CAROLINA
Charlotte
Pioneer (704) 527-8188

Raleigh
Arrow
(919) 876-3132 Hamilton/Avnet (919) 878-0810 Schweber (919) 876-0000

Salem
Arrow
(919) 725-8711

OHIO
Centerville
Arrow (513)435-5563

Cleveland Hamilton/Avnet (216) 831-3500 Pioneer (216) 587-3600

Columbus
Arrow
(614) 885-8362

Dayton
Bell Industries
(513) 772-1661

Hamilton/Avnet (513) 439-6700 Pioneer
(513) 236-9900

Schweber (513) 439-1800

Highland Heights CAM/OHIO (216) \(461-4700\)

Solon Arrow (216) 248-3990

Westerville Hamilton/Avnet (614) 882-7004

OKLAHOMA
Tulsa Arrow (918) 665-7700 Quality Components (918) 664-8812 Radio Inc.
(918) 587-9123

Schweber (918) 622-8000

OREGON
Beaverton
Almac Electronics (503) 629-8090

Lake Oswego
Anthem Electronics
(503) 684-2661

Bell Industries
(503) 241-4115

Hamilton/Avnet
(503) 635-7850

Tigard
Arrow
(503) 684-1690

PENNSYLVANIA
Horsham
Lionex
(215) 443-5150

Pioneer
(215) 674-4000

Schweber
(215) 441-0600

Monroeville
Arrow
(412) \(856-7000\)

Pittsburgh
CAM/RPC
(412) 782-3770

Hamilton/Avnet
(412) 281-4150

Pioneer
(412) 782-2300

Schweber (412) 782-1600

TEXAS
Addison
Quality Components (214) 733-4300

Austin
Arrow
(512) 835-4180

Hamilton/Avnet
(512) 837-8911

Pioneer
(512) 835-4000

Quality Components
(512) 835-0220

Schweber
(512) 458-8253

Carrollton
Arrow
(214) 380-6464

Dallas
Hall-Mark
(214) 553-4300

Pioneer
(214) 386-7300

Schweber
(214) 661-5010

Houston
Arrow
(713) 530-4700

Hamilton/Avnet
(713) 780-1771

Pioneer
(713) 988-5555

Irving
Hamilton/Avnet
(214) \(659-4151\)

Sugarland
Quality Components
(713) 491-2255

UTAH
Salt Lake City
Anthem Electronics
(801) 973-8555

Arrow
(801) 972-0404

Bell Industries
(801) 972-6969

Hamilton/Avnet
(801) 972-4300

WASHINGTON
Bellevue Almac Electronics (206) 643-9992

Arrow
(206) 643-4800 Hamilton/Avnet (206) 453-5844

Redmond Anthem Electronics (208) 881-0850

WISCONSIN
Brookfield Arrow (414) 792.0150 Schweber (414) 784-9020

Milwaukee Taylor Electric Co. (414) 241-4321

New Berlin Hall-Mark (414) 761-3000 Hamilton/Avnet (414) 784-4516

Waukesha Bell Industries (414) 547-8879

CANADA
Western Provinces
Calgary Hamilton/Avnet (403) 230-3586 Zentronics (403) 272-1021

Edmonton Zentronics (403) 463-3014

Richmond Zentronics (604) 273-5575

Winnipeg Zentronics (204) 775-8661

Eastern Provinces
Brampton Zentronics (416) 451-9600

Doval Semad (514) 636-4614

Markham Semad (416) 475-8500

Missisauga Hamilton/Avnet (416) 677-7432

Nepean Hamilton/Avnet (613) 226-1700

Ottawa Semad (613) 729-6145 Zentronics (613) 238-6411

St. Laurent Hamilton/Avnet (514) 331-6443 Zentronics (514) 735-5361

Waterloo Zentronics (519) 884-5700

\section*{SALES OFFICES}
\begin{tabular}{l}
ALABAMA \\
Huntsville \\
(205) 533-1730 \\
ARIZONA \\
Temple \\
(602) 966-4563 \\
Phoenix \\
(602) 244-0735 \\
CALIFORNIA \\
Santa Clara \\
(408) 730-3009 \\
Roseville \\
(916) 969-5577 \\
Woodland Hills \\
(818) 888-2602 \\
Encino \\
(818) 990-4870 \\
Irvine \\
(714) 250-1440 \\
Santa Ana \\
(714) 954-0371 \\
San Diego \\
(619) 279-0724 \\
COLORADO \\
Englewood \\
(303) 790-8090 \\
Aurora \\
(303) 360-0955 \\
CONNECTICUT \\
Ridgefield \\
(203) 431-8182 \\
FLORIDA \\
No. Miami Beach \\
(305) 947-0031 \\
St. Petersburg \\
(813) 821-2281 \\
Orlando \\
(305) 629-1720 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline GEORGIA & MISSOURI & PENNSYLVANIA \\
\hline Atlanta
(404) 393-2626 & \[
\begin{aligned}
& \text { Kansas City } \\
& \text { (816) } 941-3535
\end{aligned}
\] & Ft. Washington (215) 643-4910 \\
\hline \begin{tabular}{l}
ILLINOIS \\
Schaumburg
\end{tabular} & St. Louis
(314) 569-3103 & \begin{tabular}{l}
TEXAS \\
Richardson
\end{tabular} \\
\hline (312) 397-8777 & NEW JERSEY & (214) 690-4552 \\
\hline Arlington Heights (312) 253-9440 & Paramus
(201) 599-0955 & \begin{tabular}{l}
(214) 669-4031 \\
Austin
\end{tabular} \\
\hline INDIANA & NEW YORK & (512) 339-3085 \\
\hline Carmel
(317) 843-7160 & \begin{tabular}{l}
Faiport \\
(716) 425-1358
\end{tabular} & Houston
(713) 270-6141 \\
\hline Indianapolis (317) 545-6441 & Syracuse
(315) 463-1248 & \begin{tabular}{l}
UTAH \\
Salt Lake City
\end{tabular} \\
\hline Fort Wayne (219) 484-0722 & \begin{tabular}{l}
Rochester \\
(716) 461-5252
\end{tabular} & \begin{tabular}{l}
(801) 261-5402 \\
WASHINGTON
\end{tabular} \\
\hline IOWA & \begin{tabular}{l}
Poughkeepsie \\
(914) 462-5600
\end{tabular} & \begin{tabular}{l}
Bellevue \\
(206) \(453-9944\)
\end{tabular} \\
\hline \begin{tabular}{l}
Cedar Rapids \\
(319) 395-0245
\end{tabular} & Melville & (206) 454-4600 \\
\hline \begin{tabular}{l}
MARYLAND \\
Hanover
\end{tabular} & (516) 351-1000 & \begin{tabular}{l}
WISCONSIN \\
Milwaukee
\end{tabular} \\
\hline (301) 796-8900 & NORTH CAROLINA & (414) 527-3800 \\
\hline MASSACHUSETTS Burlington (617) 273-3170 & \begin{tabular}{l}
(919) 481-4311 \\
(919) 469-9323
\end{tabular} & CANADA Mississauga (416) 678-2920 \\
\hline (617) 270-0160 & OHIO & Brampton \\
\hline MICHIGAN W. Bloomfield (313) 855-0166 & \begin{tabular}{l}
Highland Heights \\
(216) 461-0191 \\
(216) 442-1555 \\
Dayton
\end{tabular} & \begin{tabular}{l}
(416) 453-9121 Lachine \\
(514) 636-8525 \\
Nepean
\end{tabular} \\
\hline & (513) 435-6886 & (613) 596-0411 \\
\hline Bloomington (612) 854-8200 & (513) 435-0644 Worthington (614) 451-2400 & \begin{tabular}{l}
PUERTO RICO \\
Puerto Nuevo (809) 792-9110
\end{tabular} \\
\hline & OREGON Beaverton (503) 644-0304 & \\
\hline
\end{tabular}

\section*{ص National Semiconductor Corporation}

\author{
National Semiconductor Corporate Headquarters \\ 2900 Semiconductor Drive \\ P.O. Box 58090 \\ Santa Clara, CA 95052-8090 \\ Tel: (408) 721-5000 \\ TWX: (910) 339-9240
}

\section*{SALES OFFICES (Continued)}

\section*{INTERNATIONAL OFFICES}

Electronica NSC de Mexico SA
Juventino Rosas No. 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: (905) 524-9402
National Semicondutores
Do Brasil Ltda.
Av. Brig. Faria Lima, 830 8 Andar
01452 Sao Paulo, SP. Brasil
Tel: (55/11) 212-5066
Telex: 391-1131931 NSBR BR
National Semiconductor GmbH
Industriestraße 10
D-8080 Fürstenfeldbruck
West Germany
Tel: (0 8141) 103-0
Telex: 527649
National Semiconductor (UK) Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 1TR
United Kingdom
Tel: 0234-270027
Telex: 826209
National Semiconductor Benelux
Ave Charles Quint 545
B-1080 Bruxelles
Belgium
Tel: (02) 4661807
Telex: 61007

National Semiconductor (UK) Ltd.
1. Bianco Lunos Alle

DK-1868 Fredriksberg C
Denmark
Tel: (01) 213211
Telex: 15179
National Semiconductor
Expansion 10000
28, Rue de la Redoute
F-92 260 Fontenay-aux-Roses
France
Tel: (01) 46608140
Telex: 250956
National Semiconductor S.p.A.
Via Solferino 19
20121 Milano
Italy
Tel: (02) 6596146
Telex: 332835
National Semiconductor AB
Box 2016
Stensätravägen 13
S-12702 Skärholmen
Sweden
Tel: (08) 970190
Telex: 10731
National Semiconductor
Calle Agustin de Foxa, 27 (9.D)
28036 Madrid
Spain
Tel: (01) 7332958
Telex: 46133

National Semiconductor
Switzerland
Alte Winterthurerstrasse 53
Postfach 567
CH-8304 Wallisellen-Zurich
Tel: (01) 830-2727.
Telex: 59000
National Semiconductor
Pasilanraitio 60
SF-00240 Helsinki 24
Finland
Tel: (90) 140344
Telex: 124854
NS Japan Ltd.
4-403 lkebukuro, Toshima-ku
Tokyo 171, Japan
Tel: (03) 988-2131
Fax: 011-81-3-988-1700
National Semiconductor
Hong Kong Ltd.
Southeast Asia Marketing
Austin Tower, 4th Floor
22-26A Austin Avenue
Tsimshatsui, Kowloon, H.K.
Tel: 3-7231290
Tel: 852 3-7243645
Cable: NSSEAMKTG
Telex: 52996 NSSEA HX

\section*{National Semiconductor}

Advanced Systems PTY LTD
11-17 Khartoum Road
North Ryde, N.S.W. 2113
Sydney, Australia
Tel: 61-2-887-4455
Telex: AA27173
National Semiconductor (PTE),
Ltd.
200 Cantonment Rd. 13-01
Southpoint
Singapore 0208
Tel: 2252226
Telex: RS 33877
National Semiconductor (Far East)
Ltd.
Taiwan Branch
P.O. Box 68-332 Taipei

7th Floor, Nan Shan Life Bldg.
302 Min Chuan East Road,
Taipei, Taiwan R.O.C.
Tel: (02) 501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI
National Semiconductor (Far East)
Ltd.
Korea Office
Third Floor, Hankyung Bldg.
4-25 Hannam-Dong
Yongsan-Ku, Seoul 140, Korea
Tel: 797-8001/3
Telex: K24942 NSRK```

[^0]: *The above timing equations hold for all combinations of $R_{E X T}$ and $C_{E X T}$ for all cases of $C_{E X T}>1000 \mathrm{pF}$ within specified limits on the $\mathrm{R}_{\mathrm{EXT}}$ and $\mathrm{C}_{\mathrm{EXT}}$.

[^1]: \dagger Please see the ALS/AS Databook for this datasheet.

[^2]: \dagger Please see the ALS/AS Databook for this datasheet.

[^3]: \dagger Please see the ALS/AS Databook for this datasheet.

[^4]: Note 1：All typicals are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ．

[^5]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

[^6]: $H=$ High Logic Level
 L = Low Logic Level

[^7]: $H=$ High Logic Level
 L = Low Logic Level
 $\mathrm{X}=$ Either Low or High Logic Level

[^8]: H = High Logic Level
 L = Low Logic Level
 $X=$ Either Low or High Logic Level

[^9]: $H=$ High Logic Level
 L＝Low Logic Level
 X＝Either Low or High Logic Level

[^10]: Note 1: All typicals are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^11]: H = High Logic Level
 L = Low Logic Level

[^12]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

[^13]: H = High Level, L = Low Level, X = Don't Care

[^14]: * $\mathrm{G} 2=\mathrm{G} 2 \mathrm{~A}+\mathrm{G} 2 \mathrm{~B}$

[^15]: $H=$ High Level, $L=$ Low Level, $X=$ Don't Care
 $\mathrm{DO}, \mathrm{D} 1 \ldots \mathrm{I} 7=$ the level of the respective D input

[^16]: See Address Buffers to the Right

[^17]: $H=$ High Level (steady state), $L=$ Low Level (steady state), $X=$ Don't Care (any input, including transitions)
 $\uparrow=$ Transition from low to high level
 a, $b, c, d=$ The level of steady state input at inputs A, B, C or D, respectively.
 $Q_{A O}, Q_{B O}, Q_{C 0}, Q_{D O}=$ The level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady state input conditions were established.
 $\mathrm{Q}_{\mathrm{An}}, \mathrm{Q}_{\mathrm{Bn}}, \mathrm{Q}_{\mathrm{Cn}}, \mathrm{Q}_{\mathrm{Dn}}=$ The level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, respectively, before the most-recent \uparrow transition of the clock.

[^18]: L = Low Logic Level
 $\mathrm{H}=$ High Logic Level
 $X=$ Either Low or High Logic Level
 $Z=$ High Impedance

[^19]: $H=$ High Level, $L=$ Low Level, $X=$ Irrelevant

[^20]: H = High Level, L = Low Level
 $D=$ the Level of the Data Input
 $Q_{i 0}=$ the Level of $Q_{i}(i=0,1, \ldots 7$, as Appropriate) before the Indicated Steady-State Input Conditions Were Established.

[^21]: H = High Level, L = Low Level
 Note: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs $\Sigma 1$ and $\Sigma 2$ and the value of the internal carry C 2 . The values at $\mathrm{C} 2, \mathrm{~A} 3, \mathrm{~B} 3, \mathrm{~A} 4$, and B4 are then used to determine outputs $\Sigma 3, \Sigma 4$, and $\mathbf{C 4}$.

[^22]: $H=$ High Logic Level
 $L=$ Low Logic Level
 $X=$ Either Low or High Logic Level
 $\mathrm{Hi}-\mathrm{Z}=$ TRI-STATE (Outputs are disabled)

[^23]: H = High Logic Level
 $\mathbf{L}=$ Low Logic Level
 $X=$ Either High or Low Logic Level
 $\mathrm{Hi}-\mathrm{Z}=$ High Impedance (Off) State

[^24]: H = High Logic Level
 L = Low Logic Level

[^25]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^26]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

[^27]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

[^28]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

[^29]: $H=$ High Logic Level
 L = Low Logic Level
 $X=$ Either Low or High Logic Level

[^30]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^31]: H = High Logic Level
 L = Low Logic Level
 X = Either Low or High Logic Level

[^32]: $H=$ High Logic Level
 $L=$ Low Logic Level
 $X=$ Either Low or High Logic Level

[^33]: $H=$ High Level (steady state)
 L = Low Level (steady state)
 X = Don't Care
 $\uparrow=$ Transition from low to high level
 $Q_{0}=$ The level of Q before the indicated steady-state input conditions were established.
 $t=\mathbf{S 1 7 5}$ only

[^34]: $H=$ High Level, $L=$ Low Level, $X=$ Don't Care
 $Z=$ High Impedance (off)

[^35]: $H=$ High Logic Level
 L = Low Logic Level

[^36]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^37]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

[^38]: H = High Logic Leve
 L. = Low Logic Level

[^39]: $H=$ High Logic Level
 L = Low Logic Level
 X = Either High or Low Logic Level

[^40]: H = High Logic Level
 L = Low Logic Level

[^41]: Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^42]: H = High Leve
 L = Low Level

[^43]: $\mathrm{H}=$ High Level, $\mathrm{L}=$ Low Level, $\mathrm{X}=$ Don't Care

[^44]: Order Number DM5493AJ or DM7493N See NS Package Number J14A or N14A

[^45]: $H=$ High Level, $L=$ Low Level, $X=$ Don't Care D0, D1 \ldots D7 $=$ the level of the respective D input

[^46]: $H=$ High Logic Level
 L = Low Logic Level
 $X=$ Either Low or High Logic Level
 $\mathrm{Hi}-\mathrm{Z}=$ TRI-STATE (Outputs are disabled)

[^47]: H = High Logic Level
 L = Low Logic Level
 $X=$ Either Low or High Logic Level
 Hi-Z $=$ TRI-STATE (Outputs are disabled)

[^48]: -Latched in previous state.
 $H=$ High Logic Level
 $L=$ Low Logic Level

[^49]: $\mathrm{H}=$ High Logic Level
 L = Low Logic Level

