

A Corporate Dedication to
Quality and Reliability

National Semiconductor is an industry leader in the
manufacture of high quality, high reliability integrated
circuits. We have been the leading proponent of driv
ing down IC defects and extending product lifetimes.
From raw material through product design, manufac
turing and shipping, our quality and reliability is second
to none.
We are proud of our success ... it sets a standard for
others to achieve. Yet, our quest for perfection is on
going so that you, our customer, can continue to rely
on National Semiconductor Corporation to produce
high quality products for your design systems.

Charles E. Sporck
President, Chief Executive Officer
National Semiconductor Corporation

i

Wir fuhlen uns zu Qualitat und
Zuverlasslgkeit verpflichtet

National Semiconductor Corporation ist fuhrend bei der Har
stellung von integrierten Schaltungen hoher Qualitat und
hoher Zuverlassigkeit. National Semiconductor war schon
immer Vorreiter, wenn es gait, die Zahl von IC Ausfallen zu
verringern und die Lebensdauem von Produkten zu verbes
sem. Vom Rohmaterial Uber Entwurf und Herstellung bis
zur Auslieferung die Qualit!t und die Zuverlassigkeit der
Produkte von National Semiconductor sind unubertroffen.

Wir sind stolz auf unseren Erfolg, der Standards setzt, die
fur andere erstrebenswert sind. Auch ihre Anspruche steig
en stAndig, Sia als unser Kunde konnen sich auch weiterhin
auf National Semiconductor verlassen.

La Qualite et La Fiabilite:
Une Vocation Commune Chez National
Semiconductor Corporation

National Semiconductor Corporation c'est l'un des leaders
industrials qui fabrique des circuits integres d'une tres
grande qualite et d'une fiabilite exceptionelle. National a ate
le premier a vouloir faire chuter le nombre de circuits in
tegres defectueux et a augmenter la duree de vie des pro
duits. Depuis les matieres premieres, en passant par la con
ception du produit sa fabrication et son expedition, partout
la qualite et la fiabilite chez National sont sans equivalents.

Nous sommes fiers de notre succes et le standard ainsi
defini devrait devenir l'objectif a atteindre par les autres so
cietes. Et nous continuons a vouloir faire progresser notre
recherche de la perfection; ii en resulte que vous, qui ~tes
notre client, pouvez toujours faire confiance a National
Semiconductor Corporation, en produisant des systemes
d'une tres grande qualite standard.

Charles E. Sporck

Un lmpegno Societario di Qualita e
Affidabilita

National Semiconductor Corporation e un'industria al ver
tice nella costruzione di circuiti integrati di alta qualita ed
affidabilita. National e stata ii principale promotore per l'ab
battimento della difettosita dei circuiti integrati e per. l'allun
gamento della vita dei prodotti. Dal materiale grezzo attrav
erso tutte le fasi di progettazione, costruzione e spedizior:ie,
la qualita e affidabilita National non e seconda a nessuno.

Noi siamo orgogliosi del nostro successo che fissa per gli
altri un traguardo da raggiungere. II nostro desiderio di per
fezione e d'altra parte illimitato e pertanto tu, nostro cliente,
puoi continuare ad affidarti a National Semiconductor Cor
poration per la produzione dei tuoi sistemi con elevati livelli
di qualita.

President, Chief Executive Officer

National Semiconductor Corporation

ii

Programmable. Logic
Design Guide

Bipolar Memory
National Semiconductor Corporation
Santa Clara, California ·

iii

TRADEMARKS

Following is the most current list of National Semiconductor Corporation's trademarks and registered trademarks.

AbuseableTM DPVM™ MST™ SPIRE™
AnadigTM ELSTAR™ National® STAR™
ANS-R-TRANTM E-Z-LINKTM NAX 800TM Starlink™
Auto-Chem DeflasherTM GENIXTM Nitride PlusTM ·STARPLEXTM

81-FET™ HEX 3000TM · Nitride Plus OxideTM STARPLEX 11™
81-FET 11™ IN FOCH EX™ NML™ SuperChipTM

Bl-LINE™ Integral ISE™ NOBUSTM SYS32™
Bl PLAN™ lntelisplayTM NSC800TM TAPE-PAK™
BLCTM ISE™ NSX-16™ TDS™
BLX™ ISE/06™ NS-XC-16™ TeleGateTM

Brite-Lite TM ISE/08™ NU RAM™ The National Anthem®
BTLTM ISE/16™ OXISS™ Time,..,ChekTM
CIMTM ISE32™ Perfect Watch™ TLCTM

CIMBUSTM MacrobusTM Pharm8""~hekTM Trapezoidal™
Cloc~ChekTM MacrocomponentTM PLAN™ TRI-CODE™
COMBOTM Mea1""Chek™ PolycraftTM TRI-POLY™
COPS™ microcontrollers MicrobusTM data bus POSitalkerTM TRI-SAFE™
DATACHECKER® (adjective) QUAD3000TM TRI-STATE®
DENSPAKTM MICRO-DAC™ RAnM XMOS™
DIBTM µtalkerTM RTX16™ XPUTM

Digitalker® MicrotalkerTM Scrip1""ChekTM ZSTAR™

DISCERN™ MICROWIRE™ Shelf-Chek™ 8838/RETS™

DISTILL™ MICROWIRE/PLUS™ SERIES/800™ 883S/RETS™
DNRTM MOLE™ Series 32000TM

PAL• is a registered trademark of Monolithic Memories, Inc.

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR COR-
PORATION. As used herein:

1. Life support devices or systems are devices or systems 2. A critical component is any component of a life support
which, (a) are intended for surgical implant into the body, device or system whose failure to perform can be reason-
or (b) support or sustain life, and whose failure to per- ably expected to cause the failure of the life support de-
form, when properly used in accordance with instructions vice or system, or to affect its safety or effectiveness.
for use provided in the labeling, can be reasonably ex-
pected to result in a significant injury to the user.

NatlonalSemlconductorCorporatlon 2900 Semiconductor Drive, P.O. Box 58090, Santa Clara, California 95052-8090 (408) 721-5000
TWX (910) 339-9240
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and National reserves the right, at any time
without notice, to change said circuitry or specifications.

iv

Preface

The CLASS TM Revolution

The nature of logic design· is changing and National Semiconductor is leading this
change into software-based logic and systems design through the use of structured pro
grammable logic arrays. We welcome you to join us in .the CLASS revolution. CLASS
stands for Complete Logic And Software Solutions, and it exemplifies National's com
mitment to the design, development and support of programmable logic devices, and
to the software-based design tools that can make the logic and system designer's task
easier.

v

Table of Contents

1.0 Introduction
1.1 Purpose of this Design Guide 1
1.2 Overview of Programmable Logic 1
1.3 National Semiconductor, The Leader 2

2.0 Programmable Logic Basics
2 .1 What is Programmable Logic 3
2.2 User Benefits of Programmable Logic 4

Reduced Board Space 4
Fast Systems Design · 5
Design Flexibility 5
Multi-level Logic Reduction ... _. , 5
Cost Reduction ... 5
Example to Illustrate Lower Component Costs 7
Example of Cost Reduction Through Reliability Improvements ... 8
Small Inventory ... 9

2.3 Elements of Programmable Logic 10
The PROM .. 10
The FPLA ... 12
The PAL (Programmable Array Logic) Device 14
Comparison . 16

2.4 Programmable Logic Versus Other LSI, Semicustom and Custom
Alternatives ... 17

Standardized LSI 17
Full Custom ICs .. 17
Gate Arrays ... 18

3.0 Boolean Logic Review
3 .1 Basic Operators and Theorems 19
3.2 Derivation of a Boolean Expression 21
3.3 Minimization .. 24
3.4 K-mapMethod ~ 25
3. 5 Sequential Circuit Elements 31
3.6 State Machine Fundamentals 34

vii

viii Programmable Logic Design Guide

4.0 The Programmable Logic Family
4.1 Basic Groups .. 39
4.2 The PAL Family ... 39

PAL Devices for Every Task : ·. : 41
Gates .. 41
Register Options With Feedback · 41
Programmable 1/0 42
PAL Device - Speed/Power Groups 42
PAL Device Logic Symbols .. ; 43

4.3 The Prom Family · ~ 47
4.4 Logic Diagrams . 49

5.0 How to Design With Programmable Logic
5 .1 Problem Definition 83
5.2 Device Selection : 84
5.3 Writing Logic Equations 87
5. 4 Programming the Device 88
5.5 Testing the Device : 89
5.6 Programmer Vendor List 90
5.7 Examples

Example 1: Replace Existing Logic 92
Example 2: Design a Multiplexer · ... · 95
Example 3: Design a 3-bit Counter 100
Example 4: Design a Video-Telephone Sync Pulse Detector 102

6.0 Software Support
6.1 Advantages of Software-Based Programmable Logic Design 107
6.2 Programmable Logic Analysis by National (PLAN) 108

Boolean Entry . 109
File Editing and Documentation ; : 110
Programming and Testing 110

6.3 Other Software ... 112
CUPL ... 112
P.AIASM .. 116
ABEL ... 116

6.4 Software for Testing Programmable Logic 120
6.5 Software Vendor List 120

7 .0 Testing and Reliability
7 .1 National Factory Testing 121
7 .2 Logic Verifications 123
7 .3 Customer's Responsibilities 126
7.4 · · Reliability Data ; ·. · 126
7.5 PAL Device Functional Testing 127

Table ofContents ix

Combinational and Sequential Circuits 127
Description of PAL (Programmable Array Logic) Device 128
PAL Device Design Procedures 128
Description of Functional Table ; 129
How to Generate Test Vectors and the Function Table

From Logic Equations 133
7 .6 Example of Testing . 136

Example 1: Combinational PAL12H6 . 136
Description , . 136

Example 2: Sequential PAL 16R4 . 143
Description ... 143

8.0 Applications
8.1 Basic Gates .. 157
8.2 Basic Clocked Flip-Flops : 162
8.3 Memory-Mapped I/O (Address Decoder) 168

Functional Description 168
8.4 Hexadecimal Decoder/Lamp Driver 172

Functional Description . 172
General Description : 172
PAL Device Implementation . 174

8.5 Between Limits Comparator/Logic 178
8.6 Quadruple 3-Line/1-Line Data Selector Multiplexer 181
8.7 4-bit Counter with 2-Iriput Multiplexer 183
8.8 8-bit Synchronous Counter 187
8.9 6-bit Shift Register with Three-state Outputs 190
8.10 Portion of Random Control Logic for 8086 CPU Board 194
8.11 DP84312 Dynamic RAM Controller

Interface Circuit for the NS32032, CPU . 197
General Description 197
Features .. 197
Mnemonic Description . 200
Functional Description . 200

8.12 DP84322 Dynamic RAM Controller Interface Circuit
for the 68000 CPU . 207

General Description : 207
Features . 207
Mnemonic Description ~ 211
Functional Description : 211

8.13 DP84332 Dynamic RAM Controller Interface Circuit
for the 8086 and 8088 CPUs . 227

General Description . 227
Features . 228
Mnemonic Description . 230

x Programmable Logic Design Guide

Functional Description . 230
System Description 231
Refresh Request Logic · .. : . 233

8.14 A PAL Device Interface Between the National Semiconductor
NS32032 Microprocessor, DP8409 Dynamic RAM Controller,
and the DP8400 Expandable Error Checker and Corrector 242

9.0 National Masked Logic (NML)
9 .1 NML Procedure . 269
9.2 NML Guidelines .. 270

10.0 Advantages of National's Programmable Logic Family
10. 1 Technology . 271
10.2 Broad Product Line 271
10.3 Customer Service and Support 272

11.0 Data Sheets
11.1 PAL Device Data Sheets . 273

Description .. 273
Features ... 274
20-Pin, Standard, Small PAL Devices 276
20-Pin, Standard, Medium PAL Devices 277
20-Pin, Fast, Small PAL Devices 279
20-Pin, Fast, Medium PAL Devices . 280
20-Pin, Ultra High-Speed, Medium PAL Devices 282

20-Pin, Fast, Half-Power, Small PAL Devices ; 284
20-Pin, Fast, Half-Power, Medium PAL Devices 286
20-PIN, Ultra High-Speed, Half-Power, Medium PAL Devices 288
24-Pin, Standard PAL Devices _. 290
24-Pin, Fast PAL Devices ... 292
11.2 ProgrammingNerifying Procedure-20 Pin PAL Devices 294

Pre-verification .. 294
Progr~mming Algorithm 295
Programming the Security Fuses : 297

11.3 ProgrammingNerifying Procedure-24 Pin PAL Devices 298
Pre-Verification 298
Programming Algorithm". 298
Programming the Security Fuses 301

11.4 Logic PROM Data Sheets 304
Descriptions ... 304
Testability · ... _ 304
Reliability 304

11.5 DM54/74S188, DM54/74S288 (32 x 8) 256-bit TTL PROMs 307
11.6 PL77 /87X288 (32 + 8) 256-bit TIL PROM 309

Table of Contents xi

11.7 DM54/74LS471 (256 + 8) 2K-bit TIT. PROM . 311
11.8 DM54/74S473, DM54/74S472, DM54/74S473A, DM54/74S472A

DM54/74S472B (512 x 8) 4K-bit TTL PROMS 313
General Description : 313
Features .. 313

11.9 DM54/74S475, DM54/74S474, DM54/74S475A, DM54/74S474A
DM54/74S474B (512 x 8) 4K-bit TTL PROMS 316

General Description 316
Features- 316

11.10 DM77/87SR474, DM77/87SR474B (512 x 8) 4K~bit
Registered TTL PROMs 319

Resistered TTL PROMs
General Description 319
Features ... 320

11.11 DM77/87SR476, DM77/87SR25, DM77/87SR476B, DM77/87SR25B
(512 x 8) 4K-bit Registered TTL PROMs 323

General Description 323
Features .. 323

11.12 Registered PROM Programming Procedure 327
11.13 Non-Registered PROM Programming Procedure 329
11.14 Quality Enhancement Programs 332

· 12.0 Package Outlines ... 333
13.0 Terminology ... 341

Appendix-An Overview of LSI Testing Techniques 347
Al Testing Methods .. 348

Concurrent Testing ... 348
Explicit Testing ... 349

A.2 Test Generation Techniques 351
NP-Complete Problems 352
Manual Test Generation 355
Path Sensitization and the D-Algorithm 357
Algorithmic Test Generation 359
The Thatte-Abraham Technique 360
The Abadir-Reghbati Technique 362
Simulation-Aided Test Generation 363
Binary Decision Diagrams 365
Random Test Generation 367

A.3 Response Evaluation Techniques 368
Good Response Generation 368
Stored Response Testing 368
Comparison Testing .. 3 70
Compact Testing · 370
Transition Counting : 3 71
Signature Analysis .. 3 73

List of Illustrations

Figure No.

2.1.1
2.1.2
2.2.1
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6

3.1.1
3.2.1
3.2.2
3.2.3
3.3.1
3.3.2
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8
3.4.9
3.4.10
3.4.11
3.5.1
3.5.2
3.6.1
3.6.2
3.6.3

Page No.

Conventional Representation . 3
Programmable Logic Representation . 4
Multilevel Logic Reduction _. 6
Diode OR Matrix : 10
4 x 4 Bit PROM . 11
PROM Having 16 Words x 4 Bits 12
FPLA Having 4 Inputs, 4 Outputs, and 16 Products 13
PAL Device Having 4 Inputs, 4 Outputs, and 16 Products 15
(a) Logic Equation, (b) PROM Solution, (c) FPLA Solution,
(d) PAL Device Solution . 16

Basic Gates . 19
Logic Circuits of Eq. 3.2.1 . 23
Logic Circuits of Eq. 3.2.2 . 23
Simplified Logic Circuits . 24
A Random Logic Circuit . 24
Minimied Logic Circuit . 25
Truth Tables for AND and OR ~ 26
K-maps for AND and OR ~ . 26
K-maps for 3-Variables AND and OR . 27
Sample 3-Variable K-maps ·. 28
K-maps for Two and Three Variables . 28
K-map of m (O, 2, 3, 7) . 29
K-map of M (O, 1, 5, 6) . 29
Adjacent Minterms on a K-map _ 29
Minimization 30
Minimization -. 30
Minimization . 31
Basic Flip-Flops . 32
Implement D Flip-Flop by UsingJ-K -.................. ;.. 33
A Typical Sequential Circuit . 34
State Diagram .. 35
Example of Hazard Circuit . 36

xiii

xiv Programmable Logic Design Guide

Figure No.

3.6.4
3.6.5

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3.1
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10
4.4.11
4.4.12
4.4.13
4.4.14
4.4.15
4.4.16
4.4.17
4.4.18
4.4.19
4.4.20
4.4.21
4.4.22
4.4.23
4.4.24
4.4.25
4.4.26
4.4.27
4.4.28
4.4.29

' 4.4.30
4.4.31
4.4.32

Page No.

Example of Unstable Circuit . 36
Example fo Circuit With Unpredictable Output States 37

PAL Device Output Register Circuit, Simplified Logic Diagram 41
PAL Device Bidirectional Circuit, Logic Diagram 42
Logic Symbol. DMPAL10H8 ; 43
PAL Device Logic Symbols - Series 20 44
PAL Device Logic Symbols - Series 24 46
PROM Logic Symbols . 49
Logic Diagram PAL10H8 .. SO
Logic Diagram PAL12H6 . Sl
Logic Diagram PALl 4H4 . S2
Logic Diagram PAL16H2 .. S3
Logic Diagram PAL16Cl . S4
Logic Diagram PAL10L8 ... SS
Logic Diagram PAL12L6 ... S6
Logic Diagram PALl 4L4 . S7
Logic Diagram PAL16L2 ... S8
Logic Diagram PAL16L8 ... S9
Logic Diagram PAL16R8 ... 60
Logic Diagram PAL1,6R6 ... 61
Logic Diagram PAL16L4 ... 62
Logic Diagram PAL12L10 . 63
Logic Diagram PAL14L8 ... 64
Logic Diagram PAL16L6 ... 6S
Logic Diagram PAL18L4 ... 66
Logic Diagram PAL20L2 . 67
Logic Diagram PAL20Cl . 68
Logic Diagram PAL20L10 . 69
Logic Diagram PAL20X10 .. 70
Logic Diagram PAL20X8 ... 71
Logic Diagram PAL20X4 . 72
Logic Diagram.PAL20L8 . 73
Logic Diagram PAL20R8 . 74
Logic Diagram PAL20R6 . 7S
Logic Diagram PAL20R4 . 76
32 x 8 PROM Logic Diagram . 77
2S6 x 8 PROM Logic Diagram . 78 ·
S12 x 8 PROM Logic Diagram . 79
512 X 8 PROM Logic Diagram, SR476/SR25 : 80
512 x 8 Register PROM Logic Diagram 81

Figure No.

5.1.1
5.3.1
5.3.2
5.4.1
5.5.1
5.7.1
5.7.2
5.7.3'
5.7.4
5.7.5
5.7.6
5.7.7
5.7.8
5.7.9
5.7.10
5.7.11
5.7.12

6.1.1
6.1.2
6.2.2
6.2.2
6.3.1
6.3.2
6.3.3
6.3.4

7.1.1
7.2.1
7.2.2
7.2.3
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8

List of Illustrations xv

.Page No.

Design Sequence of the Programmable Logic Device 83
Combinational PAL Device Design Steps . 87
Sequential PAL Device Design Steps . 88
PAL Device Programming Procedures_............................ 89
Test Vectors Creating Steps . 90
Design Example, Logic Diagram . 92
Example of PALASM Program Input . 93
PALASM Operators . 94
Logic Diagram of the National Type 12L6 PAL Device 96
PAL Device Legend . 97
Block Diagram of a Multiplexer . 98
Logic Diagram of the National Type 14H4 PAL Device 99
3-Bit Counter · · 100
K-map . 101
Sweep Generation . 102
(a) State Diagram, (b) State Table . 103
K-map 105

Early Role of Software . 107
Expanded Role of Software , . 108
Plan File Information . 110
Fuse Map Display from Plan . 111
CUPL-GTS Screen Display Example 115
Block Diagram: 6809 Memory Address Decoder 117
Simplified Block Diagram 118
Source File: 6809 Memory Address Decoder . 119

PAL Device Test Flow . 122
PAL Devices Architecture ; 123
Function of Test Vector . 124
3-Input and Gate . 124
Combinational Circuit . 126
Sequential Circuit ·.. 128
Combinational PAL Device Design Steps , 130
Sequential PAL Device Design Steps . 131
PAL Device Programming Procedures . 132
Test Vector and Function Table Creating Steps ~ ; 133
Logic Circuit of Example #1 . 136
State Diagram . 152

xvi Programmable Logic Design Guide

Figure No.

8.1.1
8.1.2
8.2.1
8.3.1
8.3.2
8.4.1
8.4.2
8.5.1
8.5.2
8.6.1
8.7.1
8.7.2
8.9.1
8.10.1
8.11.1
8.11.2
8.11.3

8.11.4
8.11.5
8.11.6
8.12.1
8.12.2
8.12.3
8.12.4
8.12.5
8.12.6
8.12.7
8.12.8
8.12.9
8.12.10
8.12.11
8.12.12
8.13.1
8.13.2
8.13.3
8.13.4
8.13.5
8.13.6
8.13.7
8.13.8

Page No.

Basic Gates . 157
Logic Diagram PAL12H6 . 160
Logic Diagram PAL16R8 : 167
Memory Mapped 110 Logic Diagram 168
Logic Diagram PAL16L2 : . 171
Hex Display Decoder-Driver, Combinational Logic Diagram 173
Logic Diagram PAL16L8 . 177
PAL Device 16Cl Limit Checker . 178
Logic Diagram PAL16Cl . 180
Logic Diagram PALl 4H4 . 182
Four-Bit Counter With Two-Input Multiplexer . 183
Logic Diagram PAL16R4 . 186
Logic Diagram PAL16R6 , . 193
Control Logic for 8086 CPU Board . 194
Connection Diagram .. 197
System Block Diagram . 199
Timing Diagram; Read, Write or Hidden Refresh Memory
Cycle for the NS16032-DP8409 Interface . 202
Timing Diagram; Read, or Write Memory Cycle With One Wait 202
Timing Diagram; Forced Refresh cycle . 203
DP84312 Logic Diagram PAL16R6 . 206
Connection Diagram . 207
Block Diagram . 208
System Block Diagram . 210
Timing Diagram; 68000 Memory Read Cycle -. 216
Timing Diagram; 68000 Memory Read Cycle and Forced Refresh . . 217
Timing Diagram; TAS Instruction Cycle . 218
Timing Diagram; Memory Read Cycle . 219
Timing Diagram; Memory Read Cycle and Forced Refresh 220
Modified System Block Diagram . 221
Timing Diagram 68000 Memory Read Cycle . 222
. Timing Diagram 68000 Memory Read Cycle and Memory Refresh . 223
DP84322 Logic Diagram PAL Device 16R4 . 226
Connection Diagram . 227
Block Diagram -. 228
System Block Diagram . 232
Using a Flip-Flop and a Counter for Refresh Request Logic 233
Using the DP84300 Refresh Counter for Refresh Logic 233
Timing Diagram; Read Timing . 234
Timing Diagram; Write Timing . 235
Timing Diagram; Memory Cycle With 1 Wait State· 236

Figure No.

8.13.9
8.13.10
8.13.11
8.14.1
8.14.2
8.14.3
8.14.4
8.14.5
8.14.6
8.14.7
8.14.8
8.14.9
8.14.10
8.14.11
8.14.12

8.14.13

8.14.14
8.14.15
8.14.16
8.14.17

9.1.1

11.1.1
11.2.1
11.3.1
11.3.2
11.4.1
11.4.2
11.4.3
11.4.4
11.5.1
11.6.1
11.7.1
11.8.1
11.9.1
11.10.1
11.11.1
11.12.1
11.13.1

List of Illustrations xvii

Page No.

Timing Diagram; Forced Refresh . 23 7
Timing Diagram, Transparent Refresh . 238
84332 Logic Diagram PAL16R8 . 241
DP8400, DP8409, NS16032 6 MHz Computer System 242
DP8400/8409 System Interface Block Diagram . 245
Timing Diagram; Read Cycle and Write Cycle . 250
Timing Diagram; Read Cycle With Simple Bit Error 251
Timing Diagram; Byte Write . 252
Timing Diagram; Forced Refresh Then Access . 253
Simulation Circuit . 254
Simulation Timing Diagram; Read!Wrtie Without Errors 255
Simulation Timing Diagram; Read With Error and Write Cycle 256
Simulation Timing Diagram; Byte Write . 257
Simulation Timing Diagram; Forced Refresh Then Access 258
Simulation Timing Diagram; Write, Forced Refresh and
Read Access . 259
Simulation Timing Diagram; Forced Refresh Followed by
Read Access (With Error) . 260
Logic Diagram of PAL Device #1 . 265
Logic Diagram of PAL Device #2 . 266
Logic Diagram of PAL Device #3 . 267
Logic Diagram of PAL Device #4 . 268

NML Procedure . 270

Test Waveforms and Schematics of Inputs and Outputs 275
Pin Assignment for Programming . 294
Pin Assignment for Programming ; . 298
Programming Waveforms . 302
Standard Test Load . 305
Switching Time Waveforms Non-Registered PROMs 305
Switching Waveforms, Registered PROM . 306
Key to Timing Diagram . 306
Block and Connection Diagram . 307
Block and Connection Diagram . 309
Block and Connection Diagram . 311
Block and Connection Diagram . 313
Block and Connection Diagram . 316
Block and Connection Diagram . 320
Block and Connection Diagram . 324
Programming Waveforms, Registered PROM . 329
Programming Waveforms, Non-Registered PROM 331

xviii Programmable Logic Design Guide

Figure No. Page No.

12.1 NS PackageJ16A, 16-Lead Cavity DIP 0) 3?3
12.2 NS Package N16E, 16-Lead Molded DIP (N) (Substitute for N16A) ; ': 334
12.3 NS PackageJ20A, 20-Lead Cavity DIP 0) . 334
12.4 NS Package N20A, 20-Lead Molded DIP (N) . 335
12.5 NS Packagej24F, 24-Lead Cavity DIP 0) . 335
12.6 NS Package N24C, 24-Lead Molded DIP (N) . 336
12. 7 NS Package J24A, 24-Lead Cavity DIP 0) . 336
12.8 NS Package N24A, 24-Lead Molded DIP (N) 337
12.9 NS Package PCC-20, 20-Lead Plastic Leaded Chip Carrier (V) 338
12.10 NS Package PCC-28, 28-Lead Plastic Leaded Chip Carrier (V) 339

A.1.1
A.2.l{a)
A.2.l{b)
A.2.2
A.2.3{a)
A.2.3(b)
A.2.3(c)
A.2.3{d)
A.2.4(a)
A.2.4{b)
A.2.4{c)
A.2.5
A.2.6
A.3.1
A.3.2
A.3.3
A.3.4
A.3.5

LSI Test Technology . 350
A One-Out-of-Four Multiplexer-Gate-Level Description ·... 353
Functional-Level Description ., 353
Gate-Level Description of a Three-Bit Incrementer 354
Transfer Instruction . 361
Add Instruction .. \ 361
OR Instruction ; 361
Rotate Left Instruction 361
A Half-Adder ... :. 365
Binary Decision Diagram for C = x•y . 365
Binary Decision Diagram for S = X +. Y(c) i· 365
Simplified Binary Decision Diagrams for the Half-Adder ·: 366
Binary Decision Diagrams for a Full-Adder . 366
Stored Response Testing . 369
Comparison Testing · , 369
Compact Testing ; 371
One-Out-of-Four Multiplexer . 372
The 16-Bit Linear Feedback SR Used in Signature Analysis 373

List of Tables

Table No. Page No.

2.2.1 Typical Component Cost Structure . 7
2.2.2 System Cost Comparison Between SSI/MSI Based System and

PAL Device Based System . 8

3.2.1 Truth Table of Eq. 3.2.1 and 3.2.2 . 22
3.6.1 State Table . 34

4.2.1 Members of the 20-Pin PAL Device Family . 39
4.2.2 Members of the 24-Pin PAL Device Family . 40
4.2.3 PAL Device Part Number Interpretation . 40
4.2.4 20-Pin PAL Device Speed/Power Groups . 42
4.2.5 24-Pin Speed/Power Groups . 43
4.3.1 PROM Configurati.ons ; 47
4.3.2, PROM Products for Logic . 48

5.1.1 Typical PAL Circuits . 84
5.2.1 20-Pin PAL Device Configuration . 85
5.2.2 24-Pin PAL Device Configuration . 86
5.6.1 PAL Device Programmers . 90
5.6.2 PAL Device Development Systems . 91
5.7.1 Fuse Map . 95
5. 7 .2 Truth Table . 98
5.7.3 Function Table . 98
5. 7 .4 Transition Lists . 100
5.7.5 Transition Table . 101
5. 7 .6 State Assignment . 104
5.7.7 Transition Table . 104

6.2.1 Boolean Operators . 109
6.2.2 Macro Entry With PIAN . 109
6.2.3 Fuse Map File Formats in PIAN . 111
6.3.1 Address Ranges for 6809 Controller 118
6.3.2 P ALASM Operators . 116

xix

xx Programmable Logic Design Guide

Table No. Page No.

7.1.1
7.2.1
7.2.2
7.5.1
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9
7.5.10
7.5.11

8.4.1
8.11.1
8.11.2
8.11.3
8.11.4
8.12.1
8.12.2
8.12.3
8.12.4
8.12.5
8.12.6
8.13.1
8.13.2
8.13.3
8.13.4
8.13.5

11.1.1
11.1.2
11.1.3
11.1.4
11.1~5
11.1.6

11.1.7
11.1.8

Test Fuses ... ·
Test Vectors Generated by the Exhaustive Method
Test Vectors Generated by Fault Modeling
National's PAL Device Family
Test Vectors
Test Vectors :
Final Test Vectors
Final Function Table
Test Vectors
Test Vectors ,
Test Vectors -. · .. .
State Assignment .. .
Transition Table
Final Function Table .. : .

Function Description .. .
Recommended Operating Conditions ;
Electrical Characteristics ·
Switching Characteristics · ·
Function Table .. .
Recommended Operating Conditions . :
Electrical Characteristics
Switching Characteristics
Memory Speed .. .
Memory Speed of 68000 .
Function Table. · ... ·
Recommended Operating Conditions
Electrical Characteristics
Switching Characteristics
Memory Speed Requirements
Function Table .. .

20-Pin PAL Devices
24-Pin PAL Devices .. .
Absolute Maximum Ratings ~
Standard Test Load .. .
AC and DC Specifications for 20-Pin, Standard, Small PAL Devices .
AC and DC Specifications for 20-Pin, Standard, Medium
PAL Devices
AC and DC Specifications for 20-Pin, Fast, Small PAL Devices
AC and DC Specifications for 20-Pin, Fast, Medium PAL Devices .. .

121
125
125
129
138
139
139
140
145
148
149
150
150
151

172
. 198

198
198
205
209
209
209
213
214
225
229
229

.229
231

. 240

274
274
275
275
276

277
279
280

Table No.

11.1.9

11.1.10

11.1.11

11.1.12

11.1.13
11.1.14
11.2.1
11.2.2
11.3.1
11.3.2
11.3.3
11.4.1
11.5.1
11.5.2
11.6.1
11.6.2

11.7.1
11.7.2
11.8.1
11.8.2
11.9.1
11.9.2

11.10.1

11.11.1

11.12.1

11.13.1

11.13.2
11.14.1

A.3.1

A.3.2

List of Tables :xxi

Page No.

AC and DC Specifications for 20-Pin, Ultra High-Speed,
Medium PAL Devices . 282
AC and DC Specifications for 20-Pin, Fast, Half-Power, Small
PAL Devices . 284
AC and DC Specifications for 20-Pin, Fast, Half-Power, Medium
PAL Devices . 286
AC and DC Specifications for 20-Pin, Ultra High-Speed,
Half-Power, Medium PAL Devices . 288
AC and DC Specifications for 24-Pin, Standard PAL Devices 290
AC and DC Specifications for 24-Pin, Fast PAL Devices 292
Input Line Select . 295
Input Line Select . 295
Input Line Select . 299
Product Line Select . 299
Programming Parameters . 301
Absolute Maximum Ratings . 305
(32 X 8) 256-Bit Tn PROM Options 307
AC and DC Specifications for (32 X 8) 256-Bit Tn PROMs 308
(32 X 8) 256-Bit Tn PROM Options . 309
AC and DC Specifications for (32 x 8) 256-Bit Tn
Logic PROMs . 310
(256 X 8) 2048-Bit Tn PROM Options 311
AC and DC Specifications for (256 X 8) 2048-Bit Tn PROMs 312
(512 x 8) 4096-Bit Tn PROM Options 313
AC and DC Specifications for (512) 4096-Bit Tn PROM 314
(512 X 8) 4096-Bit Tn PROM . 316
AC and DC Specification's for (512 x 8) 4096-Bit Tn
High-Speed PROM . 317
AC and DC Specifications for (512 x 8) 4K-Bit Registered
Tn PROMS . 321
AC and DC Specifications for (512 x 8) 4K_-Bit Registered
Tn PROMS . 325
Programming Parameters Do Not Test or You May Program
the Device . 328
Programming Parameters Do Not Test or You May Program
the Device . 331
Approved Programmers for NSC PROMs . 332
Quality Enhancement Program for Bipolar Memory 332

The eight test patterns used for testing the multiplexer
of Figure A.4.4 :. 373
A different sequence of the eight multiplexer test patterns 373

Programmable Logic
Design Guide

1
Introduction

1.1 PURPOSE OF THIS DESIGN GUIDE

This book was conceived to fill the need for a comprehensive Design Guide about
Field-Programmable Logic Devices. The Guide is organized to serve both the experi
enced programmable logic user and the uninitiated. The primary objective of this guide
is to introduce the uninitiated logic designer to programmable logic and to take the
designer through a step-by-step approach to logic design by using programmable logic
devices. The Guide is compreheµsive in that it covers all aspects of design, including:
Boolean logic basics, sequential and combinational circuit basics, testing, and applica
tions. Every effort has been made to clearly illustrate points with examples. National
Semiconductor invites comments and suggestions from our users on improving this
Design Guide.

1.2 OVERVIEW OF PROGRAMMABLE LOGIC

Programmable Logic has been used for many years as the means of customizing logic
design. The early devices were primarily mask-programmed and were developed by
computer manufacturers for in-house use while the vast majority of other logic users
were relegated to the world of standard SSI/MSI devices. Then, in the mid to late seven
ties, along came fuse-programmable logic. The logic devices could actually be custom
ized by the designer who used external pulses generated by simple programmer
equipment. Now logic designers had devices that could be customized instantly and
that offered higher integration than standard logic. Field-programmable logic devices
became the first, true semicustom logic that was widely available for both the small and
the larger user.

Today, the user can choose from a variety of speeds, power, packages, logic fea
tures and vendors.

The logic designer's task is being simplified even further by the rapid development
of software tools that actually perform some of the design tasks such as logic minimiza
tion, higher level Boolean representation, device selection, and test vector generation.
The final goal is to simply specify input-output or state descriptions in a high-level lan
guage to obtain a completely programmed and functionally tested device.

Technology developments are also taking place to achieve field-programmable
logic devices in low-power CMOS technology and high-speed ECL technology.

1

2 Programmable Logic Design Guide

1.3 NATIONAL SEMICONDUCTOR, THE LEADER

National Semiconductor, entered the field programmable logic marketplace in .1980
with the introduction ofthe PAL® device family. By 1984 National had taken the lead
ership of this market through technological advances and customer support. In particu
lar, National is the first company to come out with the 15 ns high-performance family of
PAL devices. National also has the broadest product line of programmable-logic prod
ucts that will include CMOS and ECL products. National Semiconductor is committed
to maintaining its leadership in this area through technological innovation, customer
support and product quality.

PAL is a registered trademark of and used under. license to Monolithic Memories, Inc.

2
Programmable Logic Basics

2.1 WHAT IS PROGRAMMABLE LOGIC?

Programmable logic devices are essentially uncommitted logic gates where the user
determines the final logic configuration of the device. Hence, programmable logic
devices are true semicustom products. A major feature of these devices is field
programmability, which offers almost instant customization. A mask-programmable
option is also available for volume applications. The internal structure of these devices
is a·fuse-programmable interconnection of AND gates, OR gates, and Registers. These
devices allow the user to design combinational as well as sequential circuits. The basic
programmable array is AND-OR logic in the familiar Sum-of-Products (SOP) representa
tion. The conventional schematic representation is shown in Figure 2 .1.1.

A

u:: B

)) 02

A

e

A---.....f-""\AB, ____ _
e----t-J

c-----1-,co
-----------------~ ~---01 r------'""11...""""""' o----t_J

A----r-""\AD ----------0-----1__~

Figure 2 .1.1 Conventional Representation

3

4 Programmable Logic Design Guide

Its programmable logic equivalent is shown in figure 2.1.2.

D c 8 A

Figure 2.1.2 Programmable Logic Representation

Various programmable logic products are built around this structure by adding fea
tures and other logic elements such as programmable Active-Low or Active-High out
puts, output registers, internal feedback, and state registers.

A definition of programmable logic is not complete without including software.
An important part of these products is the software and design automation tools that
aid systems design with programmable logic devices.

2.2 USER-BENEFITS OF PROGRAMMABLE LOGIC

The use of.programmable logic devices in systems design presents the user with many
benefits, some of which are obvious and some of which are nqt. The versatility and
power of programmable logic devices can be demonstrated through the most common
benefits described below.

Reduced Board Space

Today, programmable logic typically implements from 4 to 20 SSI and MSI logic devices
on a single chip. PC board real estate is one of the most valuable and limited items in a
system and programmable-logic devices are ideal for reducing board space. This can
allow the system manufacturer to reduce the size of a system or to increase the logic
power for a system of a given size.

Programmable Logic Basics 5

Fast Systems Design

Fast turnaround in systems design can be achieved. Systems can be prototyped quickly
by using available design automation development tools. Standard design tools reduce
the need for manual design and documentation. After the first prototype has been built,
modifications and correction to the logic can also be made quickly, without having to
rewire or rework the PC board. The net result is that the programmable-logic user can
enjoy a competitive advantage in the marketplace by bringing new products to
market early.

Design Flexibility

Systems design is generally an iterative process. It starts with ideas and concepts and
then progresses through an iterative series of evaluation, modification, and refinement
of the original design. Numerous logic configurations have to be evaluated in this proc
ess and the painless way to perform these evaluatiOns is through the use of programma
ble logic. All of the changes can be made at the CAD terminal, which will also ensure
that the documentation is updated to include the changes.

With the use of programmable logic, the designer is not limited to standard off the
shelf parts and, therefore, can use non,-standard logic structures. The engineer now
simply chooses what is needed instead of taking only what is available.

Design flexibility derived from using programmable logic means logic changes are
easy in all phases of the system life cycle. For example, logic changes can be made dur
ing prototyping, during system testing, during system production, and in the field.

Many manufacturers need to be able to perform some final customization to the
system. The use of programmable logic allows this customization to be implemented
quickly.

Multilevel Logic Reduction

The designer can compress multiple levels of logic into a two-level AND-OR structure
through the use of programmable logic, thus simplifying the design and in many cases
obtaining a speed and/or power advantage. An example is shown on the following page
in Figure 2.2.1.

Cost Reduction

The systems manufacturer can realize cost reduction by the use of programmable logic
through a variety of factors, including:

• Lower component cost through
- PC board area reduction.
- Reduction in connectors used.
- Simpler back panel.
- Smaller power supplies.
- Reduced cooling.

6 Programmable Logic Design Guide

LOGIC EQUATION F1 = i [b + c(d + e) + i g) + hij + k

LEVEL 5 I LEVEL 4 1 LEVEL 3 LEVEL 1

I I
I
I d

k-----
AND/OR NETWORK

Figure 2.2.1 Multilevel Logic Reduction

• Lower design and development cost through
- Quick-turnaround software-supported design.
- Easy-to-make changes.
- Computerized documentation.
- Simplified layout.

• Lower manufacturing cost through
- Fewer component insertions.
- Fewer boards to manufacture.
- Less component, board and system testing.

• Lower service costs through
- Improved reliability.
- Fewer spare parts.
- Faster logic fixes.

Programmable Logic Basics 7

Example to Illustrate Lower Component Costs

Table 2 .2 .1 is an example of the elements of component cost. The costs used are typical
of those found in the ·industry and will have to be modified to reflect a specific
situation.

Cost Range Ave Cost Cost/IC
Cost Varlable $ $ $

Purchasing, Receiving, Inventory 0.01-0.03 0.02 0.02

~ncoming Inspection 0-0.15 0.08 0.08

PC Board 10-100 30.00 0.30

Assembly Labor 0.10-0.40 0.20 0.20

Connectors, Wire, etc. 30-100 60.00 0.10

Power Supplies, Cooling 45-120 60.00 0.10

System Assembly 40-80 60.00 0.10

Rack, Cabinet, Panels 20-50 30.00 o.o5·

Total Overhead 0.95

IC Cost 0.12-2.00 0.50

Total IC Cost in System 1.45

Table 2.2.1 Typical Component Cost Structure

Assume a system with 600 SSI/MSI ICs. The total cost of the system is therefore as
follows:

SSI/MSI System Cost = 600 x $1.45 = $870

PAL devices are used to replace the SSI/MSI discrete logic devices. The replace
ment can be accomplished at various efficiencies, where efficiency is defined as:

Efficiency = Average number of SSI/MSI devices replaced by one PAL.

If we assume that the cost of programming a PAL device is $0.40 then the total cost
of a PAL based system is as follows:

PAL based system cost =

600
---- x (PAL Device Price + Overhead + Programming Cost)
Efficiency

600
---- x (PAL Device Price + $0.95 + $0.40)
Efficiency

8 Programmable Logic Design Guide

Various efficiencies and PAL device prices are substituted in the above equation to
obtain the PAL based system costs in Table 2.2.2 below.

SSl/MSI
PAL Device System Cost (2) at a

Efficiency System
PAL Device Purchase Price of

Your SSl/MSI
Factor (EF) Cost (1) $8.00 $6.00 $4.00 $3.00 System Cost

3:1 870 1870 1470 1070 870

4:1 870 1403 1103 803 653

6:1 870 935 735 535 435

8:1 870 701 551 401 325

(1) Cost = 600 ICs x 1.45/IC = $870
(2) · Cost = [600 + EF] x [PAL Device price + Overhead + Programming Cost]

= [600 + EF] x [PAL Device price + 0.95 + 0.40]
= [600 + EF] x PAL Device price + 1.35

Your PAL Device
System Cost

@ /PAL Device

Table 2.2.2 System Cost Comparison Between SSI/MSI Based System and
PAL Device Based System.

Most users realize at least a 4: 1 ratio and at today's PAL device prices, it is clearly
more economical to use PAL devices. Furthermore, as prices decline, even low efficien
cies become economical.

Example of Cost Reduction J"hrough Reliability Improvements

A simple example is used here to illustrate the power of PAL devices to improve system
reliability. Assume that systems fail for only two reasons:

• External connection failures (70 %)
- Solder.
- Connectors.
- Back plane wiring.

• IC failures (30%)

A hypothetical system is defined as having 5 boards each with 100 SSI/MSI devices.
With the following assumptions:

- System is in use for 3 years.
- Single device failure probability is 0.01 % within the 3 years.
- Single device failure will cause board failure, which will result in system

failure.
- 100 systems are sold.
- $1000 cost for each system failure.

Programmable Logic Basics 9

The system failure probabilities and expected costs are computed below.

SSI/MSI device-related board failure probability = 1 - (0.9999)100 = 0.009989

SSI/MSI device-related system failure. probability = 1 - (0.990011)5 = 0.0489583

0.0489583 x 70

30
= 0.114236 External connection failure probability =

Total system failure probability within the three years= 0.1631943
· Total Expected Cost from system failures during the three years= $1000 x 100 x

0.1631943;;::; $16,000

The logic designer now uses PAL devices and other LSI devices to realize a 5: 1 SSI/MSI
chip replacement. The system will now have one board. The system failure probability
and expected cost of the PAL device-based system is computed below:

Device-related board failure probability = 1 - (0.9999)100 = 0.009989

0. 009989 x 70

30
External connection failure probability =

= 0.023307666

Total PAL device-based system failure probability = 0.033296666

Total Expected Cost of PAL device based system= $1000 x 100 x 0.033296666

~$3300

On comparing the expected costs from system failures of the SSI/MSI based system
to that of the programmable-logic based system, there is approximately a 5: 1 ratio of
cost in favor of the programmable-logic based system.

This example is somewhat simplistic and some gross assumptions were made to
illustrate the advantages of using programmable logic. In reality, the actual reliability
improvement will depend on numerous factors that have not been addressed here.

Small Inventory

The programmable logic family can be used to replace up to 90% of TTL components.
This allows the user to lower inventory costs considerably, in addition to simplifying
the inventory system. ·

10 Programmable Logic Design Guide

2.3 ELEMENTS OF PROGRAMMABLE LOGIC

The first programmable integrated circuit logic device was the diode matrix. It was
introduced in the early 1960s. This approach featured rows and columns of metalliza
tion, connected at the crosspoints with diodes and aluminum fuses (Figure 2.3.1).
These fuses could be selectively melted, leaving some of the crosspoints open and oth
ers connected. The result was a diode-logic OR matrix.

Figure 2.3.1 Diode OR Matrix

The PROM

Integrated circuit designers added input decoders and output buffers to the basic diode
matrix, creating the field-programmable read-only memory (PROM) (Figure 2.3.2). This
extended the programmable-logic concept considerably, since the input variables
could now be encoded. It also reduced the number of pins required per input variable.
At the same time, the input circuitry, along with the output buffers, provided TTL com
patibility, the lack of which was one of the drawbacks of the diode matrix. For the sake
of simplicity and clarity, the programmable diode matrix is shown at a simple cross
point in Figure 2.3.3

A decoder is nothing more .than a collection of AND gates that combine all the
inputs to produce product terms. The basic logic implemented by the PROM is
AND-OR with the AND gates all preconnected on the chip, making this portion fixed.

Programmable Logic Basics 11

The OR matrix is implemented with diode-fuse interconnections, making it program
mable. Thus, the PROM is an AND-OR logic element with fixed AND matrix and pro
grammable OR.

There are many advantages to using PROMs as logic devices. Because they are used
in many applications, they are produced in high volume. Also, the PROM is a universal
logic solution. In other words, all of the product terms of the input variables are gener
ated. This makes it possible to implement any AND-OR function of these variables.

On the less positive side, it is difficult to accomodate a large number of variables
with PROMs. For each variable added to the PROM, not only does the package increase
by one pin, but the size of the fuse matrix doubles. For example, an eight-function,
five-variable PROM (32 x 8) requires a 256-fuse element matrix. An eight-function,
six-variable device (64 x 8) requires a 512-element matrix. As a practical matter, PROMs
are limited in the maximum number of input variables they can be designed to handle.
Manufacturers are currently producing no larger than 13-input PROMs.

DECODER
AND r-----------,

I 1112

12~-----<1~~-------~~~---t

L----------.J
Figure 2.3.2 4 x 4 Bit Prom

FUSE MATRIX
(OR)

F3

12 Programmable Logic Design Guide

"AND" ARRAY ·
(FIXED)

"OR" ARRAY
(PROGRAMMABLE)

Figure 2.3.3 PROM with 16 Words x 4 Bits

The FPLA

The Field-Programmable Logic Array (FPLA) overcomes some of the size restrictions of
PROMs because its designers recognized that not all product terms are required to

Programmable Logic Basics 13

implement most logic functions. By having a second fuse matrix (an AND matrix), the
FPLA allows the designer to select and program only those product terms used in each
specific function (Figure 2.3.4). These product terms are then combined in the OR fuse
array to form an AND-OR logic equation.

"AND" ARRAY
(PROGRAMMABLE)

"OR" ARRAY
(PROGRAMMABLE)

Figure 2.3.4 FPLA with 4 Inputs, 4 Outputs, and 16 Products

14 Programmable Logic Design Guide

In addition to specifying the number of inputs and functions, the FPLA manufac
turer must also specify the number of product terms available, since there are less than
zn terms (with n as the number of input variables). The fact that the number of product
terms is less than zn is what allows the FPLA to accommodate larger values of n, i.e.,
more inputs. This is in contrast to the PROM where the number of product terms is
always equal to zn.

Although the FPLA usually requires less fuses to implement a given logic function,
the additional fuse matrix does pose some difficulties of its own. The biggest problem
is the circuitry required to select and program these fuses - circuitry that is not used in
the final logic solution, but which is paid for in die area. This "chip overhead" cost is
not significant if the FPLA's capabilities are fully utilized, but it does become significant
for less complex problems that leave unused logic.

As has been shown, PROMs provide all of the product terms for a limited number
of input variables in generating AND-OR logic functions. FPLAs, on the other hand,
provide a limited number of product terms for a larger numb~r of input variables. How
ever, the FPLA is unrestricted in combining the product terms in the OR matrix, which
adds considerable flexibility to this device.

Because of the dual fuse matrix and the overhead cost of the circuitry required for
programming, the FPLA cannot be used economically in some low complexity logic
problems. The cost saving associated with the removal of the AND matrix (by
hardwiring it) is evident when one compares price. PROMs cost less than FPLAs. As
mentioned, however, the PROM approach significantly restricts the number of input
variables.

The PAL (Programmable Array Logic) Device

Savings similar to th9se of PROMs could be made without the penalty of restricting the
input variables, by removing the OR matrix from the FPLA, or hardwiring it. In the PAL
device concept (Figure 2.3.5), the AND fuse array allows the designer to specify the
product terms required. The terms are then hardwired to a predefined OR matrix to
form AND-OR logic functions.

An immediate observation is that because the OR gates in PAL devices are pre
wired, the degree to which the product terms can be combined at these OR gates is
restricted. PAL devices partially compensate for this by offering different part types that
vary the OR-gate configuration. Specifying the OR-gate connection therefore becomes
a task of device selection rather than of programming, as with the FPLA. With this
approach, PAL devices eliminate the need for a second fuse matrix with little loss in
overall flexibility.

"AND" ARRAY
(PROGRAMMABLE)

Programmable Logic Basics 15

"OR" ARRAY
(FIXED)

Figure 2.3.5 PAL Device Having 4 Inputs, 4 Ouputs, and 16 Products

16 Programmable Logic Design Guide

Comparison

To illustrate the difference among the three most popular field-programmable logic
concepts, the same four logic expressions will be solved with each, as shown in Figure
2 .3 .6(a). For comparison, each of the approaches is shown as an AND matrix, followed
by an OR matrix. The PROM solution shown in Figure 2.3.6(b) requires a 16-fuse

FPLA

LOGIC EQUATIONS
F1 =A
F2=AB
Fa=A+B
F4=AB+AB

(a)

A B

FUSIBLE OR

A B

PROM

HARD AND

A B

---------A PAL

-----t----n,.-AB

--------8
---+---t----AB

FUSIBLE AND

FUSIBLE AND

(c)

FUSIBLE OR

HARD OR

---+---+----+--A

---+---+----+--"0"

--------AB

------+----+--"0"

--------A --------8
t--1---+---+---.-'Ae

--------AB

F1 F2 Fa F4

(d)

Figure 2.3.6 (a) Logic Equation, (b) PROM Solution, (c) FPLA Solution and
(d) PAL Device Solution

Programmable Logic Basics 17

matrix, whereas the FPLA and PAL device require 32 fuses each. If we were to add
another input varia.ble, the number of fuses in a PROM increases to 32, while the FPLA
needs only 8 more and the PAL device needs 16 more. A fourth input again doubles the
number of PROM fuses to 64, but adds only 8 to the FPLA and 16 to the PAL device.
This example illustrates the previous statement that as the number of inputs increases,
PROMs consume more .fuses than either FPLAs or PAL devices.

2.4 PROGRAMMABLE LOGIC VERSUS OTHER LSI, SEMICUSTOM AND CUSTOM
ALTERNATIVES

Logic designers are noticing an apparent "complexity gap" between TTL and LSI.
Products designed with discrete TTL devices would consume unacceptable amounts of

·physical space and electrical power. Software-programmable LSI devices (microproc
essors) offer high density and need relatively little power to operate. But the designer
pays a high price in software development and still has to use discretes to interface
them to the outside world. Until recently, there has been no device that provides a
really effective way of bridging this gap. National has seen this need, and now offers the
designer a family of PAL (Programmable Array Logic) devices to fill it. PAL devices offer
powerful capabilities for creating cost-effective new products· or for improving the
effectiveness of existing logic designs. PAL devices save time and money by solving
many of the system partitioning and interface problems not otherwise effectively
solved by today's semiconductor device technology.

Standardized LSI

LSI (Large Scale Integration) offers many advantages, but advances have been made at
the expense of either device flexibility or software complexity. LSI technology has
been and still is leading to larger and larger standard logic functions. LSI offers high
functional density and low power consumption; single ICs now perform functions that
formerly required complete circuit cards. However, most LSI devices don't interface
with user systems without large numbers of support devices. Designers are still forced
to turn to random logic for many applications. LSI is slow, and it is rigidly partitioned.
For all its capability to perform varied and complex tasks, the microprocessor is a slow
and expensive way of doing simple, repetitive tasks when the necessary interface and
other support devices are added. And, when the time, money, and memory required
for software development are considered it is even more expensive.

Full Custom IC's

Custom IC's can be effective design solutions if the product is of low-to-medium com
plexity, its logic function is well-defined, and its market is high-volume. Its design cycle
is typically long, and its cost can be prohibitive. This tends to discourage its use.

18 Programmable Logic Design Guide

Gate Arrays

A close relative of the custom circuit is the gate array. With gate arrays, the total logic
capability of the chip, its pinouts, and its performance are predefined by the
semiconductor manufacturer. The user specifies only the logic interconnection pattern, a
process much the same as interconnecting standard small-scale integration (SSI) logic cir
cuits. since only a metallization pattern is required, the setup costs and turnaround time
for gate arrays are lower than for custom circuits, but because the designer can seldom
utilize· the entire logic capability of the chip, the unit cost· per active element is often
higher. The setup costs and turnaround time for gate arrays are considerably higher than
that for programmable logic, which has practically no turnaround delay.

3
Boolean Logic Review

3.1 BASIC OPERATORS AND THEOREMS

A gate is an electronic circuit which operates on one or more input signals to produce
an output signal. There are three basic gates from which all other logic can be realized:
AND, OR, and INVERTER gates. Figure 3.1.1 shows these three basic gates and their
truth table.

A)
B

F

INPUT OUTPUT
A B F
0 0 0

(A) AND GATE
o· 1 0
1 0 0
1 1 1

A D B F INPUT OUTPUT
A B F

(B) OR GATE
0 0 0
0 1 1
1 0 1
1 1 1

A I> F
INPUT OUTPUT

(C) INVERTER A F

0 1
1 0

Figure 3 .1.1 Basic Gates

To express the function of these gates by Boolean"' algebra, we ne.ed to define
Boolean operators as follows:

= Logical Equality
Negate (not, invert, complement)

+ OR (sum)
• AND (product)

: +: Exclusive OR
:•: Exclusive NOR

19

20 Programmable Logic Design Guide

The function of an AND gate in Figure 3 .1.1 can be expressed as:

F =Ao B

The function of an OR gate and INVERTER can .be expressed as:

F =A+ B
and F =A

Boolean operators are logical operators, which are different from arithmetic oper
ators. For example, + is logical addition, o is logical multiplication. We call such equa
tions Boolean equations or logic equations.

A number of logic theorems and laws will be used to manipulate and reduce logical
equations. These theorems and laws are as follows:

Theorem 1 A+ 0 = A.

Theorem 2 AoO = o·
Theorem 3 A + 1 = 1
Theorem 4 A o 1 = A
Theorem 5 A+ A = A
Theorem 6 Ao A - A
Theorem 7 A+A = 1
Theorem 8 Ao A = 0
Theorem 9 A.. = A
Theorem 10 A+ Ao B = A
Theorem 11 A(A + B) = A
Theorem 12 (A+ B)•(A + C) = A + B•C
Theorem 13 A+ Ao B = A + B

Commutative Law

A+B =B+A
AoB =Bo A

Associative Law

A + B + C = (A + B) + C = A + (B + C)
A o B o C = (A o B) o C = A • (B • C)

Distributive Law

A + (B o C o D) = (A+ B) o (A + C) • (A + D)
A o (B + C + D) = A • B + A • C + A • D

DeMorgan's Theorem

(A+ B + C)
(A o B o C)

=A•B•C
=A+B+c

•George Boole was the son of a shoemaker. His formal education ended in the third grade. Despite this, be was a brilliant
scholar, teaching Greek and Latin in his own school, and an accepted mathematician who made lasting contributions
in tbe areas of differential and difference equations as well as in algebra.

Boolean Logic Review 21

The complement of any Boolean expression, or a part of any expression, may be
found by means of DeMorgan's theorem. Two steps are used to form a complement in
this theorem:

1. OR symbols are replaced with AND symbols or AND symbols with OR symbols.

2. Each of the terms in the expression is complemented.

DeMorgan's theorem is one of the most powerful tools for engineering applica
tions. It is very useful for designing with programmable logic devices because it pro
vides a quick and simple conversion method between PRODUCT-OF-SUMS and
SUM-OF-PRODUCTS expressions, which will be defined later.

3.2 DERIVATION OF A BOOLEAN EXPRESSION

Any logic expression can be reduced to a two-level form and expressed as either a
SUM-OF-PRODUCTS (SOP) or PRODUCT-OF-SUMS (POS). Before we define SOP or
POS, we need to define "terms."

1. Product Term - A product term is a single variable or the logical product of several
variables. The variable may or may not be complemented. ·

2. Sum Term - A sum term is a single variable or the sum of several variables. The vari
ables may or may not be complemented.

3. Normal Term - A normal term is a product or sum term in which no variable
appears more than once.

4. Minterm - A minterm is a product term containing every variable once and only
once (either true or complemented).

5. Maxterm - A maxterm is a sum term containing every variable once and only once
(either true or complemented).

For example, the term A • B • C is a product term; A + B is a sum term; A is both a
product term and a sum term; A + B • C is neither a product term nor a sum term; A +
B is a sum term; A • B • C is a product term; B is both a sum term and a product term.
We now define two most important forms:

1. SUM-OF-PRODUCTS Expression -A sum-of-products expression is a product term
or several product terms logically added together.

2. PRODUCT-OF-SUMS Expression - A product-of-sums expression is a sum term or
several sum terms logically multiplied together.

For example, the expression A •. B + A • B is a sum-of-products expression;
(A + B) • (A + B) is a product-of-sums expression.

22 Programmable Logic Design Guide·

One prime reason for using sum-of-products or product-of-sums expressions is
their straightforward conversion to very simple gating networks. In their purest, sim
plest form they go into two-level networks, which are networks for which the longest
path through which a signal must pass from input to output is two gates long.

When designing a logic circuit, the logic designer works from two sets of known
values; . the various states which the inputs to the logical network can take, and the·
desired outputs for each input condition. The logic expression is derived from these
sets of values and the procedure is as follows:

1. Construct a table of the input and output values (Table 3.2.1 left halt).

2a. To derive a SUM-OF-PRODUCTS (SOP) expression:
A product term column is added listing the inputs A, B, and C according to their
value in the input columns (Table 3.2.1). Then the product teqns from each row
in which the output is a "1" are collected.

Therefore:

F=A•B•C +A•B•C + A•B•C (Eq. 3.2.1)

2b. To derive a PRODUCT-OF-SUMS (POS) expression:
A sum term column is added listing the inputs A, B and C according to their com
plement value in the input columns (Table 3.2.1). Then the sum terms from each
row in which the output is "O" are collected.

Therefore:

F = (A + B + .C) (A + B + C) (A + B + C) (A + B + C) (A + B + C)
(Eq. 3.2.2)

Inputs Outputs

A B c F Product Terms Sum Terms

0 0 0 0 ABC A+B+C
0 0 1 0 ABC A+B+C
0 1 0 1 ABC A+'B+C
0 1 1 1 ABC A+B+C
1 0 0 0 ABC A+B+C
1 0 1 0 ABC A+B+C
1 1 0 1 ABC A+B+C
1 1 1 0 ABC A+B+C

Table 3.2.1 Truth Table of Eq. 3.2.1 and Eq. 3.2.2

Figure 3.2.1 is the logic circuit which direct derived from Eq. 3.2.1. Figure 3.2.2 is
derived from Eq. 3.2.2.

Eq. 3.2.1 can be simplified as shown below:

F =A•B•C+.A•B•C+A•B•C
=A • B (C + C) + A • B • C
=A•B+A•B•C
=B (A + A• C)
=B (A + C)
=A•B + B•C

Eq 3.2.2 can be simplified as shown:

Boolean Logic Review 23

F=~+B+q~+B+~~+B+q~+B+~~+~+~
= (A + B) (A + B) (A + C)
= B (A + C)
=A•B+B•C

The two final expressions obtained are identical and can be implemented by: the circuit
shown in Figure 3.2.3. This is much simpler than the circuits in Figures 3.2.1 and 3.2.2.
This simplified procedure is called minimization.

A.------r~
B------~ ~----------C -----------t....___J
A-----__.~,
B----------1 t---------------1 c--------1~J

A ______ __,.---

~ -------t_J
Figure 3.2.1 Logic Circuits of Eq. 3.2.1

A ---------r
B >---------C --------t....__,,,
A------.....----...... g >---------
~ ---------r-----.....>-------i=i~~~~=)------ F

A------r-.......
B >-------c ------iL__,,,,,
A. ______ _.----...._

e >-----
Figure 3.2.2 Logic Circuits of Eq. 3.2.2

24 Programmable Logic Design Guide

Figure 3.2.3 Simplified Logic Circuits

3.3 MINIMIZATION

Logic circuits can be represented by logic expressions or so called logic equations. As
discussed, we can minimize the logic circuit through logic equations minimization. For
example, Figure 3.3.1 can be expressed by Eq. 3.3.1.

A-~---...-~ B--+---1 .., __ _
c --.____.,,,

F

Figure 3 .3 .1 A Random Logic Circuit

F = (A • B • C + D) • (B + D) + A o C • (B + b) (Eq. 3.3.1)
By using the theorems and laws mentioned in 3.1, we minimize Eq. 3.3.1

as follows:

F = AoB•C + BoD + AeBoCoD + D + A•C•B + AoCoD
= A • B • C (1 + D) + D (B + 1) + A• C • B + A o Co D Distributive Law
= A • B • C + D + A • C • B + A • C o D Theory 3
= A • B (C + C) + D (1 + A• C) Distributive Law
= A• B + D.

Boolean Logic Review 25

The minimum SOP expression can now be implemented as the simple AND-OR
logic circuits as shown in Figure 3.3.2.

: _____ o-------..
D

D>----- F = AB+ D

Figure 3.3.2 Minimized Logic Circuit

We can use Boolean Algebra to reduce the number of product terms. However,
Karnaugh Mapping and the Quine-McCluskey method are two other powerful tools to
minimize the logic equations. We'll discuss Karnaugh Mapping method in the next
section.

3.4 K-MAP METHOD

A Karnaugh map, hereafter called a K-map, is a graphical method for representing a
Boolean function. It is similar to a truth table in that the K-map supplies the TRUE or
FALSE value of a Boolean function for all possible combinations of its logical argument.
There are many ways in which a K-map can be arranged. The most important consider
ations of the arrangement are:

1. There must be a unique location on the K-map for entering the TRUE/FALSE value of
the function that corresponds to each combination of input variables.

2. The locations should be arranged so, with minimization mentioned in Section 3.3,
that they are readily apparent to the trained observer.

The second consideration implies that a successful K-mapping arrangement should
point to groups of minterms or maxterms that can be combined into reduced forms.
K-maps are also useful in expanding partially reduced expressions into standard forms
prior to the minimization process.

The K-map is one of the most powerful tools at the hands of the logic designer. The
power of the K-map does not lie in its application of any marvelous new theorems, but
rather in its utilization of the remarkable ability of the human mind to perceive patterns
in pictorial representations of data. This is not a new idea. Anytime we use a graph
instead of a table of numerical data, we are utilizing the human ability to r_ecognize

26 Programmable Logic Design Guide

complex patterns and relationships in a graphical representation far more rapidly and
surely than in a tabular representation. A few examples of how to create· a K-map
follow.

First, consider a truth table for two variables. We list all four possible input combi
nations and the corresponding function values, i.e., the truth tables for AND and OR.
(Figure 3 .4.1)

A B A•B A B A+B

0 0 0 0 0 0
0 1 0 0 1 1
1 1 1 1 1 1
1 0 0 1 0 1

Figure 3.4~ 1 Truth Tables for AND and OR

As an alternative approach, set up a diagram consisting of four small boxes, one for
each combination of variables. Place a "1" in any box representing a combination of
variables for which the function has the value 1. There is no logical objection to putting
"O's" in the other boxes, -but they are usually omitted for clarity.

The diagrams in Figure 3.4.2(a) are perfectly valid K-maps, but it is more common
to arrange the four boxes in a square, as shown in Figure 3.4.2(b).

~B 00

I

11 10 01 ~B 00

I

11 10 01

A+B

(A)

A
B 0 1

A
B 0 1

0 0 1

1 1 1 1 ' 1

'

A+B

(B)

Figure 3.4.2 K-maps for AND and OR

Boolean Logic Review 27

Since there must be one square for each input combination, there must be 2n
squares in a K-map for n-variables. Whatever the number of variables, we may interpret
the map in terms of a graphical form of the truth table (Figure 3.4.3(a)) or in terms of
union and intersection of areas (Figure 3.4.3(b)).

The K-maps for some other three-variable functions are shown in Figure 3 .4.4.
Particularly note the functions mapped in Figure 3.4.3(a) and 3.4.4(b). These are

both minterms. Each is represented by one square, obviously, and each one of the eight
squares corresponds to one of the eight minterms of three variables. This is the origin
of the name minterm. A minterm is the form of Boolean function corresponding to the
minimum possible area, other than 0, on a K-map. A maxterm, on the other hand, is the
form of Boolean function corresponding to the maximum possible area, other than 1,
on a K-map. Figure 3.4.3 (b) and 3.4.4 (c) are two examples.

A B c A·B·C AB
00 01 11 10 c

0 o. 0 0
0 0 1 0
0 1 0 0

0

0 1 1 0
1 0 0 O'
1 0 1 0 1 1
1 1 0 0
1 1 1 1

A·B·C
(a)

A A

B B

A A

1 1 1

c 1 1 1 1 c 1 1 1 1

J

B B
A + B + C = A+B+C

(b)

Figure 3.4.3 K-Maps for 3-variable AND and OR

28 Programmable Logic Desigri Guide

B
AC+AC

(a)

B

A+B+C
(c)

A

A

AB
c

0

1

AB
c

0

1

00 01

00 01

1

1 1

11

ABC
(b)

11

C+AB
(d)

1

Figure 3.4.4 Sample 3-variable K-maps

10

1

10

1

Since each square on a K-map corresponds to a row in a truth table, it is appropri
ate to number the squares just as we numbered the row. These standard K-maps are
shown in Figure 3 .4.5 for two and three variables. Now, if a function is stated in the
form of the minterm list, all we need to do is enter l's in the corresponding squares to
produce the K-map. ·

A AB
B C 0 1 00 01 11 10

0 0 2 0 0 2 6 4

1 1 3 1 1 3 7 5

Figure 3.4.5 K-maps for Two and Three Variables

If a function is stated as a maxterm list, we can enter O's in the squares listed or l's
in those not listed.

A map showing the O's of a function is a ·perfectly valid K-map, although it is more
common to show the l's.

Boolean Logic Review 29

For example, the K-map of f(A, B, C) = m(O, 2, 3, 7) is shown in Figure 3.4.6 and
the K-map of f(A, B, C) = M(O, 1, 5, 6) is shown in Figure 3.4.7. where m means min
term, M means maxterm.

AB
c 00 01

0 0

1 0

AB
c

0

1

00

1

01 11 10

1

1 1

Figure 3.4.6 K-map of m(O, 2, 3, 7)

11 10

0

0

OR

AB
c

0

1

00

Figure 3.4. 7 K-map of M(O, 1, 5, 6)

01 11 10

1 1

1 1

As shown, the K-map can be generated from the truth table on minterm expression
or maxterm expression. For the remainder of this section, we will learn how to mini
mize the minterm expression by using the K-map.

The general principle of this minimization technique is "Any pair of n-variable
minterms which are adjacent on a K-map may be combined into a single product term
of n - 1 literals." The definition of "adjacent" should include opposite edges of the
K-map, for instance, Figure 3.4.8(a) and 3.4.8(b) both have a pair of adjacent minterms.

(a) (b)

Figure 3.4.8 Adjacent Minterms on a K-map

30 Programmable Logic Design Guide

Consider this function

f(A, B, C) = m(O, 1, 4, 6)
= ABC + ABC + ABC + ABC

Which results on the K-map, on the pattern shown in Figure 3.4.9

AB
c 00 01 11 10

0 2 6 4
r----1 l 1 1 J 0 1

1 3 7 5
1 1

Figure 3.4.9 Minimization

Therefore, combine minterms 0 and 1, 4 and 6 to get a minimal expression:

f(A, B, C) =AB + AC

Figure 3.4.10 shows some examples. Notice that it is permissible to include a min
term in several terms if it helps make the term shorter.

AB AB
CD 00 01 11 10 CD 00 01 11 10

00 1] 1 '[1
'---

00 1 1

.--
01 1 01 1 1

11 1 11 1 1
....______.
~

10 1 10 1 1

Figure 3.4.10 Minimization

Boolean Logic Review 31

Quite often, some of the possible combinations of input values never occur. In .this
case, we "don't care" what the function does if these input combinations appear. The
K-map makes it easy to take advantage of these "don't care" conditions by letting the
"don't care" minterms be I or 0, depending on which value results in a simpler expres
sion. Figure 3.4.11 shows an example of the use of "don't cares" (redundancies) to sim
plify the terms.

c 0 AB
00 01 11 10

00 x ·x 1 j
01

11

10 l 1
x 1

1 J

Figure 3.4.11 Minimization

When working with larger functions, the tabular reduction developed by Quine and
modified by McCluskey is an alternative to the K-map method. The Quine-McCluskey
minimization method involves simple, repetitive operations that compare each min
term that is present in a sun-of-minterms expression for a Boolean functions to all
other minterms with which it may form a combinable grouping.

The reader can refer to "Introduction to Switching Theory and Logic Design" by Hill
and Peterson to understand the Quine-McCluskey method.

3.5 SEQUENTIAL CIRCUIT ELEMENTS

Us~ally the subject of logic design is.subdivided into two types: sequential and combi
national. A purely combinational logic subsystem has no memory. Its outputs are com
pletely defined by its present inputs. The analysis and design of combinational logic is
much easier. A sequential logic subsystem has memory and its outputs are functions of
not only present inputs but the previous outputs. Circuits of multiplexer/selector,
decoder/encoder, adder, and comparator are examples of combinational circuits. Shift
register, counter, state machine, and memory controller are examples of sequential
circuits.

32 Programmable Logic Design Guide

DATA-.;....,.n _.,. Q"+ 1 : D"

CLOCK--u

--~- Q"• 1 =ff•Q+T•Gi)" --u
--ns. a --i>an+1=(S+R·S·a)"

. R0 S:it: 1
-- c
-- R

--va -~an+1=(J•Q+K·a)"
-- c .
-- K

Figure 3.5.1 Basic Flip-Flops

on

0
1

T"

0
1

R

0
0
1
1

J

0
0
1
1

an+1

0
1

an+1

an
(Q)"

s . an+1

0 an
1 1
0 0
1 x

K an+1

0 an
1 0
0 1
1 (O)"

Just as we have a logic gate as the basic combinational circuit element, we have a
flip-flop as a basic sequential circuit element. A flip-flop is a memory device which can
remember, or store, a binary bit of information. There are four basic flip-flop types: (1)
D flip-flop, (2) T flip-flop, (3) RS flip-flop, and (4) JK flip-flop. Figure 3.5. l sbows these
elements and their truth table.

With the memory elements, the output does not change as a function of the inputs
until the clock transition. Therefore, a superscript notation is used to indicate that the
output during clock period n + 1 is a function of the inputs during the previous clock
period n.

The D (delay) flip-flop means the input (D) is "stored" in the flip flop when the
clock occurs and will appear on the output (Q) during the next (n + 1) clock time. The
D flip-flop is thus very much like a single-bit RAM. It is very useful for data storage and·
other special applications.

The other three types of flip-flops defined in Figure 3.5.1 are also one-bit storage
elements, but instead of simply storing the input, they change state in response to the
inputs by various logical rules. Since they hold their previous state in spite of the clock,
unless an input goes true, they often simplify the combinational logic functions
required to control them in control applications.

Boolean Logic Review 33

The T (toggle) flip-flop, for example, stays in its previous state if the T input is false
before the clock. If the T input is true, the output changes to the opposite state (toggle)
on the clock. The T flip-flop is thus useful, for example, in binary counters where we
want each bit to invert every time there is a carry from the lower order bits.

The R-S flip-flop sets after the S input is true and resets after the R input is true. Its
output is undefined if both Rand Sare true. It is possible to define a Set Overrides Reset
(SOR) or a Reset Overrides Set (ROS) flip-flop. It will set or reset respectively if both the
Rand the S inputs are true.

The J-K flip-flop sets after] is true and resets after K is true. It is similar to an R-S
flip-flop except that if] and Kare both true, the output changes to the opposite state
(toggle). It can be used as a T flip-flop by tying the] and K inputs together.

Since theJ-K flip-flop can essentially do the job of both the R-S and the T flip-flop,
the R-S and the T flip-flops are seldom seen. The choice is between J-K flip-flops for
small counters and control or D flip-flops for data storage applications. Actually the J-K
flip-flop can even do the job of the D flip-flop with the addition of a single inverter, as
shown in Figure 3.5.2. ·

J Q

o- ---

CLOCK

Figure 3.5.2 Implement D Flip-Flop by Using J-K

Another memory element type, called a latch, is often described on data sheets with a
truth table like the one for the D flip-flop in Figure 3.5.1. It is definitely not like a D flip
flop, however because the output changes as soon as the clock goes high and does not
"latch" until the clock falls (if the input changes while the clock is high, the output fol
low it). Because of this characteristic, a latch is not usable in the synchronous logic.

34 Programmable Logic Design Guide

3.6 STATE MACHINE FUNDAMENTALS

The relationships among present-state variables, primary input variables, next-state (or
excitation) variables, and primary output variables that describe the behavior of a
sequential system can be specified in several ways. As an example, consider the simple
sequential system that is shown in Figure 3 .6.1.

11------1-··\ .. --.... -------F
y

y
12----+----------.....,_~

y
DELAY

y

Figure 3.6.1 A Typical Sequential Circuit

This system has two primary input variables, having four different combinations of
values. There is one primary output variable and one state variable. It uses delay for
memory. There are only two possible present states: y = 0 and y = 1. When combined
with the four input combinations, these give eight different total present states. The
values of the next-state variable, Y, and the primary output variable, F, must be specified
for each total present state. The tabular arrangement shown in Table 3.6.1 is a common
method for presenting this information. This descriptive tool is called a state table.

NEXT-STATE OUTPUT
PRESENT- STATE y F

y 1112 = 00 01 10 11 11 12 = 00 01 10 11

0 0 1 0 1 0 0 0 0

1 0 1 1 1 0 0 1 1

Table 3.6.1 State Table

Boolean Logic Review 35

0, 0/0 Q 1, 0/0

(::0

0, 1/0

1, 1/0

0, 1/0

Figure 3 .6.2 State Diagram

A second method for describing the behavior of a sequential system is the use of a
state diagram. This method presents a pictorial representation of the
present-state/next-state sequences that apply to the sequential device. State changes are
marked with directed arrows, with the primary input and output conditions that apply
to each state transfer given beside the arrows. The state diagram for the system of Fig
ure 3.6.1 is shown in Figure 3.6.2. A slash separates the input information from the out
put information.

State tables and state diagrams are essential tools in the analysis and design of
sequential digital systems. The reader should be familiar with these two tools by read
ing the references listed in the end of this section.

36 Programmable Logic. Design Guide

Because a sequential system has feedback from its outputs to its input, certain
types of instabilities and uncertainties can occur. When present, these conditions make
the operation of circuit difficult or impossible to describe. They may even render the
circuit useless, since its behavior may not be predictable or consistent. Several of these
types of problems are listed below.

1) The input or output conditions of the system may be indeterminant. For example,
the circuit in Figure 3.6.3.

Figure 3.6.3 Example of Hazard Circuit

2) The output condition of the system may be unstable, changing even though the
external inputs do not change. Figure 3.6.4. illustrates an example .

..,_ _______,. >c:i--~------ F

DELAY

Figure 3.6.4 Example of Unstable Circuit

Boolean Logic Review 37

3) The output condition of the system, even though stable, may not be predictable
depending upon the primary input conditions. Figure 3.6.5 is an example.

11------------..... -""\
.-------t.-~--------------------.... -----------F1

12 ______, ____ __,-,

..... -------------------+--.... --------F2 .--...... _,

DELAY

DELAY

Figure 3.6.5 Example of Circuit with Unpredictable Output States

However, these problems mentioned above can be avoided by making certain
restrictions in the way sequential systems are designed and used. For instance, the fol
lowing are some restrictions:

1. Avoiding continuing instabilities (oscillations).

2. Allowing only fundamental-mode operation.

3. Allowing only pulse-mode operation.

References

Hill & Peterson "Introduction to Switching Theory and Logical Design"
Kohavi "Switching and Finite Automata Theory"
Rhyne "Fundamentals of Digital Systems Designs"
Krieger "Basic Switching Circuit Theory."

The Programmable Logic
Family

4

National's programmable logic family consists of PAL devices and PROMs that come in
a variety of gate densities, pin-counts, architectures, speed and power specifications.
The following sections describe and tabulate these various options in addition to dis
playing the logic schematics.

4.1 BASIC GROUPS

The programmable logic devices are divided into two sections: one to address PAL
devices and the other to address PROMs.

4.2 THE PAL DEVICE FAMILY

The PAL device family is separated by pin-count and by architecture. There is a 20-pin
family and a 24-pin family. Each family contains simple combinational logic devices and
more complex devices which have on-chip feedback options and output registers. The
20-pin small PAL devices and the 20-pin medium PAL devices are listed in Table 4.2 .1.

Part No. of No. of No. of No. of Output
No. Inputs Outputs I/Os Registers Polarity Functions

10H8 10 8 AND-OR AND-OR Array

12H6 12 6 AND-OR AND-OR Array

14H4 14 4 AND-OR AND-OR Array

16H2 16 2 AND-OR AND-OR Array

10L8 10 8 AND-NOR AND-OR-Invert Array

12L6 12 6 AND-NOR AND-OR-Invert Array

14L4 14 4 AND-NOR AND-OR-Invert Array

16L2 16 2 AND-NOR AND-OR-Invert Array

16C1 16 1 AND-OR/NOR AND-OR/AND-OR-Invert Array

16L8 10 8 6 AND-NOR AND-OR-Invert Array

16R8 8 8 8 AND-OR AND-OR-Invert Register

16R6 8 8 2 6 AND-OR AND-OR-Invert Register

16R4 8 8 4 4 AND-OR AND-OR-Invert Register

Table 4.2.1 Members of the 20-Pin PAL Device Family

39

40 Programmable Logic Design Guide

The 24-pin PAL devices are listed in Table 4.2.2 and Table 4.2.3 shows how to read the
part numbers.

Part
No.

12L10

14LB
16L6

18L4

20L2

20LB

20L10

20RB

20R6

20R4

20X10

20XB

20X4

No. of No. of No. of No. of Output
Inputs Outputs I/Os Registers Polarity Functions

12

14

16

18

20
14

12

12

12

12

10
10

10

10 AND-NOR AND-OR Invert Gate Array

8 AND-NOR AND-OR Invert Gate Array

6 AND-NOR AND-OR Invert Gate Array

4 AND-NOR AND-OR Invert Gate Array

2 AND-NOR AND-OR Invert Gate Array

2 6 AND-NOR AND-OR Invert Gate Array

2 8 AND-NOR AND-OR Invert Gate Array

8 8 AND-NOR AND-OR Invert w/Registers
,6 2 6 AND-NOR AND-OR Invert w/Registers

4 4 4 AND-NOR AND-OR Invert w/Registers

10 10 AND-NOR AND-OR-XOR Invert w/Registers

8 2 8 AND-NOR AND-OR-XOR Invert w/Registers

4 6 4 AND-NOR AND-OR-XOR Invert w/Registers

Table 4.2.2 Members of the 24-Pin PAL Device Family

- - - - - - - - - - - PROGRAMMABLE LOGIC - FAMILY
PAL FOR PAL DEVICES
NL FOR NATIONAL MASKED.LOG
PL FOR FACTORY PROGRAMMED PAL DEVICE

- - - - - - - - - - NUMBER OF ARRAY INPUTS

- -· - - - - - -OUTPUT TYPE:
H =ACTIVE HIGH

. L =ACTIVE LOW
. C =COMPLEMENTARY

R=REGISTER
X =EXCLUSIVE-OR WITH

REGISTER
P =PROGRAMMABLE

OUTPUT POLARITY

- - - - - - NUMBER OF OUTPUTS

- - - -SPEED RANGE
NO SYMBOL= STANDARD SPEED
A= HIGH-SPEED
A2 =HIGH-SPEED, HALF-POWER
B =ULTRA HIGH SPEED, ETC.

r
---PACKAGE TYPE:

N =PLASTIC DIP
J =CERAMIC DIP

.

V =PLASTIC LEADED CHIP CARRIER

I
-TEMPERATURE RANGE:·

C=O TO +75 DEG. C
M = - 55 TO + 125 DEG. C

Table 4.2.3 PAL Device Part Number Interpretation

The Programmable Logic Family 41

PAL Devices For Every Task

The members of the PAL device family are listed in Tables 4.2.1 and 4.2.2. They are
designed to cover the spectrum of logic functions at lower cost and lower package
count than SSI/MSI logic. This allows you to select the PAL device that best fits. your
application. PAL devices come in three basic configurations: Gates, Register Outputs
With Feedback, and Programmable I/O.

Gates

PALs are available in sizes from 12 x 10 (12 inputs, 10 outputs) to 20 x 2, with either
active-high or active-low output configurations. One part has complimentary outputs.
This wide variety of input/output formats allows the PAL to replace many
different-sized blocks of combinational logic with single packages.

Register Options With Feedback

High-end members of the PAL device family feature latched data outputs with r~gister
feedback. Each Sum-Of-Product term is stored in a D flip-flop on the rising edge of the
system clock. (See Figure 4.2.1) The Q-output of the flip-flop can then be gated to the
output pin by enabling the active low TRI-STATE© buffer.

In addition to being available to transmission, the Q-output is also fed back into
the PAL array as an input term. This feedback allows the PAL device to "remember" its
prior state. And, it can alter its function based upo~ that state. This allows one to con
figure the PAL device as a state machine that can be programmed to execute elementary
functions such as count up, count down, skip, shift, and branch.

INPUTS, FEEDBACK AND 1/0
CLOCK E ...

"""'

~ r" J,__ r---r" D Q 1--1 1""'11 _}~ 1""'11
1""'11 -I

H~ Q~ -
h.

~L ~

Figure 4~2.1 PAL Device Output Register Circuit, Simplified Logic Diagram

42 Programmable Logic Design Guide

Programmable 1/0

Another feature of the high-end members of the PAL family is programmable
input/output. This allows the product terms to directly control the outputs of the PAL
device. (Figure 4.2.2) One product term is used to enable the TRI-STATE buffer, which
in turn gates the summation term to the output pin. The output is also fed back into the
PAL device array as an input. Thus, the PAL drives the I/O pin when the TRI-STATE gate
is enabled. The I/0 pin is an input to the PAL device array when the TRI-STATE gate is
disabled. This feature can be used to allocate available pins for 1/0 functions or to pro
vide bidirectional output pins for operations such as shifting and rotating serial data.

INPUTS, FEEDBACK AND 1/0

....

- :>--tl I::.._...._.
~ ·"'
~ -
::: -.

110

i...

h.
~ ~- _...,.

Figure 4.2.2 PAL Device Bidirectional Circuit, Logic Diagram

PAL Device - Speed/Power Groups

PAL devices are available with various speed/power specifications. For easy reference,
these are summarized in Tables 4.2.4 and 4.2.5.

20-Pln Small PAL
Devices 20-Pln Medium PAL Devices

10H8, 12H6, 14H4,
16H2, 10L8, 12L6, 14L4,

16L2, 16C1 16L8, 16R8, 16R6, 16R4

TAA Max Ice Max TAA Max Tsu Min TCLK Max Ice Max
(ns) (mA) (ns) (ns) (ns) (mA)

Standard 35 90 35 35 25 180

A Series 25 90 25 25 15 180

B Series - - 15 15 12 180

A-2 Series 35 45 35 35 25 90

B-2 Series - - *25 *25 *15 *90

*Preliminary information.

Table 4.2.4 20-Pin PAL Device Speed/Power Groups

The Programmable Logic Family 43

20C1, 20L2,
18L4, 16L6, 14L8,

20L10 20X10, 20X8, 20X4 12L10 20LBA,20RBA,20R6A,20R4A

TAA Max Ice Max Tsu Min TcLK Max Ice Max TAA Max Ice Max TAA Max Tsu Min TcLK Max Ice Max
(ns) (mA) (ns) (ns) (mA) (ns) (mA) (ns) (ns) (ns) (mA)

[standard 50 165 50 30 180 40 100 - - - -
[A Series - - - - - - - 25 25 15 210

Table 4.2.5 24-Pin Speed/Power Groups

PAL Device Logic Symbols

The logic symbols for each of the individual PAL devices gives a concise functional
description of that device. Figure 4.2.3 shows a typical logic symbol, that of the 10H8
gate array.

PAL10H8

Fi~ure 4.2.3 Logic Symbol, PAL10H8

44 Programmable Logic .Design Guide

PAL10H8 PAL12H6 PAL14H4

PAL16H2 PAL 16C1 PAL10L8

PAL12L6 PAL14L4 PAL16L2

Figure 4.2.4 PAL Device Logic Symbols - Series 20

The Programmable Logic Family 45

PAL16L8 PAL16RB PAL16R6

PAL16R4

Figure 4.2.4 PAL Device Logic Symbols - Series 20 (Contd.)

46 Programmable Logic Design Guide

PAL12L10 PAL14L8 PAL16L6 PAL18L4 PAL20L2

PAL20C1 PAL20L10 PAL20x 10 PAL20x8 PAL20x4

PAL20R4 PAL20R6 PAL20L8 PAL20R8

Figure 4.2.5 PAL Device Logic Symbols - Series 24

The Programmable Logic Family 47

4.3 THE PROM FAMILY

National's broad PROM family extends from a 32 x 8 bit (256 bit) PROM to a 4096 x 8
bit (32K) PROM. Only the low density byte-wide PROMs are considered here for pro
grammable logic applications. The products in this category are shown in Table 4. 3 .1.

No. of
Part No. of No. of Product Terms/ No. of TAA Max Ice Max
No. Density Inputs Outputs Output Pins (ns) (mA)

74$288 256 Bit (32 x 8) 5 8 32 16 35 110

87X288B 256 Bit (32 x 8) 5 8 32 16 15 140

74LS471 2K (256 x 8) 8 8 256 20 60 100

74LS472 4K (512 x 8) 9 8 512 20 60 155

74S472A 4K (512 x 8) 9 8 512 20 50 155

74S472B 4K (512 x 8) 9 8 512 20 35 155

74$474 4K (512 x 8) 9 8 512 24 65 170

74S474A 4K (512x 8) 9 8 512 24 45 125

74S474B 4K (512 x 8) 9 8 512 24 35 170

87SR474 4K (12x 8) 9 8 512 . 24* 35 185

87SR476 4K (512 x 8) 9 8 512 24* 35 185

87SR25 4K (512 x 8) 9 8 512 ·24• 35 185

.Military versions are also available. Above data is commercial.
• 24 Pin Narrow Dual-In-Line Package

Table 4.3.1 PROM Configurations

48 Programmable Logic Design Guide

Size DIP Part TAA TEA ICC

(Bits) Organization (Pins) Number (Max.)lnnS (Max.)lnnS (Max.)lnmA

32 ic 8 Standard PROMS

256 32x8 QC 16 DM54S188 45 30 110

32x8 QC 16 DM74S188 35 20 110

32x8 TS 16 DM54S288 45 30 110

32x8 TS 16 DM74S288 35 20 110

32 x 8 Ultra High-Speed PROMs

256 32x8 TS 16 PL77X288 20 15 140

32x8 TS 16 PL87X288 15 12 140

256 x 8 Standard PROMs

2048 256x8 TS 20 DM54LS471 70 35 100

256x8 TS 20 DM74LS471 60 30 100

512 x 8 Standard PROMs

4096 512x8 QC 20 DM54S473 75 35 155

512x8 QC 20 DM74S473 60 30 155

512x8 TS 20 DM54S472 75 35 155

512x8 TS 20 DM74S472 60 30 155

512x8 QC 20 DM54S473A 60 35 155

512x8 QC 20 DM74S473A 45 25 155

512x8 TS 20 DM54S472A 60 35 155

512x8 TS 20 DM74S472A 45 25 155

512x8 TS 20 DM54S472B 50 35 155

512x8 TS 20 DM74S472B 35 25 155

512x8 QC 24 DM54S475 75 40 170

512x8 QC 24 DM74S475 65 35 170

512x8 TS 24 . DM54S474 75 40 170

512x8 TS 24 DM74S474 65 35 170

512x8 QC 24 DM54S475A 60 35 170

512x8 QC 24 DM74S475A 45 25 170

512x8 TS 24 DM54S474A 60 35 170

512x8 TS 24 DM74S474A 45 25 170

512x8 TS 24 DM54S474B 50 35 170

512x8 TS 24 DM74S474B 35 25 170

512 x 8 Registered PROMS

4076 512x8 REG 24* DM77SR474 40** 30 185

512x8 REG 24* DM87SR474 35** 25 185

512x8 REG 24* DM77SR476 40** 30 185

512x8 REG 24* DM77SR25 40** 30 185

512x8 REG 24* DM87SR476 35** 25 185

512x8 REG 24* DM87SR25 35** 25 185

* 300 mil wide package.

** Set-up time.
Table 4.3.2 PROM Products for Logic

Temperature

Celsius

-55to +125

Oto +70

-55to +125

Oto +70

-55to +125

Oto +70

-55to +125

Oto +70

-55to +125

Oto +70

-55to +125

Oto +70

-55to +125

Oto+70

-55to +125

Oto +70

-55to +125

Oto+70

-55to +125

Oto +70

-55to +125

Oto +70

-55to +125

Oto +70

-55to +125

Oto+70

-55to +125

Oto +70

-55to +125

Oto +70.

-55to +125

-55to +125

Oto +70

Oto +70

The Programmable Logic Family 49

01 16 Vee

02 2 1S E1

03 3 14 A4

a4 4 13 A3
32x8

as s 12 A2

a6 6 11 A1

a7 7 10 AO

GND 8 9 08

A1 1 24

As 2 S12 x 8 23
As 3 REG. 22

A4 4

A3 S

A2 6

A1 7

Ao 8

Oo 9

21

j:t 20
'l:t'

ffi 19

~ 18
:E
c 17

16

01 10 1S

02 11 14
GND 12 13

Vee
Ag

NC

G
INIT(CLR)

Gs
CK

07
Os

Os

04
03

AO 20 Vee
A1 2 19 A7

A2 3 18 A6

A3 4 17 AS

A4 S 16 E2
2S6x8

01 6 1S E1

02 7 14 06

03 8 13 a1
04 9 12 a6

GND 10 11 as

24

2 23
S12x8

3 REG. 22

4 21

le It) 20

~ ~ 19

~~ 18
5E :E
cc 17

Oo 9 16

01 10 1S

02 11 14

GND 12 13

Vee
Ag

PS

G
INIT (CLR)*

GS
CK

07
Os

Os

04
03

Figure 4.3.1 PROM Logic Symbols

Note:

AO l

Al
2

A2 3

A3 4

A4 5

QI 6

02 7

03
8

04
9

GND IO

A7 I

A6
2

A5 3

A4 4

A3 5

A2 6

Al 7

AO B

QI g

0210

03 11

GNO
12

S12x 8

S12x 8

All of the virgin devices come with their fuses intact. But for the sake of simplicity, the
fuse-linked crosspoints in the array are shown unconnected.

4.4 LOGIC DIAGRAMS

The following pages show the logic diagrams of the PAL device and PROM family of
programmable logic devices. The logic diagrams are ordered in the following
sequence:

PAL Devices:

PRO Ms:

Figures 4.4.1-4.4.13 (20-pin PAL devices)
Figures 4.4.14-4.4.27 (24-pin PAL devices)

Figures 4.4.28-4.4.32

50 Programmable Logic Design Guide

Inputs (0-31)

...
11

~
..-~

2 ... ~
19

~ ~

• 1_ 18 _Jo< 3 ' I _Jo< .J .. _Jo< L ./
" -- 1

3 ...
>.. ... ~

-- 17 ..
-1:5 .J

"

4 ...
~ .. ~

:R] 16
14
Ii --I

I

5 ...
~

15
JI >< .J JJ-

6 ...
~.>.

..-~

14 ..
~ "

7 ...
~

.. -- l_ 13 .. J-< x .. .re: .J
11

_re: L
...... \

8 12
>. ""'

9 A 11
~ ~ ... ~ '"'"'"" I I J J •I I 1 It UUHU JIHJIJI

Figure 4.4.1 Logic Diagram PAL lOHB

The Programmable Logic Family 51

Inputs (0-31)

DI ll 41 I! llll 1111 lDll 1411 lll!JDJI

1 ..

19
D

..K. _J I -
2 ..

..,.

I -- 18
_1'< ! ---

3 ...
12-..,.

-- 17
" :K] II -

4 ...
...,

- 16
14 :J.(=i II --

5,

ll -- 15
ll ...K _J -

6
L2_ ..,.

40 -- 14
41 .t-< _J -

7 ...
LZ ...,

.. 13
..K. _J 41 -

8
~

-- 12
II

Jo< I 17 -
9 11

~

1121 Ii II 1111 1117 2011 141$ lllllDJI

Figure 4.4.2 Logic Diagram PAL 12H6

52 Programmable Logic Design Guide

Inputs (0-31)

0 12] 4 !ii 1 191011

1 ...

2 ...
·~

3 a.. 19
<.
-v

4 18
~

~

II -- J_ 17 :Jo< _I :> 11
~ 1_ 11 :Jo< 11 -- ' 5 b.

L?

" - .1 16 ::Jo<
" :H ::J n --- _I.
11 -- '
"

1_
15 .M. ~ :> IJ

.M. _] 14
Jo< L 15 -- -y

6 lb.

~

" -- .1 14 _}oil --' " _}oil =i " _}oil L
" - ' 7 13

~ -

8 !lo.. .A 12
_5J

9 h. .. 11
~ ~

-v
0 I 1 l 4 SI 1 I 11011 Ull 2011UU H2S1121 21llllll

Figure 4.4.3 Logic Diagram PAL14H4

M'
<O

I
e.
Cl)

E

~ -u
::J

"C
0 n.

1

2

3

4

5

6

7

8

9

...
~ ...,

....
~

.....

...
~

14
II
II
11
11
19
JO
JI

.....
~

JI
JJ
34
JI
JI
JI
JI
39

b;-

~

...
~,

....

The Programmable Logic Family 53

Inputs (0-31)

0 I I J 4 I i 1 . I 910 II 11131411 11111119 10111113 14111&11 lllllOJI

I
I

.... 19
<.. .. _.._

.... 18
~

.A 17
~ -

~~
~ 16 ~

'
~

~

..... _J

P-r: ~ 15

... ... _
t: I

..... 14

~

_ ... 13
N

~ 12
..... :.Q

..... 11
.s.t -

0 I 1 J 4 111 191011 111J1411 11111111 10111113 14111111 1129JOJI

Figure 4.4.4 Logic Diagram PAL 16H2

54 Programmable Logic Design Guide

INPUTS (0·31)

1 ... • 1 1 J 4 ~ I 1 I I \Cl 11 If ll 1' 15 1• 111111 1t fl l1 tJ 1' l~ l• 21 18 lt JO Jt

~ ...

2 .. 19
> _:!IC

3 18
~ 31:

4 .. 17
::lit_ ~

..1
_J

~~ 5 -..
~ ... _..,

.l 15

::J

_J -
6A 14

~ .,JI;

7A 13 ---r..._ __,,.. ... :"'

8A 12 - .2._ _:e;

9 11
->:<;

I I I I e i I 1 I I '9 II 11 ll 1' I~ !ti 11 11 II Z'O 11 11 U 111~ 1' l1 1f 11 :Ml ll

Figure 4.4. 5 Logic Diagram PAL 16C 1

The Programmable Logic Family 55

Inputs (0-31))

0111 ., 11 llll 1111 1011 IHS 11113011

1
-

\

o - .,.... 19
~ .J 1 -

2 ...
--L?' ..,.-

I -- ""'-
18

J-<] I - ""

3 ...

11 --- .,,_ 17
11 _t< __)

'"" ---
4

2' -- K:'
16

IS Jo< _J -
5 _

ll -R" "'-
15

1 ll ----
.......

6
~ ..,.-

•o ~ "'-
14 .. ----

7

.. .,.... 13
~ .J .. -

8
~ ...

-u -- .,..,_ 12
51 Jo< :J,. -

9 11
_st
~

II 1111 1111 1011 l'IS lill l0l1

Figure 4.4.6 Logic Diagram PAL 10L8

56 Programmable Logic Design Guide

Inputs (0-31)

~
I

.,._

2
~ .A 19

··~

vv- l -~

I

I - L 18
I ...K. J

"" 10 ~ f "'
11

l
- ' 3 ...

~

:R-i
17

" .,.,_
11

I
--

4
~ ... -

" ...-. 16
...K. _J ""' IS - "'

5 ...
~

II -- 15
:J-<: :J

.,.,_
13 -- ~

6 ...
~

40 -- 14
...K. _J ""' .. - ~

7
~,

.. :R:h,. 13
" Jo<. .,.,_
so -1-<_ L .,,/"
SI - '

8
~ 12

_,<
... V" -...,~

9A 11
----t.Jt.. ~,...,_ .,

I 1 Z J Ci I 1 I I HHJIZT HZIJIU

Figure 4.4. 7 Logic Diagram PAL12L6

-u
:a
"C
2
a.

...
--Q

2 ...
---1.2 -

3 ...
-

4
12:: -

5 ... --Q-

6
~ ..

7
---u_ -

8 ...
-

9
~

..
" II
II

IC
2'
21
II

J2
II ,.
Ii

.. ..
u
u

The Programmable Logic Fanlily 57

Inputs (0-31)

11 JJ t SI 1

.... 19
_<. ...

.... 18
_sJ-

- l_
17 t-< i 1-< '~

...K. L - \

--- 1 16 ::Jo< _)

~ ../°
-

'
-- 1 15 ~

_I ' ~ -L .. r :K - '
-- J_ 14 :r<: _)

"""" :r<: ::J /~ :Jo< L -.....

' 13
~ -

.A 12
5J

.... 11
~
~

I 1 I J t l I 1 I 11111 lllJ 21Z12lU lt25llZ1 2121JDJI

Figure 4.4.8 Logic Diagram PAL14L4

58 Programmable Logic Design Guide

M'
U)

I
e.
Cll e

{!!. -CJ
:I
'C e
D.

1 ...
12

2 ...
.2--

3

4 ..
R-

5 ...
~

6 ..
~ -

7 ..

8 ..
-

9 ..

Inputs (0-31)

D 1 2 I 4 I I 7 I 11011 12111411 16111119 !0!1221! 24212627 2129!DJ1

I

24
21
21
27
ll
ll
10
JI

Jl
ll
11
II
ll
ll
ll
ll

I 1 l l I I I 1 I 11111 11111111 11111111 20211221 21212127 21211011

Figure 4.4.9 Logic Diagram PAL 16L2

.... 19
~

.... 18
<.I-
""'~

.... 17
~

..... ,
1-11
1-11 16

""" """ """
..,,,

""" 1-11
1-11

'
..... ,
.... 15 "'-....
1-11
1-11
1-11

~

.... 14
.SI

.... 13

~

.... 12
~

.... 11
-~
~

The Programmable Logic Family 59

Inputs (0-31)

1121 C 117 I 11111 llllltll 11111111 ID211111 ICISllll lllllDll

I ...
I

>-tl 2
l 19 • I
I tool

1 1--1 ...
2
---lz ~,- _...,

I
I

~
II

18 11
ll
II
IC
u w.

3
------ti ,,.,..,.

II
II

~ II 17 II 21 21
22 ·:J 2J

4 ...
i .,.._

"'"
2C
15 i::

~
21 16 11
21
21
10
JI

5
~ ... ,,.,.,

12 ~ JI

~
IC

15 IS
JI

~ 17
II
II

6
....

....
~ .,...,- _.,

••
u ~;J u - 14 Cl
Cl

~~ ...
CJ

7 h..
-~ .,.._ _...,

Cl

~~ H
51 13
u r-
SJ r-
IC ~ . .:J H ~

8
....

---lz
... -- .,..,.

51
SI _;J_ 51

12 51
ID ...
II ~ 12
ll ~

9 11
--Ii ~ .,.....,- ...,...,

0 I 2 l CI 17 I 11011 llllltll 11111111 10111111 14251111 11111011

Figure 4.4.10 Logic Diagram PAL 16L8

60 Programmable Logic Design Guide

M'
ID
I

e.
II) e
~ -u
::I

"C e
Cl.

Inputs (0-31)

CHCHIH2HJf--14Hl~6~ll--8~9~1~C•~·-;~,,rJlrOl~l-lr61~11rol~l-2~01~il~ll+J--+-,.+,,+2,+1.--+-1.+1,+JQ~Jlf--l,...I >--t'

I HHl-+-lf--l~~-+-~l--~~-+-~-+-++++--+-+++-++-t-+f--1 I >__.
; :;~;:;;:;:::;;:;::::::=::;;;=;;;.::-=;.::-.::-.::-=.::-.::-.::-~=~~~~=~~~~=:;L~L. >r--4~-...

:-l-l-l-l>---<i-+-14--+-t-+-l--t-+-l--l--+-1--1-1--++++-l-++-l-+-~+-+--l~f"J--t---.,/
6~~1--~~-+-+++-++++--+-+++-++++-+~+--t-+-t--t~1~>-1
)~~l--~~-+-+++-++++-+-+++-++++-+~+--t-+-t--t~1 ~,

~
.... V'

7 h.--~~+-+-+-+--+-+++-++++--+-++-+-++++--.
~

48~~1--++++-+-+++-++++--+-+++-++-t-+-+~+-~-+Hf--l~I >---4,

:::~~~~=tttt=tttt=tttt=tttt=tt~~=~~~~=~~~~=~i::l~=-' ... -.
;;:~ttt=tttt=tttt=tttt=tttt=tt~~=~~~~=~~~~=~ ~~~
;:-+-+-+-l--H-++-l-++-l-++++-l-++-l-++++-++++-+++-+--l~rJ.-+--
11-+-+-+-+--H-++-l-+++-++++-++++-++++-++++-+++-+--lt:~-1

8 h---~~+-+-+-+---+-+++-++++-+-t-++--t-+-t-+-++-t-+-~
~

0 I 2 3 4 ~ & 1 8 9 1011 \/1)141!> 16171819 2021n2; /q!J{b/1 liji9JOJI

Figure 4.4.11 Logic Diagram PAL 16R8

M' co
I e

U)

E
;!
tS
:I

"O e
a.

1
CK

I
I

I
I . .
I

'

111 J

SR ~
I
I
II
II
II

" " " 3 ...
.>,

II
11
II
II
II
II
II
II

4
D1 ~

" " II
II
II
II
II
II

5 ...
D2 ~ .. ~

II
II

" II
JI

" " "
03

6 ..
~,

..
" u

"
" 7 ...

~

.. ..
" " II

"
8
~ ..

..
II

" II
ID
II
II ..

•SI 1 111011

The Programmable Logic Family. 61

Inputs (0-31)

11 nu n 1111 1111 1111 u u u n 1111 n n H ,, -1-o

~
1-o

19
1-o

~

LIAO

- 1

t:

~
.... J

...
1'.
~

.... ' I:
~ ~

... ... J
' 1'.

~

,_ '
• Q 16 "' J

[~~ rva-loOI

• ...
7.
"V~

I:
1

~
.....

~
... "'
.... ' ...

~
.... ' l-o

~
'}..

~
l-o
l-o
""' ' ...

~
-v

c~

~
...
l:>- """' ~
.... ./ ...
b-1 ...

~
12 RILO

""' ~1 9 ... ~ p <•t----' SL E

Figure 4.4.12 Logic Diagram PAL I6R6

62 Programmable Logic Design Guide

M" co
I

e.
en
E
~ -u
::I

'?J
e
a..

Inputs (0-31)

D 12 J • s 6 1 I 91011 1Z1lU 15 1811111' 2021222) 24252117 112'l0l1

' I
I
I .
I
I
1

~,

I

' 10
11

11

" " IS

3
~,

11

" 11

" 10
II
II
II

4 ...
.> ... "..,

74
lS
II
11
II
II
30
]1

5 ..
~

""" V'

JI
ll

" JS

" J7

" l!

6 ...
~

... V'

" " 41

" .. ,, ..
" 7 ...

~,

.. ..
'' SI

" " ..
IS

8 ..
~

" " SI
SI ..
" II
II

9 ..
~

0 I 1 J • s I 1 '11011 121JU1§ 11171111 202\UU uuun llUJOJT

.....

.....

~
""" ""' ""' ""' ""' ""' r-

~
.... ~

~
~

""" l:.

"~

..... ,
~
""' ""' ../
""' ~ ...

~l
-...,~

i::
~

...
""'
""" ""' ""' ""' ~ ...

~
""""'"""

.... 1 ... -... _.
~ t:>- ./

""" 1
.A

JC:
"""" ' ~

"""
'--

""' """
t: J ...

IC.. -...,...,.
.... E-,:)_J
n~ t: __) c.A

""""'""""

!?-7 :>-J ,
""" "3 _)
To.<

.A
1C..t--
"""""

Figure 4.4.13 Logic Diagram PAL 16R4

19

18

~
~ ~

~ ~

~ ~
13

12

~

The Programmable Logic Family 63

Inputs (0-39)

0 1 2 3 4 5 I 9 1213 1&17 2021 2•25 2129 3233 31373139

1
2
~

23
0
1

2
~

22
I
9

3
--12 -

21
16
17

4
-t~ -

20
2•
2S

5
-~

32 ~ 33

6
::t.
~

18
40
'1

7
~.

"
17

,g

8
::t. -

S6
16

S7

9
-~ -

64
15

6S

10
--1::l!

~-

72
14

73

1 13
-f-2. c-

~ ""
0 1 2 3 '5 I g 1213 1617 2021 2425 2129 3233 31373139

Figure 4.4.14 Logic Diagram PAL12Ll0

64 Programmable Logic Design Guide

Inputs (0-39)

0 1 Z 3 4 5 I 7 I t 1213 1117 Z11Z1 ZH5 Zlzt 32333'35 31373131

1
--t2 --

2 23 :.c:c._ <I---...
I 22 •

10
11

3
~ ..

11
21

17

4
-l.2_

"V

24 ~ 25 ,_,

5
--f~

3Z
19

33

6
~

40
18

u ._,

7 • ~

.. 17
'9

8
~

51 ~ 57 ,_,

9.
-t_>

v

" 15 15

" 17

10. 14
--l::::lt <I---.......

11 13
~ <I---..

0 1 z 3 4 5 6 7 11 1213 1617 fOZ1 ZH5 ZIZ9 32333435 36373139

Figure 4.4.15 Logic Diagram PAL14L8

~e Programmable Logic Family 65

Inputs (0-39)

0 1 2 3 4 5 I 7 I 91011 1213 1117 2021 2'25 21213031 32333435 31373131

1
-I.> ...

~
23

~ ...

3 22
--1~ ~ "

15 21
17
11
19 ._,

4 ..
~

"
24 20
25
26
27 ._,

5 ..
~

19
32
33 L..I

6
~

v

18
40
41 L..I

7
-Ci:

.. 17
49
50
51 LJ

8
->

56 16
57
51
59 ._,

9 15
-~ ~ v

0 .. 14
-Clt ~ ..

1 13
--[~ ~ ..

D 1 2 3 4 5 6 7 8 91011 1213 1617 2021 2425 21293031 32333435 36373139

Figure 4.4.16 Logic Diagram PAL 16L6

66 Programmable Logic Design ~uide

INPUTS (0-39)

G 1 Z 3 4 5 I 7 I I 10 11 12 1314 15 1117 ZGZ1

1 •
-l>

v

~

3 23
-> -<

4 22
-·t> . <t."J---;. - "'

5 • 21
-.> ?~ ..

24

~
25
21
27
21

6 21
__,~ ..

32

~ 33
34
35

'-'

40 .(}.....I 18 41
42

7 43

-D -
~ 41

41

~ 50
51 ~
52 ~

8 53 t)-., 16
-> 4!""1--

v

9 15
~ ct--

""

10 14
~ ~

11 13
:lt.. ~ -

0 1 Z 3 4 5 6 7 891011 12131415 1617 2021

Figure 4.4.17 Logic Diagram PAL 18L4

The Programmable Logic Family 67

Inputs (0-39)

1 ..
-2 -

~
23

--z

3 22
-t.2. --z .

"'

4 21
~ ~ . "'

5 20
-> CC.t--... ~

PJ 3l
33
J4 1-r'

~ 3$)-l
31 rp-. 31
31 I-)-,

6 31 ~
~ .

40
....,_,

41 ~
41 ~~ 43)...)-'
44 t-r. 4S µ-
41 d= 17 7 47

~ i: -

8 16
-.:> i: .

9 15
·~ ~ .

0 14
.2. JCI--..... ~

1 13
-..lt. .11:.t--.

Figure 4.4.18 Logic Diagram PAL20L2

68 Programmable Logic Design Guide

Inputs (0-39)

1
D 1 Z 3 • 5 6 7 111011 1Z131•15 16171119 ZD21Z2Z3 2•252127 21213031 32333'35 36173611

--12
r

2 .23
~ ,.;:

3 22
--1> ,.;:

4 21
-t::t. ,.;:

5 20
-t.2 <

~

32 RJ 33 ~ 3• 1-D 35 ~ 36 ~ 37 ~ 38 J-?"1 19 6 39 J-'
-u.

•D RJ 18 •1 ~ •2 ~ '3r~ .. H""'-cs
~ '6

7 '7 ~ 17
--t-2.. <

~

8 16
--12

.,,.~

9 15
--1> " ~

10 14
--t2 r ~~

11 13
-~

1C.

D 1 2 3 • 5 6 7 8 9 1D 11 12 1J 1' 15 16 17 11 19 2D 21 22 23 2'25 26 27 21 29 3D 31 32 33 3435 3117 36 39

Figure 4.4.19 Logic Diagram PAL20C 1

-u
::s
"C
0 a:

The Programmable Logic Family 69

Inputs (0-39)

0 1 2 3 4 5 6 7 I 91011 12131.'15 16171119 20212223 24 252627 21293031 32333435 3637 3139

0

@ _,j_ 2 1
2
3

3

2
~ .JC~

~

8
9

~ 10
11

3
I~

....
~

16
17 @ -d

21
18
19

4
-~ ~i----' ..,. ~,

24
25 @~20 26
27

5
-t~ ~

~

32

@_~-r 33
34
35

6
~ _S..t-----o

~

40
41 K:t.: ~ 18
42

S:P~ 43

7
I~

_,
48

J-_i. J 17 49
50

~~ 51

8 ..
~

56

~
57
58
59

9
2

v

64
~-J 15 65

65
67 :o=v~ 10

--fY . ..,.

72

J:{-:t' J 14
73
74
75 {j--f-/ v

11 13
~ _.;(;

~,

0 1 2 3 4 5 6 7 891011 12131415 16171819 20212223 24252627 28293031 32333435 36373839

Figure 4.4.20 Logic Diagram PAL20Ll0

70 Programmable Logic Design Guide

en
I

e.
en
::E
a: w
I-
Iu
::::>
c
0
a:
Q.

INPUTS (0-39)

-I'
0 1 Z 3 4 5 6 7 I 9 1011 12131415 11171119 ZOZ1ZZ23 Z4 ZSHZ7 21293031 32333435 31373139

0
1

z
3

~
I
9

10
11

3
-t.>-r

16
17

18
19

4
-t2.

r

Z4
ZS

Z6
27

~u
r

32
33

34
3S

6
-t.2 ,,,..

40
41

4Z
43

7 . "1.A.

48
49

so
S1

s-µ_

S6
57

58
S9

9' ;t_

64
6S

66
67

Qli.
~.2 ..

7Z
73

74
7S

1-t~
0 1 Z 3 4 S 6 7 8 91011 1Z13141S 16171819 ZOZ1ZZ23 Z4 ZSZ6Z7 28293031 3233 34 3S 36373839

IDi> ~8 2

~
...

<

3

~] Q. D ~
2

......
._, -

-<

2

{§99 I.I. 21

~ t-<'"'1
......

~

~~ 1.1. 2

~
.......

b--L
£

0

~

IDI> Cl

~
1

......
_J

<C.

9

~

}§9~ Gt

~
1

......
......,_

<

8

~

~~ Q 1

~
......

-._,- -
<

7

~

ID~ 1.1

~
1

.....
-._,-- -

<

6

~~ IJ.

~
1

.....
........

~

5

ID~~·
£ ~

4

3

Figure 4.4.21 Logic Diagram PAL20X10

a;-,...
I

e.
en
:e a:
w
t-

t;
::::>
Q
0 a: a.

The Programmable Logic Family 71

INPUTS (0-39)

_to...
y

D 1 2 3 4 5 I 1 I 11011 U13141S 11171111 2D2122Z3 24252127 21ZUUI 32333435 31373131

0

~
1 2
2
3 """LJ'""'

~ ---z ...

3

a

~~ M~
9 2

10 -
II """LJ'"-

~~ "'

2

..
I&

~D- h 11

~
21

18
19

~· ~

<
r-

24

~~ Gl 25

~
20

26
....

27 """LJ'"-

-~n -"--

~D-
32 Cl 33

~
19

34
35 """LJ'"

6
:::i. ~

40

~~ t;L 41

~
18

42
....

43

7 -;t. ~
r·-

48

~D- h 49

~
17

50
....

51

8. -~

r-

56

~~ ~
h 16 57

58
....

59 ..._,
9
-t.2 -"-..

64 ®D- ll 15 65 ~- ~ 66
....

67 ,J-1.. Q

0-i:::i.
~

<it' .. ""

12 m, -i 73 14
74
75 =1 1-i>-. ~

1 I I I I
....

0 1 2 3 4 5 I 1 I 11011 12131415 16171119 20212223 24252627 21293031 32333435 36373139

Figure 4.4.22 Logic Diagram PAL20X8

72 Programmable Logic Design Guide

(j) ,...
I a

t.n
:E
a: w
t;
:::>
c
0
a:
a.

INPUTS (0-39)

........
v 0 1 2 3 4 5 8 7 I 91011 12131415 11171119 202122%3 24252127 21293031 3233 34 35 3137 31 39

0
1
2
3

~
8
9

10
11

L~ ..
16
17
18
19

4
~
~

24
25

26
27

5
~

32
33

34
35

6
~

.-~

40
41

42
43

7 ...
~

48
49

50
51

~-u

56
57
58
59

9 ...
~

64
65
66
67

10
---1.:&.

72
73
74
75

11 ...
.;Jt

0 1 2 3 4 5 6 7 8 91011 12131415 16171819 20212223 24252627 21293031 32333435 36373139

}-(J -;J 23 B:> y

J
-._., \

~-

~J 22

~/ y J
~,.....__. ...

~J 21

~/ y J
~..--...

~9 ~8 20

-c.

~~ ~ ~ ~

~9 t;t

~
18

.....

...
~
~

~ ~~
lli' _J

1

~ J
-"1----'

6

~~ 15
:tRJ

J ,.;; ...

~_,.! 1
~ J ~ ..c::

~

4

3

Figure 4.4.2 3 Logic Diagram PAL20X4

0 1 2 3 4517

~ ~
I
I
10
11
12
13
14
15

3 ...
~ ,.._
'15

17
11
11
20
21
22
23

4
..2.. ,.._

24
25
26
27
21
29
30
31

5
~ ,.._
32
33
34
35
36
37
31
39

'6 ..
~ .. -
40
41
42
43
44
45
46
47

7 ..
~ ... -

41
41
50
51
52
53
54
55

8
~ .. -

51
57
51
51
ID
11
12
13

9·~ ... -
14
es
66
17
II
61
70
71 o ...
~

11 ~-
~ ...

The Programmable Logic Family 73

Inputs (0-39)
20L8

11mtt uuw~ u11uu ~nnn ttnHn nn~~ n~~~ 31373131

....
-CL
-"' ,...,

H

~~ q::;_,/
f-).....
b-i

~
--~ r

t-j....

~ ~ P- ./
t-j....
b-i
~
~

r
..........
~--· t-j....
P- ./
t-j....
b-i

~ ,
r p...,
~
l={-i ../
~ b-i

=G--..... ,...,
~
~
~ 1-i--

~ ../
~ tj....,

1C
"' ,...,

~
~
J-i....i """ p-
t-j....
b-i

.A
_jC
-"' ·r

p-
t-j.... p- ./
t-j....
b-i ...

'JC:
""' ,...,

~
P;j~
~ ../
~ b-i --c

-~
~ ,

J 23
r--

J. 22
......

J. 21

~ 20
......

1 19

L 18
....... -

_,.L~ 17 -

1~ 16 -

1 15
......

14

13

o 1 2 3 4 5 11 111ott 12131415 16111119 2on2223 24252627 2129~31 3233~35 36373139

TUU5598-10

Figure 4.4.24 Logic Diagram PAL20L8

74 Programmable Logic Design Guide

Inputs (0-39)
......

-v 1123 4567 llWH uuw~ ~U16~ ronun H~HU HH~~ ~"~" 36373139

~
~
-"'"

I R-' I
ID ~ " 11
12 ~ ./ 13
14 1-'r-
15 b-i 3
~ ~ .. -

16 r')-'
17 ,.....
18

~" 19
20 P- ./ 71

8:: 22
23

4 ~

~ ~ .,._
-~

rl-24
25 p-
26
27 t-r-
21 P- ./ 29
30 ,.....
31 b-i 5
~ ~ .. ,-

"'
8:-32

33
34

~" 35
36 µ-- ./
37

8:: 31
39

6 .. ~

...... ,
__L.-.. - -"'" 0-40

41 p-
42
43 i)- ' 44 ~~ 45

~ 41
47 b-7 ,

~ ... -- -"'" r')-' 41
41 1-i-
50 ~~ 51 r-.>-52 t-{""
53,.....
54
55 b-i 9
~ ~ ... - "' r')-' 51

~ 17
51

~ ' 51
ID H 11 1-i.-12 b-i 13

...... 9 ...
~ ~ ... "'" r"H ...

65 p-
118

J-').... 2 17

~ ..
89

~ 70
71

10 ... ~
~

11:. - -~
~ ~ ... -- -"'"

11 Z3 4517 11wn uuw~ 16U16W ronun Hnnu nn~~ ~"M» 31V31S

Figure 4.4.2 5 Logic Diagram PAL20R8

23

~
~1
~
~ ~

~ ~

~
~8

~ n
6 ~ ~

~
5 ~

1 4

3 ~
TUU5598-13

c;;
co e.
en
E

{!!.
u
::::s

"C e
a.

1
• 1 z 3

~ • I
I
ID
11
IZ
13 ,.
15

3 ...
~ ... -

16
11
II
11
lO
n
IZ

4 ... 23

-t>
rv

24
ZS
21
21
21
21
JD
31

5
~ ,,,_
32
33
34
35
36
37
JI
31

6 ..
~

""""'
'° 41
42
43
44
45
46
47

7 ..
~
41
5G
51
52
53
54
55

8 ...
,;t:

51
57
51
51
go
11
n
u

9 ..
~ ..
64
u ..
11 ..
H
70
n

10 .. ~

11: -
~

• 1 z s

The Programmable Logic Family 75

Inputs (0·39)

4517 11~11 uuuu """~~nun Nnnn nn»n nnMn :IUUUI

.A 23
~ , ,......

p- l 22 p- ::>--ir
er :J t-r"r--"
~ ..._)-i

.A

~ ,
r}-p-

~
J-,_

"""" p- ./
8=

.A

~ _,
r
p-

~ 1-r- n ~f..-/
~ tJ..-.,
._ .A •

_jC ,
')-:

~
{:r-

~
1-r-;:-r ./
t-:>-
~

~ _,
rr-

~
p-

~
1-r-

"""" v ../
I-
d= ...

.. 'JC _.....,
~ p-

~ t-)-;
"""" ~ ~ ../

t-)-;
~

..ii
~ ,

r")--l

~
p-
t-)-; """"

~ P-L./
~ 1)-..,

JC: -.... ,...... B:;N 15

8= ~ 1-i-
~, .A

~ -..... 14
<: -.....

~ 4117 ··~11 UUHU 11111111 10nnn ttn2121 2121JDn UUMU JIVJIH

TUU5598-12

Figure 4.4.26 Logic Diagram PAL20R6

76 Programmable Logic Design Guide

20R4

0123 4567 89ron uuu~ ~11m~ ~~nn ~~~v ~M~~ n"34" 36373839

~ 23

• .• ~ ,.....
I

~

~
9
10

I-)- 22 11
12 µ--
13

l-r-14
15 b-3 ...
> ,.....,
16

~~ 17
18 ~ 21 19

§: 1=r 20
21
22
23

.._)-1 4
~

.. ~ ·- -.."""
"-' 24

25 ~

~
26 ~ ""'"-~ 27
28 ~ ../

'29
~ 30

31 b-i ~ 5 it..
> 3:: ~

~ 32

R>~
33 ~
34 ~~

~
35
36 p- ../
37

1-r-38
39 tr 6 ~

~ ~T ,..._
,....., -....

40 ti:: .
R>~

41
42 ~~

~
43
44 p- .../
45

1-)-46
47 b-i 7

::t --"
'H 48

~
49 i:r

~
50

~ 51 t:bl--' 52
.53 1-i--' 54 t"i--1 55

8
~ 3::L -.... ,...,
56

~~
57

16 58
59
60

·61
62 t-1--
63 9
~ .jC .. --

r-64
~

~
65 };..... 15 61

~ 67

P-61
69 1-r-70 tr n

10 ... ~
11~y 14
~ iC .. I

...

~ 0123 4567. 19ron uuu~ n11n~ ~~nn ~~Hv HH38~ 32333435 36373839

TUU5598·11

Figure 4.4.27 Logic Diagram PAL20R4

The Programmable ·Logic Family 77

A4 A3 A2 A1 AO

~~~~~~v~~ PROGRAMMf\BLE "OR" ARRAY" 

'A4A3A2A1 Aii 

A4A3 A2 A1 AO 

AA A3 A2 A1 Aii 

AAAlAZA1 AO 

A4A3 A2 A1 AO 

_I'\ 

1=( 
r<. 
P<. 
L..I 

AAAl A2i\f AO 

-MAlA2A1 Aii 

A4A3A2A1 AO 

AAA3A2i\1All 

MA3 AZAl AO 

MA3 A2 A1 Aii 

MA3 A2 A1 AO 

MA3A2A1A!i 

I\ 

r<. 
~ 
L,..I 

MA3A2Al AO 

MA3 A2 A1 AD 

25 MA3A2A1 AO 
ANO GATES 

A4 A3 A2A1 Aii 

A4Al AZ Al AO 

A4Al AZ A1 Aii 

A4Al AZ A1 AO 

A4 AJ A2 Ai Aii 

A4AlA2 Ai AO 

J\ 
}::< 
~ 
F<. 
P<. 
L..I 

A4 Al A2 A1 Ali 

A4AJ A2A1 AO 

A4 A3 A2 Ai AD 
A4 A3 A2Al AD 

A4 A3 A2 A1 Ali 

A4A3AZA1 AO 

A4A3A2i\1 Aii 

A4A3A2 A1 AO 

A4 A3 A2 A1 Aii 

A4A3A2A1 AO 

FIXED "AND" ARRAY 

'OOC:r GENERATING ALL 25 
PRODUCT TERMS 

ii _1' 2 ~ ~ rL: ~ ~ k'; ~7 ..... 

*OR array Is shown with all fuses blown 
07 06 05 04 03 02 01 00 

TL/L/6747·3 

Figure 4.4.28 32 X 8 PROM Logic Diagram 



78 Programmable Logic Design Guide 

28 
AND 

GATES 

11 la Is 14 13 12 '1 lo 

~~t ,~; ~~ ~~~ ,~l )J; ,fl ~~ 

I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I i I I I 
I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I 

FIXED AND ARRAY 
GENERATING ALL 28 

PRODUCT TERMS 

~ 

K 
L..,;J 

'"' .K 
I I I I I I I I 
I 
I 
I 
I 

Figure 4.4.29 256 x 8 PROM Logic Diagram 



29 
AND 

GATES 

The Programmable Logic Family 79 

la 11 I& Is 14 13 12 11 lo 

I I I I I I I I 
· I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 

I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 
I I I I I I 

FIXED AND ARRAY 
GENERATING ALL 29 

PRODUCT TERMS 

Figure 4.4.30 512 x 8 PROM Logic Diagram 



80 Programmable Logic Design Guide 

29 
AND 

GATES 

SR476/SR25 
le 11 Is Is 14 13 12 '1 lo 

,~; ,~ ,~ _,~; N~ ~~ ~~ fl> ,Fl . 

I I I I I I I 
11 I I I I I 
I I I I I I I 
I I ·1 I I I I 
I I I I I I I 

I I I I I I I I 
I I I I I I I I I I 
I I I I I I I I I I 
I 11 I I I I I I I 
I I I I I I I I I I 

FIXED AND ARRAY 
GENERATING ALL 29 

PRODUCT TERMS · 

"D" 
FLIP-FLOP 

I 
I 
I 
I 
I 

INITIALIZE WORD 

Figure 4.4.31 512 x 8 Registered PROM Logic Diagram 

I 
I 
I 
I 
I 



The Programmable Logic Family 81 

SR474 

la 11 Is Is 14 13 12 11 lo 

~~n~ ~~n~ ~ )/'fl~ • > > > ) ) ) ~1 ~ 

I I I I I I I I I I I I I I I I I I 
29 I I I I I I I I I I I I I I I I I I 

AND I I I I I I I I I I I I I I I I I I 
GATES I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I I I I I I I I 

CLK 

FIXED AND ARRAY 
GENERATING ALL 29 

PRODUCT TERMS 

"D" 
FLIP-FLOP 

I I I I I I I I 

INITIALIZE WORD 

8-BIT 
EDGE-TRIGGERED REGISTER 

Figure 4.4.32 512 x 8 Registered PROM Logic Diagram 





How to Design with 
Programmable Logic 

5 

There . are two design objectives to keep in mind when using programmable logic 
devices. The first objective is to use the programmable logic device to replace discrete 
chips in the existing product. Each device will be able to replace 3 to 8 TTL chips. The 
second objective is to design the programmable logic device into the new/next genera
tion product. 

Each design is different. But the procedures are similiar. Figure 5.0 shows a typical 
design sequence. 

DEFINE SELECT 
THE 1--~ THE .--

PROBLEM DEVICE 

WRITE 
THE 

LOGIC 
EQUATION 

PROGRAM 
THE 

DEVICE 

TEST 
THE 

DEVICE 

Figure 5. 1.1 Design Sequence of the Programmable Logic Device 

The design sequence can also be viewed as a set of five questions: (1) How do I 
define the problem? (2) How do I select the logic device? (3) How do I write the logic 
equations? (4) How do I program the device? (5) How do I test the device? 

5.1 PROBLEM DEFINITION 

First, we need to know the function of the logic circuit. Is it used for generating combina
tional control signals, decoding addresses/operation codes, or multiplexing/demulti
plexing signals? Is it used for counting or shifting bits, generating different control 
sequences, or implementing a state machine for any usage? 

83 



84 Programmable Logic Design Guide 

Then we can decide on the type of logic circuit. Is it combinational, sequential or 
mixed? Table 5 .1.1 shows the typical combinational and sequential circuits and the PAL 
devices that can be adapted. 

Typical Circuits PAL Devices Used For 

10H8, 12H6, 14H4, 16H2, 

COMBINATIONAL Decoder/encoder, multiplexer, adder, memory mapped 1/0, 10L8, 12L6, 14L4, 16L2, 
strictly signal combination (no latch). 16C1, 12L10, 14L8, 16L6, 

18L4, 20L2, 16LS 

16L8, 16R8, 16R6, 16R4, 
SEQUENTIAL Counter, shift registers, accumulator, 20L10, 20X10, 20X8, 

Control sequence. generator 20X4, 20L8, 20R8, 20R6, 
20R4 

Table 5 .1.1 Typical PAL Circuits 

5.2 DEVICE SELECTION 

The next questio~ is, which PAL device should we choose to optimize space -and cost? 
To answer this, we first need to calculate the number of inputs and outputs of the logic 
circuits.being designed and decide on the outp.uts' polarity: active-low or active-high. 
For example, if there are 10 input and 7 output signals and the majority of outputs are 
active-low, then the best choice is the 10L8. If the number of outputs are six; then we 
can use either the 10L8 or 12L6. Since each PAL device has limited product terms, we 
need to know how many product terms each output uses. The number of product 
terms each output will use ·can be viewed· from logic equations. For instance, the logic 
equation of 01 = Pl + P2 + P3 + P4 + PS will use five product terms for the output 01. 
Fortunately, National's software, PIAN, will help the user to select the right PAL device. 
See chapter 6 for a discussion of PLAN. 

Table 5.2.1 shows National's ~O pin PAL device configurations and Table 5.2.2 
shows the 24 pin PAL devices. 



How to Design With Programmable Logic 85 

Max Propagation Delay (ns) 
1/0 (and CLK to Output) 

Ice No. of 
Complexity Serles Serles Max Data No. of Outputs 

PAL (1) Standard A B (mA) Inputs and Configurations 

10HB 20S 35 25 90 10 8x=&:D-

10L8 20S 35 25 90 10 0x::g:o..-

12H6 20S 35 25 90 12 4x=&:D-2x~ 

12L6 20S 35 25 90 12 4x::g:o..-2x~ 

14H4 20S 35 25 90 14 4x~ 

14L4 20S 35 25 90 14 4x~ 

16C1 20S 35 25 90 16 1x:r 
16H2 20S 35 25 90 16 2x. 
16L2 20S 35 25 90 16 2x. 
16L8 20M 35 25 15 180 16-10 6x!Er2x~ 

16R4 20M 35/25 25/15 15/12 180 12-8 ··ltN-··!Er 
16R6 20M 35/25 25/15 15/12 180 10-8 6xltN-2x!JEr 
16RB 20M 35/25 25/15 15/12 180 a Bx~ 

Table 5.2.1 20 Pin PAL Device Configuration 



86 Programmable Logic Design Guide 

Complexity 
PAL (1) 

12L10 24S 

14L8 24S 

16L6 24S 

18L4 24S 

20C1 24$ 

20L2 24S 

20L10 24M 

20X4 24M 

20X8 24M 

20X10 24M 

(1) Complexity: 
20 = 20-Pin PAL 
24 = 24 Pin PAL 

Max Propagation Delay (ns) 
110 (and CLK to Output) 

Ice 
Serles Serles Max 

Standard A B (mA) 

40 100 

40 100 

40 100 

40 100 

40 100 

40 100 

50 165 

50/30 180 

50/30 180 

50/30 180 

S =Small PAL 
M = Medium PAL 

No. of 
Data No. of Outputs 

Inputs and Configurations 

12 10x=8D---

14 6x=8D---2x·~ 

16 2x=8D---4x~ 

18 2x~2x~ 

20 1xlF 
20 2x. 

20-12 8x~2x~ 

16-10 4x~6x~ 

12-10 8x~2x~ 

10 10x~ 

Table 5.2.2 24 Pin PAL Device Configuration 



How to Design With Programmable Logic 87 

5.3 WRITING LOGIC EQUATIONS 

Writing logic equations from an existing combinational circuit is straightforward. 
Examples are given in Chapter 3. Also, the generation of logic equations for a new 
design combinational circuit is quite simple. The procedures are as follows: 

1. Define the inputs and outputs. 

2. Generate the Truth Table. 

3. Use the techniques mentioned in Section 3.2 to get the SOP expression for each 
output. 

4. Use the minimization techniques mentioned in Section 3.3, i.e., Boolean Algebra, K
Map or the Quine-McCluskey method to minimize every SOP expression. 

5. These four steps result in the logic equations. 

Figure 5.3.1 shows these steps: 

KARNAUGH MAPS OR DEFINE INPUTS 
AND OUTPUTS BOOLEAN ALGEBRA (PROGRAMMING THE PAL DEVICE) 

FUNCTIONAL 
DESCRIPTION ._ -. - -

TRUTH 
TABLE 

TRANSFER 
FUNCTION 

(LOGIC 
EQUATIONS) 

FUNCTION 
TABLE 

Figure 5.3.1 Combinational PAL Device Design Steps 

CIRCUITS 
(PAL) 

DEVICE 

It is much more complicated to generate logic equations for a sequential circuit. 
Generally, the procedures are as follows: 

1. Define the inputs and outputs, different states and variables. 

2. Generate the state diagram. 

3. Generate the state table. 

4. Minimize the state table. 



88 Programmable Logic Design Guide 

5. Assign the new state. 

6. Generate the transition table. 

7. Use the minimization technique to minimize transition table. 

8. These seven steps result in the logic equations. 

Figure 5.3.2 shows these seven steps. 

FUNCTIONAL 
DESCRIPTION to- - -

STATE 
DIAGRAM 

STATE 
TABLE 

KARNAUGH MAPS OR 

MINIMIZING THE . 
STATE TABLE 

MINIMAL 
STATE TABLE 

STATE 
ASSIGNMENT BOOLEAN ALGEBRA (PROGRAMMING THE PAL DEVICE) 

_.,.. 

TRANSITION 
--------.. TABLE ~---

TRANSFER 
FUNCTION 

(LOGIC 
EQUATIONS) 

CIRCUITS 
- - -.-j (PAL) 

DEVICE 

FUNCTION -------..J TABLE 

Figure 5.3.2 Sequential PAL Device Design Steps 

5.4 PROGRAMMING THE DEVICE 

Given the logic equations, the PAL device programmer will manage the programming· 
job for us. All we need to do is to enter those logic equations into the terminal. The 
programming procedures are shown in Figure 5. 4 .1. 

After programming, the fuse status should be verified. Most programmers will pro
vide this fuse verification capability. 

Manually coding the programming format sheet, which has appeared in National's· 
1983 PAL Device Data Book will not be discussed in this Design Guide. 



How to Design With Programmable Logic 89 

ENTER 
LOGIC 

EQUATIONS 

LOAD PATTERN 
INTO 

PROGRAMMER 

BLOW 
-~ SECURITY FUSE 

IF WANT 

EXERCISE 
ENTER FUNCTION TABLE 

FUNCTION INTO LOGIC 
TABLE EQUATION 

(SIMULATION) 

IF NO FUNCTION TABLE AVAILABLE 

PROGRAM 
FUSE 

MATRIX 

VERIFY 
FUSE 

MATRIX 

CREATE 
BIT PATTERN 

TEST PAL:s 
FUNCTION 
WITH TEST 
VECTORS 

ANOTHER* 
LOGIC 
TEST 

_.,.. 

* FOR EXAMPLE: DATA I/O's FINGERPRINT TEST. 

Figure 5.4.1 PAL Device Programming Procedures 

5.5 TESTING THE DEVICE* 

Fuse verification tells us if the fuse was blown correctly or not; but it doesn't tell us if 
the PAL device functions properly. Therefore, we also need to do functional testing. 
There are two ways to do functional testing. One method uses function tables. Another 
method uses test vectors. Each of these methods may give a different result. , 

Function tables are generated without reference to the logic equations. The func
tion table tells what the PAL device should do. Function tables are used to determine if 
the device functions as intended. If it does not, we have to go back to the equations, 
since there may be a problem there. 

Test vectors are generated directly from the logic equations. They are used to verify 
the internal operation of the PAL device. If a problem is detected, it implies that some
thing is internally wrong with the device. However, a device may pass the test vector 
screening and still not function properly if the logic equations were derrived incorrectly. 

It is the logic designer's responsibility to generate the function table. This is the 
person who best knows the design. After the design is released, the test engineer will 
•Also see Chapter 7 for details about testing. 



90 Programmable Logic Design Guide 

take the responsibility for testing incoming devices. As mentioned before, the function 
table.can't catch all the interior bugs. Therefore, the test engine:er needs to write the 
test vectors. It is a large and sophisticated job to create test vectors. Figure 5.5.1 shows 
these steps and will be explained in chapter 7. There are a few software packages availa
ble for generating test vectors, for example; HIL0 1, and TEGAS2 , LOGCAP~, 'LAZAR4. 

LOGIC 
EQUATIONS I- _.. 

S·A·O TEST FOR EACH PRODUCT TERM 
S-A-1 TEST FOR EACH PRODUCT TERM 
S-A-1 TEST FOR EACH LOGIC EQUATION 

Figure 5.5.1 Test Vectors Creating Steps 

5.6 PROGRAMMER VENDOR LIST 

PAL 
Device Storage Media for 

PAL· Design- Performs 
Basic Device Software Logic Bit Test 

Mfgr. Equipment Module Adapters Included Simulation Pattern Vectors 

Data 1/0 Model 19, 1427 1428-1 No No Master -
19A or -2 PAL 
100A -3 

Digelec µP 803 FAM 51 20+24 Yes No Master + 
Pin PAL 

Socket 

Kontron EPP 80 or MOD 21 SA27+ No No Master -
MPP SOS SA 27·1 PAL 

Stag PPX PM 202+ AM10H8 Yes No Master -
BAAL • PAL . 

• 
AM16C1 

Cite I System 47 PL1 No No Master 7 PROM 
PAL, 

PROM, 
EPROM 

TEST 
VECTORS 

Programs 
Blows 

20- 24· Security 
Pin Pin Fuses 

Yes No No 

Yes Yes Yes 

Yes Yes Yes 

Yes No Yes 

Yes Yes Yes 

All these systems program and verify the PAL in the PROM mode. They do not perform a logic simulation in the PAL device 
mode. Additional (external) circuitry for logic simulation should be used if PAL devices go into volume production - otherwise, a 
small percentage of the PAL devices will show failures when testing the complete PC board. OK for prototype-making. 

Table 5 .6.1 PAL Device Programmers 

1. HILO is a registered trademark of Gen Rad. 
2. TEGAS is a registered trademark of CDC. 
J. LOGCAP is a registered trademark of Phoenix Data Systems. 
4. LAZAR is a registered trademark of Teled)!1Je. 



How to Design With Programmable Logic 91 

PAL 
Device Storage Media for Programs 

PAL· Design- Performs Blows 

Basic Device Software Logic Bit Test 20· 24· Security 
Mfgr. Equipment Module Adapters Included Simulation Pattern Vectors Pin Pin Fuses 

Data 10 Model 19, Logic· Design Yes Yes, Master External Yes Yes Yes 
29A or Pack NJ.and Automatic PAL or 
100 and Progr. or Manual or 

Any M Generation 
Terminal of Test EPA OM 

Vectors 

Digelec µP 803 FAM 52 20- and Yes Yes, Master External Yes Yes Yes 
24-Pin Automatic PAL 

hJapter or Manual 
Generation 

of Test 
Vectors 

Stag - ZL30 - Yes Yes, Master External Yes Yes Yes 
Automatic PAL 
or Manual 
Generation 

of Test 
Vectors 

Structured Any 8D20/ - Yes Yes, Master External Yes Yes No 
Design Terminal 24 Manual PAL or 

Generation or 
of Test 
Vectors On Wafertape 

_L 

Structured Any 8D1000 - Yes Yes, Master External Yes Yes Yes 
Design Terminal Manual PAL or. 

Generation or 
of Test 
Vectors EPROM 

All these systems allow software supported PAL device design. They perform a fuse-verify in the PROM mode and can do a 
logic simulation in the PAL device mode. All 5 programmers and 5 development systems can be connected with a host com
puter to run more sophisticated design software and/or for storage use. 

Table 5.6.2 PAL Device Development Systems 



92 Programmable Logic Design Guide 

5. 7 EXAMPLES 

Example 1: Replace the existing logic circuit in Figure 5. 7_. 1 by a PAL device. 

15 o-------+---r----,. 
le o-------t--L_J 

l7v--....... ---+-----~ 

la e>---+----+---r------. 
lg .___._.--..... "JC>----~ 09 

Figure 5. 7 .1 Design Example, Logic Diagram 

We will follow the procedure discussed in this chapter. We know the first step is to 
understand the function of this circuit. There is no register and latch involved. By 
experience, we understand that this circuit is used to manipulate different input signals 
and generate different outputs. We should select the combinational PAL device (i.e., 
PAL10H8, PAL10L8, PAL12H6, etc.). 

The second step is to choose the specific device. Because the number of inputs is 
10 and the number of. outputs is 6, _we limit our choice to be 10H8, 10L8, 12H6 and 
12L6. Three outputs have AND-OR functions and 3 outputs have AND-OR-INVERT 
functions. We could still select from either active-high or active-low (H or L) parts. 
Since the more complex functions are AND-OR-INVERT, the active LOW (L) series is 
most likely. Therefore, we now limit our choice to the 10L8 and 12L6 devices. A review 
of the 10L8's logic diagram shows that all of its NOR gates are two-input gates, and the 
design example requires a three-input gate. On the other hand, the 12L6 has two 4-
input gates which will accommodate the 3-input requirement. It, therefore, is selected. 

The third step is to write the logic equation. It is very straightforward for this 
example. 



We get: 

01 /11 
02 = /I 1 • 12 
03 = 11 + 13 
04 = /(/13 * 14) 

How to Design With Programmable Logic 93 

05 = /(/13 * 15 * 16 + 17 + Is * 19) 
06 =/(Is* 19 + /13 * /17 * 19 * 110) 

Since we have selected a PAL12L6 (which has inverting outputs) we rieed to apply 
DeMorgan's theorem to convert tliese equations from active-high to active-low out
puts. DeMorgan's theorem can be used to convert any logic form to the AND-OR or 
AND-NOR structure used in PALs. Applying DeMorgan's theorem gives the active LOW 
form of the equation: 

/01 = 11 
102 11 + /12 
/03 /11 * /13 
/04 /13 * 14 
/05 /13 * 15 * 16 + 17 + Is * 19 
106 =Is *·19 + /13*/17*19*110 

Assuming that there are no board layout constraints, input I 1 through I 10 may be 
assigned to pins 1 through 11 (pin 10 is ground). The only constraint on output pin 
assignment is that o5 must be assigned to pin 13 or 18 to take advantage of one of the 4-
input NOR gates. 

The fourth step is to program the PAL device. To do this we must enter the logic 
equations into the computer or the PAL device programmer. National's PLAN software 
allows users to enter logic equations in any format. But PALASM requires the program 
shown in Figure 5.7.2 in its host computer to be used as follows: 

Line 1 
Line 2 
Line 3 
Line 4 
Line 5 
Line 6 
Line 7 
Line 8 
Line 9 
Line 10 
Line 11 
Line 12 
Line 13 
Line 14 
Line 15 
Line 16 
Line 17 
Line 18 

PAL12L6 
PAT201 
PAL DESIGN EXAMPLE 

11 12 13 14 Is Is 17 la lg GND 110 NC Os 
Os 04 03 02 01 NC Vee 

/01=11 
102= 11 +/12 
/03 = /11 • /13 
/04 = /13 • 14 
/Os= la • lg+ /13 • 111 • lg • 110 
/Os = /13 * Is • Is + 11 + la • lg 

DESCRIPTION 

THIS PROGRAM IS A DESIGN SAMPLE DESCRIBING 
THE USE OF PALASM AS A PAL DESIGN AID. 

Figure 5. 7.2 Example of PALASM Program Input 



94 Programmable Logic Design Guide 

Line 1: At the left margin, the PAL device is specified. For this example, the 12L6 
remains the best solution, therefore entering PAL12L6 at the left margin. 

Line 2: A unique pattern number for this PAL device design is entered at the left 
margin on Line 2, followed by designer's name and date. 

Line 3: The name or description of the device or function is entered. If this runs 
over one line, Line 4 may be used to complete it. 

Line 4: If not used to complete Line 3, this line is skipped. 

Lines 5, 6, 
and 7: 

Line 8: 

These lines are used for pin assignments. All 20 of the pins on the PAL are 
assigned symbolic names, usually corresponding to the symbols used on 
the logic diagram. (Note that GND and V cc must be included.) Assignment 
starts at pin 1 and proceeds sequentially, through pin 20. 

Beginning on Line 8 or Line 6, if only Line 5 is needed for the pin assign
ments, the logic equations that describe the required functions are written 
using the symbols defined in Lines 5, 6 and 7, in the format applicable to 
the PAL device selected. For example, the output of the 12L6 is low for the 
selected product term; therefore, the logic equations must be of the form 
/Ox = f(I 1, 12 , ... ). The symbology used must be that shown in Figure 5.7.3. 

EQUAL 
. - REPLACED BY, FOLLOWING CLOCK 
I COMPLEMENT 
• AND, PRODUCT 
+ OR, SUM 

:+:XOR 
.•. XNOR 
( ) CONDITION TRI-STATE IF STATEMENT, ARITHMETIC 

Figure 5.7.3 PALASM Operators 

Then the PAL device software will generate the fuse map and bit pattern shown in 
Table 5. 7 .1, load pattern into programmer, program the device and verify the fuse 
matrix. Since there is no function table in this example, we need to do another logic 
test to guarantee it works properly. For example, we can do the fingerprint test if we 
already have a known good device, or we can generate a few (or whole) test vectors to 
do the structure test in a DATA 1/0 programmer. 



How to Design With Programmable Logic 95 

8 --X-
9 xx xx xx xx xx xx xx xx xx xx xx xx 
10 xx xx xx xx xx xx xx xx xx xx xx xx 
11 xx xx xx xx xx xx xx xx xx xx xx xx 
16 --X-
17 -X--

24 ---X -X--
25 xx xx xx xx xx xx xx xx xx xx xx xx 
32 -X-- X-
33 xx xx xx xx xx xx xx xx xxx,x xx xx 
40 X--- X---
41 -X-- -X X-X-

48 -X-- X- X-
49 X-
50 X- -.- X---
51 xx xx xx xx xx xx xx xx xx xx xx xx 

Table 5. 7 .1 Fuse Map 

Figure 5.7.4 is the logic diagram of this PAL device and Figure 5.7.5 shows the PAL 
device legend. 

Example 2: Design a multiplexer to select one of three input data buses which contain 
4 data lines, as shown in Figure 5.7.6. The output should be high if we don't select any 
data bus. 

From Figure 5.7.6 we know there are 14 input lines and 4 outputs. Since we select 
one out of three, we need 3 product terms in each output. In addition, we need 
another product term to implement diselection which will cause all output-high. From 
the PAL device select chart (Table 5.2.1) we find 14H4 is the best fit. 

The logic equation is very easily derived from intuition or we can get from the 
truth table shown in Table 5.7.2. 

PLAN software will help us to select the device, assign pinouts, and generate a fuse
map. All we need to do is enter the logic equations. 

Yl /SELA * /SELB . * A 1 + SELA * /SELB * B 1 + /SELA * SELB * C 1 + SELA * 
SELB 

Y2 /SELA * /SELB * A2 + SELA * /SELB * B2 + /SELA * SELB * C2 + SELA * 
SELB 

Y3 /SELA * /SELB * A3 + SELA * /SELB * B3 + /SELA * SELB * C3 + SELA * 
SELB 

Y4 /SELA * /SELB * A4 + SELA * /SELB * B4 + /SELA * SELB * C4 + SELA * 
SELB 



96 Programmable Logic Design .Guide 

... 

I 
--i~ .... ~ 

2 .... ~ 
19 

---f" ... ~ 

I 

"'"" 

I 

NC 

I :i.c l- 18 
I :=. -[ 1 f " - \ 

3 ... 
~· 

" :R. J 2 ~ 
17 

" -
I 4 ..... 

---t~ .... ~ 

" ~ :::J3 ""-
16 

" -
5 
~ .... ~ 

" - .,..,. 15 
ll =-<: ::J 4 ~ -

6 ~ 

" -- ""-
14 -tS- _J 5 .. 

7 ... 
~ .... ~ 

.. _;.... l_ 13 .. ~6J> " ,, -ms:' 

8 ... ... 12 .;>.. ~ NC 

9 .... 
~ 11 I .. ~ lg 10 

Figure 5.7.4 Logic Diagram of the National Type 12L6 PAL® 



Constants 

LOW (L) 

HIGH (H) 

Operators 

Equations 

How to Design With Programmable Logic 97 

PAL Legend 

NEGATIVE (N) ZERO (0) 

POSITIVE (P) ONE (1) 

EQUAL 

GND 

Vee 

FALSE 

TRUE 

.- REPLACED BY FOLLOWING CLOCK 
/ COMPLEMENT 

AND, PRODUCT 
+ OR, SUM 

:+: XOR 
:*: XNOR 

x -f- FUSE NOT BLOWN 

- -t- FUSE BLOWN 

( ) CONDITIONAL THREE S~ATE, IF STATEMENT, ARITHMETIC 

Standard 
PALASM 

'1i;+I;12 
Il*/I2 + /Il*I2 

Conventional Symbology 

PAL Device Symbology 

PAL Logic Diagram 

INPUT LINE NUMBER 

LOGIC STATE --Vee HL LH 

INPUT 
HIGH 

H 

PRODUCT WITH ALL 
\_ FUSES INTACT REMAINS 

LOW ALWAYS 
SHORTHAND NOTATION 

~A~FUS~ 

ACTIVE HIGH THREE-STATE ENABLE 

O!Jl ~ 'I Ii I ~ q 1U 11 11It1 'I!\ lb 11 U l'I 10 1111 JI 1• I\ Jt.11 Ill l'I JO JI / 
~CKt 
~ 

PROD 

NUM 

UCT ; r LINE ; 
BERl :: 

~ 
IN p 

NUM BERS''. 

I ' b:: 
~ 

,... 
..... -j J 

_1 '-
19 

STANDARD SU /AVJ IS EQUATED A 

~ ~FORET 

M OF PRODUCTS 
T THESE NODES 

HE BUBBLE) 

s r;:i 18 ..... ' / ~v ' 
lllo ' 

~ 
""' 

Figure 5. 7 .5 PAL Legend 



98 Programmable Logic Design Guide 

EN 
UP/DOWN 

EN 
UP/DOWN 

CLK 

~ 

_.. 
~ 

~ 

--_.. -.. 

SELECT 

BCD 
COUNTER 

BCD 
COUNTER 

4L 
7 

4L 
/ 

4z 
/ 

...... -- MULTI-

2;-- PLEXER , w- DECODER 
DRIVER 

Figure 5. 7 .6 Block Diagram of a Multiplexer 

A1 A2 A3 A4 B1 82 83 84 C1 C2 C3 C4 SELA SEL8 Y1 
A1 A2 A3 A4 x x x x x x x x L L A1 
x x x x 81 82 83 84 x x x x H L 81 
x x x x x x x x C1 C2 C3 C4 L H C1 
x x x x x x x x x x x x H H H 

Table 5. 7. 2 Truth Table 

We can replace 2 of 745153 in this application. 

BUSA 

BUS8 

BUSC 

~ 7-SEGMENT 
DISPLAY 

Y2 Y3 Y4 
A2 A3 A4 
82 83 B4 
C2 C3 C4 
H H H 

The Function Table and logic diagram are shown in Table 5.7.3 and Figure 5.7.7. 

A1 A2 A3 A4 B1 82 83 84 C1 C2 C3 C4 SELA SELB Y1 Y2 Y3 Y4 
L L .L L. x x x x x x x x L L L L L L 
x x x x x x x x x x x x H H H H H H 
H H H H x x x x x x x x L L H H H H 
x x x x H H H H x x x x H L H H H H 
x x x x x x x x L L L H L H L L L H 
x x x x x x x x L L H L L H L L H L 

Table 5. 7 .3 Function Table 



Cf)' 
co 

I e 
"' E 
~ 
1S 
:I e a. 

How to Design With Programmable Logtc 99 

Inputs (0-31) 
11 J) 4 II I 111111 uunu 11111111 

A4 ... 
-

Aa .. 
~ 

A2 .. .... C4 
_st - ~ 

A1 .. .... C3 
12: ~ - ~ 

" 
lj --- _l V4 :Jo< J 

" :Jo< ::J 
" Jo< -._ ../ 
" ~ ~ -y 

84 .. 
~ 

H 
_l Ya 

II 
_Jo< ~ ' JI 
_Jo< :::J .../ _Jo< -i_ 

JJ 
~ - l 

IJ ' --- 1 Y2 :Joe: II 
-"" ::J ,. ../ II -"" L - \ 

83 .. 
~ -

.. l_ Y1 ., Jo< ~ ., Jo< :::J ../ 
Cl :Jo< -._ 

~ 
·~ i-

82 ... .... C2 ----u· ~ - ~ 

81 .... .... C1 
~ 

s ELA ... .... SEL8 
~ 
~ 

,, JJ 4111 111111 IJIJ 1111 JIJIJJll HHllJJ 11111111 

Figure 5.7.7 Logic Diagram of the National Type 14H4 PAL Device 



100 Programmable Logic Design Guide 

Example 3: Design a 3-bit counter which causes only one bit change for each change 
of state shown in Figure 5.7.8. A RESET input will initialize the counter to OOOi 

The PAL device under design is used for a 3-bit counter with only one input line, 
RESET. When active, it will reset all three flip-flops. Obviously we can use a 16R4 to 
implement this application. 

A B c 

0 0 0 f--

0 0 

0 

0 0 

0 
REPEAT 

0 

0 0 .-
0 0 0 

0 0 

Figure 5. 7.8 3-Bit Counter 

Q" ___ --an+1· 0 J K s R T 
0 ----- 0 0 0 x 0 x 0 

0 ----- 1 1 1 x 1 0 1 

1 ----- 0 0 x 1 0 1 1 

1 ----- 1 1 x 0 x 0 0 

*Q", an+ 1 STAND FOR PRESENT ANO NEXT STATE; XIS DON'T CARE. 

Table 5. 7.4 Transition Lists 



How to Design With Programmable Logic 101 

We can easily write the transition table for this simple example as shown in 
Table 5.7.5. 

CLK R (RESET) A" B" en An+1 Bn+1 cn+1 

t 0 0 0 0 0 0 1 

t 0 0 0 1 0 1 1 

t 0 0 1 1 0 1 0 

t 0 0 1 0 1 1 0 

t 0 1 1 .0 1 1 1 

t 0 1 1 1 1 0 1 

t 0 1 0 1 1 0 0 

+ 0 1 0 0 0 0 0 

+ 1 x x x 0 0 0 

Table 5. 7 .5 Transition Table 

We can get the logic equation from Table 5.7.5 by K-map minimization technology 
as shown in Figure 5.7.9. 

. c 
AB 

R 00 01 11 

00 0 l 1 1 l 
01 0 0 0 

11 0 0 0 

' 10 0 0 [ 1 

A 

A:= BCR+ACR 
B: = BCR+ACR 
C: = ABR+ABR 

10 

0 

0 

0 

1 J 

AB AB 
c R 00 01 11 10 CR 00 01 11 10 

00 0 l 1 1 J 0 00 ~ 0 L!_J 0 

01 0 0 0 0 01 0 0 0 0 

11 0 0 0 0 11 0 0 0 0 

10 [ 1 1 J 0 0 10 111 0 111 0 

B c 

Figure 5. 7.9 K-map 

We can also get the Function Table from Table 5. 7.5. In this case, we replace 2 of 
74500 and 1 of 745175. 



102 Programmable Logic Design Guide 

Example 4: Design a video-telephone sync pulse detector. 

The video-telephone set contains a CRT for displaying the received picture from 
another video-telephone, and a vidicon camera for generating the picture to be trans
mitted. 

The vidicon sweeps across the head and shoulders view of the person talking, 
starting at the upper left of the picture and moving right as shown in Figure 5.7.10. 

Figure 5. 7 .10 Sweep Generation 

The dots shown in the figure represent samples taken by the vidicon. The vidicon 
produces a voltage that is proportional to the light intensity for each sample taken. The 
voltage is then quantized into seven levels. These seven levels correspond to light levels 
from white to black with intermediate levels of gray. Because there are seven quantized 
levels, a 3-bit quantizer is employed. These seven levels are then channel-encoded such 
that where the code 1 1 1 is reserved for the line sync pulse. The data are transmitted in 
a bit-serial manner. When the sync pulse is detected, the receiver camera flies back to 
start a new line, as shown in Figure 5. 7 .10. The use of the line sync pulse ensures that 

0 0 0 - - - - - WHITE 

0 0 1 

0 1 0 

0 1 LEVELS OF GRAY 

1 0 0 

1 0 1 

1 0 - - - - - BLACK 



How to Design With Programmable Logic 103 

all the lines start at a well-defined left edge. This prevents the occurrence of skewed 
lines which will distort the picture. 

The PAL device under design is used as a sync pulse detector which will trigger the 
flyback circuit. There is another. feature we need to design into this PAL device which 
automatically resets to the initial state after three input pulses. This reset procedure will . 
ensure that no false output occurs due to consecutive sequences which produce an 
overlapping 1 1 1 sequence. 

From the function description above, we can generate the State Diagram and State 
Table as shown in Figure 5. 7 .11 (a) and (b ). 

010, 1/1 x 
0 

A D/O BIO 

B E/O C/O 

c A/O A/1 

D E/O E/O 

E A/O A/O 

(A) STATE DIAGRAM (B) STATE TABLE 

Figure 5. 7 .11 (A) State Diagram (B) State Table · 

Where A is the initial state, the sequence A~ B ~ C __!.fl_. A will detect the 
sync pulse (1 1 l) and generate a "1" output. Note that the state diagram is arranged so 
that every sequence of length 3 returns the machine to the initial state A. 

Since we have 5 different states (3 registers are enough), 1 input for serial data, 1 
non-register output for sync pulse detecting, we may use the 16R4 to implement this 
application. 



104 Programmable Logic Design Guide 

Let's assign these 5 different states as in Table 5. 7 .6. 

STATE ASSIGNMENT 
STATE Y1, Y2, V3 

A 000 
B 001 
c 0 1 0 
D 1 0 1 
E 1 1 0 

Table 5. 7 .6 State Assignment 

Then from the State table Figure 5.7.11 (B) we get the Transition ta~le shown in 
Table 5.7.7. 

x x 
y1 y2 y3 

0 1 0 1 

0 0 0 1 0 1 0 0 1 0 0 

0 0 1 1 1 0 0 1 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 

0 1 1 x x x x x x x x 

1 0 0 x x x x x x x x 

1 0 1 1 .1 0 1 1 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 

1 1 1 x x x x x x x x 

Y1 V2 VJ Z 

Table 5.7.7 Transition Table 

From Table 5.7.7 Transition Table we can draw the K-map of each register output 
Yl, Y2, Y3 and the non-register output Z as shown in Figure 5.7.12. 



How to Design With Programmable Logic 105 

y1 

0 

0 

y3 x 

y2 0 0 

0 [] 
1 0 

1 0 

0 0 

0 1 

0 

0 

0 

x 

Y1 

Y1 = Y1*Y3 + v2·x 

Y1 

0 

0 

Y3 X 

Y2 
0 0 

0 [ 1 

1 0 

1 0 

0 l x 

Y3 = Y2*Y3 

0 1 

1 J 

0 

0 

x] 
Y3 

1 1 

0 

x 

x 

1 

1 1 

0 

x 

x 

0 

1 0 

[] 
x 

x 

[~ 
.___ 

1 0 

0 

x 

x 

0 

y3 x 

y1 

0 

0 

y2 

0 

1 

1 

0 

Y2 = Y3 

Y1 

0 

0 

Y3 X 

Y2 

0 

1 

1 

0 

0 0 

o. 

0 

0 

x 

0 0 

0 

0 

0 

x 

z = v1 ·v2·x 

Figure 5.7.12 K-map 

Therefore, we get the logic equations as: 

Yl := Yl *Y3 + Y2*X 
Y2 := Y3 
Y3 := Y2*Y3 
Z = Yl *Y2*X 

0 1 1 1 1 0 

0 1 1 

0 x x 

0 x x 

x 1 1 

Y2 

0 1 1 1· 1 0 

0 0 0 

~ 1 x J x 

0 x x 

x 0 0 

z 



106 Programmable Logic Design Guide 

Summary 

The four design examples are quite simple for purposes of illustration. The author 
has attempted to give the reader a very clear idea and to encourage the reader to use 
PAL devices. The reader can find other examples in the applications section of 
Chapter 8. 

Here the author would like to point out one thing; "There are many different 
approaches to designing a PAL device circuit.'' Some users like to directly code the PAL 
device logic diagram (coding "x"). In this case, users may not need logic equations. But 
if circuits become more complicated, then the user will find that the logic equations are 
much easier to get than directly coding "x" in the PAL device logic diagram. There are 
many ways to develop logic equations. One approach is to use truth tables or transition 
tables. Another way, which is widely used, is from timing waveforms. 

The user can draw the timing diagram for each output, then derive his logic equa
tions from these timing waveforms. But no matter what method is used, the user still 
needs to know the K-map or other techniques (the Quine-McCluskey method is fre
quently used) to minimize his logic gates. 

The author strongly recommends deriving the logic equations for PAL devices 
rather than coding "X" in the PAL device logic diagram. Then the user can take advantage 
of PAL device software (PLAN, PAIASM, etc.) instead of manually coding the PAL de
vice programming format sheet. 



6 
Software Support 

Today a variety of software products makes the logic design engineer's task much eas
ier. The designer can now focus on the intricacies of logic design at the Boolean level 
instead of filling in tedious fuse map charts, or worrying whether a standard logic part 
exists to implement the logic. Some of the traditional programmer vendors are now 
marketing full-fledged development systems or CAD systems that include the terminal, 
software and the hardware for fuse blowing, and logic verification. Other vendors mar
ket software only or programmer/verifier only. The key part of any development sys
tem is the software and this section describes the attributes of these products. 

6.1 ADVANTAGES OF SOFTWARE-BASED PROGRAMMABLE LOGIC DESIGN 

When programmable logic devices were first introduced, the only method for specify
ing the logic to be implemented was to manually code the status of each fuse on a form 
and then enter this information into a programmer. With a device like the PAL 16L8 
which has 2048 fuses, this manual method is clearly time-consuming and error-prone. 
Furthermore, these early programmers could not verify if the programmed device was 
functional. They could only check if the correct fuses were blown. Information about 
testing is found in Chapter 7. 

The first phase in software development was the development of tools to eliminate 
the manual fuse-map entry. Users could enter Boolean equations in Sum-Of-Products 
format on a computer and the program would generate the fuse-map information 
which could be downloaded to a programmer unit (Figure 6. l.1). 

Figure 6.1.1 Early Role of Software 

107 



108 Programmable Logic Design Guide 

Subsequent developments in software goes further in providing two additional capa
bilities. The first area of improvement is logic design. Recent developments are emphasiz
ing design tools for logic circuit desig1_1 with features like high level logic design options 
and plans for logic minimization, and state-machine synthesis. The second area being 
addressed is that of functional testing of programmed devices. Most of the current soft
ware has features to perform simulation for design verification, i.e., verify if the user sup
plied test vectors match the logic conditions described by the equations for the logic 
being implemented. These test vectors can also be downloaded to a programmer which 
will perform a functional test on the programmed device (Figure 6.1.2). 

LOGIC 
EQUATIONS 

LOGIC 
DESIGN AIDS 

Figure 6.1.2 

PAL DEVICE 

Expanded Role of Software 

PROGRAMMED 
DEVICE 

The next section describes National's contribution to advanced programmable 
logic design software called Programmable Logic Analysis by National (PLAN). 

6.2 PROGRAMMABLE. LOGIC ANALYSIS BY NATIONAL (PLAN) 

PLAN is a set of interactive· software tools for logic designers who will be using pro
grammable logic devices i~ their circuits. Th~ advantages of PLAN are that: (1) it is easy 
to use; and (2) it comes with clear and simple documentation that explains the numer
ous features of PLAN and the methods of accessing and using these features. PLAN also 
has a liberal sprinkling of error messages to help the user. PLAN does not have PALASM 
type input format constraints and is available on more than one operating system. The 
package actually contains three programs: PLUS, SERV, and PROG. 

PLUS allows the user to define logic via Boolean equations and also selects an 
appropriate device and assigns pin-outs. The resulting equations, device, and pin-outs 
are stored in a file. 



Software Support 109 

The next program, called SERV, can then be used to access the logic defined by 
PLUS for possible reassignment of the device and pin-out. When the device and 
pin-outs are finalized, SERV also displays the pin-out diagrams, fuse-maps and equa
tions. For documentation purposes, the above data can also be printed out. 

The third program, called PROG, takes the logic and pin assignment data and pro
vides it to a programmer in a format that the user selects. This program can also acquire 
a previously defined file containing test vectors and download it to a programmer for 
functional verification. 

The ·software package is available on 8-inch SSSD (Single Side Single Density) 
floppy disks to run under CP/M-80 and 5 1/4-inch SSSD floppy disks for operation 
under MS-DOS and APPLE-DOS. Future revisions will include other operating systems. 

Boolean Entry . 

The Boolean entry operators that PLAN supports are shown in Table 6.2 .1 

EQUALITY 
• AND,PRODUCT 
+ OR, SUM 
I COMPLEMENT. · 

. - REPLACED BY (AFTER CLOCK) 
0 CONDITIONAL TRI-STATE 
: + : EXCLUSIVE OR 

Table 6.2.1 Boolean Operators 

An example of a logic equation using these qperators is: 

(/INPl • INP2) OUT2 = /INP3 * INP4 

A useful feature. that PLAN offers during Boolean logic entry is the definition and 
inclusion of logic macros. Table 6.2 .2 is an example of the use of the macro feature in 
PLAN. 

MACRO IS EN1 •/CK2 

INPUT RESULTING EQUATION 

OUT1 = INP1 */INP2 OUT1 = INP1 */INP*1EN1 */CK2 
+ /INP1 * INP2 + /INP1*1NP2*EN1*/CK2 

OUT2 = INP3 + INP4 OUT2 = INP3 + INP4EN1 */CK2 
*INPS*INP6 *INPS*INP6 

Tuble 6.2.2 Macro Entry with PLAN 



110 Programmable Logic Design Guide 

PLAN allows the user to edit the Boolean equations after entry. When the equations 
are finalized, the program will automatically select a device that can implement the 
defined logic and assign pin-outs to that device. This process is shown in Figure 6.2.3~ 

The information can also be stored in a file and the data in the file is essentially the 
information in Figure 6.2 .3. 

EQUATIONSNARIABLE_S PIN OUTS 

LADSHG = D*KJR*/RDIUH 
+ OJH*IH 

D--1 1 """lC7 20 1--Vcc · 
OEU = EUY*KJR + DU 

ERIJH = DJ*JD*JJJ•JPP KJR--1 2 19 I-

+ IODF*DFJ*JJJ*JPP RDIUH--1 3 18 t-DFJ 

OJH--1 4 17 I-

I IH- 5 16 t-OEU 

EUY- 6 15 t-LADSHG 

DEVICE DU- 7 14 t-ERIJH 

DJ-I 8 13 t--IODF 
LOGIC DEVICE NAME IS PAT0099 JD-I 9 12 t-JPP 
THE SOURCE DEVICE IS A PAL 14H4 

__.. 

A SERIES 20 SMALL PAL WITH GND_, 10 11 t-JJJ 

ACTIVE HIGH OUTPUTS 

Figure 6.2.1 PLAN File Information 

File Editing and Documentation 

The program SERV can be used to change the selected device and also to change the 
pin-out assignment. When the device and pin-outs have been finalized, the device dia
gram with pin-out, the equations or the fuse-map of the programmed device can be 
printed out or viewed on the screen. Figure 6.2.4 is an example of the fuse-map display. 

Programming and Testing 

In order for a programmer to function, it has to receive the fuse-map information in a 
specified format. The third program in PLAN, called PROG, will provide the fuse-map 
information, at the users option, in any of the five formats listed in Table 6.2.3. 

The programmer fuse-map data can be saved in a file for later use. PROG can also 
access a file containing test vectors and download them to a programmer for functional 
verification of a programmed device. 

Because of its ability to support the various data formats, niany programmers are 
supported by PLAN and most are physically interfaced through a standard RS-232 cable. 



Software Support 111 

FUSE MAP FOR LOGIC PAT0099 - SOURCE DEVICE IS DMPAL 14H4 
INPUTS (0·31) 

1 1 2 2 2 2 2 3 
0 2 4 6 8 0 2 6 0 2 4 6 8 0 

16 xx xx xx xx xx xx xx xx xx xx xx xx xxxx 
17 xx xx xxxx xx xx xx xx xx xx xx xx xxxx 
19 xx xx xxxx . xxxx xx xx xxxx xxxx xxxx 
24 X-- X- EUrKJR 
25 X--- DU 
26 xx xx xx xx xxxx xx xx xxxx xxxx xxxx 
27 xxxx xx xx xxxx xx xx xxxx xxxx xxxx 
32 X-X- -X-- D*KJR*/RDIUH 
33 X--- X- OJH*IH 
34 xx xx xx xx xx xx xx xx xxxx xx xx xx xx 
35 xxxx xxxx xxxx xx xx xxxx xx xx xxxx 
40 X-X- X-X- DJ*JD*JJJ*JPP 
41 --X- --X- --X- --X- IODF*DFJ*JJJ*JPP 
42 xxxx xx xx xxxx xx xx xxxx xxxx xxxx 
43 xxxx xxxx xx xx xx xx xxxx xxxx 

X'S REPRESENT INTACT FUSES, 152 HAVE BEEN REMOVED. 

PRODUCT 
TERMS 
(0-63) 

Figure 6.2.2 Fuse-Map Display from PLAN 

MMI Hex 
JED EC 
Intel Hex 
Standard Hex 
PALASM Format 

Table 6.2.3 Fuse-Map File Formats in PLAN 

Order from: National Semiconductor Corporation PLAN 
2900 Semiconductor Drive 
MIS D3698 
Santa Clara, CA. 95057 
( 408) 721-4107 



112 Programmable Logic Design Guide 

6.3 OTHER SOFTWARE 

CUPL™ by Assisted Technology 

CUPL is the first software CAD tool designed especially for the support of all programma
ble logic devices (PLDs), including PALs and FROMs. It was developed specifically for 
YOU, the Hardware Design Engineer. Each feature of the· CUPL language has been 
chosen to make using programmable logic easier and faster than conventional 1TL 
logic design. 

Major Features of CUPL 

Universal 
• PRODUCT SUPPORT: CUPL supports products from every manufacturer of of 

programmable logic. With CUPL you are free to use not only programmable 
logic. With CUPL you are free to use not only PALS, but also other programmable 
logic devices. 

• PALASM CONVERSIONS: CUPL has a PALASM to CUPL language translator which 
allows for an easy conversion from your previous PAIASM designs to CUPL. 

• LOGIC PROGRAMMER COMPATIBILl1Y: CUPL produces a standard JED EC down
load file and is compatible with any logic programmer that JED EC files. 

High Level Language 
High Level Language means that the software has features that allow you to work in terms 
that are more like the way you think than like the final PLD programming pattern. Exam
ples of these are: 

• FLEXIBLE INPUT: CUPL gives the engineer complete freedom in entering logic 
descriptions for their design. 

- Equations 
- Truth Tables 
- State Machine Syntax 

• EXPRESSION SUBSTITUTION: This allows you to pick a name for an equation 
and then, rather than write the equation each time it is used, you need only use 
the name. CUPL will properly substitute the equation during the compile pro
cess. 



Software Support 113 

• SHORTHAND FEATURES: Instead of writing out fully expanded equations CUPL 
provides varous shorthand capabilities such as: 

- List Notation: Rather than [A6,AS,A4,A3,A2,Al,AO] 
CUPL only requires [A7 .. 0] 

- Bit Fields: A group of bits may be assigned to a name, 
as in FIELD ADDR = [A7 .. 0] 
Then ADDR may be used in other expressions 

- · Range Function: Rather than Al 5 & !Al 4 # 
Al5 & Al4 & !A13 # 
Al5 & Al4 & Al3 & !Al2 

CUPL only requires ADDR: [8000 .. EFFF] · 
- The Distributive Property: 

From Boolean Algebra, where 
is replaced by 

- DeMorgan's Theorem: 
From Boolean Algebra, where 
is replaced by 

Self Documentirig 

A & (B # C) 
A&B#A&C 

!(A & B) 
!A# !B 

CUPL provides a template file which provides a standard "fill-in-the-blanks" documenta
tion system that is uniform among all CUPL users. Also, CUPL allows for free form com
ments throughoutyour work so there can be detailed explanations included in each part 
of the project. 

Error Checking 
CUPL includes a comprehensive error check capability with detailed error messages de
signed to lead you to the source of the problem. 

Logic Reduction 
CUPL contains the fastest and most powerful minimizer offered-for Programmable Logic 
equation reduction. The minimizer allows the choice of various levels of minimization 
ranging from just fitting into the target device to the absolute minimum. 

Simulation 
With CSIM, the CUPL Simulator, you can simulate your logic prior to programming an ac
tual device. Not only can this save devices but it can help in debugging a system level 
problem. 

Test Vector Generation 
Once the stimulus/response function table information has been entered into the 
simulator, CSIM will verify the associated test vectors and append them to theJEDEC file 
for downloading to the logic programmer. The programmer will verify not only the fuse 
map, but also the functionality of the PLD, giving you added confidence in the operation 
of your custom part. 



114 Programmable Logic Design Guide 

Expandability 
CUPL is designed for growth so as new PALs and other devices are introduced you will 
be kept current with updated device libraries and product enhancements. 

CUPL-GTS™ 

In recent years, programs like CUPL and ABEL have become available to provide high 
level language support for PAL designs. These languages allow the designer to represent 
a PAL function in terms of high-level equations, truth tables or state machines~ 

Many hardware designers, however, are most comfortable with the traditional logic 
schematic as a logic description format. 

CUPL-GTS is a powerful combination of hardware and software which turns an IBM
PC type computer into a programmable logic workstation allowing the user to draw logic 
schematics for the function of a PAL. A basic premise in creating GTS was to provide a 
friendly environment where the user is isolated from the traditional keyboard as much 
as possible. Virtually all functions can be actuated with one button by way of the mouse 
and a series of pop-up menus which ease the user's task An area is provided at the top of 
the CUPL-GTS screen for prompting the user regarding the next operation in a command 
sequence. Highlighting of various elements on the screen is coordinated with these 
prompts. For the most part, the user need only utilize the conventional keyboard for de
fining symbolic names for wires, pins, objects, and files. 

An on-screen HELP facility is provided to aid the user with CUPL-GTS commands .. In 
addition to the basic set of object types which can be easily picked from a pop-up menu, 
the ability to call up macro-objects is also provided. These macro-objects have been pre
yiously drawn using GTS and stored away on the disk under their own symbolic name. 

After a logic schematic has been entered, the user may quickly check to see if the de
sign fits into a specific PAL. This is done by selecting the "Translate to PLD" command 
from the main menu which automatically invokes the GTS translation programs. These 
programs run in an on-screen window which overlays the graphical information, provid
ing feedback in the form of error messages displayed in this window. In this way many 
errors can be quickly . determined and remedied without ever having to let go of 
the mouse. 

When the user wishes a hard copy version of a design, the print command from the 
main menu may be selected. This causes the GTS print program to execute in an on
screen wndow according to the printer configuration file (PRINTCAP). The PRINTCAP 
.file allows the user to configure the GTS print function for any dot matrix printer they 
might have. 

Often a logic description does not fit in a particular PAL due to a logic capacity 
(product-term) limitation. When this occurs, the universal capability_ ofGTS will easily 
allow the user to try placing this same logic in a different PAL of a· similar architecture. 



Software Support 115 

Since CUPL-GTS incorporates CUPL the high level language in its internal operation, 
it also benefits from CUPL's powerful "Quine Procedure" logic minimizer. This is espe
cially advantageous for CUPL-GTS as logic descriptions showing many levels of gates can 
be very deceptive in their ability to consume the logic capacity.of a PAL. The presence of 
the logic minimizer can eliminate unnecessary and redundant logical functions, and 
maximizes the probability that a design will fit in a target PAL. 

Also included with CUPL-GTS is the CUPL simulator; CSIM, which allows the user to 
simulate a logic design prior to physically creating a programmed PAL. Not only can this 
save devices, but it can help significantly in debugging a system level problem. 

CUPL-GTS is designed for growth and expandability. As new programmable logic 
devices are introduced users will be kept current with updated device libraries and 
product enhancements. 

Most of us first use PAL devices to replace 1TL in order to shrink a design and/or add 
functionality. The following example shows how a simple 1/0 decoder design would ap
pear on the CUPL-GTS screen prior to translation to a PAL16L8 or PAL16P8. 

I Select Command From Main Menu Help 

Change Scale 

Set Center 

9 
AEN LS32 LS04 Redraw Screen 

Add Object 

Add Wire 

LSOO 
LSOO LS04 IOREQ Add Pin 

Change Object 

LS04 Name/Rename 

Move 

Delete 

Query 

Find 

Translate to PLO 

7 
AS 

Load From Disk 

Save On Disk 

8 
A9 

Quit 

More .•• 

Figure 6.3.1 CUPL-GTS Screen Display Example 



116 Programmable Logic Design Guide 

PALA SM 

The oldest design aid for PAL devices is PALASM, which is a FORTRAN IV-based soft
ware package. PALASM accepts logic equations in a rigid format and assembles· them 
into fuse-map data for programmers. In addition, PALASM also accepts user input test 
vectors, performs simulation and formats them to be programmer compatible. Table 
6.3.2 lists the PALASM operators. 

ABEL TM by Data 1/0 

* + 
:+: 
=*: 
( ) 

Comment follows 
Complement, prefix to a pin name. 
AND (product) 
OR (sum) 
XOR (exclusive OR) 
XNOR (exclusive NOR) 
Conditional three-state 
Equality 
Replaced by after the low to high 
transition of the clock. 

Table 6.3.2 PALASM Operators 

As the use of PALs and PLEs (PROMs) increases, high level design tools become neces
sary. Designers need easier, faster, and more efficient ways to design with such pro
grammable devices. With the more complex devices currently being introduced to the 
market, this need is even greater. Additionally, a designer should be able to specify logic 
designs in a way that makes sense in engineering terms; he or she should not have to 
learn a new way of thinking about designs. 

ABEL TM, a complete logic design tool for PALs, PLEs, and FPLAs meets these require
ments. ABEL TM incorporates a high-level design language and a set of software programs 
that process logic designs to give correct and efficient designs. ABEL TM was developed by 
Data I/O Corporation, Redmond, WA 

The ABEL TM design language offers structures familiar to designers: state diagrams, 
truth tables, and Boolean equations. The designer can choose any of these structures or 
combine them to describe a design. Macros and directives are also available to simplify 
complex designs. . 

The ABEL TM software programs process designs described with the high-level lan
guage. Processing includes syntax checking, automatic logic reduction, automatic design 
simulation, verification that a given design can be implemented in a chosen device, and 
automatic generation of design documentation. 



Software Support 117 

To use ABEL TM, the designer uses an editor to created a source file containing an 
ABEL TM design description. He then processes the source file with the ABEL TM software 
programs to produce a programmer load file. The programmer load file is used by logic 
and PLE programmers to program devices. Several programmer load file formats are 
supported by ABEL™ so that different programmers may be used. 

The source file created by the designer must contain test vectors if simulation is to 
be performed. Test vectors describe the desired (expected) input-to-output function of 
the design in a truth table format. The ABEL TM simulator applies the inputs contained in 
the test vectors to the design and checks the obtained outputs against the expected out
puts in the vectors. If the outputs obtained during simulation do not match those 
specified in the test vectors, an error is reported. 

Following is a design described in the ABEL TM design language. This design would 
be processed to verify its correctness and to reduce the number of terms required to im
plement it. The design is implemented in a PAL. 

6809 Memory Address Decoder 

Address decoding is a typical application of programmable logic devices, and the follow
ing describes the ABEL TM implementation of such a desing. 

Design Specification 

Figure 6.3.2 shows a block diagram for the design and a continuous block of memory di
vided into sections containing dynamic RAM (DRAM), 110 (IO), and two sections of ROM 
(ROMl and ROM2). The purpose of this decoder is to monitor the six high-order bits 
(Al5-A10) of a sixteen-bit address bus and select the correct section of memory based on 
the value of these address bits. To perform this function, a simple decoder with six inputs 
and four outputs is designed with a 14L4 PAL. 

A15 
ROM1 

A14 
ROM2 

A13 
10 

A12 
DRAM 

A11 

A10 

IROM11ROM2- 1/0 DRAM ~ 
FFFF F800 F000 E800 E000 0000 

Figure 6.3.2 Block Diagram: 6809 Memory Address Decoder 



118 Programmable Logic Design Guide 

Table 6.3.1 shows the address ranges associated with each section of memory. These 
address ranges can also be seen in figure 6.3.2. 

Memory Section Address Range {hex) 
DRAM 0000-DFFF 

1/0 EOOO-E7FF 
ROM2 FOOO-F7FF 
ROM1 F800-FFFF 

Table 6.3.1 Address Ranges for 6809 Controller 

Design Method 

Figure 6.3.3 shows a simplified block diagram for the address decoder. The address de
coder is implemented with simple Boolean equations employing both relational and 
logical operators as shown in figure 6.3.4. A significant amount of simplification is 
achieved by grouping the address bits into a set named Address. The lower-order ten ad
dress bits that are not used for the address decode are given "don't care" values in the ad
dress set. In this way, the designer indicates that the address in the overall design (that 
beyond the decoder) contains sixteen bits, but that bits 0-9 do not affect the decode 

· of that address. This is opposed to simply defining the set as, Address = 
[A15,A14,A13,A12,All,Al0}, which ignores the existence of the lower-order bits. Specify
, ing all 16 address lines as members of the address set also allows full 16-bit comparisons 
of the address value against the ranges shown in table 6.3.1. 

Address 

Figure 6.3.3 Simplified Block Diagram: _6809 Memory Address Decoder 



SoftwareSupport 119 

mod u 1 e rn6809a 
title 1 6809 memory decode 
Jean Designer Data I/O Corp Redmond WA 24 Feb 19841 

U09 device 1 P14L4'; 
A15,A14,A13,A12,A11,A10 pin 1,2,31 4 1 5,6; 
ROM1 1 101 ROM2,DRAM pin 14,15,16,17; 

H,L,X ,. 1,0,.X.; 
Address .. CA15, A14, A13, A12, Al 1, AlO, X, X, X, X, X, X, X, X, X, XJ; 

equations 
!DRAM = <Address <= AhDFFF>; 
!IO <Address>= AhEOOO> & (Address <= AhE7FF>; 
!ROM2 = (Address>• AhFOOO> & <Address <= AhF7FF>; 
!ROMl = <Address>= AhFBOO>; 

test vectors <Address-> CROM1,ROM2,IO,DRAMJ> 
"hOOOO -> C H, H, H, L J; 
··'·h4000 -> C H, H, H, L J ; 
"h8000 -> C H, H, H, L J; 
"hCOOO -> C H, H, H, L J; 
''hEOOO -> C H, H, L, H J; 
····hE800 -> C H, H, H, H J; 
AhFOOO -> ( H, L, H, H J; 
"hF800 -> C L, H, H, H J; · 

er1d m6809a 

Figure 6.3.4 Source File: 6809 Memory Address Decoder 

Test Vectors 

In this design, the test vectors are a straightfoiward listing of the values that must appear 
on the output lines for specific address values. The address values are specified in 
hexadecimal notation on the left sife of the"->'~ symbol. Inputs to a design always appear 
on the left side of the test vectors. The expected outputs are specified to the right of the 
"->"symbol. The designer chose in this case to use the symbols Hand L instead of the 
binary values 1 and 0 to describe the outputs. The correspondence between the symbols 
and the binary values was defined in the constant declaration section of the source file, 
just above the section labeled equations. 

Summary 

A design described with the ABEL™ design language has been shown. This design shows 
how Boolean equations with logical and relational operators are used to describe an ad
dress decoder. Test vectors were written to test the function of the design using ABEL TM 's 
simulator. In addition to the Boolean equations shown in this example, ABEL TM features 
truth tables and state diagrams. State diagrams allow the designer to fully describe state 
machines in terms of their states and state transitions. Truth tables specify designs in 
terms of their inputs and outputs, much like test vectors. 

Regardless of the method used to describe logic, ABEL TM' s automatic logic reduction 
and simulation ensure that the design uses as few terms as possible and that it operates 
as the designer intended. The end results are savings in time, devices, board space, 
and money. 



120 Programmable Logic Design Guide 

6.4 SOFTWARE FOR TESTING PROGRAMMABLE LOGIC 

Some of the test equipment vendors also have software that can be used for testing pro
grammed devices in a production environment. These software packages do not have 
any design .aids but have automatic test vector generation and simulation tools and are 
generally written to run on powerful mini-computers. 

6.5 SOFTWARE VENDOR LIST 

Listed below are the major software vendors for Programmable Logic. 

NATIONAL SEMICONDUCTOR CORPORATION 
PLAN 
2900 Semiconductor Drive 
MIS 16-198 
P.O. Box 58090 
Santa Clara, CA 95052-8090 
(408) 721-4107 

ASSISTED TECHNOLOGIES, INC. 
2381 Zanker Road, Suite 150 
San Jose, CA 95131 

DATA 1/0 CORPORATION 
10525 Willows Road N.E. 
C-46 
Redmond,. WA 98052 

A vendor who supplies software for production testing of Programmable Logic is 
provided below. 

GENRAD 
170 Tracer Lane 
Waltham, MA 02254 



7 
Testing and Reliability 

7 .1 NATIONAL FACTORY TESTING 

National's PAL devices include special test circuitry designed to permit thorough AC 
and DC testing to be accomplished on an unprogrammed unit. This test circuitry is 
used to ensure good programming yield and to verify that devices will meet all para
metric and switching specifications after programming. 

Each PAL device has special test fuses. These test fuses are blown during factory 
testing and demonstrate beyond reasonable doubt that the device is capable of opening 
all fuses when programmed by the user. They also increase the confidence level in 
unique addressing. 

Table 7 .1.1. shows the total number of fuses and test fuses for each device. Figure 
7. 1.1 shows the PAL test flow in National's factory. 

Since PAL devices are logic devices, in addition to testing_ the fuses blown their 
logic function should be tested after programming. This can be performed on a 
National tester, or on some PAL device programmers, using user defined test vectors 
or by comparison against a known good unit (fingerprint test). 

Test vectors are relatively easy to generate for combinational designs using PAL 
devices. Sequential function testing is more difficult. 

National's application Note# 351 by Tom Wang tells the user how to generate these 
test vectors. National also supports customer test vectors and fully tests its custom 
order NML or programmed PAL devices. 

AND Array Organization 

Device Input 
T/C 

Product Number Number of 
Number Lines x x Lines = of Fuses Test Fuses 

PAL10H8 10 2 16 320 42 
PAL12H6 12 2 16 384 44 
PAL14H4 14 2 16 448 46 
PAL16H2 16 2 16 512 48 
PAL16C1 16 2 16 512 48 
PAL16L8 16 2 64 2048 98 
PAL16R8 16 2 64 2048 98 
PAL16R6 16 2 64 2048 98 
PAL16R4 16 2 64 2048 98 

Table 7 .1.1 Test Fuses 

121 



122 Programmable Logic Design Guide 

START 

1 l 
F 

~-·~ 
OPENS AND WORD PATTERN VERIFY WORD ~· SHORTS CHECK 

I I 
·~ ICC 

BIT PATTERN 
VERIFY BIT ~· 

CHECK 

F -· 
l 1 

F GROSS F DC F ·-- FUNCTIONAL ~ ARRAY CHECK PARAMETRIC -· ~· 
"HIGH" TESTS 

I l 
F GROSS F 

~-·- FUNCTIONAL PROG WORD AC TESTt 
_,. 

~· 
"LOW" 

l I 
MIX CHECK PROG BIT 

*FUNCTIONAL 
~ '- TEST 

F -· F 
~-

l 
F 

~--1 ARRAY CHECK 

l 
t FOR SAMPLE ONLY 
* FOR NMUPROGRAMMED PAL 

Figure 7 .1.1 PAL Device Test Flow 



Testing and Reliability 123 

7.2 LOGIC VERIFICATION 

PAL devices are not only memory devices, but also logic devices. Therefore, in addition 
to verifying the fuses blown after programming, we also need.to verify the logic opera
tion before it is put in a system. Logic verification provides assurance that a device will 
function in a board. Figure 7 .2 .1 shows the PAL device's architecture which will clarify 
the difference between fuse programming/verification and logic verification. The 
programming/verification circuit is required to allow custom configuration by the user. 
This circuit is operational only when a super voltage is applied to V cc· Under normal 
5 .0 volt operation, this circuit is invisible and the logic circuit will take over. Therefore 
the skills we use to check the PAL device under normal 5 .0 volt operation are called 
logic verification. The most important skill we use now is called functional test. 

~ 

INPUT 

--t--------1-----, 

L----.-

-PROGRAMMINGNERIFICATION FLOW 
---FUNCTIONAL FLOW 

PROGRAMMING/ 
VERIFICATION 

CIRCUIT 

PROGRAMMABLE 
ARRAY r-------

I 
! 

LOGIC 
CIRCUIT 

1------------

Figure 7.2.1 PAL Device's Architecture 

--" 

...... ....... 

OUTPUT 

-------· ... 



124 . Programmable Logic Design Guide 

Functional testing must accomplish two purposes: 

1) It must verify that the PAL device, after programming, performs the function 
intended. 

2) It must verify the circuit removed through programming does not affect the PAL. 
device's operation. 

The functional testing technique relies on the test vectors. A test vector means a 
combination of desired input variable values and expected outputvariable values. The 
PAL device will be exercised by the desired input values. Then, the received outputs 
will be compared w~th the expected output values. The device is considered a "mal
function" if the comparison does not match. Figure 7 .2 .2 shows an example. 

EXERCISE 
1 1 0 1 1 

DINPUTS 
0 1 1 0 1 

J 

l 

EXPECTED OUTPUTS 

} OUTPUTS 10110110 ~ 

PAL 
\.. .I ,... DEVICE 

INPUTS ...... 
~ 

" 

[ 
...... 
~ 

COMPARISON ...... 
~ 

Figure 7.2.2 Function of Test Vector 

There are many methods of generating test vectors: 

ERROR IF ...... 
MISMATCH 

~ 

1. Exhaustive - generate the whole different input combination and the expected out
put values. For instance, for 3-input AND gate in Figure 7.2.3, we get eight test vec
tors as in Table 7 .2 .1. For an n-inputs device, we get 2n test vectors. 

A 

B 

c 

Figure 7 .2.3 3-lnput AND Gate 



Testing and Reliability 125 

A B c F 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Table 7 .2 .1 Test Vectors Generated by Exhaustive Methods 

2. Fault modeling - Use the stuck at O and stuck at 1 technique to sensitize the differ
ent logic path. For instance, in Figure 7.2.3, there are three different paths, i.e. AF, 
BF and CF. Therefore we get six test vectors shown in Table 7.2.2 (a). Due to vector 
1,3 and 5 being the same, we can reduce to four test vectors as in Table 7.2.2 (b). 

A B c 

1 1 1 
0 1 1 
1 1 1 
1. 0 1 
1 1 1 
1 1 0 

(A) 

F 

1 
0 
1 
0 
1 
0 

A 

0 
1 

B 

1 
0 

c 

0 

(B) 

Table 7 .2 .2 Test Vectors Generated by Fault Modeling 

F 

0 
0 
0 

3. Structure Test - Only pick up the possible existing input states and their corres
ponding output states. 

There is another skill to do the logic verification. It uses the signature analysis technique. 
This technique uses random input values exercising on a good device to generate differ
ent outputs. The outputs are manipulated in certain ways to get a "test sum" called a "sig
nature." Then, using the same sequence of input values to another device we get its sig
nature which is compared with the known good one. Some PAL device programmer ven
dors offer user fingerprint tests which are based on signature analysis techniques such as 
DATA 110, Digital Media. 



126 Programmable Logic Design Guide 

7 .3 CUSTOMER'S RESPONSIBILITf ES 

The number of parts that are non-functional after programming is generally less than 
2 % and may be picked up. during board-level check. However, the author strongly 
recommends that the user do the logic verification before putting PAL device compo
nents into the system. 

Since the user defines the function of the PAL device, it is impossible for the sup
plier to perform full functional testing prior to shipment unless the user orders an NML 
or programmed PAL device from National. 

It is the user's responsibility to generate test vectors or do the fingerprint test. The 
methods for generating test vectors was discussed in Section 7.2. 

7 .4 RELIABILITY DATA 

Following is sample reliability data on National's PAL devices. For additional information 
please contact your National representative or distributor. . 

Product: Bipolar PALs (DM3300) 
Package: Molded (N) and Hermetic 0) 

Test Method: Dynamic (DHlL)/Static (SHlL) High Temperature Operating Life 
Conditions: Continuous Operation at Rated Supply Voltage, and 125°C 
Duration: 1000 Hours 

Filel.D. Device Package Test Sample 168 500 1000 Failure Mode 

Type Type Size Hours 

RMB75131 16R4 J DHTL 77 0 0 0 

RMB75133 16L8 77 0 0 0 

RMB75101 16R6 77 0 0 0 

RMB75137 16R6 . 77 0 1 0 Fuse verify and functional 

RMB75096 16R4 SHTL 77 0 0 0 

RMB75132 16R4 77 0 0 0 

RMB75097 16L8 77 0 0 0 

RMB75142 16R8 77 0 0 0 

RMB75143 16L8 N DHTL 77 0 0 0 

RMB75144 16R8 77 0 0 0 

RMB75190 16R4 77 0 0 0 

RMB75144 16R8 SHTL 77 0 0 0 

RMB75154 16L8 77 0 0 0 

Total Devices: 1001 

Total Device Hours at 125°C: 1001 •103 



Testing and Reliability 127 

Failure Rate at Stress = 0.2%/1000 Hours 

Total Device Hours at 55°C, and 0.4EV = 12.012*106 

Failure Rate at 55°C, 0.4EV and 60% Confidence Level: 

%/1000 Hours: 0.0168; PPM Hours: 0.168; Fits: 168; MTBF: 5.9*106 

Test Method: Temperature Humidity Bias Test 
Conditions: Continuous Operation at Rated Supply Voltage, 85°C, and 85%RH 
Duration: 1000 Hours 

Fllel.D. Device Package Sample 168 500 1000 FallureMode 
iype "fYpe Size Hours 

RMB75143 16L8 N 77 0 0 0 
RMB75144 16R8 77 0 0 0 
RMB75199 16R4 77 0 0 0 

Total Devices: 231 

Failure Rate at Stress: 0.4%/1000 Hours 

7 .5 PAL DEVICE FUNCTIONAL TESTING 

Combinational and Sequential Circuits 

Digital circuits can be classified as either combinational or sequential. Combinational cir
cuits (e.g., decoder, multiplexer, adder, etc.) whose present value of the outputs at any 
time are functions of only the present circuit inputs at that time can be described as: 

Y = F(X) 

where Fis Boolean sum of products transfer function (Figure 7.5.1). 

INPUTS X ---+@-+ OUTPUTS Y 

Figure 7. 5 .1 Combinational Circuit 

Sequential circuits (e.g., counter, shift register, accumulator, etc.) whose present 
value of the outputs at any given time will be the functions not only of the present cir
cuit inputs at that time, but also the previous value of the outputs can be described as: 

Y= F(X, Y) 

where Fis the Boolean Sum-of-Product transfer function. See (Figure 7.5.2). 



128 ~Programmable Logic Design Guide 

CLOCK 

INPUTS X 
OUTPUTS V 

Figure 7.5.2 Sequential Circuit 

Description of PAL (Programmable Array Logic) Device 

Due to rapidly increasing integrated circuit technology, logic circuit designers face a 
difficult decision: should they use conventional TTL gates or custom LSI to implement 
desired combinational/sequential circuits. 

Use of conventional TTL gates does not take advantage of the increased ·integra
tion available. However, expensive and complicated software often makes custom LSI 
unsatisfactory. There is a big void between these two solutions. This void is now being 
addressed by semicustom approaches (e.g., PAL devices or gate array, etc). Since PAL 
devices have advantages over other semicustom chips in many areas (for instance, cost 
effectiveness, quick turnaround, complete software support, multi-source, etc.), it may 
be the best approach for the logic designer designing combinational/sequential circuits. 

National offers the designer a family of PAL devices. See Table 7.5.1 for a broad· 
overview of National's products. 

PAL Device Design Procedure 

Designing combinational circuits is straightforward. The first step is to define the cir
cuit's function. The second step is to build a truth table. The third step is to minimize 
the truth table by using Karnaugh maps or Boolean algebra, in order to get the transfer 
function (i.e., logic equations). Step four is programming the circuits. Figure 7.5.3 is a 
flow diagram which applies to designing combinational PAL devices. 

It is much more complicated to design a sequential circuit, as discussed in many 
textbooks and articles. Figure 7.5.4 is a flow diagram which applies to designing 
sequential PAL devices. 

The last step in both Figures 7.5.3 and 7.5.4 is programming the PAL device. The 
entire procedure for programming a PAL device is shown in Figure 7.5.5. The first step 
is to generate the logic equations and function table. The second step is, using PAL 
device software tools (e.g.,. PALASM®, PLANTM, .etc.), to create a bit pattern and exercise 
the function table, if any, in the logic equations. The third step is.to load the bit pattern 
into a PAL device programmer to program and verify the fuse matrix. The fourth step is 
to functionally test the PAL device. The last step is to blow the security fuse. This last 
step is optional. 



Testing and Reliability 129 

High Speed Ultra-High Low Power Package 
Standard (25 ns) Speed (15 ns) (35 ns) (Pins) Description 

(35 ns) / 

10H8 10H8A 10H8A2 20 10 Input, 8 Output AND-OR Array 
12H6 12H6A 12H6A2 20 12 Input, 6 Output AND-OR Array 
14H4 14H4A 14H4A2 20 14 Input, 4 output AND-OR Array 
16H2 16H2A 16H2A2 20 16 Input, 4 Output AND-OR Array 
10L8 10L8A 10L8A2 20 10 Input, 8 Ouptut AND-OR Array 
12L6 12L6A 12L6A2 20 12 Input, 6 Output AND-OR Array 
14L4 14L4A 14L4A2 20 14 Input, 4 Output AND-OR Array 
16L2 16L2A 16L2A2 20 16 Input, 2 Output AND-OR Array 
16C1 16C1A 16L1A2 20 16 Input, 1 Output AND-OR/NOR Array 
16L8 16L8A 16L88 16L8A2 20 16 Input, 8 Output AND-OR-Inv Array 
16R8 16R8A 16R88 16R8A2 20 16 Input, 8 Output AND-OR-Reg Array 
16R6 16R6A 16R6B 16R6A2 20 16 Input, 6 Output AND-OR Reg Array 
16R4 16R4A 16R48 16R4A2 20 16 Input, 4 Output AND-OR-Reg Array 

(40 ns) 
12L10 24 12 Input, 10 Output AND-OR Array 
14L8 24 14 Input, 8 Output AND-OR Array 
16L6 24 16 Input, 6 Output AND-OR Array 
18L4 24 18 Input, 4 Output AND-OR Array 
20L2 24 20 Input, 2 Output AND-OR Array 
20C1 24 20 Input, 1 Output AND-OR/NOR Array 

20L8A 24 20 Input, 8 Output AND-OR-Inv Array 
20R8A 24 20 Input, 8 Output AND-OR-Reg Array 
20R6A 24 20 Input, 6 Output AND-OR-Reg Array 
20R4A 24 20 Input, 4 Output AND-OR-Reg Array 

(50 ns) 
20L10 24 20 Input, 10 Output AND-OR-Inv Array 
20X10 24 20 Input, 10 Output AND-OR-XOR-Reg Array 
20X8 24 20 Input, 8 Output AND-OR-XOR-Reg Array 
20X4 24 20 Input, 4 Output AND-OR-XOR-Reg Array 

Table 7.5.1 National's PAL Device Family 

Description of Functional Table 

In Figures 7.5.3, 7.5.4 and 7.5.5 we encounter a step called "generating function table." 
However, what is the meaning of a function table and why do we need it? A function 
table is a sequence of test conditions which are representative of the device in actual 
circuit operation. When we derive the logic equations by using Karnaugh maps or 
Boolean algebra, it is possible to introduce errors that may not be obvious. The func
tion table is a means of expressing what we expect the PAL device to do in the system. 
PALASM or other software simulators will exercise the function table in the logic equa
tions and report simulation errors. Then, we can correct the function table and/or the 
logic equations until no simulation error occurs. 



130 Programmable Logic Design Guide 

FUNCTION 
TABLE 

FUNCTIONAL 
DESCRIPTION 

DEFINE INPUTS 
------ AND OUTPUTS .--------. 

TRUTH 
TABLE 

KARNAUGH MAPS OR 
------ BOOLEAN ALGEBRA 

TRANSFER 
FUNCTION 

.(LOGIC 
EQUATIONS) 

CIRCUITS 
(PAL) 

DEVICE 

(PROGRAMMING THE 
PAL DEVICE) 

Figure 7 .5.3 Combinational PAL Device Design Steps 

Even if both the logic equations and blown fuses are correct, there is no guarantee 
that the PAL device will function properly. PALASM or other software tools can gener
ate test vectors from the function table entries and exercise these test vectors in the PAL 
device after it has been programmed. Even though the functional verification fallout is 
very small (typically less than 2 % ), it is necessary to perform this test at the device 
level. Ten devices on a board with a 2% device fallout translates into 18% fallout at the 
board level if these devices are not individually tested. 

Thus, we can see that a good function table will provide a high degree of confi
dence that the design is correct. It will also help ensure that the PAL device will work 
properly the first time it is plugged into the system. 



FUNCTIONAL 
DESCRIPTION 

l 
STATE 

DIAGRAM 

I 
STATE 
TABLE 

1 
MINIMAL 

STATE TABLE 

I 
FUNCTION I+- TRANSITION 

TABLE TABLE 

J 
TRANSFER 
FUNCTION 

(LOGIC· 
EQUATIONS) 

l 
CIRCUITS 

(PAL) 
DEVICE 

Testing and Reliability 131 

MINIMIZING THE 
-- STATE TABLE 

__ STATE 
ASSIGNMENT · 

__ KARNAUGH MAPS OR 
BOOLEAN ALGEBRA 

-- (PROGRAMMING THE 

PAL DEVICE) 

Figure 7 .5.4 Sequential PAL Device Design Steps 



132 Programmable Logic Design Guide 

ENTER LOGIC EQUATIONS 

~-
ENTER FUNCTION TABLE 

j_ 

CREATE BIT PATTERN 

l 
EXERCISE FUNCTION TABLE 

IN LOGIC EQUATIONS 
(~IMULATION) 

I 
LOAD PATTERN INTO 

PROGRAMMER 

! 
PROGRAM FUSE MATRIX 

! 
VERIFY FUSE MATRIX 

I 
TEST PAL DEVICE FUNCTION 
WITH TEST VECTORS OR DO 

OTHER LOGIC TEST 

! 
BLOW SECURITY FUSE 

(DO FUNCTIONAL 
TESTING AGAIN) 

Figure 7. 5. 5 PAL Device Programming Procedures 



Testing and Reliability 133 

How to Generate Test Vectors and the Function Table from Logic Equations 

It is the PAL device designer's responsibility to generate the function table since he/she 
knows the operation of the design best. However, if this is not possible, we can gener
ate the function table manually from the existing logic equations. To do this, the cor
rect logic equations are needed. Figure 7.5.6 outlines the procedure which will be 
detailed by examples in the next section. The "optimization" procedure is sometimes 
difficult and may need intuition. (Notice the diffe~ent procedure between combina
tional and sequential PAL in the last step.) 

COMBINATIONAL 
PAL 

L...+ 

LOGIC EQUATIONS (KNOWN GOOD) 

l 
SAO TEST FOR EACH PRODUCT TERM 
SA 1 TEST FOR EACH PRODUCT TERM 
SA1 FOR EACH PRODUCT EQUATION 

l --- MINIMIZATION 

TEST VECTORS 

--- OPTIMIZATION 

~~ 

GENERATE STATE DIAGRAM AND 
· TRANSITION TABLE FOR STATE 

SEQUENTIAL PAL 

l 
FUNCTION TABLE 

Figure 7.5.6 Test Vector and Function Table Creating Steps 



134 Programmable Logic Design Guide 

Before going to the next section, a few conventions are defined. First, only the fol-
lowing symbols can be accepted in the test vectors or function table: 

H-Logic High 
L-Logic Low 
X-Irrelevant "Don't Care" 
Z-High Impedance 
C-Clock 
?-Undetermined 
0 and 1 can be treated as Low and High. 

Second, let's consider a general logic equation (or product equation) 

01 =Pl + P2 + P3 

where 0 1 is the output; Pl, P2 and P3 are the product terms. 

If Pl= Il * Iz * /I3 
P2 = /I2 * I3 * Is 
P3 = I6 * /Is * /I9 

where I 1, Iz, I3, Is, I6, Is and I9 are inputs. 
Then the output 0 1 will be 

01=11 * Iz * /I3 + /I2 * I3 * Is+ I6 * /Is * /19 

where, Ii, I2, /I3, Is, I6, /Is, /I9 are called factors. 
Consider a particular test vector, VI, which will cause the product term Pl to be 

high and the product terms P2 and P3 to be low. In this case the output, Oi, will be 
high. Now, if a fault is created by the PAL device which causes Pl to be low, then the 
output, 0 1, will be low which is different from the fault-free condition. This fault con
dition is called "stuck at O" (SAO) fault. Thus, the vector, VI, is able to detect the pro
duct term, Pl, for the SAO fault and we can say that VI covers Pl for the SAO fault. 

In order to get Pl to be high, all factors of Pl should be high (i.e., Ii, I2 and /I3 are 
high). Both 12 =high and /I3 =high will cause P2 to be low no matter what Is is. There
fore, the vector of: 

Il Iz I3 I4 Is 16 I7 Is I9 I10 In I12 01 02 03 04 Os 06 
H H L XXL X XX X X X H X X X X X 

will cover P 1 for the SAO fault. 
Similarly, if there is another vector, V2, which causes Pl to be lowt (only one fac

tor of P 1 is low, the other factors of P 1 are high) provided that P2 and P3 are low, then 
the output, Oi, is low. Now if a fault is created by the PAL device which causes Pl to be 
high then the output, Oi, will be high which is different from the fault-free condition. 

t To talk about letting a product term which is under test be low means that we only force one factor of this term to be low 
and the other factors should remain high. 



Testing and Reliability 135 

This fault condition is called "stuck at l" (SAl) fault. Thus, the vector, V2, is able to 
detect the product term, Pl, for SAi fault and we can say that V2 covers Pl for SAi 
fault. 

For example, if I1 is low, I2 and /I3 are high, the Pl is low. Therefore the vector of 

Il I2 I3 I4 I5 I6 I7 Is I9 I10 In I12 01 02 03 04 05 06 
LHLXXLXXXXXXLXXXXX 

will cover Pl for the SAl fault. 
Similarly, the following vectors will cover Pl for the SAi fault, too. 

Il I2 I3 I4 I5 I6 17 Is I9. Ilo Ill I12 01 02 03 04 05 06 
HLLXXLXXXXXX L XX XX X 
HHHXXLXXXXXX L XX XX X 

To get an SAl fault test for a product equation, generate a vector which sets all the 
factors in each product term to be low. The output of this product equation will then 
be low. If a fault is created by an AND or OR gate of the PAL d~vice which causes the 
product term to be high, then the output will be high, which is different from the fault
free condition. For example, if Il, I2, /I3, I5, I6, /Is, /I9 are low, then the following vector 
will cover equation 0 1 for an SAl fault. 

Il I2 I3 I4 Is 16 I7 Is I9 Ilo Ill I12 01 02 03 04 05 06 
LLHXLLXHHXXX L XX XX X 

A good function table should cover all of the product terms for the SAO and SA 1 
faults. The Product Term Coverage (PTC) is calculated as: 

Total # of SAO Faults Tested + Total # of SA 1 Faults Tested 
·PTC = x 100 (%) 

2 x Total Number of Product Terms 

To achieve 100% PTC is the goal of generating a function table. PALASM version 
1. 5 and up will inform the user of: 

• Total number of SAI faults tested 

• Total number of SAO faults tested 

• Product term coverage (PTC) 

In case all the product terms are not covered,· the user receives a message which 
tells him the product term and the type of fault for which it was not tested (e.g., "Prod
uct P2 of EQN 1 Untested (SAO) Fault"). This implies that the user must update the func
tion table by including vectors which will cover product terms for the faults. 



136 Programmable Logic Design Guide 

7 .6 EXAMPLES OF TESTING 

Example 1: Combinational PAL12H6 

PAL12H6 
PTAN301 
Tom Wang 
Portion of random control logic for 8086 CPU board 

PD EN ED EA S 1 SA E 1 
MW = ISO + PW * DE 
LA= /SA * /DO 

DO DE GND SO NC3 NO C3 HA SS LA MW PW VCC 
(1) 

SS = S 1 * PD * /SA 
HA = S 1 * PD * /SA * EA * E 1 
C3 = PD * ED * EA 
NO= PD* /EN 

Description 

(2). 
(3) 
(4) 
(5) 

This is a portion of random control logic for 8086 CPU board. See (Figure 7.5.7). 

:: ---cill""""""""""'),_--...---->-CD------ MW 

so------

PD ---1 ~-o-------+-......;.--....-., 
~------NO 

HA 

SI -----------+----1.-~ IO-....,._.,. ~-<>--- SS 

LA 

Figure 7. 5. 7 Logic Circuit of Example 1 



Testing and Reliability 137 

The generation of function table is described in the following steps: 

Step 1: Get Test Vector Coding Form; Fill in the input and output names. 

Step 2: Exercise the product term 1 (/SO) of equation 1. 
SAO Fault Testing: Let PTl be high and PT2 be low, then the output of equa

tion 1, MW, should be high; so, we get vector 1. 
SAl Fault Testing: Let PTl and PT2 be low, then the output of equation 1, MW 

should be low; so we get vector 2. 

Step 3: Exercise product term 2 (PW * DE) of equation 1. 
SAO Fault Testing: Let PTl be low and PT2 be high, then the output of equa

tion 1, MW, should be high (i.e., vector 3). 
SAl Fault Testing: Let PTl and PT2 be low, then the output of equation 1, 

MW, should be low. 
Since PT2 consists of two factors, PW and DE, we create two SAl test vectors 
(i.e., vectors 4 and 5). 

Step 4: SAl Fault Testing for product equation 1. 
Let PTl and PT2 be low, then the output of equation 1, MW, should be low 
(i.e., vector 6). 
This step is similar to the SAl test in step 3 but is different, since all the factors 
in this equation were set to be low. 

Step 5: Exercise product term 1 (/SA * /DO) of equation 2. 
SAO Fault Testing: Let PTl be high, then the output LA should be high. 
SAl Fault Testing: Let PTl be low, then the output LA should be _low. 
So, we get vectors 7, 8, and 9 in Table 7.5.2 

Step 6: SAl fault test for product equation 2, we get vector 10. 

Step 7: Continue to exercise the rest of the product terms, completing all 31 test vec
tors (Table 7.5.2). 

Step 8: Optimize the test vectors to get the function table. 
1) Because of vector 2, we don't need vectors 4 and 6. 

2) Combine vectors 7-10 with vectors 1-6. 

3) Rearrange vectors 11-15, then combine with the preceding vectors. 

4) Merge vectors 28-31 with vectors 23-27. 

5) This results in only 17 vectors (Table 7.5.3). 

6) These 17 vectors can still be minimized by comparison and intuition to get 
only 7 vectors (Table 7.5 .4). 

7) By inserting "X" into unused spaces, the result is Table 7.5.S, which is the 
function table. 



138 Programmable Logic Design Guide 

Inputs Outputs 

PD EN ED EA SI SA El DO DE so NC3 PW NO C3 HA SS LA MW 

1 x L L H 

2 x H L L 

3 H H H H 

4 H H L L 

5 L H H L 

6 L H L L 

7 L L H 

8 H L L 

9 L H L 

10 H H L 

11 H H L 

12 H L L: H 

13 L H L L 

14 H H H L 

15 L L H L 

16 H H H L H H 

17 H H L L H L 

18 L H H L H L 

19 H H H H H L 

20 H L H L H L 

21 H H H L L L 

22 L L L H L L 

23 H H H H 

24 L H H L 

25 H L H L 

26 H H L L 

27 L L L L 

28 H L H 

29 L L L 

30 H H L 

31 L H L 

Table 7 .5.2 Test Vectors 



Testing and Reliability 139 

Inputs Outputs 

PD EN ED EA SI SA El DO DE so NC3 PW NO C3 HA SS LA MW 
1 H H L L x L L H H H 

2 H H H L x H L L L L 

3 H L L H H H H L L H 

4 L L H H L H H L L L 

5 L H L L 

6 H H H L H H 

7 H H L L H L 

8 L H H L H L 

9 H H H H H L 

10 H L H L H L 

11 H H H L L L 

12 L L L H L L 

13 H L H H H H 

14 L L H H L L 

15 H H L H L L 

16 H H L L 

17 L H L L L L 

Table 7.5.3 Test Vectors 

Inputs Outputs 

PD EN ED EA SI SA El DO DE so NC3 PW NO C3 HA SS LA MW 
1 H L H H H L H L x L L H H H H H H 

2 H H L H H H H L x H L L L L L L L 

3 H H L L H H H H H L L L H 

4 L H L L L H L H L H H L L L L L L 

5 L L H H H L H L L L L 

6 H H L H L H L L 

7 H H H L L L 

Table 7 .5.4 Final Test Vectors 



140 Programmable Logic Design Guide 

Inputs Outputs 

PD EN ED EA SI SA El DO DE so NC3 PW NO C3 HA SS LA MW 

1 H L H H H L H L x L x L H H H H H H 

2 H H L H H H H L x H x L L L L L L L 

3 H x x H L L H H H H x H x x L L L H 

4 L H L L L H L H L H x H L L L L L L 

5 L L H H H L H x x x x x L L L L x x 
6 H x H L H L H x x x x x x L L x x x 
7 H x x H H L L x x x x x x x L x x x 

Table 7. 5. 5 Final Function Table 

The following are printouts of PAL device design specifications, function table, pinout 
list, fuse map, simulation result,, and fault testing result. We get 100 % PTC! 

PALASM VERSION 1. 5 

PAL12H6 
PTANJOl 
TOM WANG 
PORTION OF RANDOM CONTROL LOGIC FOR 8086 CPU BOARD 
PD EN ED EA Sl SA El DO DE GND SO NCJ NO CJ HA SS LA 
MW PW VCC 
MW = /SO + PW*DE 
LA = /SA*/DO 
SS = Sl*PD*/SA 
HA = Sl*PD*/SA*EA*El 
CJ = FD*ED*EA 
NO = PD*/EN 
FUNCTION TABLE 
PD EN ED EA Sl SA El DO DE SO NCJ PW NO CJ HA SS LA MW 

H L H H H L H L X LX L H H H H H H 
HHLHHHHLXHXLLLLLLL 
HXXHLLHHHHXHXXLLLH 
LHLLLHLHLHXHLLLLLL 
LLHHHLHXXXXXLLLLXX 
H X H L H L H X X X X X X L L. X X X 
HXXHHLLXXXXXXXLXXX 

DESCRIPTION 
PORTION OF RANDOM CONTROL LOGIC FOR 8086 CPU BOARD 



Testing and Reliability 141 

TOM WANG 

************** ************** 
* * * * 

**** **** 
PO * l* P A L *20* vcc 

**** **** 
·* 1 2 H 6 * 

**** **** 
EN * 2* *19* PW 

**** .... 
* * 

**** **** 
ED * 3* *18* MW 

**** **** 
* * 

**** **** 
EA * 4* *17* LA .... **** 

* * 
**** **** 

Sl * 5* *16* SS 
**** **** 

* * 
**** **** 

SA * 6* *15* HA 
•••• **** 

* * 
**** **** 

El * 7* *14* CJ 
**** ··~· * * 
**** **** 

DO * 8* *13* NO 
**** **** 

* 
**** **** 

DE * 9* *12* NC3 
**** **** 

* * 
**** **** 

GND *10* *11* so 
**** **** 

* * 
******************************* 

TOM WANG 

1 101llOlOXXOXHHHHHHO1 
2 llOllllOXXlXLLLLLLOl 
3 lXXlOOlllXlXXXLLLHll 
4 Ol0001010XlXLLLLLLl 1 
5 OOlllOlXXXXXLLLLXXXl 
6 1Xl0101XXXXXXLLXXXX1 
7 lXXllOOXXXXXXXLXXXXl 

PASS SIMULATION 

TOM WANG 

49 8 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*f PLT PAL12H6 8 
0 0000 0000 0000 0000 0000 0000 0000 0000 
1 0000 0000 0000 0000 0000 0000 0000 0000 
2 0000 0000 0000 0000 0000 0000 0000 0000 
3 0000 0000 0000 0000 0000 0000 0000 0000 
4 0000 0000 0000 0000 0000 0000 0000 0000 
5 0000 0000 0000 0000 0000 0000 0000 0000 
6 0000 0000 0000 0000 0000 0000 0000 0000 
7 0000 0000 0000 0000 0000 0000 0000 0000 

8 ---- ---- --00 --00 --00 --00 ---- ---X /SO 
9 ---- --X- -:-00 --00 --00 --00 ---- X--- PW*OE 

10 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
11 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
12 0000 0000 0000 0000 0000 0000 0000 0000 
13 0000 0000 0000 0000 0000 0000 0000 0000 
14 0000 0000 0000 0000 0000 0000 0000 0000 
15 00~0 0000 0000 0000 0000 0000 0000 0000 

16 ---- --:-- --00 --00 -XOO --00 -X-- ---- /SA*/00 
17 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
18 0000 0000 0000 0000 0000 0000 0000 0000 
19 0000 0000 0000 0000 0000 0000 0000 0000 
20 0000 0000 0000 0000 0000 0000 0000 0000 
21 0000 0000 0000 0000 0000 0000 0000 0000 
22 0000 0000 0000 0000 0000 0000 0000 0000 
23 0000 0000 0000 0000 0000 0000 0000 0000 

24 --X- ---- --00 X-00 -XOO --00 ---- ---- Sl*PD*/SA 
25 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
26 0000 0000 0000 0000 0000 0000 0000 0000 
27 0000 0000 0000 0000 0000 0000 0000 0000 
28 0000 0000 0000 0000 0000 0000 0000 0000 
29 0000 0000 0000 0000 0000 0000 0000 0000 
30 0000 0000 0000 0000 0000 0000 0000 0000 
31 0000 0000 0000 0000 0000 0000 0000 0000 



142 Programmable Logic Design Guide 

32 --X- ---- X-00 X-00 -XOO X-00 ---- ---- Sl*PO*/SA*EA*El 
33 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
34 0000 0000 0000 0000 0000 0000 0000 0000 
3 5 0000 0000 0000 0000 0000 0000 0000 0000 
36 0000 0000 0000 0000 0000 0000 0000 0000 
3 7 0000 0000 0000 0000 0000 0000 0000 0000 
38 0000 0000 0000 0000 0000 0000 0000 0000 
39 0000 0000 0000 0000 0000 0000 0000 0000 

40 --X- X--- X-00 --00 --00 --00 ---- ---- PO*EO*EA 
41 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
42 0000 0000 0000 0000 0000 0000 0000 0000 
4 3 0000 0000 0000 0000 0000 0000 0000 0000 
44 0000 0000 0000 0000 0000 0000 0000 0000 
45 0000 0000 0000 0000 0000 0000 0000 0000 
46 0000 0000 0000 0000 0000 0000 0000 0000 
4 7 0000 0000 0000 0000 0000 0000 0000 0000 

48 -XX- ---- --00 --00 --00 --00 ---- ---- PO*/EN 
49 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx ' 
50 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
51 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
52 0000 0000 0000 0000 0000 0000 0000 0000 
53 0000 0000 0000 0000 0000 0000 0000 0000 
54 0000 0000 0000 0000 0000 0000 0000 0000 
55 0000 0000 0000 0000 0000 0000 0000 0000 

56 0000 0000 0000 0000 0000 0000 0000 0000 
5 7 0000 0000 0000 0000 0000 0000 0000 0000 
58 0000 0000 0000 0000 0000 0000 0000 0000 
59 0000 0000 0000 0000 0000 0000 0000 0000 
60 0000 0000 0000 0000 0000 0000 0000 0000 
61 0000 0000 0000 0000 0000 0000 0000 0000 
62 0000 0000 0000 0000 0000 0000 0000 0000 
63 0000 0000 0000 0000 0000 0000 0000 0000 

ENO*FPLT 

LEGEND: X : FUSE NOT BLOWN (L,N,O) FUSE BLOWN (H,P,l) 
0 : PHANTOM FUSE (L,N,0) 0 : PHANTOM FUSE (H,P,l) 

NUMBER OF FUSES BLOWN = 206 

TOM WANG 

1 101 llOlOXXOXHHHHHHOl 
2 llOllllOXXlXLLLLLLOl 
3 lXXlOOlllXlXXXLLLHll 
4 OlOOOlOlOXlXLLLLLLll 
5 0011 lOlXXXXXLLLLXXXl 
6 1Xl0101XXXXXXLLXXXX1 
7 lXXllOOXXXXXXXLXXXXl 

PASS SIMULATION 49 8 

NUMBER OF STUCK AT ONE (SAl) FAULTS ARE = 

NUMBER OF STUCK AT ZERO (SAO) FAUL TS ARE = 7 

PRODUCT TERM COVERAGE =lOOi 



Testing and Reliability 143 

The differences between sequential and combinational circuits have been dis
cussed. The output of sequential circuits is a function not only of the present inputs, 
but the previous outputs. 

There are two kinds of outputs in the sequential PAL device: registered output, and 
non-registered output. For example, pin 14 of the PAL16R4 is a registered output; 
pin I3 is a non-registered output. Different combinations of registered outputs are 
defined as different states. Each present-state is related to the present inputs and pre
vious state, so the function table vectors need to be arranged in proper sequential 
order. 

Furthermore, since the previous state is obtained from the previous vector, it is 
necessary to "initialize" the registers to a "known state". (Output is a function of the 
inputs but is independent of the previous state, similar to a clear or preset function) . 

. The following is an example of the sequential PAL16R4. Referring to Figure 7.5.6, 
generate the state diagram and state transition table to derive the proper function table. 

Example 2: Sequential PAL16R4 

PAL16R4 
PTAN302 
Tom Wang 
Op code analyzer 

CLK /2BI2 /2B23 /B2Bl /B2B3 /3B /B3B /BIB GND /EN FIST /ILLOP 
IC IB IA 117 /RD F23 VCC 
If (VCC) /FIST= F23 ; (I) 
If (VCC) ILLOP =IA * /B * IC ; (2) 
C: = A * /B * IC * /B3 B + I A * /B * C * /B2 B2 + RD + A * B * C * /BIB + A * /B * C * 

/B2B3 * /3B + IA * B * /B2BI ; (3) 
B: =A * /B * IC * /B3B +IA * /B *. C * /B2B2 +RD+ A * B * C * /BIB * /2B23 + 

A * /B * C * /B2B3 +IA * B * /B2BI ; (4) 
A:= A * /B * IC * /B3B +IA * /B * C * /B2B2 +RD+ A * B * C * /BIB * /2B12 + 

A * /B * C * /B2B3 +IA * B * /B2BI + B * IC (5) 
17: =A * B * C (6) 
If (VCC) /F23 =IA * /B * IC+ A * B * C (7) 

Description 

The function of this PAL device is to analyze the incoming op code. 
The generation of the function table is described in the following steps: 

Step 1: Get test vector coding form. Fill in the input and output names. Since the 
outputs C, B and A act as inputs as well, they appear on both sides and are 
considered first because they feed back to themselves. Therefore, equations 
3, 4, and 5 are exercised first. 



144 Programmable Logic Design Guide 

Step 2: Exercise product term I of equation 3. 
SAO Fault Testing: Let PTI (A * /B * IC* /B3B) be high and PT2, 3, 4, 5, and 

6 be low; the output of equation 3 should be high; so, we 
get vector I in Table 7.5.6. 

SAI Fault Testing: Let PTI, 2, 3, 4, 5, and 6 be low; the output of equation 3 
should be low; so, we get vectors 2, 3, 4, and 5 in Table 
7.5.6. 

Step 3: Exercise product term 2 of equation 3. 
SAO Fault Testing: Let PT2 be high and PTI, 3, 4, 5, and 6 be low; the output 

of equation 3 should be high; so, we get vector 6 in Table 
7.5.6. 

SAI Fault Testing: Let PTI 2, 3, 4, 5, and 6 be low; the output of equation 3 
should be low; so, we get vectors 7, 8, 9, and 10 in Table 
7.5.6. 

Step 4: Exercise product term 3 of equation 3 (only SAO fault ,testing is needed). 
SAO Fault Testing: Let PT3 be high and PTI, 2, 4, 5, and 6 be low; the output 

of equation 3 should be high; so, we get vector 11 in Table 
7.5.6. 

Step 5: Continue to exercise the rest of the product terms, completing all of 
equation 3. 

Step 6: SAI fault test for product equation 3; so, we get vector 25. 

Step 7: Repeat step 2 through step 6 for equation 4; i.e., 
SAO Fault Testing: Let PTI be high and PT2, 3, 4, 5, and 6 be low; the output 
of equation 4 should be high. 
SAI Fault Testing: Let PTI, 2, 3, 4, 5, and 6 of equation 4 be low, the output 
of equation 4 should be low. 
SAO Fault Testing for PT2, SAI Fault Testing for PT2. 
SAO Fault Testing for PT3, SA I Fault Testing for PT3. 
SAO Fault Testing for PT4, SAI Fault Testing for PT4. 
SAO Fault Testing for PT5, SAI Fault Testing for PTS. 
SAO Fault Testing for PT6, SAI Fault Testing for PT6. 
SAO Fault Testing for equation 4. 
So, we get vectors 26 to 50. 

Step 8: Repeat step 2 through step 6 for equation 5: i.e., 
SAO Fault Testing: Let PTI be high and PT2, 3, 4, 5, 6, and 7 be low; the out
put of equation 5 should be high. 
SAI Fault Testing: Let PTI, 2, 3, 4, 5, 6, and 7 of equation 5 be low; the out
put of equation 5 should be low. 
SAO Fault Testing for PT2, SAI Fault Testing for PT2. 
SAO Fault Testing for PT3, SAI Fault Testing for PT3. 
SAO Fault Testing for PT4, SAI Fault Testing for PT4. 



Testing and Reliability 145 

Inputs Outputs 

CLK 2812 2823 8281 8282 8283 38 838 818 EN c 8 A RD RIST ILLOP C 8 A 17 F23 

1 L L L H L H 

2 L L L L L L 

3 L L H H L L 

4 L H L H L L 

5 H L L H L L 

6 L H L L L H 

7 L H L H L L 

8 L H H L L L 

9 L L L L L L 

10 H H L L L L 

11 H H 

12 L H H H L H 

13 L H H L L L 

14 L H L H L L 

15 L L H H L L 

16 H H H H L L 

17 L L H L H L H 

18 L L H L L L L 

19 L L H H H L L 

-20 L L L L H L L 

21 L H H L H L L 

22 H L H L H L L 

23 L H L L H 

24 H H L L L 

25 H H H H H H H H L L L 

26 L L L H L H 

27 L L L L L L 

28 L L H H L L 

29 L H L H L L 

30 H L L H L L 

31 L H L L L H 

32 L H L H L L 

33 L H H L L L 

34 L L L L L L 

35 H H L L L L 

37 H H 

37 L L H H H L H 

38 L L H H L L L 

39 L L H L H L L 

Table 7.5.6 Test Vectors 



146 Programmable Logic Design Guide 

Inputs Outputs 

CLK 2812 2823 8281 8282 8283 38 838 818 EN c 8 A RD RIST ILLOP C 8 A 17 F23 

40 L L L H H L L 

41 L H H H H L L 

42 H L H H H L L 

43 L H L H L H 

44 L H L L L L 

45 L H H H L L 

46 L L L H L L 

47 H H L H L L 

48 L H L L H 

49 H H L L L 

50 H H H H H H H H L L L 

51 L L L H L H 

52 L L L L L L 

53 L H L H L L 

54 H L L H L L 

55 L H L L L H 

56 L H L H L L 

57 L H H L L L 

58 L L L L L L 

59 H H L L L L 

60 H H 

61 L L H H H L H 

62 L L H H L L L 

63 L L H L H L L 

64 L H H H H L L 

65 H L H H H L L 

66 L H L H L H 

67 L H L L L L 

68 L H H H L L 

69 L L L H L L 

70 H H L H L L 

71 L H L L H 

72 H H L L L 

73 L H L H 

74 H H H H H H H H L L L 

Table 7 .5.6 Test Vectors Continued 



Testing and Reliability 14 7 

SAO Fault Testing for PTS, SA I Fault Testing for PTS. 
SAO Fault Testing for PT6, SA I Fault Testing for PT6. 
SAO Fault Testing for equation 5. 
So, we get vectors 51 to 74. 

Step 9: Minimize the vectors following these rules: 
1) Vectors which have same inputs can be combined to be one vector. 

2) If the inputs of a vector are subsets of another vector's inputs, then they 
can be combined to form one vector. 

So, vectors 1, 26, and 51 can be combined to one vector 1 in Table 7.5.7; vec
tors 12 and 37 can be combined to one vector 21 in Table 7.5.7, etc. 

3) Decide the"?" (undetermined) state in the output by using the inputs and 
logic equations (inserting the known values into logic equations). 

Therefore, we get Table 7.5.8. 

Step 10: Assign the state numbers. See Table ·7.5.9, then we get Table 7.5.10. 

Step 11: Build the state diagram and transition path (Figure 7.5.8) from the vector 
Table 7.5.10. 

Step 12: Generate the function table from the state diagram. 
I) Be aware of two rules: 

a) Generate the initial state first. 
b) Generate the function table in sequential order and cover all possible 
paths. 

2) The value of outputs Fl ST, ILLOP, 17 and F23 in each test vector can be 
derived easily by inserting the previous values of outputs C, B, and A and 
the present values of inputs (none in this example) into their correspond
ing logic equations. 

3) We can quickly identify that the RD signal in this example is the initialize 
or reset signal, so RD is set high as the first vector in the function table. 

4) Finally, insert an "X" into the unused space. We get the function table as 
shown in Table 7.5.11. 



148 Programmable Logic Design Guide 

Inputs Outputs 

CLK 2812 2823 8281 8282 8283 38 838 818 EN C 8 A RD RIST ILLOP C 8 A 17 F23 

1 L L L H L H H H 

2 L L L L L L L L 

3 L L H H L L L H 

4 L H L H L L L L 

5 H L L H L L L L 

6 L H L L L H H H 

7 L H L H L L L L 

8 L H H L L L L L 

9 L L L L L L L L 

10 H H L L L L L L 

11 x x x H H H H 

12 L L H L H L H H H 

13 L L H L L L L L L 

14 L L H H H L L L L 

15 L L L L H .L L L L 

16 L H H L H L L L L 

17 H L H L H L L L L 

18 L x H L .L H H H 

19 H x H L L L L L 

20 H H H H H H H H H H L L L L L 

21 L L H H H L H H ? 

22 L L H H L L L L ? 

23 L L H L H L L L ? 

24· L L L H H L L L ? 

25 L H H H H L L L ? 

26 H L H H H L H L ? 

27 L L H H H L H ? H 

28 L L H H L L L ? L 

29 L L H L H L L ? L 

30 L H H H H L L ? L 

31 H L H H H L .H ? L 

32 L H X L ? ? H 

Table 7. 5. 7 Test Vectors 



Testing and Reliability 149 

Inputs Outputs 

CLK 2812 2823 8281 8282 8283 38 838 818 EN c 8 A RD RIST ILLOP C 8 A 17 F23 

1 L L L H L H H H 

2 L L L L L L L L 

3 L I. H H L L L H 

4 L H L H L L L L 

5 H L L H L L L L 

6 L H L L L H H H 

7 L H L H L L L L 

8 L H H L L L L L 

9 L L L L L L L L 

10 H H L L L L L L 

11 H H H H 

12 L L H L H L H H H 

13 L L H L L L L L L 

14 L L H H H L L L L 

15 L L L L H L L L L 

16 L H H L H L L L L 

17 H L H L H L L L L 

18 L x H L L H H H 

19 H x H L L L L L 

20 H H H H H H H H H H L L L L L 

21 L L L H H H L H H H 

22 H L L H H H L H H L 

23 L L H H L L L L L 

24 L L L H L H L L L H 

25 L H L H L H L L L L 

26 L L L L H H L L L H 

27 L H L L H H L L L L 

28 L H H H H L L L L 

29 L H L H H H L H L H 

30 'H .H L H H H L H L L 

31 L L L H H H L H H H 

32 L H L H H H L H L H 

33 L L L H H L L L L L 

34 L L H L H L L H L 

35 L H L H L H L L L L 

36 L H H H H L L L 

37 H L L H H· H H H L 

38 H H L H H H H L L 

39 L H H L L H 

40 H L H x L L H 

41 L L H L H H H 

Table 7.5.8 Test Vectors 



150 Programmable Logic Design Guide 

c B A State# 

H H H 1 

H H L 2 

L L L 3 

H L L 4 

H L H 5 

L H H 6 

L L H 7 

L H L 8 

Table 7. 5 .9 State Assignment 

Inputs Outputs 

CLK 2812 2823 8281 8282 8283 38 838 B1B EN c B A RD RIST ILLOP C B A 17 F23 

1 c L H 7 7 7 L 1 1 1 

2 c L H 3 3 3 L 3 3 3 

3 c L H 6 6 6 L 7 7 7 

4 c L H 5 5 5 L 3 3 3 

5 c H H 7 7 7 L 3 3 3 

6 c L H 4 4 4 L 1 1 1 

7 c L H 5 5 5 L 3 3 3 

8 c L H 2 2 2 L 3 3 3 

9 c L H 3 3 3 L 3 3 3 

10 c H H 4 4 4 L 3 3 3 

11 c H H 1 1 1 

12 c L L H 5 5 5 L 1 1 1 

13 c L L H 4 4 4 L 3 3 3 

14 c L L H 1 1 1 L 3 3 3 

15 c L L H 7 7 7 L 3 3 3 

16 c L H H 5 5 5 L 3 3 3 

17 c H L H 5 5 5 L 3 3 3 

18 c L H 2 or 8 2 or 8 2 or 8 L 1 1 1 

19 c H H 2 or 8 2 or 8 2 or 8 L 3 3 3 

20 c H H H H H H H H H 2 2 2 L 3 3 3 

21 c L L L H 1 1 1 L 1 1 1 

22 c H L L H 1 1 1 L 2 2 2 

23 c L L H 2 2 2 L 3 3 3 

24 c L L L H ,5 5 5 L 7 7 7 

25 c L H L H 5 5 5 L 3 3 3 

26 c L L L H 6 6 6 L 7 7 7 

27 c L H L H 6 6 6 L 3 3 3 

28 c L H H 1 1 1 L 3 3 3 

Table 7 .5.10 Transition Table 



CLK 2812 2823 8281 

29 c L H 

30 c H H 

31 c L L 

32 c L H 

33 c L 

34 c L 

35 c L 

36 c L 

37 c H L 

38 c H H 

39 c 
40 c H 

41 c L 

42 c 

Testing and Reliability 151 

Inputs 

8282 8283 38 838 818 EN c 8 A RD RIST ILLOP 

L H 1 1 1 L 

L H 1 1 1 L 

L H 1 1 1 L 

L H 1 1 1 L 

L H 2 2 2 L 

L L H 5 5 5 L 

H L H 5 5 5 L 

H H 1 1 1 L 

L H 1 1 1 L 

L H 1 1 1 L 

H 6 6 6 L 

H 8 or 6 8 or 6 8 or 6 L 

H 8 8 8 L 

L L 

Table 7.5.iO Transition Table Continued 

FUNCTION TABLE 
CLK /2812 /2823 /8281 /8282 /8283 /38 /838 /818 /EH FlST 
/ILLOP /C /B /A /17 /RD F23 

C X X X X X X X X L H H L L L L L L 
C L H X X X X X H L L H L L H l H H 
C X X H X X X X X L H H L L L H H L 
C L H X X X X X H L L H L L H L H H 
C X X L X X X X X L H L H H H H H L 
C X X X X X X X X L H H L L L H L L 
C L L X X X X X H L L H L H H L H H 
C X X X H X X X X L H H L L L H H L 
C l L X X X X X H L L H L H H L H H 
C X X X L X X X X L H L H H H H H L 
C X X X X X X X X L H H L L l H L L 
C H L X X X X X H L L H L H L L H H 
C X X X X H H X X L H H L L L H H L 
C H L X X X X X H L L H L H L L H H 
C X X X X L X X X L H L H H H H H L 
C X X X X X X X X L H H L L L H L L 
C H L X X X X X H L L H L H L L H H 
C X X X X H L X X L L H H L L H H H 
C X X X X X X X X L L H H H L H H H 
C X X X X X X L X L H L H H H H H L 
C X X X X X X X X L H H L L L H L L 
C H l X X X X X H L L H L H L L H H 
C X X X X H L X X L L H H L L H H H 
C X X X X X X X X L L H H H L H H H 
C X X X X X X H X L H H L L L H H L 
C X X X X X X X L L H L H H H L H L 
C X X X X X X X X L H H L L L H L L 
C H H X X X X X H L H H L L L L L L 

DESCRIPTION 
OP CODE ANALYZER 

Table 7 .5.11 Final Function Table 

Outputs 

C 8 A 17 F23 

5 5 5 

4 4 4 

1 1 1 

5 5 5 

3 3 3 

8 8 8 

3 3 3 

3 3 3 

2 2 2 

4 4 4 

7 7 7 

7 7 7 

1 1 1 

zzz 



152 Programmable Logic Design Guide 

Now we can get any test sequence we like just by 
following the state transition. The first vector 
should be the initialize vector and, by intuition, 
we know state <D is the initialize state. 

Figure 7.5.8 State Diagram 

The following are printouts of PAL device design specifications, function table, pinout 
list, fuse map, simulation result, and fault testing result. We get 100% PTC! 

PALASM VERSION 1.5 

PAL16R4 
PTAN302 
TOM WANG 
OP CODE ANALYZER 
CLK /2812 /2823 /8281 /8282 /8283 /38 /838 /818 GND 
/EN FlST /ILLOP /C /8 /A /17 /RD F23 VCC 
IF (VCC)/FlST • F23 
IF (VCC)ILLOP • /A*/8*/C 
C:•A*/8*/C*/838 + /A*/8*C*/8282 + RD + A*8*C*/818 + 
A*/8*C*/8283*/38 + /A*8*/8281 
8:•A*/8*/C*/838 + /A*/8*C*/8282 + RD + A*8*C*/818*/2823 + 
A*/8*C*/8283 + /A*8*/8281 
A:•A*/B*/C*/838 + /A*/8*C*/8282 + RD + A*8*C*/818*/2812 + 
A*/8*C*/8283 + /A*8*/8281 + 8*/C 
17:• A*8*C 
IF{VCC)/F23 =/A*/B*/C + A*8*C 



Testing and Reliability 153 

TOM WANG 

************** ************** 
* * * * 

**** **** 
CLK * l* P A L *20* 

**** **** 
* 1 6 R 4 * 

**** **** 
/2612 * 2* *19* 

**** **** 
* *· 

**** **** 
/2623 * 3* *18* 

**** **** 
* * 

**** **** 
/6261 * 4* *17* 

**** **** 
* * 

**** **** 
/B2B2 * 5* *16* 

**** **** 
* * 

**** **** 
/B2B3 * 6* '*15* 

**** **** 
* * 

**** **** 
/3B * 7* *14* 

**** **** 
* * 

**** **** 
/63B * 8* *13* 

**** **** 
* * 

**** **** 
/616 * 9* *12* 

**** **** 
* * 

**** **** 
GND *10* *11* 

**** **** 
* * 
******************************* 

TOM WANG 

1 CXXXXXXXXXOHHLLLLOLl 
2 COlXXXXXlXOLHLLHLlHl 
3 CXXlXXXXXXOHHLLLHlll 
4 COlXXXXXlXOLHLLHLlHl 
5 CXXOXXXXXXOHLHHHHlll 
6 CXXXXXXXXXOHHLLLHOLl 
7 COOXXXXXlXOLHLHHLlHl 
8 CXXXlXXXXXOHHLLLHlll 
9 COOXXXXXlXOLHLHHLlHl 

10 CXXXOXXXXXOHLHHHHlll 
11 CXXXXXXXXXOHHLLLHOLl 
12 ClOXXXXXlXOLHLHLLlHl 
13 CXXXXllXXXOHHLLLHlll 
14 ClOXXXXXlXOLHLHLLlHl 
15 CXXXXOXXXXOHLHHHHlll 
16 CXXXXXXXXXOHHLLLHOLl 

vcc 

F2J 

/RD 

/17 

/A 

/B 

/C 

/ILLOP 

Fl ST 

/EN 



154 Programmable Logic Design Guide 

17 ClOXXXXXlXOLHLHLLlHl 
18 CXXXXlOXXXOLHHLLHlHl 
19 CXXXXXXXXXOLHHHLHlHl 
20 CXXXXXXOXXOHLHHHHlll 
21 CXXXXXXXXXOHHLLLHOLl 
22 ClOXXXXXlXOLHLHLLlHl 
23 CXXXXlOXXXOLHHLLHlHl 
24 CXXXXXXXXXOLHHHLHlHl 
25 CXXXXXXlXXOHHLLLHlll 
26 CXXXXXXXOXOHLHHHLlll 
27 CXXXXXXXXXOHHLLLHOLl 
28 CllXXXXXlXOHHLLLLOLl 

PASS SIMULATION 

TOM WANG 

672 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

8EG*FPLT PAL16R4 8 
0 ---- ---- ---- ---- --~- ---- ---- ----
1 ---- ---- ---- --X- --X- --X- ---- ---- /A*/8*/C 
2 ---- ---- ---- ---X ---X ---X ---- ---- A*8*C 
3 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
4 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
5 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
6 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
7 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
8 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
9 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

10 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
11 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
12 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
13 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
14 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
15 xxxx xxxx xxxx xxxx·xxxx xxxx xxxx xxxx 
16 ---- ---- ---- ---X ---X ---X ---- ---- A*8*C 
17 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
18 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
19 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
20 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
21 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
22·xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
23 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
24 ---- ---- ---- ---X --X- --X- X--- ---- A*/8*/C*/838 
25 ---- ---- ---- X-X- ~-x- ---X ---- ---- /A*/8*C*/8282 
26 ---- ---X ---- ~--- ---- ---- ---- ---- RD 
27 X--- ---- ---- ---X ---X ---X ---- X--- A*8*C*/818*/2812 
28 ---- ---- ---- ---X X-X- ---X ---- ---- A*/8*C*/8283 
29 ---- ---- X--- --X- ---X ---- ---- ---- /A*8*/8281 
30 ---- ---- ---- ---- ---X --X- ---- ---- 8*/C 
31 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
32 ---- ---- ---- ---X --~- --X- X--- ---- A*/8*/C*/838 
33 ---- ---- ---- X-X- --X- ---X ---, ·--- /A*/8*C*/8282 
34 ---- ---X ---- ---- ---- ---- --·- ---- RD 
35 ---- X--- ---- ---X ---X ---X ---- X--- A*8*C*/818*/2823 
36 ---- ---- ---- ---X X-X- ---X ---- --~- A*/8*C*/8283 
37 ---- ---- X--- --X- ---X ---- ~--- ---- /A*8*/8281 
38 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
39 xxxx xxxx xxxx xxxx xxxx xxx~ xxxx xxxx 



Testing and Reliability 155 

40 ---- ---- ---- ---x --x- --x- x--· 
41 ---- ---- ---- x-x- --x- ---x 

---- A*/8*/C*/838 
---- /A*/B*C*/8282 

42 ---- ---x ---- ---- ---- ---- RO 
43 ---- ---- ---- ---x ---x ---x ---- X--- A*B*C*/B.18 
44 ---- ---- ---- ---x x-x- x--x ----
45 ---- ---- x--- --x- ---x ---- ----

---- A*/B*C*/8283*/38 
/A*B*/8281 

46 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
47 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
48 ---- ---- ---- ---- ---- ---- ----
49 ---- ---- ---- --X- --X- --X- ---- /A*/8*/C 
50 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
51 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
52 xxxx xxxx xxxx· xxxx xxxx xxxx xxxx xxxx 
53 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
54 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
55 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
56 ---- ---- ---- ---- ---- ---- ---- ----
57 --X- ---- ---- ---- ---- ---- ---- ---- F23 
58 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
59 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
60 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
61 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
62 XXXX XXXX XXXX JXXX XXXX XXXX XXXX XXXX 
63 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

END*FPLT 

LEGEND: X : FUSE NOT BLOWN (L,N,0) 

NUMBER OF FUSES BLOWN = 786 

TOM WANG 

FUSE BLOWN (H,P,l) 

FILE: PTAN302 FUSEPLOT A <« NATIONAL SEMICONDUCTOR TIMESHARING SERVICES SYST 

1 CXXXXXXXXXOHHLLLLOLl 
2 COlXXXXXlXOLHLLHLlHl 
3 CXXlXXXXXXOHHLLLHlll 
4 COlXXXXXlXOLHLLHLlHl 
5 CXXOXXXXXXOHLHHHHlLl 
6 CXXXXXXXXXOHHLLLHOLl 
7 COOXXXXX lXOLHLHHLlH 1 
8 CXXXlXXXXXOHHLLLHlll 
9 COOXXXXXlXOLHLHHLlHl 

10 CXXXOXXXXXOHLHHHHlll 
11 CXXXXXXXXXOHHLLLHOL 1 
12 ClOXXXXXlXOLHLHLLlHl 
13 CXXXXllXXXOHHLLLHlll 
14 ClOXXXXXlXOLHLHLLlHl 
15 CXXXXOXXXXOHLHHHHlLl 
16 CXXXXXXXXXOHHLLLHOLl 
17 ClOXXXXXlXOLHLHLLlHl 
lB CXXXXlOXXXOLHHLLHlHl 
19 CXXXXXXXXXOLHHHLHlHl 
20 CXXXXXXOXXOHLHHHHlll 
21 CXXXXXXXXXOHHLLLHOLl 
22 ClOXXXXXlXOLHLHLLlHl 
23 CXXXXlOXXXOLHHLLHlHl 
24 CXXXXXXXXXOLHHHLHlHl 
25 CXXXXXXlXXOHHLLLHlll 
26 CXXXXXXXOXOHLHHHLlll 
27 CXXXXXXXXXOHHLLLHOLl 
28 CllXXXXXlXOHHLLLLOLl 

PASS SIMULATION 672 29 

NUMBER OF STUCK AT ONE ( SAl) FAUL TS ARE = 24 

NUMBER OF STUCK AT ZERO (SAO) FAULTS ARE = 24 

PRODUCT TERM COVERAGE =lOOl 



156 Programmable Logic Design Guide 



8 
Applications* 

8.1 BASIC GATES 

This example demonstrates how fusable logic can implement the basic inverter, AND 
OR, NANO, NOR and exclusive -OR functions. The PAL 12H6 is selected because it has 12 
inputs and 6 outputs. . 

PAL12H6 

A---(»--e 
Vee 

A 

~:::[)---e B 

E 

H 

0 

R 

Figure 8.1.1 Basic Gates 

• Applications contained in this chapter are for mustration purposes only and National makes no representation or 
warranty that such applications wl11 be suitable for the use speciJled without further testing or mod111cation. 

157 



158 Programmable Logic Design Guide 

PALASM VERSION 1.5 

PAL12H6 
TOM WANG 
BASIC GATE 
NSC SANTA CLARA 
C D F G M N P Q I GND J K L R 0 H E B A VCC 
B = /A 
E = C*D 
H = F + G 
L = /I + /J + /K 
0 = /M*/N 
R = P* /Q + /P*Q 
FUNCTION TABLE 
A B C 0 E F G H I J K L M N 0 P Q R 
-----------------------------------------
L H x x x 
H L x x x 
x x L L L 
x x L H L 
x x H L L 
x x H H H 
x x x x x 
x x x x x 
x x x x x 
x x x x x 
x x x x x 
x x x x x 
x x x x x 
x·x x x x 
x x x x x 
x x x x x 
x x x x x 
x x x x x 
X:X x x x 
x x x x x 
x x x x x 
x x x x x 
x x x x x 
DESCRIPTION 

BASIC GATE 

c 

0 

F 

G 

x x x x x x x x x x x x x ;TEST INVERTER 
x x x x x x x x x x x x x ;TEST INVERTER 
x x x x x x x x x x x x x ;TEST AND GATE 
x x x x x x x x x x x x x ;TEST AND GATE 
x x x x x x x x x x x x x ;TEST AND GATE 
x x x x x x x x x x x x x ;TEST ANO GATE 
L L L x x x x x x x x x x ;TEST OR GATE 
L H H x x x x x x x x x x ;TEST OR GATE 
H L H x x x x x x x X X X ;TEST OR GATE 
H H H x x x x x x x X X X ;TEST OR GATE 
x x x L L L H x x x X X X ;TEST NANO GATE 
x x x L L H H x x x X X X ;TEST NANO GATE 
x x x L H L H x x x X X X ;TEST NANO GATE 
x xx H L L H x x x X X X ;TEST NANO GATE 
x x x H H H L x x x X X X ;TEST NANO GATE 
x x x x x x x L L H X X X ;TEST NOR GATE 
x x x x x x x L H L X X X ;TEST NOR GATE 
x x x x x·x x H L L X X X ;TEST NOR GATE 
x x x x x x x H H L X X X ;TEST NOR GATE 
x x x x x x x x x x L L L ;TEST EXCLUSIVE OR GATE 
x x x x x x x x x x L H H ;TEST EXCLUSIVE OR GATE 
x x x x x x x x x x H L H ;TEST EXCLUSIVE OR GATE 
x x x x x x x x x x H H L ;TEST EXCLUSIVE OR GATE 

************** ************** 
* * * * 

**** **** 
* l* P A L *20* vcc 
**** **** 

* 1 2 H 6 * 
**** **** 
* 2* *19* A 
**** **** 

* * 
**** **** 
* 3* *18* B 
**** **** 

* * 
**** **** 
* 4* *17* E 
**** **** 



Applications 

* * 
**** **** 

M * 5* *16* H 
**** **** 

* * 
**** **** 

N * 6* *15* 0 
**** **** 

* * 
**** **** 

p * 7* *14* R 
**** **** 

* * 
**** **** 

Q * 8* *13* L 
**** **** 

* * 
**** **** 
* 9* *12* K 
**** **** 

* * 
**** **** 

GND *10* *11* J 
**** **** 

* * 
******************************* 

BASIC GATE 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*FPLT PAL12H6 8 

END*FPLT 

8 ---- ---X --00 --00 --00 --00 ---- ---- /A 
9 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 

10 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
11 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
16 X-X- ---- --00 --00 --00 --00 ---- ---- C*D 
17 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
24 ---- X--- --00 --00 --00 --00 ---- ---- F 
25 ---- ---- X-00 --00 --00 --00 ---- ---- G 

32 ---- ---- --00 -XOO -XOO --00 ---- ---- /M*/N 
33 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
40 ---- ---- --00 --00 --00 X-00 -X-- ---- P*/Q 
41 ---- ---- --00 --00 --00 -XOO X--- ---- /P*Q 

48 ---- ---- --00 --00 --00 --00 ---- -X-- /I 
49 ---- ---- --00 --00 --00 --00 ---- ---X /J 
50 ---- ---- --00 --00 --00 --00 ---X ---- /K 
51 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 

LEGEND: X : FUSE NOT BLOWN (L,N,O) 
0 : PHANTOM FUSE (L,N,O) 

FUSE BLOWN (H,P,1) 
0 PHANTOM FUSE (H,P,l) 

NUMBER OF FUSES BLOWN = 306 

159 



160 Programmable Logic Design Guide 

BASIC GATE 

1 XXXXXXXXXXXXXXXXXHOl 
2 XXXXXXXXXXXXXXXXXLll 
3 OOXXXXXXXXXXXXXXLXXl 
4 OlXXXXXXXXXXXXXXLXXl 
5 lOXXXXXXXXXXXXXXLXXl 
6 llXXXXXXXXXXXXXXHXXl 
7 XXOOXXXXXXXXXXXLXXXl 
8 XXOlXXXXXXXXXXXHXXXl 
9 XXlOXXXXXXXXXXXHXXXl 

10 XXllXXXXXXXXXXXHXXXl 
11 XXXXXXXXOXOOHXXXXXXl 
12 XXXXXXXXOXOlHXXXXXXl 
13 XXXXXXXXOXlOHXXXXXXl 
14 XXXXXXXXlXOOHXXXXXXl 
15 XXXXXXXXlXllLXXXXXXl" 
16 XXXXOOXXXXXXXXHXXXXl 
17 XXXXOlXXXXXXXXLXXXXl 
18 XXXXlOXXXXXXXXLXXXXl 
19 XXXXllXXXXXXXXLXXXXl 
20 XXXXXXOOXXXXXLXXXXXl 
21 XXXXXXOlXXXXXHXXXXXl 
22 XXXXXXlOXXXXXHXXXXXl 
23 XXXXXXllXXXXXLXXXXXl 

PASS SIMULATION 230 

PASS SIMULATION 230 
PRODUCT: 1 OF EQUATION. 4 
PRODUCT: 2 OF EQUATION. 4 
PRODUCT: 3 OF EQUATION. 4 

24 

24 

BASIC GATE 

1 XXXXXXXXXXXXXXXXXHOl 
2 XXXXXXXXXXXXXXXXXLll 
3 OOXXXXXXXXXXXXXXLXXl 
4 OlXXXXXXXXXXXXXXLXXl 
5 lOXXXXXXXXXXXXXXLXXl 
6 llXXXXXXXXXXXXXXHXXl 
7 XXOOXXXXXXXXXXXLXXXl 
8 XXOlXXXXXXXXXXXHXXXl 
9 XXlOXXXXXXXXXXXHXXXl 

10 XXllXXXXXXXXXXXHXXXl 
11 XXXXXXXXOXOOHXXXXXXl 
12 XXXXXXXXOXOlHXXXXXXl 
13 XXXXXXXXOXlOHXXXXXXl 
14 XXXXXXXXlXOOHXXXXXXl 
15 XXXXXXXXlXllLXXXXXXl 
16 XXXXOOXXXXXXXXHXXXXl 
17 XXXXOlXXXXXXXXLXXXXl 
18 XXXXlOXXXXXXXXLXXXXl 
19 XXXXllXXXXXXXXLXXXXl 
20 XXXXXXOOXXXXXLXXXXXl 
21 XXXXXXOlXXXXXHXXXXXl 
22 XXXXXXlOXXXXXHXXXXXl 
23 XXXXXXllXXXXXLXXXXXl 

UNTESTED(SAO)FAULT 
UNTESTED(SAO)FAULT 
UNTESTED(SAO)FAULT 

NUMBER OF STUCK AT ONE (SAl) FAULTS ARE = 10 

NUMBER OF STUCK AT ZERO (SAO) FAULTS ARE = 7 

PRODUCT TERM COVERAGE = 85% 



M' 
co 

I 
e. 
(/) 

E 

~ 
u 
::I 
"C e 
ll. 

c 

D 

F 

G 

M 

N 

p 

a 

1 

2 

3 

4 

5 

6 

,7 

,8 

9 

.. 
~ 

.... 
~ 

I 
I 

" " 

.. 
~ 

.. U' 

" 11 

... 
:>: 

"" U' 

" " 

~ .. ..., 

" ll 

.. 
~ 

" " 
.. 
~ ""U 

.. .. 
" " 

.. 
~ 

.... 
p~ 

Applications 161 

Inputs (0-31) 

..... 19 
-;c: A 
~~ 

- J 18 o..c '{" 

"l8C , B 
-.c: ---, 
-_, 

' 
- 17 

=kS -i E 

- 16 
"1-<' , H -...... 

15 :ms: ::J 0 

- 14 
=t:S ::J R 

-+ 13 
:=M , 

=llS' 
L 

-r 1 

"""' 

2 
K 

..... 11 
-,c.' ........ J 

Figure 8.1.2 Logic Diagram PAL12H6 



162 Programmable Logic Design Guide 

8.2 BASIC CLOCKED FLIP FLOPS 

This example demonstrates how fusable logic, PAL16R8, can implement the basic flip
flops;]-K flip-flop; T flip-flop, D flip-flop, and S-R flip-flop. A PAL16L8 can be substituted 
for this application. Then, the·clock input (CLK) would be gated with the data inputs to 
implement the basic flip-flop. 

PALASM VERSION 1.5 

PAL16R8 
BF LIP 
BASIC 
NSC 
CLK J K T PR CLR D S R GND 
/OC /SRC /SRT /DC /OT /TC /TT /JKC /JKT VCC 
JKT:=J*/JKT*/CLR 

+/K*JKT*/CLR 
+PR 

JKC:=/J*K*/PR 
+/J*/JKT*/PR 
+K*JKT*/PR 
+CLR 

TT:=T*/TT*/CLR 
+/T*TT*/CLR 
+PR 

TC:=/T*/TT*/PR 
+T*TT*/PR 
+CLR 

DT:=D*/CLR 
+PR 

DC:=/D*/PR 
+CLR 

SRT.:=S*/CLR 
+/R*SRT*/CLR 
+PR 

SRC:=/S*R*/PR 
+/S*/SRT*/PR 
+CLR 

FUNCTION TABLE 
CLK /QC PR CLR J K JKT JKC T TT TC D OT DC S R SRT SRC 

X H X X x x z z x z z x z z x x z Z;HI-Z 

C L L H X X L H x x x x x x x x x X;CLEAR 
C L L L L L L H x x x x x x x x x X; 
C L L L L H L H x x x x x x x x x X; 
C L L L H H H L x x x x x x x x x X;TOGGLE 
C L L L H L H L x x x x x x x x x . X; 
C L L L L L H L x x x x x x x x x X; 
C L L L L H L H x x x x x x x x x X; 
C L H L X X H L x x x x x x x x x X;PRESET 
C L L L H H L H x x x x x x x x x X;TOGGLE 
C L L L H L H L x x x x x x x x x X; 

C L L H x x x x X L H x x x x x x X;CLEAR 
C L L L x x x x L L H x x x x x x X; 
C L L L x x x x H H L x x x x x x X;TOGGLE 
C L L L x x x x H L H x x x x x x X;TOGGLE 
C L H L x x x x X H L x x x x x x X;PRESET 



Applications 163 

C L L H x x x x x x x X L H x x x X;CLEAR 
C L L L x x x x x x x L L H x x x X; 
C L L L x x x x x x x H H L x x x X; 
C L L L x x x x x x x L L H x x x X; 
C L H L x x x x x x x X H L x x x X;PRESET 

C L L H x x x x x x x x x x X X L H;CLEAR 
C LL L x x x x x x x x x x L L L H; 
C L L L x x x x x x x x x x H L H L;SET 
C L L L x x x x x x x x x x L H L H;RESET 
C L L L x x x x x x x x x x L H L H;HOLD 
C L H L x x x x x x x x x x X X H L;PRESET 
C L L L x x x x x x x x x x L L H L; 
C L L L x x x x x x x x x x H L H L; 
------------------------------------------------------
DESCRIPTION 

BASIC 
************** ************** 
* . * * * 

**** **** 
CLK * l* P A L *20* vcc 

**** **** 
* 1 6 R 8 * 

**** **** 
J * 2* *19* /JKT 

**** **** 
* * 

**** **** 
K * 3* *18* /JKC 

**** **** 
* * 

**** **** 
T * 4* *17* /TT 

**** **** 
* * 

**** **** 
PR * 5* *16* /TC 

**** **** 
* * 

**** **** 
CLR * 6* *15* /OT 

**** **** 
* * 

**** **** 
D * 7* *14* /DC 

**** **** 
* * 

**** **** 
s * 8* *13* /SRT 

**** **** 
* * 

**** **** 
R * 9* *12* /SRC 

**** **** 
* * 

**** **** 
GND *10* *11* /QC 

**** **** 
* * 
******************************* 



164 Programmable Logic Design Guide 

BASIC 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*FPLT PAL16R8 8 
0 X-X- ---- ---- ---- -X-- ---- ---- ---- J*/JKT*/CLR 
1 ---X -X-- ---- ---- -X-- ---- ---- ---- /K*JKT*/CLR 
2 ---- ---- ---- X--- ---- ---- ---- ---- PR 
3 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
4 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
5 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
6 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
7 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
8 -X-- X--- ---- -X-- ---- ---- ---- ---- /J*K*/PR 
9 -XX- ---- ---- -X-- ---- ---- ---- ---- /J*/JKT*/PR 

10 ---X X--- ---- -X-- ---- ---- ---- ---- K*JKT*/PR 
11 ---- ---- ---- ---- X--- ---- ---- ---- CLR 
12 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
13 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
14 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
15 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
16 ---- ---- X-X- ---- -X-- ---- ---- ---- T*/TT*/CLR 
17 ---- --~- -X-X ---- -X-- ---- ---- ---- /T*TT*/CLR 
18 ---- ---- ---- X--- ---- ---- ---- ---- PR 
19 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
20 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
21 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
22 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
23 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
24 ---- ---- -XX- -X-- ---- ---- ---- ---- /T*/TT*/PR 
25 ---- ---- X--X -X-- ---- ---- ---- ---- T*TT*/PR 
26 ---- ---- ---- ---- X--- ---- ---- ---- CLR 
27 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx ' 
28 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
29 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
30 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
31 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
32 ---- ---- ---- ---- -X-- X--- ---- ---- 0*/CLR 
33 ---- ---- ---- X--- ---- ---- ---- ---- PR 
34 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
35 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
36 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
37 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
38 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
39 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
40 ---- ---- --~- -X-- ---- -X-- ---- ---- /0*/PR 
41 ---- ---- ---- ---- X--- ---- ---- ---- CLR 
42 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
43 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
44 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
45 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
46 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
47 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 



Applications 165 

48 ---- ---- ---- ---- -X-- ---- X--- ---- S*/CLR 
49 ---- ---- ---- ---- -X-- ---- ---X -X-- /R*SRT*/CLR 
50 ---- ---- ---- X--- ---- ---- ---- ---- PR 
51 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
52 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
53 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
54 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
55 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
56 ---- ---- ---- -X-- ---- ---- -X-- X--- /S*R*/PR 
57 ---- ---- ---- -X-- ---- ---- -XX- ---- /S*/SRT*/PR 
58 ---- ---- ---- ---- X--- ---- ---- ---- CLR 
59 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
60 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
61 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
62 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
63 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

END*FPLT 

LEGEND: X : FUSE NOT BLOWN (L,N,O} 

NUMBER OF FUSES BLOWN = 686 

FUSE BLOWN (H;P,l} 

BASIC 

1 XXXXXXXXXXlZZZZZZZZl 
2 CXXXOlXXXXOXXXXXXLHl 
3 CXXXOlXXXXOXXXXXXLHl 
4 COOXOOXXXXOXXXXXXLHl 
5 COlXOOXXXXOXXXXXXLHl 
6 CllXOOXXXXOXXXXXXHLl 
7 ClOXOOXXXXOXXXXXXHLl 
8 COOXOOXXXXOXXXXXXHLl 
9 COlXOOXXXXOXXXXXXLHl 

10 CXXXlOXXXXOXXXXXXHLl 
11 CllXOOXXXXOXXXXXXLHl 
12 ClOXOOXXXXOXXXXXXHLl 
13 CXXXOlXXXXOXXXXLHXXl 
14 CXXXOlXXXXOXXXXL~XXl 
15 CXXOOOXXXXOXXXXLHXXl 
16 CXXlOOXXXXOXXXXHLXXl 
17 CXXlOOXXXXOXXXXLHXXl 
18 CXXXlOXXXXOXXXXHLXXl 
19 CXXXOlXXXXOXXLHXXXXl 
20 CXXXOlXXXXOXXLHXXXXl 
21 CXXXOOOXXXOXXLHXXXXl 
22 CXXXOOlXXXOXXHLXXXXl 
23 CXXXOOOXXXOXXLHXXXXl 
24 CXXXlOXXXXOXXHLXXXXl 
25 CXXXOlXXXXOLHXXXXXXl 
26 CXXXOlXXXXOLHXXXXXXl 
27 CXXXOOXOOXOLHXXXXXXl 
28 CXXXOOXlOXOHLXXXXXXl 
29 CXXXOOXOlXOLHXXXXXXl 
30 CXXXOOXOlXOLHXXXXXXl 
31 CXXXlOXXXXOHLXXXXXXl 
32 CXXXOOXOOXOHLXXXXXXl 
33 CXXXOOXlOXOHLXXXXXXl 

PASS SIMULATION 759 34 



166 Programmable Logic Design Guide 

BASIC 

1 XXXXXXXXXXlZZZZZZZZl 
2 CXXXOlXXXXOXXXXXXLHl 
3 CXXXOlXXXXOXXXXXXLHl 

.4 COOXOOXXXXOXXXXXXLHl 
5 COlXOOXXXXOXXXXXXLHl 
6 tllXOOXXXXOXXXXXXHLl 
7 ClOXOOXXXXOXXXXXXHLl 
8 COOXOOXXXXOXXXXXXHLl 
9 COlXOOXXXXOXXXXXXLHl 

10 CXXXlOXXXXOXXXXXXHLl 
11 CllXOOXXXXOXXXXXXLHl 
12 ClOXOOXXXXOXXXXXXHLl 
13 CXXXOlXXXXOXXXXLHXXl 
14 CXXXOlXXXXOXXXXLHXXl 
1~ CXXOOOXXXXOXXXXLHXXl 
16 CXXlOOXXXXOXXXXHLXXl 
17 CXXlOOXXXXOXXXXLHXXl 
18 CXXXlOXXXXOXXXXHLXXl 
19 CXXXOlXXXXOXXLHXXXXl 
20 CXXXOlXXXXOXXLHXXXXl 
21 CXXXOOOXXXOXXLHXXXXl 
22 CXXXOOlXXXOXXHLXXXXl 
23 CXXXOOOXXXOXXLHXXXXl 
24 CXXXlOXXXXOXXHLXXXXl 
25 CXXXOlXXXXOLHXXXXXXl 
26 CXXXOlXXXXOLHXXXXXXl 
27 CXXXOOXOOXOLHXXXXXXl 
28 CXXXOOXlOXOHLXXXXXXl 
29 CXXXOOXOlXOLHXXXXXXl 
30 CXXXOOXOlXOLHXXXXXXl 
31 CXXXlOXXXXOHLXXXXXXl 
32 CXXXOOXOOXOHLXXXXXXl 
33 CXXXOOXlOXOHLXXXXXXl 

PASS SIMULATION 759 
PRODUCT: 1 OF EQUATION. 2 
PRODUCT: 4 OF EQUATION. 2 
PRODUCT: 2 OF EQUATION. 3 
PRODUCT: 3 OF EQUATION. 4 
PRODUCT: 2 OF EQUATION. 6 
PRODUCT: 3 OF EQUATION. 8 

34 

NUMBER OF STUCK AT ONE (SAl) FAULTS ARE = 23 

NUMBER OF STUCK AT ZERO (SAO) FAULTS ARE = 17 

PRODUCT TERM COVERAGE = 86% 

UNTESTED(SAO)FAULT 
UNTESTED(SAO)FAULT 
UNTESTED(SAO)FAULT 
UNTESTED(SAO)FAULT 
UNTESTED{SAO)FAULT 
UNTESTED{SAO)FAULT 



1 
CLK 

Applications 167 

D-;...~~n---+4-l-l'-l-+4-l-4-+-1-1--+-1-++--+-l-++-+-4tt::t!tt::t!tt:=:=:=~~~~~~t-~_J 
Cl-!-'t-H~t-Ht-t--t-lt-t-~t-Ht-t--t-lt-Hr-IH--1t-t-;~H-1~-H-Ht--LI""'.>-~, 

li~~~~=~~~~=!!!!=tttt~~~~~~~~~=~~~~=!~t!=.~~3::!--..~SRT 

8 ~ro.::--+-++-+-+-+-++-+-++-+-+-+-++-+-+t-+--+-1-++----. A ~ s ~~~~->--+-++-+-+-+-++-+-++-+-+-+-++-+-+-+-+--+-t-++-+.... ~ 
liH-H-lf--1H-IH--+-1H-l-1~H--+-1H-l--lf-HH--Hl-H'-ljl-HH--r~:>--~, 

~i :+f+t::+f+t::+f+t:~++:::U++:::t++t::Ufl:::t++:t:=1§~~~-~ ~~ SRC 

.... ' 9 .. ....,. __ ++-++--+++-+-++-++--+++-+-++-++-+-+++-++-++..... - ... ~ 
R ~~~~~>--1-Hf-+--H-+-+-+-+-+-+--++++--+-+-+-1-1f-Hf-+--+-+-+-+~ --"""~ ~OC 

DI 2 J 4 Si 1 8 91011 llD'41~ 16111119 20111nJ IO~lbl1 21U930l1 

Figure 8.2.1 Logic Diagram PAL16R8 



168 Programmable Logic Design Guide 

8.3 MEMORY-MAPPED 1/0 (ADDRESS DECODER) 

Memory-mapped VO is an interface technique that treats I/O devices' physical 
addresses the same as memory address space. That is, no Memory-I/O decoding is 
required. Furthermore, most computers have more instructions to manipulate the con
tents of memory than they have I/O instructions. Therefore, the use of memory map~ 
ping can make I/O control much more flexible. PAL devices can be used to make 
memory-mapped I/O implementation easy, even if changes in memory addresses are 
required. 

Functional Description 

Figure 8.3.1 shows a circuit that is typical of those found in memory-mapped I/O appli
cations. The inputs to the decode logic are the system memory address lines, Ao-AF. 
The logic shown compares the address on the memory bus with the programmed com
parison address. When an address on the bus matches, the corresponding I/O port 
enable signal is set. In conjunction with other system control signals, this enable can be 
used to transfer data to and from the system dat~ bus. 

PORT 0= 1F7S PORT 1=1F79 

ABF D [> 
ABE ABE 

ABO D [> ABO 

ABC ABC 

ABB ABB 

ABA ABA 

AB9 AB9 
ABS 

PORTO 
ABS 

PORT 1 
AB7 D [> AB7 

AB6 AB6 
ABS ABS 

AB4 AB4 

AB3 AB3 

AB2D [>[> AB2 

AB1 D AB1 

ABOD [> ABO 

MEMORY MAPPED 10 MEMORY MAPPED 10 

Figure 8.3.1 Memory Mapped I/O Logic Diagram 



Applications 169 

PAL Device Design 

One PAL 16L2 can be used to monitor a 16-bit address bus, fully decode addresses, 
and furnish enables to two ports, each of which can be anywhere within 64K of 
address space. Partial decoding for a larger number of ports can be done using other 
members of the PAL device family. 

Typical logic equations for the memory-mapped 1/0 logic are as follows: 

Port 0 = /ABO•/ABl •/AB2• AB3•AB4•AB5•AB6•/AB7• 
ABB• AB9• ABA •ABB• ABC• I ABD• I ABE• I ABF 

Port 1 = ABO•/ABl •/AB2•AB3•AB4•AB5•AB6•/AB7• 
ABB• AB9• ABA •ABB• ABC• I ABD• I ABE• I ABF 

The above example shows address decoding for memory locations 1 F7Btt and 
1F79tt. The equation terms could be changed to accommodate any 16-bit address. 

PALASM VERSION 1.5 

PAL16L2 
PAT 
MEMORY 
MAP 
ABO ABl AB2 AB3 AB4 ABS AB6 AB? ABS GND 
AB9 ABA ABB ABC /PORTl /PORTO ABO ABE ABF VCC 
PORTO=/ABO*/AB1*/AB2*AB3 *AB4*AB5*AB6*/AB7*AB8*AB9* 

ABA*ABA*ABC*/ABD*/ABE*/ABF 
. PORTl=ABO*/ABl*/AB2*AB3*AB4*AB5*AB6*/A87*A88*AB9* 

ABA*ABB*ABC*/ABD*/ABE*/ABF 
DESCRIPTION 

MEMORY 

************** ************** 
* * * * 

**** **** 
ABO * l* P A L. *20* vcc 

**** **** 
* 1 6 L 2 * 

**** **** 
ABl * 2* *19* ABF 

**** **** 
* * 

**** **** 
AB2 * 3* *18* ABE 

**** **** 
* * 

**** **** 
AB3 * 4* *17* ABO 

**** **** 
* *· 

**** **** 
AB4 * 5* *16* /PORTO 

**** **** 



170 Programmable Logic Design Guide 

* * 
**** **** 

ABS * 6* *15* 
**** **** 

* * 
**** **** 

AB6 *. '7* *14* 
**** **** 

* * 
**** **** 

AB7 * 8* *13* 
**** **** 

* * 
**** **** 

ABS * 9* *12* 
**** **** 

* * 
**** **** 

GND *10* *11* 
**** "**** 

* * 
******************************* 

MEMORY 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*FPLT PAL16L2 8 

/PORTl 

ABC 

ABB 

ABA 

AB9 

24 -X-X -X-X X--X X--X X-X- X--~ -XX- X-X- /ABO*/AB1*/AB2*AB3*AB4*AB5*AB6* 
25 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
26 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
27 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
28 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
29 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
30 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
31 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
32 -XX- -X-X X--X X--X X-X- X-X- -XX- X-X- ABO*/AB1*/AB2*AB3*AB4*AB5*AB6*/ 
33 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
34 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
35 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
36 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
37 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
38 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
39 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

END*FPLT 

LEGEND: X : FUSE NOT BLOWN {L,N,O) FUSE BLOWN {H,P,l) 
0 : PHANTOM FUSE {L,N,O) 0 PHANTOM FUSE {H,P,1) 

NUMBER OF FUSES BLOWN = 32 



Appllcatlons 171 

I I I I I ~I I I 11111 llllUll 11111111 101.11111 11111111 11111111 

AB0 
1 ... 

12.. 

2 .. .. 19 
~ < ABF 

r ~"' 

3 ... ... 18 
12_ ~ - _, ABE 

4 ... .. 17 
~ ABO ... , 

II 
,.. , 

II 
II 16 
II "" 11 

""" II 
II 

5 
11 

' ... 
---1.2' 

II Id - , 
II 

15 II 

' Ii 
II 

,.... 
11 
II 
II 

~ 

6 ... .... 14 
R ~ ABC 

7 .. .... 13 
~ ~ -AB6 ABB 

8 ... .. 12 
< 

r , AB7 ABA 

9 .. .... 11 
R- ~ AB6 

I I I I I I I I I 11111 1111141' 11111111 lllllllJ 14111111 11111111 

Figure 8.3.2 Logic Diagam PAL 16L2 



172 Programmable Logic Design Guide 

8.4 HEXADECIMAL DECODER/LAMP DRIVER 

The increasing use of microcomputers has led to an increased need to display numbers in 
hexadecimal· format (0-9, A-F). Standard drivers for this function are not available, so 
most applications are forced to use several packages to decode each digit, of the display. 
Since 6 to 12 digits are often being displayed, this approach can become very expensive. 
This example demonstrates how the hexadecimal display format can be both decoded 
and the LED indicators. driven using a single PAL for each digit of the display. 

Functional Description 

A hex decoder/lamp driver accepts a four-bit hex digit, converts it to its corresponding 
seven-segment display code, and activates the appropriate segments on the display. 
These drivers can be used in both direct-drive and multiplexed display applications. A 
single PAL can provide both the basic decode/drive functions, and additional useful fea
tures as well. 

General Description 

Figure 8.4.1 shows three digits of a display system that uses three PALs to implement 
the complete decoding and display-driving functions. The inputs to each section are a 
hex code on pins D0-D3; a ripple blanking signal, an intensity control signal, and a lamp 
test signal. · 

The hex codes are decoded to form the seven-segment patterns shown in Figure 
8.4.1. The input codes, digit, represented, and segments driven are as follows: 

03 D2 D1 Do Digit Segments 

0 0 0 0 0 ABC DEF 
0 0 0 1 . 1 BC 
0 0 1 0 2 AB DEG 
0 0 1 1 3 ABCDG 
0 1 0 0 4 BCFG 
0 1 0 1 5 ACDFG 
0 1 1 0 6 ACDEFG 
0 1 1 1 7 ABC 
1 0 0 0 8 ABCDEFG 
1 0 0 1 9 ABCDFG 
1 0 1 0 A ABCEFG 
1 0 1 1 8 CD EFG 
1 1 0 0 c ADEF 
1 1 0 1 D BC DEG 
1 1 1 0 E AD EFG 
1 1 1 1 F AEFG 

Table 8.4.1 Function Description 



I I 
I I 

DISPLAY j 
LEADING 6 Vee 
ZEROS 

BLANK 5_ 
LEADING ":" 

ZEROS 

HEXADECIMAL 
INPUTS 

OFF tvcc 

Applications 173 

THREE STAGE HEXADECIMAL DECODER /DRIVER 

PAL 16L8 
BCD TO HEXADECIMAL 
DECODER/7SEGMENT 
DRIVER WITH RIPPLE BLANKING 

LED/LAMP 
DRIVER OUTPUTS 

INTENSITY -------t--t----1 

LAMP TEST 

ON_£_ 

ONt 

OFF 

TO NEXT STAGE 

Figure 8.4.1 Hex Display Decoder-Driver, Combinational Logic Diagram 



174 Programmable Logic Design Guide 

Ripple-blanking input RBI is used to suppress leading zeroes in the display. The sig
nal is propagated from the most significant digit to the least significant digit. If the digit 
input is zero and RBI is low (indicating that the previous digit is also zero), all segments 
are left blank and this digit position's ripple-blanking output RBO is set low. 

Intensity control signal IC controls the duty cycle of the display driver. When IC is 
high, all segment drivers are turned off. Pulsing this pin with a duty-cycled signal 
allows the adjustment of the display's apparent brightness. 

Lamp test signal LT lets you check to see if all LED segments are energized. 

PAL Device Implementation 

The PAL 16L8 has both the required 1/0 pins and the drive current capability to perform 
as the complete display decoder-driver circuit with seven inputs and eight outputs. The 
logic equations for this circuit are shown in the listing. One PAL device drives each 
digit; they may be cascaded without limit. With minor changes, the same logical struc
ture could be useq with multiplexer logic to allow a single PAL device to decode and 
drive multiple digits. 

PALASM VERSION 1.5 

PAL16L8 
PAT07 
HEX 
BLANK 
/RBI DO Dl 02 D3 IC LT NC NC GNO 
NC G /RBO F E D C B A VCC 
IF{/IC)/A=/RBO*/DO*/D2+/RB0*/00*03+/RBO*Ol*D2+ 

/RBO*Dl*D2*/03+/RBO*DO*D2*/D3+/RBO*/Dl*/D2*03+LT 
IF(IC)/B=/RB0*/02*/D3+/RB0*/00*/02+/RBO*/D0*/01*/03+ 

/RBO*OO*Dl*/03+/RB0*00*/01*/03+LT 
IF(IC)/C=/RBO*OD*/Ol+/RB0*00*/02+/RBO*/Ol*/02+ 

/RB0*02*/03+/RB0*/02*03+LT 
IF(IC)/D=/RB0*/01*03+/RB0*/00*/02*/03+ 

/RBO*DO*Ol*/02+/RB0*/00*01*02+/RB0*00*/01*02+LT 
IF(IC)/E=/RB0*/00*/02+/RB0*02*03+/RB0*/00*01+ 

/RBO*Dl*03+LT 
IF(IC)/F=/RB0*/00*/0l+/RB0*/02*03+/RBO*Dl*D3+ 

/RB0*/00*02+/RBO*/Ol*D2*/D3+LT 
IF(VCC)RB0=/00*/0l*/D2*/03*/RBI 
IF(/IC)/G=/RBO*Dl*/02+/RBO*OO*D3+/RB0*/02*D3+ 

/RBO*/DO*Dl+/RBO*/Ol*D2*/03+LT 
DESCRIPTION 

HEX 

/RBI 

DO 

************** ************** 
* * * * **** **** 

* l* P A L *20* 
**** **** 

* 1 6 L 8 * 
**** **** 
* 2* *19* 
**** **** 

vcc 

A 



Applications 

* * 
**** **** 

01 *3* *18* B 
**** **** 

* * 
**** **** 

02 * 4* *17* c 
**** **** 

* * 
**** **** 

03 * 5* *16* 0 
**** **** 

* * 
**** **** 

IC * 6* *15* E 
**** **** 

* * 
**** **** 

LT * 7* *14* F 
**** **** 

* * 
**** **** 

NC * 8* *13* /RBO 
**** **** 

* * 
**** **** 

NC * 9* *12* G 
**** **** 

* * 
**** **** 

GNO *10* *11* NC 
**** **** 

* * 
******************************* 

HEX 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*FPLT PAL16L8 8 
0 ---- ----
i -{-- ---- -x--
2 -x-- ---- ---- x---
3 ---- x--- x---
4 ---- x--- x--- -x~-
5 x--- x--- -x--
6 ---- -x-- -x-- x---
7 ----

8 ----
9 ---- -x-- -x--

10 -x-- -x--
11 -x-- -x-- -x--
12 x--- x--- -x--
13 x--- -x-- -x--

-x--

x---
x---

14 ---- x---

--X-
--X-
--x-
--x-
--x-
--x-

--x-
--x-
--x-
--x-
--x-

15 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

/IC 
/RB0*/00*/02 
/RB0*/00*03 
/RBO*Ol*02 
/RBO*Ol*02*/03 
/RB0*00*02*/03 
/RB0*/01*/02*03 
LT 

IC 
/RB0*/02*/03 
/RB0*/00*/02 
/RBO*/DO*/Dl*/03 
/RBO*OO*Ol*/03 
/RBO*OO*/Ol*/03 
LT 

175 



176 Programmable Logic Design Guide 

16 ---- ---- ---- ---- X--- ---- ---- ---- IC 
17 X--- -X-- ---- ---- ---- ---- .--X- ---- /RB0*00*/01 
18 X--- ---- -X-- ---- ---- ---- --X- ---- /RB0*00*/02 
19 ---- -X-- -X-- ---- ---- ---- --x~ ---- /RB0*/01*/02 
20 ---- ---- X--- -X-- ---- ---- --X- ---- /RB0*02*/D3 
21 ---- ---- -X-- X--- ---- ---- --X- ---- /RB0*/02*03 
22 ---- ---~ ---- ---- ---- X--- ---- ---- LT . 
23 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
24 ---- ---- ---- ---- X--- ---- ---- ---- IC 
25 ---- -X-- ---- X--- ---- --~- --X- ---- /RB0*/01*03 
26 -X-- ---- -X-- -X-- ---- ---- --X- ---- /RB0*/00*/02*/03 
27 X--- X--- -X-- ---- ---- ---- --X- ---- /RBO*OO*Ol*/02 
28 -X-- X--- X--- ---- ---- ---- --X- ---- /RB0*/00*01*02 
29 X--- -X-- X--- ---- ---- ---- --X- ---- /RB0*00*/01*02 
30 ---- ---- ---- ---- ---- X--- ---- ---- LT 
31 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
32 ---- ---- ---- ---- X--- ---- ---- ---- IC 
33 -X-- ---- -X-- ---- ---- ---- --X- ---- /RB0*/00*/02 
34 ---- ---- X--- X--- ---- ---- --X- ---- /RB0*02*03 
35 -X-- X--- ---- ---- ---- ---- --X- ---- /RB0*/00*01 
36 ----.X--- ---- X--- ---- ---- --X- ---- /RBO*Ol*03 
37 ---- ---- ---- ---- ---- X--- ---- ---- LT 
38 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
39 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
40 ---- ---- ---- ---- X--- ---- ---- ---- IC 
<l~ -•-- -X-- ---- ---- ---- ---- --X- ---- /RB0*/00*/0l 
42 ---- ---- -X-- X--- ---- ---- --X- ---- /RB0*/02*03 
43 ---- X--- ---- X--- ---- ---- --X- ---- /RBO*Ol*03 
44 -X-- ---- X--- ---- ---- ---- --X- ---- /RB0*/00*02 
45 ---- -X-- X--- -X-- ---- ---- --X- ---- /RB0*/01*02*/03 
46 ---- ---- ---- ---- ---- X--- ---- ---- LT 
47 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
48 ---- ---- ---- ---- ---- ---- ---- ----
49 -XX- -X-- -X-- -X-- ---- ---- ---- ---- /00*/01*/02*/03*/RBI 
50 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
51 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
52 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
53 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
54 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
55 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
56 ---- ---- ---- ---- -X-- ---- ---- ---- /IC 
57 ---~ X--- -X-- ---- ---- ---- --X- ---- /RBO*Dl*/02 
58 X--- ---- ---- X--- ---- ---- --X- ---- /RB0*00*03 
59 ---- ---- -X-- X--- ---- ---- --X- ---- /RB0*/02*03 
60 -X-- X--- ---- ---- ---- ---- --X- ---- /RBO*/DO*Ol 
61 ---- -X-- X--- -X-- ---- ---- --X- ---- /RB0*/01*02*/03 
62 ---- ---- ---- ---- ---- X--- ---- ---- LT 
63 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

ENO*FPLT 

LEGEND: X : FUSE NOT BLOWN (L,N,O) 

NUMBER OF FUSES BLOWN = 1496 

FUSE BLOWN (H,P,l) 



Applications 177 

0 I! J 4161 I 91011 lltJUIS 11111119 2021222l 2'1~2621 212UOJ1 

0 -I ... 
N l >-

I J: 1 
1 
I 

.... 
""' 6 .... 1 ... 

9A 

2 
~ ~t-
.. v -v-..... 

I .... 
9 .... 

~ 10 t: II 18 
I! t: 
II Ii: 

" ""' ~ ""' II \.,, 

3 ..... 
~ ..... 

B 

II ... 
L~ 

11 
II 

17 II 
10 

~ :J !I 
22 ~ 21 

4 
~ -< .. ........... 

c 

l4 ... 
21 .... 

:>-J 16 .... ,, .... 16 
21 .... 
29 .... 
JO 

.... _:] .... II ... 
5 ..... 

~ 
.. U' -v ..... 

D 

Jl 
... 

31 
~ 

J4 l>-JI ~ 15 
J6 ~ -11 

E 
JI 
39 ~ 

IC 
6 ">- .... 

~r---' . "" _""' ..... 
40 J:: 

~ 
41 

I: " 14 41 
44 

1"" 
l-o 

41 lo. 
46 J. ., 

IQ 

7 
~ ~ 
.. v "'"'"""' 

F 

LT 

.. -
49 ilfi ""' so h 
II '"""- 13 
SI 

_;J SJ 
S4 ,, 

" 8 ~ ... .., ""'""' 
NC 

'6 .... 
11 l-o 

~ I! t:'-
19 
60 l-o 
61 l-o 
61 l-o 
61 J.i ... 

G 

~ -<4 11 
... v ""'~ 

NC NC 
0 12 l 4 S61 891011 121l141S 161111119 2021121l 242S21i21 1829JDll 

Figure 8.4.2 Logic Diagram PAL16L8 



178 Programmable Logic Design Guide 

8.5 BETWEEN LIMITS COMPARATOR/LOGIC 

PAL16C1 

LOGIC SYMBOL 

Figure 8. 5 .1 PAL Device 16C 1 Limit Checker 

PALASM VERSION 1.5 

PAL16Cl 
PAT 0021 
BETWEEN LIMITS COMPARITOP LOGIC 
NSC 
/EQlU /LTl /EQlL /GT2 /EQ2U /LT2 /EQ2L /GT3 /EQ3U GNO 
/LT3 /EQ3L NC NC NC /BTWL /GTO /LTO /GTl VCC 
/BTWL = GT3 + GT2*EQ3U + GTl*EQ3U*EQ2U + GTO*EQ3U*EQ2U*EQ1U + 
LT3 + LT2*EQ3L + LTl*EQ3L*EQ2L + LTO*EQ3L*EQ2L*EQ1L 
DESCRIPTION 

BETWEEN LIMITS COMPARITOP LOGIC 

************** ************** 
* * * * 

**** **** 
/EQlU * l* P A L *20* vcc 

**** **** 
* 1 6 c 1 * 

**** **** 
/LTl * 2* *19* /GTl 

**** **** 
-* * 

**** **** 
/EQlL * 3*. *18* /LTO 

**** **** 
* * 



Applications 179 

**** **** 
/GT2 * 4* *17* /GTO 

**** **** 
* * 

**** **** 
/EQ2U * 5* *16* /BTWL 

**** **** 
* * 

**** **** 
/LT2 * 6* *15* NC 

**** **** 
* * 

**** **** 
/EQ2L * 7* *14* NC 

**** **** 
* * 

**** **** 
/GT3 * 8* *13* NC 

**** **** 
* * 

**** **** 
/EQ3U * 9* *12* /EQ3L 

**** **** 
* * 

**** **** 
GNO *10* *P* /LT3 

**** **** 
* * 
******************************* 

BETWEEN LIMITS COMPARITOP LOGIC 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*FPLT PAL16Cl 8 

24 ---- ---- ---- ---- ---- ---- -X-- ---- GT3 
25 ---- ---- -X-- ---- ---- ---- ---- -X-- GT2*EQ3U 
26 ---- ---X ---- -X-- ---- ---- ---- -X-- GTl*EQ3U*EQ2U 
27 ---X ---- ---- -X-X ---- ---- ---- -X-- GTO*EQ3U*EQ2U*EQ1U 
28 ---- ---- ---- ---- ---- --~- ---- ---X LT3 
29 ---- ---- ---- ---- -X-- ---- ---X ---- LT2*EQ3L 
30 -X-- ---- ---- ---- ---- -X-- ---X ---- LTl*EQ3L*EQ2L 
31 ---- -X-- ---X ---- ---- -X-- ---X ---- LTO*EQ3L*EQ2L*EQ1L 

32 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
33 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
34 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
35 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
36 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
37 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
38 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
39 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

ENO*FPLT 

LEGEND: X : FUSE NOT BLOWN (L,N,O) FUSE BLOWN (H,P,l) 
0 : PHANTOM FUSE (L,N,O) 0 PHANTOM FUSE (H,P,l) 

NUMBER OF FUSES BLOWN = 236 



180 Programmable Logic Design Guide 

D 1 Z I • 5 I 1 I 11D11 11131•15 11171111 ZDZ11Zll ZU5ZU7 ZIZl!Ol1 

1 ... 
~ -..... 

2 ... 
a.2 

3 ... 

4 .. 
~ 

z• I"" 
ZS 

""" ZI ... 
11 

""" ZI 

""" ZI 

""" ID ... 
11 ... 

5 ... -
~ 

lZ 
!! 
IC 
35 
II 
17 
II 
II 

6 ... 
J.> 

7 .. 
~ 

8 .. 
~ 

9 ... 

I I Z I • 5 I 1 I l1Dl1 lllll•h 11171111 ZDZIZZI! ZCZ5ZU7 ZIZllO!I 

Figure 8.5.2 Logic Diagram PALI6Cl 

... 
_s... 
~~ 

... 
~ 
~ 

... 
<: 
~ 

- ~ 

j 

... 
.SJ" 

.... 
_s.t 

.... 
..s.t 

.... 
.s.t 

19 

18 

17 

- 16 
")" 1s 

14 

13 

12 

11 

BTWL 
NC 

NC 

NC 



Applications 181 

8.6 QUADRUPLE 3-LINE/1-LINE DATA SELECTOR MULTIPLEXER 

PALASM VERSION 1.5 

PAL14H4 
PAT0016 
DATA SECLECTOR MULTIPLEXER 
PAL DESIGN 
lA 2A 3A 4A lB 2B 3B 4B lC GND 
2C 3C 4C 4Y 3Y 2Y lY Sl SO VCC 
lY = lA*/SO*/Sl + lB*SO*/Sl + lC*/SO*Sl 
2Y = 2A*/SO*/Sl + 2B*SO*/Sl + 2C*/SO*Sl 
3Y = 3A*/SO*/Sl + 3B*SO*/Sl + 3C*/SO*Si 
4Y = 4A*/SO*/Sl + 4B*SO*/Sl + 4C*/SO*Sl 
DESCRIPTION 

DATA SECLECTOR MULTIPLEXER 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*FPLT PAL14H4 8 

16 --X- ---X ---X --00 --00 ---- ---- ---- ~~*/SO*/Sl 
17 ---- --X- ---X X-00 --00 ---- ---- ---- _3*50*/Sl 
18 ---- ---X --X- --00 ~-00 ---- ---- X--- :C*/SO*Sl 
19 xxxx xxxx xxxx xxoo xxoo xxxx xxxx xxxx 
24 X--- ---X ---X --00 --00 ---- ---- ---- 2A*/SO*/Sl 
25 ---- --X- ---X --00 X-00 ---- ---- ---- 2B*SO*/Sl 
26 ---- ---X --X- --00 --00 ---- ---- --X- 2C*/SO*Sl 
27 xxxx xxxx xxxx xxoo xxoo xxxx xxxx xxxx 
32 ---- X--X ---X --00 --00.---- ---- ---- 3A*/S0*/Sl 
33 ---- --X- ---X --00 --00 X--- ---- ---- 36*50*/Sl 
34 ---- ---X --X- --00 --00 ---- --X- -~-- 3C*/SO*Sl 
35 xxxx xxxx xxxx xxoo xxoo xxxx xxxx xxxx 
40 ---- ---X X--X --00 --00 ---- ---- ---- 4A*/S0*/Sl 
41 ---- --X- ---X -~00 --00 ---- X--- ----·4B*SO*/Sl 
42 ---- ---X --X- --00 --00 --X- ---- ---- 4C*/SO*Sl 
43 xxxx xxxx xxxx xxoo xxoo xxxx xxxx xxxx 

END*FPLT 

S(1·2) 

LEGEND: X : FUSE NOT BLOWN (L,N,O) FUSE BLOWN (H,P,1) 
0 : PHANTOM FUSE (L,N,O) 0 PHANTOM FUSE (H,P,1) 

NUMBER OF FUSES BLOWN = 348 

Y(1·4) 



182 Programmable Logic Design Guide 

• I I J. '11 J I' 1111 nu HllUU l4HJl27 JIJIJIU 

1A 
1 ... 

-
2A 

2 ... 
~ -

3 .. ..... 19 
~ . -3A 

4A 
4 .. ..... 

- .:s.. 18 

" -- l_ 
17 -- _I' " --- ~ ./ " --" - \ 

1Y 

5 .. 
18 .. 

IO --- _l 
16 ::Joo'< ~, II :Jo< 1 ../ II :Mo II - \ 

2Y 

II --- L 15 II .Jo< 1' ,. .Jooe. 
II .M. - ' 

3Y 

6 ... 
I> 28 . 

.. -- .L 14 .. ~ ..I' " .M. i ./ IJ ~ - i-
4Y 

7 ... ... 13 
l2' ~ . ·~ 

38 4C 

8 ... ...... 12 
--2: _st 48 3C 

9 .. ...... 11 
<. .. ~~ 

1C 2C 
I 1 I J •I Ir I 11111 lllJ 1111 11111111 JIHHIJ HHHU 

Figure 8.6.1 Logic Diagram PAL14H4 



8.7 4-BIT COUNTER WITH 2-INPUT MULTIPLEXER 

CARRY 
IN 

OP 
SELECT 

INPUT A INPUT B 

4-BIT COUNTER 
WITH 

2-INPUT MUX 
AND 

3-STATE OUTPUTS 

OUTPUTS 

Applications 183 

CARRY 
OUT 

CLOCK 

ENABLE 
OUTPUT 

Figure 8.7.1 Four-Bit Counter With Two-Input Multiplexer 

PALASM VERSION 1.5 

PAL16R4 
PAT0034 
4 BIT COUNTER WITH2 INPUT MUX 
NSC 
CLOCK AO Al A2 A3 BO Bl B2 B3 GNO 
/E COUT Il Q3 Q2 Ql QO IO CIN VCC 
/QO:=/Il*/IO*/QO + /Il*IO*/AO + Il*/IO*/BO + 
Il*IO*/CIN*/QO + Il*IO*CIN*QO 
/Ql:=/Il*/IO*/Ql + /Il*IO*/Al + Il*/IO*/Bl + 
Il*IO*/CIN*/Ql + Il*IO*CIN*Ql*QO + Il*IO*/Ql*/QO 

./Q2:=/Il*/IO*/Q2 + /Il*IO*/A2 + Il*/IO*B2 + Il*IO*/CIN*/Q2 + 
Il*IO*CIN*Q2*Ql*QO + Il*IO*/Q2*/Ql + Il*IO*/Q2*/QO 
/Q3:=/ll*/IO*/Q3 + /Il*IO*/A3 + Il*/I0*/83 + Il*IO*/CIN*/Q3 + 
Il*IO*CIN*Q3*Q2*Ql*QO + Il*IO*/Q3*/Q2 + Il*IO*/Q3*/Ql + 
Il*IO*/Q3*/QO 
IF(VCC)/COUT = /CIN + /Q3 + /Q2 + /Ql + /QO 
DESCRIPTION 

4 BIT COUNTER WITH2 INPUT.MUX 

************** ************** 
* * * * 

**** **** 
CLOCK * l* P A L *20* 

**** **** 
* 1 6 R 4 * 

**** **** 
AO * 2* *19* 

**** **** 
* * 

**** **** 
Al * 3* *18* 

**** **** 

vcc 

CIN 

IO 



184 Programmable Logic Design Guide 

~2 

A3 

BO 

Bl 

'B2 

B3 

GND 

* * 
**** **** 
* 4* *17* QO 
**** **** 

* * 
**** **** 
* 5* *16* Ql 
**** **** 

* * 
**** **** 
* 6* *15* Q2 
**** **** 

* * 
**** **** 
* 7* *14* Q3 
**** **** 

* * 
**** **** 
* 8* *13* 
**** **** 

* * 
**** **** 
* 9* *12* 
**** **** 

* * 
**** **** 
*10* *11* 
**** **** 

* * 
******************************* 

4 BIT COUNTER WITH2 INPUT MUX 

11 1111 1111 2222 2222 1233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*FPLT PAL16R4 8 

11 

COUT 

/E 

0 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
1 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
2 XXXX XXXX XXXX XXXX XXXX XXXX XXXX. XXXX 
3 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
4 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
5 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
6 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
7 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx ' 
8 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
9 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

10 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
11 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
12 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
13 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
14 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
15 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 



Applications 185 

16 ---- ---X ---X ---- ---- ---- ---X ---- /Il*/IO*/QO 
17 -X-- --X- ---- ---- ---- ---- ---X ---- /Il*IO*/AO 
18 ---- ---X ---- ---- -X-- ---- --X- ---- Il*/IO*/BO 
19 ---X --X- ---X ---- ---- ---- --X- ---- Il*IO*/CIN*/QO 
20 --X- --X- --X- ---- ---- ---- --X- ---- Il*IO*CIN*QO 
21 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
22 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
23 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
24 ---- ---X ---- ---X ---- ---- ---X ---- /Il*/IO*/Ql 
25 ---- -XX- ---- ---- ---- ---- ---X ---- /Il*IO*/Al 
26 ---- ---X ---- ---- ---- -X-- --X- ---- Il*/10*/Bl 
27 ---X --X- ---- ---X ---- ---- --X- ---- Il*IO*/CIN*/Ql 
28 --X- --X- --X- --X- ---- ---- --X- ---- Il*IO*CIN*Ql*QO 
29 ---- --X- ---X ---X ---- ---- --X- ---- Il*IO*/Ql*/QO 
30 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
31 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
32 ---- ---X ---- ---- ---X ---- ---X ---- /Il*/IO*/Q2 
33 ---- --X- -X-- ---- ---- ---- ---X ---- /Il*IO*/A2 
34 -~-- ---X ---- ---- ---- ---- X-X- ---- Il*/IO*B2 
35 ---X --X- ---- ---- ---X --~- --X- ---- Il*IO*/CIN*/Q2 
36 --X- --X- --X- --X- --X- ---- --X- ---- Il*IO*CIN*Q2*Ql*QO 
37 ---- --X- ---- ---X ---X ---- --X- ---- Il*IO*/Q2*/Ql 
38 ---- --X- ---X ---- ---X ---- --X- ---- Il*IO*/Q2*/QO 
39 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
40 ---- ---X ---- ---- ---- ---X ---X ~--- /ll*/IO*/Q3 
41 ---- --X- ---- -X-- ---- ---- ---X ---- /Il*IO*/A3 
42 ---- ---X ---- ---- ---- ---- --X- -X-- Il*/IO*/B3 
43 ---X --X- ---- ---- ---- ---X --X- ---- Il*IO*/CIN*/Q3 
44 --X- --X- --X- --X- --X- --X- --X- ---- Il*IO*CIN*Q3*Q2*Ql*QO 
45 ---- --X- ---- ---- ---X ---X --X- ---- Il*IO*/Q3*/Q2 
46 ---- --X- ---- ---X ---- ---X --X- ---- Il*IO*/Q3*/Ql 
47 ---- --X- ---X ---- ---- ---X --X- ---- Il*IO*/Q3*/QO 

48 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
49 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx . 
50 xxxx xxxx xxxx. xxxx xxxx xxxx xxxx xxxx 
51 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
52 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
53 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
54 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
55 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
56 ---- ---- ---- ---- ---- ---- ---- ----
57 ---X ---- ---- ---- ---- ---- ---- ---- /CIN 
58 --~- ---- ---- ---- ---- --~X ---- ---- /Q3 
59 ---- ---- ---- ---- ---X ---- ---- ---~ /Q2 
60 ---- ---- ---- ---X ---- ---- ---- ---- /Ql 
61 ---- ---- ---X ---- ---- ---- ---- ---- /QO 
62 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
63 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

END*FPLT 

LEGEND: X : FUSE NOT BLOWN (L,N,O) 

NUMBER OF FUSES BLOWN = 921 

FUSE BLOWN (H,P,l) 



186 Programmable Logic Design Guide 

a 12 J • S 17 I tlOll UU1415 11111111 uz1un HHUZJ UZ1ll11 

I 

rel 
1 

' 19 J . . 
~ 

I 
1 

~ .. ..... 
I 

* 
I 

11 

18 " " 1J 

~ " " 3 ... 
~ .... ..... 

,... 1 
11 

[J 11 ""' 

~ 
11 ""' 11 ""' ... " ../ 
" " " 

Ml ' 4 ... .... 
~ ~ .. _ 

~-.. 

' " r-

" ""' 

~ ~ 
""' " ""' ' " ""' " ""' ~ 

11 

5 ... ~ 
..... 

~ CL .. _...., 

" ... ... 

~ ~ 
IJ 

""' " ""' ' " ... JI .... J7 .... JI 
to. JI 
w ' 6 ... ..... 

-t~ ~ .... - ~ ..... .. I"" , 

" ""' i;l 14 " ""' " ""' ' 
~ 

.. ... ../ rvo-.. ... .... .. .... " ... j 

7 .... ..... 
--t~ ..JC:L .... - ~ ..... .. 

~ 
.. 

~ H 

13 " ::i " " 
_J .. 
..l .. 

8 ... 
~ .,._ ..... .. .... 

" ""' 

~ 
.. 

""' 
~ .. 

""' 12 
II 

""' 
..l 

11 .... _J 

" ..l IJ 
~ 

9 ... 
~ ~ .. - ~ 

11 l J • s I J I 11111 nnun '"""' Ul1J2U HHHl7 HHJIJI 

Figure 8.7.2 Logic Diagram PAL16R4 



Applications 187 

8.8 8-BIT SYNCHRONOUS COUNTER 

The 8-bit synchronous counter is used in many systems. The input AO serves a mode 
control with LOW for LOAD operation and HIGH for count operation. Input Al 
enables the LOAD operation when AO is set in the LOAD mode and doesn't care when 
the count mode is chosen. This enables the counter to be cascaded as a multibyte 
counter with the capability of leading individual byte from a simple byte wide data bus 
and a common clock. /CIN is the carry input and /COUT is the carry output. 

PAL20X8 
SBIT SYNCHRONOUS COUNTER 
LOGIC DESIGN 
NSC 
CLK AO XO Xl X2 X3 X4 X5 X6 X7 Al GND 
/EN /COUT /Y7 /Y6 /Y5 /Y4 /Y3 /Y2 /Yl /YO /CIN VCC 
YO:=/Al*/AO*YO 
+AO*YO 
:+:Al*/AO*XO 
+AO*CIN 
Yl:=/Al*/AO*Yl+ 
AO*Yl:+: 
Al*/AO*Xl + 
AO*CIN*YO 
Y2:=/Al*/AO*Y2+ 
AO*Y2:+: 
Al*/AO*X2 + 
AO*CIN*YO*Yl 
Y3:=/Al*/AO*Y3+ 
AO*Y3:+:Al*/AO*X3 + 
AO*CIN*YO*Yl*Y2 
Y4:=/Al*/AO*Y4 + 
AO*Y4 :+: 
Al*/AO*X4+ 
AO*CIN*YO*Yl*Y2*Y3 
Y5:=/Al*/AO*Y5 + 
AO*YS:+: 
Al*/AO*X5+ 
AO*CIN*YO*Yl*Y2*Y3*Y4 
Y6:=/Al*/AO*Y6 + 
AO*Y6:+: 
Al*/AO*X6+ 
AO*CIN*YO*Yl*Y2*Y3*Y4*Y5 
Y7:=/Al*/AO*Y7 + 
AO*Y7:+: 
Al*/AO*X7+ 
AO*CIN*YO*Yl*Y2*Y3*Y4*Y5*Y6 
IF(VCC)COUT = CIN*YO*Yl*Y2*Y3*Y4*Y5*Y6*Y7 
DESCRIPTION 



188 Programmable Logic Design Guide 

LOGIC DESIGN 

************** ************** 
* * * * 

**** **** 
CLK * l* P A L *24* vcc 

**** **** 
* 2 0 x 8 * 

**** **** 
AO * 2* *23* /CIN 

**** **** 
* * 

**** **** 
XO * 3* *22* /YO 

**** **** 
* * 

**** **** 
Xl * 4* *21* /Yl 

**** **** 
* * 

**** **** 
X2 * 5* *20* /Y2 

**** **** 
* * 

**** **** 
X3 * 6* *19* /Y3 

**** **** 
* * 

**** **** 
X4 * 7* *18* /Y4 

**** **** 
* * 

**** **** 
XS * 8* *17* /YS 

**** **** 
* * 

**** **** 
X6 * 9* *16* /Y6 

**** '**** -
* * 

**** **** 
X7 *10* *15* /Y7 

**** **** 
* * 

**** **** 
Al *11* *14* /COUT 

**** ****" 
* * 

**** **** 
GND *12* *13* /EN 

**** **** 
* * 
******************************* 



LOGIC DESIGN 

11 1111 1111 2222 2222 2233 3333 3333 
0123 4567 8901 2345 6789 0123 4567 8901 2345 6789 

BEG*FPLT PAL20X8 10 
0 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
1 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
2 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
3 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

Applications 189 

8 -X-- ---X ---- ---- ---- ---- ---- ---- ---- -X-- /Al*/AO*YO 
9 X--- ---X ---- ---- ---- ---- ---- ---- ---- ---- AO*YO 

10 -X-- X--- ---- ---- ---- ---- ---- ---- ---- X--- Al*/AO*XO 
11 X--X ---- ---- ---- ---- ---- ---- ---- ---- ---~ AO*CIN 

16 -X-- ---- ---X ---- ---- ---- ---- ---- ---- -X-- /Al*/AO*Yl 
17 X--- ---- ---X ---- ---- ---- ---- ---- ---- ---- AO*Yl 
18 -X-- ---- X--- ---- ---- ---- ---- ---- ---- X--- Al*/AO*Xl 
19 x-~x ---X ---- ---- ---- ---- ---- ---- ---- ---- AO*CIN*YO' 

24 -X-- ---- ---- ---X ---- ---- ---- ---- ---- -X-- /Al*/AO*Y2 
25 X--- ---- ---- ---X ---- ---- ---- ---- ---- ---- AO*Y2 
26 -X-- ---- ---- X--- ---- ---- ---- ---- ---- X--- Al*/AO*X2 
27 X--X ---X ---X ---- ---- ---- ---- ---- ---- ---- AO*CIN*YO*Yl 

32 -X-- ---- ---~ ---- ---X ---- ---- ---- ---- -X-- /Al*/AO*Y3 
33 X--- ---- ---- ---- ---X ---- ---- ---- ---- ---- AO*Y3 
34 -X-- ---- ---- ---- X--- ---- ---- ---- ---- X--- Al*/AO*X3 
35 X--X ---X --~X ---X ---- ---- ---- ---- ---~ ---- AO*CIN*YO*Yl*Y2 

40 -X-- ---- ---- -~-- ---- ---X ---- ---- ---- -X-- /Al*/AO*Y4 
41 X--- ---- ---- ---- ---- ---X ---- ---- ---- ---- AO*Y4 
42 -X-- ---- ---- ---- -~-- X--- ---- ---- ---- X--- Al*/AO*X4 
43 X--X ---X ---X ---X ---X ---- ---- ---- ---- ---- AO*CIN*YO*Yl*Y2*Y3 

48 -X-- ---- ---- ---- ---- ---- ---X ---- ---- -X-- /Al*/AO*Y5 
49 X--- ---- ---- ---- ---- ---- ---X ---- ---- ---- AO*Y5 
50 -X-- ---- ---- ---- ---- ---- X--- ---- ---- X--- Al*/AO*X5 
51 X--X ---X ---X ---X ---X ---X ---- ---- ---- ---- AO*CIN*YO*Yl*Y2*Y3*Y4 

56 -X-- ---- ---- ---- ---- ---- ---- ---X ---- -X-- /Al*/AO*Y6 
57 X--- ---- ---- ---- ---- ---- ---~ ---X ---- ---- AO*Y6 
58 -X-- ---- ---- ---~ ---- ---- ---- X--- ---- X--- Al*/AO*X6 
59 X--X ---X ---X ---X ---X ---X ---X ---- ---- ---- AO*CIN*YO*Yl*Y2*Y3*Y4*Y5 

64 -X-- ---- ---- ---- ---- ---- ---- ---- ---X -X-- /Al*/AO*Y7 
65 X--- ---- ---- ---- ---- ---- ---- ---- ---X ---- AO*Y7 
66 -X-- ---- ---- ---- ---- ---- ---- ---- X--- X--- Al*/AO*X7 
67 X--X ---X ---X ---X ---X ---X ---X ---X ---- ---- AO*CIN*YO*Yl*Y2*Y3*Y4*Y-

72 ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
73 ---X ---X ---X ---X ---X ---X ---X ---X ---X ---- CIN*YO*Yl*Y2*Y3*Y4*Y5*Y-
74 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
75 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

END*FPLT 

LEGEND: X : FUSE NOT BLOWN (L,N,O) : FUSE BLOWN (H,P,l) 
0 : PHANTOM FUSE (L,N,O) 0 : PHANTOM FUSE (H,P,1) 

NUMBER OF FUSES BLOW = 1243 



190 Programmable Logic Design Guide 

8.9 6·BIT SHIFT REGISTER WITH THREE-STATE OUTPUTS 

PALASM VERSION 1.5 

PAL16R6 
PAT05 
6BIT 
SVALE 
CK SR DO Dl D2 D3 D4 D5 SL GND 
/E RILO Q5 Q4 Q3 Q2 Ql QO LIRO VCC 
IF(SR*/SL)/LIRO=/QO 
/QO:=/SR*/SL*/QO+SR*/SL*/Ql+/SR*SL*/LIRO+SR*SL*/DO 
/Ql:=/SR*/SL*/Ql+SR*/SL*/Q2+/SR*SL*/QO+SR*SL*/Dl 
/Q2:=/SR*/SL*/Q2+SR*/SL*/Q3+/SR*SL*/Ql+SR*SL*/D2 
/Q3:=/SR*/SL*/Q3+SR*/SL*/Q4+/SR*SL*/Q2+SR*SL*/D3 
/Q4:=/SR*/SL*/Q4+SR*/SL*/Q5+/SR*SL*/Q3+SR*SL*/D4 
/Q5:=/SR*/SL*/Q5+SR*/SL*/RILO+/SR*SL*/Q4+SR*SL*/D5 
IF{/SR*SL)/RILO=/Q5 
DESCRIPTION 

6BIT 

************** ************** 
* * * * 

**** **** 
CK * l* P A L *20* vcc 

**** **** 
* 1 6 R 6 '* 

**** **** 
SR * 2* *19* LIRO 

**** **** 
* * 

**** **** 
DO * 3* *18* QO 

**** **** 
* * 

**** **** 
Dl * 4* *17* Ql 

**** **** 
* * 

**** **** 
D2 * 5* *16* Q2 

**** **** 
* * 

**** **** 
D3 * 6* *15* Q3 

**** **** 
* * 

**** **** 
D4 * 7* *14* Q4 

**** **** 
* * 

**** **** 
D5 * 8* *13* Q5 

**** **** 
* * 

**** **** 
SL * 9* *12* RILO 

**** **** 



Applications 191 

* * **** **** 
GND *10* *11* /E 

**** **** 
* * 
******************************* 

6BIT 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*FPLT PAL16R6 8 
0 X--- ---- ---- ---- ---- ---- ---- -X-- SR*/Sl 
1 ---- ---X ---- ---- --~- ---- ---- ---- /QO 
2 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
3 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
4 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
5 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
6 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
7 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
8 -X-- ---X ---- ---- ---- ---- ---- -X-- /SR*/SL*/QO 
9 X--- ---- ---X ---- ---- ---- ---- -X-- SR*/Sl*/Ql 

10 -X-X ---- ---- ~--- ---- ---- ---- X--- /SR*SL*/LIRO 
11 X--- -X-- ---- ---- ---- ---- ---- X--- SR*SL*/00 
12 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
13 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
14 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
15 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
16 -X-- ---- ---X ---- ---- ---- ---- -X-- /SR*/SL*/Ql 
17 X--- ---- ---- ---X ---- ---- ---- -X-- SR*/SL*/Q2 
18 -X-- ---X ---- ---- ---- ---- ---- X--- /SR*SL*/QO 
19 X--- ---- -X-- ---- ---- ---- ---- X--- SR*SL*/01 
20 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
21 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
22 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
23 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
24 -X-- ---- ---- ---X ---- ---- ---- -X-- /SR*/Sl*/Q2 
25 X--- ---- ---- ---- ---X ---- ---- -X-- SR*/Sl*/Q3 
26 -X-- ---- ---X ---- ---- ---- ---- X--- /SR*SL*/Ql 
27 X--- ---- ---- -X-- ---- ---- ---- X--- SR*SL*/02 
28 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
29 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
30 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
31 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
32 -X-- ---- ---- ---- ---X ---- ---- -X-- /SR*/SL*/Q3 
33 X--- ---- ---- ---- ---- ---X ---- -X-- SR*/Sl*/Q4 
34 -X-- ---- ---- ---X ---- ---- ---- X--- /SR*SL*/Q2 
35 X--- ---- ---- ---- -X-- ---- ---- X--- SR*SL*/03 
36 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
37 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
38 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
39 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 



192 Programmable Logic Design Guide 

40 -X-- ---- ---- ---- ---- ---X ---- -X-- /SR*/SL*/Q4 
41 X--- ---- ---- ---- ---- ---- ---X -X-- SR*/SL*/Q5 
42 -X-- ---- ~--- ---- ---X ---- ---- X--- /SR*SL*/Q3 
43 X--- ---- ---- ---- ---- -X-- ---- X--- SR*SL*/04 
44 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
45 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
46 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
47 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
48 -X-- ---- ---- ---- ---- ---- ---X -X-- /SR*/SL*/Q5 
49 X--- ---- ---- ---- ---- ---- ---- -X-X SR*/SL~/RILO 
50 -X-- ---- ---- ---- ---- ---X ---- X--- /SR*SL*/Q4 
51 X--- ---- ---- ---- -~-- ---- -X-- X--- SR*SL*/05. 
52 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
53 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
54 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
55 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
56 -X-- ---- ---- ---- ---- ---- ---- X--- /SR*SL 
57 ---- ---- ---- ---- ---- ---- ---X ~--- /Q5 
58 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
59 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
60 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
61 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
62 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 
63 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

END*FPLT 

LEGEND: X : FUSE NOT BLOWN (L,N,O). - • FUSE BLOWN (H,P,1) 

NUMBER OF FUSES BLOWN = 818 



Applications 193 

Inputs (0-31) 
CK ~--~~~~~~~~~~~~-~~~~~~ 

Q 1 1 ] • !t ' ' I 110 II 111)" ·~ , .. , ,, 11 20 21111) 141n1' 11 11n10 ]I 

0 ' l J 4 !i I 1 I 'IQ 11 11 IJ IC l!I 111111 u 10 21221l 24 n 21 n 21H1D JI 

Figure 8.9.1 Logic Diagram PAL16R6 



194 Programmable Logic Design Guide 

8.10 PORTION OF RANDOM CONTROL LOGIC FOR 8086 CPU BOARD 

PD~~~~~~ ~0--------~1----~~--~ 

EN~----------------~---+--~--~--~-

EQ~~---------------------+--~-;:._-:._-_-_~_""1..___,,t----------~------'--~C3 

EA~~~~~~~~~~~-+-~_. 

10-----HA 
Sl~--------------~----1---~------t 

SA-----------.-----t :>c>----------------L-.J ---~~- >o-----ss 

oo~---------------~-----------------------1~~ 

Figure 8.10.1 Control Logic for 8086 CPU Board 

PALASM VERSION 1.5 

PAL12H6 
PAT03 
8086 
CPU 
PD EN EO EA Sl SA El DO DE GND 
SO NC3 NO C3 HA SS LA MW PW VCC 
MW=/SO+PW*DE 
LA=/SA*/DO 
SS=Sl*PD*/SA 
HA=Sl*PD*/SA*EA*El 
C3=PD*EO*EA 
NO=PD*/EN 
DESCRIPTION 

·0006 

************** ************** 
* * * * 

**** **** 
PD * i* P A L *20* 

**** **** 
* 1 2 H 6 * 

**** **** 
EN * 2* *19* 

**** **** 

vcc 

PW 

JO-----LA 



* * 
**** **** 

EO * 3* *18* 
**** **** 

* * 
**** **** 

EA * 4* *17* 
**** **** 

* * 
**** **** 

Sl * 5* *16* 
**** **** 

* * 
**** **** 

SA * 6* *15* 
**** **** 

* * 
**** **** 

El * 7* *14* 
**** **** 

* * 
**** **** 

DO * 8* *13* 
**** **** 

* * 
**** **** 

DE * 9* *12* 
**** **** 

* * 
**** **** 

GND *10* *11* 
**** **** 

* * 
******************************* 

8086 

11 1111 1111 2222 2222 2233 
0123 4567 8901 2345 6789 0123 4567 8901 

BEG*FPLT PAL12H6 8 

8 ---- ---- --00 --00 --00 --00 ---- ---X /SO 
9 ---- --X- --00 --00 --00 --00 ---- X--- PW*DE 

10 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
11 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 

Applications 

MW 

LA 

SS 

HA 

C3 

NO 

NC3 

so 

16 ---- ---- --00 --00 -XOO --00 -X-- ---- /SA*/00 
17 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
24 --X- ---- --00 X-00 -XOO --00 ---- ---- Sl*PD*/SA 
25 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
32 --X- ---- X-00 X-00 -XOO X-00 ---- ---- Sl*PD*/SA*EA*El 
33 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
40 --X- X--- X-00 --00 --00 --00 ---- ---- PD*EO*EA 
41 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 

195 



196 Programmable logic Design Guide 

48 -XX- ---- --00 --00 --00 --00 ---- ---- PD*/EN 
49 XXXX XXXX XXOO XXOO XXOO XXOO XXXX XXXX 
50 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 
51 xxxx xxxx xxoo xxoo xxoo xxoo xxxx xxxx 

END*FPLT 

LEGEND: X : FUSE NOT BLOWN (L,N,0) : FUSE BLOWN (H,P,l) 
0 : PHANTOM FUSE (L,N,O) 0 : PHANTOM FUSE (H,P,1) 

NUMBER OF FUSES BLOWN = 206 

PAL DEVICES FOR EASY INTERFACE BETWEEN DP8408/09* DRAM 
CONTROLLER AND POPULAR MICROPROCESSORS 

High storage density and low cost have made dynamic RAMs the designers choice in 
most memory applications. However, the major drawbacks of dynamic RAMs are the 
complex timing involved and periodic refresh needed to keep all memory cells 
charged. With the introduction of the DP8408/09 Dynamic 'RAM controller/driver, the 
above complexities are simplified. 

Use of PAL devices adds flexibility in the design as PAL device logic equations can 
be modified by the user for his/her application and programmed into any of the PAL 
devices. In addition, PAL devices lower the parts count in memory system design. For 
most memory operations, the PAL devices (DP8432/322/332) can be directly connected 
between the control signals from the CPU chip set and the DP8408/09 dynamic RAM 
controller. The PAL device allows hidden refresh using the DP8408/09. In a standard 
memory cycle, the access can be slowed by one clock cycle to accommodate slower 
memories. This extra wait state will not appear during the hidden refresh cycle, so 
faster devices on the CPU bus will not be affected. Similarly, PAL devices allow for the 
insertion of wait states for processors operating at high CPU clock frequencies to use 
slower dynamic RAMs. 

The following three applications describe the use of National's PAL16R6, 
PAL16R4 and PAL16R8 for the ease and flexibility of interfacing DP8408/09 with 
popular microprocessors such as the 32032, 68000, 8086, and 8088. Today the PAL 
device family offers the designer flexibility to design desired speed/power PAL device 
in his memory systems, and achieve the memory operations at very high frequencies 
with or without wait state conditions. 

• DP8408109 is part of tbe interface product line at National Semiconductor Corp. 



Applications 197 

8.11 DP84312 DYNAMIC RAM CONTROLLER INTERFACE CIRCUIT FOR THE 
NS32032 CPU 

. General Description 

The DP84312 dynamic RAM Controller interface is a PAL device for interface between 
the DP8409 dynamic RAM Controller and the NS32032 microprocessor. 

Using timing signals from the NS32032;timing and control unit and the NS32032 
the DP84312 supplies all control signals needed to perform memory read, write, byte 
write, and refresh. 

Features 

• Low parts count memory system. 

• Allows the DP8409 to perform hidden refresh. 

• Allows for the insertion of wait states for slow dynamic RAMs. 

0 Supplies independent CASs for byte writing. 

• Possibility of operation at 8MHz with no wait states. 

0 20-pin 0.3 inch wide package. 

0 Standard NationalSemiconductor PAL device part (PAL16R6). 

0 PAL device logic equations can be modified by the user for his/her specific applica
tion and programmed into any of the National Semiconductor PAL device family, 
including the new high speed PAL devices. 

Dual-In-Line Package 

CLK 1 20 Vee 

RASIN 2 19 RFSH 

RFRQ 3 18 CASH 

HBE 4 17 CASL 

AO 5 16 NC 

WAITIN 6 15 NC 

CTTL 7 14 NC 

cs 8 13 NC 

WAIT1 9 12 WAIT 

GND 10 11 GND 

TOP VIEW 

Figure 8.11.1 Connection Diagram 



198 Programmable Logic Design Guide 

Symbol Parameter Min Typ Max 

Vee Supply Voltage 4.75 5.00 5.25 

loH High Level Output Current -3.2 

loL , · Low Level Output Current 24 
(Note2) 

TAA Operating Free Air Temperature 0 75 

Table 8.11.1 Recommended Operating Conditions 

Symbol Parameter Conditions Min Typ 

V1H High Level Input Voltage 2 

V1L Low Level Input Voltage 

Vic Input Clamp Voltage Vee= Min, 11= -18 mA 

VoH High Level Output Voltage Vee= Min, V1H=2V, V1L=0.8V, loH= Max 2.4 

VoL Low Level Output Voltage Vee= Min, V1H=2V, V1L=0.8V,,loL=Max 

lozH Off-State Output Current Vee= Max, V1H=2V, Vo=2.4V, V1L=0.8V 
High Level Voltage Applied 

lozL Off-State Output Current Vee= Max, V1H=2V, Vo=0.4V, V1L=0.8V 
Low Level Voltage Applied 

11 Input Current at Vee= Max, V1=5.5V 
Maximum Input Voltage 

l1H High Level Input Current Vee= Max, V1=2.4V 

l1L Low Level Input Current Vcc=,Max, V1=0.4V 

los Short Circuit Output Current Vee= Max -30 

Ice Supply Current Vee= Max 

Table 8.11.2 Electrical Characteristics 

Symbol Parameter 

two WAITIN to WAIT Delay 

tpo Clock to Output 

tpzx Pin 11 to Output Enable 

tpxz Pin 11 to Output Disable 

tw Width of Clock 1 High 
J Low 

tsu Set-Up Time 

th Hold Time 

Note 1: Ice= max at minimum temperature. 
Note 2: One output at a time; otherwise 16 mA. 

Commercial 
Conditions TA= 0°C to + 75°C 
RL=6670 Vcc=5.0V:t5% 

Min Typ 

CL=45 pF 25 

CL=45 pF 15 

CL=45 pF 15 

CL=5 pF 15 

25 
25 

40 

0 -15 

Table 8.11.3 Switching Chracteristics 

150 

Max 

40 

25 

25 

25 

Units 

v 
mA 

mA 

oc 

Max Units 

v 
0.8 v 

-1.5 v 
v 

0.5 v 
100 µ.A 

-100 µ.A 

1.0 mA 

25 µ.A 

-250 µ.A 

-130 mA 

225 mA 
(Note 1) 

Units 

ns 

ns 

ns 

ns 

ns 
· ns 

ns 

ns 



AOO-AD15 .t 
ADO-AD15 

...-

l 
cs 

ODIN .... WIN WR 
.. 

ADS AM1·AM20 

n,,.~ ~"' 
~~ I'--+ 81 

... ~ Q0-6, 7 
( t'--+ BO 

DM74LSr DM74S139 lo? 

~ 
PERIP ~ G A, B,G 1r..1 r-+ ~ 

C0-6, 7 
RASO 

ROM DP8409 
NS32032 ~ R0-6, 7 

RAS1 

.... ADS 

~ 
M1 RAS2 

1'? A16-A22 AO-A15 

DP84300 RFCK 

RAS3 

HBE 
to .----+ RGCK RFl/O 

~ 
M2 RASIN 

A16-A23 
..... ~ i. 1 

A16-A23" 
" AO 

AO-A23 J ROY PHl2 PHl1 

I I 1 
ROY PHl1 PHl2 

ADS I+- CS RFSH 

CTTL 
.... CTTL 

AO 

NS32201 .... HBE 

FCLK FCLK 

NTSO NTSO 
NCWAIT WAIT 

NPER ' WAITIN 

t 
PERIP 

add butters. 
@These outputs may need resistors. 

Figure 8.11.2 System Block Diagram 

1 
@ D0-015 

~I WR 

H A0-6, 7 

@ 

~I RASO" 
MM5295·12 

MM4164-12 
@ 

~I RAS1 

@ 

~I RAS2 

@ 

~I RAS3 

t--. 

CASL CASH 

@ • @ ! 

··~. i. 
... ~r ·1 ... 

RFRQ CASL CASH 

DP84312 

--"' 
r 

...... .,, 

~ 
~ = r!i 
~ 
ct. 
0 = r.J'J 

~ 
\0 
\0 



200 Programmable Logic Design Guide 

Mnemonic Description 

Input Signals 

CLK 

RFRQ 

HBE, AO 

WAI TIN 

CTTL 

WAITl 

Clock input. This clock comes f~om the FCLK output of the NS32201 
timing and control unit, and supplies timing for the internal logic. 

RAS input. This input is connected to the NTSO pin of the NS32201 -
This signal marks the start of a memory cycle. 

Refresh request. The DP8409 requests a forced refresh with this input. 

Address select inputs. These inputs select the type of write during a 
write cycle, and select their respective CAS outputs. These inputs must 
remain stable throughout the memory cycle. 

This wait input allows other devices to use the NCWAIT line of the 
NS16201 clock chip. 

System clock input. This clock is used to synchronize the memory sys
tem to the microprocessor clock. 

Chip select. This input is used to determine if a memory cycle or a hid
den refresh cycle is to be performed. 

Insert one wait state. This input allows the use of slow memories with 
a microprocessor using a fast clock by inserting a wait s-tate in selected 
memory cycles. 

Output Signals 

RFSH Refresh. This output switches the DP8409 to a refresh mode. 

CASH, CASL CAS outputs. CASH is for controlling the high bank of dynamic RAMs, 
while CASL controls the CAS line of the lower bank of RAMs. If only 
eight RAMs are used in each bank, the CAS outputs will directly drive 
the memories. For large arrays, these outputs should be buffered with 
a high current driver, such as the DP84244 MOS driver. 

WAIT This output controls the insertion of wait states. This output is ORed. 
with WAITIN to allow other devices to insert wait states. 

Functional Description 

The DP84312 detects the start of a memory cycle when NTSO from the NS32032 tim
ing and control unit (TCU) goes low. The NTSO signal is also used to supply RASIN to 
the DP8409 dynamic RAM controller. After the DP8409 has latched the row address 
and supplied the column address to the DRAMs, the DP84312 latches the column 



Applications 201 

address. The DP84312 supplies two CAS outputs: one for the high byte of memory, and 
the other for the low byte. The ability to control the upper and lower bytes of memory 
separately is important during a memory write cycle where one byte of memory is to 
be written (byte write). 

By connecting WAITl of the DP84312 to ground, all selected memory cycles will 
have one wait state inserted. This allows an NS32032 operating at high CPU clock fre
quency to use slower dynamic RAMs. 

Memory refresh can be achieved in one of two ways: hidden or forced. Hidden 
refresh is accomplished whenever a refresh is requested (internal to the DP8409) and 
an unselected memory cycle occurs. With a hidden refresh, the DP84312 does nothing 
while the DP8409 performs the refresh. If no refresh occurs before the trailing edge of 
refresh clock, the DP8409 will request a forced refresh. The DP84312 detects this 
request, and allows the current memory cycle to finish. It then outputs wait states to 
the CPU, which will hold the CPU if it requests a memory cycle. During this time the 
DP84312 has switched the dynamic RAM controller to the auto refresh mode, allowing 
it to perform a refresh. At the end of the refresh cycle, the DP8409 is switched back to 
the auto access mode, and the wait is removed after a sufficient RAS precharge time. 
The total forced refresh takes four CPU clock cycles, of which some, none or all may 
be actual wait states. If the CPU does not request a memory cycle during this refresh 
cycle, the refresh will not impact the CPU's performance. 

The DP84312 can possibly be operated at 8 MHz with no wait states (WAITl = "1 ") 
given the following conditions: 

T2 + T3 = 250 ns 
NTSO generation= 15 ns max. 
RASIN to CAS delay DP8409~2 = 130 ns max. 
External CASH,L generation using 74502 and 745240 

7.5 ns (74502) + 10 ns (745240) - 7.5 ns (less load on 8409 CAS line)= 10 ns max. 
Transceiver delay= 12 ns max. 
NS 16032 data setup= 20 ns max . 
. ·. Minimum tCAc = 63 ns 

= 250 - 15 - 130 - 10 - 12 - 20 
Minimum tRAs = 250 ns 
Minimum tRP = 2 50 ns 
Minimum tRAH = 20 ns 

The DP84312 is a standard National PAL device part (PAL 16R6). The user can 
modify the PAL device equations to support his/her particular application. The 
DP84312 logic equations, function table (functional test), and logic diagram can be seen 
at the end of this section. 



202 Programmable Logic Design Guide 

1-t1 OR t4-\-- t1 -1--t2--j-t3--f-----t4--l-t1 OR t1-I 

FCLK 

CTTL 

i L--· NTSO 

i 
L. 

CASH,L 

DATA 

FROM RAM ( READ DATA ) (READ)---------------""""'f. _>---------
DATA 

FROM CPU--------c(ADDRESs}-(. DATA TO BE WRITTEN )>------
(WRITE) . - ""· ------------

Figure 8.11.3 Timing Diagram; Read, Write or Hidden Refresh Memory Cycle for 
the NS32032-DP8409 Interface 

CPU STATE l-t4 OR ii-1---n---1---t2--1-tw---1---t3---j---t4-I 't1 OR t1 

NTSO 

NC WAIT 

RAS 

CASH,L 

DATA 
FROM RAM---------------------c( VALID )>-------
DATA 

FROMCPU-------""""(ADDREss){~ ___ D_At_A_T_o_eE_w_R_IT_T_E_N_T_o_M_E_M_o_R_v ____ )~----

Figure 8.11.4 Timing Diagram; Read, or Write Memory Cycle With One Wait 



Applications 203 

t,, t1 t1, t1 t1, T1 T1, t1 t1, t1 

CPU STATE I- t1 OR t4 -l-t1 OR t1 -I-OR tH -1-·0R tH -1- OR tH -1- OR tH -I OR t2 

FCLK 

NTSO 1 __ ... 

__ .. , 
RFRQ 1 

NC WAIT 

RFSH 

RAS I ___ _... 

PAL16R6 
DP84312 

Figure 8.11.5 Timing Diagram; Forced Refresh Cycle 

Interface Circuit for the NS32032/DP8409 
Memory System 
CK NTSO /RFRQ /HBE AO /WAITIN CTTL /CS /SLOW 
GND /OE /WAIT ID IC /B IA ICASL /CASH /RFSH VCC 

CASH: = A*IB*C*D* HBE*CS + 
/A*IB*D*HBE*CS 

CASL: = A*IB*/C*D*/AO *CS+ 
/A*IB*D*/AO*CS 

A : = /A*IB*/C*ID*INTSO*CS*SLOW + 
B*/C*ID + 
A*/C*ID + 
A*B 

B : = /A*IB*/C*ID*NTSO*RFRQ*CTI1. + 
/A*B + 
A*B*/C + 
B*C*D 

I 
L---· 

I 
I 

L--



204 Programmable Logic Design Guide 

C : = /A*IB*/C*ID*NTSO*RFRQ*C1TL + 
/A*IB*D + 
A*B*D + 
B*C*ID + 
I A*IB*C*ID*INTSO 

D : = /A*IB*/C*ID*INTSO*CS*/SLOW + 
/A*IB*/C*ID*INTSO*/CS + 
A*/C + 
IB*/C*D .+ 
/A*B*C 

IF (VCC) WAIT = IB*/C*ID*/NTSO*CS*SLOW + 
/A*B*D + 
B*/C*ID + 
A*B + 
A*C*ID + 
/CS*WAITIN 

IF (VCC) RFSH = /A*B + 
B*/C*ID + 
A*B*/C + 
A*B*C 



Applications 205 

CK NTSO RFRQ HBE AO WAITIN CTTL cs SLOW OE CASH CASL A B c D WAIT RFSH 
c H H L L H H H H L x x x x x x x x 
c H H L L H H H H L L L L L L L L L 
c L x L L H x L H L L L L L L H L L 
c L x L L H x L H L H H L L H H L L 
c x x L L H x L H L H H L L H L L L 
c H x L L H x L H L L L L L L. L L L 
c L x· L H H x L L L L L H L L L H L 
c x x L H H x L L L L L H L L H L L 
c x x L H H x L L L H L L L L H L L 
c x x L H H x L L L H L L L H H L , L 
c. x x L H H x L L L H L L L H L L L 
c H x L L H x H H L L L L L L L L L 
c L x L L H x H x L L L L L L H L L 
c x x L L L x H x L L L L L H H H L 
c H x L L H x H x L L L L L H L L L 
c H x L L H x· H x L L L L L L L L L 
c H L x x H H x x L L L L H H L L H 
c H x x x H L x x L L L L H H H H H 
c H H x x H H x x L L L L H L H H H 
c H H x x H L x x L L L L H L L H H 
c H H x x H H x x L L L H H L L H H 
c H H x x H L x x L L L H H L H H H 
c H H x x H H x x L L L H H H H H H 
c H H x x H L x x L L L H H H L H L 
c H H x x H H x x L L L H L H L H L 
c H H x x H x H H L L L L L L L L L 
c L H x x L x H x L L L L L L H H L 
c L H x x L x H x L L L L L H H H L 
c L H x x L x H x L L L L L H L H L 
c L x x x H x H x L L L L L H L L L 
c H x x x H x H x L L L L L L L L L 
c H H H H H H H H H z z z z z z z z 

Table 8.11.4 Function Table 



206 

-u 
:i 
'C 
2 
CL 

Programmable Logic Design Guide 

CK 
Inputs (0-31) 

T--1> 0 1 2 3 4U7 111011 12131415 11171111 20212223 24212127 0213031 

0 
,..... 

1 ~ 

~l 
2 ~ 

3 ~ 

• ~ s 
I @I 

7 eo 
NTSO 

... 
~ 1['. t-----' 

2 ...-- ..... 

• ...... 
I ~ 

10 
11 
12 .../ 13 
14 
15 

RFRQ .... ...... 
;;t ~ 

3 .. ~ 

16 
,_ 

17 ~ 
11 
19 
20 
21 
22 
23 

HBE .... .... 
.L. 3C: 

4 .. ,...,. 

24 
,...... 

25 I-
26 I-
27 ~ 0 21 ~ 
29 
30 
31 

AO .... ...... 
;JJt IC. 

5 .. """"' 
32 ........ 
33 H 
34 ~ ~ 35 
36 ... ../ 
37 ~ 

38 ~ 

39 ~ ;:,,, 

WAITIN..., .... 
~ Ji[ ...... 

6 ... 
40 ..... 
41 ..... 
42 ..... 
43 

"""' 
~ 

44 1-\-
45 

../ 
46 ~ 
47 

CTTL·...._ .A 
.Jk· ~ 

7 .. .....,...,. 

41 ...... 
49 

).-C 

50 I-
51 I-
52 I-
53 ~ 54 
55 IE:l 

cs ..... ...... 
L ~ .... 

8 ... -
56 

........ 
57 

1-( 

* 58 
lo-( 

59 
1-c 

60 
1-c 

61 
1-( 

62 
1-( .. :J 63 
1-( 

SLOW""' 
......... 

~~ 
9 .... - ~ 

0 1 2 3 4 5 6 7 191011 12131415 16171819 20212223 24252627 28293031 

Figure 8.11.6 DP84312 Logic Diagram PAL16R6 

RFSH 

19 

--H 

~ 
~ ~ 17 

~ ~ 
~ ~ 

~ ~ 

~ ~ 
WAIT 

12 

~ 11 



Applications 207 

8.12 DP84322 DYNAMIC RAM CONTROLLER INTERFACE CIRCUIT FOR 
THE 68000 CPU 

General Description 

The DP84322 dynamic RAM controller interface is a PAL device for interface between 
the DP8409 dynamic RAM Controller and the 68000 microprocessor. 

The DP84322 supplies all the control signals needed to perform memory read, 
write and refresh. Logic is included for inserting a wait state when using fast CPUs. 

Features 

• Provides 3-chip solution for the 68000 CPU and dynamic RAM interface. 

• Works with all 68000 speed versions. 

• Possibility of operation at 8 MHz with no wait states. 

• Performs hidden refresh. 

DUAL-IN-LINE PACKAGE 

CLOCK 20 Vee 

AS 2 19 RASIN. 

UDS 3 18 DTACK 

LOS 4 17 RFSH 

R/W 5 16 NC 

RFRQ 6 15 NC 

CAS 7 14 NC 

cs 8 13 CASU 

WAIT 9 12 CASL 

G_ND 10 11 OE 

TOP VIEW 

Figure 8.12.1 Connection Diagram 



208 Programmable Logic Design Guide 

• DTACK is automatically inserted for both memory access and memory refresh. 

• Performs forced refresh using typically 4 CPU clocks. 

• Standard National Semiconductor PAL device part (PAL16R4). 

• PAL device logic equations can be modified by the user for his specific application 
and programmed into any of National's PAL device family, including the new high 
speed PAL devices. 

AS 

LOS 

UDS 

CAS 

R/W 

WAIT 

_.. 
--.... --

RASIN 
_.. 
-... GENERATOR 

_ .... ... -__.. CAS ... 
GENERATOR _.. ... 

~I 
....... .... 
_.. ... --

~ ....... DTACK -... 
GENERATOR _.. ... 

....... -,... 

r+I 

---
....... REFRESH/ 
.... ACCESS 

ARBITRATION 
_.. LOGIC 
--.... 

Figure 8.12.2 Block Diagram 

_.. 
-... RASIN 

....... ... CASL 

__.. 
... CASU 

_.. 
--.... DTACK 

__.. ... M2 (RFSH) 



Applications 209 

Symbol Parameter Min Typ Max Units 

Vee Supply Voltage 4.75 5.00 5.25 v 

loH High Level Output Current -3.2 mA 

loL Low Level Output Current 
24 

mA 
(Note2) 

TA Operating Free Air Temperature 0 75 oc 

Table 8.12.1 Recommended Operating Conditions 

Symbol Parameter Conditions Min Typ Max Units 

V1H High Level Input Voltage 2 v 
V1L Low Level Input Voltage 0.8 v 
Vic Input Clamp Voltage Vee= Min, 11= -18 mA -1.5 v 
VoH High Level Output Voltage Vee= Min, V1H=2V, V1L=0.8V, loH=Max 2.4 v 
Vol Low Level Output Voltage Vee= Min, V1H = 2V, V1L = 0.8V,·loL =Max 0.5 v 
lozH Off-State Output Current Vee= Max, V1H= 2V, Vo=2.4V, V1L=0.8V 100 µA 

High Level Voltage Applied 

lozL Off-State Output Current Vee,,;, Max, V1H=2V, Vo=0.4V, V1L=0.8V -100 µA 
Low Level Voltage Applied 

11 Input Current at Vee= Max, V1=5.5V 1.0 mA 
Maximum Input Voltage 

l1H High Level Input Current Vee= Max, V1=2.4V 25 µA 

l1L Low Level Input Current Vee= Max, V1=0.4V -250 µA 

las Short Circuit Output Current Vee= Max -30 -130 mA 

Ice Supply Current Vee= Max 150 225 mA 
(Note 1) 

Table 8.12.2 Electrical Characteristics 

Commercial 

Symbol Parameter Test Conditions TA= 0°C to + 75°C Units 
RL=667fl Vee= 5.0V ± 5% 

Min Typ Max 

tpo Input to Output 

tpo Clock to Output 

tpzx Pin 11 to Output Enable 

tpxz Pin 11 to Output Disable 

tpzx Input to Output Enable 

tpxz Input to Output Disable 

tw Width of Clock } High 

Low 

tsu Set-Up Time 

th Hold Time 

Note 1: Ice= max at minimum temperature. 

Note 2: One output at a time; otherwise 16 mA. 

CL =45 pF 
25 

15 

15 

CL= 5 pF 15 

CL =45 pF 25 

CL =5 pF 25 

25 

25 

40 

0 -15 

Table 8.12.3 Switching Characteristics 

40 ns 

25 ns 

25 ns 

25 ns 

40 ns 

40 ns 

ns 

ns 

ns 

ns 



A1-A23 

AS 

68000 CLK 

r-+ DrAcK R/W 

UDS 

LOS 

00-015 

..ii ~ 

"'11111 ii" 

DP84322 and DP8409 for 68000 CPU 

ADDRESS_ BUS .... 
R0-6, 7, 8 00-6. 7. 8 * ......... _..... 

"""'-.,. -·· ...,.. A0-6, 7, 8 D1N ..... 
RASO *··· -! RAS ...... ..,, ...... 

"'I 

"' ..,. C0-6, 7, 8 _.. CASU 

-! CASL . 
ADDRESS ] ... BO *AAA ...... ,. 

WE =: WE Dour DECODER ...; B1 
........... ..,.. 

Vee 

L... ~· ..it 
~~ ADS A0-6. 7. 8 D1N 

...... 
RAS1 * ....... _.. RAS ..,,,, ,, 

...; cs =:, CASU 

.... CASL ...... OP8409 ~WE Dour ,.. 
OM74LS393 ..;. RFCK 

1'.._ ~ ~· ..... 
*~~ A0-6, 7, 8 DIN 

~ 
10 MHz MAX ... 

RGCK RAS2 * ...... _.,, RAS .... ... ...... 
-!' CASU 

...; WIN _. CASL 
...... 

... WE Dour ..,.. 

L+I cs VRASIN ..;. RASIN > 
~ 

,,4_ 
l.......+I A5 RFSH ~ M2 (RFSH) 3 A0-6. 7. 8 D1N 

........-
_... RtW o- Ml 

RAS3 *AAA. ...... RAS 
.. uos 1~ MO 

..... 'I',, ... 
_... CASU ... 

~ LOS OP84322 _... CASL 

...; CAS _... WE 
_... 

AFRO 
CAS ~ Dour ..,.. 

r-+I AFRO DTACK ~ __. WAIT CASU 
....... DRAMS 

POE 
CASL 

:1 DP84244 
~L 

BUFFER NECESSARY IF MORE THAN ONE BANK 

DATA BUS 
•These outputs may need resistors. "Ill 

Figure 8.12.3 System Block Diagram 

~ 

N 
~ 
<:> 

f 
~ ;-
t""4 
0 
~ . 
(') 

t=' 
~ 
rlJ 

~· 
@ •. 
~ 



Applications 211 

Mnemonic Description 

Input Signals 

CLOCK 

R/W 

RFRQ 

WAIT 

The clock signal determines the timing of the outputs and should be 
connected directly to the 68000 clock input. 

Address Strobe from the 68000 CPU. This input is used to generate 
RASIN to the DP8409. 

Upper and lower data strobe from the 68000 CPU. These inputs, 
together with AS, R/W, provide DTACK to the 68000. 

Read/write from the 68000 CPU, when WAIT = 0. Selects processor 
speed when WAIT= 1 (" l" = 4, to 6 MHz, "O" = 8 MHz). 

Column Address Strobe from the DP8409. This input, together with 
LDS and UDS, provides two separate CAS outputs for accessing upper 
and lower memory data bytes. 

Chip Select. This input enables DTACK output. CS = 0, DTACK output 
is enabled; CS= 1, DTACK output is TRI-STATE®. 

Refresh Request. This input requests the DP84322 for a forced refresh. 

This input allows the necessary wait state to be inserted for memory 
access cycles. 

Output Signals 

RASIN This output provides a memory cycle start signal to the DP8409 and 
provides RAS timing during hidden refresh. 

CASU, CASL These signals are the separate CAS outputs needed for byte writing. 

DTACK This output is used to insert wait states into the 68000 memory cycles 
when selected and during a forced refresh cycle where the CPU 
attempts to access the memory. This output is enabled when CS input 
is low and TRI-STATE when CS is high. 

RFSH This output controls the mode of the DP8409. It always goes low for 4 
CPU clock periods when AS is inactive and' a forced refresh is 
requested through RFRQ input. This allows the DP8409 to perform an 
automatic forced refresh. 

Functional Description 

As a 68000 bus cycle begins, a valid address is output on the address bus Al-A23. This 
address is decoded to provide Chip Select (CS) to the DP8409. After the address 
becomes valid, AS goes low and it is used to set RASIN low from the DP84322 interface 



212 Programmable Logic Design Guide 

circuit. Note that CS must go low for a minimum of 10 ns before the assertion of RASIN 
for a proper memory access. As an example, with an 8 MHz 68000, the address is valid 
for at least 30 ns before AS goes active. AS then has to ripple through the DP84322 to 
produce RAS IN. This means the address is valid for a minimum of 40 ns before RASIN 
goes low, and the decoding of CS should ·rake less than 30 ns. At this speed the 
DM74LS138 or DM74LS139 decoders can be selected to guarantee the 10 ns minimum 
required by CS set-up time going low before the access RASIN goes low(tcsRL of the 
DP8409). This is important because a false hidden refresh may take place when the 
minimum tcsRL is not met. 

Typically RASIN occurs atthe end of S2. Subsequently, selected RAS output, row 
to column select and then CAS will automatically follow RASIN as determined by mode 
5 of the DP8409. Mode 5 guarantees a 30 ns minimum for.row address hold time (tRAH) 
and a minimum of 8 ns column address set-up time (tAsc). If the system requires 
instructions that use byte writing, then CASU and CASL are needed for accessing upper 
and lower memory data bytes, and they are provided by the DP84322. In the DP84322, 
LDS and UDS are gated with CAS from the DP8409 to provide CASL and CASU. There
fore, designers need not be concerned about delaying CAS during write cycles to 
a~sure valid data being written into memory. The 8 MHz 68000 specifies during a write 
cycle that data output is valid for a minimum of 30 ns before DS goes active. Thus, 
CASL and CASU will not go low for at least 40 ns after the output data becomes stable, 
guaranteeing the 68000 valid data. is written tQ memory. 

Furthermore, the gating of UDS, -errs and CAS allows the DP84322 interface con
troller to support the test and set instruction (TAS). The 68000 utilizes the 
read-modify-write cycle to execute this instruction. The TAS instruction provides a 
method of communication between processors in a multiple processor system. 
Because of the nature of this instruction, in the 68000 this cycle is indivisible and the 
Address Strobe AS is asserted through the entire cycle. However, DS is asserted twice 
for two accesses: a read then a write. The dynamic RAM controller and the DP84322 
respond to this read-modify-write instruction as follows (refer to the TAS instruction 
timing diagram for clarification). First, the selected RAS goes low as a result of AS going 
low, and this RAS output will remain low throughout the entire cycle. Then the 
DP84322's selected CAS output (CASL or CASU) goes low to read the specified data 
byte. After this read, DS goes high causing the selected CAS to go high. A few clocks 
later R/W goes low and then DS is reasserted. As DS goes low, the selected CAS goes 
low strobing the CPU's modified data into memory, after which the cycle is ended 
when AS goes high. 

The two CAS outputs from the DP84322 however, can only drive one memory 
bank. For additional driving capability, a memory driver such as the DP84244 should 
be added to drive loads of up to 500 pF. 

Since this DP84322 interface circuit is designed to operate with all of the 68000 
speed versions, a status input called WAIT is used to distinguish the 8 MHz from the 
others. The WAIT input should be set low for a 6 MHz or· less allowing full speed of 
operation with no wait states. Data Transfer Acknowledge input (DTACK) of the 68000 
at these speeds is automatically inserted during S2 for every memory transaction cycle 



Applications 213 

and is then negated at the end of that cycle when UDS and/or LDS go high. For the 8 
MHz 68000 however, a wait state is required for every memory transaction cycle. At 
these speeds, the WAIT input is set high, selecting the DP8409's CAS output to generate 
DTACK and again DTACK is negated at the end of the cycle when UDS or LDS goes 
high. Note that DTACK output is enabled only when the DP8409's CS is low. Therefore 
when the 68000 is accessing 1/0 or ROM (in other words, when the DP8409 is not 
selected), the DP84322 's DTACK output goes high impedance logic 'I' through the 
external pull-up resistor and it is now up to the designer to supply DTACK for a proper 
bus cycle. 

Table 8.12 .4 indicates the maximum memory speed in terms of the DRAM timing 
parameters: tcAc (access-time from CAS) and tRP (RAS precharge time) required by dif
ferent 68000 speed versions. 

Microprocessor Maximum Minimum Minimum 
Clock tcAC tRP tRAS 

8 MHz 125 ns 140 ns 220 ns 
6 MHz 90 ns 170 ns 290 ns 
4 MHz 270 ns 280 ns 450 ns 

Table 8.12.4 Memory Speed 

Pin 5 (R/W input to the DP84322) is not used as R/W when the WAIT input is high. 
Therefore, when WAIT is high and pin 5 is low, this is configured for the 8 MHz 68000. 
The dynamic RAM controller in this configuratfon operates in mode 5 and mode 1. 

When both WAIT and pin 5 are high, this is configured for 4 MHz and 6 MHz 
68000, allowing only two microprocessor clocks for memory refresh. Furthermore, 
the designer can use the DP8408 because the dynamic RAM controller now operates in 
mode 0 and mode 5 or mode 6. In addition, the.programmable refresh timer, DP84300, 
should be used to determine the refresh rate (RFCK) and to provide the refresh request 
(RFRQ) input to the DP84322. The refresh timer can provide over two hundred differ
ent divisors. RFRQ is given at the beginning of every RFCK cycle arid remains active 
until M2 goes low for memory refresh. The DP84322 samples RFRQ when AS is high, 
then sets M2 low for two microprocessor clocks, taking the DP8408 or DP8409 to the 
external control refresh mode. RASiN for this refresh is also issued by the DP84322. If a 
memory access is pending, RASIN for this access will not be given until it is delayed for 
approximately one microprocessor clock, allowing RAS precharge time for · the 
dynamic RAMs. 



214 Programmable Logic Design Guide 

The following table indicates different memory speeds in terms of the DRAM 
parameters required by 4 MHz and 6 MHz 68000: 

Microprocessor 
Clock 

4 MHz' 
6 MHz 

Maximum 
tcAc· 

290 ns 
110 ns 

Minimum 
tRAS 

200 ns 
125 ns 

Minimum 
tRP 

225 ns 
140 ns 

Table 8.12.5 Memory Speed of 68000 

Minimum 
tRAH 

20 ns 
20 ns 

When WAIT= 1, pin 5 = 0 (8 MHz), the PAL device controller supports read and 
write cycles with one inserted wait state, forced refresh with five wait states inserted 
if CS is valid, and hidden refresh. This PAL device mode does not support the TAS 
instruction. 

When WAIT ~ pin 5 = 1 ( 4-6 MHz), the PAL device controller supports read and 
write cycles with no wait states inserted, and forced refresh with two wait states 
inserted if CS is valid. This PAL device mode does not support the TAS instruction and 
only supports hidden refresh when used in mode 5 with the DP8409 controller. 

The DP84322 can possibly be operated at 8 MHz with no wait states (WAIT= "O") 
given the following conditions: 

FAST PAL DEVICE (PAL 16R4A) 
S2 + S3 + S4 +SS = 250 ns 
RAS IN delay = 60 ns (AS low max.) 

+ 25 ns (Fast PAL delay)= .85 ns max. 
RASIN to CAS delay DP8409-2 = 130 ns max. 
External CASH,L generation using 74S02 

and 74S240 
7.5 ns (74S02) + 10 ns.(74S240) - 7.5 ns (less load 
on 8409 CAS line)= 10 ns max. 

Transceiver delay (74LS245) = 12 ns max. 
68000 data setup into S6 = 40 ns min. 
: . Minimum tCAc = 5 3 ns 

= 250 - 85 - 130 - 10 - 12 + 40 
Minimum tRAs = 240 ns 
Minimum tRP = 150 ns 
Minimum tRAH = 20 ns 

Refresh Cycle 

Since the access sequence timing is automatically derived from RAS IN in mode 5, R/C 
and CASIN are not used and now become Refresh Clock (RFCK) and RAS-generator 



Applications 215 

clock (RGCK) respectively. The Refresh Clock RFCK may be divided down from RGCK, 
which is the micropocessor clock, using the DM74LS393 or DM74LS390. RFCK pro
vides the refresh time interval and RGCK the fast clock for all-RAS refresh if forced 
refreshing is necessary. The DP8409 offers both hidden refresh in mode 5 and forced 
refresh in mode 1 with priority placed on hidden refreshing. Assume 128 rows are 
being refreshed, then a. 16µs maximum clock period is needed for RFCK to distribute 
refreshing of all the rows over the 2 ms period. 

The DP8409 provides hidden refreshing in mode 5 when the refresh clock (RFCK) 
is high and the microprocessor is accessing RAM. In other words, when the DP8409's 
chip select is inactive because the microprocessor is not accessing elsewhere, all four 
.RAS outputs follow RAS IN, strobing the contents. of the on-chip refresh counter to 
every memory bank. RASIN going high terminates the hidden refresh and also incre
ments the refresh counter, preparing it for the next refresh cycle. Once a hidden 
refresh has taken place, a forced refresh will not be requested by the DP8409 for the 
current RFCK cycle. 

However, if the microprocessor continuously accessed the DP8409 and memory 
while RFCK was high, a hidden refresh could not have taken place and now the system 
must force a refresh. Immediately _after RFCK goes low, the Refresh Request signal 
(RFRQ) from the DP8409 goes low, indicating a forced refresh is necessary. First, when 
RFRQ goes low any time during S2 to 57, the controller interface circuit waits until the 
end of the current memory access cycle and then sets M2 (RFSH) low. This refresh takes 
four microprocessors clocks to complete. If the current cycle is another memory cycle, 
the 68000 will automatically be put in four wait states. 

Alternately, when RFRQ goes low while AS is high during SO to S 1, M2 is now set 
low at 52. Therefore, it requires an additional microprocessor clock for this refresh. 
Once the DP8409 is in mode 1 forced refresh, all the RAS outputs remain high until two 
RGCK trailing edges after M2 goes low, when all RAS outputs go low. This allows a mini
mum of one and a half clock periods of RGCK for RAS precharge time. As specified in 
the DP8409 data sheet, the RAS outputs remain low for two clock periods of RGCK. 
The refresh counter is incremented as the RAS outputs go high. Once the forced 
refresh has ended, M2 is brought high, the DP8409 back to mode 5 auto access. Note 
that RASIN for the pending access is not given until it has been delayed for a full micro
processor clock, allowing RAS precharge time for the coming access.· 

If the 68000 bus is inactive (i.e., the 68000's instruction queue is full, or the 68000 
is executing internal operations such as a multiply instruction, or the 68000 is in half 
state ... ) and a refresh has been requested, a refresh will also take place because RFRQ 
is continuously sampled while AS is high. Therefore, refreshing under these conditions 
will be transparent to the microprocessor. Consequently, the system throughput is 
increased because the DP84322 allows refreshing while the 68000 bus is inactive. 

The 84322 is a standard National P~ device part (PAL16R4). The user can 
modify the PAL equations to support his particular application. The 84322 logic 
equations, function table, and logic diagram can be seen at the end of this section. 



216 Programmable Logic Design Guide 

68000 MEMORY READ CYCLE (WAIT= 0, PIN 5 = R/W) 

CLOCK 

A1·A23 H "-----------v.-~_L_io_A_o_o_R_E_s_s __________ --')~-----

OUTPUTS AS 
FROM 
68000 

UDS, 

LOS 

RiW 

RASIN 

RFSH 
OUTPUTS 

FROM 
DP843~2 

DTACK 

CASU, 

CASL 

RASO~ SELECTED RAS. 

RAS3 
OUTPUT 

QO-Q8 COLUMN ADDRESS 

OUTPUTS 
FROM CAS 

DP8409 

WE 

RFRQ 

DRAM 
OUTPUT 

tcAC -I toFF:1 

-----------------------....:.----.....c( MEMORY DATA 'j---

Figure 8.12 .4 Timing Diagram; 68000 Memory Read Cycle 



CLOCK 

AO-A15 

AS 

OUTPUTS 
FROM 
68000 

UOS,LOS 

RJW 

RASIN 

RFSH 
OUTPUTS 

FROM 
OP84322 

DTACK 

CASU, 
CASL 

RASO-
RAS3 

ao-as 

CAS 
OUTPUTS 

FROM 
OP8409 

WE 

RFRQ 

ORAM 
OUTPUT 

Figure 8.12.5 

Applications 217 

MEMORY READ CYCLE ANO FORCED REFRESH (WAIT= 1, PIN 5 = 0) 

OP84322 DETECTS START OF I- OP84322 CONTINUES I 
f-CYCLE, SO INSERTS REFRESH CYCLE - MEMORY ACCESS CYCLE-

4 µP CLOCK PERIODS 

____________ ....,.,...._ALL 

RAS OUTPUTS 

REFRESH ADDRESS 

MEMORY 
DATA 

Timing Diagram; 68000 Memory Read Cycle and Forced Refresh 



218 Programmable Logic Design Guide 

OUTPUTS 
FROM 

TAS INSTRUCTION CYCLE (WAIT= O, PIN 5 = RIW) 

so S1 S4 S6 SS S10 . S12 514 S16 S18 SO 

CLOCK 

S2 sa ·ss S7 S9 S11 S13 S15 S17 S19 

A1-A23 J--< _________ A_o_o_R_Es_s _________ }-

68000 UDS, 

LOS 

RiW 

RASIN 

RFSH' 
OUTPUTS 

FROM 
DP84322 

DTACK 

CASU, 

CASL 

to FF 

RASO· 
SELECTED RAS 

RAS3 'OUTPUT 

QO-QS COLUMN ADDRESS 

OUTPUTS CAS 

FROM 
DP8409 

WE 

RFRQ 

DRAM 
OUTPUT 

CPU DATA 

Figure 8.12.6 Timing Diagram; TAS Instruction Cycle 



(J) == 0 

!; ~ g 
f: II. co 
:::> 
0 

(J) == ~ 
!;~a 
a.. "- ao ... a.. g Q 

(J) == 0) 

!; ~ : 
0..11. a.. !; Q 
0 

Applications 219 

MEMORY READ CYCLE (WAIT= 1, PIN 5 = 0) 

CLOCK 

A1·A23 ==>---< ...... ______________ A_o_o_R_E_ss ______________ ~)>------

AS 

uos, 
LOS 

RiW 

RASIN 

RFSH 

DTACK 

CASU, 
CASL 

RASO-
RAS3 

QO-QB 

CAS 

WE 

---tcAc-

SELECTED 
RAS OUTPUT 

COLUMN ADDRESS 

DRAM MEM 
OUTPUT---------------------------------------c. ___ o_A_TA __ ~ 

Figure 8.12. 7 Timing Diagram; Memory Read Cycle 



220 Programmable Logic Design Guide 

(WAIT= 1, PIN 5 = 0) 

INPUTS 
FROM 
68000 

DP84322 DETECTS DP84322 

I START OF CYCLE, so I MEMORYCONTINU~ 
-INSERTS REFRESH CYCLE - -- ACCESS CYCLE I 

ALL RAS 
OUTPUTS 

REFRESH ADDRESS 

-----------------------------------------c:MEMORY DATA 

Timing Diagram; Memory Read Cycle and For'ced Refresh 



A1-A23 
AS 

68000 CLK 

r-+ DTACK RiW 

UDS 

~ 
LOS 

DO-D15 

~ 

DP8408, DP8409 AND 68000 INTERFACE 

ADDRESS BUS ...... *AA.A. ...... ....t 
-,.. R0-6, 7, 8 00-6, 7, 8 ,..,,,,, -,. A0-6, 7,8 D1N ....-

RASO *AAA ---: RAS 
"Ill ,.. r-+ "YYT 

C0-6, 7, 8 __..... CASU 

....,. CASL 
ADDRESS J I--+ BO *A.AA. 

...... 
DECODER L...........+ B1 

WE ...,,,,,, __..... WE Dour -,. 

IT I 
,.. ADS ~ A0-6, 7,8 D1N 

....t 
....-

.. cs RAS1 *AAA. 
*RAS ...,,,,,, 

RFRQ --.. CASU 
~ CASL 

Dour 
Iii.. 

}·M2 
DP8408/9 -: WE ....,. 

DP84300 

-6. > r-+ .A 

"1"t CASIN .~ A0-6, 7,8 01N ....-
RAS2 *A.AA __... RAS -yyV 

RIC ....,. CASU 

*WIN • CASL Iii.. 
~ WE Dour ..,.. 

L+ cs VRASIN .. RASIN :~ 
~ AS RFSH 

, M2 (RFSH) ~ A0-6, 7,8 01N 
.... 

"1"-+ RiW MODE.{_; M1 
*AAA. 

.~ ~ 

__... 
UDS SOR 6-+ 

MO 
RAS3 -. ... ,... RAS . 

~ CASU __..... LOS DP8.!'~22 
r 

~ CASL .... 
~ CAS CAS I- *WE Dour * RFRQ DTACK 

-,.. 
~ 

"1"_. WAIT CASU 
__..... DRAMs 

~ OE CASL 
_:1 DP84244 
,..L 

BUFFER NECESSARY IF MORE 

DATA BUS THAN ONE BANK "'II~ 

*These outputs may need resistors. 

Figure 8.12.9 Modified System Block Diagram 

~ 
~ = Q 
Q'. 
0 a 
N 
N 
lo-I 



222 Programmable Logic Design Guide 

68000 MEMORY READ CYCLE (WAIT AND PIN 5=1). 

CLOCK 

ADDRESS >--C -----

COLUMN ADDRESS 

--------------------------------....c;(MEMORYDATA)>-------

Figure 8.12.10 Timing Diagram; 68000 Memory Read Cycle 



Applications 223 

68000 MEMORY READ CYCLE AND MEMORY REFRESH (WAIT AND PIN 5 = O) 

DP84322 DETECTS 

I START OF CYCLE SO I~ DP84322 CONTINUES __.J 

INSERTS REFRESH CYCLEr--MEMORY ACCESS CYCLE------i 

END WAIT STATE 

~OF~ 

(1-tcAC
SELECTED RAS OUTPUT 

COLUMN ADDRESS 

-ic::>-------------------------------------1.MEMORYDATA 

Figure 8.12.11 Timing Diagram; 68000 Memory Read Cycle and Memory Refresh 



224 Programmable Logic Design Guide 

PAL 16R4 
DP84322 
Dynamk RAM Controller Interface for the 
MC68000-DP8409 Memory System 
CK/AS IUDS /IDS R/RFRQ /CAS /CS WAIT GND 
/OE /CL /CU IC IB IA /RFSH /DTACK /RASIN VCC 

IF (VCC) RASIN = AS*RFSH*/A + 
RFSH*R*A*WAIT 

IF (CS) DTACK = IR*CAS*WAIT + 
UDS*/A*IB*/WAIT + 
LDS*/A*IB*/WAIT + 
AS*IR*/A*IB*WAIT + 
AS*IRFSH*R*/A*IB*WAIT 

RFSH: = /AS*RFRQ + 
RFSH*IR*/C*WAIT + 
RFSH*R*/A*WAIT + 
RFSH */C*IWAIT 

A:= RFSH 
B:= A 
C: = B 

IF (VCC) CU = UDS*CDS 
IF (VCC) CL = LDS*CAS 



Applications 225 

jcK AS UDS LOS R RFRQ CAS cs WAIT OE CL cu c Ii A. RFSH DTACK RASIN 

c H L L H H H H L L H H x x x x x H 
c H L L H H L H L L L L x x x x x H 
C' H L H H H L H L L H L x x x x x H 
c H H L H H L H L L L H x x x x x H 
c H H H H H H H L L H H H H H H z H 
c L L H H H H L L L H H H H H H L L 
c L L H H H L L L. L H L H H H H L L 
c L H H H H L L L L H H H H H H H L 
c L H H L H L L L L H H H H H H L L 
c L ·L H L H L L L L H L ·H H H H L L 
c H H H L H H L L L H H H H H H H H 
c H H H L L H L L L H H H H H L H H 
c H H H L L H L L L H H H H L L H H 
c L H L L H H L L L H H H L L L H H 
c L H L L H H L L L H H L L L L H H 
c L H L L H H L L L H H L L L H H H 
c L H L L H H L L L H' H L L H H H L 
c L H L L H L L L L L H L H H H L L 
c L H L L H L L L L L H H H H H L L 
c H H H L H L L L L H H H H H H H H 
c H H H L L H L H L H H H H H L H H 
c H H H L L H L H L H H H H L L H H 
c L L L L H H L H L H H H L L L H H 
c L L L L H H L H L H H L L L L H H 
c L L L L H H L H L H H L L L H H H 
c L L L L H H L H L H H L L H H H L 
c L L L L H L L H L L L L H H H L L 
c H H H L H L L H L H H H H H H L H 
c H H H L H H H H L H H H H H H z H 
c H H H H L H L H L H H H H H ~ H H 
c H H H H L H L H L H H H H L L H L 
c L L H H H H L H L H H H L L H H H 
c L L H H H H L H L H H ·L L H H H L 
c L L H H H L L H L H L L H H H L L 
c H H H H H L L H L H H H H H H H H 
c H H H H H H L H H H H z z z z H H 

Table 8.12.6 Function Table 



226 ·Programmable Logic Design Guide 

-CLOCK Inputs (0 31) 

1 D 1 2 3 4 5. 7 111011 12131415 11171111 2D21l2l3 24252127 · 21213031 

D 
I 
2 
3 
4 
5 
I 
7 

~ 

M' 
co 
I e 

Cl) 

§ 
~ 
u = "O e 
a. 

2 p 

uos .... 
~ 

3 .. 

Los .... 
4 .. ~ 

RIW .... 
5 .. .;'If_ 

RI~ 
6 .. 

AS"" 
~ 7 r·v 

cs .... 
8 ~~ 

w. ~IT .... 
~ 

9 .. 

• 9 
ID 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 

. , 

24 
25 
26 
27 
28 
29 
30 
31 

32 
33 
34 
35 
36 
37 
38 
39 

40 
41 
42 
43 
44 
45 
46 
47 

41 
49 
50 
51 
52 
53 
54 
55 

56 
57 
51 
59 
6lJ 
11 
12 
13 

0 I 2 3 4 5 6 7 I 91011 12131415 16171119 20212223 24252627 21293031 

-- ~-1-

"' RASIN IA 
IA 
IA 

~ 
19 IA 

LQ. 

... 
--~ -.... DTACK .... .... 
~ 

~ . 
18 

~ w:.. 

... 
~ 

1-o 
i-. 

~ 
i--. 

Q 
17 

Q 
_.... 
~ 

--H 

... 
~ 

~ ) flil- 16 

... 
~ 

~ 

~ ""' ~ 
j 

15 

... 
"'Z~ 

~ 

~ 
~ 

~ ~ 
_;/ 

14 ~ 

... 
~ ... 

-)... 

s * CASU 
7 
G: 13 
14' 
~ 

... ~ 
-
""" s ... 
14 CASL 14 
~ 

tt. 12 
~ 

~ ~ 11 

Figure 8.12.12 DP84322 Logic Diagram PAL Device 16R4 



Applications 227 

8.13 DP84332 DYNAMIC RAM CONTROLLER INTERFACE CIRCUIT FOR THE 
8086 AND 8088 CPUS 

General Description 

The DP84332 dynamic RAM controller interface is a PAL device for interface between 
the DP8408 dynamic RAM controller and the 8086 and 8088 microprocessors. No wait 
states are required for memory access. Memory refreshing may be hidden (no wait 
states) or forced (up to three wait states). 

The DP84332 supplies all the control signals needed to perform memory read, write 
and refresh. Logic is also included to insert a wait state when using slow memory. 

Dual-In-Line Package 

CLOCK 20 Vee 

AO 2 19 NC 

BHE 3 18 NC 

cs 4 17 NC 

ALE 5 16 RFSH 

RFCK 6 15 ROY 

AWAIT 7 14 CASH 

RFRQ 8 13 CASL 

NC 9 12 RASIN 

GND 10 11 OE 

TOP VIEW 
TL/F/5000-1 

Figure 8.13.1 Connection Diagram 



228 Programmable Logic Design Guide 

Features 

• Low parts count controller for the DP8408/DP8409. 

• Works with 8086 systems configured in min or max mode. 

• Performs hidden refresh using the DP8408 dynamic RAM controller. 

• Compatible with both the 8086 and 8088 microprocessors. 

• Capable of working at all CPU clock frequencies up to 8 MHz. 

• Standard National Semiconductor PAL device part (PAL16R8). 

• PAL device logic equations can be modified by the user for his specific application 
and programmed into any of the PAL devices in the National Semiconductor family, 
including the new high speed PAL devices. 

BHE---------------.1 
AO--------------... • CAS 

GENERATOR 

AWAIT--+ COUNTER RASIN 
GENERATOR 

CASH 
CASL 

------+----• RDY1 

CS--------------... 1 

ALE--------------... 1 

RFRQ -----------_,.• 
RFCK --------------,..• 

REFRESH 
REQUEST 
ENCODER 

Figure 8.13.2 Block Diagram 

TLIF/5000-2 



Applications 229 

Symbol Parameter Min Typ Max 

Vee Supply Voltage 4.75 5.00 5.25 

loH High Level Output Current -3.2 

loL Low Level Output Current 24 
(Note2) 

TA Operating Free Air Temperature 0 75 

Table 8.13.1 Recommended Operating Conditions 

Symbol Parameter Conditions Min Typ 

V1H High Level Input Voltage 2 

V1L Low Level Input Voltage 

Vic Input Clamp Voltage Vee= Min, 11= -18 mA 

VoH High Level Output Voltage Vcc=Min, V1H=2V, V1L=0.8V, loH=Max 2.4 

Vol Low Level Output Voltage Vee= Min, V1H=2V, V1L=0.8V, IOL= Max 

lozH Off-State Output Current Vcc=Max, V1H=2V, Va=2.4V, V1L=0.8V 
High Level Voltage Applied 

lozL Off-State Output Current Vcc=Max, V1H=2V, Va=0.4V, V1L=0.8V 
Low Level Voltage Applied 

11. Input Current at Vee= Max, V1=5.5V 
Maximum Input Voltage 

l1H High Level Input Current Vee= Max, V1=2.4V 

l1L Low Level Input Current Vee= Max, V1=0.4V 

las Short Circuit Output Current Vee= Max -30 

Ice Supply Current Vee= Max 150 

Table 8.13.2 Electrical Characteristics 

Commercial 

Symbol Parameter 
Conditions TA= 0°C to + 75°C 
RL=6670 Vee= 5.0V ~ 5% 

Min Typ 

tpo Clock to Output CL:45pF 15 

tpzx Pin 11 to Output Enable CL=45 pF 15 

tpxz Pin 11 to Output Disable CL= 5 pF 15 

tw Width of Clock l High 25 

l Low 25 

tsu Set-Up Time 40 

tH Hold Time 0 -15 

Note 1: Ice= max at minimum temperature. 

Note 2: One output at a time; otherwise 16 mA. 

Table 8.13.3 Switching Characteristics 

Units 

v 
mA 

mA 

oc 

Max Units 

v 
0.8 v 

-1.5 v 
v 

0.5 v 
100 µA 

-100 µA 

1.0 mA 

25 µA 

-250 µA 

-130 mA 

225 mA 
(Note 1) 

Units 

Max 

25 ns 

25 ns 

25 ns 

ns 
ns 

ns 

ns 



230 Programmable Logic Design Guide 

Mnemonic Description 

Input Signals 

CLOCK 

AO, BHE 

ALE 

RFCK 

AWAIT 

The CLOCK signal determines the timing of the outputs and should be 
connected directly to the 8086 clock. 

These inputs come from the 8086 CPU. They must remain stable dur
ing the memory cycle for proper operation of the CAS outputs. 

Chip enable. This input is used to select the memory and enable the 
hidden refresh logic. 

Address latch enable. This input is used to i~dicate the beginning of a 
memory cycle. 

Refresh clock. The period of this input determines the refresh interval. 
The duty cycle of this clock will determine the length of time that the 
circuit will attempt a hidden refresh. 

When connected to VCC, the DP84332 will insert an extra wait state in 
selected memory cycles. 

Refresh request. This input requests the DP84332 to perform a refresh. 
The state of the RFCK input will determine what type of refresh will be 
performed. 

Output Signals 

RASIN This output provides a memory cycle start signal to the DP8408, and 
provides RAS timing during refresh. 

CASH, CASL These signals are. the separate CASs needed for byte writing. Their 
presence is controlled by BHE and AO respectively. 

RDY This output is used to insert a wait state into the 8086 memory cycles 
when selected and during a forced refresh cycle where the 8086 
attempts to access the memory. The 8284A clock circuit should be 
configured so that ASYNC is enabled. 

RFSH This output controls the mode of the DP8408 dynamic RAM control
ler. When low, it switches the DP8408 into an all RAS refresh mode. 
This signal is also used to reset the refresh request logic. 

Functional Description 

A memory cycle starts when chip select (CS) and the address latch enable (ALE) are 
true. RASIN is supplied from the DP84332 to the DP8408 dynamic RAM controller 
which then supplies a RAS signal. to the selected dynamic RAM bank. After the neces-



Applications 231 

sary row address hold time, the DP8408 switches the address outputs to the column 
address. The DP84332 then supplies the required CAS signals (CASH, CASL) to the 
RAM. For byte operations, only one CAS will be activated. To differentiate between a 
read and a write, the DT/R signal from the CPU is inverted and supplied by the DP8408 
to the memory array. 

A refresh cycle is started by one of two conditions. One is when a refresh is 
requested (RFRQ is true), refresh clock (RFCK) is high, and a non-selected memory 
cycle is started (CE is not true, ALE is high). This is called hidden refresh because it is 
transparent to the CPU. In this case, the address supplied to the memories comes from 
the refresh counter in the DP8408, and no CAS signals are generated from the 
DP84332 . The second form of refresh occurs when a refresh is requested, refresh clock 
is low, and there is no memory cycle in progress. This is called forced refresh, because 
the CPU will be forced to wait during the next memory cycle to allow for the refresh to 
be performed. In this case, a refresh is performed as before, but any attempt to access 
memory is delayed by wait states until after the refresh is finished. In either case, the 
refresh request is cleared by the refresh line (RFSH), which also goes to the DP8408. 

In a standard memory cycle, the access can be slowed down by one clock cycle to 
accommodate slower memories. This extra wait state will not appear during the hidden 
refresh cycle, so faster devices on the CPU bus will not be affected. 

With higher speed systems, memory speed requirements will affect the perform
ance of the system. Table 1 shows memory speed requirements at three different CPU 
clock speeds. 

CPU tcAC 

Clock No Walt 1 Wait tRAH 
Frequency States State 

8 MHz :s 105 ns :s223 ns :s30 ns 
5 MHz :s170 ns :s370 ns :s30 ns 

Table 8.13.4 Memory Speed Requirements 

System Description 

For memory operation, the DP84332 can be directly connected between the control 
signals from the CPU chip set and the DP8408 dynamic RAM controller. Each CAS out
put of the DP84332 is capable of driving eight memory devices. If additional drive is 
required, a DP84244 buffer can be used to increase the fanout to the full capabilities of 
the DP8408 (eight memories per output of the DP84244). 

The 84332 is a standard National Semiconductor PAL part (PAL 16R8). The user 
can modify the PAL equations to support his particular application. The 84332 logic 
equations, function table, and logic diagram can be seen at the end of this section. 



INTERFACING THE DP8408 TO AN 8086 SYSTEM 

ADDRESS BUS 
.A 

..... 

I 
,. * _... _..... 

Q0-6, 7 
... A0-6, 7 ... ,. --,,. 

_..... 
R0-6, 7 RAS 3 * ,,. * RAS 16K, 

[ DM74LS139 
--,,. ... 

ADDRESS ~ CAS 64K 
PORT _..... 

C0-6, 7 ~ WE 
...._ ,. ... 

-v~ YC(<( 
.. B1 
....... BO 

~ 
.... ........ 

ALE * ADS 
--,,. 

~ cs RAS 2 * ..... 16K, ,. .. 
..... 64K ,... ...._ .--. ...... ,... ....-

DP84300 I+ DP8408 

~ 
_.... 

8086 10 MHz MAX · 
* 

--,,. 

8284A 
CLK 

MM 74LS04 RAS 1 ... ....... 16K, 

ASVNC OT/A 
-..... 64K 

..it_ 

~ 
><"' *WIN __. 
~ .. ....-

-
RFCK......, '7 

I+ RAS1R "-+ 
_..... 

RFRQ 
.. r-

....... ,. -..... 
* ,A. r-+ RDY1 ....... RAS 0 

__. 
16K, .. ... .... 

r+ AEN1 ..... __. 
64K --.. 

M2 ~ .. * ... = ...._ 
{ AO 

..... DP84332 (RFSH)IM1 MoWE LATCHED BHE 
,... . .... 

'1111 _.. .. 
J t t CASH~ cAsL DATA 

AWAIT ORA Ms 
CONTROL 

PORT 'O' =NO WAIT+ CASH _..~ ~ 
.1111 ~ '1' =ONE WAIT ~L _:J DP84244 * 

,..L 

.t OE SEE TABLE I 

FOR CK~8MHz M1 = 'O', MO= '1' 

"'lli"' 
FOR CK>8MHz M1 = '1', MO= 'O' ..,. 

DATA BUS *THESE OUTPUTS MAY NEED RESISTORS 

Figure 8.13.3 System Block Diagram 

~ 

N 
~ 
N 

~ a 

1 
~ -~ 
t"'"'I 
0 

aQ •. n 
0 
~ 
rlJ •. 
~ 
~ •. 
Q. 
~ 



Applications 233 

Refresh Request Logic 

To generate the refresh request for the DP84332, external circuitry is required. Figure 1 
shows how this can be implemented, using standard SSI and MSI logic. A DM74LS393 
counter is used to time the period between refresh cycles, while the DM74LS74 
flip-flop is used to record the need of a new refresh. A better solution is to use the 
24-pin DP84300 programmable refresh timer, as shown in Figure 2. This part allows a 
maximum amount of time for a hidden refresh to occur before lowering the refresh 
clock output, and implements the refresh request logic. 

"O" D Q 

SYSTEM 
CLOCK 

DIVIDER 
DM74LS74 

----<RFSH 

Figure 8.13.4 Using a Flip-Flop and a Counter for Refresh Request Logic 

SYSTEM 
CLOCK----1 

DIVIDE 
CONSTANT ---ltl 

RFSH ~---1 

RFCK 

DP84300 

Figure 8.13.5 Using the DP84300 Refresh Counter for Refresh Logic 



234 Programmable Logic Design Guide 

t1,..---j-t2 j-ta--j-t4 
--~~ -~__,; 

PCLK 

AD0-15---......c ADDRESS DATA READ 

ALE 

RAMADD~~~~--<( ROWADD ><-~~~~~c_o_Lu_M_N~AD_D_R_E_s_s~~~~-->--

Figure 8.13.6 Timing Diagram; Read Timing 



Applications 235 

t1--1--t2 t3--J--t4--1 ---PCLK 

AD0-15-----< ADDRESS WRITE DATA 

ALE 

OT/A 

RAM ADD-----( ROW ADD x ______ c_o_L_U_M_N_A_D_DR_E_s_s _____ )-

Figure 8.13.7 Timing Diagram; Write Timing 



236 Programmable Logic Design Guide 

1-t1-1-t2-1-t3-1-tw-1-tH--1 
PCLK 

ALE tsu 

READ DATA VALID~ 

DATA~~~~~~~~~~~~~~~~~-<(--~~--}---

Figure 8.13.8 Timing Diagram; Memory Cycle With 1 Wait State 



Applications 237 

1-t4-1 
PCLK 

RFCK 

ALE 

RASIN 
_____ ___. 

RAM ADD 

ROY '----- --
WAIT STATES DUE TO ALE 

Figure 8.13.9 Timing Diagram; Forced Refresh 



238 Programmable Logic Design Guide 

t1 t2 t3 

PCLK 

AD0·15 ADDRESS 

cs 

ALE 

cs 

RFCK 

RFSH tpo tpo 

RASIN tpo tpo 

RAs 

CAS 

RAM ADD ( REFRESH ADDRESS > 
Figure 8.13.10 Timing Diagram, Transparent Refresh 

PAL16R8 
Dynamic RAM Controller Interface for the 8086-8408 System 
CK AO /BHE /CS ALE RFCK WAIT /RFRQ NC GND /OE /RAS IN /CA /CB 
RDY /RFSH IA /B /MRQ VCC 

MRQ: = /RASIN*/CA*/CB*RDY*/RFSH*/A*IB*/MRQ*RFRQ*CS*ALE*/RFCK + 
MRQ*RASIN + 
RAISIN*/CA*/CB*RDY*RFSH*/A*MRQ*CS*ALE 

B: = RASIN*/CA*/CB*RFSH*/A*/B + 
RASIN*/CA*/CB*IRDY*/RFSH*/A*IB*WAIT + 
RASIN*RDY*/RFSH*A*/B 



A:= RASIN*ICA*ICB*RDY*/RFSH*/A*IB*/WAIT + 
RASIN*RDY*/RFSH*/A*B + 
RASIN*RDY*/RFSH*A*/B 

Appllcatlons 239 

RFSH: = /RASIN*/CA*/CB*RDY*/RFSH*/A*IB*/MRQ*RFRQ*/CS*ALE*RFCK* + 
/RASIN */CA*/CB* RDY*/RFSH */ A*IB*/MRQ* RFRQ*IRFCK + 
RASIN*/CA*/CB*RFSH*/A*/B 

/RDY: = /RASIN*/CA*/CB*RDY*/RFSH*/A*IB*MRQ*RFRQ*CS*ALE*/RCFK + 
RASIN*/CA*/CB*RDY*RFSH*/A*/MRQ*CS*ALE + 
/RAS IN */CA*/CB* RDY*/RFSH */ A*IB*/MRQ*IRFRQ*CS*ALE*WAIT + 
/RAS IN */CA*/CB*/RDY*/RFSH */ A*IB*MRQ*/RFRQ*WAIT + 
RAS IN */CA*/CB*/RDY* RFSH */A + 
/RAS IN */CA*/CB* RDY*/RFSH */ A*IB*/MRQ* RFRQ*CS*ALE* RFCK*WAIT 

CB:= RASIN*/CA*/CB*/RFSH*/A*IB*BHE + 
RASIN*CB*RDY*/RFSH*/A*B*WAIT + 
RASIN*CB*RDT*/RFSH*N*B 

CA:= RASIN*/CA*/CB*/RFSH*/A*IB*BHE + 
RASIN*CA*RDY*/RFSH*/A*B*WAIT + 
RASIN*CA*RDY*RFSH*A*/B 

RASIN: = /RASIN*/CA*/CB*RDY*/RFSH*/A*IB*/MRQ*/RFRQ*CS*ALE + 
/RAS IN */CA*/CB*/RDY*/RFSH */ A*IB*MRQ*/RFRQ + 
RASIN*/CA*/CB*/RFSH*/A*/B + 
RASIN*RDY*/RFSH*/A*B*WAIT + 
/RAS IN */CA*/CB* RDY*/RFSH */ A*IB*/MRQ.* RFRQ*ALE* RFCK + 
/RASIN*/CA*/CB* RDY*/RFSH */ A*IB*/MRQ* RFRQ*IRFCK + 
RASIN*/CA*/CB*RFSH*/A*IB + 
RASIN*RDY*/RFSH*A*IB 



240 Programmable Logic Design Guide 

CK AO BHE cs ALE RFCK WAIT RFRQ OE RASIN CA CB ROY RFSH A B MRQ 
c L L H L H L H L x x x x x x x x 
c L L H L H L H L H H H H H H H H 
c x x L H x L H L L H H H H H H H 
c L H L L x L H L L L H H H L H H 
c L H L L x L H L L L H H H L L H 
c x x H L H L H L H H H H H H H H 
c x x L H x H H L L H H L H H H H 
c H H L L x H H L L H H H H H L H 
c H H L L x H H L L H H H H L H H 
c H H L L x H H L L H H H H L L H 
c x x H 'L H H H L H H H H H H H H 
c x x H H H x L L L H H H L H H H 
c x x H L x x x L L H H H L H L H 
c x x x L x x H L H H H H H H H H 
c x x x L L x L L L H H H L H H H 
c x x x L x x x L L H H H L H L H 
c x x x L x x H L H H H H H H H H 
c x x L H L x :.. L L H H L L H H L 
c H L L L x x x L L H H L L H L L 
c H L L L x x H L H H H L H H H L 
c H L L L x L H L L H H H H H H H 
c H L L L x L H L L H L H H L H I; 
c H L L L x L H L L H L H H L L H 
c x x L L x L H L H H H H H H H H 
c x x x L L x L L L H H H L H H H 
c x x L H x H x L L H H L L H L L 
c L L L L x H x L H H H L H H H L 
c L L L L x H H L L H H L H H H H 
c L L L L x H H L L L L H H H L H 
c L L L L x H H L L L L H H L H H 
c L L L L x H H L L L L H H L L H 

c x x L L x H H L H H H H H H H H' 

c x x L H H L L L L H H H H H H H 
c H L L L x L x L L H L H H L H H 

c H L L L x L x L L H L H H L L H 

c x x L L x L x L H H H H H H H H 

c x x L H H H L L L H H L H H H H 

c x x L L x x x H z z z z z z z z 

Table 8.13.5 Function Table 



Applications 241 

1 Inputs (0-31) 
CLOCK~~~~~~~~~~~~~~~~~~~--, 

AO 

BHE 

cs 

ALE 

RFCK 

AWAIT 

NC 

DI 1 l •Ii 1 8 9 1 0 I I ; • 1) 14 I~ 1 b 11 1 o }) L/;J~ )1 ..... , 
D lal -*-
I 
I 

~ l . 
I 
i 
1 

~ 

-+-l-~4-1-l-+--+-~~14-3-+-+-~3~~-l-+-~4-1-1-+--+-H-1-+·H-l--~=~,--~Q 
....i---1-1-+-< ......... -+-+-+--++-+-+~+++--H-H--+-+-+-+-+++-+-~~~-_,<----11--1~~~--' I 

~~ 

I 
9 

ID 
II 

11 
IJ 
14 
11 

3 
~ ... ...,. 

16 

" lj 

'9 
10 
11 
22 
ll 

4 ... 
~ 

l• 
II 
l6 
11 
lb 
19 
1D 
JI 

5 ... 
~ 

l1 
Jl 
JO 
JI 
l6 
JI 
JI 
l9 

6 .... 
~ 

... V" 

4D 
41 

41 
4J .. 
41 
46 
41 

7 ... 
~ 

48 
'9 
ID 
II 
11 
ll 
14 
II 

8 ... 
,;>. 

16 
II 
18 
19 
6D 
ii 
61 
6l 

9 .. 
~ 

,.... , 

..... , 
"""' """' ] ::i:: R-
~ 

"""' t--..... 
' 

D 1 IJ 4 ~fl 1 K 91011 1/11'41~ 16111819 2U11ll/, l~l'ilbJJ llU~)Oll 

Figure 8.13.11 84332 Logic Diagram PAL16R8 

15 

ROY 



242 Programmable Logic Design Guide 

8.14 A PAL DEVICE INTERFACE BETWEEN THE NATIONAL SEMICONDUCTOR 
NS32032 MICROPROCESSOR, DP8409 DYNAMIC RAM CONTROLLER, AND 
THE DP8400 EXPANDABLE ERROR CHECKER AND CORRECTOR 

TERMINAL 

RS-232 

STATIC RAM 
NMC2116(2) 

ROM 
NMC2764(2) 

MONITOR 

CPU & 
CLOCK CHIP 

NS32202 
NS32201 

SERIAL 1/0 

INS8251 

PARALLEL 
PORT 

INS8255 

,..,.~ .... t~ ·"~"""!~ 
[~ ~~ .... ::::: ADDRESS BUS ~4 BITs 

,..-
'-.> "Ill: i;-- 1111..._)? ,; 

[ DATA BUS a----.;;a.c;...16-B-IT_S_.. _ _. 

[ ~ ~~--~,;;:ii,,c;;~----------' 
CONTROL BUS 

~ ~ vA..._ _____ __ 

~ 

~~ 
_.,. 

"11111 >i- ADDRESS ............. ~ ~ 

~ 
MEMORY (DRAM) 

IA .. (256K DRAMS) 4-PAL .... 
CONTROLLER 

CONTROL DP8400 DP8409 __._ 4 BANKS OF 22 ,, ~ ., 2M BYTES PLUS 
,, CK BITS 

11'" ~" ~ -ij CONTROL .. ~ .. ;iii. 

CONTROL 8409 

DATA 

CHECK BITS 

Figure 8.14.1 DP8400, DP8409, NS16032 6 MHz Computer System 

• Application 8.14 is contributed by lfebster (Rusty) Meier, Design Engineer of National Semiconductor 



Applications 243 

Four PAL devices were used in this application in order to interface between the 
NS32032, DP8409 and the DP8400. These PAL devices have the following features: 

1. The PAL devices control the following types of cycles: 
a) READ cycles with no errors detected, ALWAYS CORRECT MODE 
b) READ cycles with single error detected, the correct data will be written back 
to memory 
c) WRITE cycles 
d) BYTE WRITE cycles 
e) DRAM REFRESH cycles 
The PAL devices take care of everything, no extra control logic is needed. 

2. The outputs of the PAL device control the DP8409, the DP8400 and insert 
WAIT states at the appropriate times into the NS32032 cycles. 

3. The PAL device contains outputs to interrupt the NS32032, or cause a cycle 
abort if an error greater than a single error is detected (DOUBLERR), or if there 
is a bus parity error in data transfer from the CPU to memory (PARITYERROR). 

4. This PAL device design should work up to 8Mhz with the NS32032. If it is 
desired to go faster, another WAIT state will have to be inserted into all cycles, 
and the PAL device equations will have to be adjusted accordingly. Another 
possibility would be to use the new oxide isolated DP8400 and the new DRAM 
controller DP8419 (pin compatible with DP8409 in modes 0, 1,4,5). These parts 
would allow considerably more time margin. 

5. As can be seen by looking at the PAL device logic diagrams some external logic 
is needed and some external logic may be added. For example, a system reset 
input could be added to allow the internal flip-flops to be set to a known state 
- in this case a refresh state (In PAL device number 1, for example, I used exter
nal logic to "NOR" the RFI/O input with a system RESET input). An output 
enable input was also included to allow all the PAL device outputs to be 
tri-stated. · 

6. This PAL device interface performs HIDDEN REFRESHES (CPU not accessing 
the Dynamic RAM controlled by the DP8409, indicated by /CS being high) 
assuming a four-T state processor access cycle. 

7. Logic diagrams, the PAL device equations, and the timing diagrams follow this 
introduction section. Basically everything is self-explanatory. 

8. I feel that if one is using this interface above 4-6MHz, he should use the fast 
PAL devices (example "PAL16R8A'.' instead of "PAL16R8"). The fast PAL devices 
have an input to output maximum time of 25ns and 15ns if it is a registered 
output. 



244 Programmable Logic Design Guide 

The slow PAL devices have an input-to-output maximum time of 35ns and 25ns 
if it is a registered output. Depending on the specific type of PAL's and logic 
used, the user can calculate the speed requirements for the DRAM at the speci
fied processor frequency with the timing that I have chosen. 

9. The four PAL devices that I have-used allow full use of the DP8400 and all its 
modes of operation. For example, one can perform a complete diagnostic test 
of the DP8400 without needing to use the external memory. This is possible 
using an 1/0 port to control M2 and Ml of the DP8400, along with diagnostic 
control signals DIAGCS and DIAGD. These signals from the 1/0 port allow the 
user complete control over the operating modes of the DP8400 and its data 
syndrome, and check bit latches. 

PAL Device Number 1 Inputs 

1. FCLK Fast Clock (twice CTTL frequency) from NS32201 

2. CTTL Output clock from NS32201 

3. /CS Chip Select for the Dynamic RAM controll~d by the 
DP8409 and DP8400. 

4. /DDIN Data Direction in, from NS32032, indicates the direction 
of the data transfer during a bus cycle. 

5. RFI/O Refresh request output from the DP8409, is also used as a 
reset input to set PAL to a known state. 

6. INCY Output from PAL device number 2 indicating that the 
NS32032 is in an access cycle. 

7. /AOHBE If address bit O AND high byte enable (fromNS32032) are 
both low this input is high. Used to determine when byte 
operations are in progress. 

8. NTSO FromNS32201, indicating that timing state T2 is starting, 
it stays low until the beginning of T4. 

9. /ERRLATCH Output from PAL device number 3 indicating that any 
error, AE, was valid during a READ access cycle. 

10. /OE Controlled externally, TRI-STATE PAL outputs. 



ADDRESS/DATA BUS 

DECODER 

Applications 245 

B1 

00-7 ---,..,..,.-1ADORESS 
AFRO 

(RFl/O) 

DP8409 

--~oJ\l\.r---- RAS o-3 
-----~..,..,.,,,.__-MCAs 
I--"""~""",.___.. WE 

-__,
8
--M74LS245M-.... 8 .............. ---------...------HDI0-7 

ADDRESS/ 
DATA 0-7 

ADDRESS/ 
DATA 8-15 

DATA 
TRANSMIT/ 

RECEIVE 
DIR 

G 

PBUF1 n----~ i+----
8
-+--.,...----t 74LS244 

OBO 

OB1 OB1 

CSLE CSLE 

OLE OLE DP8400 

OLE OLE 

M2 M2 C0-5 

OeS cs 
":' 

@ RESISTOR REQUIRED DEPENDS ON DRAM LOAD. 
• R=2.7Kf! 

8 
74LS244 

6 

R• 

-::" 

74LS244 

MEMORY 

008-15 

000-7 

0016-21 
(CHECK BITS) 

0116-21 
(CHECK BITS) 

Figure 8.14.2 DP8400/8409 System Interface Block Diagram 



246 Programmable Logic Design Guide 

PAL Device Number 1 Outputs 

1. /RAS IN Input to DP8409. 

2. /RFSH Input to DP8409, causes the DP8409 to enter mode 1 to 
do a refresh. 

3. /lDLY Delay used by the PAL devices to determine the state of 
the processor system. 

4. /2DLY Delay used by the PAL devices to determine the state of 
the processor system. 

5. /3DLY Delay used by the PAL devices to determine the state of 
the processor system. 

6. /4DLY Delay used by the PAL devices to determine the state of 
the processor system. 

7. /ODCLEN /OLE, DLE, CSLE enable latch signal. 

8. /CYCLED Indicates that a processor access cycle is complete. 

PAL Device Number 2 Inputs 

1. /RFSH 

2. /RAS IN 

3. AO 

4. /HBE 

5. /DDIN 

6. /ADS 

7. NTSO 

8. /2DLY 

9. /4DLY 

10. /ERRLATCH 

11. CSOE 

Output from PAL device number 1 that indicates whether 
the DRAMs are being refreshed. 

Output from PAL device number 1. 

Output from NS32032, address bit 0. 

Output from NS32032, high byte enable. 

Data Direction in, from NS32032. 

Address strobe from NS32032. 

Output fromNS32201. 

Output from PAL device number 1. 

Output from PAL device number 1. 

Output from PAL device number 3 indicating that an 
error has occured during a READ cycle. 

Chip select Output Enable, TRI-ST A TE the outputs of the 
PAL device when low, and also used· for other control 
purposes. 



Applications 247 

PAL Device Number 2 Outputs 

1. /OBO Controls DP8400 output buffer for byte "O". 

2. OBl Controls DP8400 output buffer for byte "1". 

3. /PB UFO Controls the processor buffer transceiver 
for byte "O". 

4. /PBUFl Controls the processor buffer transceiver for byte "1 ". 

5. /DOUTB Controls memory buffers that interface between the 
DRAM and the DP8400/memory data bus. 

6. /INCY Output indicating that the NS32032· is in an access cycle. 

7. /CWAIT Output toNS32201 that causes WAIT states to be inserted 
into the NS32032 bus cycles. 

PAL Device Number 3 Inputs 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

/DDIN 

/RFSH 

/AOHBE 

/ERRLATCH 

/lDLY 

/2DLY 

/3DLY 

/4DLY 

/RESET 

AE 

EO 

El 

Output fromNS32032. 

Output from PAL device number I indicating a forced 
refresh of the memory. 

Output of AO and /HBE logically NORed together. There
fore, if either input is high this signal will be low. This sig
nal is useful to determine whether words or bytes are 
being written. 

Output from PAL device number 4 indicating that an error 
has occurred during a CS READ cycle, it may be a single or 
multiple bit error. 

Input from PAL device number 1. 

Input from PAL device number 1. 

Input from PAL device number 1. 

Input from PAL device number 1. 

Input from external logic that resets the double bit error. 
latch /DOUBLERR or the parity error latch PARITYERR. 

Output from DP8400 indicating an error. 

Output from DP8400 indicating the type of error. 

Output from DP8400 indicating the type of error. 



248 Programmable Logic Design Guide 

13. /PARITYERROR This is an output of this PAL device also. This input indi-
cates that a PARITY error has occurred during a WRITE 
cycle. 

14. CSOE Chip Select Output enable, tristates the registered out
puts of the PAL device when low. 

PAL Device Number 3 Outputs 

1. 

2. 

3. 

/WIN 

/MODECC 

/PARITYERR 

Input to the DP8409. 

Input to the. DP8400, changes between READ and 
WRITE modes. 

Can be used to interrupt the system when a parity error 
has been detected during a WRITE cycle. 

PAL Device Number 4 Inputs 

1. FCLK Fast clock fromNS32201. 

2. ODCLEN /OLE, DLE, CSLE latch enable input. 

3. · DIAGCS Enable input from I/O port for diagnostics to enable 
CSLE, check bit syndrome latch enable . 

. 4. DIAGD Enable input from 1/0 port for dagnostics to enable DLE, 
data latch enable. 

5. /RESET Reset input from I/O port to reset PAL error latches. 

6. /CYCLED Output from PAL device number 1 indieating that a pro-
. cessor access cycle is complete. 

7. AE Output from DP8400 indicating an error. 

8. /EOI When this input is low it indicates that either error flag 
EO or El was high. 

9. /3DLY This is an input from PAL device number 1. 

10. /OE Output from 1/0 port that enables the PAL outputs. 

11. /DDIN NS32032 input that indicates the direction of the bus 
transfer during a bus cycle. 

12. /RFSH Output from PAL device number 1 indicating a DRAM 
refresh cycle. 



Applications 249 

PAL Device Number 4 Outputs 

1. 

2. 

3. 

4. 

5. 

DLE 

CSLE 

/OLE 

/DOUBLE RR 

/ERRLATCH 

Output that controls the DP8400 Data latch. 

Output that controls the DP8400 Check bit Syndrome 
latch. 

Output that controls the DP8400 Output latch. 

Can be used to interrupt the system when a double bit 
error has been detected during a READ cycle. 

Used in the PAL device controller to indicate that an error 
has occurred during a /CS READ cycle, as indicated by AE 
being valid. 



250 Programmable Logic Design Guide 

32032 8 MHz "READ" CYCLE (NO ERRORS) WRITE CYCLE 

FCLK 

T1 

CTTL 

I I 
ADS I I I 

I I 

T2 TW T3 T4 

I 
I 
I 

I Ii RASIN ,' I ~ 
I . 1 ............. _....._.......,._..,... 

I I 
I ,, 
I 

I I I I 
RAS I I I \I 

I I I ... ,-............ -...,._...,.._,.. 

CAS I I 
I 1· ~ 

I· 
DP8400 MEM '"""I ...,.........,

1 
......,_,.'"" 

DATA BUS 

OLE,DLE 
CSLE I = ODCLE 

I I I 
CHECK BITS 

MODECC I I I 
I I I 

T1 T2 T3 T4 

I I I I 
I lf/ I I 
I I I I 

~ I I r: 
I I I 

~ I \1 I 
I I I I I 

~ I r 
DATA TO BE 

WRITTEN 

I I I I 
iii:iiJFO' iiBiJF1 ON LY I 

I 
I 

I WRITE ECC 

WIN I I I 
I I I 

..... ..--.-...----.~--..-..-...,.......--..,-...--,_..._..,D~:J?n 
I I I I I 

ODIN h I I 
I I 

__________________ Ii : 

I I I I I 
CWAIT I ~ '/ I I 

I I 
I 

AE 

Figure 8.14.3 Timing Diagram; Read Cycle and Write Cycle 



FCLK 

CTTL 

RASIN I 

RAS I 

CAS I 

DP8400 MEM I 

32032 8 MHz "READ" CYCLE 
W/SINGLE BIT ERROR 

DATA BUS _..,_.....,_....,_,....__.. ... 

OBtJ. PBUF1 I 
081, PBUFO I 

I I 
OLE, OLE I I I 
CSLE = ODf LE I 

MODECC I 

WIN I 

ERRLATCH 

I 

Applications 251 

"WRITE" CYCLE - EXTENDED 
FROM ERROR IN "READ" CYCLE 

DATA TO BE WRITTEN 

.1_____L 

PBUFO, 
PBUF1 ONLY 

Figure 8.14.4 Timing Diagram; Read Cycle With Simple Bit Error 



252 Programmable Logic Design Guide 

32032 8 MHz BYTE WRITE 

FCLK 

CTTL 

nl JI I 

ACIBi \f': : I 
RASINj I \ n 

I I 1 '-· ..... , -+--+--+--+ .......................... I I 
~1 :,: :n 

I I I ..... --,--CASI I ...................... __._ii--..,_.,.__ 
DP8400 MEM I I 

DATA BUS -1 __.......,1--'"--.....i --

DOUTB 

I 

OLE, OLE_....._......_..._ ....... --+_.. 
CSLE = ODCLE 

CHECK BITS .,.._...,_....,__,._ ...... -+C 

MODECC I 

WINI 

WEI 

I 
ODIN I 

. I 
I 

Figure 8.14.5 Timing Diagram; Byte Write 



FCLK 

CTTL 

NTSO 

CYCLED ~ 

I 
RFl/O I 

RFSH I 

I 

ODIN I 

I 
CWAIT I 

I 

Applications 253 

NEW 32032 FORCED REFRESH THEN ACCESS 

Figure 8.14.6 Timing Diagram; Forced Refresh Then Access 



FClJ( 

CTTL 

-CS 
-DOI 
RFI-

AB 

-HBE 

NTS 

-ADS 

-OE 

DIAGCS 
DIAGP 

RESET 

AE 

ED 

E1 

Figure 8.14. 7 Simulation Circuit 

-RASIN 
-RFSH 

- IDLY 

-2DLY 

-JOLY 

-4DLY 

-ODCLEN 

-CYCLED 

-080 

-081 
-PBUFO 

PBUF1 

DOU TB 

INCY 
CWAIT 

ODCLE 

LE 
SLE 

OLE 

WIN 
MODECC 

DOUBLE RR 

ERRLATCH 

PARITYERR 

N 

't· 

I 
ti' 
~ 
0 

(lQ 

""'' ~ 

0 
~ 
rlJ 

~-

~ 
""'' Q. 
~ 



SCALE 2:1 

CTTL 

-CS 

-ODIN 

NTSO 

-ADS 

-~ASIN 

-1DLY 

-2DLY 

-3DLY 

-4DLY 

-ODCLE 

-INCY 

-CYCLED 

-081 

-PBUFO 

-CWAIT 

-DOUTB 

-WIN 

-MODECC 

-ERRLAT 

TIME 591 

591 691 

I I 

-rL 
1 

-n 

-ru 

-n 

J 

Applications 255 

SIMULATION RESULTS 

READ (NO ERRORS) READ (W/SINGLE ERROR) 

STARTING TIME 591 ENDING TIME 1521 TRIGGER TIME 591 

791 891 991 1091 1191 1291 1391 1491 

I I 

ri.J n:_ I I I 

rtJ rtJ 
I I I 

rt.J rlJ rr_ 

l J l 

J 
1 l 

J 

1 

n r 
1 

l J 

l J 

Li J Ll 
1 I 

Figure 8.14.8 Simulation Timing Diagram; Read/Write Without Errors 



256 Programmable Logic Design Guide 

SCALE 2:1 

CTTL 

-CS 

-ODIN 

NTSO 

-ADS 

-RASIN 

-1DLY 

-2DLY 

-3DLY 

.,..4QLY 

-ODCLE 

-INCY 

-CYCLED 

-081 

-PBUFO 

-CWAIT 

-DOUTB 

-WIN 

-MODECC 

-ERRLAT 

READ (W/ERROR) 
CONTINUED 

TIME 1491 
1491 
I 

STARTING TIME 1491 
1591 1691 1791 
I I I 

WRITE STANDARD FROM PREVIOUS 
READ W/ERROR CYCLE 

ENDING TIME 2421 TRIGGER TIME 1491 
1891 1991 2091 2191 2291 
I I I I I 

2391 
I 

rt. rL rL rL rL rL n_ rL t-
J 

J 1 I 

I 
I-r 

l r 
I . ·. 

il l I-_r1 
I ~ 

J l t-r 
l 

... 
l J 

l J .l ... r 
l ~ J 

I 

l I l r t-

l 

1 I 

Figure 8.14.9 Simulation Timing Diagram; Read With Error and Write Cycle 



Applications 257 

BYTE WRITE WRITE 

SCALE 2:1 TIME 2391 STARTING TIME 2391 ENDING TIME 3321 TRIGGER TIME 2391 
2391 2491 2591 2691 2791 2891 2991 3091 3191 3291 

I I I I I ~ 
CTTL -rL rU ru rU ri.J rLl r1.... rU 
-CS 

-ODIN 

NTSO l I ~ 
-ADS 

~ ru 
-RASIN J 

-1DLY l u 
-2DLY J 

-30LY 1 

-4DLY .... 
-ODCLE ~ 

-INCY 
~ n I l 

-CYCLED ..... l 
-091 L J 

-PBUFO 1 I 1-
-CWAIT l j_ l J 

-DOUTB 1 I 

-WIN l J 

-MODECC I l 

-ERRLAT 

Figure 8.14.10 Simulation Timing Diagram; Byte Write 



258 Programmable Logic Design Guide 

SCALE 2:1 · TIME 3591 

3591 3691 3791 3891 3991 4091 4191 4291 4391 4491 
.l_ .l_ .l_ _l_ _l_ _l_ _l_ .l_ .l_ _l_ 

CTTL 

I 
11 

1 
12 · rw1 

1
rw2 

1 
TW3 

1 
TW4

1 
TW5 rws _run-rL-rLrun_rLru 

-CS 

-ODIN -II 
RFl-0 

AO 

-HBE 

NTSO L 

-ADS -t1-I 
-RASIN ...ti 

-RFSH 
..... L 

JD I 

-1DLY -n 1 

L L 

-2DLY I l l 
-3DLY l 7 1 u 
-4DLY J \ 

-ODCLE ~ 
-INCY 

:s:: 
1 ~ ~ 

. "-'" 

-CYCLED -
-080 

-081 

-PBUFO 

-PBUF1 

Figure 8.14.11 Simulation Timing Diagram; Forced Refresh Then Access 



Applications 259 

WRITE FORCED REFRESH & READ ACCESS 
. (W/ERROR) 

SCALE 2:1 TIME 3101 STARTING TIME 3101 ENDING TIME 4031 TRIGGER TIME 3101 

3101 3201 3301 3401 3501 3601 3701 3801 3901 4001 

I I I I I I I I I I 

CTTL -rL r-L rl-n... r-L rL. rL rL 
-CS 

-ODIN 
l 

NTSO 
II IJ II 

-ADDS -M-1 
-RASIN 

I 
-1DLY 

1 I l 
-2DLY i n 
-3DLY 

l r l 

-4DLY -
-ODCLE 

-INCY - l 

-CYCLED -
-081 

-PBUFO 
l I 

-CWAIT 
l ~ ~ l 

-DOUTB 

-WIN -~ l I 

-MODECC -n I 

-ERRLAT 

Figure 8.14.12 Simulation Timing Diagram; Write, Forced Refresh and Read 
Access 



260 Programmable Logic Design Guide 

FORCED REFRESH FOLLOWED BY READ ACCESS (W/ERROR) 

SCALE 2:1 TIME 4001 STARTING TIME 4001 ENDING TIME 4931 TRIGGER TIME 4001 

4001 4101 4201 4301 4401 4501 4601 4701 4801 4901 

I I I I I I I I I I 

CTTL -1:.rLrUn:.n:.rt..rLri:.. I-
-CS 

-ODIN 

NTSO 

-ADDS 

-RASIN 

-1DLY 

r I-

/__ 
I l 

-2DLY 

-3DLY 

-4DLY 

~ J_P 1 
... 

~ L l ~ 

J7 r ' z _L 

z 
-ODCLE 

-INCY 

I l L _J_ 
-......- T 

-CYCLED 1 

-PBUFO 

-CWAIT 

l 
II ~ ~ L 

n ~ 
.~ 

L 

j_ 1 j_ l 

-081 

-DOUTB l J l 
-MODECC ~ 

-WIN 

-ERRLAT l l 
Figure 8.14.13 Simulation Timing Diagram; Forced Refresh Followed by Read 

Access (With Error) 



Applications 261 

PAL Device Number 1 
This PAL Device is Part of a Four PAL Device Set Needed to Control the 32201, 
8409, 84001nterlace 

PALI6R8A 

RFSH: = 
/RFIO* /IDLY* /2DLY* /INCY* /CTTL + 
RFSH * /RFIO + 
RFSH* IDLY+ 
RFSH*4DLY 

IDLY:= 
RFSH * /RFIO + 
RFSH*IDLY*/4DLY + 
RFSH* IDLY*CTTL + 
/RFSH*RASIN* /2DLY* /3DLY* /4DLY + 
/RFSH*CS*RASIN*/4DLY*DDIN + 
/RFSH*CS*RASIN* /4DLY* /DDIN* AOHBE + 
/RFSH*CS* IDLY*CTTL *DDIN + 
/RFSH*CS* lDLY*CTTL */ODIN* AOHBE 

2DLY: = 
IDLY*/4DLY + 
IDLY*RFSH + 
/RFSH*CS* IDLY*DDIN + 
/RFSH*CS* IDLY* /ODIN* AOHBE 

3DLY: = 
2DLY*/4DLY 
2DLY*RFSH + 
/RFSH*CS*2DLY*DDIN + 
/RFSH*CS*3DLY*ERRLATCH*RASIN + 
/RFSH* CS* 2DLY* /ODIN* AOHBE 

4DLY: = 
3DLY*RASIN + 
3DLY*RFSH + 
/RFSH*CS*30LY*20LY*DDIN + 
/RFSH*CS*3DLY*ERRLATCH + 
/RFSH* CS* RAS IN* 4DLY* /ODIN* AOHBE , 

RASIN: = 
/RFSH*INCY*/CYCLED*/4DLY*/CTTL + 
/RFSH*CS*RASIN*ODIN* IDLY+ 
/RFSH *CS* RAS IN* ODIN* ERRLATCH *CYCLED+ 
/RFSH*CS*RASIN*DDIN*/CYCLED + 
/RFSH *CS* RAS IN* /ODIN* 3DLY * AOHBE + 
/RFSH * INCY* /NTSO * /ERRLATCH * /4DLY* RAS IN 

; RFSH in idle states or in long 
; accesses of, other devices or 
; at the beginning of an access 

; Start RFSH IDLY 
; Hold RFSH IDLY 
; Extend RFSH IDLY 
; For READS and WRITES 
; For READs 
; For BYTE WRITES 
; Extend IDLY during READ 
; Extend IDLY during BYTE WRITEs 

; For READs or WRITEs 
; Extend for RFSH 
; Extend for READ 
; Extend for BYTE WRITE 

; For READS or WRITES 
; Extend for RFSH 
; Extend for READ 
; Extend for READ with error 
; Extend for BYTE WRITE 

; For READs or WRITEs 
; Exten,d for RFSH 
; Extend for READ 
; Extend for READ with error 
; Extend for BYTE WRITE 

; Start /RASIN 
; READ cycle without error 
; READ cycle with error 
; WRITE cycle 
; BYTE WRITE cycle 
; Hidden RFSH, assume on 
; four 'T' States. 



262 Programmable Logic Design Guide 

CYCLED:= 
/RFSH*1DLY*2DLY*3DLY*4DLY + 
/RFSH*/DDIN*2DLY*3DLY*/AOHBE + 
CYCLED*CTTL + 
CYCLED* /NTSO + 
CYCLED* RAS IN* /DDIN * AOHBE 

ODCLEN: = 
CS* /RFSH*DDIN*RASIN*2DLY* 
/4DLY* /ERRLATCH + 
CS* /RFSH* /DDIN*RASIN* /2DLY* 
/3DLY* /4DLY* /AOHBE + 
CS* /RFSH* /DDIN*RASIN*2DLY* /4DLY* AOHBE + 
CS* /RFSH* /DDIN*RASIN* lDLY*CYCLED* AOHBE 

PAL Device Number 2 

PAL16L8A 

IF (CSOE) OBO = 
/DOUTB*DDIN*4DLY*RASIN*/RFSH + 

/DOUTB*AO*HBE* /DDIN*4DLY*RASIN* /RFSH 

IF (CSOE) OBl = 
/DOUTB*DDIN*4DLY*RASIN*/RFSH + 

/DOUTB* /AO* /HBE* /DDIN*4DLY*RASIN* /RFSH 

IF (CSOE) PBUFO = 
/DOUTB*/AO*DDIN*4DLY*RASIN*/RFSH + 

/DOUTB */AO* /HBE * /DDIN * 4DLY *RAS IN* 
/RFSH+ 
/DOUTB* /Av" HBE* /DDIN*RASIN* /RFSH 

IF (CSOE) PBUFl = 
/DOUTB*IIBE*DDIN*4DLY*RASIN*/RFSH + 

/DOUTB *AO* HBE * /DDIN * 4DLY* RAS IN* 
/RFSH + 
/DOUTB* /AO*HBE* /DDIN*RASIN* /RFSH 

IF (CSOE) DOUTB = 
ODIN* /RFSH*2DLY* /4DLY + 
/AO* /HBE* /ODIN* /RFSH*2DLY* /4DLY + 
AO*HBE* /ODIN* /RFSH*2DLY* /4DLY 

; BYTE WRITE or READ cycles 
; WRITE cycle 
; End CYCLED 

; End BYTE WRITE cycle 

; READ and READ with error 

; WRITE cycle 

; BYTE WRITE cycle 
; BYTE WRITE cycle 

; READ or READ 
; w/error 
; BYTE WRITE 
; high byte 

; READ or READ 
; w/error 
; BYTE WRITE 
; low byte 

; READ, 
; READ/error 

; BYTE WRITE 
; Word WRITE 

; READ" 
; READ/error 

; BYTE WRITE 
; Word WRITE 

; READ cycle 
; BYTE WRITE 
; BYTE WRITE 



IF (VCC) INCY = 

/RFSH *ADS* /4DLY + 
/RFSH*CSOE*/NTSO*/RASIN + 

INCY* /4DLY + 
INCY*CSOE*/DDIN*RASIN + 
INCY* /CSOE * RASIN 

IF (CSOE) CWAIT = 

RFSH*CSOE*/NTSO + 
/RFSH*CSOE*/NTSO*/RASIN + 

/RFSH*DDIN*RASIN*2DL Y*INCY* /4DLY + 
/RFSH*/DDIN*/AO*/HBE*RASIN*/4DLY + 
/RFSH* /ODIN* AO*HBE*RASIN* /ROLY + 
/RFSH*INCY*ERRIATCH* /2DLY* /NTSO 

PAL Device Number 3 

PAL14L4A 

WIN= 
/RFSH*ERRIATCH*/2DLY*3DLY*4DLY*CSOE + 
/RFSH*DDIN*3DLY* I AOHBE*CSOE + 
/RFSH*/DDIN*AOHBE*/2DLY*4DLY*CSOE 

MODECC = 
/RFSH*ERRIATCH*/1DLY*4DLY*CSOE + 
/RFSH*/DDIN*/AOHBE*CSOE + 
/RFSH*/DDIN*AOHBE*/1DLY*4DLY*CSOE 

PARITYERR = 
/RFSH* /ODIN* /RESET*4DLY* 
/AE*EO*/El *AOHBE*CSOE + 
/RFSH*/DDIN*/RESET*4DLY* 
/AE*/EO*El *AOHBE*CSOE + 
/RFSH*DDIN*/RESET*4DLY* 
/AE*/EO*/El */AOHBE*CSOE + 
PARITYERR*/RESET*CSOE 

Applications 263 

; Start INCY 
; Start INCY for access 
; after forced refresh 
; or READ w/error 
; Continue INCY 
; WRITE cycles 
; Non-/CS cycles 

; Access in RFSH 

; Access after 
; forced refresh 
; READ cycle 
; BYTE WRITE 
; BYTE WRITE 
; Insert WAITS 
; into the next 
; cycle 

; READ w/error 
; Word WRITE 
; BYTE WRITE 

; READ w/error 
; Word WRITE 
; BYTE WRITE 

; Parity error byte 
; " 1 " during WRITE 
; Parity error byte 
; "O" during WRITE 

; Parity error 
; both bytes 



264 Programmable Logic Design Guide 

PAL pevice Number 4 

PAL16R6A 

IDLE:= 
ODCLEN + 
DLE*DIAGD 

/CSLE: = 
ODCLEN + 
CSLE * DIAGCS 

OLp: = ODCLEN 

DOUBLERR: = 
/RFSH* /DIAGCS * /DIAGD* /RESET* 
OLE*CYCLED*AE*/EOl + 
DOUBLE RR* /RESET 

ERRLATCH: = 
DDIN*OLE*CYCLED*/DIAGCS*/DIAGD* AE + 
ERRLATCH * 3DLY 

; Hold IDLE for 
diagnostics 

; Hold /CLSE for 
diagnostics 

; Double bit error 
; during READs 
; or BYTE WRITES 

; Error during READ 



(16201) 
FCLK 

1 :__p 

Applications 265 

Inputs (0-31) 

o-++++--+-t-++-+-t-++-+++-1-+++-+-+-+++-t-++-+-++-IH-4~~4 

~ r;:J. RASIN 
19 ;-++++--+-t-++---+-t-++-+++-t-+++-t-t-+++-+++-+-++-H-4§~>-'>-1---../>---~~~o; v 

(16201) CTIL • -++++--+-t-++-+-+++-+++-1-+++-+-+-+++-1-+-+-+-++-1H-4t:~-1 

M' 
CD 

(16032) 

RFPO 

(8409) 
RF 1/0 

8_ SYSTEM 
., RESET 
E 

2 ..... _ ... 
~ ~ 

••-++++--+-t-++-+-1-+-+-+++-1-+++-+-+-+++-1-+-++-++-IH-~~,_4 

ODIN 11-++++--+-t-++---+-+++-+++-1-+++-t-t-+++-+++-+-++-1H-~~~-+-"""-./,__ __ 4~4o; ~ 

4 h""'="""--++++-++-++-. 
~ ~ 

;:-++++--+-t-++---+-t-++-+++-1-+++-t-t-+++-H-t+-t+-1-+-~~->-1' 

RF 110 !l :tt:tt:tj:tt::::ttt:t=ttt:~ttt=t:tt:t:=tt:t:t=m~~§~r ..... )~---+-l~ 
5 "'r..:-----t-t-H-+tt-r--t"TT~ ..... J 

.>- ~ 

~ (ACTIVE 
~~-+-+-++---+-IH-+-+-++-l-+++-t-+-+++-+-++-+-t-++-+-++-H-4~">--41 

. ~; :t~-t.t.=i~i:t-t=.tt1i:t=-t.tt1t:"-t-t.tt":t~-t-t=t1i:t-t=.tt1;:;::~§j~t--/ HIGH) 

INCY ~;-+-+-++---+-11-+-+-+-tt-1-+++-1-+-+++-+-++-+-++-1-+-++-+-+--48-r-4 

(PAL #2 OUTPUT) -1_
6 _J""'f"""~.,---1-+-+-+-++-1r-t---;--rtt--++Tt--. .. 

AO 
HBE 

•a-++-++---+-11-+-+-+-++-1-+++-1-+-+++-+-++-+-t-++-+-++-H-~~,_4, 

AOHBE 

~;-++-++---+-11-+-+-+++-1-+++-1-+-+++-+-++-+-++-1-+-++-+-+--~~J--+---:>->---~~ ...... o; ~ 
7r ""'~~-++-1-t-++-tt--++++--t-t-++-+-t-++-.. ~ .. ~ --~ 

IF EITHER 
INPUT HIGH 
THIS IS LOW 

::-++-++---+-11-+-+-++-H-+++-1-+-+++-+-++-+-++-1-+-++-+-+--~E~4 IJ 13 

!!-++++-+-11-++-t-H-i-++t-t-t++t--i-+++-++1+-+t-H-~~J---+--./>---4~40; ~ 

(FROM 16032) .:_
8

_J"'r-..:----++++-++H-+Mi-+-+-H-+-t+t+-H-t+--+ ~=nn====~ .... J---f-___J --µ I• ::C:""' 

NTSO ;:-++-++---+-11-+-+-+-1-+-+-+++-1-+-+++-+-++-+-t-++-+-++-H---r-)---t CYCLED 

;: -++++-+-11-++-t-H-i-++t-t-t++t--i-+++-++1+-+t-H--C>---i~ QJ-IJ 12 

:; f..c ./>-----i-i jVo- OE 
ERRLATCH •1 -++-++---+-11-+-+-+1-+-+-+++-1-+-+++-+-++-+-++-1-+-++-+-+----r=>--1, 

(PAL #3 OUTPUT) 
9 

">. z 11 

.... _. 0111 4'iol '191Qll 1111~1~ 1111/lij\~ JUlllll ,,/.J~il l•t~JU)l ....,~ 

Figure 8.14.14 Logic Diagram of PAL Device #1 



266 Programmable Logic Design Guide 

M' 
U) 

I e.. 
(I) 

E 
~ -u 
::I 
"C e a. 

(PAL#1) 

RFSH 
1 

(PAL#1) 

RASIN 
2 ..... 

~ .. .., 

AO 
3 ..... 

l.Z 
.. v 

H8E 
4 ..._, 

~ 
rv 

(16032) 

ODIN 
5 ..... 

2" .... ...,. 

(16032) 

ADS 
6 .... 

~ ... v 

(16201) 

NTSO 
7 .... 
--1~ 

r·v 

PAL#1) 

2 CLY 
8 

-1.7 ... ..., 

PAL#1) 

4 DLY 
9 ..... 
---1,-

r-v 

Inputs (0-31) 

0 Ill • 517 I !11011 UllUIS 11111119 10212221 2•252121 212'l0J1 

0 
I 
l 
I . 
5 
I 
l 

I 

' 11 ~ 

" II 
11 
1• 
IS 

11 
II 
II 

" lO 
ll 
11 
11 

l• 
IS 
ll 
11 
ll 
ll 
10 
ll 

--<! 

ll 
II 
IC 
IS 
II 
II 
II 
II 

ca 
•1 
Cl 
u .. 
0 .. 
Cl 

.. ., 
so 
SI 
Sl 
51 
5• 
5S 

51 
SI 
SI 
SI 
IO 
II 
ll 
II 

-, I I Tl 
0 1 1 l • 5 I 1 111011 12131415 11111119 202121ll 242S2127 212UOJI 

.... 
OBO ..... ;:i t;: ::J 
19 , 

-i 

19' l 
A 
~t--
"V ... 

J: 

~] 
OB1 ..... 

lg: 18 

"""'"' -1-- ;:J PeUFo ~ '--- 17 

~ 16 

"""'" 

~ hl, PBUF1 
~::::::] 16 

-yo-

..... ..... ..... 
~ 
~ 

-.... 
~ .... .... 
It 

"' 

i:: 
~ 
~ 

t: 
~ 
~ 
IA, 

A 
~ -v ... 

~ 
DOUTB 

15 

.A 

~ >-tl INCY """'- 14 

~ 
"""'" 

~ 
CSOE 

13 

-< -v-... 

;:i CWAIT 
12 

ERR LATCH 

-<' 
11 

-v .... 

TRIS TAT 

cs 
OE 

E 
UST 
TO 

INPUT, M 
BE HIGH 
ENABLE 
PAL OUT PUT 

Figure 8.14.15 Logic Diagram of PAL Device #2 



(16201) 1 

ODIN 
(PAL#1) 

0 Ill 4 II 1 .. 
. ..., 

RFSH ~-----+-< 

AOHBE 
3 

R IS HIGH IF EITHE 
THE OU TPUT IS LOW 

4 ... 

i-

Inputs (0-31} 
J111 nu unnn unJ.011 

ERRLATCH 

M' c.o 
I 

e. 
Cl) 

E 
~ 
u 
:J 
'tJ 
e 
CL 

(PAL#1} 

1DiY 

(PAL#1) 

2DLY 

(PAL#1} 

3DLY 

(PAL#1} 

4DLY 

11 

" 11 
ti 

~ 
2• 
n 
21 
11 

l2 
12· 
2' 
II 

6 .. 
I.? 

•o .. 
" •2 

7 .. 
~ ..., 

8 ... 

9 ... 
... 

1111 's 11 111011 1111 1111 lOllllU 24252527 11211111 

Applications 267 

~ 19 
-~ CSOE -v 

PARITYERR 

... 18 
<..-.., 

1 17 r< 'I"' 

~..:z .JV ..,_,,. y PARITY ERR 

J 16 r< 'I" 

i:f=J .JO 
WIN -- ' 

I 15 ~ -{ P< 
WiC' -i ./" 
"'1Ao' \ MODECC 

.....:. J 14 "lit( 'I" ·-~ -. 
""1.9tt , jl..F 
~ \ 

~ 13 
<:-
-v E1 

~ 12 
·~ 

EO ...., 

~ 11 
_<Q 

AE ...,, 

Figure 8.14.16 Logic Diagram of PAL Device #3 



268 Programmable Logic Design Guide 

~ 
·~"' 

,... 1 ... 
' ./ 

j 

~ ., 
1 

' ./ 
j 

_,< 
-~"' 

,... ,... 

' ./ 
' 
~ 
~ 

,.... ' ~ 

' 
' ... 
~ 

tr;I ~ ERR LATCH 

' 
./ 

EO 8 ... j 

~ El ~ 
E01 

., ~ 
~ 

~~ 9 ... 
3DLY ~ 

"' 

12 
ODIN 

~ OE 

Figure 8.14.17 Logic Diagram of PAL Device #4 



9 
National Masked Logic (NML) 

National Masked Logic (NML) was introduced to provide cost benefits of volume pro
duction to programmable logic users who have large volume applications for a given 
logic pattern. NML devices are mask-programmed and functionally tested in-house by 
Natfonal, thus relieving the customer of programming and testing the devices. There
fore, for these volume applications, the customer can simplify his production line and 
gain cost savings through the use of NML. 

The NML option is available for all of National's programmable logic products. The 
NML products have the same data sheet specifications as the field-programmable prod
ucts. The following are the procedures and guidelines involved in using NML. 

9.1 NML PROCEDURE 

The procedure for using NML is shown in Figure 9.1.1. When a customer has decided 
on the NML approach, the equations should be supplied to National for generation of 
programmed parts. These programmed devices are then sent to the customer for verifi
cation of the logic pattern in the application. After the logic has been verified by the 
customer in his circuit, National is notified. At that point orders for the masks are 
placed in-house at National. At the same time, the Test Engineering and Product Engi
neering departments prepare to test and qualify the product upon generation of first 
silicon. After successful testing and qualification, the product is released for routine 
production. 

When the order is placed the customer will also be required to provide test vec
tors to functionally test the logic. When considering the use of NML, the customer 
should keep in mind the need for functional testing of the part. He should generate a 
sequence of test vectors that will test the logic functionality to meet his needs. 

269 



270 · Programmable Logic Design Guide 

8-12 WEEKS 

9.2 NML GUIDELINES 

OK 

CUSTOMER INPUT 
(EQUATIONS) 

MARKETING 
APPLICATIONS 

ENERATES BIT MAP 

MASKS MADE 

Figure 9.1.1 NML-Procedure 

VERIFICATION 

ENGINEERING 
PREPARES 

TO QUAL/TEST 

In evaluating whether NML is an economic option for a certain application, ·it is impor
tant to keep in mind the following guidelines. The most important and somewhat obvi
ous point is that the logic pattern must be verified and frozen. A minimum quantity for 
economic justification of NML is at least 10,000 units. At these volumes there is usually 
a nominal charge for mask generation. The lead time from the point at which the equa
tions are verified to the point at which finished goods are shipped is 8-12 weeks. 

NML users typically realize cost savings of between 10-40% over the cost of 
unprogrammed devices, depending on the volume and the device being used. Keep in 
mind that NML users do not have to incur programming and testing costs associated 
with unprogrammed devices. 



10 
Advantages of National's 
Programmable Logic Family 

National Semiconductor has taken leadership of the programmable logic .market 
through commitments in technology, quality, customer service and support, and by 
offering a broad product line. In addition, National is also committed to continuing 
developments in software leading to automated design with programmable logic 
products. 

10.1 TECHNOLOGY 

Through innovations in circuit design and process technology, National was the first to 
introduce the fastest PAL devices, thus clearly establishing itself as the leading technol
ogy house for programmable logic devices. The technology used is the proprietary 
oxide isolated OXISS process that offers higher integration than other bipolar processes 
and also offers improved performance. The advantages of this superior technology are 
being harnessed to produce ECL programmable logic devices that will offer speeds at 
6 ns. Furthermore, National is also pursuing a major development program to intro
duce CMOS programmable logic devices. 

10.2 BROAD PRODUCT LINE 

National's leading technology position has resulted in the broad TTL product line that 
is currently available. This product line offers a variety of speed, power, and density 
options as evidenced by the product line description in Chapter 4. For the future, 
National will offer a broader spectrum of speed and power options through CMOS and 
ECL devices. More options in the TTL family of programmable products are also forth
coming. Some of the forthcoming features are FPLA-type structures, higher densities, 
improved testability through register preloads, and scan registers. , 

To complete the product line, National is also committed to software development 
and support. PLAN is the first step toward meeting that commitment. 

271 



272 Programmable Logic Design Guide 

10.3 CUSTOMER SERVICE AND SUPPORT 

Within the field offices, National has fully equipped and trained Field Application Engi
neers (FAEs) who can support customers in designing with programmable logic. The 
FAEs also have the software and the development systems at their disposal to fully sup
port the customer. In addition, the factory applications and engineering staff are also 
available to support the customer in programmable logic-based designs.· 

Customer training seminars are also given, as part of National's service, to inform 
and train customers on programmable logic products and their applications. 



11 
Data Sheets 

11.1 PAL DEVICE DATA SHEETS 

The PAL device data sheets are broken down into two main sections: 20-pin PALs and 
24-pin PALs, and within each section the various speed/power groups are shown 
separately. 

Description 

The PAL device family utilizes National's Schottky TTL process and bipolar PROM 
fusible-link technology to provide user-programmable logic to replace conventional 
SSI/MSI gates and flip-flops. Typical chip count reduction gained by using PAL devices 
is greater than 4: 1. 

The family lets the systems engineer customize his chip by opening fusible liI?-ks to 
configure AND and OR gates to. perform desired logic functions. Complex interconnec
tions that previously required. time-consuming layouts are thus transferred from PC 
board to silicon where they can be easily modified during prototype checkout or 
production. 

The PAL device transfer function is the familiar Sum-of-Products with a single array 
of fusible links. Unlike the PROM, the PAL device is a programmable AND array, driving 
a fixed OR array. (The PROM is a fixed AND array driving a programmable OR array.) In 
addition, the PAL device family offers these options: 

• Variable input/output ratio. 

• Programmable TRI-STATE® outputs. 

• Registers and feedback. 

Unused inputs are tied directly to V cc or GND. Product terms with all fuses blown 
assume the logical high state, and product terms connected to both true and complement 
of ~my single input assume the logical low state. Registers consist of D-type flip-flops that 
are loaded on the low-to-high transition of the clock. PAL device logic diagrams are 
shown with all fuses blown, enabling the designer to use the diagrams as coding sheets. 

The entire PAL device family is programmed using conventional· PROM program
mers with appropriate personality and socket adapter cards. Once the PAL device is 
programmed and verified, two additional fuses may be blown to make verification dif.:. 
ficult. This feature gives the user a proprietary circuit that is very difficult to copy. 

273 



274 Programmable Logic Design Guide 

Features 

• Programmable replacement for SSI and MSI TTL Logic. 

• Simplifies prototyping and board layout. 

• Skinny DIP packages. 

• Reliable titanium-tungsten fuses. 

• Available in standard, low power and high speed versions. 

Part No. of No. of No. of No. of Output 
No. Inputs Outputs I/Os Registers Polarity Functions 

10H8 10 8 AND-OR AND-OR Array 

12H6 12 6 AND-OR AND-OR Array 

14H4 14 4 AND-OR AND-OR Array 

16H2 16 2 AND-OR AND-OR Array 

10L8 10 8 AND-NOR AND-OR-Invert Array 

12L6 12 6 AND-NOR AND-OR-Invert Array 

14L4 14 4 AND-NOR AND-OR-Invert Array 

16L2 16 2 AND-NOR AND-OR-Invert Array 

16C1 16 1 AND-OR/NOR AND-OR/AND-OR-Invert Array 

16L8 10 8 6 AND-NOR AND-OR-Invert Array 

16R8 8 8 8 AND-OR AND-OR-Invert Register 

16R6 8 8 2 6 AND-OR AND-OR-Invert Register 

16R4 8 8 4 4 AND-OR AND-OR-Invert Register 

Table 11.1.1 20-Pin PAL Devices 

Part No. of No. of No. of No. of Output 
No. Inputs Outputs I/Os Registers Polarity Functions 

12L10 12 10 AND-NOR AND-OR Invert Gate Array 

14L8 14 8 AND-NOR AND-OR Invert Gate Array 

16L6 16 .6 AND-NOR AND-OR Invert Gate Array 

18L4 18 4 AND-NOR AND-OR Invert Gate Array 

20L2 20 2 AND-NOR AND-OR Invert Gate Array 
20L8 14 2 6 AND-NOR AND-OR Invert Gate Array 

20L10 12 2 8 AND-NOR AND-OR Invert Gate Array 

20R8 12 8 8 AND-NOR AND-OR Invert w/Registers 

20R6 12 6 2 6 AND-NOR AND-OR Invert w/Registers 

20R4 12 4 4 4 AND-NOR AND-OR Invert w/Registers 

20X10 10 10 10 AND-NOR AND-OR-XOR Invert w/Registers 
20X8 10 8 2 8 AND-NOR AND-OR-XOR Invert w/Registers 

20X4 10 4 6 4 AND-NOR AND-OR-XOR Invert w/Registers 

Table 11.1.2 24-Pin PAL Devices 



Supply Voltage, Vee 
Input Voltage 
Off-State Output Voltage 
Storage Temperature Range 

Data Sheets 

Operating Programming 
7V 12V 

5.5V 12V 
5.5V 12V 

-65°C to +150°C 

Table 11.1.3 Absolute Maximum Ratings 

IV~~I 
Al 

OUTPUT Tc,. A2 

':" ':"' 

COU'L 
A1•310 R1•200 
R2•7SO R2•390 

A1•HO 
R2•1.1k 

Table 11.1.4 Standard Test Load 

EQUIVALENT INPUT TYPICAL OUTPUT 
~ ~ 

8kQ NOM 40Q NOM. 

Set-Up and Hold 

n 
TIMING ~VJ (SEE NOTE Al 
INPUT • 
-----~"-t----------ov 

Im.up -i--f-----.. IHOLO 

DATA 
INPUT 

Vr 

JV ____ , 
------ov 

INPUT 

IN-PHASE 
OUTPUT 

OUT OF PHASE 
OUTPUT 

Propagation Delay 

----+-" 

Note A: Vr= 1.5V 
Note B: Ci_ includes probe and jig capacitance. 
Note C: In the examples above, the phase rela· 
tionships between inputs and outputs have been 
chosen arbitrarily. 

HIGH-LEVEL 
PULSE 

Pulse Width 

------
LOW-LEVEL 

PULSE 

NORMALLY HIGH VoH 
OUTPUT 

(SI OPENI 

NORMALLY LOW 
OUTPUT 

(SI CLOSED! 

Enable and Disable 

Note 0: All input pulses are supplied by genera· 
lions having the following characteristics: 
PFl'l= 1 MHz, Zour=SOQ. 

Figure 11.1.1 Test Waveforms and Schematics of Inputs and Outputs 

275 

O.SV 



276 Programmable Logic Design Guide 

10H8, 12H6, 14H4, 16H2, 16C1, 10L8, 12L6, 14L4, 16L2 
Recommended Operating Conditions 

Symbol Parameter Military Commercial 

Min Nom Max Min Nom Max 

Vee Supply voltage 4.5 5.0 . 5.5 4.75 5.00 5.25 

loH High-level output current -2.0 -3.2 

loL Low-level output current 8 8 

TA Operating free air temperature -55 125 0 75 

Electrical Characteristics 
Over Recommended Operating Temperature Range 

Symbol Parameter Test Conditions Min Typ Max 

V1H High-level input voltage 2 

V1L Low-level input voltage 0.8 

Vic Input clamp voltage Vee= MIN 11 = -18 mA -1.5 

Vee= MIN V1H = 2V 
VoH High-level output voltage 

V1L = 0.8V · loH = MAX 
2.4 

Vee= MIN V1H = 2V 
Vol Low-level output voltage v1L = a.av loL = MAX 0.5 

11 
Input current at maximum 

Vee= MAX V1 = 5.5 v 1.0 input voltage 

l1H High-level input current Vee= MAX V1 = 2.4V 25 

l1L Low-level input current Vee= MAX V1 = 0.4V - 250 

ios Short'circuit output current Vee= MAX Vo=OV -30 - 130 

ice Supply current Vee= MAX 55 90 

Switching Characteristics 
Over Recommended Ranges of Temperature and V cc 

Military Commercial 
Test Condltionstt TA = - 55°to+125•c TA = o· to 75°c Symbol Parameter R1=5600 

R2=1.1 kO Vee = s.ov z 10% Vee = s.ov ± 5% 
Min Typ Max Min Typ Max 

tpo From any input to any output CL.= 15pF 25 45 25 35 

Unit 

v 

mA 

mA 

oc 

Unit 

v 

v 

v 

v 

v 

mA 

µ.A 

µ.A 

mA 

mA 

Unit 

ns 

Table 11.1.5 AC and DC Specifications for 20-Pin Standard Small PAL Devices 



16L8, 16R8, 16R6, 16R4 
Recommended Operating Conditions 

Symbol Parameter Military 

Min Norn Max Min 

Vee Supply voltage 4.5 5.0 5.5 4.75 

loH High-level output current -2.0 

loL Low-level output current 12 

TA Operating free air temperature -55 125· 0 

·operating Case Temperature only, Tc = 125°C 

Electrical Characteristics 
Over Recommended Operating Temperature Range 

Symbol Parameter Test Conditions 

V1H High-level input voltage 

V1L Low-level input voltage 

Vic Input clamp voltage Vee= MIN 11 = ·18 mA 

Vee= MIN V1H = 2V 
VoH High-level output voltage 

v 1L = o.8v IOH = MAX 

Vee= MIN V1H = 2V 
Vol Low-level output voltage 

v 1L = o.8v loL = MAX 

loZH 
Off-state output current Vee = MAX. V1H = 2V, 
high-level voltage applied Vo = 2.4V. VIL = o.8v 

iozL 
Off-state output current Vee = MAX. V1H = 2V 
low-level voltage applied Vo = 0.4V. v1L = o.8v 

11 
Input current at maximum 

input voltage Vee = MAX V1 = 5.5 V 

l1H High-level input current Vee MAX V1 = 2.4V 

l1L Low-level input current Vee MAX V1 = 0.4V 

ios Short-circuit output current Vcc=MAX Vo=OV 

16L8 
Supply Vee= MAX 

Ice Current 16R4, 16R6, 16R8 

Data Sheets 277 

Commercial Unit 

Nom Max 

5.00 5.25 v 

-3.2 mA 

24 mA 

75 oc 

Min Typ Max Unit ' 

2 v 

0.8 v 

-1.5 v 

2.4 v 

0.5 v 

100 µA 

- 100 1iA 

1.0 mA 

25 µA 

- 250 1•A 

- 30 - 130 mA 

140 180 

150 180 mA 

Table 11.1.6 AC and DC Specifications for 20-Pin Standard, Medium PAL Devices 



278 Programmable Logic Design Guide 

Switching Characteristics 
Over Recommended Ranges of Temperature and V cc 

Miiitary Commercial 

TA= -55° TA=oo 
Symbol Parameter Test Condltlonstt to+ 125°C to 75°C Unit 

R1, R2 V cc= 5.0V ± 10% Vee 5.0V±5% 

Min Typ Max 1 Min Typ Max 

tpo Input to output 25 45 25 35 ns 

tpo Clock to output CL= 50pF 15 25 15 25 ns 

tpzx Pin 11 to output enable 15 25 15 25 ns 

tpxz Pin 11 to output disable CL =5pF 15 25 15 25 ns 

tpzx Input to output enable CL= 50pF 25 45 25 35 ns 

tpxz Input to output disable CL =5pF 25 45 25 35 ns 

High 25 25 
tw Width of clock ns 

Low 25 25 

16R8, 16R6, 16R4 45 35 
tsu Setup time ns 

16X4, 16A4 

th Hold time 0 -15 0 -15 ns 

ttSee Standard Test Load and Definition of Waveforms 

Table 11.1.6 AC and DC Specifications for 20-Pin Standard, Medium PAL Devices 
(Cont.) 



Data Sheets 279 

10H8A, 12H6A, 14H4A, 16H2A, 16C1A, 10L8A, 12L6A, 14L4A, 16L2A 
Recommended Operating Conditions 

Military Commercial 
Symbol Parameter 

Min Type Max Min Typ Max 
Units 

Vee Supply Voltage 4.5 

loH High Level Output Current 

loL Low Level Output Current 

TA Operating Free-Air Temperature 

Tc Operating Case Temperature 

Electrical Characteristics 
Over Recommended Operating Temperature Range 

Symbol Parameter 

V1H High Level Input Voltage 

V1L Low Level Input Voltage 

Vic Input Clamp Voltage 

VoH High Level Output Voltage 

VoL Low Level Output Voltage 

11 Input Current at Maximum Input Voltage 

l1H High Level Input Current 

l1L Low Level Input Current 

los Short Circuit Output Current 

Ice Supply Current 

Switching Characteristics 
Over Recommended Ranges of Temperature and Vee 
Military: TA= -55°C to + 125°C*, Vee= SV ± 10% 
Commercial: TA=O to 75°C, Vee=5V±5% 

5 5.5 4.75 

-2 

12 

0 

125 

Test Conditions 

Vee= Min., 11 = -18mA 

Vee= Min., V1H = 2V 
V1L = o.sv, loH =Max. 

Vee= Min., V1H = 2V 
V1L = o.sv, loL =Max. 

Vee= Max., V1=5.5V 

Vee= Max., V1 = 2.4 V 

Vee= Max., V1 = 0.4 V 

Vee=5V 

Vee= Max. 

Symbol Parameter Test Conditions 
Military 

Min. Typ. Max. 

tpo From any Input to any Output CL=15pF 15 30 

16C1A CL= 15pF 35 

5 5.25 

-3.2 

24 

75 

oc 

Min. Typ. Max. 

2 

0.8 

-1.5 

2.4 

0.5 

1 

25 

-0.25 

-30 -130 

55 90 

Commercial 

Min. Typ. Max. 

15 25 

30 

Table 11.1.7 AC and DC Specifications for 20-Pin Fast, Small PAL Devices 

v 
mA 

mA 

oc 

Unit 

v 
v 
v 

v 

v 

mA 

µA 

µA 

mA 

mA 

Unit 

ns 

ns 



280 Programmable Logic Design Guide 

16L8A, 16R8A, 16R6A, 16R4A 
Recommended Operating Conditions 

Symbol Parameter 

Vee Supply Voltage 

Low 
tw Width of Clock 

High 

tsu 
Setup Time from Input 16R8A, 16R6A,16R4A 
or Feedback to Clock 

th Hold Time 

TA Operating Free-Air Temperature 

Tc Operating Case Temperature 

Electrical Characteristics 
Over Recommended Operating Temperature Range 

Min. 

4.5 

20 

20 

30 

0 

-55 

Mllltary 

Typ. 

5 

10 

10 

16 

-10 

Symbol Parameter Test Conditions 

V1H High Level Input Voltage 

V1L Low Level Input Voltage 

Vic Input Clamp Voltage Vee= Min., 11 =-18mA 

Vee= Min. loH=~2mA 
VoH High Level Outp1,1t Voltage V1L=0.8V 

V1H=2V loH =-3.2mA 

Vcc=Min. loL= 12mA 
VoL Low Level Output Voltage V1L=0.8V 

V1H=2V loL=24mA*** 

lozH Vee= Max. Vo=2.4V 

lozL 
Off-state Output Current V1L=0.8V 

Vo=0.4V V1H =2V 

1, Maximum Input Current Vee= Max., V1 = 5.5 V 

l1H High Level Input Current Vee = Max., V1 = 2.4 V 

l1L Low Level Input Current Vee= Max., V1=0.4 V 

los Output Short-Circuit Current** Vcc=5V Vo=OV 

Ice Supply Current t Vee= Max. 

t Ice= Max. at minimum temperature. 

Commerclal 

Max. Min. Typ. Max. 
Unit 

5.5 4.75 5 5.25 v 
15 10 

ns 
15 10 

25 16 ns 

0 -10 ns 

0 25 75 oc 
125 oc 

Min. Typ. Max. Unit 

2 v 
0.8 v 

-0.8 -1.5 v 

MIL 
2.4 2.8 v 

COM 

MIL 
0.3 0.5 v 

COM 

100 µA 

-100 µA 

1 mA 

25 µA 

-0.02 -0.25 mA 

-30 -70 -130 mA 

120 180 mA 

Table 11.1.8 AC and DC Specifications for 20-Pin Fast Medium PAL Devices 



Switching Characteristics 
Over Recommended Ranges of Temperature and Vee 
Military: TA= -55°C to + 125°C*, Vee= 5V ± 10% 
Commercial: TA= 0 to 75°C, Vee= 5V ± 5% 

'Parameter Test Conditions tt Symbol 
R1,R2 

tpo Input or Feedback to Output CL=50pF 

teLK Clock to Output or Feedback 

tpzx Pin 11 to Output Enable 

tpxz Pin 11 to Output Disable CL=5pF 

tpzx Input to Output Enable CL=50pF 

tpxz Input to Output Disable CL=5pF 

fMAX Maximum Frequency 

ttSee Waveforms, Test Load on pg, 24-21. 

Min. 

20 

Data Sheets 281 

Military Commerclal 
Unit 

Typ. Max. Min. Typ. Max. 

15 30 15 25 ns 

10 20 10 15 ns 

10 25 10 20 ns 

11 25 11 20 ns 

10 30 10 25 ns 

13 30 13 25 ns 

30 25 30 ns 

Table 11.1.8 AC and DC Specifications for 20-Pin Fast Medium PAL Devices (Cont.) 



282 Programmable Logic Design Guide 

16L8B, 16R8B, 16R6B, 16R4B 

Recommended Operating Conditions 

Symbol Parameter 

Vee Supply Voltage 

1 Low 
tw Width of Clock j High 

tsu Setup Time from Input or Feedback to Clock 

th Hold Time 

TA Operating Free-Air Temperature 

Tc Operating Case Temperature 

Electrical Characteristics 
Over Recommended Operating Temperature Range 

Min 

4.5 

25 

25 

50 

0 

-55 

Military 

Typ 

5 

10 

10 

25 

-5 

Commercial 
Units 

Max Min Typ Max 

5.5 4.75 5 5.25 v 
25 10 

ns 
25 10 

35 25 ns 

0 -5 ns 

125 0 25 75 oc 
125 oc 

Symbol Parameter Test Conditions Min Typ Max Units 

V1H* High Level Input Voltage 2 v 
V1L* Low Level Input Voltage 0.8 v 
Vic Input Clamp Voltage Vcc=Min., 11= -18mA -0.8 -1.5 v 

Vcc=Min. loH= -2mA MIL 
VoH High Level Output Voltage VIL =0.8V 2.4 3.4 v 

V1H=2V loH= -3.2mA COM 

Vcc=Min. loL = 12mA MIL 
Vol Low Level Output Voltage VIL =0.8V 3.0 0.5 v 

V1H=2V 10 L =24mA COM 

lozH Vcc=Max. V0 =2.4V 100 µA 

lozL 
Off-State Output Current t V1L =0.8V 

V1H=2V V0 =0.4V -100 µA 

11 Maximum Input Current Vcc=Max., V1=5.5V 1 mA 

llH High Level Input Current t V cc= Max., V1 = 2.4V 25 µA 

lExcept pins 1 & 11 -0.04 -0.25 
Ill Low Level Input Current t Vee= Max., V1=0.4V 

Fins 1 & 11 
mA 

-0.4 

las Output Short-Circuit Current** Vcc=5V V0 =0V -30 -70 -130 mA 

Ice Supply Current Vcc=Max. 120 180 mA 

t 110 pin leakage is the worst case of lozx or l1x e.g. l1L and lozH· 
• These are absolute voltages with respect to pin 10 on the device and include all overshoots due to system and/or tester noise. Do not attempt 

to test these values without suitable equipment. 
• • Only one output shorted at a time. 

• • • Pins 1 and 11 may be raised to 20V max. 

Table 11.1.9 AC and DC Specifications for 20-Pin Ultra High-Speed, Medium 
PAL Devices 



Switching Characteristics 
Over Recommended Ranges of Temperature and Vee 
Military: TA= - 55°C to+ 125°C*, Vee= SV ± 10% 
Commercial: TA= Oto 75°C, Vee= SV ± 5% 

Test 
Sym Parameter Conditions 

tpo Input or Feed- 16R6B 16R4B 16LBB 
back to Output 

teLK Clock to Output or Feedback 

tpzx Pin 11 to Output Enable 

tpxz Pin 11 to Output Disable 

tpzx Input to 
16R6B 16R4B 16LBB R1 =200Q Output Enable 

R2=390Q 

tpxz Input to 
16R6B 16R4B 16LBB Output Disable 

fMAX Maximum 
16RBB 16R6B 16R4B Frequency 

Min 

30 

Data Sheets 283 

Military Commercial Units 
Typ Max Min Typ Max 

11 20 11 15 ns 

8 15 8 12 ns 

10 20 10 15 ns 

10 20 10 15 ns 

11 25 11 20 ns 

11 20 11 15 ns 

50 40 50 MHz 

Table 11.1.9 AC and DC Specifications for 20-Pin Ultra High-Speed, Medium 
PAL Devices (Cont.) 



284 Programmable Logic Design Guide 

10H8A2, 12H6A2, 14H4A2, 16H2A2, 16C1A2, 
10L8A2, 12L6A2, 14L4A2, 16L2A2 
Recommended Operating Conditions 

Symbol Parameter 
Military Commercial 

Units 
Min Typ Max Min Typ Max 

Vee Supply Voltage 4.5 5 5.5 4.75 5 5.25 v 

loH High-Level Output Current -2.0 -3.2 mA 

loL Low-Level Output Current 1 Small PAL ttt 8 8 
mA 

l Medium PAL 12 24 

TA Operating Free-Air Temperature -55 125 0 25 75 ·c 

Electrical Characterist.ics Over Recommended Operating Temperature Range 

Symbol Parameter Test Conditions Min Typ Max Units 

V1H• High Level Input Voltage 2 v 
V1L" Low Level Input Voltage 0.8 v 
Vic Input Clamp Voltage Vee= Min., 11 = -18 mA -0.8 -1.5 v 

Vee= Min. loH = -2mA MIL 
VoH High Level Output Voltage V1L = o.8V 2.4 2.8 v 

V1H c= 2V loH = -3.2mA COM 

Vee= Min. 
Vol Low Level Output Voltage V1L = o.8V loL =Max. 0.3 0.5 v 

V1H = 2V 

lozH Vee= Max. Vo= 2.4V 100 µA 

lozL 
Off-State Output Currentt V1L = o.8V 

Vo= 0.4V µA V1H = 2V -100 

11 Maximum Input Current Vee = Max., V1 = 5.5V 1 mA 

l1H High Level Input Currentt Vee = Max., V1 = 2.4V 25 µA 

l1L Low Level Input Currentt Vee = Max., V1 = 0.4V -0.02 -::..0.25 mA 

los Output Short-Circuit Current•• Vee= Max., Vo= OV -30 -70 -130 mA 

Ice Supply Current Vee-= Max. 
Small PALttt 28 45 mA 
Medium PAL 70 90tt 

t 1/0 pin leakage is the worst case of lozx or l1x. e.g. l1L and lozH· 

tt Maximum Ice specification applies to unprogrammed devices only. Ice could increase up to 10% for programmed units. 

ttt Small PAL consists of 10H8A2, 12H6A2, 14H4A2, 16H2A2, 16C1A2, 10L8A2, 12L6A2, 14L4A2 and 16L2A2. Medium PAL consists of 16L8A2, 16R8A2, 
16R6A2 and 16R4A2. 

~ These are absolute voltages with respect to the ground pin on the device and includes all overshoots due to system and/or tester noise. Do not attempt to test 
these values without suitable equipment. 

• • Only one output shorted at a time. 

• • • Pins 1 and 11 may be raised to 20V max. 

Table 11.1.10 AC and DC Specifications for 20-Pin Fast, Half-Power, Small 
PAL Devices 



Switching Characteristics Over Recommended Ranges of Temperature and Vee 
Military: TA = -55•c to + 125·c•, Vee = 5V± 10% 

Commercial: TA = o to 75•c, Vee = 5V ± 5% 

Symbol Parameter Teat Condition• 
Military 

Min Typ Max 

tpo Input or Feedback to Output 25 45 

tcLK Clock to Output or Feedback CL= 50pF 15 25 

tpzx Pin 11 to Output Enable 15 25 

tpxz Pin 11 to Output Disable CL= 5pF 15 25 

tpzx Input to Output Enable CL= 50pF 25 45 

tpxz Input to Output Disable CL= 5pF 25 45 

fMAX Maximum Frequency 14 25 

tw Width of Clock 1 Low 25 10 

High 25 10 

tsu 
Setup Time from Input 

50 25 
or Feedback to Clock 

th Hold Time 0 -15 

Note: The max lpo ol 16C1A2 in commercial range is 40 ns. 

Data Sheets 285 

Commercial 
Units 

Min Typ Max 

25 35 ns 

15 25 ns 

15 25 ns 

15 25 ns 

25 35 ns 

25 35 ns 

16 25 MHz 

25 10 ns 

25 10 ns 

35 25 ns 

0 -15 ns 

Table 11.1.10 AC and DC Specifications for 20-Pin Fast, Half-Power, Small 
PAL Devices (Cont.) 



286 Programmable Logic Design Guide 

16'-:8A2, 16R8A2, 16R6A2, 16R4A2 
Recommended Operating Conditions 

Symbol Parameter 

Vee Supply Voltage 

1 Low 
tw Width of Clock l High 

tsu Setup Time from Input or Feedback to Clock 

th Hold Time 

TA Operating Free-Air Temperature 

Tc Operating Case Temperature 

Electrical Characteristics 
Over Recommended Operating Temperature Range 

Min 

4.5 

25 

25 

50 

0 

-55 

Military 

Typ 

5 

10 

10 

25 

-15 

Symbol Parameter Test Conditions 

VIH * High Level Input Voltage 

VIL* Low Level Input Voltage 

Vic Input Clamp Voltage Vcc=Min., 11= -18mA 

Vcc=Min. loH= -2mA MIL 
VoH High Level Output Voltage V1L =0.8V 

V1H=2V loH= -3.2mA COM 

Vee= Min. 10 L = 12mA MIL 
Vol Low Level Output Voltage V1L =0.8V 

V1H=2V 10 L =24mA COM 

lozH Vcc=Max. V0 =2.4V 

lozL 
Off-State Output Current t V1L=0.8V 

V0 =0.4V V1H=2V 

11 Maximum Input Current Vee= Max., V1=5.5V 

llH High Level Input Current t V cc= Max., V1 = 2.4V 

Ill Low Level Input Current t Vee= Max., V1=0.4V 

los Output Short-Circuit Current** Vcc=5V, V0 =0V 

Ice Supply Currenttt Vee= Max. 

t 1/0 pin leakage is the worst case of lozx or l1x e.g. l1L and lozH· 

Commercial 
Units 

Max Min Typ Max 

5.5 4.75 5 5.25 v 
25 10 

ns 
25 10 

35 25 ns 

0 -15 ns 

125 0 25 75 oc 
125 oc 

Min Typ Max Units 

2 v 
0.8 v 

-0.8 -1.5 v 

2.4 3.4 v 

0.3 0.5 v 

100 µA 

-100 µA 

1 mA 

25 µA 

-0.02 -0.25 mA 

-30 -70 -130 mA 

70 90tt mA 

tt Maximum Ice specification applies to unprogrammed devices only. Ice could increase up to 10% for programmed units. 
• These are absolute voltages with respect to the ground pin on the device and includes all overshoots due to system and/or tester noise. Do 

not attempt to test these values without suitable equipment. 
Only one output shorted at a time. 

• • Pins 1 and 11 may be raised to 20V max. 

Table 11.1.11 AC and DC Specifications for 20-Pin Fast, Half Power Medium 
PAL Devices 



Data Sheets 287 

Programmable Array Logic PAL Low Power PAL Series 20A2 

Symbol Parameter Test Condltlonstt 
Mlllt~ Commercial 

Unit 
Min Typ Max Min Typ Max 

tpo Input or Feedback to Output 25 50 25 35 ns 

Clock to Output or Feedback CL =50pF 15 25 15 25 ns 

tpzx Pin 11 to Output Enable 15 25 15 25 ns 

tpxz Pin 11 to Output Disable CL =5pF 15 25 15 25 ns 

tpzx Input to Output Enable CL =50pF 25 45 25 35 ns 

tpxz Input to Output Disable CL =5pF 25 45 25 35 ns 

fMAX Maximum Frequency 14 25 16 25 MHz 

Table 11.1.11 AC and DC Specifications for 20-Pin Fast, Half Power Medium PAL 
Devices (Cont.) 



288 Programmable Logic Design Guide 

16L8B2, 16R8B2, 16R6B2, 16R4B2 
Recommended Operating Conditions 

Symbol Parameter 

Vee Supply Voltage 

Low 
tw Width of Clock 

High 

tsu 
Setup Time from Input 16R8B, 16R6B, 16R4B 
or Feedback to Clock 

th Hold Time 

TA Operating Free-Air Temperature 

Tc Operating Case Temperature 

Electrical Characteristics 
Over Recommended Operating Temperature Range 

Min 

4.5 

20 

20 

25 

0 

-55 

Mllltai'y 

Typ 

5 

10 

10 

10 

-5 

...•. ((/'. 

Symbol Parameter 
~ 

~dltlons 

V1H* High Level Input Voltage ~ 
VIL* Low Leve.I Input Voltage ~~> ./;:! 
v,c Input Clamp Voltage ,j:( ""b~.l- - 18mA 

High level output Von~ [~i:{.!~· 10H= -2mA MIL 
VoH 

iy.lli. loH = - 3.2mA COM 

Low Level Output Voltag;l\~!> Vee= Min. loL = 12mA MIL 
Vol V1L=0.8V 

V1H=2V loL =24mA COM 

lozH Vee= Max. V0 =2.4V 

lozL 
Off-State Output Current t V1L=0.8V 

V0 =0.4V V1H=2V 

1, Maximum Input Current V cc= Max., V1 = 5.5V 

llH High Level Input Current t Vcc=Max., V1=2.4V 

Ill Low Level Input Current t V cc= Max., V1 = 0.4V 

los Output Short-Circuit Current** Vcc=5V, V0 =0V 

Ice Supply Currenttt Vee= Max. 

t 1/0 pin leakage is the worst case of lozx or 11x e.g. 111. and lozH· 

Commercial 

Max Min Typ Max 

5.5 4.75 5 5.25 

15 8 

15 8 

20 10 

A 0 -5 

[/'···JS 0 25 75 
;;;::;. 

~~O\I}:_ 

:>·······-.·)··· 

Min Typ Max 

2 

0.8 

-0.8 1.5 

2.4 3.4 

0.3 0.5 

100 

-100 

1 

25 

-0.01 -0.25 

-30 -70 -130 

70 90 

tt Maximum Ice specification applies to unprogrammed devices only. Ice could increase up to 10% for programmed units. 

Units 

v 

ns 

ns 

ns 

oc 
oc 

Units 

v 

v 

v 

v 

v 

µ.A 

µ.A 

mA 

µ.A 

mA 

mA 

mA 

• These are absolute voltages with respect to the ground pin on the device and includes all overshoots due to system and/or tester noise. Do 
not attempt to test these values without suitable equipment. 
Only one output shorted at a time. 

• • Pins 1 and 11 may be raised to 20V max. 

Table 11.1.12 AC and DC Specifications for 20-Pin Ultra High-Speed, Half Power, 
Medium PAL Devices 



Switching Characteristics 
Military: TA= -55°C to+ 125°C*, Vee= SV ± 10% 
Commercial: TA= 0 to 75°C, V cc= SV ± 5% 

Symbol Parameter 

tpo Input or Feed- 16R6B 16R4B 16LBB 
back to Output 

tcLK Clock to Output or Feedback 

tpzx Pin 11 to Output Enable 

tpxz Pin 11 to Output Disable 

tpzx 
Input to 16R6B 16R4B 16LBB 
Output Enable 

tpxz Input to 16R6B 16R4B 16LBB 
Output Disable 

fMAX 
Maximum 16RBB 16R6B 16L4B 
Frequency 

Test Conditions 
Min 

15 

R1 =2000 
R2 =3900 

20 

Data Sheets 289 

Military Commercial 
Unit 

Typ Max Min Typ Max 

30 15 25 ns 
11 

8 20 8 15 ns 

10 25 10 20 ns 

10 25 10 20 ns 

11 30 11 25 ns 

11 30 11 25 ns 

30 25 30 MHz 
50 40 

• These are absolute voltage with respect to pin 10 on the device and include all overshoots due to system and/or tester noise. Do not attempt 
to test these values without suitable equipment. 

• • Only one output shorted a time. 
t 1/0 pin leakage is the worst case of 10 zx or 11x e.g. l1L and 10 zw 

Table 11.1.12 AC and DC Specifications for 20-Pin Ultra High-Speed, Half Power, 
Medium PAL Devic.es (Cont.) 



290 Programmable Logic Design Guide 

12L10,14L8,16L6,18L4,20L2,20C1 
20L10,20X10,20X8,20X4 

Operating Conditions 

Symbol Parameter 

Vee Supply Voltage 

TA Operating Free-air Temperature 

Tc Operating Case_ Temperature 

Min 

4.5 

-55 

Electrical Characteristics Over Operating Conditions 

Symbol Parameter Test Conditions 

VIL Low Level Input Voltage 

.VIH High Level Input Voltage 

Vic Input Clamp Voltage Vee= Min. 11=-18mA 

l1L Low Level Input Current t Vee= Max. V1=0.4V 

l1H High Level Input Current t Vee= Max. V1=2.4V 

11 Maximum Input Current Vee= Max. V1=5._5V 

Vee= Min. loL = 12mA 

VoL Low Level Output Voltage v1L = o.0v 
11H=2V loL =24mA 

Vee= Min. 
loH=-2mA 

VoH High Level Output Voltage V1L =0.8V 

Military Commercial 

lYP Max Min Typ Max 

5 5.5 4.75 5 5.25 

0 75 

125 

Min lYP Max 

0.8 

2 

-1.5 

--0.25 

25 

1 

MIL 
0.5 

COM 

MIL 
2.4 

V1H =2V loH =-3.2mA COM 

lozL 
Vee= Max. 

V0 =0.4V -100 
Off-state Output Current t V1L =0.8V 

lozH V1H =2V V0 2.4V 100 

los Output Short-Circuit Current** Vee= Max. V0 =0V -30 -130 

20X4, 20X8, 20X10 120 180 
Ice Supply Current Vee= Max. 

20L10 90 165 

12L 10, 14L8, 16L6 
60 100 

18L4, 20L2, 20C1 

t 1/0 pin leakage is the worst case of 10zx or 11x, e.g., 11L and lozH· 
• Pins 1 and 13 may be raised to 22V max. 
•• Only one output shorted at a time. 

Table 11.1.13 AC and DC Specifications for 24-Pin, Standard PAL Devices 

Unit 

v 
oc 
oc 

Unit 

v 

v 

µA 

µA 

mA 

mA 



Data Sheets 291 

Switching Characteristics Over Operating Conditions 

Symbol Parameter 
Test Conditions Military Commercial 

Unit 
R1,R2 Min Typ Max Min Typ Max 

20L 10, 20X10 
tpo Input or Feedback to Output 20X8,20X4 35 60 35 50 ns 

CL= 50pF 

12L 10, 14L8, 16L6 

tpo Input or Feedback to Output 18L4, 20L2, 20C1 25 45 25 40 ns 
CL= 50pF 

tcLK Clock to Output or Feedback CL= 50pF 20 40 20 30 ns 

tpzx Pin 13 to Output Enable CL= 50pF . 20 45 20 35 ns 

tpxz Pin 13 to Output Disable CL= 5pF 20 45 20 35 ns 

tpzx Input to Output Enable CL =50pF 35 55 35 45 ns 

tpxz Input to Output Disable CL= 5pF 35 55 35 45 ns 

Low 40 20 35 20 ns · 

tw Width of Clock 
High 30 10 25 10 ns 

tsu Set-Up Time from Input or Feedback 60 38 50 38 ns 

th Hold Time 0 -15 0 -15 ns 

fMAX Maximum Frequency 10.0 12.5 MHz 

Table 11.1.13 AC and DC Specifications for 24-Pin, Standard PAL Devices(Cont.) 



292 Programmable Logic Design Guide 

20L8A,20R8A,20R6A,20R4A 
Operating Conditions 

Symbol Parameter 

Vee Supply Voltage 

TA Operating Free-Air Temperature 

Tc Operating Case Temperature· 

Electrical Characteristics over Operating Conditions 

Symbol Parameter Test Conditions 

V1L Low Level input Voltage 

V1H High Level Input Voltage 

Vic Input Clamp Voltage Vee= Min., 11 = -18mA 

Military 

Min Typ 

4.5 5 

-55 

Commercial 

Max Min Typ Max 
Units 

5.5 4.75 5 5.25 v 
0 75 oc 

125 oc 

Min Typ Max Units 

0.8 v 
2 v 

·-t--
-1.5 v 

l1L Low Level Input Current t Vee= Max., V1 = 0.4 V -0.25 mA 

l1H High Level Input Current t Vee= Max., V1 = 2.4 V 

11 Maximum Input Current Vee= Max., V1 = 5.5 V 

Vcc=Min. loL=12mA 
VoL Low Level Output Voltage V1L=0.8V 

V1H=2V loL.;,24mA*** 

Vee= Min. loH=-2mA 
VoH High Level Output Voltage V1L=0.8V. 

V1H=2V loH=-3.2mA 

lozL Vcc=Max. Vo=0.4V 
1-----1 Off-State Output Currentt V1L=0.8V 

lozH V1H=2V Vo=2.4V 

los Output Short-Circuit Current** Vcc=5V, Vo=OV 

Ice Supply Current Vcc=Max. 

110 pin leakage is the worst cast of lozx or 11x, e.g. l1L and lozH· 
Pins 1 and 13 may be raised to 20V max. 

• • Only one output shorted at a time. 

25 

1 

MIL 
0.5 

COM 

MIL 
2.4 

COM 

-100 

100 

-30 -130 

160 210 

These are absolute voltages with 'espect to the ground pin on the device and Includes all overshoots due to system and/or tester noise. 
Do not attempt to test these values without suitable equipment. 

Table 11.1.14 AC and DC Specifications for 24-Pin, Fast PAL Devices 

µA 

mA 

v 

v 

µA 

µA 

mA 

mA 



Data Sheets 293 

Switching Characteristics over Operating Conditions 

Military Commercial 
Symbol Parameter Test Conditions Units 

Min Typ Max Min Typ Max 

20L8A, 20R6A 
tpo Input or Feedback to Output 20R4A 18 30 18 25 ns 

CL=50pF 

lcLK Clock to Output or Feedback CL= 50pF 12 20 12 15 ns 

tpzx Pin 13 to Output Enable CL=50pF 10 25 10 20 ns 

tpxz Pin 13 to Output Disable CL=5pF 11 25 11 20 ns 

tpzx Input to Output Enable CL=50pF 10 30 10 25 ns 

tpxz Input to Output Disable CL=5pF 13 30 13 25 ns 

l Low 20 7 15 7 ns 
tw Width of Clock l High 20 7 15 7 ns 

tsu Setup Time from Input or Feedback 20R8A, 20R6A, 
30 18 25 18 ns 20R4A 

th Hold Time 0 -10 0 -10 ns 

IMAX Maximum Frequency 20 40 28.5 40 MHz 

Table 11.1.14 AC and DC Specifications for 24-Pin, Fast PAL Devices (Cont.) 



294 Programmable Logic Design Guide 

11.2 PROGRAMMING/VERIFYING PROCEDURE - 20 PIN PAL DEVICES* 

As long as Pin 1 is at HH, Pin 11 is at ground, and Pin 12 is either at HH or Z (as defined 
in Table 11.2 .1) - Pins 16, 17, 18, and 19 are outputs. The other pin functions are: IO 
(Pin 2) through 17 (Pin 9) plus Pin 12 address the proper row; AO (Pin 15), Al (Pin 14), 
and A2 (Pin 13) address the proper product lines. 

When Pin 11 is at HH, Pin 1 is at ground, and Pin 19 is either at HH or Z - Pins 12, 13, 
14, and 15 are outputs. The other pin functions are: IO (Pin 2) through 17 (Pin 9) plus 
Pin 19 address the proper row; AO (no~ Pin 18), Al (now Pin 17), and A2 (now Pin 16) 
address the proper product lines. 

PRODUCTS 0 THRU 31 PRODUCTS 32 THRU 63 

Figure 11.2.1 Pin Assignment for Programming 

Pre-Verification 

Step 1.1 Raise V cc to 5V. 

Step 1.2 Raise Output Disable pin, OD, to VrnH· 

Step 1.3 Select an input line by specifying Inputs and L/R as shown in Table 11.2.2. 

Step 1.4 Select a product line by specifying AO, Al and A2 one-of-eight select as shown 
in Table 11.2.2 

Step 1.5 Pulse the CLOCK pin and verify (with CLOCK at V1L) that the output pin, 0, is 
in the state corresponding to an unblown fuse. 

- For verified unblown condition, continue procedure from Step 1.3 
through Step 1.5. 

- For verified blown condition, stop procedure and reject part. 

Note: For programming purposes many PAL pins have double functions. 



Data Sheets 295 

Input 
Pin Identification Line 

Product 
Line Pin Identification 

Number 17 15 Is 14 13 12 11 lo L/R Number 03 02 01 Oo A2 A1 Ao 

0 HH HH HH HH HH HH HH L z 0,32 z z z HH z z z 
1 HH HH HH HH HH HH HH H z 1,33 z z z HH z z HH 
2 HH HH HH HH HH HH HH L HH 2,34 z z z HH z HH z 
3 HH HH HH HH HH HH HH H HH 3,35 z z z HH z HH HH 
4 HH HH HH HH HH HH L HH z 4,36 z z z HH HH z z 
5 HH HH HH HH HH HH H HH z 5,37 z z z HH HH z HH 
6 HH HH HH HH HH HH L HH HH 6,38 z z z HH HH HH .z 
7 HH HH HH HH HH HH H HH HH 7,39 z z z HH HH HH HH 
8 HH HH HH HH HH L HH HH z 8,40 z z HH z z z z 
9 HH HH HH HH HH H HH HH z 9,41 z z HH z z z HH 

10 HH HH HH HH HH L HH HH HH 10,42 z z HH z z HH z 
11 HH HH HH HH HH H HH HH HH 11,43 z z HH z z HH HH 
12 HH HH HH HH L HH HH HH z 12,44 z z HH z HH z z 
13 HH HH HH HH H HH HH HH z 13,45 z z HH z HH z HH 
14 HH HH HH HH L HH HH HH HH 14,46 z z HH z HH HH z 
15 HH HH HH HH H HH HH HH HH 15,47 ·z z HH z HH HH HH 
16 HH HH HH L HH HH HH HH z 16,48 z HH z z z z z 
17 HH HH HH H HH HH HH HH z 17,49 z HH z z z z HH 
18 HH HH HH L HH HH HH HH HH 18,50 z HH z z z HH z 
19 HH HH HH H HH HH HH HH HH 19,51 z HH z z z HH HH 
20 HH HH L HH HH HH HH HH z 20,52 z HH z z HH z z 
21 HH HH H HH HH HH HH HH z 21,53 z HH z z HH z HH 
22 HH HH L HH HH HH HH HH HH 22,54 z HH z z HH HH z 
23 HH HH H HH HH HH HH HH HH 23,55 z HH z z HH HH HH 
24 HH L HH HH HH HH HH HH z 24,56 HH z z z z z z 
25 HH H HH HH HH HH HH HH z 25,57 HH z z z z z HH 
26 HH L HH HH HH HH HH HH HH 26,58 HH z z z z HH z 
27 HH H HH HH HH HH HH HH HH 27,59 HH z z z z HH HH 
28 L HH HH HH HH HH HH HH z 28,60 HH z z z HH z z 
29 H HH HH HH HH HH HH HH z 29,61 HH z z z HH z HH 
30 L HH HH HH HH HH HH HH HH 30,62 HH, z z z HH HH z 
31 H HH HH HH HH HH HH HH HH 31,63 HH z z z HH HH HH 

Table 11.2.1 _Input Line Select Table 11.2.2 Input Line Select 

Programming Algorithm 

Step 2.1 Raise Output Disable pin, OD to Vmtt· 

Step 2 .2 Programming pass. For all fuses to be blown: 
Step 2.2.1 Lower CLOCK pin to ground. 
Step 2 .2 .2 Select an input line by specifying Inputs and L/R as shown in 

Table 11.2.2. 
Step 2.2.3 Select a product line by specifying AO, Al and A2 one-of-eight 

select as shown in Table 11.2.2. 
Step 2 .2 .4 Raise V cc to IHH. 



296 Programmable Logic Design Guide 

Step 2.2.5 Program the fuse by pulsing the output pins of the selected 
product group one at a time to VrnH (as shown in the Program
ming Waveforms). 

Step 2 .2 .6 Lower V cc to 5V. 
Step 2.2.7 Repeat this procedure from Step 2.2.2 until pattern is complete. 

Step 2.3 First verification pass. For all fuse locations: 
Step 2.3. l Select an input line by specifying Inputs and L/R as shown in 

Tables 11.2.1 and 11.2.2. 
Step 2.3.2 Select a product line by specifying AO, 'Al, and A2 one-of-eight 

select as shown in Table 11.2 .2. 
Step 2.3.3 Pulse the CLOCK pin and verify (with CLOCK at V1t) that the out-

put pin, 0, is in the correct state. 
- For verified output state, continue procedure. 
- For overblow condition, stop procedure and reject part. 
- For underblow condition, reexecute Steps 2.2.4 through 

2.2.6 and 2.2.3. If successful, continue procedure. After 
three attempts to blow fuse without success, reject part but 
continue procedure. 

Step 2.3.4 Repeat this procedure from Step 2.3.i until the entire array is 
exercised. 

Step 2 .4 High Voltage Verify. For all fuse locations: 
Step 2 .4 .1 Raise V cc to 5. 5 V. 
Step 2.4.2 Select an input line by specifying Inputs and L/R as shown in 

Tables 11.2.1 or 11.2.2. 
Step 2.4.3 Select a product line by specifying AO, Al, and A2 one-of-eight 

select as shown in Table 11.2.2. 
Step 2.4.4 Pulse the CLO-CK pin and verify (with CLOCK at V1t) that the out

put pin, 0, is in the correct state. 
- For verified output state, continue procedure. 
- For invalid output state, stop procedure and reject part. 

Step 2.4.S Repeat this procedure from Step 2.4.1 ·until the entire array is 
exercised. 

Step 2.5 Low Voltage Verify. For all fuse locations: 
Step 2.5.1 Lower Vee to 4.SV. 
Step 2.5.2 Select an input line by specifyiµg inputs and L/R as shown in 

Tables 11.2.1 or 11.2.2. 
Step 2.5.3 Select a product line by specifying AO, Al, and A2 one-of-eight 

select as shown in Table 11.2.2. 

*NSC programming spec. Rev. 1. The old programming spec. is still valid. 



Data Sheets 297 

Step 2.5.4 Pulse the CLOCK pin and verify (with CLOCK at V1L) that the out
, put pin, 0, is in the correct state. 

- For verified output state, continue procedure. 
- For invalid output state, continue procedure and reject part. 

Programming the Security Fuses 

Step 3-. 1 Verify per Step 2.4 and Step 2.5. 

Step 3.2 Raise V cc to 6V. 

Step 3.3 Program the first fuse by pulsing Pin 1 to Vp. (From 1 to 5 pulses is 
acceptable.) 

Step 3.4 Program the second fuse by pulsing Pin 11 to Vp. (1 to 5 pulses is acceptable.) 

Step 3.5 Verify per Step 2.4 and Step 2.5: 
- A device is "secure" if either half fails to verify. 

Voltage Legend 

L =Low level input voltage, V1L HH =High level program voltage, VrnH 

H =High level input voltage, Vrn z = 10 kn to 5V 

Note: For programming purposes many PAL device pins have double functions. 



298 Programmable Logic Design Guide 

11.3 PROGRAMMING/VERIFYING PROCEDURE - 24 PIN PAL DEVICES* 

As long as Pin 1 is at HH, Pin 13 is at ground, and Pin 14 is either at HH or Z (as defined 
in Table 11.3 .1) - Pins 19, 20, 21, and 22 are outputs. The other pin functions are: 10 
(Pin 2) through 19 (Pin 11) plus Pin 14 address the proper row; AO (Pin 15), Al (Pin 16), 
and A2 (Pin 17) address the proper product lines. 

As long as Pin 13 is at HH, Pin 1 is at ground, and Pin 23 is either at HH or Z (as 
defined in Table 11.3.1) - Pins 15, 16, 17 and 18 are outputs. The other pin functions 
are: 10 (Pin 2) through 19 (Pin 11) plus Pin 23 address the proper row; AD (Pin 22), Al 
(Pin 21), and A2 (Pin 20) address the proper product lines. 

PRODUCTS 0 THRU 39 PRODUCTS 40 THRU 79 

OD Yee CLOCK Yee 
lo Oo lo UR 

11 01 11 Ao 
12 02 12 A1 

13 03 13 A2 
1, o, 1, NC 

15 NC 15 Oo 
Is A2 Is 01 

17 A1 l7 02 
1, Ao la 03 
lg UR lg o. 

GND CLOCK GND OD 

Top View Top View 

Figure 11.3.1 Pin Assignment for Programming 

Pre-Verification 

Step 1.1 Raise V cc to 5V. 

Step 1.2 Raise Output Disable pin, OD, to VrnH· 

Step 1.3 Select an input line by specifying Inputs and L/R as shown in Table 11.3 .1. 

Step 1.4 Select a product line by specifying AO, Al and A2 one-of-eight select as shown 
in Table 11.3.2. · 

Step 1.5 Pulse the CLOCK pin and verify (with CLOCK at V1L) that the output pin, OH, 
is in the state corresponding to an unblown fuse. 

- For verified unblown condition, continue procedure from Step 1.3 
through Step 1.5. 

- For verified blown condition, stop procedure and reject part. 

Programming Algorithm 

Step 2.1 Raise Output Disable pin, OD, to VrnH· 

Step 2.2 Programming pass. For all fuses to be blown: 
Step 2 .2 .1 Lower CLOCK pin to ground. 
Step 2 .2 .2 Select an input line by specifying inputs and L/R as shown in 

Table 11.3.1. 



Input 
Line 

Number 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Pin Identification 

HH HH HH HH HH HH HH HH HH L Z 
HH HH HH HH HH HH HH HH HH H Z 
HH HH HH HH HH HH HH HH HH L HH 
HH HH HH HH HH HH HH HH HH H HH 
HH HH HH HH HH HH HH HH L HH Z 
HH HH HH HH HH HH HH HH H HH Z 
HH HH HH HH HH HH HH HH L HH HH 
HH HH HH HH HH HH HH HH H HH HH 
HH HH HH HH HH HH HH L HH HH Z 
HH HH HH HH HH HH HH H HH HH Z 
HH HH HH HH HH HH HH L HH HH HH 
HH HH HH HH HH HH HH H HH HH HH 
HH HH HH HH HH HH L HH HH HH Z 
HH HH HH HH HH HH H HH HH HH Z 
HH HH HH HH HH HH L HH HH HH HH 
HH HH HH HH HH HH H HH HH HH HH 
HH HH HH HH HH L HH HH HH HH Z 
HH HH HH HH HH H HH HH HH HH Z 
HH HH HH HH HH L HH HH HH HH HH 
HH HH HH HH HH H HH HH HH HH HH 
HH HH HH HH L HH HH HH HH HH Z 
HH HH HH HH H HH HH HH HH HH Z 
HH HH HH HH L HH HH HH HH HH HH 
HH HH HH HH H HH HH HH HH HH HH 
HH HH HH L HH HH HH HH HH HH Z 
HH HH HH H HH HH HH HH HH HH Z 
HH HH HH L HH HH HH HH HH HH HH 
HH HH HH H HH HH HH HH HH HH HH 
HH HH L HH HH HH HH HH HH HH Z 
HH HH H HH HH HH HH HH HH HH Z 
HH HH L HH HH HH HH HH HH HH HH 
HH HH H HH HH HH HH HH HH HH HH 
HH L HH HH HH HH HH HH HH HH Z 
HH H HH HH HH HH HH HH HH HH Z 
HH L HH HH HH HH HH HH HH HH HH 
HH H HH HH HH HH HH HH HH HH HH 
L HH HH HH HH HH HH HH HH HH Z 
H HH HH HH HH HH HH HH HH HH Z 
L HH HH HH HH HH HH HH HH HH HH 
H HH HH HH HH HH HH HH HH HH HH 

Table 11.3.1 Input Line Select 

Data Sheets 299 

Input 
Pin Identification Line 

Number 04 03 02 01 Oo ~ A1 Ao 

0,40 z z z z HH z z z 
1, 41 z z z z HH z z HH 
2, 42 z z z z HH z HH z 
3,43 z z z z HH z HH HH 
4,44 z z z z HH HH z z 
5, 45 z z z z HH HH z HH 
6, 46 z z z z HH HH HH z 
7, 47 z z z z HH HH HH HH 
8, 48 z z z HH z z z z 
9, 49 z z z HH z z z HH 

10, 50 z z z HH z z HH z 
11, 51 z z z HH z z HH HH 
12, 52 z z z HH z HH z z 
13, 53 z z z HH z HH z HH 
14, 54 z z z HH z HH HH z 
15, 55 z z z HH z HH HH HH 
16, 56 z z HH z z z z z 
17, 57 z z HH z z z z HH 
18,58 z z HH z z z HH z 
19,59 z z HH z z z HH HH 
20, 60 z z HH z z HH z z 
21, 61 z z HH z z HH z HH 
22, 62 z z HH z z HH HH z 
23, 63 z z HH z z HH HH HH 
24, 64 z HH z z z z z z 
25,65 z HH z z z z z HH 
26, 66 z HH z z z .z HH z 
27, 67 z HH z z z z HH HH 
28, 68 z HH z z z HH z z 
29, 69 z HH z z z HH z HH 
30, 70 z HH z z z HH HH z 
31, 71 z HH z z z HH HH HH 
32, 72 HH z z z z z z z 
33, 73 HH z z z z z z HHZ 
34, 74 HH z z z z z HH z 
35, 75 HH z z z z z HH HH 
36, 76 HH z z z z HH HH z 
37, 77 HH z z z z HH z HH 
38, 78 HH z z z z HH HH z 
39, 79 HH z z z z HH HH HH 

Table 11.3.2 Product Line Select 



300 Programmable Logic Design Guide 

Step 2.2.3 Select an input line by specifying inputs and L/R as shown 'in 
Table 11.2.2. 

Step 2.2.4 Select a product line by specifying AO, Al, and A2 one-of-eight 
select as shown in Table 11.2.2 

Step 2.2.5 Raise Vee to VrnH· 
Step 2.2.6 Program the fuse by pulsing the output pins of the selected 

product group one at a time to VrnH (as shown in the Program
ming Waveforms). 

Step 2.2.7 Lower Vee to 5V. . . 
Step 2.2.8 Repeat this procedure from Step 2.2.2 uritil pattern is complete. 

Step 2 .3 First verification pass. For all fuse locations: 
Step 2 .3 .1 Select an input line by specifying Inputs and L/R as shown in 

Tables 11.2.1 and 11.2.2. 
Step 2.3:2 Select a product line by specifying AO, Al, and A2 one-of-eight 

select as shown in Table 11.2.2. 
Step 2.3.3 Pulse the CLOCK pin and verify (with CLOCK at V1L) that the out-

put pin, 0, is in the correct state. 
- For verified output state, continue procedure.· 
- For overblow condition, stop procedure and reject part. 
- For under blow condition, reexecute Steps 2 .2 .4 through 

2.2.6 and 2.2.3. If successful, continue procedure, after 
three attempts to blow fuse without success, reject part but 
continue procedure. 

Step 2.3.4 Repeat this procedure from Step 2.3.1 until the entire array is 
exercised. 

Step 2.4 High Voltage Verify. For all fuse locations: 
Step 2.4.1 Raise Vee to 5.5V. 
Step 2.4.2 Select an input line by specifying Inputs and L/R as shown in 

Table 11.3 .1. 
Step 2.4.3 Select a product line by specifying AO, Al, and A2 one-of-eight 

select as showri in Table 11.3 .2. 
Step 2.4.4 Pulse the CLOCK pin and verify-(with CLOCK at V1L) that the out

put pin, 0, is in the correct state. 
- For verified output state, continue the procedure. 
- For invalid output state, stop procedure and reject part. 

Step 2.4.5 Repeat this. procedure from step 2.4.1 .until the entire array is 
exercised. 

Step 2.5 Low Voltage Verify. For all fuse locations: 
Step 2.5.1 Lower Vee to 4.5V. 
Step 2.5.2 Select an input line by specifying inputs and L/R as shown in 

Table 11.3 .1. 
Step 2.5.3 Select a product line by specifying AO, Al, and A2 one-of-eight as 

shown in Table 11.3.2. 



Data Sheets 301 

Step 2.5.4 Pulse the CLOCK pin and verify (with CLOCK at V1L) that the out
put pin, 0, is in the correct state. 
- For verified output state, continue procedure. 
- For invalid output state, continue procedure and reject part. 

Programming the Security Fuses 

Step 3 .1 Verify per Step 2 .4 and Step 2 .5 
Step 3.2 Raise Vee to 6V. 
Step 3.3 For PAL 24 and PAL 24A: 

- Program the first fuse by pulsing Pin 1 to V p 

(From 1 to 5 pulses is acceptable.) 
- Program the second fuse by pulsing Pin 13 to V p 

(1 to 5 pulses is acceptable.) 
Step 3.4 Verify per Step 2.4 and Step 2.5: 

- A device is "secure" if either half fails to verify. 

Symbol Parameter Min 

V1HH Program Level Input Voltage 11.5 

Output Program Pulse 

l1HH Program Level Input Current OD, LIA 

All Other Inputs 

leeH Program Supply Gurrent 

tveeP Pulse Width of Vee@V1HH 

tp Program Pulse Width 10 

to Delay Time 100' 

to2 Delay Time after UR Pin 10 

Veep Duty Cycle 

Vp Security Fuse Programming Voltage 18 

Ip Security Fuse Programming Supply Current 

Security Fuse Programming Pulse.Width 10 
tpp Security Fuse Programming Duty Cycle 

Rise Time of Output Programming and Address Pulses 1 
tRP Rise Time of Security Fuse Programming Pulses 1 

Vee Value During Security Fuse Programming 5.75 

VeePP 
Vee Value for First Verify 4.75 

Vee Value for High Vee Verify 5.4 

Vee Value for Low Vee Verify 4.4 

Table 11.3.3 Programming Parameters 

Typ Max 

11.75 12 

50 

50 

10 

900 

60 

20 50 

20 

18.5 19 

400 

40 70 

50 

1.5 10 

1.5 10 

6 6.25 

5 5.25 

5.5 5.6 

4.5 4.6 

*NSC programming spec. Rev. 1. The old programming spec. is still valid. 

Units 

v 

mA 

mA 

µS 

µS 

ns 

µS 

% 

v 
mA 

µS 

% 

V/µs 

v 



302 Programmable Logic Design Guide 

Array Programming Waveforms 

OD V1HH·~ 
VIL 

rto 

CLOCK VIL! 

o-1---
1 to 

VIHH ----+--llm--------
V1H---++ 

VIL ___ °"'" 

VIHH ----+--6--------
A, L/R 

Vee 5y ____ __, 

-to -to 

1-TP-I 
VIHH ------+-+;..----ii 

0 VoH-----~ 
VoL-----.1 

Note: 
Vee (Low Voltage Verlfy)=4.5V 
Vee (High Voltage Verify)=5.5V 
Vee (First Verify) = 5 v 
A Delay (t02) must always precede the Positive 
Clock Transition. (e.g. see step 1.2.3.3 for underblow condition) 

REPEAT UNTIL 
PATTERN IS 
PROGRAMMED 

TL/L/5598·7 

Figure 11.3.2 Programming Waveforms 



OD 

Vee 

A, L/R 

0 

CLOCK 

Vee 

PIN 1 

PIN 11 

Verification Waveforms 

VIHH 

~ VIL 

-to 

VIHH 

VIH 

VIL 

VIHH 

z 

VoH 

VoL 

-~lo 
V1H 

- I-to 

VIL 

Security Fuse Programming Waveforms 

Veep-~~~-~-------------------t 

o------
-Tpp-1 

to
Vp~~~~"-t-1...-----. 

Data Sheets 

REPEAT 
UNTIL 
ARRAY IS 
VERIFIED 

Figure 11.3.2 Programming Waveforms (Cont.) 

Refer to Chapter 5 for a List of PAL Programmer Vendors 

303 



304 Programmable Logic Design Guide 

11.4 LOGIC PROM DATA SHEETS 

Description 

This generic Schottky PROM family by National provides the industry with one of the 
widest selections in sizes and organizations. Four-b~t wide PROMs are provided with 
256 to 4096 words in pin compatible 16 and 18-pin dual-in-line packages. The 8-bit 
wide devices range from 32 to 4096 words in a variety of packages. Being 'generic', all 
PROMs share a common programming algorithm. 

National's new Programmable Read-Only Memories (PROMs) feature titanium
tungsten (Ti:W) fuse links designed to program efficiently with only 10.5 Volts applied. 
The high peformance and reliability of these PROMs are the result of fabrication by a 
Schottky bipolar process, of which the titanium-tungsten metallization is an integral 
part, and an on-chip programming circuit is used. 

A major advantage -of the titanium-tungsten fuse technology is the low program
ming voltage of the fuse links. At 10.5 Volts, this voltage level virtually eliminates the 
need for guard-ring devices and wide spacings required for other fuse technologies. 
Care is taken, however, to minimize voltage drops across the die and to reduce parasit
ics. The device is designed to insure that worst~case fuse operating current is low 
enough for reliable long-term oper.ation. The Darlington programmiilg circuit is liber
ally designed to insure adequate power density for blowing fuse links. The complete 
circuit design is optimized to provide high performance over the entire operating 
ranges of V cc and temperature. 

Testability 

The Schottky PROM die includes extra rows and columns of fusible links for testing the 
programmability of each chip. These test fuses are placed at the worst-case chip loca
tions to provide the highest possible confidence in the programming tests in the final 
product. A ROM pattern is also permanently fixed in the additional circuitry and coded 
to provide a parity check of input address levels. These and other test circuits are used 
to test for correct operation of the row and column-select circuits and functionality of 
input and enable gates. All test circuits are available at both wafer and assembled device 
levels to allow 100 % functional and parametric testing at every stage of the test flow. 

Reliability 

As with all National products, the Ti:W PROMs are subjected to an ongoing reliability 
evaluation by the Reliability Assurance Department. These evaluations employ acceler
ated life tests, including dynamic high-temperature operating life, temperature
humidity life, temperature cycling, and thermal shock. To date, nearly 7.4 million 
Schottky Ti:W PROM device hours have been logged. DIP (N-package) and cerdip 
0-package ). Device performance in all package configurations is excellent. 



Data Sheets 305 

Supply Voltage (Note 2) - 0.5 to + 7.0V 
Input Voltage (Note 2) -1.2 to + 5.5V 
Output Voltage (Note 2) - 0.5 to + 5.5V 
Storage Temperature - 65 to + 150C 
Lead Temperature (10 seconds) 300C 

Table 11.4.1 Absolute Maximum Ratings 

*Device input waveform characteristics are; 
V cc Repetition rate = 1 MHz 

Source impedance= 5011 
Rise and Fall times= 2.Sns max. 

R1 (1.0 to 2.0 volt levels) 

GND 

Figure 11.4.1 

*TAA is measured with stable enable inputs. 

*TEA and TER are measured from the 1.5 
volt level on inputs and outputs with all 
address and enable inputs stable at 
applicable levels. 

*For loL = 16mA, R1=3000 and R2 = 6000 
for loL = 12mA, R1 = 4000 and R2 = 8000. 

*"C" includes scope and jig capacitance. 

Standard Test Load 

3. ov "l/lll)A/ 
ADDRESS OV ™ __ v._~_L_ID-----------

~ ~A~~~~~-
OUTPUT VALID 

I~~ I ~TXZ~ 
TEA__...j TER--..j 

ENABLE 
3
·::_ --_-_-_--J'(--------yL---_-_ ....... _-_-_ 

Figure 11.4.2 Switching Time Waveforms Non-Registered PROMs 



306 Programmable Logic Design Guide 

I- t,,(A)-1 . 1-ls(A) -1---1 IH(A) 

Ao-~-------------1--'fm. I ~--........................... -------~~v 

ts(GS>l--1-tH(GS)•I l•ts(Gs)•i---1 tH(Gs) 
as--/---IJ_I __ ........... \\\ /XPs f--11/ ............ 11 ......... J// ........... /---~~v 

ls(GS)l:-=•t,,(GS)1 1-1 1-1 
l'M.(CP) lwL(CP) IWL(CP) ,...-_,...'r'""'T"'T""'l'""'T""T""T"""-------- 3V 

CP ------uv 
~ ........ .....,. .......... __________ OV 

1--~ir=~~ 
I- t,i_z(0>-1 VOL 

----3V 

----uv 
~--_..;--ov 

isciiiiii--11-- I 
-t,,(INIT)• ,....,..._-------------------------- 3y »ITT\\\ fO ~:v 

Figure 11.4.3 Switching Waveforms, Registered PROM 

WAVEFORM INPUTS OUTPUTS WAVEFORM INPUTS OUTPUTS 

MUST BE WILL BE WI»_ DON'T CARE: CHANGING: 

STEADY STEADY ANY CHANGE STATE 
PERMITTED UNKNOWN 

~ MAY CHANGE 
WILL BE 

)})(ff CHANGING DOES NOT CENTER LINE 
FROM H TO L FROM H TO L APPLY ISHIGH 

1lU MAY CHANGE WILL BE IMPEDANCE 

FROM L TOH CHANGING "OFF" STATE 
FROM L TOH 

Figure 11.4.4 Key to Timing Diagram 



Data Sheets 307 

11.5 DM54/74S188, DM54/74S288 (32 x 8) 256-BIT TTL PROMs 

General Description 

These Schottky memories are organized in the popular 32 words by 8 bits configura
tion. A memory enable input is provided to control the output states. When the device 
is enabled, the outputs represent the contents of the selected word. When disabled, the 
8 outputs go to the OFF or high impedance state. The memories are available in both 
open-collector and TRI-STATE® versions. 

PROMs are shipped from the factory with lows in all locations. A high may be pro
grammed into any selected location by following the programming instructions. 

Features 

• Advanced titanium-tungsten (Ti: W) fuses. 

• Schottky-clamped for high speed. 
Address access-22 ns typ. 
Enable access-15 ns typ. 
Enable recovery-15 ns typ. 

• PNP inputs for reduced input loading. 

• All DC and AC parameters guaranteed over temperature. 

• Low voltage TRI-SAFE™ programming. 

Open-
Military Commercial Collector TRI-STATE Package 

DM74S188 x x N,J 

DM74S288 x x N,J 

DM54S188 x x J 

DM54S288 x x J 

Table 11.5.1 (32 x 8) 256-Bit TTL PROM Options 

INPUT 

BUFFER .---------------. 

as a1 as as 04 a3 a2 a1 

ORDER NUMBER: 
DM74S188 J, DM74S288 J, 
DM54S188 J, DM54S288 J 

SEE NS PACKAGE J16A 

ORDER NUMBER: 
DM74S188 N OR DM74S288 N 
SEE NS PACKAGE N16A 

Figure 11.5.1 Block and Connection Diagram 



308 Programmable Logic Design Guide 

DM54/74S188, DM54/74S288 (32 x 8) 256-BIT TTL PROMs 

DC Electrical Characteristics 
(Note 3) 

Sym Parameter Conditions 

l1L Input Load Current Vee= Max, V1N = 0.45V 

l1H Input Leakage Current Vee= Max, V1N = 2.7V 

Vee= Max, V1N = 5.5V 

Vol Low Level Output Voltage Vee= Min, loL = 16mA 

V1L Low Level Input Voltage 

V1H High Level Input Voltage 

loz Output Leakage Current .Vee= Max, VcEx = 2.4V 

1 Open-Collector Only 1 v cc = Max, v CEX = 5.5V 

Ve ·Input Clamp Voltage Vee= Min, l1N =-18mA 

C1 Input Capacitance Vee= 5.0, V1N = 2.0V 

TA= 25C, 1MHz 

Co Output Capacitance Vee= 5.0V, Vo= 2.0V 
TA = 25C, 1 MHz, Outputs Off 

Ice Power Supply Current Vee= Max, Inputs Grounded 
All Outputs Open 

TRI-STATE® Parameters 

los Short Circuit Vo= OV, Vee= Max 
Output Current 1Note 41 

loz Output Leakage Vee= Max, Vo =·0.45 to 2.4V 

1TRl-STATE1 Chip Disabled 

VoH Output Voltage High loH=-2.0mA 

loH= -6.5mA 

AC Electrical Characteristics 
(With Standard Load and Operating Conditions) 

Sym Parameter JEDEC Symbol 

TAA Address Access Time TAVQV 
TEA Enable Access Time TEVQV 
TEA Enable Recovery Time TEXQX 
TZX Output Enable Time TEVQX 
TXZ -Uutput Disable Time TEXQZ 

DM54S188/288 

Min Typ Max 

-80 -250 

25 

1.0 

0.35 0.50 

0.80 

2.0 

50 

100 

-0.8 -1.2 

4.0 

6.0 

70 110 

-20 -70 

+50 

-50 

2.4 3.2 

DM54S188/288 

Min Typ Max 

22 45 
15 30 
15 35 

. 15 30 
15 35 

DM74S188/288 

Min Typ Max 

-80 -250 

25 

1.0 

0.35 0.45 

0.80 

2.0 

50 

100 

-0.8 -1.2 

4.0 

6.0 

70 110 

-20 -70 

+50 

-50 

2.4 3.2 

DM74S188/288 

Min Typ Max 

; 22 35 
15 20 
15 25 
15 20 
15 25 

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vee= 5.0V and TA= 25C. 

Note 4: During los measurement. only one output at a time should be grounded. Permanent damage may otherwise result 

Table 11.5.2 . AC and DC Specifications for (32 x 8) 256-Bit TTL PROMs 

Units 

µA 

. µA 

mA 

v 
v 
v 

µA 

µA 

v 
pF 

pF 

mA 

mA 

µA 

µA 

v 
v 

Units 

ns 
ns 
ns 
ns 
ns 



Data Sheets 309 

11.6 PL77X288/PL87X288 (32 x 8) 256-BIT TTL LOGIC PROMs 

General Description 

These Schottky programmable logic devices are organized in the popular 32 words by 
8-bit configuration. An enable input is provided to control the output states. When the 
device is enabled, the outputs represent the contents of the selected word. When dis
abled, the 8 outputs go to the OFF or high impedance state. The memories are available 
in the TRI-STATE® version only. 

PROMs are shipped from the factory with lows in all locations. A high may be pro
grammed into any selected location by following the programming instructions. 

Features 

o Advanced titanium-tungsten (Ti-W) fuses 
o Schottky-clamped for high speed 

- Addressed access-10 ns typ 
- Enable access-8 ns typ 
- Enable recovery-8 ns typ 

o PNP inputs for reduced input loading 
o All DC and AC parameters guaranteed over temperature 
o Low voltage TRI-SAFE TM programming 

Military Commercial 
Open· TRI-STATE 

Collector 

PL87X288 x x 
PL77X288 x x 

Package 

N, J 

J 

Table 11.6.1 (32 x 8) 256-Bit TIL PROM Options 

Dual·ln-Llne Package 
A4 

A3 256 BIT OR ARRAY oo 16 
A2 PROVIDING 

Al ALL 32 PRODUCT TERMS 01 15 
AO 

02 14 

03 13 

ii 
04 12 

07 06 05 04 03 02 01 00 
05 11 

06 10 

GND 

TOP VIEW 

Figure 11.6.1 Block and Connection Diagram 

Vee 

A4 

A3 

A2 

Al 

AO 

07 



310 Programmable Logic Design Guide 

PL77X288/PL87X288 (32 x 8) 256-BIT TTL LOGIC PROMs 

DC Electrical Characteristics (Note 3) 

PL77X288 PL87X288 
Symbol Parameter Conditions Units 

Min Typ Max Min Typ Max 

l1L Input Load Current Vee= Max, V1N = 0.4V -80 -250 -80 -250 µA 

l1H Input Leakage Current Vee:; Max, V1N = 2.7V 25 25 µA 

Vee= Max, V1N = 5.5V 1.0 1.0 mA 

VoL Low Level Output Vee= Min, loL = 24 mA (Com) 0.35 0.50 0.35 0.50 v 
Voltage loL = 12 mA (Mil) 

V1L Low Level Input (Note?) 0.80 0.80 v 
Voltage 

V1H High Level Input (Note?) 2.0 2.0 v 
Voltage 

Ve Input Clamp Voltage Vcc=Min,1 1N= -18mA -0.8 -1.5 -0.8 -1.5 v 
c, Input Capacitance Vee= 5.0V, V1N = 2.0V 4.0 4.0 pF 

TA=25°C, 1 MHz 

Co Output Capacitance Vee= 5.0V, Vo= 2.0V 6.0 6.0 pF 
TA= 25 •c, 1 MHz, Outputs Off 

Ice Power Supply Current Vee= Max, Inputs Grounded 110 140 110 140 mA 
All Outputs Open 

TRl·STATE 

los Short C?ircuit Output Vo= OV, Vee= Max -30 -130 -30 -130 mA 
Current (Note4) 

loz Output Leakage Vee= Max, V0 =0.4V to 2.4V 100 100 µA 
(TRI-STATE) Chip Disabled -100 -100 µA 

VoH Output Voltage High loH = -2.0 mA 2.4 3.2 v 
loH= -3.2mA 2.4 3.2 v 

AC Electrical Characteristics with standard load and operating conditions 

PL77X288 PL87X288 
Symbol Parameter JEDEC Symbol Units 

Min Typ Max Min Typ Max 

tAA Address Access Time (Note 5) TAVQV 10 20 10 15 ns 

tEA Enable Access Time (Note 5) TEVQV 8 15 8 12 ns 

tER Enable Recovery Time (Note 6) TEXQX 8 15 8 12 ns 

tzx Output Enable Time (Note 5) TEVQX 8 15 8 12 ns 

txz Output Disable Time (Note 6) TEXQZ 8 15 8 12 ns 

Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be 
operated at these values. 

Note 2: These limits do not apply during programming. For the programming ratings, refer to the programming parameters. 

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vee= 5.0V.and TA= 25'C. 

Nole 4: During las measurement, only one output at a time should be grounded. Permanent damage may otherwise result. 

Note 5: CL= 50 pF. 

Note 6: CL= 5 pF. 

Note 7: These are absolute voltages with respect to the ground pin on the device and Includes all overshoots due to system and/or tester noise. Do not attempt 
to test these values without suitable equipment. 

Table 11.6.2 AC and DC Specifications for (32 X 8) 256-Bit TTL Logic PROMs 



Data Sheets 311 

11.7 DM54/74LS471 (256 x 8) 2048-BIT TTL PROMs 

General Description 

These Schottky memories are organized in the popular 256 words by 8 bits configura
tion. Memory enable inputs are provided to control the output states. When the device 
is enabled, the outputs represent the contents of the selected word. When disabled, the 8 
outputs go to the "OFF" of high impedance state. 

PROMs are shipped from the factory with lows in all locations. A high may be pro
grammed into any selected location by following the programming instructions. 

Features 

• Advanced titanium-tungsten (Ti-W) fuses 
• Schottky-clamped for high speed 

- Addressed access-40 ns typ 
- Enable access-15 ns typ 
- Enable recovery-15 ns typ 

• PNP inputs for reduced input loading 
• All DC and AC parameters guaranteed over temperature 
• Low voltage TRI-SAFE TM programming 

Open-
Military Commercial Collector TRI-STATE 

DM74LS471 x x 

DM54LS471 x x 

Package 

N,J 

J 

Table 11.7.1 (256 x 8) 2048-Bit TTL PROM Options 

A7 
A6 
AS 
AO 
Al 

A2 
A3 
A4 

08 07 06 

2048-BIT ARRAY 
GENERATING 256 

UNIQUE PRODUCT TERMS 

OS 04 03 02 01 

AO I 
2 

Al 

A2 

A3 

A4 

20 Vee 

19 A7 

18 A6 

17 AS 
16 -

E2 
IS Ei 
14 

08 Order Number; 
13 V

7 
DM74LS471 J, 

12 DM54LS471 J, 

I I 06 See NS Package J20B 

OS 
Order Number; 

DM74LS471 N 
See NS Package N20A 

Figure 11.7.1 Block and Connection Diagram 



312 Programmable Logic Design Guide 

DM54/74LS471 (256 x 8) 2048-BIT TTL PROMs 

DC Electrical Characteristics 1 Note 31 

DM54LS471 DM74LS471 
Sym Parameter Conditions 

Min Typ Max Min Typ Max 

l1L Input Load Current Vee= Max, V1N = 0.45V -80 -250 -80 -250 

l1H Input Leakage Current Vee= Max, V1N = 2.7V 25 25 

Vee= Max, V1N = 5.5V 1.0 1.0 

Vol Low Level Output Voltage Vee= Min, loL = 16mA 0.35 0.50 0.35 0.45 

V1L Low Level Input Voltage 0.80 0.80 

V1H High Level Input Voltage 2.0 2.0 

Ve Input Clamp Voltage Vee= Min, l1N = -18mA -0.8 -1.2 -0.8 -1.2 

C1 Input Capacitance Vee= 5.0, V1N = 2.0V 4.0 4.0 

TA= 25C, 1MHz 

Co Output Capacitance Vee= 5.0V, Vo= 2.0V 6.0 6.0 
TA = 25C, 1 MHz, Outputs Off 

Ice Power Supply Current Vee= Max, Inputs Grounded 75 100 75 100 
All Outputs Open 

TRI-STATE~' Parameters 

los Short Circuit Vo= OV, Vee= Max -20 -70 -20 -70 
Output Current rNote41 

loz Output Leakage Vee= Max, Vo= 0.45 to 2.4V +50 +50 

1TRl-STATE1 Chip Disabled -50 -50 

VoH Output Voltage High loH = -2.0mA 2.4 3.2 

loH = 6.5mA 2.4 3.2 

AC Electrical Characteristics rWith Standard Load and Operating Conditions I 

DM54LS471 DM74LS471 
Sym Parameter JEDEC Symbol 

Min Typ Max Min Typ Max 

TAA Address Access Time TAVQV 45 70 40 60 
TEA Enable Access Time TEVQV 15 35 15 30 
TER Enable Recovery Time TEXQX 15 35 15 30 
TZX Ou!Q_ut Enable Time TEVQX 15 35 15 30 
TXZ Ou!Q_ut Disable Time TEXQZ 15 35 15 30 
Note 3: These limrts apply over the entire operatrng range unless stated otherwise. All typical values are for Vee= 5.0V and TA= 25C 

Note 4: Durrng las measurement. only one output at a time should be grounded. Permanent damage may otherwise result 

Units 

µA 

µA 

mA 

v 
v 
v 
v 
pF 

pF 

mA 

mA 

µA 

µA 

v 
v 

Units 

ns 
ns · 
ns 
ns 
ns 

Table 11.7.2 AC and DC Specifications for (256 X 8) 2948-Bit TTL PROMs 



Data Sheets 313 

11.8 DM54/74S473, DM54/74S472; DM54/74S473A, DM54/74S472A; 
DM54/74S4728 (512 x 8) 4K-BIT TTL PROMs 

General Description 

These Schottky memories are organized in the popular 512 words by 8 bits configura
tion. A memory enable input is provided to control the output states. Whenthe device 
is enabled, the outputs represent the contents of the selected word. When disabled, the 
8 outputs go to the OFF or high impedance state. The memories are available in both 
open-collector and TRI-STATE® versions. 

PROMs are shipped from the factory with lows in all locations. A high may be pro
grammed into any selected location by following the programming instructions. 

Features 

o Advanced titanium-tungsten (Ti:W) fuses. 

o Schottky-clamped for high speed. 
Address access-25 ns typ. 
Enable access-15 ns typ. 
Enable recovery-15 ns typ. 

o PNP inputs for reduced input loading. 

o All DC and AC parameters guaranteed over temperature. 

o Low voltage TRI-SAFE™ programming. 

Mlltary Commercial 
Open-

Collector 

DM74S473 x x 
DM74S472 x 
DM54S473 x x 
DM54S472 x 

TRI-STATE Package 

N,J 

x N,J 

'J 

x J 

Table 11.8.1 512 x 8 4096-Bit TTL PROM Optics 

AS 
A7 
A6 
AS 
AO 
A1 

A2 
,A3 

A4 

E1 

INPUT 
BUFFER 

.--~~~~~~~~~~~---. 

4096-BIT ARRAY 
GENERATING S12 UNIQUE 

PRODUCT TERMS 

a1 a6 as C4 a3 a2 a1 

Order Number: 
OM74S473 J, DM74S472 J, 
OMS4S473 J, or OMS4S472 J 
See NS Package J208 

Order Number: 
DM74S473 N or DM74S472 N 
See NS Package N20A 

Figure 11.8.1 Block and Connection Diagram 



314 Programmable Logic Design Guide 

DM54/74S473, DM54/74S472, DM54/74S473A, DM54/74S472A, DM54/74S472B 
DC Electrical Characteristics 
(Note 3) 

DM545473/472 DM745473/472 
Sym Parameter Conditions Units 

Min Typ Max Min Typ Max 

l1L Input Load Current Vee= Max. V1N = 0.45V -80 -250 -80 -250 µA 

l1H Input Leakage Current Vee= Max, V1N = 2.7V 25 25 µA 

Vee= Max, V1N = 5.5V 1.0 1.0 mA 

Vol Low Level Output Voltage Vee= Min, loL = 16mA 0.35 0.50 0.35 0.45 v 
V1L Low Level Input Voltage 0.80 0.80 v 
V1H High Level Input Voltage 2.0 2.0 v 
loz Output Leakage Current Vee= Max, VcEX = 2.4V 50 50 µA 

1 Open-Collector Only 1 v cc = Max, v CEX = 5.5V 100 100 µA 

Ve Input Clamp Voltage Vee= Min, l1N = -18mA --0.8 -1.2 -0.8 -1.2 v 
c, Input Capacitance Vee= 5.0, V1N = 2.0V 4.0 4.0 pF 

TA= 25C, 1MHz 

Co Output Capacitance Vee= 5.0V, Vo= 2.0V 6.0 6.0 pF 
TA = 25C; 1 MHz, Outputs Off 

Ice Power Supply Current Vee= Max. Inputs Grounded 110 155 110 155 mA 
All Outputs Open 

TRI-STATE® Parameters 

los Short Circuit Vo= OV, Vee= Max -20 -70 -20 -70 mA 
Output Current 1Note41 

loz Output Leakage Vee= Max, Vo= 0.45 to 2.4V +50 +50 µA 

1TRl-STATE1 Chip Disabled -50 -50 µA 
-

VoH Output Voltage High loH =-2.0mA 2.4 3.2 v 
loH=6.5mA 2.4 3.2 v 

AC Electrical Characteristics 
(With Standard Load and Operating Conditions) 

DM545473/472 DM745473/472 
Sym Parameter JEDEC Symbol Units 

Min Typ Max Min Typ Max 

TAA Address Access Time TAVQV 40 75 40 60 ns 
TEA Enable Access Time TEVQV 15 35. 15 30 ns 
TER Enable Recove_!Y Time TEXQX 15 35 15 30 ns 
TZX Output Enable Time TEVQX 15 35 15 30 ns 
TXZ Output Disable Time TEXQZ 15 35 15 30 ns 

. Table 11.8.2 AC and DC Specifications for (512 x 8) 4096-Bit 1TL PROM 



Data Sheets 315 

AC Electrical Characteristics 
(With Standard Load and Operating Conditions) 

Sym Parameter 
DM54S473A/472A, B DM74S473A/472A, B 

JEDEC Symbol 
Min Typ Max Min Typ 

TAA Address Access Time TAVQV 473A/472A 25 60 25 

4728 25 50 25 

TEA Enable Access Time TEVQV 473A/472A 15 35 15 

4728 15 35 15 

TEA Enable Recovery Time TEXQX 473A/472A 15 35 15 

4728 15 35 15 

TZX Output Enable Time TEVQX 473A/472A 15 35 15 

4728 15 35 15 

TXZ !output Disable Time TEXQZ 473A/472A 15 35 15 

4728 15 35 15 

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vee= 5.0V and TA= 25C. 

Note 4: During los measurement only one output at a time should be grounded. Permanent damage may otherwise result. 

Max 

45 

35 

30 

25 

30 

25 

30 

25 

30 

25 

Units 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Table 11.8.2 AC and DC Specifications for (512 x 8) 4096-Bit TfL PROM (Cont.) 



316 Programmable Logic Design Guide 

11.9 DM54/74S475, DM54/74S474; DM54/74S475A, DM54/74S474A; 
DM54/74S4748, (512 x 8) K-BIT TTL PROMs 

General Description 

These Schottky memories are organized in the popular 512 words by 8 bits configura
tion. Memory enable inputs are provided to control the output states. When the device 
is enabled, the outputs represent the contents of the selected word. When disabled, the 
8 outputs go to the OFF or high impedance state. The memories are available in both 
open-collector and TRI-STATE® versions. 

PROMs are shipped from the factory with lows iri all locations. A high may be pro
grammed into any selected location by following the programming instructions. 

Features 

• Advanced titanium-tungsten (Ti:W) fuses. 

• Schottky-clamped for high speed. 
Address access-25 ns typ. 
Enable access-15 ns typ. 
Enable recovery-15 ns typ. 

• PNP inputs for reduced input loading. 

• All DC and AC parameters guaranteed over temperature. 

• Low voltage TRI-SAFPM programming. 

Open-
Military Commercial Collector TRI-STATE 

DM74S475 x x 
DM74S474 x x 
DM54S475 x x 
DM54S474 x x 

Package 

N,J 

N,J 

J 

J 

Table 11.9.1 (512 X 8) 4096-Bit TIT. PROM 

Az 
A, 

ORDER NUMBER: 
4096-BIT ARRAY DM74S475 J, DM74S475 J, 
GENERATING 512 DM45S475 J, DM54S474 J 

UNIQUE PRODUCT TERMS SEE NS PACKAGE J24A 

Ao ..................... -.---.---.---.--.----.---
ORDER NUMBER: 

07 06 05 04 03 02 01 

DM74S475 N OR DM74S474 N 
SEE NS PACKAGE N24A 

Figure 11.9.1 Block and Connection Diagram 



Data Sheets 317 
DM54/74S745, DM54/74S474, DM54/74S475A, DM54/74S474A, DM54/74S474B 
DC Electrical Characteristics 
(Note 3) 

DM54S475/474 DM74S475/474 
Sym Parameter Conditions 

Min Typ Max Min Typ Max 

l1L Input Load Current Vee= Max, V1N = 0.45V -80 -250 -80 -250 

l1H Input Leakage Current Vee= Max, V1N = 2.7V 25 25 

Vee= Max, V1N = 5.5V 1.0 1.0 

Vol Low Level Output Voltage Vee= Min, loL = 16mA 0.35 0.50 0.35 0.45 

V1L Low Level Input Voltage 0.80 0.80 

V1H High Level Input Voltage 2.0 2.0 

loz Output Leakage Current Vee= Max, VcEX. = 2.4V 50 50 
(Open-COiiector Only) Vee = Max, v CEX = 5.5V 100 100 

Ve Input Clamp Voltage Vee= Min, l1N =-18mA I -0.8 -1.2 -0.8 -1.2 

C1 Input Capacitance Vee= 5.0, V1N = 2.0V 4.0 4.0 
TA= 25C, 1MHz 

Co Output Capacitance Vee= 5.0V, Vo= 2.0V 6.0 6.0 
TA= 25C, 1 MHz, Outputs Off 

Ice Power Supply Current Vee= Max, Inputs Grounded 115 170 115 170 
All Outputs Open 

TRI-STA TE® Parameters 

los Short Circuit Vo= OV, Vee= Max -20 -70 -20 -70 
Output Current (Note 4) 

loz Output Leakage Vee= Max, Vo= 0.45 to 2.4V +50 +so 
(TRI-STATE) Chip Disabled -50 -50 

VoH Output Voltage High loH =-2.0mA 2.4 3.2 

loH=6.5mA 2.4 3.2 

AC Electrical Characteristics 
(With Standard Load and Operating Conditions) 

DM54S475/474 DM74S475/474 
Sym Parameter JEDEC Symbol 

Min Typ Max Min Typ Max 

TAA Address Access Time TAVQV 40 75 40 65 
TEA Enable Access Time TEVQV 20 40 20 35 
TER Enable Recove_!Y Time TEXQX 20 40 20 35 
IZX Qu!Q_ut EnableTime TEVQX 20 40 20 35 
TXZ Output Disable Time TEXQZ 20 40 20 35 

Table 11.9.2 AC and DC Specifications for (512 x 8) 4096-Bit TfL 
High Speed PROM 

Units 

µA 

µA 

mA 

v 
v 
v 

µA 

µA 

v 
pF 

pF 

mA 

mA 

µA 

µA 

v 
v 

Units 

ns 
ns 
ns 
ns 
ns 



318 Programmable Logic Design Guide 

AC Electrical Characteristics 
(With Standard Load and Operating Conditions) 

: DM54S475A/474A, B DM74S475A/474A, B 
Sym Parameter JEDEC Symbol 

Min Typ Max Min Typ 

TAA Address Access Time TAVQV 1 475A/474A 25 60 25 

l 4748 25 50 25 

TEA Enable Access Time TEVQV 15 35 15 

TEA Enable Recovery Time TEXQX 15 35 15 

TZX Output Enable Time TEVQX 15 35 15 

TXZ Output Disable Time TEX OZ 15 35 15 

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vee= 5.0V and TA= 25C. 

Note 4: During 105 measurement: only one output at a time should be grounded. Permanent damage may otherwise result. 

Table 11.9.2 AC and DC Specifications for (512 x 8) 4096-Bit TIT. 
High Speed RPOM (Cont.) 

Max 

45 

35 

25 

25 

25 

25 

Units 

ns 

ns 

ns 

ns 

ns 

ns 



Data Sheets 319 

11.10 DM77/87SR474, DM77/87SR474B (512 x 8) 4K-BIT REGISTERED 
TTL PROM 

General Description 

The DM77 /87SR474 is an electrically programmable Schottky TTL read-only memory 
with D-type, master-slave registers on-chip. This device is organized as 512 words by 
8-bits and is available in the TRI-STATE output version. Designed to optimize system 
performance, this device also substantially reduces the cost and size of pipelined 
microprogrammed systems and other designs wherein accessed PROM data is tempo
rarily stored in a register. The DM77 /87SR474 also offers maximal flexibility for mem
ory expansion and data bus control by providing both synchronous and asynchronous 
output enables. All outputs will go into the OFF state if the synchronous chip enable 
(GS) is high before the rising edge of the clock, or if the asynchronous chip enable (G) 
is held high. The outputs are enabled when GS is brought low before the rising edge of 
the clock and G is held low. The GS flip-flop is designed to power-up to the OFF state 
with the application of Vee· 

Data is read from the PROM by first applying an address to inputs A0-A8. During the 
setup time the output of the array is loaded into the mas~er flip-flop of the data register. 
During the rising edge (low-to-high transition) of the clock, the data is then transferred 
to the slave of the flip-flop and will appear on the output if the· output is enabled. Fol
lowing the rising edge clock transition, the addresses and synchronous chip enable can 
be removed and the output data will remain stable. 

The DM77 /87SR474 also features an initialize function, INIT. The initialize function 
provides the user with an extra word of programmable memory which is accessed with 
single pin control by applying a low on INIT. The initialize function is synchronous and 
is loaded into the output register on the next rising edge of the clock. The unpro
grammed state of the INIT is all lows, _ providing a CLEAR function when not 
programmed. 

PROMs are shipped from the factory with lows in all locations. A high may be pro
grammed into any selected location by following the programming instruction.s. Once 
programmed,. it is impossible to go back. to a low. 



320 Programmable Logic Design Guide 

Features 

• On-chip, edge-triggered registers. 

• Synchronous and asynchronous enables for word expansion. 

• Programmable synchronous register INITIALIZE. 

• 24-pin, 300 mil thin-DIP package. 

• 35 ns address setup and 20 ns clock to output for maximum system speed. 

• Highly reliable, titanium tungsten fuses. 

• TRI-STATE® outputs. 

• Low voltage TRI-SAFETM programming. 

• All parameters guaranteed over temperature. 

• Pinout compatible with DM77SR181 (lK x 8) Registered PROM for future 
expansion. 

INPUT 
BUFFER 

4096 BIT ARRAY 
GENERATING 
512 UNIQUE 

PRODUCT TERMS 

INITIALIZE WORD 

B·BIT EDGE· TRIGGERED REGISTER 

A1 1• 24 Vee 

As 23 As 

As 22 NC 

A4 21 a 
Al 20 iNiT (CLR) 

A2 
DM77SR474 

19 Gs 
A, 7 18 CK 

Ao 17 07 

Oo 16 Oe 

o, 10 15 Cs 

C2 11 14 C4 

GND 12 13 03 

TUL5189 

Order Number DM77SR474J, 
DM87SR474J, DM87SR474N, 

DM77SR474BJ, DM87SR474BJ 
or DM87SR474BN 

See NS Package J24F or N24C 
Co 01 Q2 C3 Q4 0 5 Q 6 Q7 TL/L5189 

Figure 11.10.1 Block and Connection Diagrams 



Data Sheets 321 

DM77/87SR474 
DC Electrical Characteristics (Note 3) 

Symbol Parameter Conditions DM77SR474 DM87SR474 Units 

Min. Typ. Max. Min. fyp. Max. 

LIL Input Load Current V cc= Max., V1N = 0.45V -80 -250 -80 -250 µ.A 

Vee= Max., V1N = 2.7V 25 25 µ.A 
llH Input Leakage Current 

Vee= Max., V1N=5.5V 1.0 1.0 mA 

Vol Low Level Output Voltage Vee= Min., 10 L = 16mA 0.35 0.50 0.35 0.45 v 
VIL Low Level Input Voltage 0.80 0.80 v 
VIH High Level Input Voltage 2.0 2.0 v 
loz Output Leakage Current Vee= Max., VeEx = 2.4V 50 50 µ.A 

Ve Input Clamp Voltage Vee= Min., 11N = -18mA -0.8 -1.2 -0.8 -1.2 v 

C1 Input Capacitance v cc= 5.0, VIN= 2.0V 4.0 4.0 pF 
TA= 25°C, 1 MHz 

Co Output Capacitance Vcc=5.0V, V0 =2.0V 6.0 6.0 pF 
TA= 25°C, 1 MHz, Outputs Off 

Ice Power Supply Current Vee= Max., Inputs Grounded 135 185 135 185 mA 
All Outputs Open 

TRI-STATE Parameters 

los 
Short Circuit V0 = OV, Vee= Max. -20 
Output Current (Note 4) 

-70 -20 -70 mA 

loz Output Leakage Vee= Max., V0 = 0.45 to 2.V -50 +50 -50 +50 µ.A 
_{TRI-STATE}_ ChifJ_ Disabled 

10 H= -2.0mA 2.4 3.2 v 
VoH Output Voltage· High 

loH= -6.5mA 2.4 3.2 v 

Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vee= 5.0V and TA= 25°C. 
Note 4: During las measurement, only one output at a time should be grounded. Permanent damage may otherwise result. 

Table 11.10.1 AC and DC Specifications for (512 x 8) 4K-Bit Registered 1TL PROMs 



322 Programmable Logic Design Guide 

DM77/87SR474B 
Switching Characteristics 

Symbol Parameter DMnSR474 DM87SR474 Units 

Min. Typ. Max. Min. Typ. Max. 

Address to CLK (High) Setup Time J ~=:~:B 55 20 50 20 
tS{A) 40 20 35 20 

tH(A) Address to CLK (High) Hold Time 0 -5 0 -5 ns 

tS{INIT) INIT to CLK (High) Setup Time 30 20 25 20 ns 

tH(INln INIT to CLK (High) Hold Time 0 -5 0 -5 ns 

tPHL(CLK) l SR474 15 30 15 27 

tPLH(CLK) Delay from CLK (High) to Output (High or Low) J SR4748 15 25 15 20 ns 

~WH(CLK) CLK Width (High or Low) 25 13 20 13 ns 
WL(CLK) 

tS{GS) GS to CLK (High) Setup Time 10 0 10 0 ns 

tH(GS) GS to CLK (High) Hold Time 5 0 5 0 ns 

tPZL(CLK) 
tPZH(CLK) 

Delay from CLK (High) to Output Active (High or Low) 20 35 20 30 ns 

tPZL(G) 
tPZH(G) 

Delay from G (Low) to Output Active (High or Low) 15 30 15 25 ns 

tPLZ(CLK) 
tPHZ(CLK) 

Delay from CLK (High) to Output Inactive (TRI-STATE) 20 35 20 30 ns 
-

iPLZ(G) Delay from G (Low) to Output Inactive (TRI-STATE) 15 30 15 25 ns 
PHZ(G) 

Table 11.10.1 AC and DC Specifications for (512 x 8) 4K-Bit Registered TIL PROMs 
·(Cont.) 



Data Sheets 323 

11.11 DM77 /87SR476, DM77 /87SR25, DM77 /87SR476B, 
DM77 /87SR25B (512 x 8) 4K-BIT REGISTERED TTL PRO Ms 

General Description 

The DM77/87SR476 is an electrically programmable schottky TTL read-only memory 
with D-type, masterslave registers on-chip. This device is organized as 512 words by 
8-bits and is available in the TRI-STATE® output version. Designed to optimize system 
performance, this device also substantially reduces the cost and size of pipelined 
microprogrammed systems and other designs wherein accessed PROM data is tempo
rarily stored in a register. The DM77 /87SR476 also offers maximal flexibility for mem
ory expansion and data bus control by providing both synchronous and asynchronous 
output enables. All outputs will go into the OFF state if the synchrounous chip enable 
(GS) is high before the rising edge of the clock, or if the asynchrounous chip enable (G) 
is held high. The outpus are enabled when GS is brought low before the rising edge of 
the clock and G is held low. The GS flip-flop is designed to power up to the OFF state 
with the application of Vee· 

Data is read from the PROM by first applying an address to inputs AO-A8. During the 
rising edge (low-to-high transition) of the clock, the data is then transferred to the slave 
of the flip-flop and will appear on the output if the output is enabled. Following the ris
ing edge clock transition, the addresses and synchronous chip enable can be removed 
and the output data will remain stable. 

The DM77SR476 also features an initialize function, INIT. The initialize function pro
vides the user with an extra word of programmable memory which is accessed with 
single pin control by applying a low on INIT. The initialize function is asynchronous 
and is loaded into the output register when INIT is brought low. The unprogrammed 
state of the INIT is all lows, which makes it compatible with the CLEAR function on the 
AM27S25. PS loads lows into the output registers when brought low. 

PROMs are shipped from the factory with lows in all locations. A high may be pro
grammed into any selected location by following the programming instructions. Once 
programmed, it is impossible to go back to a low. 

Features 

• Functionally compatible with AM2 7S2 5. 

o On-chip, edge-triggered registers. 

• Synchronous and asynchronous enables for word expansion. 

• Programmable asynchronous INITIALIZE (SR476 only). 

• 24-pin, 300 mil thin-DIP package. 

• 35 ns address setup and 20 ns clock to output for maximum system speed. 



324 Programmable Logic Design Guide 

• Highly reliable, titanium tungsten fuses. 

• TR~-STATE outputs. 

• Low voltage TRI-SAFETM programming. 

• All parameters guaranteed over temperature. 

• Preset input. 

1 OF8 
BIT 

DECODER 

1 OF64 
WORD 

DECODER 

INIT 
(CLR)-~~M>-------' 

Ps"--GM>-----~s 

CLK --i ::-------1 

G 

4096-BIT ARRAY 
GENERATING 512 

UNIQUE PRODUCT TERMS 

INITIALIZE WORD 

I 
8-BIT EDGE-TRIGGERED REGISTER 

A1 

Ae 
As 

A4 

A3 

A2 

A1 

Ao 
Oo 

01 

02 

GND 

1• 24 Vee 

23 Aa 

22 Ps 
21 G 

20 INIT (CLR)• 

DM77SR476 19 G; 
DM77SR25 

18 CK 

17 07 

16 Oa 

10 15 05 

11 14 04 

12 13 03 

·cLR only on DM77/87SR25 TUL5190 

Order Number DM77SR476J, 
DM77SR25J, DM77/87SR476N, 

DM77/87SR25N, DM77SR476BJ, 
DM77SR25BJ, DM77/87SR476BN 

or DM77/87SR25BN 
See NS Package J24F or N24C 

Figure 11.11.1 Blo~k and Connection Diagrams 



Data Sheets 325 

DM77/87SR476, DM77/87RS25, DM77/87SR476B, DM77/87SR25B 
DC Electrical Characteristics (Note 3) 

Symbol Parameter Conditions DM77SR474 DM87SR474 Units 

Min. Typ. Max. Min. Typ. Max. 

LIL Input Load Current v cc= Max., v,N = 0.45V -80 -250 -80 -250 µA 

Vee= Max., V1N = 2.7V 25 25 µA 
llH Input Leakage Current 

V cc= Max., V1N = 5.5V 1.0 1.0 mA 

VOL Low Level Output Voltage Vee= Min., 10 L = 16mA 0.35 0.50 0.35 0.45 v 
VIL Low Level Input Voltage 0.80 0.80 v 
VIH High Level Input Voltage 2.0 2.0 v 
loz Output Leakage Current Vcc=Max., VcEx=2.4V 50 50 µA 

Ve Input Clamp Voltage V cc= Min., 11N = - 18mA -0.8 -1.2 -0.8 -1.2 v 

c, Input Capacitance Vee= 5.0, V1N = 2.0V 4.0 4.0 pF 
TA= 25°C, 1 MHz 

Co Output Capacitance Vcc=5.0V, V0 =2.0V 6.0 6.0 pF 
TA= 25°C, 1 MHz, Outputs Off 

Ice Power Supply Current Vee= Max., Inputs Grounded 135 185 135 185 mA 
All Outputs Open 

TRI-STATE Parameters 

los 
Short Circuit V0 = OV, Vee= Max. 
Output Current (Note 4) 

-20 -70 -20 -70 mA 

loz Output Leakage Vcc=Max., V0 =0.45to2.V -50 +50 -50 +50 µA 
(TRI-STATE) Chip Disabled 

10 H= -2.0mA 2.4 3.2 v 
VoH Output Voltage High 

loH= -6.5mA 2.4 3.2 v 
Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vee= 5.0V and TA= 25°C. 
Note 4: Ouring los measurement, only one output at a time should be grounded. Permanent damage may otherwise result. 

Table 11.11.1 AC and DC Specifications for (512 x 8) 4K-Bit Registered TfL PROMs 



326 Programmable Logic Design Guide 

Switching Characteristics 

DM77SR476, 4768 DM87SR476, 4768 

Symbol Parameter DM77SR25, 258 DM87SR25, 258 Units 

Min. Typ. Max. Min. Typ. Max. 

1 SR476, SR25 55 20 50 20 
ts( A) Address to CLK (High) Setup Time ns l SR4768, SR25B 40 20 35 20 

tH(A) Address to CLK (High) Hold Time 0 -5 0 -5 ns 

tPHL(CLK) Delay from CLK (High) to Output l SR476, SR25 15 30 15 27 

l SR4768, SR25B 
ns 

tPLH(CLK) (High or Low) 15 25 15 20 

twH(CLK) CLK Width (High or Low) 25 13 -25 13 ns 
twL(CLK) 

ts(GS) GS to CLK (High) Setup Time 10 0 10 0 ns 

tH(GS) GS to CLK (High) Hold Time 5 0 5 0 ns 

tpLH(PS) Delay from PS (Low) to Output (High) 20 30 20 25 ns 

tPLH(INIT) Delay from INIT (Low) to Output (Low or High) 20 30 20 25 ns 
tPHL(INIT) 

twL(PS) PS Pulse Width (Low) 15 10 15 10 ns 

twL(INIT) INIT Pulse Width (Low) 15 10 15 10 

ts( PS) PS Recovery (High) to CLK (High) 25 10 20 10 ns 

ts( I NIT) INIT Recovery (High) to CLK (High) 25 10 20 10 ns 

tpzL(CLK) Delay from CLK (Low) to Active Output (High or Low) 
tpzH(CLK) 20 35 20 30 ns 

tpzL(G) Delay from G (Low) to .dctive Output (Low or High) 
tpzH(G) 15 30 15 25 ns 

tPLZ(CLK) Delay from CLK (High) to Inactive Output (TRI-STATE) 
tPHZ(CLK) 20 35 20 30 ns 

tPLZ(G) Delay from G (High) to Inactive Output (TRI-STATE) 
tPHZ(G) 15 30 15 25 ns 

Table 11.11.1 AC and DC Specifications for 20-Pin Ultra High-Speed, Medium PAL 
Devices (Cont.) 



Data Sheets 327 

11.12 REGISTERED PROM PROGRAMMING PROCEDURE 

National Schottky PROMs are shipped from the factory with all fuses intact. As a result, 
the outputs will be low (logical "O") for all addresses. To generate high (logical" l ") lev
els at the outputs, the device must be programmed. Information regarding commer
cially available programming equipment can be obtained from National. If it is desired 
to build your own programmer, the following conditions must be observed: 

1. Programming should be attempted only at ambient temperatures between 15 ° and 
30°C. 

2. Address and enable inputs must be driven with TTL logic levels during program-
ming and verification. 

3. Programming will occur at the selected address when Vee is at 10.SV, and at the 
selected bit location when the output pin representing that bit is at 10. SV, and the 
device is subsequently enabled. To achieve these conditions in the appropriate 
sequence, the following procedure must be followed: 

a) Select the desired word by applying high or low levels to the appropriate 
address inputs. Disable the device by applying a high level to the asynchronous 
Chip Enable input G. GS is held low during the enable programming time. 

b) Increase Vee from nominal to 10.5 volts ( ± O.SV) with a slew rate between l.O 
and 10.0V/µs. Since Vee is the source of the current required to program the 
fuse as well as the Ice for the device at the programming voltage, it must be 
capable of supplying 750mA at 11.0V. 

c) Select the output where a logical high is desired by raising that output voltage to 
10.SV ( ± O.SV). Limit the slew rate from 1.0 to 10.0V/µs. This voltage change 
may occur simultaneously with the increase in V cc, but must not precede it. It 
is critical that only one output at a time be programmed since the internal cir
cuits can only supply programming current to one bit at a time. Outputs not 
being programmed must be left open or connected to a high impedance source 
of 20k0 minimum. (Remember that the outputs of the device are disabled at this 
time.) 

d) Enable the device by taking the chip enable (G) to a low level. This is done with 
a pulse of lOµs. The lOµs duration refers to the time that the circuit (device) is 
enabled. Normal input levels are used, and rise and fall times are not critical. 

e) Verify that the bit has been programmed by first removing the programming vol
tage from the output and then reducing Vee to 4.0V ( ± 0.2V) for one verification 
and to 6.0V ( ± 0.2V) for a second verification. Verification at a Vee level of 4.0V 
and 6.0V will guarantee proper output states over the Vee and temperature range 
of the programmed part. Each data verification must be preceded by a positive 
going (low-to-high) clock edge to load the data from the array into the output 
register. The device must be enabled to sense the state of the outputs. During ver
ification, the loading of the output must be within specified Im and IoH limits. 
Steps b, c, and d must be repeated up to 10 times or until verification that the bit 
has been programmed. 



328 Programmable Logic Design Guide 

f) The initialize word is programmed by setting INIT input to a logic low and pro
gramming the initialize word output by output in the same manner as any other 
address. This can be accomplished by inverting the A9 address input from the 
PROM programmer and applying it to the INIT input. Using this method, the ini
tialize word will program at address 512. 

g) Following verification, apply five additional programming pulses to the bit 
being programmed. The programming procedure is now complete for the 
selected bit. 

h) Repeat steps a through f for each bit to be programmed to a high level. If the 
procedure is performed on an automatic programmer, the duty cycle of V cc at 
the programming voltage must be limited to a maximum of 2 5 % . This is neces
sary to minimize device junction temperatures. After all selected bits are pro
grammed, the entire contents of the memory should be verified. 

Programming Parameters 
Do not test or you may program the device 

Symbol Parameter 
Test 

Min. 
Recommended 

Max. Units 
Conditions Value 

VccP Required Vee for Programming 10 10.5 11 v 
lccP Ice During Programming Vcc=11V 750 mA 

Vop Required Output Voltage for Programming 10 10.5 11 v 
lop Output Current While Programming Vour= 11V 20 mA 

IRR Rate of Voltage Change of V cc or Output 1 10 V/µs 

PwE Programming Pulse Width (Enabled) 9 10 11 µS 

VccvL Required Low Vee for Verification 3.8 4 4.2 v 
VccvH Required High Vee for Verification 5.8 6 6.2 v 
Moc Maximum Duty Cycle for Vee at Veep 25 25 % 

Table 11.12.1 Programming Parameters. Do Not Test or You May Program the Device. 



Data Sheets 329 

Programming Waveforms 

ADDRESS =t= SELECTED ADDRESS STABLE ><= 
INPUTS 

---------------------~ - T, 

VceP
Vcc Vccvtt 

5.0V 
Vccvtt 

t -I T51- VcCVL 
v-:-T2 ------. 

PROGRAMMED Vott / l 
OUTPUT mmw f??02?'.J --~ - - f??m 

ii 
ENABLE 

VoL TJ r---1T4j- ~~~~~; ~~~~~: 

LJl ______ I I 
--J PWE 1- r-Ts-1 f--Ts-j 

CLK n n 
CLOCK ------------__. ..__ _____ _. ---

T, = 100 ns MIN. 
T2=5 µS MIN. (T2 MAY BE> 0 IF Veep RISES AT THE SAME RATE OR FASTER THAN Vop.) 
TJ=lOO ns MIN. 
T4=100 ns MIN. 
T5=100 ns MIN. 
Ts=50 ns MIN. 

Figure 11.12.1 Programming Waveforms Registered PROM 

11.13 NON-REGISTERED PROM PROGRAMMING PROCEDURE 

National Schottky PROMs are shipped from the factory with all fuses intact. As a result, 
the outputs will be low (logical "O") for all addresses. To generate high (logical "l ") lev
els at the outputs, the device must be programmed. Information regarding commer
cially available programming equipment can be obtained from National. If it is desired 
to build your own programmer, the following conditions must be observed: 

1. Programming should be attempted only at ambient temperatures between 15 and 30 
degrees Celsius. 

2. Address and enable inputs must be driven with TTL logic levels during program
ming and verification. 

3. Programming will 9ccur at the selected address when Vee is at 10.5 volts, and at the 
selected bit location when the output pin representing that bit is at 10.5 volts, and 
the device is subsequently enabled. To ad1ieve these conditions in the appropriate 
sequence, the following procedure must be followed: 



330 Programmable Logic Design Guide 

a) Select the desired word by applying high or low levels to the appropriate address 
inputs. Disable the device by applying a high level to asynchronous Chip Enable 
input G. GS is held low during the enable programming time. 

b) Increase V cc from nominal to 10. 5 volts ( ± 0 .5V) with a slew rate between 1. 0 
and 10.0V/µs. Since V cc is the source of the current required to program the fuse 
as well as the Ice for the device at the programming voltage, it must be capable of 
supplying 750 mA at 11.0 V. 

c) Select the output where a logical high is desired by raising that output voltage to 
10.5 volts ( ± 0.5V). Limit the slew rate from 1.0 to 10.0V/µs. This voltage change 
may occur simultaneously with the increase in V cc, but must not precede it. It is 
critical that only one output at a time be programmed since the internal circuits 
can only supply programming current to one bit at a time. Outputs not being pro
grammed must be left open or connected to a high impedance source of 20k0 
minimum. (Remember that the outputs of the device are disabled at this time.) 

d) Enable the device by taking the chip enable (G) to a low level. This is done with a 
pulse of lOµs. The lOµs duration refers to the time that the circuit (device) is 
enabled. Normal input levels are used and rise and fall times are not critical. 

e) Verify that the bit has been programmed by first removing the programming vol
tage from the output and then reducing Vee to 4.0V ( ± 0.2V) for one verification 
and to 6.0V ( ± 0.2V) for a second verification. Verification at a Vee level of 4.0V 
and 6.0V will guarantee proper output states over the Vee and temperature range 
of the programmed part. Each data verification must be preceded by a positive 
going (low-to-high) clock edge to load the data from the array into the output 
register. The device must be enabled to sense the state of the outputs. During ver
ification, the loading of the output must be within specified Im and Iott limits. 
Steps b, c, and d mus~ be repeated up to 10 times or until verification that the bit 
has been programmed. 

f) Following verification, apply five additional programming pulses to the bit being 
programmed. The programming procedure is now complete for the selected bit. 

g) Repeat steps a through f for each bit to be programmed to a high level. If the pro
cedure is performed on an automatic programmer, the duty cycle of V cc at the 
programming voltage must be limited to a maximum of 2 5 % . This is necessary to 
minimize device junction temperatures. After all selected bits are programmed, 
the entire contents of the memory should be verified. 

Note: Since only an enabled device is programmed, it is possible to program these 
parts at the board level if all of the programming parameter are complied with. 

TRI-STATE® is a registered trademark of National Semiconductor Corp. 
TRI-SAFE™ is a trademark of National Semiconductor Corp. 



Data Sheets 331 

Programming Parameters 
Do not test or you may program the device 

Symbol Parameter 
Test 

Min. 
Recommended 

Max. Units 
Conditions Value 

VccP Required Vee for Programming 10 10.5 11 v 

lccP Ice During Programming Vee= 11V 750 mA 

Vop Required Output Voltage for Programming 10 10.5 11 v 

lop Output Current While Programming Vour= 11v 20 mA 

IRR Rate of Voltage Change of Vee or Output 1 10 V/µs 

Pwe Programming Pulse Width (Enabled) 9 10 11 µS 

VccvL Required Low Vee for Verification 3.8 4 4.2 v 

VccvH Required High Vee for Verification 5.8 6 6.2 v 

Moc Maximum Duty Cycle for Vee at Veep 25 25 % 

Table 11.13.1 Programming Parameters 
Do Not Test or You May Program the Device 

Programming Waveforms Non-Registered PROM 

ADDRESS 
INPUTS 

SELECTED ADDRESS STABLE >C ------
T1 

VccP

Vcc VccvH 

5.0V _,t 
Vop- -

PROGRAMMED 

-jTsl-
VccvL VccvH 

VoH / 
OUTPUT W////////////// ~ --~~--~ 

G 
ENABLE 

CLK 
CLOCK 

VoL 
T3 r---1T41-

OUTPUT 
VERIFY • Lil I 

-1 PWE r- r-T&-1 

n 
T1=100 ns MIN. 
T2=5 J'S MIN. (T2 MAY BE > 0 IF Veep RISES AT THE SAME RATE OR FASTER THAN Vop.) 
T3=100 ns MIN. 
T4=100 ns MIN. 
Ts=100 ns MIN. 
T5=50 ns MIN. 

OUTPUT 
VERIFY 

I 
r--Ta~ n 

Figure 11.13.1 Programming Waveforms Non-Registered PROM 



332 Programmable Logic Design Guide 

MANUFACTURER SYSTEM# 

DATA 110 5/17/19/29A 
PRO-LOG M910, M980 
KONTRON MPPBOS 
STAG PPX 
AIM RP400 
DIGELEC UP803 
STARPLEX™ 

Table 11.13.2 Approved Programmers for NSC PROMs 

11.14 QUALITY ENHANCEMENT PROGRAMS 

A+PROGRAM* B+PROGRAM 

Guaranteed Guarnnteed 
Test Condition LOTAQLS Test Condition LOTAQLS 

25°C 0.05 25°C 0.05 

D.C. D.C. 
Parametric Each Parametric Each 
And Temperature 0.05 And Temperature 0.05 
Functionality Extreme Functionality Extreme 

AC. 25°C 0.4 AC. 25°C 0.4 
Parametric Parametric 

Critical O.D1 Critical 0.01 
Mechanical Mechanical 

Major 0.28 Major 0.28 

Seal Fine Leak 0.4 Seal Fine Leak 0.4 
Tests (5 x 10 -81 Tests !5 x 10 -8) 

Hermetic Hermetic 
Gross 0.4 Gross 0.4 

'Includes 160 hours of burn-in at 125°C. 

Table 11.14.1 Quality Enhancement Program for Bipolar Memory 



_Package Outlines 

0.290 - 0.320 

( 
+0.635) 

10.16 -1.524 

0.025 

(0.635) 
RAD 

0.785 

[-----(19.939)---------j 

I Ii.I ml rm MAX ITT1 li01 191 I 15 14 13 12 11 10 g--. 
0.220- 0.310 

(5.588- 7.874) 

"""""...,..,.,....,..,.,....,..,.,....,..,.,....,..,.,......,.,.~____i_ 
0.005 - 0.020 

(0.127 - 0.508) 
RADTYP 

0.200 

86° 94° 
~-,r--.t:---t-~=- TYP 

0.020 - 0.060 

j 0.018±0.003 --l' 0 125-0 200 i- . . (0.508-1.524) 
(0.457 ± 0.076) (3.175 - 5.080) 
~ 0.100±0.010 

(2.540 ± 0.254) 

Figure 12.1 NS Package J16A 16-Leact·cavity DIP CT) 

12 

333 



334 Programmable Logic Design Guide 

0.280 

(7.112) 
MIN 

0.090 0.780 

0.092 (2.286) fJ,;:(19.81) ~ 
(2.3137) NOM MAX 
DIANOM~ 14 1J 12 11 10 9 

PINN0.11DENT~f0} (j) J 
0.250 ± 0.005 

(6.35 ± 0.127) 

0.130 ± 0.005 

(3.302 ± 0.127) n (~:~:~) 0.065 0.040 

0.300-0.320 MAX -- (1.016) 0.020 

~f==1L11 <1 •651 ) TYP (0 508) 
(7.62-8.128) }}C:hFr- l__ ........ _-_...------,.-....,,...----+ MIN 

r95°±5:t- 0.009-0.015 'J 
I· .I (0.229-0.~~~~o±o.015 1---j 1--lh sso 940 

0.325 ~~:~~: (0.762±0.381) ~ 0.018±0.003 

0.100±0.010 (0.457±0.076) 

0.125 

(3.175) 
MIN 

I +o.&35) 
\B.255 - 0.381 (2.540 ± 0.254) 

Figure 12.2 NS Package N16E 16-Lead Molded DIP (N) (Substitute for N16A) 

0.985 

---- (25.019) ---

0.290 - 0.320 

(7:366- 8.128) 

MAX 

0.005 0.060 ± 0.005 

0.020 - 0.060 

(0.508 - 1.524) 

GLASS 1 (0~1~7) (1.52~;:·127) 
SEALANT"".+-~~~~~~~~-+-+---.---+---, 

,,._--+-1---1 0.008 - 0.012 

(0.203 - 0.305) 86~ 
94° 
TYP 

----- 0.060 tl o.01s ± 0.003 --IL 0.150 
+0.025 I 

0.385 - 0.060 (1.524) (0.457 ± 0.076) (3.810) 
MAX 0.100±0.010 TYP MIN 

BOTH ENDS (2.540 ± 0.254) 
TYP 

( 
+0.635) 

9. 779 - 1.524 

0.200 

(5.080) 
MAX 

0.125 ± 0.200 

(3.175-5.080) 

Figure 12.3 NS Package J20A 20-Lead Cavity DIP 0) 



0.092 

(2.3137) 
DIANOM 

PIN NO. 1 INDENT 

Package Outlines 335 

1.040 

----(26.42) -----i 

0.090 

(2.286) 
NOM 

MAX 

Figure 12.4 NS Package N20A 20-Lead Molded DIP. (N) 

0.025 

(0.635) 
RAD 

0.180 

(4.572) 
MAX 

~ ae•g~• 
TYP o 0.095 o. 100 ± 0.01 

(2.413) (2.54±0.254)~ 
MAX TYP 

BOTH 
ENDS 

0.295 
--MAX 
(7.493) 

0.030 - 0.055 

0.672 - 1.397 
RADTYP 

Figure 12.5 NS Package J24F 24-Lead Cavity DIP 0) 



336 Programmable Logic Design Guide 

0.300 - 0.320 

(7.62- 8.128) 

0.009 - 0.015 

(0.229-0.381) . 

0.092 

(2.3137) 
DIA 

+ 0.025 ! I 0.280 
0·325 -0.015 ~ ,--- (7.112) 

{ + 0.635) MIN 
,8.255 - 0.381 

i-.~ ~ 
0.075 ± 0.015 

(1.905 ± 0.381) 

~ ~ 
0.100 ± 0.010 

(2.54 ± 0.254) 
TYP 

0.018 ± 0.003 

(0.457 ± 0.076) 
TYP 

0.020 

(0.508) 
MIN 

0.125 

(3.175) 
MIN 

Figure 12.6 NS Package N24C 24-Lead Molded DIP (N) 

0.025 

(0.635) 
RAD 

0.030 - 0.055 

(0. 762 - 1.397) 
RAD TYP 

0.005 

1.290 
0.600 

<a,;;;>------1 (15.240) 
f MAX 

tGLASS 

I 
0.514 - 0.526 

(13.06 -13.36) 

"~~~..,........,..-_t 

GLASS 

(2.540 ± 0.254) 

0.055 ± 0.005 

(1.397 ± 0.127) 

0.180 

(4.572) 
MAX 0.020 - 0.070 

(0.508 - 1. 778) 

I --JI-. as 0 0.125-0.200 0.150 
f-- I \ 940 

0.018 ± 0.003 TYP (3· 1 7~~~·090) <3:i~O) 
(0.457 ± 0.076) 

Figure 12. 7 NS Package J24A 24-Lead Cavity DIP (J) 



Package Outlines 337 

1.270 

1------(32.258)-----

DOTTED OUTLINES 
REFLECT ALTERNATE 

MOLDED BODY CONFIGURATION 

I_ +0.025 I 
r-- 0.625 - 0.015 -

+ 0.635 
15.875 - 0.381 

0.075 

~ 
0.075 ± 0.015 

(1.905 ± 0.381) r 
0.009- 0.015 

(0.229- 0.381) 

0.100 ± 0.010 

(2.540 ± 0.254) 

MAX 

0.040 

I 
0.540 ± 0.005 

0.015 

(0.381) 
MIN 

0.125 

(3.175) 
MIN 

Figure 12.8 NS Package N24A 24-Lead Molded DIP (N) 



338 Programmable Logic Design Guide 

4 SPACES AT 

0.050:1:j 
(1.270) 

19 20 1 2 3 

w 0.226 
(5.740) 
.NOM-

0.310 - 0.330 
(7.874 - 8.382) 

(CONTACT DIMENSION) 

0.026 - 0.032 
(o.&60 - 0.813) 

TYP 

SQUARE 

0.013 - 0.018 
(0.330 - 0.457) 

TYP 

0.045J I (1.143) 
x45° 

ii 
VIEW A-A 

0.018 - 0.040 

1"--""'1r....--'1-1--J----(0.457 -·1.016) 

PIN NO 1 
IDENT 

0.385 - 0.395 
(9.779-10.03) 

SQUARE 

0.165 - 0.180 
(4.191 - 4.572) 

Figure 12.9 NS Package PCC-20 20-Lead Plastic Leaded Chip Carrier (V) 



Package Outlines 339 

-.-----~~~~--i-

0.445 - 0.455 
(11.30 - 11.54) 

SQUARE 

0.326 VIEWA·A 
22 (8.280) 

NOM SQUARE 

0.045 ~· 

PIN 
N0.1 
IDENT 

0.485 - 0.495 -
(12.32 -12.57) 

SQUARE 

(1.143) --l l+-
x450 

SQUARE 
(CONTACT DIMENSION) 

f 
0.026 - 0.032 f 0.095 - 0.125 
(0.660 - 0.813) (2.413 - 4.572) 

TYP 

0.165 - 0.180 
(4.191 - 4.572) 

Figure 12.10 NS Package PCC-28 28-Lead Plastic Leaded Chip Carrier (V) 





Terminology 

PAL Device 

PROM 

FPLA 

Product Term 
(Pn) 

Term 

Summing Term 
(Sn) 

Output Polarity 

Don't Care 

Active High 

Active Low 

+ 
+ 

13 

Explanation 

Programmable Array Logic. AND-OR Array with 
a· programmable AND array and a fixed OR 
array. 

Programmable Read-Only Memory. AND-OR 
Array with a fixed AND array and a 
programmable OR array. 

Field-Programmable Logic Array. AND-OR Array 
with a programmable AND array and a 
programmable OR array. 

Logical AND operation on input variables. 
Example: Po= AoA1A15, P10 = AzA5 

Logical OR operation on product terms. 
Example: S1 =Po+ Pio 

= AoA1A15 + AzA5 

Inversion or Non-inversion of summing term 
outputs. 

Variable can take any logic state without 
affecting logic operation. 

Output is a logic high when Sum-of-Products 
expression is true. Within programmable logic 
context, refers to a non-inverted output. 

Output is a logic low when Sum-of-Products 
expression is true. Within programmable logic 
context, refers to an inverted output. 

Fixed connectioq. 

Programmable connection in virgin array. 

341 



342 Programmable Logic Design Guide 

+ 
+ 

Term 

Maximum Clock Frequency, fMAX: 

High Level Input Current, Im: 

High Level Output Current, IoH: 

Low Level Input Current, I1L: 

Low Level Output Current, IoL: 

Off-State (High-Impedance State) 
Output Current of a 3-State 
Output), Ioz: 

Short-Circuit Output Current, Ios: 

Supply Current, Ice: 

Explanation 

Unconnected in programmed part. 

Programmed, connected. 

The highest rate at which the clock input of a 
bistable circuit can be driven through its 
required sequence while maintaining stable 
transitions of logic level at the output with 
input conditions established that should cause 
changes of output logic level in accordance 
with the specification. 

The current into an input when a high level 
voltage is applied to that input.* 

The current into an output with input 
conditions applied that, according to the 
product specification, will establish a high level 
at the output.* 

The current into an input when a low level 
voltage is applied to that input.* 

The current into an output with input 
conditions applied that, according to the 
product specification, will establish a low level 
at the output.* 

The current into an output having 3-state 
capability with input conditions applied that, 
according to the product specification, will 
establish the high-impedance state at the 
output.* 

The current into an output when that output is 
short-circuited to ground (or other specified 
potential) with input conditions applied to 
establish the output logic level farthest from 
ground potential (or other specified potential).* 

The current into the V cc Supply terminal of an 
integrated circuit.* 



Term 

Output Enable Time (of a 3-State 
Output) to High Level, tpZH( or 
Low Level, tPZL): 

Output Enable Time (of a 3-State 
Output) to High or Low Level, 
tpzx: 

Output Disable Time (of a 3-State 
Output) from High Level, tpttz(or 
Low Level, tpLz): 

Output Disable Time (of a 3-State 
Output) from High or Low Level, 
tpxz: 

Terminology , 343 

Explanation 

The interval during which a signal is retained at 
a specified input terminal after an active 
transition occurs at another specified input 
terminal. 

Notes: 
1. The hold time is the actual time between 

two events ahd may be insufficient to 
accomplish the intended result. A minimum 
value is specified that is the shortest interval 
for which correct operation of the logic 
element is guaranteed. 

2. The hold time may have a negative value, in 
which case the minimum limit defines the 
longest interval (between the release of data 
and the active transition) for which correct 
operation of the logic element is guaranteed. 

The propagation delay time between the 
specified reference points on the input and 
output voltage waveforms with the 3-state 
output changing from a high-impedance (oft) 
state to the defined high (or low) level. 

The propagation delay time between the 
specified reference points on the input and 
output voltage waveforms with the 3-state 
output changing from a high-impedance (oft) 
state to either of the defined active levels (high 
or low). 

The propagation delay time between the 
specified reference points on the input and 
output voltage waveforms with the 3-state 
output changing from the defined high (or low) 
level to a high-impedance (oft) state. 

The propagation delay time between the 
specified reference points on the input and 
output voltage waveforms with the 3-state 
output changing from either of the defined 
active levels (high or low) to a high-impedance 
(oft) state. 



344 Programmable Logic Design Guide 

Term 

Propagation Delay Time, tp0 : 

Propagation Delay Time, 
Low-to-High Level Output, tpu-f 

Propagation Delay Time, 
High-to-Low Level Output, tPHL: 

Pulse Width, tw: 

Setup Time, tsu 

High Level Input Voltage, Vrn: 

Explanation 

The time between the specified· reference points 
on the input and output voltage waveforms with 
the output changing from one defined level 
(high or low) t~ the other defined level. 

The time between the specified reference 
points on the input and output voltage 
waveforms with the output changing from the 
defined low level to the defined high level. 

The time between the specified reference 
points on the input and output voltage 
waveforms with the output changing from the 
defined high level to the defined low level. 

The time interval between specified reference 
. points on the leading and trailing edges of the 
pulse waveform. 

The time interval between the application of a 
signal that is maintained at a specified input 
terminal and a consecutive active transition at 
another specified input terminal. 

Notes: 
1. The setup time is the actual time between 

two events and may be insufficient to· 
accomplish the setup. A minimum value is 
specified that is the shortest interval for 
which correct operation of the logic 
element is guaranteed. 

2. The setup time may have a negative value in 
which case the minimum limit defines the 
longest interval (between the active 
transition and the application of the other 
signal) for which correct operation of the 
logic element is guaranteed. 

An input voltage within the more positive (less 
negatiVe) of the two ranges of values used to 
represent the binary variables. 

Note: A minimum is specified that is the least 
positive value of high level voltage for which 



Term 

High Level Output Voltage, VoH: 

Input Clamp Voltage, V1c: 

Low Level Input Voltage, V1L: 

Low Level Output Voltage, VoL: 

Negative-Going Threshold 
Voltage, VT-

Positive-Going Threshold Voltage, 
VT+: 

Terminology 345 · 

Explanation 

operation of the logic elements within 
specification limits is guaranteed. 

The voltage at an output terminal with input 
conditions applied that, according to the 
product specification, will establish a high level 
at the output. 

An input voltage in a region of relatively low 
differential resistance that serves to limit the 
input voltage swing. 

An input voltage level within the less positive 
(more negative) of the two ranges of values 
used to represent the binary variables. 

Note: A maximum is specified that is the most 
positive value of the low level input voltage for 
which operation of the logic element within 
specification limits is guaranteed. 

The voltage at an output terminal with input 
conditions applied that according to the 
product specification will establish a low level 
at the output. 

The voltage level at a transition-operated input 
that causes operation of the logic element 
according to specificadon as the input voltage 
falls from a level above the positive-going 
threshold voltage, VT+. 

The voltage level at a transition-operated input 
that causes operation of the logic element 
according to specification as the input voltage 
rises from a level below the negative-going 
threshold voltage, VT _ . 

*Current out of a terminal is given as a negative value. 





Appendix - an Overyiew of 
LSI Testing Techniques 

The growth in the complexity and performance of digital circuits can only be 
described as explosive. Large-scale integrated circuits are being used today in a variety 
of applications, many of which require highly reliable operation. This is causing con
cern among designers of tests for LSI circuits. The testing of these circuits is difficult for 
several reasons: 

• The number of faults that has to be considered is large, since an LSI circuit contains 
thousands of gates, memory elements, and interconnecti_ng lines, all individually 
subject to different kinds of faults. 

• The observability and controllability of the internal elements of any LSI circuit are 
limited by the available number of I/O pins. As more and more elements are packed 
into one chip, the task of creating an adequate tes! becomes more difficult. A typical 
LSI chip may contain 5000 gates but only 40 I/O pins. 

• The implementation details of the circuits usually are not disclosed by the 
manufacturer. For example, the only source on information about commercially avail
able microprocessors is the user's manual, which details the instruction set and 
describes the architecture of the microprocessor at the register-transfer level, with 
some information of the system timing. The lack of implementation information elim
inates the use of many powerful test generation techniques that depend on the actual 
implementation of the unit under test. 

• As more and more gates and flip-flops are packed into one chip, new failure modes 
- such as pattern-sensitivity faults - arise. 1 These new types of faults are difficult 
to detect and require lengthy test patterns. 

• The dynamic nature of LSI devices requires high-speed test systems that can test the 
circuits when they are operating at their maximum speeds. 

• The bus structure of most LSI systems makes fault isolation more difficult because 
many devices - any of which can cause a fault - share the same bus. 

© 1983 IEEE, Reprinted, witb pennission, from lEEE MICRO, l-01. 3, No. 1, pp. 34, February• 1983. 
M.S. Abadir, H.K. Regbbati, Autbors. 

347 



348 Programmable Logic Design Guide 

e Solving the problems above increases the number of test patterns required for a suc
cessful test. This in turn increases both the time required for applying that test and 
the memory needed to store the test patterns and their results. 

LSI testing is a challenging task. Techniques that worked well for SSI and.MS! cir
cuits, such as the D-algorithm, do not cope with today's complicated LSI and VLSI cir
cuits. New testing techniques must be developed. In what follows, we describe some 
basic techniques developed to solve the problems associated with LSI testing. 

A.1 TESTING METHODS 

There are many test methods for LSI circuits, each with its own way of generating and 
processing test data. These approaches can be divided into two broad categories -
concurrent and explicit. 2 

In co·ncurrent approaches, normal user-application input patterns serve as diagnos
tic patterns. Thus testing and normal computation proceed concurrently. In explicit 
approaches, on the other hand, special input patterns are applied as tests. Hence, nor
mal computation and testing occur at different times. 

Concurrent Testing 

Systems that are tested concurrently are designed such that all the information 
transferred among various parts of the system is coded with different types of error 
detecting codes. In addition, special circuits monitor this coded data continuously and 
signal detection of any fault. 

Different coding techniques arc required to suit the different types of information 
used inside LSI systems. For example, m-out-of-n codes (n-bit patterns with exactly m 
l's and n - m O's) are suitable for coding control signals, while arithmetic codes are best 
suited for coding ALU operands.3 

The monitoring circuits - checkers - are placed in various locations inside the 
systems so that they can detect most of the faults. A checker is sometimes designed in a 
way that enables it to detect a fault in its own circuitry as well as in the monitored data. 
Such a checker is called a self-checking checker. 3 

Hayes and McCluskey surveyed various concurrent testing methods that can be 
used with microprocessor-based LSI systems. 2 Concurrent testing approaches provide 
the following advantages: 

o Explicit testing expenses (e.g., for test equipment, down time, and test pattern gen
eration) are eliminated during the life of the system, since the data patterns used in 
normal operation serve as test patterns. 

o The faults are detected instantaneously during the use of the LSI chip, hence the first 
faulty data pattern caused by a certain fault is detected. Thus, the user can rely on the 
correctness of his output results within the degree of fault coverage provided by the 



Appendix 349 

· error detection code used. In explicit approaches, on the other hand, nothing can be 
said about the correctness of the results until the chip is explicitly tested. 

o Transient faults, which may occur during normal operation, are detected if they cause 
any faulty data pattern. These faults cannot be detected by any explicit 
testing method. 

Unfortunately, the concurrent testing approach suffers from several problems that 
limit its usage in LSI testing: 

o The application patterns may not exercise all the storage element or all the internal 
· connection lines. Defects may exist in places that are not exercised, and hence the 

faults these defects would produce will not be detected. Thus, the assumption that 
faults are detected as they occur, or at least before any other fault occurs, is no 
longer valid. Undetected faults will cause fault accumulation. As a result, the fault 
detection mechanism may fail because most error detection codes have a limited 
capability for detecting multiple faults. 

o Using error detecting codes to code the information signals used in- an LSI chip 
requires additional I/O pins. At least two extra pins are needed as error signal indica
tors. (A single pin cannot be used, since such a pin stuck at the good value could go 
undetected.) Because of constraints on pin count, however, such requirements can
not be fulfilled. 

o Additional hardware circuitry is required to implement the checkers and to increase 
the width of the data carriers used for storing and transferring the coded information. 

o Designing an LSI circuit for concurrent testing is a much more complicated task 
than designing· a similiar LSI circuit that will be tested explicitly. 

o Concurrent approaches provide no control over critical voltage or timing parameters. 
Hence, devices cannot be tested under marginal timing and electrical conditions. 

o The degree of fault coverage usually provided by concurrent methods is less than 
that provided by explicit methods. 

The above-mentioned problems have limited the use of concurrent testing for most 
commercially available LSI circuits. However, as digital systems grow more complex and 
difficult to test, it becomes increasingly attractive to build test procedures into the UUT 
(unit under test) itself. We will not consider the concurrent approach further in this 
article .. For a survey of work in concurrent testing, see Hayes and McCluskey. 2 

Eltplicit Testing 

All explicit testing methods separate the testing process from normal operation. In gen
eral, an explicit testing process involves three steps: 

o Generating the test patterns. The goal of this step is to produce those input pat
terns which will exercise the UUT under different modes of operation while trying 
to detect any existing fault. 



350 Programmable Logic Design Guide 

• Applying the test patterns to the UUT. There are two ways to accomplish this 
step. The first is external testing - the use of special test equipment to apply the test 
patterns externally. The second is internal testing - the application of test patterns 
internally by forcing the UUT to execute a self-testing procedure. 2 Obviously, the 
second method can only be used with systems that can execute programs (for exam
ple, with microprocessor-based systems.) External testing gives better control over 
the test process and enables testing under different timing and electrical conditions. 
On the other hand, internal testing is easier to use because it does not need special 
test equipment or engineering skills. 

• Evaluating the responses obtained from the UUT. This step is designed with 
one of two goals in mind. The first is the detection of an erroneous response, which 
indicates the existence of one or more faults (go/no-go testing). The other is the iso
lation of the fault, if one exists, in an easily replaceable module (jault location test
ing). Our interest in this article will be go/no-go testing, since fault location testing 
of LSI circuits sees only limited use. 

Many explicit test methods have evolved in the last decade. They can be distin
guished by the techniques used to generate the test patterns and to detect and evaluate 
the faulty responses (Figure A.1.1 ). In what follows, we concentrate on explicit testing 

MANUAL 

TEST 
GENERATION 

ALGORITHMIC 

INTERNAL 

LSI 
TESTING 

CONCURRENT 
TESTING 

EXTERNAL 

SIMULATION· 
AIDED GOOD 

RESPONSE 
GENERATION 

STORED 
RESPONSE 

COMPARISON 

COMPACT 
TESTING 

TRANSITION 
COUNTING 

Figure A.1.1 LSI Test Technology 

SIGNATURE 
ANALYSIS 



Appendix 351 

and present in-depth discussions of the methods of test generation and response evalu
ation employed with explicit testing. 

A.2 TEST GENERATION TECHNIQUES 

The test generation process represents the most important part of any explicit testing 
method. Its main goal is to generate those test patterns that, when applied to the UUT, 
sensitize existing faults and propagate a faulty response to an observable output of the 
UUT. A test sequence is considered good if it can detect a high percentage of the possible 
UUT faults; it is considered good, in other words, if its degree of fault coverage is high. 

Rigorous test generation should consist of three main activities: 

• Selecting a good descriptive model, at a suitable level, for the system under consid
eration. Such a model should reflect the exact behavior of the system in all its possi
ble modes of operation. 

• Developing a fault model to define the types of faults that will be considered during 
test generation. In selecting a fault model, the percentage of possible faults covered 
by the model should be maximized, and the test costs associated with the use of the 
model should be minimized. The latter can be accomplished by keeping'the com
plexity of the test generation low and the length of the tests short. Clearly these 
objectives contradict one another - a good fault model is usually found as a result 
of a trade-off between them. The nature of the fault model is usually influenced by 
the model used to describe the system. 

• Generating tests to detect all the faults in the fault model. This part of test genera
tion is the soul of the whole test process. Designing a test sequence to detect acer
tain fault in a digital circuit usually involves two problems. First, the fault must be 
excited; i.e., a certain test sequence must be applied that will force a faulty value to 
appear at the fault site if the fault exists. Second, the test must be rnade sensitive to 
the fault; i.e., the effect of the fault must propagate through the network to an 
observable output. 

Rigorous test generation rests heavily on both accurate descriptive (system) 
models and accurate fault models. 

Test generation for digital circuits is usually approached either at the gate-level or 
at the functional level. The classical approach of modeling digital circuits as a group of 
connected gates and flip-flops has been used extensively. Using this level of descrip
tion, test designers introduced many types of fault models, such as the classical stuck-at 
model. They also assumed that such models could describe physical circuit failures in 
terms of logic. This assumption has sometimes restricted the number of physical fail
ures that can be modeled, but it has also reduced the complexity of test generation 
since failures at th~ elementary level do not have to be considered. 

Many algorithms have been developed for generating tests for a given fault in com
binational networks. I,4,5,6,7 However, the complexity of these algorithms depends on 
the topology of the network; it can become very high for some circuits. Ibarra and 



352 Programmable Logic Design Guide 

Sahni have shown that the problem of generating tests to detect single stuck-at faults in 
a combinational circuit modeled at the gate level is an NP-complete problem. 8 More
over, if the circuit is sequential, the problem can become even more difficult depending 
on the deepness of the circuit's sequential logic. 

Thus, for LSI cicuits having many thousands of gates, the gate level approach to 
the test generation problem is not very feasible. A new appoach, the functional level, is 
needed. 

Another important reason for considering faults at the functional level is the con
straint imposed on LSI testing by a user environment - the test patterns have to be gen
erated without a knowledge of the implementation details of the chip at the gate level. 



Appendix 353 

The only source of information usually available is the typical IC catalog, which details 
the different modes of operation and describes the general architecture of the circuit. 
With such information, the test designer finds it easier to define the functional behavior 
of the circuit and to associate faults with the functions. He can partition the UUT into var
ious modules such as registers, multiplexers, ALUs, ROMs, and RAMs. Each module can 
be treated as a "black box" performing a specified input/output mapping. These modules 
can then be tested for functional failures; explicit consideration of faults affecting the 
internal lines is not necessary. The example given below clarifies the idea. 

Consider a simple one-out-of-four multiplexers such as the one shown in Figure 
A.2.1. This multiplexer can be modeled at the gate level as shown in Figure A.2.l(a), or at 
the functional level as shown in Figure A.2.l(b). 

x y z w 

u 

C1 Co u 
(a) x y z w 

0 0 x 

0 1 y 
1-0UT-OF-4 MUX 

1 0 z 
(b) 1 1 w 

u 

Figure A.2.1 (a) A One-out-of-four Multiplexer-gate-level Description; 
(b) Functional-level Description. 

A possible fault model for the gate-level description is the single stuck-at fault 
model. With this model, the fault list may contain faults such as the line labeled with 
'1" is stuck at 0, or the control line "Co" is stuck at 1. 

At the functional level, the multiplexer is considered a black box with a 
well-defined function. Thus, a fault model for it may specify the following as possible 
faults: selection of wrong source, selection of no source, or presence of stuck-at faults 
in the input lines or in the multiplexer output. With this model, the fault list may con
tain faults such as source "X" 'is selected instead of source "Y," or line "Z" is stuck at 1. 



354 Programmable Logic Design Guide 

Ad hoc methods - which determine what faults are the most probable - are 
sometimes used to generate fault lists. But if no fault model is assumed, then the tests 
derived must be either exhaustive or a rather ad hoc check of the functionality of the 
system. Exhaustive tests are impossible for even small systems because of the enor
mous number of possible states, and superficial tests provide neither good coverage 
nor even an indication of what faults are covered. 

Once the fault list has been defined, the next step is to find the test patterns 
required to detect the faults in the list. As previously mentioned, each fault first has to 
be excited so that an error signal will be generated somewhere in the UUT. Then this 
signal has to be sensitized at one of the observable outputs of the UUT. The three exam
ples below describe how to excite and sensitize different types of faults in the types of 
modules usually encountered in LSI circuits. 

Consider the gate-level description of the three-bit incrementer shown in Figure A2.2. 

Figure A.2.2 Gate-level Description of a Three-Bit Incrementer 

The incrementer output, Y 2 Y 1 Y 0 , is the binary sum of Ci and the three-bit binary 
number X2X 1 X0 , while C0 is the carry-out bit of the sum. Note that X0(Y 0) is the least 
significant bit of the incrementer input (output). 

Assume we want to detect the fault "line/ is stuck at O." To excite that fault we will 
force a 1 to appear on line f so that, if it is stuck at 0, a faulty value will be generated at 
the fault site. To accomplish this both Xo and Ci must be set to 1. To sensitize the faulty 
Oat/, we have to set X 1 to 1; this will propagate the fault to Y 2 independent of the value 
of X2. Note that if we set X1 to 0, the fault will be masked since the AND gate output 
will be 0, independent of the value at/. Note also that X2 was not specified in the above 
test. However, by setting X2 to 1, the fault will propagate to both Y 2 and C0 , which 
makes the response evaluation task easier. 

Consider a microprocessor RAM and assume we want to generate a test sequence 
to detect the fault "accessing word i in the RAM results in accessing the word} instead." 



Appendix 355 

To excite such a fault, we will use the following sequence of instructions (assume a 
microprocessor with single-operand instructions): 

Load the word 00 ... 0 into the accumulator. 

Store the accumulator contents into memory address j. 

Load the word 11 ... 1 into the accumulator. 

Store the accumulator contents into memory address i. 

If the fault exists, these instructions will force a 11 ... 1 word to be stored in mem
ory address j instead of 00 ... 0. To sensitize the fault, we need only read what is in 
memory address j, using the appropriate instructions. Note that the RAM and its fault 
have been considered at the functional level, since we did not specify how the RAM is 
implemented. 

Consider the program counter (PC) of a microprocessor and assume we want to gen
erate a test sequence that will detect any fault in the incrementing mode of this PC, i.e., 
any fault that makes the PC unable to be incremented from x to x + 1 for any address x. 
One way to excite this fault is to force the PC to step through all the possible addresses. 
This can be easily done by initializing the PC to zero and then executing the no-operation 
instruction x + 1 times. As a result, the PC will contain an address different than x + 1. By 
executing another no-operation instruction, the wrong address can be observed at the 
address bus and the fault detected. In practice, such an exhaustive test sequence is very 
expensive, and more economical tests have to be used. Note that, as in the example 
immediately above, the problem and its solution have been considered at the functional 
level. 

Four methods are currently used to generate test patterns for LSI circuits: manual 
test generation, algorithmic test generation, simulation-aided test generation, and ran
dom test generation. 

Manual Test Generation 

In manual test generation, the test designer carefully analyzes the UUT. This analysis 
can be done at the gate level, at the functional level or at a combination of the two. The 
analysis of the different parts of the UUT is intended to determine the specific patterns 
that will excite and sensitize each fault in the fault list. At one time, the manual 
approach was widely used for medium-and small-scale digital circuits. Then, the for
mulation of the D-algorithm and similar algorithms eliminated the need for analyzing 
each circuit manually and provided an efficient means to generate the required test pat
terns.1,5 However, the arrival of LSI circuits and microprocessors required a shift back 
toward manual test generation techniques, because most of the algorithmic techniques 
used with SSI and MSI circuits were not suitable for LSI circuits. 

Manual test ·generation tends to optimize the length of the test patterns and pro
vides a relatively high degree of fault coverage. However, generating tests manually 
takes a considerable amount of effort and requires persons with special skills. Realizing 



356 Programmable Logic Design Guide 

that test generation has to be done economically, test designers are now moving in the 
direction of automatic test generation .. 

One good example of manual test generation is the work done by Sridhar and 
Hayes,9 who generated test patterns for a simple bit-sliced microprocessor at the func
tional level. 

A bit-sliced microprocessor is an array of n identical ICs called slices, each of which 
is a simple processor for operands of kbit length, where k is typically 2 or 4. The inter
connections among the n slices are such that the entire array forms a processor for nkbit 
operands. The simplicity of the individual slices and the regularity of the interconnec
tions make it feasible to use systematic methods for fault analysis and test generation. 

Sridhar and Hayes considered a one-bit processor slice as a simplified model for 
the commercially available bit-sliced processors such as the Am2901. 10 A slice can be 
modeled as a collection of modules interconnected in a known way. These modules are 
regarded as black boxes with well-defined input-output relationships. Examples of 
these functional modules are ALUs, multiplexers, and registers. Combinational mod
ules are described by their truth tables, while sequential modules are defined. by their 
state tables (or state diagrams). 

The following fault categories were considered: 

o For combinational modules, all possible faults that induce arbitrary changes in the 
truth table of the module, but that cannot convert it into a sequential circuit. 

o For sequential modules, all possible faults that can cause arbitrary changes in the 
state table of the module without increasing the number of states. 

Only one module was assumed to be faulty at any time. 
To test for the faults allowed by the above-mentioned fault model, all possible 

input patterns must be applied to each combinational module (exhaustive testing), and 
a checking sequence 11 to each sequential module. In addition, the responses of each 
module must be propagated to observable output lines. The tests required by the indi
vi.dual modules were easily generated manually - a direct consequence of the small 
operand size (k = 1 ). And because the slices were identical, the tests for one slice were 
easily extended to the whole array of slices. In fact, Sridhar and Hayes showed that an 
arbitrary number of simple fnterconnected slices could be tested with the same num
ber of tests as that required for a single slice, as long as only one slice was faulty at one 
time. This property is called C-testability. Note that the use of carry-lookahead when 
connecting slices eliminates C-testability. Also note that slices with operand sizes equal 
to 2 or more usually are not C-testable. 

The idea of modeling a digital system as a collection of interconnected functional 
modules can be used in modeling any LSI circuit. However, using exhaustive tests and 
checking sequences to test individual modules is feasible only for toy systems. Hence, 
the fault model proposed by Sridhar and Hayes, though very powerful, is not directly 
applicable to LSI testing. 



Appendix 357 

PATH SENSITIZATION AND THE D-ALGORITHIVI 

One of the classical fault detection methods at the gate and flip-flop level is the D
algorithm 1·5 employing the path sensitization testing tcchnique.'1 The basic prin
ciple involved inpath sensitization is relatively simple. For an input X; to detect a 
fault "line a is stuck atj,j = 0, l," the input X; must cause the signal ain f11~. ~or~ 
mal (fault-free) circuitto take· the value}. This condition is necessary but11otg1f~ 
ficient to detect the fault. The error signal must be propagated along so11w pat}:i 
from its site· to an observable output. 

To generate a test to detect a stuck-at fault in a combinational circuit, the fol~ 
lqwing path sensitization procedure must be followed: 

C!J Excitation-:-Tfie ·inputs must be specified so as . to generate the appropriate 
value (O for stuck~at 1 and I for stuck-at O) at the site of the fault. 

f:rror propagation-Apath from the fault site tqan observabl.~ output must ?e 
selected, •. and.a~ditional signal .. values to•.prop;igat~the fault signal aloqgthJs 
path must .be sp~cifie<:f. 

o Linejustificatio~~Input values must be specifi~dsqas··to produce.•tbe signal~ 
values specified ir1 the step above. 

Jhere maybe several possible· choices for err6rptopagation and line justifica
ti.pn. Also, m $0111S c~s~s there may be a choic~ ?f w~ys in which to excite the 
!~~lL Sp111e 9{ m~se c.}1c;>i.ce? may lead to· an il1~p~sis~c:;ncy~ and so the procedure 
must backtrackand consider the next alternative;Jf all the alternatives lead to an 
it1fonsi~~e~9y, fR.is.itppli?s .• th.at the .fa~If.canrip(becietected. 

Ifo facili~~tetht;!~a~h ~ensitizatio.11 process, .weif1troduce the symbol Dtorep~~
s~W a ~i~l1~lyv~ic}1 }1as tI.1e valuel i~ ano.rtpal drfttit and O in a faulty dfcuit, ~~d 
J5 ~() i·epresenta ~i~ma! which. ha~.thS ya~ue 0 in a normal circuit . and .. 1 .. in a faulty 
circuit.The path?~11sitiz~tionproq:durecan be formulated.in terms qf a. cubical 
al~eb~a.1.'f t? e~aple '1utomaticgeneration of test. This also facilitates test genera~ 
tip~J?r ll1()re. comp le-:~ fault. mqdels and for· fault propagation through ~~···---·-·· 
lqgtf. el~ments. 
~e shall· .. ctefine three.··typesofcubes(i.e.,. line values specified.in JJ'-''"""'''"' .. ··"'"•>·• 

nofatiqn): 

• fp(acir~~It ele1nentE.whichireav~es the combinational function/, 
VY? sp~es''· •. offer •. a typic~lprs.~entation of the prirne .. implicams off 
Th.~sc i;:ubes concisely represent tl)e logical. behavior· of E. 

• ~ [~pr~1~iti~eD-5ube.of it~~~t?j11~1logi~ element E specifies· the 111inimalinl)~t 
c;:pn#itf.()?f t}1at.1nust peappliedto f: in· order to produce.an c~rror signal (Dor 
QI~S!h<! qµtput of E. 



358 Programmable Logic Design Guide 



Appendix 359 

Lir1e1:us1titic:at:ionl...;_Jt:-;xc~cution of Steps 1 to 5 may result in specifying the out
..... ~ .......... ., .. an element E but leaving some of the inputs to the element unspeci-

...... J..;>µ'• ........ J.J.~ ... -.. inputs of such an element are assigned values so as to 
........ , .......... ...,. output value. This is done by intersecting the test cube with 

~ .. ·im·i•+•:"'" cube of the element which has no specified signal values that differ 
test'cube. 

Algorithmic test generation 

In algorithmic test generation, the test designer devises a set of algorithms to generate the 
1 's and O's needed to test the UUT. Algorithmic test techniques are much more economi
Gal than manual techniques. They also provide the test designer with a high level of flexi
bility. Thus, he can improve the fault coverage of the tests by replacing or modifying 
parts of the algorithms. Of course, this task is much simpler than modifying the 1 's and 
O's in a manually generated test sequence. 

Techniques that use the gate-level description of the UUT, such as path sensitiza
tion4 and the D-algorithm,5 can no longer be used in testing complicated LSI circuits. 
Thus, the problem of generating meaningful sets of tests directly from the functional 
description of the UUT has become increasingly important. Relatively little work has 
been done on functional-level testing of LSI chips that are not memory ele
ments. 9, l2, l3, l4, l5, l6, l7 Functional testing of memory chips is relatively simple because 
of the regularity of their design and also because their components can be easily con
trolled and observed from the outside. Various test generation algorithms have been 



360 Programmable Logic Design Guide 

developed to detect different types of faults in memories. 1• IS In the rest of this section 
we will concentrate on the general problem of generating tests for irregular LSI chips, 
i.e., for LSI chips which are not strictly memory chips. 

It is highly desirable to find an algorithm that can generate tests for any LSI circuit, 
or at least most LSI circuits. One good example of work in this area is the technique 
proposed by Thatte and Abraham for generating tests for microprocessors. 12 •13 
Another approach, pursued by the authors of this article, is a test generation procedure 
capable of handling general LSI circuits. 15,I6,I7 

The Thatte-Abraham Technique 

Microprocessors constitute a high percentage of today's LSI circuits. Thatte and Abra
ham 12 • I3 approached the microprocessor test generation problem at the functional 
level. 

The test generation procedure they developed was based, on: 

o A functional description of the microprocessor at the register-transfer level. The 
model is defined in terms of data flow among storage units during the execution of 
an instruction. The functional behavior of a microprocessor is thus described by 
information about its instruction set and the functions performed by each instruc
tion. 

o A fault model describing faults in the various functional parts of the UUT (e.g., the 
data transfer function, the data storage function, the instruction decoding and con
trol function). This fault model describes the faulty behavior of the UUT without 
knowing its implementation details. 

The microprocessor is modeled by a graph. Each register in the microprocessor 
(including general-purpose registers and accumulator, stack, program counter, address 
buffer, and processor status word registers) is represented by a node of the graph. 
Instructions of the microprocessors are classified as being of transfer, data manipula
tion, or branch type. There exists a directed edge (labeled with an instruction) from 
one node to another if during an execution of the instruction data flow occurs from the 
register represented by the first node to that represented by the second. Examples of 
instruction representation are given in Figure A.2.3. 

Having described the function or the structure of the UUT, one needs an appropri
ate fault model in order to derive useful tests. The approach used by Thatte and Abra
ham is to partition the various fun~tions of a microprocessor into five classes: the 
register decoding function, the instruction decoding and control function, the data 
storage function, the data transfer function, and the data manipulation function. Fault 
models are derived for each of these functions at a higher level and independently of 
the details of implementation for the microprocessor. The fault model is quite general. 
Tests are derived allowing any number of faults, but only in one function at a time; this 
restriction· exists solely to cut down the complexity of test generation. 



Appendix 361 

(a) (b) (c) (d) 

Figure A.2.3 Representations of Microprocessor Instruction - 11' (a) Transfer 
Instruction, ~2 -R1; (b) Add Instruction, R3-R1 + R2; (c) 13, OR 
Instruction, R2-R1 OR R2; (d) 14 Rotate Left Instruction. 

The fault model for the register decoding function allows any'possible set of regis
ters to be accessed instead of a particular register. (If the set is null then no register is 
accessed.) This fault model is thus very general and independent of the actual realiza
tion of the decoding mechanism. 

For the instruction decoding and control function, the faulty behavior of the 
microprocessor is specified as follows. When instruction 11, is.executed any one of the 
following can happen: 

o Instead of instruction y, some other instruction Ik is executed. This fault is denoted 
by F(I/Ik). 

• In addition to instruction Ip some other instruction Ik is activated. This fault is 
denoted by F(I/11 + lk). 

• No instruction is executed. This fault is denoted by F(I/¢). 

Under this specification, any number of instructions can be faulty. 
In the fault model for the data storage function, any cell in any data storage module 

is allowed to be stuck at 0 or 1. This can occur in any number of cells. 
The fault model for the data transfer function includes the following types of faults: 

o A line in a path used in the ex.ecution of an instruction is stuck at 0 or 1. 

• Two lines of a path used in the instruction are coupled; i.e., they fail to carry differ
ent logic values. 

Note that the second fault type cannot be modeled by single .stuck-at faults. The 
transfer paths in this fault model are logical paths and thus will account for any failure 
in the actual physical paths. 

Since there is a variety of designs for the ALU and other functional units such as 
increment or shift logic, no specific fault model is used for the data manipulation func
tion. It is assumed that complete test sets can be derived for the functional units for a 
given fault model. 

By carefully analyzing the logical behavior of the microprocessor according to the 
fault models presented above, Thatte and Abraham formulated a set of algorithms to 



362 Programmable Logic Design Guide 

generate the necessary test patterns. These algorithms step the microprocessor through 
a precisely defined set of instructions and addresses. Each algorithm was designed for 
detecting a particular class of faults, and theorems were proved which showed exactly 
the kind of faults detected by each algorithm. These algorithms employ the excitation 
and sensitization concepts previously described. 

To gain insight into the problems involved in using the algorithms, Thatte investi
gated the testing of an eight-bit microprocessor from Hewlett-Packard. 12 He generated 
the test patterns for the microprocessor by hand, using the algorithms. He found that 
96 percent of the single stuck-at faults that could affect the microprocessor were 
detected by the test sequence he generated. This figure indicates the validity of the 
technique. 

The Abadir-Reghbati technique 

Here we will briefly describe a test generation technique we developed for LSI cir
cuits. IS, t6 We assumed that the tests would be generated in a user environment in 
which the gate-and flip-flop-level details of the chip were not known. 

We developed a module-level model for LSI circuits. This model bypasses the gate 
and flip-flop levels and directly describes blocks of logic (modules) according to their 
functions. Any LSI circuit can be modeled as a network of interconnected modules 
such as counters, registers, ALUs, ROMs, RAMs, multiplexers, and decoders. 

Each module in an LSI circuit was modeled as a black box having a number of func
tions defined by a set of binary decision diagrams (see box, next page). 19 This type of 
diagram, a functional descr~ption tool introduced by Akers in 1978, is a concise means 
for completely defining the logical operation of one or more digital functions in an 
implementation-free form. The information usually found in ari IC catalog is sufficient to 
derive the set of binary decision diagrams describing the functions performed by the dif
ferent modules in a device. These diagrams - like truth tables and state tables - are 
amenable to extensive logical analysis. However, unlike truth tables and state tables, they 
do not have the unpleasant property of growing exponentially with the number of varia
bles involved. Moreover, the diagrams can be stored and processed easily in a digital com
puter. An important feature of these diagrams is that they state exactly how the module 
will behave in every one of its operation modes. Such information can be extracted from 
the module's diagrams in the form of a set of experiments. is,2o Each of these experiments 
describes the behavior of the module in one of its modes of operation. The structure of 
these experiments makes them suitable for use in automatic test generation. 

We also developed a functional-level fault model describing faulty behavior in the 
different modules of an LSI chip. This model is quite independent of the details of 
implementation and covers functional faults that alter the behavior of a module during 
one of its modes of operation. It also covers stuck-at faults affecting any input or output 
pin or any interconnection line in the chip. 

Using the above-mentioned models, we proposed a functional test generation pro
cedure based on path sensitization and the D-algorithm. 15 The procedure takes the 



Appendix 363 

module-level model of the LSI chip and the functional description of its modules as 
parameters arid generates tests to detect faults in the fault model. The fa ult collapsing 
technique1 was used to reduce the length of the test sequence. As in the D-algorithm, 
the procedure employs three basic operations, namely implication, D-propagation, and 
line justification. However, these operations are performed on functional modules. 

We also presented algorithmic solutions to the problems of performing these oper
ations on functional modules. 16 For each of the three operations, we gave an algorithm 
which takes the module's set of experiments and current state (i.e., the values assigned 
to the module inputs, outputs, and internal memory elements) as parameters and gen
erates all the possible states of the module after performing the required operation. 

We have also reported our efforts to develop test sequences based on our test gen
eration procedure for typical LSI circuits. 17 More specifically, we considered a one-bit 
microprocessor slice C that has all the basic features of the four-bit Am2901 microproc
essor slice. 10 The circuit C was modeled as a network of eight functional modules: an 
ALU, a latch register, an addressable register, and five multiplexers. The functions of the 
individual modules were described in terms of binary decision diagrams or equivalent 
sets of experiments. Tests capable of detecting various faults covered by the fault model 
were then generated for the circuit C. We showed that if the fault collapsing technique 
is used, a significant reduction in the length of the final test sequence results. 

The test generation effort was quite straightforward, indicating that the technique 
can be automated without much difficulty. Our study also shows that for a simplified 
version of the circuit C the length of the test sequence generated by our technique is 
very close to the length of the test sequence manually generated by Sridhar and Hayes9 
for the same circuit. We also described techniques for modeling some of the features of 
the Am2909 four-bit microprogram sequencer10 that are not covered by the circuit C. 

The results of our case study were quite promising and showed that our technique 
is a viable and effective one for generating tests for LSI circuits. 

Simulation-aided Test Generation 

Logic simulation techniques have been used widely in the evaluation and verification of 
new digital circuits. However, an important application of logic simulation is to inter
pret the behavior of a circuit under a certain fault or faults. This is known as fault simu-
· lation. To clarify how this technique can be used to generate tests for LSI systems, we 
will first describe its use with SSI/MSI-type circuits. 

To generate a fault simulator for an SSI/MSI circuit, the following information is 
needed: 1 

• the gate-level description of the circuit, written in a special language; 

• the initial conditions of the memory elements; and 

• a list of the faults to be simulated, including classical types of faults such as stuck-at 
faults and adjacent pin shorts. 



364 Programmable logic Design Guide 

The above is fed to a simulation package which generates the fault simulator of the 
circuit under test. The resulting simulator can simulate the behavior of the circuit 
under normal conditions as well as when any faults exist. 

Now, by applying various input patterns (either generated by hand, by an algo
rithm, or at random), the simulator checks to see if the output response of the correct 
circuit differs from one of the responses of the faulty Circuits. If it does, then this input 
pattern detects· the fault which created the wrong output response; otherwise the input 
pattern is useless. If an input pattern is found to detect a certain fault, this fault is 
deleted from the fault list and the process continues until either the input patterns or 
the faults are finished. At the end, the faults remaining in the fault list are those which 
cannot be detected by the input patterns. This directly measures the degree of fault 
coverage of the input patterns used. 

Two examples of this type of logic simulator are LAMP - the Logic Analyzer for 
Maintenance Planning developed at Bell Laboratories,21 and the Testaid III fault simula
tor developed at the Hewlett-Packard Company. 12 Both work primarily at the gate level 
and simulate stuck-at faults only. One of the main applications of such fault simulators 
is to determine the degree of fault coverage provided by a test sequence generated by 
any other test generation technique. 

There are two key requirements that affect the success of any fault simulator: 

• the existence of a software model for each primitive element of the circuit, and 

• the existence of a good fault model for the UUT which can be used to generate a 
fault list covering most of the actual physical faults. 

These two requirements have been met for SSI/MSI circuits, but they pose serious 
problems for LSI circuits. If it can be done at all, modeling LSI circuits at the gate level 
requires great effort. One part of the problem is the lack of detailed information about 
the internal structure of most LSI chips. The other is the time and memory required to 
simulate an LSI circuit containing thousands of gates. Another severe problem facing 
almost all LSI test generation techniques is the lack of good fault models at a level 
higher than the gate level. 

The Abadir-Reghbati description model proposed in the previous section permits 
the test designer to bypass the gate-level description and,· using binary decision dia
grams, to define blocks of logic according to their functions. Thus, the simulation of 
complex LSI circuits can take place at a higher level, and this eliminates the large time 
and memory requirements. Furthermore, the Abadir-Reghbati fault model is quite effi
cient and is suitable for simulation purposes. In fact, the implication operation 16 

employed by the test generation procedure represents the main building block of any 
fault simulator. It must be noted that fault simulation techniques are very useful in opti
mizing the length of the test sequence generated by any test generation technique. 



Appendix 365 

BINARY DECISION DIAGRAMS 



366 Programmable Logic Design Guide 



Appendix 367 

EJ" by traversing the Ej diagram, he obtains a value of 0. ~eturn~ 
c1 + 1 diagram with E1 = O will result in taking the O branch. and 

CJ+l = AJ = 1. 
node variables .. can refer. to .. other auxiliary functions, 

\ . 'les.crioe ·· cmnpJlCX modules by breaking their functions 
diagram· will consist of small diagra.ms connect:ed. m a 111era1·cni .;;······•.··1 

of these diagrams describes either 

Random Test Generation 

This method can be considered the simplest method for testing a device. A random 
number generator is used to simultaneously apply random input patterns both to the 
UUT and to a copy of it known to be fault-free. (This copy is called the golden unit.) 
The results obtained from the two units are compared, and if they do not match, a fault 
in the UUT is detected. This response evaluation technique is known as comparison 
testing; we will discuss it later. It is important to note that every time the UUT is tested, 
a new random test sequence is used. 

The important question is how effective the random test is, or, in other. words, 
what fault coverage a random test of given length provides. This question can be 
answered by employing a fault simulator to simulate the effect of random test patterns 
of various lengths. The results of such experiments on SSI and MSI circuits show that 



368 Programmable Logic Design Guide 

random test generation is most suitable for circuits without deep sequential logic.1,22,23 
However, by combining random patterns with manually generated ones, test designers 
can obtain very good results. 

The increased sequentiality of LSI circuits reduces the applicability of random test
ing. Again, combining manually generated test patterns with random ones improves 
the degree of fault coverage. However, two factors restrict the use of the random test 
generation technique: 

• The dependency on the golden unit, which is assumed to be fault-free, weakens the 
level of confidence in the results. 

• There is no accurate measure of how effective the test is, since all the data gathered 
about random tests are statistical data. Thus, the amount of fault coverage provided 
by a particular random test process is unpredictable. 

A.3 RESPONSE EVALUATION TECHNIQUES 

Different methods have been used to evaluate UUT responses to test patterns. We restrict 
our discussion to the case where the final goal is only to detect faults or, equivalently, to 
detect any wrong output response. There are two ways of achieving this goal - using a 
good response generator or using a compact testing technique. 

Good Response Generation 

This technique implements an ideal strategy: comparing UUT responses with good 
response patterns to detect any faulty response. Clearly, the key problems are how to 
obtain a good response and at what stage in the testing process that response will be 
generated. In current test systems, two approaches to solving these problems are taken 
- stored response testing and comparison testing. 

Stored Response Testing 

In stored response testing, a one-shot operation generates the good response patterns 
at the end of the test generation stage. These patterns are stored in an auxiliary memory 
(usually a ROM). A flow diagram of the stored response testing technique is shown in 
Figure A.3.1. 

Different methods can be used to obtain good responses of a circuit to a particular 
test sequence. One way is to do it manually by analyzing the UUT and the test patterns. 
This method is the most suitable if the test patterns were generated manually in the first 
place. 

The method most widely used to obtain good responses from the UUT is to apply 
the test patterns either to a known good copy of the UUT - the golden unit - or to a 
software-simulated version of the UUT. Of course, if fault simulation techniques were 
used to generate the test patterns, the UUT's good responses can be obtained very eas
ily as a partial product from the simulator. 



TEST 
PATTERNS 

TEST 
PATTERNS 

Appendix 369 

UUT UUT 
RESPONSE 

STORED 
GOOD 

RESPONSE 

COMPARATOR 

Figure A.3.1 Stored Response Testing 

· UUT UUT 
RESPONSE 

COMPARATOR 
GOLDEN GOOD 

UNIT RESPONSE 

Figure A.3.2 Comparison Testing 

ERROR 
SIGNAL 

The use of a known good device depends on the availability of such a device. 
Hence, different techniques must be used for the user who wants to test his LSI system 
and for the designer who wants to test his prototype design. However, golden units are 
usually available once the device goes into production. Moreover, confidence in the 
correctness of the responses can be increased by using three or five good devices 
together to generate the good responses. 

The major advantage of the stored response technique is that the good responses 
are generated only once for each test sequence, thus reducing the cost of the response 
evaluation step. However, the stored response technique suffers from various disadvan
tages: 

• Any change in the test sequence requires the whole process to be repeated. 



370 Programmable Logic Design Guide 

• A very large memory is usually needed to store all the good responses to a reason
able test sequence, because both the length and the width of the responses are rela
tively large. As a result, the cost of testing equipment increases. 

• The speed with which the test patterns can be applied to the UUT is limited by the 
access time of the memory used to store the good responses. 

Comparison Testing 

Another way to evaluate the responses of the UUT during the testing process is to apply 
the test patterns simultaneously to both the UUT and a golden unit and to compare 
their responses to detect any faulty response. The flow diagram of the comparison test
ing technique is shown in Figure A.3.2. The use of comparison testing makes possible 
the testing of the UUT at different speeds under different electrical parameters, given 
that these parameters are within the operating limits of the golden unit, which is 
assumed to be ideal. 

Note that in comparison testing the golden unit is used to generate the good 
responses every time the UUT is tested. In stored response testing, on the other hand, 
the golden unit is used to generate the good responses only once. 

The disadvantages of depending on a golden unit are more serious here, however, 
since every explicit testing process requires one golden unit. This means that every tester 
must contain a golden copy of each LSI circuit tested by that tester. 

One of the major advantages of comparison testing is that nothing has to be 
changed in the response evaluation stage if the test sequence is altered. This makes 
comparison testing highly desirable if test patterns are generated randomly.' 

Compact Testing 

The major drawback of good response generation techniques in general, and stored 
response t~sting in particular, is the huge amount of response data that must be ana
lyzed and stored. Compact testing methods attempt to solve this by compressing the 
response data R into a more compact form f(R) from which most of the fault informa
tion in R can be derived. Thus, because only the compact form of the good responses 
has to be stored, the need for large memory or expensive golden units is eliminated. An 
important property of the compression function f is that it can be implemented with 
simple circuitry. Thus, compact testing does not require much test equipment and is 

. especially suited for field maintenance work. A general diagram of the compact testing 
technique is shown in Figure A.3.3. 

Several choices for the function f exist, such as "the number of 1 's in the 
sequence," "the number of 0 to 1 and 1 ·to 0 transitions in the sequence" (transition 
counting),24 or "the signature of the sequence" (signature analysis).25 For each com
pression functionf, there is a slight probability that a response Rl different from the 
fault-free response RO will be compressed to a form equal tof(RO), i.e.,J(Rl) = f(RO). 



Appendix 371 

Thus, the fault causing the UUT to produce RI instead of RO will not be detected, even 
though it is covered by the test patterns. 

The two compression functions that are the most widely accepted commercially 
are transition counting and signature analysis. 

TEST 
PATTERNS 

Transition Counting 

UUT RESPONSES 
R 

J(r) 

GOOD 
COMPRESSED 
RESPONSES 

Figure A.3.3 Compact Testing 

COMPARATOR 

ERROR 
SIGNAL 

In transition counting, the number of logical transitions (0 to 1 and vice versa) is com
puted at each output pin by simply running each output of the UUT into a special 
counter. Thus, the number of counters needed is equal to the number of output pins 
observed. For every m-bit output data stream (at one pin), an n-bit counter is required, 
where n = (log2m]. As in stored response testing, the transition counts of the good 
responses are obtained by applying the test sequence to a golden copy of the UUT and 
counting the number of transitions at each output pin. This latter information is used as 
a reference in any explicit testing process. 

In the testing of an LSI circuit by means of transition counting, the input patterns 
can be applied to the UUT at a very high rate, since the response evaluation circuitry is 
very fast. Also, the size of the memory needed to store the transition counts of the 
good responses can be very small. For example, a transition counting test using 16 mil
lion patterns at a rate of one MHz will take 16 seconds, and the compressed stored 
response will occupy only K 24-bit words, where K is the number of output pins. This 
can be contrasted with the 16 million K-bit words of storage space needed if regular 
stored response testing is used. 

The test patterns used in a transition counting test system must be designed such 
that their output responses maximize the fault coverage of the test. 24 The example 
below shows how this can be done. 



372 Programmable Logic Design Guide 

Consider the one-out-of-four multiplexer shown in Figure A.3.4. To check for mul
tiple stuck-at faults in the multiplexer input lines, eight test patterns are required, as 
shown in Table A.3.1. The sequence of applying these eight patterns to the multiplexer 
is not important if we want to evaluate the output responses one by one. However, this 
sequence will greatly affect the degree of fault coverage if transition counting is used. 
To illustrate this fact, consider the eight single stuck-at faults in the four input lines 
Xl,X2,X3, and X4 (i.e., Xl stuck-at 0, Xl stuck-at 1, X2 stuck-at 0, and so on). Each of 
these faults will be detected by only one. pattern among the eight test patterns·. For 

X1 X2 X3 X4 

So S1 y 

So 0 0 X1 
1/4 MUX 0 1 X2 

1 0 X3 
1 1 X4 

y 

Figure A.3.4 One-Out-of-Four Multiplexer 

example, the fault "Xl stuck-at O" will be detected by applying the first test pattern in 
Table A.3.1, but the other seven test patterns will not detect this fault. Now, suppose we 
want to use transition counting to evaluate the output responses of the multiplexer. 
Applying the eight test patterns in the sequence shown in Table A.3.1 (from top to bot
tom) will produce the output response 10101010 (from left to right), with a transition 
count of seven. Any possible combination of the eight faults described above will 
change the transition count to a number different from seven, and the fault will be 
detected. (Note that no more than four of the eight faults can occur at any one time.) 
Thus, the test sequence shown in Table A.3.1 will detect all single and multiple stuck-at 
faults in the four input lines of the multiplexer. 

Now, if we change the sequence of the test patterns to the one shown in Table 
A.3.2, the fault coverage of the test will decrease considerably. The output responses of 
the sequence of Table A.3.2 will be 11001100, with a transition count of three. As a 
result, six of the eight single stuck-at faults will not be detected, because the transition 
count of the six faulty responses will remain three. For. example, the fault "Xl stuck-at 
l" will change the output response to 11101100, whic~.has a transition count of three. 
Hence, this fault will not be detected. Moreover, most of the multiple combinations of 
the eight faults will not change the transition count of the output, and hence they will 
not be detected either. 

It is clear from the above example that the order of applying the test patterns to the 
UUT greatly affects the fault coverage of the test. When testing combinational circuits, 
the test designer is completely free to choose the order of test patterns. However, he 



So S1 X1 X2 X3 X4 v 
0 0 1 0 0 0 1 
0 0 0 1 1 1 0 
0 1 0 1 0 0 1 
0 1 1 0 1 1 0 
1 0 0 0 1 0 1 
1 0 1 1 0 1 0 
1 1 0 0 0 1 1 
1 1 1 1 1 0 0 

Table A.3.1 The eight test patterns 
used for testing the 
multiplexer of 
Figure A.3.4 

Appendix 373 

So S1 X1 X2 X3 X4 v 
0 0 1 0 0 0 1 
0 1 0 1 0 0 1 
0 0 0 1 1 1 0 
0 1 1 0 1 1 0 
1 0 0 0 1 0 1 
1 1 0 0 0 1 1 
1 0 1 1 0 1 0 
1 1 1 1 1 0 0 

Table A.3.2 A different sequence of 
the eight multiplexer 
test patterns 

cannot do the same with test patterns for sequential circuits. More seriously, because 
he is dealing with LSI circuits that probably have multiple output lines, he will find that 
a particular test sequence may give good results at some outputs and bad results at oth
ers. One way to solve these contradictions is to use simulation techniques to find the 
optimal test sequence. However, because of the limitations discussed here, transition 
counting cannot be recognized as a powerful compact LSI testing method. 

Signature Analysis 

In 1977 Hewlett-Packard Corporation introduced a new compact testing technique 
called signature analysis, intended for testing LSI systems. 25-28 In this method, each 
output response is passed through a 16-bit linear feedback shift register whose contents 
/(R), after all the test patterns have been applied, are called the test signature. Figure 
A.3.5 shows an example of a linear feedback shift register used in signature analysis. 

SERIAL 
DATA 
INPUT 

16-BIT SHIFT REGISTER 

Figure A.3.5 The 16-bit Linear Feedback Shift Register Used in Signature Analysis 



374 Programmable Logic Design Guide 

The signature provided by linear feedback shift registers can be regarded as a 
unique fingerprint - hence, test designers have extremely high confidence in these 
shift registers as tools for catching errors. To better understand this confidence, let us 
examine the 16-bit linear feedback shift register shown ·in Figure A.3.5. Let us assume a 
data stream of length n is fed to the serial data input line (representing the output 
response to be evaluated). There are 2n possible combinations of data streams, and 
each one will be compressed to one of the 216 possible signatures. Linear feedback shift 
registers have the property of equally distributing the different combinations of data 
streams over the different signatures. 27 This property is illustrated by the following 
numerical examples. 

• Assume n = 16. Then each data stream will be mapped to a distinctive signature 
(one-to-one mapping). · 

• Assume n = 17. Then exactly two data streams will be mapped to the same signa
ture. Thus, for a particular data stream (the UUT good output response), there is 

·only one other data stream (a faulty output response) that will have the same signa
ture; i.e., only one faulty response out of 217 - 1 possible faults will not be 
detected. 

• Assume n = 18. Then four different data streams will be mapped to the same signa
ture. Hence, only three faults out of 218 - 1 possible faults will not be detected. 

We can generalize the results obtained above. For any response data stream of 
length n > 16, the probability of missing a faulty response when using a 16-bit signa
ture analyzer is27 

2n-16_1 -2 -16, for n> > 16. 
2n- 1 

Hence, the possibility of missing an error in the bit stream is very small (on the order of 
0.002 percent). Note also that a great percentage of the faults will affect more than one 
output pin - hence the probability of not detecting these kind of faults is even lower. 

Signature analysis provides a much higher level of confidence for detecting faulty 
output responses than that provided by transition counting. But, like transition count
ing, it requires only very simple hardware circuitry and a small amount of memory for 
storing the good signatures. As a result, the signatures of the output responses can be 
calculated even when the UUT is tested at its maximum speed. Unlike transition count
ing, the degree of fault coverage provided by signature analysis is not sensitive to the 
order of the test patterns. Thus, it is clear that signature analysis is the. most attractive 
solution to the response evaluation problem. 

The rapid growth of the complexity and performance of digital circuits presents a 
testing problem of increasing severity. Although rriany testing methods have worked 
well for SSI and MSI circuits, most of them are rapidly becoming obsolete. New tech
niques are required to cope with the vastly more complicated LSI circuits. 



Appendix 375 

In general, testing techniques fall into the concurrent and explicit categories. In 
this article, we gave special attention to explicit testing techniques, especially those 
approaching the problem at the functional level. The explicit testing process can be 
partitioned into three steps: generating the test, applying the test to the UUT, and evalu
ating the UUT's responses. The various testing techniques are distinguished by the 
methods they use to perform these three steps. Each of these techniques has certain 
strengths and weaknesses. 

We have tried to emphasize the range of testing techniques available, and to high
light some of the milestones in the evolution of LSI testing. The details of an individual 
test method can be found in the sources we have cited. 

References 

1. M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design of Digital Systems, 
Computer Science Press, Washington, DC, 1976. 

2. J.P. Hayes and E.J. McCluskey, "Testing Considerations in Microprocessor-Based 
Design," Computer, Vol. 13, No. 3, Mar. 1980, pp. 17-26. 

3. ]. Wakerly, Error Detecting Codes, Self-Checking Circuits and Applications, Ameri
can Elsevier, New York, 1978. 

4. D.B. Armstrong, "On Finding a Nearly Minimal Set of Fault Detection Tests for 
Combinatorial Nets," IEEE Trans. Electronic Computers, Vol. EC-15, No. 2, Feb. 
1966, pp. 63-73. 

5. J.P. Roth, W.G. Bouricius, and P.R. Schneider, "Programmed Algorithms to Com
pute Tests to Detect and Distinguish Between Failures in Logic Circuits," IEEE 
Trans. Electronica Computers, Vol. EC-16, No. 5, Oct. 1967, pp. 567-580. 

6. S.B. Akers, "Test Generation Techniques," Computer, Vol. 13, No. 3, Mar. 1980, 
pp. 9-15. 

7. E.I. Muehldorf and A.D. Savkar, "LSI Logic Testing - An Overview," IEEE Trans. 
Computers, Vol. C-30, No. 1, Jan. 1981, pp. 1-17. 

8. O.H. Ibarra and S.K. Sahni, "Polynomially Complete Fault Detection Problems," 
IEEE Trans. Computers, Vol. C-24, No. 3, Mar. 1975, pp 242-249. 

9. T. Sridhar and J.P. Hayes, "Testing Bit-Sliced Microprocessors," Proc. 9th Int'/ 
Symp. Fault-Tolerant Computing, 1979, pp. 211-218. 



376 Programmable Logic Design Guide 

10. Tbe Am2900 Family Data Book, Advanced Micro Devices, Inc., 1979. 

11. Z. Kohavi, Switching and Finite Automata Tbeory, McGraw-Hill, New York, 1970. 

12. S.M. Thatte, "Test Generation for Microprocessors," PhD thesis, University of Illi
nois, Urbana, 1979. 

13. S.M. Thatte andJ.A. Abraham, "Test Generation for Microprocessors," IEEE Trans. 
Computers, Vol. C-29, No. 6, June 1980, pp. 429-441. -

14. M.A. Breuer and A.D. Friedman, "Functional Level Primitives in Test Generation," 
IEEE Trans. Computers, Vol. C-29, No. 3, Mar. 1980, pp. 223-235. 

15. M.S. Abadir and H.K. Reghbati, "Test Generation for LSI: A New Approach," Tech. 
Report 81-7, Dept. of Computational Science, University of Saskatchewan, Saska
toon, 1981. 

16. M.S. Abadir and H.K. Reghbati, "Test Generation for LSI: Basic Operations," Tech. 
Report 81-8, Dept. of Computational Science, University of Saskatchewan, Saska
toon, 1981. 

17. M.S. Abadir and H.K. Reghbati, "Test Generation for LSI: A Case Study," Tech. 
Report 81-9, Dept. of Computational Science, University of Saskatchewan, Saska
toon, 1981. 

18. M.S. Abadir and H.K. Reghbati, "Functional Testing of Semiconductor Random 
Access Memories," Tech. Report 81-6, Dept. of Computational Science, Univeristy 
of Saskatchewan, Saskatoon, 1981. 

19. S.B. Akers, "Binary Decision Diagram," IEEE Trans Computers, Vol. C-27, No. 6, 
June 1978, pp. 509-516. 



Appendix 377 

20. S.B. Akers, "Functional Testing with Binary Decision Diagram," Proc. 8t/J Int'! 
Symp. Fault-Tolerant Computing, June 1978, pp. 82-92. 

21. B.A. Zimmer, "Test Techniques for Circuit Boards Containing Large Memories and 
Microprocessors," Proc. 1976 Semiconductor Test Symp., pp. 16-21. 

22. P. Agrawal and V.D. Agrawal, "On Improving the Efficiency of Monte Carlo Test 
Generation," Proc. 5th Int'! Symp. Fault-Tolerant Computing, June 1975, pp. 205-
209. 

23. D. Bastin, E. Girard, J.C. Rault, and R. Tulloue, "Probabilistic Test Generation Meth
ods," Proc. 3rd Int'! Symp. Fault-Tolerant Computing, June 1973, p. 171. 

24. J.P. Hayes, "Transition Count Testing of Combinational Logic Circuits," IEEE Trans. 
Computers, Vol. C-25, No. 6, June 1976, pp. 613-620. 

25. "Signature Analysis," Hewlett Packard]., Vol.28, No. 9, May 1977. 

26. R. David, "Feedback Shift Register Testing," Proc. 8th Int 'l Symp. Fault-Tolerant 
Computing, June 1978. 

27. H.J. Nadig, "Testing a Microprocessor Product Using Signature Analysis," Proc. 
,1978 Semiconductor Test Symp., pp. 159-169. 

28. J.B. Peatman, Digital Hardware Design, McGraw-Hill, New York, 1980. 

29. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of 
NP-Completeness, W.H. Freeman, San Francisco, 1978. 

30. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Sci
ence Press, Washington, DC, 1978. · 

























National Semiconductor Corporation 
P.O. Box 58090 
2900 Semiconductor Drive 
Santa Clara, CA 95052-8090 
Tel: (408) 721-5000 
TWX: (910) 339-9240 

Electronics NSC de Mexico SA 
Juventino Rosas No. 118-2 
Col Guadalupe Inn 
Mexico, 01020 D.F. Mexico 
Tel: (905) 524-9402 

National Semicondutores 
Do Brasil Ltda. 
Av. Brig. Faria Lima, 830 
8 Andar 
01452 Sao Paulo, SP. Brasil 
Tel: (55/11) 212-5066 
Telex: 391-1131931 NSBR BR 

~1985 National Semiconductor Corp. W/L/1687 

National Semiconductor GmbH 
Westendstrasse 193-195 
D-8000 Munchen 21 
West Germany 
Tel: (089) 5 70 95 01 
Telex: 522772 

National Semiconductor (UK) Ltd. 
301 Harpur Centre 
Horne Lane 
Bedford MK40 1 TR 
United Kingdom 
Tel: 0234-47147 
Telex: 826 209 

National.Semiconductor Benelux 
Ave Charles Quint 545 
8-1 080 Bruxelles 
Belgium 
Tel: (02) 4661807 
Telex: 61007 

National Semiconductor (UK) Ltd. 
1 , Bianco Lunos Alie 
DK-1868 Copenhagen V 
Denmark 
Tel: (01) 213211 
Telex: 15179 

National Semiconductor 
Expansion 1 0000 
28, Rue de la Redoute 
F-92 260 Fontenay-aux-Roses 
France 
Tel: (01) 660-8140 
Telex: 250956 

National Semiconductor S.p.A. 
Via Solferino 19 
20121 Milano 
Italy 
Tel: (02) 345-2046/7 /8/9 
Telex: 332835 

National Semiconductor AB 
Box 2016 
Stensatravagen 4/11 TR 
S-12702 Skarholmen 
Sweden 
Tel: (08) 970190 
Telex: 10731 

National Semiconductor 
Calle Nunez Morgado 9 
(Esc. Ocha. 1-A) 
E-Madrid 16 
Spain 
Tel: (01) 733-2954/733-2958 
Telex: 46133 

National Semiconductor Switzerland 
Alte Winterthurerstrasse 53 
Postfach 567 
CH-8304 Wallisellen-Zurich 
Tel: (01) 830-2727 
Telex: 59000 

National Semiconductor 
Pasilanraitio 6C 
SF-00240 Helsinki 24 
Finland 
Tel: (90) 14 03 44 
Telex: 124854 

NS Japan Ltd. 
4-403 lkebukuro, Toshima-ku 
Tokyo 171, Japan 
Tel: (03) 988-2131 
Fax: 011-81-3-988-1700 

National Semiconductor 
Hong Kong Ltd. 
Southeast Asia Marketing 
Austin Tower, 4th Floor 
22-26 Austin Avenue 
Tsimshatsui, Kowloon, H.K. 
Tel: 3-7231290, 3-7243645 
Cable: NSSEAMKTG 
Telex: 52996 NSSEA HX 

National Semiconductor (Australia) 
PTY, Ltd. 
21 /3 High Street 
Bayswater, Victoria 3153 
Tel: (03) 729-6333 
Telex: AA32096 

National Semiconductor (PTE), Ltd. 
10th Floor 
Pub Building, Devonshire Wing 
Somerset Road 
Singapore 0923 
Tel: 652700047 
Telex: NAT SEMI RS 21402 

National Semiconductor (Far East) 
Ltd. 
Taiwan Branch 
P.O. Box 68-332 Taipei 
7th Floor, Nan Shan Life Bldg., 
302 Min Chuan East Road, 
Taipei, Taiwan R.O.C. 
Tel: (02) 501-7227 
Telex: 22837 NSTW 
Cable: NSTW TAIPEI 

National Semiconductor (Far East) 
Ltd. 
Korea Office 
Third Floor, Hankyung Bldg. 
4-25 Hannam-Dong 
Yongsam-Ku, Seoul 140, Korea 
Tel: 797-8001 /3 
Telex: K24942 NSRK 

RRD20M075/Printed in U.~,A. 


